xref: /freebsd/sys/vm/vm_page.c (revision 42c159fe388a3765f69860c84183700af37aca8a)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37  * $FreeBSD$
38  */
39 
40 /*
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  */
66 
67 /*
68  *			GENERAL RULES ON VM_PAGE MANIPULATION
69  *
70  *	- a pageq mutex is required when adding or removing a page from a
71  *	  page queue (vm_page_queue[]), regardless of other mutexes or the
72  *	  busy state of a page.
73  *
74  *	- a hash chain mutex is required when associating or disassociating
75  *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
76  *	  regardless of other mutexes or the busy state of a page.
77  *
78  *	- either a hash chain mutex OR a busied page is required in order
79  *	  to modify the page flags.  A hash chain mutex must be obtained in
80  *	  order to busy a page.  A page's flags cannot be modified by a
81  *	  hash chain mutex if the page is marked busy.
82  *
83  *	- The object memq mutex is held when inserting or removing
84  *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
85  *	  is different from the object's main mutex.
86  *
87  *	Generally speaking, you have to be aware of side effects when running
88  *	vm_page ops.  A vm_page_lookup() will return with the hash chain
89  *	locked, whether it was able to lookup the page or not.  vm_page_free(),
90  *	vm_page_cache(), vm_page_activate(), and a number of other routines
91  *	will release the hash chain mutex for you.  Intermediate manipulation
92  *	routines such as vm_page_flag_set() expect the hash chain to be held
93  *	on entry and the hash chain will remain held on return.
94  *
95  *	pageq scanning can only occur with the pageq in question locked.
96  *	We have a known bottleneck with the active queue, but the cache
97  *	and free queues are actually arrays already.
98  */
99 
100 /*
101  *	Resident memory management module.
102  */
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/lock.h>
107 #include <sys/malloc.h>
108 #include <sys/mutex.h>
109 #include <sys/proc.h>
110 #include <sys/vmmeter.h>
111 #include <sys/vnode.h>
112 
113 #include <vm/vm.h>
114 #include <vm/vm_param.h>
115 #include <vm/vm_kern.h>
116 #include <vm/vm_object.h>
117 #include <vm/vm_page.h>
118 #include <vm/vm_pageout.h>
119 #include <vm/vm_pager.h>
120 #include <vm/vm_extern.h>
121 #include <vm/uma.h>
122 #include <vm/uma_int.h>
123 
124 /*
125  *	Associated with page of user-allocatable memory is a
126  *	page structure.
127  */
128 static struct vm_page **vm_page_buckets; /* Array of buckets */
129 static int vm_page_bucket_count;	/* How big is array? */
130 static int vm_page_hash_mask;		/* Mask for hash function */
131 static volatile int vm_page_bucket_generation;
132 static struct mtx vm_buckets_mtx[BUCKET_HASH_SIZE];
133 
134 vm_page_t vm_page_array = 0;
135 int vm_page_array_size = 0;
136 long first_page = 0;
137 int vm_page_zero_count = 0;
138 
139 /*
140  *	vm_set_page_size:
141  *
142  *	Sets the page size, perhaps based upon the memory
143  *	size.  Must be called before any use of page-size
144  *	dependent functions.
145  */
146 void
147 vm_set_page_size(void)
148 {
149 	if (cnt.v_page_size == 0)
150 		cnt.v_page_size = PAGE_SIZE;
151 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
152 		panic("vm_set_page_size: page size not a power of two");
153 }
154 
155 /*
156  *	vm_page_startup:
157  *
158  *	Initializes the resident memory module.
159  *
160  *	Allocates memory for the page cells, and
161  *	for the object/offset-to-page hash table headers.
162  *	Each page cell is initialized and placed on the free list.
163  */
164 vm_offset_t
165 vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr)
166 {
167 	vm_offset_t mapped;
168 	struct vm_page **bucket;
169 	vm_size_t npages, page_range;
170 	vm_offset_t new_end;
171 	int i;
172 	vm_offset_t pa;
173 	int nblocks;
174 	vm_offset_t last_pa;
175 
176 	/* the biggest memory array is the second group of pages */
177 	vm_offset_t end;
178 	vm_offset_t biggestone, biggestsize;
179 
180 	vm_offset_t total;
181 	vm_size_t bootpages;
182 
183 	total = 0;
184 	biggestsize = 0;
185 	biggestone = 0;
186 	nblocks = 0;
187 	vaddr = round_page(vaddr);
188 
189 	for (i = 0; phys_avail[i + 1]; i += 2) {
190 		phys_avail[i] = round_page(phys_avail[i]);
191 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
192 	}
193 
194 	for (i = 0; phys_avail[i + 1]; i += 2) {
195 		int size = phys_avail[i + 1] - phys_avail[i];
196 
197 		if (size > biggestsize) {
198 			biggestone = i;
199 			biggestsize = size;
200 		}
201 		++nblocks;
202 		total += size;
203 	}
204 
205 	end = phys_avail[biggestone+1];
206 
207 	/*
208 	 * Initialize the queue headers for the free queue, the active queue
209 	 * and the inactive queue.
210 	 */
211 	vm_pageq_init();
212 
213 	/*
214 	 * Allocate memory for use when boot strapping the kernel memory allocator
215 	 */
216 	bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
217 	new_end = end - bootpages;
218 	new_end = trunc_page(new_end);
219 	mapped = pmap_map(&vaddr, new_end, end,
220 	    VM_PROT_READ | VM_PROT_WRITE);
221 	bzero((caddr_t) mapped, end - new_end);
222 	uma_startup((caddr_t)mapped);
223 
224 	end = new_end;
225 
226 	/*
227 	 * Allocate (and initialize) the hash table buckets.
228 	 *
229 	 * The number of buckets MUST BE a power of 2, and the actual value is
230 	 * the next power of 2 greater than the number of physical pages in
231 	 * the system.
232 	 *
233 	 * We make the hash table approximately 2x the number of pages to
234 	 * reduce the chain length.  This is about the same size using the
235 	 * singly-linked list as the 1x hash table we were using before
236 	 * using TAILQ but the chain length will be smaller.
237 	 *
238 	 * Note: This computation can be tweaked if desired.
239 	 */
240 	if (vm_page_bucket_count == 0) {
241 		vm_page_bucket_count = 1;
242 		while (vm_page_bucket_count < atop(total))
243 			vm_page_bucket_count <<= 1;
244 	}
245 	vm_page_bucket_count <<= 1;
246 	vm_page_hash_mask = vm_page_bucket_count - 1;
247 
248 	/*
249 	 * Validate these addresses.
250 	 */
251 	new_end = end - vm_page_bucket_count * sizeof(struct vm_page *);
252 	new_end = trunc_page(new_end);
253 	mapped = pmap_map(&vaddr, new_end, end,
254 	    VM_PROT_READ | VM_PROT_WRITE);
255 	bzero((caddr_t) mapped, end - new_end);
256 
257 	vm_page_buckets = (struct vm_page **)mapped;
258 	bucket = vm_page_buckets;
259 	for (i = 0; i < vm_page_bucket_count; i++) {
260 		*bucket = NULL;
261 		bucket++;
262 	}
263 	for (i = 0; i < BUCKET_HASH_SIZE; ++i)
264 		mtx_init(&vm_buckets_mtx[i],  "vm buckets hash mutexes", MTX_DEF);
265 
266 	/*
267 	 * Compute the number of pages of memory that will be available for
268 	 * use (taking into account the overhead of a page structure per
269 	 * page).
270 	 */
271 	first_page = phys_avail[0] / PAGE_SIZE;
272 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
273 	npages = (total - (page_range * sizeof(struct vm_page)) -
274 	    (end - new_end)) / PAGE_SIZE;
275 	end = new_end;
276 
277 	/*
278 	 * Initialize the mem entry structures now, and put them in the free
279 	 * queue.
280 	 */
281 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
282 	mapped = pmap_map(&vaddr, new_end, end,
283 	    VM_PROT_READ | VM_PROT_WRITE);
284 	vm_page_array = (vm_page_t) mapped;
285 
286 	/*
287 	 * Clear all of the page structures
288 	 */
289 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
290 	vm_page_array_size = page_range;
291 
292 	/*
293 	 * Construct the free queue(s) in descending order (by physical
294 	 * address) so that the first 16MB of physical memory is allocated
295 	 * last rather than first.  On large-memory machines, this avoids
296 	 * the exhaustion of low physical memory before isa_dmainit has run.
297 	 */
298 	cnt.v_page_count = 0;
299 	cnt.v_free_count = 0;
300 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
301 		pa = phys_avail[i];
302 		if (i == biggestone)
303 			last_pa = new_end;
304 		else
305 			last_pa = phys_avail[i + 1];
306 		while (pa < last_pa && npages-- > 0) {
307 			vm_pageq_add_new_page(pa);
308 			pa += PAGE_SIZE;
309 		}
310 	}
311 	return (vaddr);
312 }
313 
314 /*
315  *	vm_page_hash:
316  *
317  *	Distributes the object/offset key pair among hash buckets.
318  *
319  *	NOTE:  This macro depends on vm_page_bucket_count being a power of 2.
320  *	This routine may not block.
321  *
322  *	We try to randomize the hash based on the object to spread the pages
323  *	out in the hash table without it costing us too much.
324  */
325 static __inline int
326 vm_page_hash(vm_object_t object, vm_pindex_t pindex)
327 {
328 	int i = ((uintptr_t)object + pindex) ^ object->hash_rand;
329 
330 	return (i & vm_page_hash_mask);
331 }
332 
333 void
334 vm_page_flag_set(vm_page_t m, unsigned short bits)
335 {
336 	GIANT_REQUIRED;
337 	m->flags |= bits;
338 }
339 
340 void
341 vm_page_flag_clear(vm_page_t m, unsigned short bits)
342 {
343 	GIANT_REQUIRED;
344 	m->flags &= ~bits;
345 }
346 
347 void
348 vm_page_busy(vm_page_t m)
349 {
350 	KASSERT((m->flags & PG_BUSY) == 0,
351 	    ("vm_page_busy: page already busy!!!"));
352 	vm_page_flag_set(m, PG_BUSY);
353 }
354 
355 /*
356  *      vm_page_flash:
357  *
358  *      wakeup anyone waiting for the page.
359  */
360 void
361 vm_page_flash(vm_page_t m)
362 {
363 	if (m->flags & PG_WANTED) {
364 		vm_page_flag_clear(m, PG_WANTED);
365 		wakeup(m);
366 	}
367 }
368 
369 /*
370  *      vm_page_wakeup:
371  *
372  *      clear the PG_BUSY flag and wakeup anyone waiting for the
373  *      page.
374  *
375  */
376 void
377 vm_page_wakeup(vm_page_t m)
378 {
379 	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
380 	vm_page_flag_clear(m, PG_BUSY);
381 	vm_page_flash(m);
382 }
383 
384 /*
385  *
386  *
387  */
388 void
389 vm_page_io_start(vm_page_t m)
390 {
391 	GIANT_REQUIRED;
392 	m->busy++;
393 }
394 
395 void
396 vm_page_io_finish(vm_page_t m)
397 {
398 	GIANT_REQUIRED;
399 	m->busy--;
400 	if (m->busy == 0)
401 		vm_page_flash(m);
402 }
403 
404 /*
405  * Keep page from being freed by the page daemon
406  * much of the same effect as wiring, except much lower
407  * overhead and should be used only for *very* temporary
408  * holding ("wiring").
409  */
410 void
411 vm_page_hold(vm_page_t mem)
412 {
413         GIANT_REQUIRED;
414         mem->hold_count++;
415 }
416 
417 void
418 vm_page_unhold(vm_page_t mem)
419 {
420 	GIANT_REQUIRED;
421 	--mem->hold_count;
422 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
423 	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
424 		vm_page_free_toq(mem);
425 }
426 
427 /*
428  *	vm_page_protect:
429  *
430  *	Reduce the protection of a page.  This routine never raises the
431  *	protection and therefore can be safely called if the page is already
432  *	at VM_PROT_NONE (it will be a NOP effectively ).
433  */
434 void
435 vm_page_protect(vm_page_t mem, int prot)
436 {
437 	if (prot == VM_PROT_NONE) {
438 		if (mem->flags & (PG_WRITEABLE|PG_MAPPED)) {
439 			pmap_page_protect(mem, VM_PROT_NONE);
440 			vm_page_flag_clear(mem, PG_WRITEABLE|PG_MAPPED);
441 		}
442 	} else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) {
443 		pmap_page_protect(mem, VM_PROT_READ);
444 		vm_page_flag_clear(mem, PG_WRITEABLE);
445 	}
446 }
447 /*
448  *	vm_page_zero_fill:
449  *
450  *	Zero-fill the specified page.
451  *	Written as a standard pagein routine, to
452  *	be used by the zero-fill object.
453  */
454 boolean_t
455 vm_page_zero_fill(vm_page_t m)
456 {
457 	pmap_zero_page(VM_PAGE_TO_PHYS(m));
458 	return (TRUE);
459 }
460 
461 /*
462  *	vm_page_copy:
463  *
464  *	Copy one page to another
465  */
466 void
467 vm_page_copy(vm_page_t src_m, vm_page_t dest_m)
468 {
469 	pmap_copy_page(VM_PAGE_TO_PHYS(src_m), VM_PAGE_TO_PHYS(dest_m));
470 	dest_m->valid = VM_PAGE_BITS_ALL;
471 }
472 
473 /*
474  *	vm_page_free:
475  *
476  *	Free a page
477  *
478  *	The clearing of PG_ZERO is a temporary safety until the code can be
479  *	reviewed to determine that PG_ZERO is being properly cleared on
480  *	write faults or maps.  PG_ZERO was previously cleared in
481  *	vm_page_alloc().
482  */
483 void
484 vm_page_free(vm_page_t m)
485 {
486 	vm_page_flag_clear(m, PG_ZERO);
487 	vm_page_free_toq(m);
488 	vm_page_zero_idle_wakeup();
489 }
490 
491 /*
492  *	vm_page_free_zero:
493  *
494  *	Free a page to the zerod-pages queue
495  */
496 void
497 vm_page_free_zero(vm_page_t m)
498 {
499 	vm_page_flag_set(m, PG_ZERO);
500 	vm_page_free_toq(m);
501 }
502 
503 /*
504  *	vm_page_sleep_busy:
505  *
506  *	Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
507  *	m->busy is zero.  Returns TRUE if it had to sleep ( including if
508  *	it almost had to sleep and made temporary spl*() mods), FALSE
509  *	otherwise.
510  *
511  *	This routine assumes that interrupts can only remove the busy
512  *	status from a page, not set the busy status or change it from
513  *	PG_BUSY to m->busy or vise versa (which would create a timing
514  *	window).
515  */
516 int
517 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
518 {
519 	GIANT_REQUIRED;
520 	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy))  {
521 		int s = splvm();
522 		if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
523 			/*
524 			 * Page is busy. Wait and retry.
525 			 */
526 			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
527 			tsleep(m, PVM, msg, 0);
528 		}
529 		splx(s);
530 		return (TRUE);
531 		/* not reached */
532 	}
533 	return (FALSE);
534 }
535 /*
536  *	vm_page_dirty:
537  *
538  *	make page all dirty
539  */
540 void
541 vm_page_dirty(vm_page_t m)
542 {
543 	KASSERT(m->queue - m->pc != PQ_CACHE,
544 	    ("vm_page_dirty: page in cache!"));
545 	m->dirty = VM_PAGE_BITS_ALL;
546 }
547 
548 /*
549  *	vm_page_undirty:
550  *
551  *	Set page to not be dirty.  Note: does not clear pmap modify bits
552  */
553 void
554 vm_page_undirty(vm_page_t m)
555 {
556 	m->dirty = 0;
557 }
558 
559 /*
560  *	vm_page_insert:		[ internal use only ]
561  *
562  *	Inserts the given mem entry into the object and object list.
563  *
564  *	The pagetables are not updated but will presumably fault the page
565  *	in if necessary, or if a kernel page the caller will at some point
566  *	enter the page into the kernel's pmap.  We are not allowed to block
567  *	here so we *can't* do this anyway.
568  *
569  *	The object and page must be locked, and must be splhigh.
570  *	This routine may not block.
571  */
572 void
573 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
574 {
575 	struct vm_page **bucket;
576 
577 	GIANT_REQUIRED;
578 
579 	if (m->object != NULL)
580 		panic("vm_page_insert: already inserted");
581 
582 	/*
583 	 * Record the object/offset pair in this page
584 	 */
585 	m->object = object;
586 	m->pindex = pindex;
587 
588 	/*
589 	 * Insert it into the object_object/offset hash table
590 	 */
591 	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
592 	m->hnext = *bucket;
593 	*bucket = m;
594 	vm_page_bucket_generation++;
595 
596 	/*
597 	 * Now link into the object's list of backed pages.
598 	 */
599 	TAILQ_INSERT_TAIL(&object->memq, m, listq);
600 	object->generation++;
601 
602 	/*
603 	 * show that the object has one more resident page.
604 	 */
605 	object->resident_page_count++;
606 
607 	/*
608 	 * Since we are inserting a new and possibly dirty page,
609 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
610 	 */
611 	if (m->flags & PG_WRITEABLE)
612 		vm_object_set_writeable_dirty(object);
613 }
614 
615 /*
616  *	vm_page_remove:
617  *				NOTE: used by device pager as well -wfj
618  *
619  *	Removes the given mem entry from the object/offset-page
620  *	table and the object page list, but do not invalidate/terminate
621  *	the backing store.
622  *
623  *	The object and page must be locked, and at splhigh.
624  *	The underlying pmap entry (if any) is NOT removed here.
625  *	This routine may not block.
626  */
627 void
628 vm_page_remove(vm_page_t m)
629 {
630 	vm_object_t object;
631 
632 	GIANT_REQUIRED;
633 
634 	if (m->object == NULL)
635 		return;
636 
637 	if ((m->flags & PG_BUSY) == 0) {
638 		panic("vm_page_remove: page not busy");
639 	}
640 
641 	/*
642 	 * Basically destroy the page.
643 	 */
644 	vm_page_wakeup(m);
645 
646 	object = m->object;
647 
648 	/*
649 	 * Remove from the object_object/offset hash table.  The object
650 	 * must be on the hash queue, we will panic if it isn't
651 	 *
652 	 * Note: we must NULL-out m->hnext to prevent loops in detached
653 	 * buffers with vm_page_lookup().
654 	 */
655 	{
656 		struct vm_page **bucket;
657 
658 		bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)];
659 		while (*bucket != m) {
660 			if (*bucket == NULL)
661 				panic("vm_page_remove(): page not found in hash");
662 			bucket = &(*bucket)->hnext;
663 		}
664 		*bucket = m->hnext;
665 		m->hnext = NULL;
666 		vm_page_bucket_generation++;
667 	}
668 
669 	/*
670 	 * Now remove from the object's list of backed pages.
671 	 */
672 	TAILQ_REMOVE(&object->memq, m, listq);
673 
674 	/*
675 	 * And show that the object has one fewer resident page.
676 	 */
677 	object->resident_page_count--;
678 	object->generation++;
679 
680 	m->object = NULL;
681 }
682 
683 /*
684  *	vm_page_lookup:
685  *
686  *	Returns the page associated with the object/offset
687  *	pair specified; if none is found, NULL is returned.
688  *
689  *	NOTE: the code below does not lock.  It will operate properly if
690  *	an interrupt makes a change, but the generation algorithm will not
691  *	operate properly in an SMP environment where both cpu's are able to run
692  *	kernel code simultaneously.
693  *
694  *	The object must be locked.  No side effects.
695  *	This routine may not block.
696  *	This is a critical path routine
697  */
698 vm_page_t
699 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
700 {
701 	vm_page_t m;
702 	struct vm_page **bucket;
703 	int generation;
704 
705 	/*
706 	 * Search the hash table for this object/offset pair
707 	 */
708 retry:
709 	generation = vm_page_bucket_generation;
710 	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
711 	for (m = *bucket; m != NULL; m = m->hnext) {
712 		if ((m->object == object) && (m->pindex == pindex)) {
713 			if (vm_page_bucket_generation != generation)
714 				goto retry;
715 			return (m);
716 		}
717 	}
718 	if (vm_page_bucket_generation != generation)
719 		goto retry;
720 	return (NULL);
721 }
722 
723 /*
724  *	vm_page_rename:
725  *
726  *	Move the given memory entry from its
727  *	current object to the specified target object/offset.
728  *
729  *	The object must be locked.
730  *	This routine may not block.
731  *
732  *	Note: this routine will raise itself to splvm(), the caller need not.
733  *
734  *	Note: swap associated with the page must be invalidated by the move.  We
735  *	      have to do this for several reasons:  (1) we aren't freeing the
736  *	      page, (2) we are dirtying the page, (3) the VM system is probably
737  *	      moving the page from object A to B, and will then later move
738  *	      the backing store from A to B and we can't have a conflict.
739  *
740  *	Note: we *always* dirty the page.  It is necessary both for the
741  *	      fact that we moved it, and because we may be invalidating
742  *	      swap.  If the page is on the cache, we have to deactivate it
743  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
744  *	      on the cache.
745  */
746 void
747 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
748 {
749 	int s;
750 
751 	s = splvm();
752 	vm_page_remove(m);
753 	vm_page_insert(m, new_object, new_pindex);
754 	if (m->queue - m->pc == PQ_CACHE)
755 		vm_page_deactivate(m);
756 	vm_page_dirty(m);
757 	splx(s);
758 }
759 
760 /*
761  *	vm_page_select_cache:
762  *
763  *	Find a page on the cache queue with color optimization.  As pages
764  *	might be found, but not applicable, they are deactivated.  This
765  *	keeps us from using potentially busy cached pages.
766  *
767  *	This routine must be called at splvm().
768  *	This routine may not block.
769  */
770 static vm_page_t
771 vm_page_select_cache(vm_object_t object, vm_pindex_t pindex)
772 {
773 	vm_page_t m;
774 
775 	GIANT_REQUIRED;
776 	while (TRUE) {
777 		m = vm_pageq_find(
778 		    PQ_CACHE,
779 		    (pindex + object->pg_color) & PQ_L2_MASK,
780 		    FALSE
781 		);
782 		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
783 			       m->hold_count || m->wire_count)) {
784 			vm_page_deactivate(m);
785 			continue;
786 		}
787 		return m;
788 	}
789 }
790 
791 /*
792  *	vm_page_select_free:
793  *
794  *	Find a free or zero page, with specified preference.
795  *
796  *	This routine must be called at splvm().
797  *	This routine may not block.
798  */
799 static __inline vm_page_t
800 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
801 {
802 	vm_page_t m;
803 
804 	m = vm_pageq_find(
805 		PQ_FREE,
806 		(pindex + object->pg_color) & PQ_L2_MASK,
807 		prefer_zero
808 	);
809 	return (m);
810 }
811 
812 /*
813  *	vm_page_alloc:
814  *
815  *	Allocate and return a memory cell associated
816  *	with this VM object/offset pair.
817  *
818  *	page_req classes:
819  *	VM_ALLOC_NORMAL		normal process request
820  *	VM_ALLOC_SYSTEM		system *really* needs a page
821  *	VM_ALLOC_INTERRUPT	interrupt time request
822  *	VM_ALLOC_ZERO		zero page
823  *
824  *	This routine may not block.
825  *
826  *	Additional special handling is required when called from an
827  *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
828  *	the page cache in this case.
829  */
830 vm_page_t
831 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
832 {
833 	vm_page_t m = NULL;
834 	int s;
835 
836 	GIANT_REQUIRED;
837 
838 	KASSERT(!vm_page_lookup(object, pindex),
839 		("vm_page_alloc: page already allocated"));
840 
841 	/*
842 	 * The pager is allowed to eat deeper into the free page list.
843 	 */
844 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
845 		page_req = VM_ALLOC_SYSTEM;
846 	};
847 
848 	s = splvm();
849 
850 loop:
851 	if (cnt.v_free_count > cnt.v_free_reserved) {
852 		/*
853 		 * Allocate from the free queue if there are plenty of pages
854 		 * in it.
855 		 */
856 		if (page_req == VM_ALLOC_ZERO)
857 			m = vm_page_select_free(object, pindex, TRUE);
858 		else
859 			m = vm_page_select_free(object, pindex, FALSE);
860 	} else if (
861 	    (page_req == VM_ALLOC_SYSTEM &&
862 	     cnt.v_cache_count == 0 &&
863 	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
864 	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)
865 	) {
866 		/*
867 		 * Interrupt or system, dig deeper into the free list.
868 		 */
869 		m = vm_page_select_free(object, pindex, FALSE);
870 	} else if (page_req != VM_ALLOC_INTERRUPT) {
871 		/*
872 		 * Allocatable from cache (non-interrupt only).  On success,
873 		 * we must free the page and try again, thus ensuring that
874 		 * cnt.v_*_free_min counters are replenished.
875 		 */
876 		m = vm_page_select_cache(object, pindex);
877 		if (m == NULL) {
878 			splx(s);
879 #if defined(DIAGNOSTIC)
880 			if (cnt.v_cache_count > 0)
881 				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
882 #endif
883 			vm_pageout_deficit++;
884 			pagedaemon_wakeup();
885 			return (NULL);
886 		}
887 		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
888 		vm_page_busy(m);
889 		vm_page_protect(m, VM_PROT_NONE);
890 		vm_page_free(m);
891 		goto loop;
892 	} else {
893 		/*
894 		 * Not allocatable from cache from interrupt, give up.
895 		 */
896 		splx(s);
897 		vm_pageout_deficit++;
898 		pagedaemon_wakeup();
899 		return (NULL);
900 	}
901 
902 	/*
903 	 *  At this point we had better have found a good page.
904 	 */
905 
906 	KASSERT(
907 	    m != NULL,
908 	    ("vm_page_alloc(): missing page on free queue\n")
909 	);
910 
911 	/*
912 	 * Remove from free queue
913 	 */
914 
915 	vm_pageq_remove_nowakeup(m);
916 
917 	/*
918 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
919 	 */
920 	if (m->flags & PG_ZERO) {
921 		vm_page_zero_count--;
922 		m->flags = PG_ZERO | PG_BUSY;
923 	} else {
924 		m->flags = PG_BUSY;
925 	}
926 	m->wire_count = 0;
927 	m->hold_count = 0;
928 	m->act_count = 0;
929 	m->busy = 0;
930 	m->valid = 0;
931 	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
932 
933 	/*
934 	 * vm_page_insert() is safe prior to the splx().  Note also that
935 	 * inserting a page here does not insert it into the pmap (which
936 	 * could cause us to block allocating memory).  We cannot block
937 	 * anywhere.
938 	 */
939 	vm_page_insert(m, object, pindex);
940 
941 	/*
942 	 * Don't wakeup too often - wakeup the pageout daemon when
943 	 * we would be nearly out of memory.
944 	 */
945 	if (vm_paging_needed())
946 		pagedaemon_wakeup();
947 
948 	splx(s);
949 	return (m);
950 }
951 
952 /*
953  *	vm_wait:	(also see VM_WAIT macro)
954  *
955  *	Block until free pages are available for allocation
956  *	- Called in various places before memory allocations.
957  */
958 void
959 vm_wait(void)
960 {
961 	int s;
962 
963 	s = splvm();
964 	if (curproc == pageproc) {
965 		vm_pageout_pages_needed = 1;
966 		tsleep(&vm_pageout_pages_needed, PSWP, "VMWait", 0);
967 	} else {
968 		if (!vm_pages_needed) {
969 			vm_pages_needed = 1;
970 			wakeup(&vm_pages_needed);
971 		}
972 		tsleep(&cnt.v_free_count, PVM, "vmwait", 0);
973 	}
974 	splx(s);
975 }
976 
977 /*
978  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
979  *
980  *	Block until free pages are available for allocation
981  *	- Called only in vm_fault so that processes page faulting
982  *	  can be easily tracked.
983  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
984  *	  processes will be able to grab memory first.  Do not change
985  *	  this balance without careful testing first.
986  */
987 void
988 vm_waitpfault(void)
989 {
990 	int s;
991 
992 	s = splvm();
993 	if (!vm_pages_needed) {
994 		vm_pages_needed = 1;
995 		wakeup(&vm_pages_needed);
996 	}
997 	tsleep(&cnt.v_free_count, PUSER, "pfault", 0);
998 	splx(s);
999 }
1000 
1001 /*
1002  *	vm_page_activate:
1003  *
1004  *	Put the specified page on the active list (if appropriate).
1005  *	Ensure that act_count is at least ACT_INIT but do not otherwise
1006  *	mess with it.
1007  *
1008  *	The page queues must be locked.
1009  *	This routine may not block.
1010  */
1011 void
1012 vm_page_activate(vm_page_t m)
1013 {
1014 	int s;
1015 
1016 	GIANT_REQUIRED;
1017 	s = splvm();
1018 	if (m->queue != PQ_ACTIVE) {
1019 		if ((m->queue - m->pc) == PQ_CACHE)
1020 			cnt.v_reactivated++;
1021 		vm_pageq_remove(m);
1022 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1023 			if (m->act_count < ACT_INIT)
1024 				m->act_count = ACT_INIT;
1025 			vm_pageq_enqueue(PQ_ACTIVE, m);
1026 		}
1027 	} else {
1028 		if (m->act_count < ACT_INIT)
1029 			m->act_count = ACT_INIT;
1030 	}
1031 	splx(s);
1032 }
1033 
1034 /*
1035  *	vm_page_free_wakeup:
1036  *
1037  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1038  *	routine is called when a page has been added to the cache or free
1039  *	queues.
1040  *
1041  *	This routine may not block.
1042  *	This routine must be called at splvm()
1043  */
1044 static __inline void
1045 vm_page_free_wakeup(void)
1046 {
1047 	/*
1048 	 * if pageout daemon needs pages, then tell it that there are
1049 	 * some free.
1050 	 */
1051 	if (vm_pageout_pages_needed &&
1052 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1053 		wakeup(&vm_pageout_pages_needed);
1054 		vm_pageout_pages_needed = 0;
1055 	}
1056 	/*
1057 	 * wakeup processes that are waiting on memory if we hit a
1058 	 * high water mark. And wakeup scheduler process if we have
1059 	 * lots of memory. this process will swapin processes.
1060 	 */
1061 	if (vm_pages_needed && !vm_page_count_min()) {
1062 		vm_pages_needed = 0;
1063 		wakeup(&cnt.v_free_count);
1064 	}
1065 }
1066 
1067 /*
1068  *	vm_page_free_toq:
1069  *
1070  *	Returns the given page to the PQ_FREE list,
1071  *	disassociating it with any VM object.
1072  *
1073  *	Object and page must be locked prior to entry.
1074  *	This routine may not block.
1075  */
1076 
1077 void
1078 vm_page_free_toq(vm_page_t m)
1079 {
1080 	int s;
1081 	struct vpgqueues *pq;
1082 	vm_object_t object = m->object;
1083 
1084 	GIANT_REQUIRED;
1085 	s = splvm();
1086 	cnt.v_tfree++;
1087 
1088 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1089 		printf(
1090 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1091 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1092 		    m->hold_count);
1093 		if ((m->queue - m->pc) == PQ_FREE)
1094 			panic("vm_page_free: freeing free page");
1095 		else
1096 			panic("vm_page_free: freeing busy page");
1097 	}
1098 
1099 	/*
1100 	 * unqueue, then remove page.  Note that we cannot destroy
1101 	 * the page here because we do not want to call the pager's
1102 	 * callback routine until after we've put the page on the
1103 	 * appropriate free queue.
1104 	 */
1105 	vm_pageq_remove_nowakeup(m);
1106 	vm_page_remove(m);
1107 
1108 	/*
1109 	 * If fictitious remove object association and
1110 	 * return, otherwise delay object association removal.
1111 	 */
1112 	if ((m->flags & PG_FICTITIOUS) != 0) {
1113 		splx(s);
1114 		return;
1115 	}
1116 
1117 	m->valid = 0;
1118 	vm_page_undirty(m);
1119 
1120 	if (m->wire_count != 0) {
1121 		if (m->wire_count > 1) {
1122 			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1123 				m->wire_count, (long)m->pindex);
1124 		}
1125 		panic("vm_page_free: freeing wired page\n");
1126 	}
1127 
1128 	/*
1129 	 * If we've exhausted the object's resident pages we want to free
1130 	 * it up.
1131 	 */
1132 	if (object &&
1133 	    (object->type == OBJT_VNODE) &&
1134 	    ((object->flags & OBJ_DEAD) == 0)
1135 	) {
1136 		struct vnode *vp = (struct vnode *)object->handle;
1137 
1138 		if (vp && VSHOULDFREE(vp))
1139 			vfree(vp);
1140 	}
1141 
1142 	/*
1143 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1144 	 */
1145 	if (m->flags & PG_UNMANAGED) {
1146 		m->flags &= ~PG_UNMANAGED;
1147 	} else {
1148 #ifdef __alpha__
1149 		pmap_page_is_free(m);
1150 #endif
1151 	}
1152 
1153 	if (m->hold_count != 0) {
1154 		m->flags &= ~PG_ZERO;
1155 		m->queue = PQ_HOLD;
1156 	} else
1157 		m->queue = PQ_FREE + m->pc;
1158 	pq = &vm_page_queues[m->queue];
1159 	pq->lcnt++;
1160 	++(*pq->cnt);
1161 
1162 	/*
1163 	 * Put zero'd pages on the end ( where we look for zero'd pages
1164 	 * first ) and non-zerod pages at the head.
1165 	 */
1166 	if (m->flags & PG_ZERO) {
1167 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1168 		++vm_page_zero_count;
1169 	} else {
1170 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1171 	}
1172 	vm_page_free_wakeup();
1173 	splx(s);
1174 }
1175 
1176 /*
1177  *	vm_page_unmanage:
1178  *
1179  * 	Prevent PV management from being done on the page.  The page is
1180  *	removed from the paging queues as if it were wired, and as a
1181  *	consequence of no longer being managed the pageout daemon will not
1182  *	touch it (since there is no way to locate the pte mappings for the
1183  *	page).  madvise() calls that mess with the pmap will also no longer
1184  *	operate on the page.
1185  *
1186  *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1187  *	will clear the flag.
1188  *
1189  *	This routine is used by OBJT_PHYS objects - objects using unswappable
1190  *	physical memory as backing store rather then swap-backed memory and
1191  *	will eventually be extended to support 4MB unmanaged physical
1192  *	mappings.
1193  */
1194 void
1195 vm_page_unmanage(vm_page_t m)
1196 {
1197 	int s;
1198 
1199 	s = splvm();
1200 	if ((m->flags & PG_UNMANAGED) == 0) {
1201 		if (m->wire_count == 0)
1202 			vm_pageq_remove(m);
1203 	}
1204 	vm_page_flag_set(m, PG_UNMANAGED);
1205 	splx(s);
1206 }
1207 
1208 /*
1209  *	vm_page_wire:
1210  *
1211  *	Mark this page as wired down by yet
1212  *	another map, removing it from paging queues
1213  *	as necessary.
1214  *
1215  *	The page queues must be locked.
1216  *	This routine may not block.
1217  */
1218 void
1219 vm_page_wire(vm_page_t m)
1220 {
1221 	int s;
1222 
1223 	/*
1224 	 * Only bump the wire statistics if the page is not already wired,
1225 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1226 	 * it is already off the queues).
1227 	 */
1228 	s = splvm();
1229 	if (m->wire_count == 0) {
1230 		if ((m->flags & PG_UNMANAGED) == 0)
1231 			vm_pageq_remove(m);
1232 		cnt.v_wire_count++;
1233 	}
1234 	m->wire_count++;
1235 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1236 	splx(s);
1237 	vm_page_flag_set(m, PG_MAPPED);
1238 }
1239 
1240 /*
1241  *	vm_page_unwire:
1242  *
1243  *	Release one wiring of this page, potentially
1244  *	enabling it to be paged again.
1245  *
1246  *	Many pages placed on the inactive queue should actually go
1247  *	into the cache, but it is difficult to figure out which.  What
1248  *	we do instead, if the inactive target is well met, is to put
1249  *	clean pages at the head of the inactive queue instead of the tail.
1250  *	This will cause them to be moved to the cache more quickly and
1251  *	if not actively re-referenced, freed more quickly.  If we just
1252  *	stick these pages at the end of the inactive queue, heavy filesystem
1253  *	meta-data accesses can cause an unnecessary paging load on memory bound
1254  *	processes.  This optimization causes one-time-use metadata to be
1255  *	reused more quickly.
1256  *
1257  *	BUT, if we are in a low-memory situation we have no choice but to
1258  *	put clean pages on the cache queue.
1259  *
1260  *	A number of routines use vm_page_unwire() to guarantee that the page
1261  *	will go into either the inactive or active queues, and will NEVER
1262  *	be placed in the cache - for example, just after dirtying a page.
1263  *	dirty pages in the cache are not allowed.
1264  *
1265  *	The page queues must be locked.
1266  *	This routine may not block.
1267  */
1268 void
1269 vm_page_unwire(vm_page_t m, int activate)
1270 {
1271 	int s;
1272 
1273 	s = splvm();
1274 
1275 	if (m->wire_count > 0) {
1276 		m->wire_count--;
1277 		if (m->wire_count == 0) {
1278 			cnt.v_wire_count--;
1279 			if (m->flags & PG_UNMANAGED) {
1280 				;
1281 			} else if (activate)
1282 				vm_pageq_enqueue(PQ_ACTIVE, m);
1283 			else {
1284 				vm_page_flag_clear(m, PG_WINATCFLS);
1285 				vm_pageq_enqueue(PQ_INACTIVE, m);
1286 			}
1287 		}
1288 	} else {
1289 		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1290 	}
1291 	splx(s);
1292 }
1293 
1294 
1295 /*
1296  * Move the specified page to the inactive queue.  If the page has
1297  * any associated swap, the swap is deallocated.
1298  *
1299  * Normally athead is 0 resulting in LRU operation.  athead is set
1300  * to 1 if we want this page to be 'as if it were placed in the cache',
1301  * except without unmapping it from the process address space.
1302  *
1303  * This routine may not block.
1304  */
1305 static __inline void
1306 _vm_page_deactivate(vm_page_t m, int athead)
1307 {
1308 	int s;
1309 
1310 	GIANT_REQUIRED;
1311 	/*
1312 	 * Ignore if already inactive.
1313 	 */
1314 	if (m->queue == PQ_INACTIVE)
1315 		return;
1316 
1317 	s = splvm();
1318 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1319 		if ((m->queue - m->pc) == PQ_CACHE)
1320 			cnt.v_reactivated++;
1321 		vm_page_flag_clear(m, PG_WINATCFLS);
1322 		vm_pageq_remove(m);
1323 		if (athead)
1324 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1325 		else
1326 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1327 		m->queue = PQ_INACTIVE;
1328 		vm_page_queues[PQ_INACTIVE].lcnt++;
1329 		cnt.v_inactive_count++;
1330 	}
1331 	splx(s);
1332 }
1333 
1334 void
1335 vm_page_deactivate(vm_page_t m)
1336 {
1337     _vm_page_deactivate(m, 0);
1338 }
1339 
1340 /*
1341  * vm_page_try_to_cache:
1342  *
1343  * Returns 0 on failure, 1 on success
1344  */
1345 int
1346 vm_page_try_to_cache(vm_page_t m)
1347 {
1348 	GIANT_REQUIRED;
1349 
1350 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1351 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1352 		return (0);
1353 	}
1354 	vm_page_test_dirty(m);
1355 	if (m->dirty)
1356 		return (0);
1357 	vm_page_cache(m);
1358 	return (1);
1359 }
1360 
1361 /*
1362  * vm_page_try_to_free()
1363  *
1364  *	Attempt to free the page.  If we cannot free it, we do nothing.
1365  *	1 is returned on success, 0 on failure.
1366  */
1367 int
1368 vm_page_try_to_free(vm_page_t m)
1369 {
1370 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1371 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1372 		return (0);
1373 	}
1374 	vm_page_test_dirty(m);
1375 	if (m->dirty)
1376 		return (0);
1377 	vm_page_busy(m);
1378 	vm_page_protect(m, VM_PROT_NONE);
1379 	vm_page_free(m);
1380 	return (1);
1381 }
1382 
1383 /*
1384  * vm_page_cache
1385  *
1386  * Put the specified page onto the page cache queue (if appropriate).
1387  *
1388  * This routine may not block.
1389  */
1390 void
1391 vm_page_cache(vm_page_t m)
1392 {
1393 	int s;
1394 
1395 	GIANT_REQUIRED;
1396 	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) {
1397 		printf("vm_page_cache: attempting to cache busy page\n");
1398 		return;
1399 	}
1400 	if ((m->queue - m->pc) == PQ_CACHE)
1401 		return;
1402 
1403 	/*
1404 	 * Remove all pmaps and indicate that the page is not
1405 	 * writeable or mapped.
1406 	 */
1407 	vm_page_protect(m, VM_PROT_NONE);
1408 	if (m->dirty != 0) {
1409 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1410 			(long)m->pindex);
1411 	}
1412 	s = splvm();
1413 	vm_pageq_remove_nowakeup(m);
1414 	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1415 	vm_page_free_wakeup();
1416 	splx(s);
1417 }
1418 
1419 /*
1420  * vm_page_dontneed
1421  *
1422  *	Cache, deactivate, or do nothing as appropriate.  This routine
1423  *	is typically used by madvise() MADV_DONTNEED.
1424  *
1425  *	Generally speaking we want to move the page into the cache so
1426  *	it gets reused quickly.  However, this can result in a silly syndrome
1427  *	due to the page recycling too quickly.  Small objects will not be
1428  *	fully cached.  On the otherhand, if we move the page to the inactive
1429  *	queue we wind up with a problem whereby very large objects
1430  *	unnecessarily blow away our inactive and cache queues.
1431  *
1432  *	The solution is to move the pages based on a fixed weighting.  We
1433  *	either leave them alone, deactivate them, or move them to the cache,
1434  *	where moving them to the cache has the highest weighting.
1435  *	By forcing some pages into other queues we eventually force the
1436  *	system to balance the queues, potentially recovering other unrelated
1437  *	space from active.  The idea is to not force this to happen too
1438  *	often.
1439  */
1440 void
1441 vm_page_dontneed(vm_page_t m)
1442 {
1443 	static int dnweight;
1444 	int dnw;
1445 	int head;
1446 
1447 	GIANT_REQUIRED;
1448 	dnw = ++dnweight;
1449 
1450 	/*
1451 	 * occassionally leave the page alone
1452 	 */
1453 	if ((dnw & 0x01F0) == 0 ||
1454 	    m->queue == PQ_INACTIVE ||
1455 	    m->queue - m->pc == PQ_CACHE
1456 	) {
1457 		if (m->act_count >= ACT_INIT)
1458 			--m->act_count;
1459 		return;
1460 	}
1461 
1462 	if (m->dirty == 0)
1463 		vm_page_test_dirty(m);
1464 
1465 	if (m->dirty || (dnw & 0x0070) == 0) {
1466 		/*
1467 		 * Deactivate the page 3 times out of 32.
1468 		 */
1469 		head = 0;
1470 	} else {
1471 		/*
1472 		 * Cache the page 28 times out of every 32.  Note that
1473 		 * the page is deactivated instead of cached, but placed
1474 		 * at the head of the queue instead of the tail.
1475 		 */
1476 		head = 1;
1477 	}
1478 	_vm_page_deactivate(m, head);
1479 }
1480 
1481 /*
1482  * Grab a page, waiting until we are waken up due to the page
1483  * changing state.  We keep on waiting, if the page continues
1484  * to be in the object.  If the page doesn't exist, allocate it.
1485  *
1486  * This routine may block.
1487  */
1488 vm_page_t
1489 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1490 {
1491 	vm_page_t m;
1492 	int s, generation;
1493 
1494 	GIANT_REQUIRED;
1495 retrylookup:
1496 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1497 		if (m->busy || (m->flags & PG_BUSY)) {
1498 			generation = object->generation;
1499 
1500 			s = splvm();
1501 			while ((object->generation == generation) &&
1502 					(m->busy || (m->flags & PG_BUSY))) {
1503 				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1504 				tsleep(m, PVM, "pgrbwt", 0);
1505 				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1506 					splx(s);
1507 					return NULL;
1508 				}
1509 			}
1510 			splx(s);
1511 			goto retrylookup;
1512 		} else {
1513 			vm_page_busy(m);
1514 			return m;
1515 		}
1516 	}
1517 
1518 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1519 	if (m == NULL) {
1520 		VM_WAIT;
1521 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1522 			return NULL;
1523 		goto retrylookup;
1524 	}
1525 
1526 	return m;
1527 }
1528 
1529 /*
1530  * Mapping function for valid bits or for dirty bits in
1531  * a page.  May not block.
1532  *
1533  * Inputs are required to range within a page.
1534  */
1535 __inline int
1536 vm_page_bits(int base, int size)
1537 {
1538 	int first_bit;
1539 	int last_bit;
1540 
1541 	KASSERT(
1542 	    base + size <= PAGE_SIZE,
1543 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1544 	);
1545 
1546 	if (size == 0)		/* handle degenerate case */
1547 		return (0);
1548 
1549 	first_bit = base >> DEV_BSHIFT;
1550 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1551 
1552 	return ((2 << last_bit) - (1 << first_bit));
1553 }
1554 
1555 /*
1556  *	vm_page_set_validclean:
1557  *
1558  *	Sets portions of a page valid and clean.  The arguments are expected
1559  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1560  *	of any partial chunks touched by the range.  The invalid portion of
1561  *	such chunks will be zero'd.
1562  *
1563  *	This routine may not block.
1564  *
1565  *	(base + size) must be less then or equal to PAGE_SIZE.
1566  */
1567 void
1568 vm_page_set_validclean(vm_page_t m, int base, int size)
1569 {
1570 	int pagebits;
1571 	int frag;
1572 	int endoff;
1573 
1574 	GIANT_REQUIRED;
1575 	if (size == 0)	/* handle degenerate case */
1576 		return;
1577 
1578 	/*
1579 	 * If the base is not DEV_BSIZE aligned and the valid
1580 	 * bit is clear, we have to zero out a portion of the
1581 	 * first block.
1582 	 */
1583 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1584 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
1585 	) {
1586 		pmap_zero_page_area(
1587 		    VM_PAGE_TO_PHYS(m),
1588 		    frag,
1589 		    base - frag
1590 		);
1591 	}
1592 
1593 	/*
1594 	 * If the ending offset is not DEV_BSIZE aligned and the
1595 	 * valid bit is clear, we have to zero out a portion of
1596 	 * the last block.
1597 	 */
1598 	endoff = base + size;
1599 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1600 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
1601 	) {
1602 		pmap_zero_page_area(
1603 		    VM_PAGE_TO_PHYS(m),
1604 		    endoff,
1605 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
1606 		);
1607 	}
1608 
1609 	/*
1610 	 * Set valid, clear dirty bits.  If validating the entire
1611 	 * page we can safely clear the pmap modify bit.  We also
1612 	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1613 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1614 	 * be set again.
1615 	 *
1616 	 * We set valid bits inclusive of any overlap, but we can only
1617 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1618 	 * the range.
1619 	 */
1620 	pagebits = vm_page_bits(base, size);
1621 	m->valid |= pagebits;
1622 #if 0	/* NOT YET */
1623 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1624 		frag = DEV_BSIZE - frag;
1625 		base += frag;
1626 		size -= frag;
1627 		if (size < 0)
1628 			size = 0;
1629 	}
1630 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1631 #endif
1632 	m->dirty &= ~pagebits;
1633 	if (base == 0 && size == PAGE_SIZE) {
1634 		pmap_clear_modify(m);
1635 		vm_page_flag_clear(m, PG_NOSYNC);
1636 	}
1637 }
1638 
1639 #if 0
1640 
1641 void
1642 vm_page_set_dirty(vm_page_t m, int base, int size)
1643 {
1644 	m->dirty |= vm_page_bits(base, size);
1645 }
1646 
1647 #endif
1648 
1649 void
1650 vm_page_clear_dirty(vm_page_t m, int base, int size)
1651 {
1652 	GIANT_REQUIRED;
1653 	m->dirty &= ~vm_page_bits(base, size);
1654 }
1655 
1656 /*
1657  *	vm_page_set_invalid:
1658  *
1659  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1660  *	valid and dirty bits for the effected areas are cleared.
1661  *
1662  *	May not block.
1663  */
1664 void
1665 vm_page_set_invalid(vm_page_t m, int base, int size)
1666 {
1667 	int bits;
1668 
1669 	GIANT_REQUIRED;
1670 	bits = vm_page_bits(base, size);
1671 	m->valid &= ~bits;
1672 	m->dirty &= ~bits;
1673 	m->object->generation++;
1674 }
1675 
1676 /*
1677  * vm_page_zero_invalid()
1678  *
1679  *	The kernel assumes that the invalid portions of a page contain
1680  *	garbage, but such pages can be mapped into memory by user code.
1681  *	When this occurs, we must zero out the non-valid portions of the
1682  *	page so user code sees what it expects.
1683  *
1684  *	Pages are most often semi-valid when the end of a file is mapped
1685  *	into memory and the file's size is not page aligned.
1686  */
1687 void
1688 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1689 {
1690 	int b;
1691 	int i;
1692 
1693 	/*
1694 	 * Scan the valid bits looking for invalid sections that
1695 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1696 	 * valid bit may be set ) have already been zerod by
1697 	 * vm_page_set_validclean().
1698 	 */
1699 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1700 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1701 		    (m->valid & (1 << i))
1702 		) {
1703 			if (i > b) {
1704 				pmap_zero_page_area(
1705 				    VM_PAGE_TO_PHYS(m),
1706 				    b << DEV_BSHIFT,
1707 				    (i - b) << DEV_BSHIFT
1708 				);
1709 			}
1710 			b = i + 1;
1711 		}
1712 	}
1713 
1714 	/*
1715 	 * setvalid is TRUE when we can safely set the zero'd areas
1716 	 * as being valid.  We can do this if there are no cache consistancy
1717 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1718 	 */
1719 	if (setvalid)
1720 		m->valid = VM_PAGE_BITS_ALL;
1721 }
1722 
1723 /*
1724  *	vm_page_is_valid:
1725  *
1726  *	Is (partial) page valid?  Note that the case where size == 0
1727  *	will return FALSE in the degenerate case where the page is
1728  *	entirely invalid, and TRUE otherwise.
1729  *
1730  *	May not block.
1731  */
1732 int
1733 vm_page_is_valid(vm_page_t m, int base, int size)
1734 {
1735 	int bits = vm_page_bits(base, size);
1736 
1737 	if (m->valid && ((m->valid & bits) == bits))
1738 		return 1;
1739 	else
1740 		return 0;
1741 }
1742 
1743 /*
1744  * update dirty bits from pmap/mmu.  May not block.
1745  */
1746 void
1747 vm_page_test_dirty(vm_page_t m)
1748 {
1749 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1750 		vm_page_dirty(m);
1751 	}
1752 }
1753 
1754 #include "opt_ddb.h"
1755 #ifdef DDB
1756 #include <sys/kernel.h>
1757 
1758 #include <ddb/ddb.h>
1759 
1760 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1761 {
1762 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1763 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1764 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1765 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1766 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1767 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1768 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1769 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1770 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1771 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1772 }
1773 
1774 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1775 {
1776 	int i;
1777 	db_printf("PQ_FREE:");
1778 	for (i = 0; i < PQ_L2_SIZE; i++) {
1779 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1780 	}
1781 	db_printf("\n");
1782 
1783 	db_printf("PQ_CACHE:");
1784 	for (i = 0; i < PQ_L2_SIZE; i++) {
1785 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1786 	}
1787 	db_printf("\n");
1788 
1789 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1790 		vm_page_queues[PQ_ACTIVE].lcnt,
1791 		vm_page_queues[PQ_INACTIVE].lcnt);
1792 }
1793 #endif /* DDB */
1794