1 /*- 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 33 */ 34 35 /*- 36 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 37 * All rights reserved. 38 * 39 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 40 * 41 * Permission to use, copy, modify and distribute this software and 42 * its documentation is hereby granted, provided that both the copyright 43 * notice and this permission notice appear in all copies of the 44 * software, derivative works or modified versions, and any portions 45 * thereof, and that both notices appear in supporting documentation. 46 * 47 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 48 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 49 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 50 * 51 * Carnegie Mellon requests users of this software to return to 52 * 53 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 54 * School of Computer Science 55 * Carnegie Mellon University 56 * Pittsburgh PA 15213-3890 57 * 58 * any improvements or extensions that they make and grant Carnegie the 59 * rights to redistribute these changes. 60 */ 61 62 /* 63 * GENERAL RULES ON VM_PAGE MANIPULATION 64 * 65 * - a pageq mutex is required when adding or removing a page from a 66 * page queue (vm_page_queue[]), regardless of other mutexes or the 67 * busy state of a page. 68 * 69 * - a hash chain mutex is required when associating or disassociating 70 * a page from the VM PAGE CACHE hash table (vm_page_buckets), 71 * regardless of other mutexes or the busy state of a page. 72 * 73 * - either a hash chain mutex OR a busied page is required in order 74 * to modify the page flags. A hash chain mutex must be obtained in 75 * order to busy a page. A page's flags cannot be modified by a 76 * hash chain mutex if the page is marked busy. 77 * 78 * - The object memq mutex is held when inserting or removing 79 * pages from an object (vm_page_insert() or vm_page_remove()). This 80 * is different from the object's main mutex. 81 * 82 * Generally speaking, you have to be aware of side effects when running 83 * vm_page ops. A vm_page_lookup() will return with the hash chain 84 * locked, whether it was able to lookup the page or not. vm_page_free(), 85 * vm_page_cache(), vm_page_activate(), and a number of other routines 86 * will release the hash chain mutex for you. Intermediate manipulation 87 * routines such as vm_page_flag_set() expect the hash chain to be held 88 * on entry and the hash chain will remain held on return. 89 * 90 * pageq scanning can only occur with the pageq in question locked. 91 * We have a known bottleneck with the active queue, but the cache 92 * and free queues are actually arrays already. 93 */ 94 95 /* 96 * Resident memory management module. 97 */ 98 99 #include <sys/cdefs.h> 100 __FBSDID("$FreeBSD$"); 101 102 #include <sys/param.h> 103 #include <sys/systm.h> 104 #include <sys/lock.h> 105 #include <sys/kernel.h> 106 #include <sys/malloc.h> 107 #include <sys/mutex.h> 108 #include <sys/proc.h> 109 #include <sys/sysctl.h> 110 #include <sys/vmmeter.h> 111 #include <sys/vnode.h> 112 113 #include <vm/vm.h> 114 #include <vm/vm_param.h> 115 #include <vm/vm_kern.h> 116 #include <vm/vm_object.h> 117 #include <vm/vm_page.h> 118 #include <vm/vm_pageout.h> 119 #include <vm/vm_pager.h> 120 #include <vm/vm_extern.h> 121 #include <vm/uma.h> 122 #include <vm/uma_int.h> 123 124 #include <machine/md_var.h> 125 126 /* 127 * Associated with page of user-allocatable memory is a 128 * page structure. 129 */ 130 131 struct mtx vm_page_queue_mtx; 132 struct mtx vm_page_queue_free_mtx; 133 134 vm_page_t vm_page_array = 0; 135 int vm_page_array_size = 0; 136 long first_page = 0; 137 int vm_page_zero_count = 0; 138 139 static int boot_pages = UMA_BOOT_PAGES; 140 TUNABLE_INT("vm.boot_pages", &boot_pages); 141 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0, 142 "number of pages allocated for bootstrapping the VM system"); 143 144 /* 145 * vm_set_page_size: 146 * 147 * Sets the page size, perhaps based upon the memory 148 * size. Must be called before any use of page-size 149 * dependent functions. 150 */ 151 void 152 vm_set_page_size(void) 153 { 154 if (cnt.v_page_size == 0) 155 cnt.v_page_size = PAGE_SIZE; 156 if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0) 157 panic("vm_set_page_size: page size not a power of two"); 158 } 159 160 /* 161 * vm_page_blacklist_lookup: 162 * 163 * See if a physical address in this page has been listed 164 * in the blacklist tunable. Entries in the tunable are 165 * separated by spaces or commas. If an invalid integer is 166 * encountered then the rest of the string is skipped. 167 */ 168 static int 169 vm_page_blacklist_lookup(char *list, vm_paddr_t pa) 170 { 171 vm_paddr_t bad; 172 char *cp, *pos; 173 174 for (pos = list; *pos != '\0'; pos = cp) { 175 bad = strtoq(pos, &cp, 0); 176 if (*cp != '\0') { 177 if (*cp == ' ' || *cp == ',') { 178 cp++; 179 if (cp == pos) 180 continue; 181 } else 182 break; 183 } 184 if (pa == trunc_page(bad)) 185 return (1); 186 } 187 return (0); 188 } 189 190 /* 191 * vm_page_startup: 192 * 193 * Initializes the resident memory module. 194 * 195 * Allocates memory for the page cells, and 196 * for the object/offset-to-page hash table headers. 197 * Each page cell is initialized and placed on the free list. 198 */ 199 vm_offset_t 200 vm_page_startup(vm_offset_t vaddr) 201 { 202 vm_offset_t mapped; 203 vm_size_t npages; 204 vm_paddr_t page_range; 205 vm_paddr_t new_end; 206 int i; 207 vm_paddr_t pa; 208 int nblocks; 209 vm_paddr_t last_pa; 210 char *list; 211 212 /* the biggest memory array is the second group of pages */ 213 vm_paddr_t end; 214 vm_paddr_t biggestsize; 215 int biggestone; 216 217 vm_paddr_t total; 218 219 total = 0; 220 biggestsize = 0; 221 biggestone = 0; 222 nblocks = 0; 223 vaddr = round_page(vaddr); 224 225 for (i = 0; phys_avail[i + 1]; i += 2) { 226 phys_avail[i] = round_page(phys_avail[i]); 227 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 228 } 229 230 for (i = 0; phys_avail[i + 1]; i += 2) { 231 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 232 233 if (size > biggestsize) { 234 biggestone = i; 235 biggestsize = size; 236 } 237 ++nblocks; 238 total += size; 239 } 240 241 end = phys_avail[biggestone+1]; 242 243 /* 244 * Initialize the locks. 245 */ 246 mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF | 247 MTX_RECURSE); 248 mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL, 249 MTX_SPIN); 250 251 /* 252 * Initialize the queue headers for the free queue, the active queue 253 * and the inactive queue. 254 */ 255 vm_pageq_init(); 256 257 /* 258 * Allocate memory for use when boot strapping the kernel memory 259 * allocator. 260 */ 261 new_end = end - (boot_pages * UMA_SLAB_SIZE); 262 new_end = trunc_page(new_end); 263 mapped = pmap_map(&vaddr, new_end, end, 264 VM_PROT_READ | VM_PROT_WRITE); 265 bzero((void *)mapped, end - new_end); 266 uma_startup((void *)mapped, boot_pages); 267 268 #if defined(__amd64__) || defined(__i386__) 269 /* 270 * Allocate a bitmap to indicate that a random physical page 271 * needs to be included in a minidump. 272 * 273 * The amd64 port needs this to indicate which direct map pages 274 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 275 * 276 * However, i386 still needs this workspace internally within the 277 * minidump code. In theory, they are not needed on i386, but are 278 * included should the sf_buf code decide to use them. 279 */ 280 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE; 281 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 282 new_end -= vm_page_dump_size; 283 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, 284 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); 285 bzero((void *)vm_page_dump, vm_page_dump_size); 286 #endif 287 /* 288 * Compute the number of pages of memory that will be available for 289 * use (taking into account the overhead of a page structure per 290 * page). 291 */ 292 first_page = phys_avail[0] / PAGE_SIZE; 293 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page; 294 npages = (total - (page_range * sizeof(struct vm_page)) - 295 (end - new_end)) / PAGE_SIZE; 296 end = new_end; 297 298 /* 299 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 300 */ 301 vaddr += PAGE_SIZE; 302 303 /* 304 * Initialize the mem entry structures now, and put them in the free 305 * queue. 306 */ 307 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 308 mapped = pmap_map(&vaddr, new_end, end, 309 VM_PROT_READ | VM_PROT_WRITE); 310 vm_page_array = (vm_page_t) mapped; 311 #ifdef __amd64__ 312 /* 313 * pmap_map on amd64 comes out of the direct-map, not kvm like i386, 314 * so the pages must be tracked for a crashdump to include this data. 315 * This includes the vm_page_array and the early UMA bootstrap pages. 316 */ 317 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE) 318 dump_add_page(pa); 319 #endif 320 phys_avail[biggestone + 1] = new_end; 321 322 /* 323 * Clear all of the page structures 324 */ 325 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 326 vm_page_array_size = page_range; 327 328 /* 329 * Construct the free queue(s) in descending order (by physical 330 * address) so that the first 16MB of physical memory is allocated 331 * last rather than first. On large-memory machines, this avoids 332 * the exhaustion of low physical memory before isa_dma_init has run. 333 */ 334 cnt.v_page_count = 0; 335 cnt.v_free_count = 0; 336 list = getenv("vm.blacklist"); 337 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) { 338 pa = phys_avail[i]; 339 last_pa = phys_avail[i + 1]; 340 while (pa < last_pa && npages-- > 0) { 341 if (list != NULL && 342 vm_page_blacklist_lookup(list, pa)) 343 printf("Skipping page with pa 0x%jx\n", 344 (uintmax_t)pa); 345 else 346 vm_pageq_add_new_page(pa); 347 pa += PAGE_SIZE; 348 } 349 } 350 freeenv(list); 351 return (vaddr); 352 } 353 354 void 355 vm_page_flag_set(vm_page_t m, unsigned short bits) 356 { 357 358 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 359 m->flags |= bits; 360 } 361 362 void 363 vm_page_flag_clear(vm_page_t m, unsigned short bits) 364 { 365 366 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 367 m->flags &= ~bits; 368 } 369 370 void 371 vm_page_busy(vm_page_t m) 372 { 373 374 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 375 KASSERT((m->flags & PG_BUSY) == 0, 376 ("vm_page_busy: page already busy!!!")); 377 vm_page_flag_set(m, PG_BUSY); 378 } 379 380 /* 381 * vm_page_flash: 382 * 383 * wakeup anyone waiting for the page. 384 */ 385 void 386 vm_page_flash(vm_page_t m) 387 { 388 389 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 390 if (m->oflags & VPO_WANTED) { 391 m->oflags &= ~VPO_WANTED; 392 wakeup(m); 393 } 394 } 395 396 /* 397 * vm_page_wakeup: 398 * 399 * clear the PG_BUSY flag and wakeup anyone waiting for the 400 * page. 401 * 402 */ 403 void 404 vm_page_wakeup(vm_page_t m) 405 { 406 407 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 408 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!")); 409 vm_page_flag_clear(m, PG_BUSY); 410 vm_page_flash(m); 411 } 412 413 void 414 vm_page_io_start(vm_page_t m) 415 { 416 417 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 418 m->busy++; 419 } 420 421 void 422 vm_page_io_finish(vm_page_t m) 423 { 424 425 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 426 m->busy--; 427 if (m->busy == 0) 428 vm_page_flash(m); 429 } 430 431 /* 432 * Keep page from being freed by the page daemon 433 * much of the same effect as wiring, except much lower 434 * overhead and should be used only for *very* temporary 435 * holding ("wiring"). 436 */ 437 void 438 vm_page_hold(vm_page_t mem) 439 { 440 441 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 442 mem->hold_count++; 443 } 444 445 void 446 vm_page_unhold(vm_page_t mem) 447 { 448 449 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 450 --mem->hold_count; 451 KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!")); 452 if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD)) 453 vm_page_free_toq(mem); 454 } 455 456 /* 457 * vm_page_free: 458 * 459 * Free a page 460 * 461 * The clearing of PG_ZERO is a temporary safety until the code can be 462 * reviewed to determine that PG_ZERO is being properly cleared on 463 * write faults or maps. PG_ZERO was previously cleared in 464 * vm_page_alloc(). 465 */ 466 void 467 vm_page_free(vm_page_t m) 468 { 469 vm_page_flag_clear(m, PG_ZERO); 470 vm_page_free_toq(m); 471 vm_page_zero_idle_wakeup(); 472 } 473 474 /* 475 * vm_page_free_zero: 476 * 477 * Free a page to the zerod-pages queue 478 */ 479 void 480 vm_page_free_zero(vm_page_t m) 481 { 482 vm_page_flag_set(m, PG_ZERO); 483 vm_page_free_toq(m); 484 } 485 486 /* 487 * vm_page_sleep: 488 * 489 * Sleep and release the page queues lock. 490 * 491 * The object containing the given page must be locked. 492 */ 493 void 494 vm_page_sleep(vm_page_t m, const char *msg) 495 { 496 497 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 498 if (!mtx_owned(&vm_page_queue_mtx)) 499 vm_page_lock_queues(); 500 vm_page_flag_set(m, PG_REFERENCED); 501 vm_page_unlock_queues(); 502 503 /* 504 * It's possible that while we sleep, the page will get 505 * unbusied and freed. If we are holding the object 506 * lock, we will assume we hold a reference to the object 507 * such that even if m->object changes, we can re-lock 508 * it. 509 */ 510 m->oflags |= VPO_WANTED; 511 msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0); 512 } 513 514 /* 515 * vm_page_dirty: 516 * 517 * make page all dirty 518 */ 519 void 520 vm_page_dirty(vm_page_t m) 521 { 522 KASSERT(VM_PAGE_GETKNOWNQUEUE1(m) != PQ_CACHE, 523 ("vm_page_dirty: page in cache!")); 524 KASSERT(VM_PAGE_GETKNOWNQUEUE1(m) != PQ_FREE, 525 ("vm_page_dirty: page is free!")); 526 m->dirty = VM_PAGE_BITS_ALL; 527 } 528 529 /* 530 * vm_page_splay: 531 * 532 * Implements Sleator and Tarjan's top-down splay algorithm. Returns 533 * the vm_page containing the given pindex. If, however, that 534 * pindex is not found in the vm_object, returns a vm_page that is 535 * adjacent to the pindex, coming before or after it. 536 */ 537 vm_page_t 538 vm_page_splay(vm_pindex_t pindex, vm_page_t root) 539 { 540 struct vm_page dummy; 541 vm_page_t lefttreemax, righttreemin, y; 542 543 if (root == NULL) 544 return (root); 545 lefttreemax = righttreemin = &dummy; 546 for (;; root = y) { 547 if (pindex < root->pindex) { 548 if ((y = root->left) == NULL) 549 break; 550 if (pindex < y->pindex) { 551 /* Rotate right. */ 552 root->left = y->right; 553 y->right = root; 554 root = y; 555 if ((y = root->left) == NULL) 556 break; 557 } 558 /* Link into the new root's right tree. */ 559 righttreemin->left = root; 560 righttreemin = root; 561 } else if (pindex > root->pindex) { 562 if ((y = root->right) == NULL) 563 break; 564 if (pindex > y->pindex) { 565 /* Rotate left. */ 566 root->right = y->left; 567 y->left = root; 568 root = y; 569 if ((y = root->right) == NULL) 570 break; 571 } 572 /* Link into the new root's left tree. */ 573 lefttreemax->right = root; 574 lefttreemax = root; 575 } else 576 break; 577 } 578 /* Assemble the new root. */ 579 lefttreemax->right = root->left; 580 righttreemin->left = root->right; 581 root->left = dummy.right; 582 root->right = dummy.left; 583 return (root); 584 } 585 586 /* 587 * vm_page_insert: [ internal use only ] 588 * 589 * Inserts the given mem entry into the object and object list. 590 * 591 * The pagetables are not updated but will presumably fault the page 592 * in if necessary, or if a kernel page the caller will at some point 593 * enter the page into the kernel's pmap. We are not allowed to block 594 * here so we *can't* do this anyway. 595 * 596 * The object and page must be locked. 597 * This routine may not block. 598 */ 599 void 600 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 601 { 602 vm_page_t root; 603 604 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 605 if (m->object != NULL) 606 panic("vm_page_insert: page already inserted"); 607 608 /* 609 * Record the object/offset pair in this page 610 */ 611 m->object = object; 612 m->pindex = pindex; 613 614 /* 615 * Now link into the object's ordered list of backed pages. 616 */ 617 root = object->root; 618 if (root == NULL) { 619 m->left = NULL; 620 m->right = NULL; 621 TAILQ_INSERT_TAIL(&object->memq, m, listq); 622 } else { 623 root = vm_page_splay(pindex, root); 624 if (pindex < root->pindex) { 625 m->left = root->left; 626 m->right = root; 627 root->left = NULL; 628 TAILQ_INSERT_BEFORE(root, m, listq); 629 } else if (pindex == root->pindex) 630 panic("vm_page_insert: offset already allocated"); 631 else { 632 m->right = root->right; 633 m->left = root; 634 root->right = NULL; 635 TAILQ_INSERT_AFTER(&object->memq, root, m, listq); 636 } 637 } 638 object->root = m; 639 object->generation++; 640 641 /* 642 * show that the object has one more resident page. 643 */ 644 object->resident_page_count++; 645 /* 646 * Hold the vnode until the last page is released. 647 */ 648 if (object->resident_page_count == 1 && object->type == OBJT_VNODE) 649 vhold((struct vnode *)object->handle); 650 651 /* 652 * Since we are inserting a new and possibly dirty page, 653 * update the object's OBJ_MIGHTBEDIRTY flag. 654 */ 655 if (m->flags & PG_WRITEABLE) 656 vm_object_set_writeable_dirty(object); 657 } 658 659 /* 660 * vm_page_remove: 661 * NOTE: used by device pager as well -wfj 662 * 663 * Removes the given mem entry from the object/offset-page 664 * table and the object page list, but do not invalidate/terminate 665 * the backing store. 666 * 667 * The object and page must be locked. 668 * The underlying pmap entry (if any) is NOT removed here. 669 * This routine may not block. 670 */ 671 void 672 vm_page_remove(vm_page_t m) 673 { 674 vm_object_t object; 675 vm_page_t root; 676 677 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 678 if ((object = m->object) == NULL) 679 return; 680 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 681 if (m->flags & PG_BUSY) { 682 vm_page_flag_clear(m, PG_BUSY); 683 vm_page_flash(m); 684 } 685 686 /* 687 * Now remove from the object's list of backed pages. 688 */ 689 if (m != object->root) 690 vm_page_splay(m->pindex, object->root); 691 if (m->left == NULL) 692 root = m->right; 693 else { 694 root = vm_page_splay(m->pindex, m->left); 695 root->right = m->right; 696 } 697 object->root = root; 698 TAILQ_REMOVE(&object->memq, m, listq); 699 700 /* 701 * And show that the object has one fewer resident page. 702 */ 703 object->resident_page_count--; 704 object->generation++; 705 /* 706 * The vnode may now be recycled. 707 */ 708 if (object->resident_page_count == 0 && object->type == OBJT_VNODE) 709 vdrop((struct vnode *)object->handle); 710 711 m->object = NULL; 712 } 713 714 /* 715 * vm_page_lookup: 716 * 717 * Returns the page associated with the object/offset 718 * pair specified; if none is found, NULL is returned. 719 * 720 * The object must be locked. 721 * This routine may not block. 722 * This is a critical path routine 723 */ 724 vm_page_t 725 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 726 { 727 vm_page_t m; 728 729 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 730 if ((m = object->root) != NULL && m->pindex != pindex) { 731 m = vm_page_splay(pindex, m); 732 if ((object->root = m)->pindex != pindex) 733 m = NULL; 734 } 735 return (m); 736 } 737 738 /* 739 * vm_page_rename: 740 * 741 * Move the given memory entry from its 742 * current object to the specified target object/offset. 743 * 744 * The object must be locked. 745 * This routine may not block. 746 * 747 * Note: swap associated with the page must be invalidated by the move. We 748 * have to do this for several reasons: (1) we aren't freeing the 749 * page, (2) we are dirtying the page, (3) the VM system is probably 750 * moving the page from object A to B, and will then later move 751 * the backing store from A to B and we can't have a conflict. 752 * 753 * Note: we *always* dirty the page. It is necessary both for the 754 * fact that we moved it, and because we may be invalidating 755 * swap. If the page is on the cache, we have to deactivate it 756 * or vm_page_dirty() will panic. Dirty pages are not allowed 757 * on the cache. 758 */ 759 void 760 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 761 { 762 763 vm_page_remove(m); 764 vm_page_insert(m, new_object, new_pindex); 765 if (VM_PAGE_INQUEUE1(m, PQ_CACHE)) 766 vm_page_deactivate(m); 767 vm_page_dirty(m); 768 } 769 770 /* 771 * vm_page_select_cache: 772 * 773 * Move a page of the given color from the cache queue to the free 774 * queue. As pages might be found, but are not applicable, they are 775 * deactivated. 776 * 777 * This routine may not block. 778 */ 779 vm_page_t 780 vm_page_select_cache(int color) 781 { 782 vm_object_t object; 783 vm_page_t m; 784 boolean_t was_trylocked; 785 786 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 787 while ((m = vm_pageq_find(PQ_CACHE, color, FALSE)) != NULL) { 788 KASSERT(m->dirty == 0, ("Found dirty cache page %p", m)); 789 KASSERT(!pmap_page_is_mapped(m), 790 ("Found mapped cache page %p", m)); 791 KASSERT((m->flags & PG_UNMANAGED) == 0, 792 ("Found unmanaged cache page %p", m)); 793 KASSERT(m->wire_count == 0, ("Found wired cache page %p", m)); 794 if (m->hold_count == 0 && (object = m->object, 795 (was_trylocked = VM_OBJECT_TRYLOCK(object)) || 796 VM_OBJECT_LOCKED(object))) { 797 KASSERT((m->flags & PG_BUSY) == 0 && m->busy == 0, 798 ("Found busy cache page %p", m)); 799 vm_page_free(m); 800 if (was_trylocked) 801 VM_OBJECT_UNLOCK(object); 802 break; 803 } 804 vm_page_deactivate(m); 805 } 806 return (m); 807 } 808 809 /* 810 * vm_page_alloc: 811 * 812 * Allocate and return a memory cell associated 813 * with this VM object/offset pair. 814 * 815 * page_req classes: 816 * VM_ALLOC_NORMAL normal process request 817 * VM_ALLOC_SYSTEM system *really* needs a page 818 * VM_ALLOC_INTERRUPT interrupt time request 819 * VM_ALLOC_ZERO zero page 820 * 821 * This routine may not block. 822 * 823 * Additional special handling is required when called from an 824 * interrupt (VM_ALLOC_INTERRUPT). We are not allowed to mess with 825 * the page cache in this case. 826 */ 827 vm_page_t 828 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 829 { 830 vm_page_t m = NULL; 831 int color, flags, page_req; 832 833 page_req = req & VM_ALLOC_CLASS_MASK; 834 KASSERT(curthread->td_intr_nesting_level == 0 || 835 page_req == VM_ALLOC_INTERRUPT, 836 ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context")); 837 838 if ((req & VM_ALLOC_NOOBJ) == 0) { 839 KASSERT(object != NULL, 840 ("vm_page_alloc: NULL object.")); 841 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 842 color = (pindex + object->pg_color) & PQ_COLORMASK; 843 } else 844 color = pindex & PQ_COLORMASK; 845 846 /* 847 * The pager is allowed to eat deeper into the free page list. 848 */ 849 if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) { 850 page_req = VM_ALLOC_SYSTEM; 851 }; 852 853 loop: 854 mtx_lock_spin(&vm_page_queue_free_mtx); 855 if (cnt.v_free_count > cnt.v_free_reserved || 856 (page_req == VM_ALLOC_SYSTEM && 857 cnt.v_cache_count == 0 && 858 cnt.v_free_count > cnt.v_interrupt_free_min) || 859 (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) { 860 /* 861 * Allocate from the free queue if the number of free pages 862 * exceeds the minimum for the request class. 863 */ 864 m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0); 865 } else if (page_req != VM_ALLOC_INTERRUPT) { 866 mtx_unlock_spin(&vm_page_queue_free_mtx); 867 /* 868 * Allocatable from cache (non-interrupt only). On success, 869 * we must free the page and try again, thus ensuring that 870 * cnt.v_*_free_min counters are replenished. 871 */ 872 vm_page_lock_queues(); 873 if ((m = vm_page_select_cache(color)) == NULL) { 874 KASSERT(cnt.v_cache_count == 0, 875 ("vm_page_alloc: cache queue is missing %d pages", 876 cnt.v_cache_count)); 877 vm_page_unlock_queues(); 878 atomic_add_int(&vm_pageout_deficit, 1); 879 pagedaemon_wakeup(); 880 881 if (page_req != VM_ALLOC_SYSTEM) 882 return NULL; 883 884 mtx_lock_spin(&vm_page_queue_free_mtx); 885 if (cnt.v_free_count <= cnt.v_interrupt_free_min) { 886 mtx_unlock_spin(&vm_page_queue_free_mtx); 887 return (NULL); 888 } 889 m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0); 890 } else { 891 vm_page_unlock_queues(); 892 goto loop; 893 } 894 } else { 895 /* 896 * Not allocatable from cache from interrupt, give up. 897 */ 898 mtx_unlock_spin(&vm_page_queue_free_mtx); 899 atomic_add_int(&vm_pageout_deficit, 1); 900 pagedaemon_wakeup(); 901 return (NULL); 902 } 903 904 /* 905 * At this point we had better have found a good page. 906 */ 907 908 KASSERT( 909 m != NULL, 910 ("vm_page_alloc(): missing page on free queue") 911 ); 912 913 /* 914 * Remove from free queue 915 */ 916 vm_pageq_remove_nowakeup(m); 917 918 /* 919 * Initialize structure. Only the PG_ZERO flag is inherited. 920 */ 921 flags = PG_BUSY; 922 if (m->flags & PG_ZERO) { 923 vm_page_zero_count--; 924 if (req & VM_ALLOC_ZERO) 925 flags = PG_ZERO | PG_BUSY; 926 } 927 if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ)) 928 flags &= ~PG_BUSY; 929 m->flags = flags; 930 m->oflags = 0; 931 if (req & VM_ALLOC_WIRED) { 932 atomic_add_int(&cnt.v_wire_count, 1); 933 m->wire_count = 1; 934 } else 935 m->wire_count = 0; 936 m->hold_count = 0; 937 m->act_count = 0; 938 m->busy = 0; 939 m->valid = 0; 940 KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m)); 941 mtx_unlock_spin(&vm_page_queue_free_mtx); 942 943 if ((req & VM_ALLOC_NOOBJ) == 0) 944 vm_page_insert(m, object, pindex); 945 else 946 m->pindex = pindex; 947 948 /* 949 * Don't wakeup too often - wakeup the pageout daemon when 950 * we would be nearly out of memory. 951 */ 952 if (vm_paging_needed()) 953 pagedaemon_wakeup(); 954 955 return (m); 956 } 957 958 /* 959 * vm_wait: (also see VM_WAIT macro) 960 * 961 * Block until free pages are available for allocation 962 * - Called in various places before memory allocations. 963 */ 964 void 965 vm_wait(void) 966 { 967 968 vm_page_lock_queues(); 969 if (curproc == pageproc) { 970 vm_pageout_pages_needed = 1; 971 msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx, 972 PDROP | PSWP, "VMWait", 0); 973 } else { 974 if (!vm_pages_needed) { 975 vm_pages_needed = 1; 976 wakeup(&vm_pages_needed); 977 } 978 msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM, 979 "vmwait", 0); 980 } 981 } 982 983 /* 984 * vm_waitpfault: (also see VM_WAITPFAULT macro) 985 * 986 * Block until free pages are available for allocation 987 * - Called only in vm_fault so that processes page faulting 988 * can be easily tracked. 989 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 990 * processes will be able to grab memory first. Do not change 991 * this balance without careful testing first. 992 */ 993 void 994 vm_waitpfault(void) 995 { 996 997 vm_page_lock_queues(); 998 if (!vm_pages_needed) { 999 vm_pages_needed = 1; 1000 wakeup(&vm_pages_needed); 1001 } 1002 msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER, 1003 "pfault", 0); 1004 } 1005 1006 /* 1007 * vm_page_activate: 1008 * 1009 * Put the specified page on the active list (if appropriate). 1010 * Ensure that act_count is at least ACT_INIT but do not otherwise 1011 * mess with it. 1012 * 1013 * The page queues must be locked. 1014 * This routine may not block. 1015 */ 1016 void 1017 vm_page_activate(vm_page_t m) 1018 { 1019 1020 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1021 if (VM_PAGE_GETKNOWNQUEUE2(m) != PQ_ACTIVE) { 1022 if (VM_PAGE_INQUEUE1(m, PQ_CACHE)) 1023 cnt.v_reactivated++; 1024 vm_pageq_remove(m); 1025 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1026 if (m->act_count < ACT_INIT) 1027 m->act_count = ACT_INIT; 1028 vm_pageq_enqueue(PQ_ACTIVE, m); 1029 } 1030 } else { 1031 if (m->act_count < ACT_INIT) 1032 m->act_count = ACT_INIT; 1033 } 1034 } 1035 1036 /* 1037 * vm_page_free_wakeup: 1038 * 1039 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 1040 * routine is called when a page has been added to the cache or free 1041 * queues. 1042 * 1043 * The page queues must be locked. 1044 * This routine may not block. 1045 */ 1046 static inline void 1047 vm_page_free_wakeup(void) 1048 { 1049 1050 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1051 /* 1052 * if pageout daemon needs pages, then tell it that there are 1053 * some free. 1054 */ 1055 if (vm_pageout_pages_needed && 1056 cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) { 1057 wakeup(&vm_pageout_pages_needed); 1058 vm_pageout_pages_needed = 0; 1059 } 1060 /* 1061 * wakeup processes that are waiting on memory if we hit a 1062 * high water mark. And wakeup scheduler process if we have 1063 * lots of memory. this process will swapin processes. 1064 */ 1065 if (vm_pages_needed && !vm_page_count_min()) { 1066 vm_pages_needed = 0; 1067 wakeup(&cnt.v_free_count); 1068 } 1069 } 1070 1071 /* 1072 * vm_page_free_toq: 1073 * 1074 * Returns the given page to the PQ_FREE list, 1075 * disassociating it with any VM object. 1076 * 1077 * Object and page must be locked prior to entry. 1078 * This routine may not block. 1079 */ 1080 1081 void 1082 vm_page_free_toq(vm_page_t m) 1083 { 1084 struct vpgqueues *pq; 1085 1086 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1087 KASSERT(!pmap_page_is_mapped(m), 1088 ("vm_page_free_toq: freeing mapped page %p", m)); 1089 cnt.v_tfree++; 1090 1091 if (m->busy || VM_PAGE_INQUEUE1(m, PQ_FREE)) { 1092 printf( 1093 "vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n", 1094 (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0, 1095 m->hold_count); 1096 if (VM_PAGE_INQUEUE1(m, PQ_FREE)) 1097 panic("vm_page_free: freeing free page"); 1098 else 1099 panic("vm_page_free: freeing busy page"); 1100 } 1101 1102 /* 1103 * unqueue, then remove page. Note that we cannot destroy 1104 * the page here because we do not want to call the pager's 1105 * callback routine until after we've put the page on the 1106 * appropriate free queue. 1107 */ 1108 vm_pageq_remove_nowakeup(m); 1109 vm_page_remove(m); 1110 1111 /* 1112 * If fictitious remove object association and 1113 * return, otherwise delay object association removal. 1114 */ 1115 if ((m->flags & PG_FICTITIOUS) != 0) { 1116 return; 1117 } 1118 1119 m->valid = 0; 1120 vm_page_undirty(m); 1121 1122 if (m->wire_count != 0) { 1123 if (m->wire_count > 1) { 1124 panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx", 1125 m->wire_count, (long)m->pindex); 1126 } 1127 panic("vm_page_free: freeing wired page"); 1128 } 1129 if (m->hold_count != 0) { 1130 m->flags &= ~PG_ZERO; 1131 VM_PAGE_SETQUEUE2(m, PQ_HOLD); 1132 } else 1133 VM_PAGE_SETQUEUE1(m, PQ_FREE); 1134 pq = &vm_page_queues[VM_PAGE_GETQUEUE(m)]; 1135 mtx_lock_spin(&vm_page_queue_free_mtx); 1136 pq->lcnt++; 1137 ++(*pq->cnt); 1138 1139 /* 1140 * Put zero'd pages on the end ( where we look for zero'd pages 1141 * first ) and non-zerod pages at the head. 1142 */ 1143 if (m->flags & PG_ZERO) { 1144 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 1145 ++vm_page_zero_count; 1146 } else { 1147 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 1148 } 1149 mtx_unlock_spin(&vm_page_queue_free_mtx); 1150 vm_page_free_wakeup(); 1151 } 1152 1153 /* 1154 * vm_page_unmanage: 1155 * 1156 * Prevent PV management from being done on the page. The page is 1157 * removed from the paging queues as if it were wired, and as a 1158 * consequence of no longer being managed the pageout daemon will not 1159 * touch it (since there is no way to locate the pte mappings for the 1160 * page). madvise() calls that mess with the pmap will also no longer 1161 * operate on the page. 1162 * 1163 * Beyond that the page is still reasonably 'normal'. Freeing the page 1164 * will clear the flag. 1165 * 1166 * This routine is used by OBJT_PHYS objects - objects using unswappable 1167 * physical memory as backing store rather then swap-backed memory and 1168 * will eventually be extended to support 4MB unmanaged physical 1169 * mappings. 1170 */ 1171 void 1172 vm_page_unmanage(vm_page_t m) 1173 { 1174 1175 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1176 if ((m->flags & PG_UNMANAGED) == 0) { 1177 if (m->wire_count == 0) 1178 vm_pageq_remove(m); 1179 } 1180 vm_page_flag_set(m, PG_UNMANAGED); 1181 } 1182 1183 /* 1184 * vm_page_wire: 1185 * 1186 * Mark this page as wired down by yet 1187 * another map, removing it from paging queues 1188 * as necessary. 1189 * 1190 * The page queues must be locked. 1191 * This routine may not block. 1192 */ 1193 void 1194 vm_page_wire(vm_page_t m) 1195 { 1196 1197 /* 1198 * Only bump the wire statistics if the page is not already wired, 1199 * and only unqueue the page if it is on some queue (if it is unmanaged 1200 * it is already off the queues). 1201 */ 1202 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1203 if (m->flags & PG_FICTITIOUS) 1204 return; 1205 if (m->wire_count == 0) { 1206 if ((m->flags & PG_UNMANAGED) == 0) 1207 vm_pageq_remove(m); 1208 atomic_add_int(&cnt.v_wire_count, 1); 1209 } 1210 m->wire_count++; 1211 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 1212 } 1213 1214 /* 1215 * vm_page_unwire: 1216 * 1217 * Release one wiring of this page, potentially 1218 * enabling it to be paged again. 1219 * 1220 * Many pages placed on the inactive queue should actually go 1221 * into the cache, but it is difficult to figure out which. What 1222 * we do instead, if the inactive target is well met, is to put 1223 * clean pages at the head of the inactive queue instead of the tail. 1224 * This will cause them to be moved to the cache more quickly and 1225 * if not actively re-referenced, freed more quickly. If we just 1226 * stick these pages at the end of the inactive queue, heavy filesystem 1227 * meta-data accesses can cause an unnecessary paging load on memory bound 1228 * processes. This optimization causes one-time-use metadata to be 1229 * reused more quickly. 1230 * 1231 * BUT, if we are in a low-memory situation we have no choice but to 1232 * put clean pages on the cache queue. 1233 * 1234 * A number of routines use vm_page_unwire() to guarantee that the page 1235 * will go into either the inactive or active queues, and will NEVER 1236 * be placed in the cache - for example, just after dirtying a page. 1237 * dirty pages in the cache are not allowed. 1238 * 1239 * The page queues must be locked. 1240 * This routine may not block. 1241 */ 1242 void 1243 vm_page_unwire(vm_page_t m, int activate) 1244 { 1245 1246 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1247 if (m->flags & PG_FICTITIOUS) 1248 return; 1249 if (m->wire_count > 0) { 1250 m->wire_count--; 1251 if (m->wire_count == 0) { 1252 atomic_subtract_int(&cnt.v_wire_count, 1); 1253 if (m->flags & PG_UNMANAGED) { 1254 ; 1255 } else if (activate) 1256 vm_pageq_enqueue(PQ_ACTIVE, m); 1257 else { 1258 vm_page_flag_clear(m, PG_WINATCFLS); 1259 vm_pageq_enqueue(PQ_INACTIVE, m); 1260 } 1261 } 1262 } else { 1263 panic("vm_page_unwire: invalid wire count: %d", m->wire_count); 1264 } 1265 } 1266 1267 1268 /* 1269 * Move the specified page to the inactive queue. If the page has 1270 * any associated swap, the swap is deallocated. 1271 * 1272 * Normally athead is 0 resulting in LRU operation. athead is set 1273 * to 1 if we want this page to be 'as if it were placed in the cache', 1274 * except without unmapping it from the process address space. 1275 * 1276 * This routine may not block. 1277 */ 1278 static inline void 1279 _vm_page_deactivate(vm_page_t m, int athead) 1280 { 1281 1282 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1283 1284 /* 1285 * Ignore if already inactive. 1286 */ 1287 if (VM_PAGE_INQUEUE2(m, PQ_INACTIVE)) 1288 return; 1289 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1290 if (VM_PAGE_INQUEUE1(m, PQ_CACHE)) 1291 cnt.v_reactivated++; 1292 vm_page_flag_clear(m, PG_WINATCFLS); 1293 vm_pageq_remove(m); 1294 if (athead) 1295 TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1296 else 1297 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1298 VM_PAGE_SETQUEUE2(m, PQ_INACTIVE); 1299 vm_page_queues[PQ_INACTIVE].lcnt++; 1300 cnt.v_inactive_count++; 1301 } 1302 } 1303 1304 void 1305 vm_page_deactivate(vm_page_t m) 1306 { 1307 _vm_page_deactivate(m, 0); 1308 } 1309 1310 /* 1311 * vm_page_try_to_cache: 1312 * 1313 * Returns 0 on failure, 1 on success 1314 */ 1315 int 1316 vm_page_try_to_cache(vm_page_t m) 1317 { 1318 1319 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1320 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1321 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1322 (m->flags & (PG_BUSY|PG_UNMANAGED))) { 1323 return (0); 1324 } 1325 pmap_remove_all(m); 1326 if (m->dirty) 1327 return (0); 1328 vm_page_cache(m); 1329 return (1); 1330 } 1331 1332 /* 1333 * vm_page_try_to_free() 1334 * 1335 * Attempt to free the page. If we cannot free it, we do nothing. 1336 * 1 is returned on success, 0 on failure. 1337 */ 1338 int 1339 vm_page_try_to_free(vm_page_t m) 1340 { 1341 1342 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1343 if (m->object != NULL) 1344 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1345 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1346 (m->flags & (PG_BUSY|PG_UNMANAGED))) { 1347 return (0); 1348 } 1349 pmap_remove_all(m); 1350 if (m->dirty) 1351 return (0); 1352 vm_page_free(m); 1353 return (1); 1354 } 1355 1356 /* 1357 * vm_page_cache 1358 * 1359 * Put the specified page onto the page cache queue (if appropriate). 1360 * 1361 * This routine may not block. 1362 */ 1363 void 1364 vm_page_cache(vm_page_t m) 1365 { 1366 1367 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1368 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1369 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || 1370 m->hold_count || m->wire_count) { 1371 printf("vm_page_cache: attempting to cache busy page\n"); 1372 return; 1373 } 1374 if (VM_PAGE_INQUEUE1(m, PQ_CACHE)) 1375 return; 1376 1377 /* 1378 * Remove all pmaps and indicate that the page is not 1379 * writeable or mapped. 1380 */ 1381 pmap_remove_all(m); 1382 if (m->dirty != 0) { 1383 panic("vm_page_cache: caching a dirty page, pindex: %ld", 1384 (long)m->pindex); 1385 } 1386 vm_pageq_remove_nowakeup(m); 1387 vm_pageq_enqueue(PQ_CACHE + m->pc, m); 1388 vm_page_free_wakeup(); 1389 } 1390 1391 /* 1392 * vm_page_dontneed 1393 * 1394 * Cache, deactivate, or do nothing as appropriate. This routine 1395 * is typically used by madvise() MADV_DONTNEED. 1396 * 1397 * Generally speaking we want to move the page into the cache so 1398 * it gets reused quickly. However, this can result in a silly syndrome 1399 * due to the page recycling too quickly. Small objects will not be 1400 * fully cached. On the otherhand, if we move the page to the inactive 1401 * queue we wind up with a problem whereby very large objects 1402 * unnecessarily blow away our inactive and cache queues. 1403 * 1404 * The solution is to move the pages based on a fixed weighting. We 1405 * either leave them alone, deactivate them, or move them to the cache, 1406 * where moving them to the cache has the highest weighting. 1407 * By forcing some pages into other queues we eventually force the 1408 * system to balance the queues, potentially recovering other unrelated 1409 * space from active. The idea is to not force this to happen too 1410 * often. 1411 */ 1412 void 1413 vm_page_dontneed(vm_page_t m) 1414 { 1415 static int dnweight; 1416 int dnw; 1417 int head; 1418 1419 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1420 dnw = ++dnweight; 1421 1422 /* 1423 * occassionally leave the page alone 1424 */ 1425 if ((dnw & 0x01F0) == 0 || 1426 VM_PAGE_INQUEUE2(m, PQ_INACTIVE) || 1427 VM_PAGE_INQUEUE1(m, PQ_CACHE) 1428 ) { 1429 if (m->act_count >= ACT_INIT) 1430 --m->act_count; 1431 return; 1432 } 1433 1434 if (m->dirty == 0 && pmap_is_modified(m)) 1435 vm_page_dirty(m); 1436 1437 if (m->dirty || (dnw & 0x0070) == 0) { 1438 /* 1439 * Deactivate the page 3 times out of 32. 1440 */ 1441 head = 0; 1442 } else { 1443 /* 1444 * Cache the page 28 times out of every 32. Note that 1445 * the page is deactivated instead of cached, but placed 1446 * at the head of the queue instead of the tail. 1447 */ 1448 head = 1; 1449 } 1450 _vm_page_deactivate(m, head); 1451 } 1452 1453 /* 1454 * Grab a page, waiting until we are waken up due to the page 1455 * changing state. We keep on waiting, if the page continues 1456 * to be in the object. If the page doesn't exist, first allocate it 1457 * and then conditionally zero it. 1458 * 1459 * This routine may block. 1460 */ 1461 vm_page_t 1462 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 1463 { 1464 vm_page_t m; 1465 1466 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1467 retrylookup: 1468 if ((m = vm_page_lookup(object, pindex)) != NULL) { 1469 if (vm_page_sleep_if_busy(m, TRUE, "pgrbwt")) { 1470 if ((allocflags & VM_ALLOC_RETRY) == 0) 1471 return (NULL); 1472 goto retrylookup; 1473 } else { 1474 vm_page_lock_queues(); 1475 if (allocflags & VM_ALLOC_WIRED) 1476 vm_page_wire(m); 1477 if ((allocflags & VM_ALLOC_NOBUSY) == 0) 1478 vm_page_busy(m); 1479 vm_page_unlock_queues(); 1480 return (m); 1481 } 1482 } 1483 m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY); 1484 if (m == NULL) { 1485 VM_OBJECT_UNLOCK(object); 1486 VM_WAIT; 1487 VM_OBJECT_LOCK(object); 1488 if ((allocflags & VM_ALLOC_RETRY) == 0) 1489 return (NULL); 1490 goto retrylookup; 1491 } 1492 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 1493 pmap_zero_page(m); 1494 return (m); 1495 } 1496 1497 /* 1498 * Mapping function for valid bits or for dirty bits in 1499 * a page. May not block. 1500 * 1501 * Inputs are required to range within a page. 1502 */ 1503 inline int 1504 vm_page_bits(int base, int size) 1505 { 1506 int first_bit; 1507 int last_bit; 1508 1509 KASSERT( 1510 base + size <= PAGE_SIZE, 1511 ("vm_page_bits: illegal base/size %d/%d", base, size) 1512 ); 1513 1514 if (size == 0) /* handle degenerate case */ 1515 return (0); 1516 1517 first_bit = base >> DEV_BSHIFT; 1518 last_bit = (base + size - 1) >> DEV_BSHIFT; 1519 1520 return ((2 << last_bit) - (1 << first_bit)); 1521 } 1522 1523 /* 1524 * vm_page_set_validclean: 1525 * 1526 * Sets portions of a page valid and clean. The arguments are expected 1527 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 1528 * of any partial chunks touched by the range. The invalid portion of 1529 * such chunks will be zero'd. 1530 * 1531 * This routine may not block. 1532 * 1533 * (base + size) must be less then or equal to PAGE_SIZE. 1534 */ 1535 void 1536 vm_page_set_validclean(vm_page_t m, int base, int size) 1537 { 1538 int pagebits; 1539 int frag; 1540 int endoff; 1541 1542 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1543 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1544 if (size == 0) /* handle degenerate case */ 1545 return; 1546 1547 /* 1548 * If the base is not DEV_BSIZE aligned and the valid 1549 * bit is clear, we have to zero out a portion of the 1550 * first block. 1551 */ 1552 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 1553 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 1554 pmap_zero_page_area(m, frag, base - frag); 1555 1556 /* 1557 * If the ending offset is not DEV_BSIZE aligned and the 1558 * valid bit is clear, we have to zero out a portion of 1559 * the last block. 1560 */ 1561 endoff = base + size; 1562 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 1563 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 1564 pmap_zero_page_area(m, endoff, 1565 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 1566 1567 /* 1568 * Set valid, clear dirty bits. If validating the entire 1569 * page we can safely clear the pmap modify bit. We also 1570 * use this opportunity to clear the VPO_NOSYNC flag. If a process 1571 * takes a write fault on a MAP_NOSYNC memory area the flag will 1572 * be set again. 1573 * 1574 * We set valid bits inclusive of any overlap, but we can only 1575 * clear dirty bits for DEV_BSIZE chunks that are fully within 1576 * the range. 1577 */ 1578 pagebits = vm_page_bits(base, size); 1579 m->valid |= pagebits; 1580 #if 0 /* NOT YET */ 1581 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 1582 frag = DEV_BSIZE - frag; 1583 base += frag; 1584 size -= frag; 1585 if (size < 0) 1586 size = 0; 1587 } 1588 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 1589 #endif 1590 m->dirty &= ~pagebits; 1591 if (base == 0 && size == PAGE_SIZE) { 1592 pmap_clear_modify(m); 1593 m->oflags &= ~VPO_NOSYNC; 1594 } 1595 } 1596 1597 void 1598 vm_page_clear_dirty(vm_page_t m, int base, int size) 1599 { 1600 1601 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1602 m->dirty &= ~vm_page_bits(base, size); 1603 } 1604 1605 /* 1606 * vm_page_set_invalid: 1607 * 1608 * Invalidates DEV_BSIZE'd chunks within a page. Both the 1609 * valid and dirty bits for the effected areas are cleared. 1610 * 1611 * May not block. 1612 */ 1613 void 1614 vm_page_set_invalid(vm_page_t m, int base, int size) 1615 { 1616 int bits; 1617 1618 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1619 bits = vm_page_bits(base, size); 1620 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1621 if (m->valid == VM_PAGE_BITS_ALL && bits != 0) 1622 pmap_remove_all(m); 1623 m->valid &= ~bits; 1624 m->dirty &= ~bits; 1625 m->object->generation++; 1626 } 1627 1628 /* 1629 * vm_page_zero_invalid() 1630 * 1631 * The kernel assumes that the invalid portions of a page contain 1632 * garbage, but such pages can be mapped into memory by user code. 1633 * When this occurs, we must zero out the non-valid portions of the 1634 * page so user code sees what it expects. 1635 * 1636 * Pages are most often semi-valid when the end of a file is mapped 1637 * into memory and the file's size is not page aligned. 1638 */ 1639 void 1640 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 1641 { 1642 int b; 1643 int i; 1644 1645 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1646 /* 1647 * Scan the valid bits looking for invalid sections that 1648 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 1649 * valid bit may be set ) have already been zerod by 1650 * vm_page_set_validclean(). 1651 */ 1652 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 1653 if (i == (PAGE_SIZE / DEV_BSIZE) || 1654 (m->valid & (1 << i)) 1655 ) { 1656 if (i > b) { 1657 pmap_zero_page_area(m, 1658 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 1659 } 1660 b = i + 1; 1661 } 1662 } 1663 1664 /* 1665 * setvalid is TRUE when we can safely set the zero'd areas 1666 * as being valid. We can do this if there are no cache consistancy 1667 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 1668 */ 1669 if (setvalid) 1670 m->valid = VM_PAGE_BITS_ALL; 1671 } 1672 1673 /* 1674 * vm_page_is_valid: 1675 * 1676 * Is (partial) page valid? Note that the case where size == 0 1677 * will return FALSE in the degenerate case where the page is 1678 * entirely invalid, and TRUE otherwise. 1679 * 1680 * May not block. 1681 */ 1682 int 1683 vm_page_is_valid(vm_page_t m, int base, int size) 1684 { 1685 int bits = vm_page_bits(base, size); 1686 1687 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1688 if (m->valid && ((m->valid & bits) == bits)) 1689 return 1; 1690 else 1691 return 0; 1692 } 1693 1694 /* 1695 * update dirty bits from pmap/mmu. May not block. 1696 */ 1697 void 1698 vm_page_test_dirty(vm_page_t m) 1699 { 1700 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) { 1701 vm_page_dirty(m); 1702 } 1703 } 1704 1705 int so_zerocp_fullpage = 0; 1706 1707 void 1708 vm_page_cowfault(vm_page_t m) 1709 { 1710 vm_page_t mnew; 1711 vm_object_t object; 1712 vm_pindex_t pindex; 1713 1714 object = m->object; 1715 pindex = m->pindex; 1716 1717 retry_alloc: 1718 pmap_remove_all(m); 1719 vm_page_remove(m); 1720 mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY); 1721 if (mnew == NULL) { 1722 vm_page_insert(m, object, pindex); 1723 vm_page_unlock_queues(); 1724 VM_OBJECT_UNLOCK(object); 1725 VM_WAIT; 1726 VM_OBJECT_LOCK(object); 1727 vm_page_lock_queues(); 1728 goto retry_alloc; 1729 } 1730 1731 if (m->cow == 0) { 1732 /* 1733 * check to see if we raced with an xmit complete when 1734 * waiting to allocate a page. If so, put things back 1735 * the way they were 1736 */ 1737 vm_page_free(mnew); 1738 vm_page_insert(m, object, pindex); 1739 } else { /* clear COW & copy page */ 1740 if (!so_zerocp_fullpage) 1741 pmap_copy_page(m, mnew); 1742 mnew->valid = VM_PAGE_BITS_ALL; 1743 vm_page_dirty(mnew); 1744 mnew->wire_count = m->wire_count - m->cow; 1745 m->wire_count = m->cow; 1746 } 1747 } 1748 1749 void 1750 vm_page_cowclear(vm_page_t m) 1751 { 1752 1753 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1754 if (m->cow) { 1755 m->cow--; 1756 /* 1757 * let vm_fault add back write permission lazily 1758 */ 1759 } 1760 /* 1761 * sf_buf_free() will free the page, so we needn't do it here 1762 */ 1763 } 1764 1765 void 1766 vm_page_cowsetup(vm_page_t m) 1767 { 1768 1769 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1770 m->cow++; 1771 pmap_remove_write(m); 1772 } 1773 1774 #include "opt_ddb.h" 1775 #ifdef DDB 1776 #include <sys/kernel.h> 1777 1778 #include <ddb/ddb.h> 1779 1780 DB_SHOW_COMMAND(page, vm_page_print_page_info) 1781 { 1782 db_printf("cnt.v_free_count: %d\n", cnt.v_free_count); 1783 db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count); 1784 db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count); 1785 db_printf("cnt.v_active_count: %d\n", cnt.v_active_count); 1786 db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count); 1787 db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved); 1788 db_printf("cnt.v_free_min: %d\n", cnt.v_free_min); 1789 db_printf("cnt.v_free_target: %d\n", cnt.v_free_target); 1790 db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min); 1791 db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target); 1792 } 1793 1794 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 1795 { 1796 int i; 1797 db_printf("PQ_FREE:"); 1798 for (i = 0; i < PQ_NUMCOLORS; i++) { 1799 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt); 1800 } 1801 db_printf("\n"); 1802 1803 db_printf("PQ_CACHE:"); 1804 for (i = 0; i < PQ_NUMCOLORS; i++) { 1805 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt); 1806 } 1807 db_printf("\n"); 1808 1809 db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n", 1810 vm_page_queues[PQ_ACTIVE].lcnt, 1811 vm_page_queues[PQ_INACTIVE].lcnt); 1812 } 1813 #endif /* DDB */ 1814