1 /* 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 37 */ 38 39 /* 40 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 41 * All rights reserved. 42 * 43 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 44 * 45 * Permission to use, copy, modify and distribute this software and 46 * its documentation is hereby granted, provided that both the copyright 47 * notice and this permission notice appear in all copies of the 48 * software, derivative works or modified versions, and any portions 49 * thereof, and that both notices appear in supporting documentation. 50 * 51 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 52 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 53 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 54 * 55 * Carnegie Mellon requests users of this software to return to 56 * 57 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 58 * School of Computer Science 59 * Carnegie Mellon University 60 * Pittsburgh PA 15213-3890 61 * 62 * any improvements or extensions that they make and grant Carnegie the 63 * rights to redistribute these changes. 64 */ 65 66 /* 67 * GENERAL RULES ON VM_PAGE MANIPULATION 68 * 69 * - a pageq mutex is required when adding or removing a page from a 70 * page queue (vm_page_queue[]), regardless of other mutexes or the 71 * busy state of a page. 72 * 73 * - a hash chain mutex is required when associating or disassociating 74 * a page from the VM PAGE CACHE hash table (vm_page_buckets), 75 * regardless of other mutexes or the busy state of a page. 76 * 77 * - either a hash chain mutex OR a busied page is required in order 78 * to modify the page flags. A hash chain mutex must be obtained in 79 * order to busy a page. A page's flags cannot be modified by a 80 * hash chain mutex if the page is marked busy. 81 * 82 * - The object memq mutex is held when inserting or removing 83 * pages from an object (vm_page_insert() or vm_page_remove()). This 84 * is different from the object's main mutex. 85 * 86 * Generally speaking, you have to be aware of side effects when running 87 * vm_page ops. A vm_page_lookup() will return with the hash chain 88 * locked, whether it was able to lookup the page or not. vm_page_free(), 89 * vm_page_cache(), vm_page_activate(), and a number of other routines 90 * will release the hash chain mutex for you. Intermediate manipulation 91 * routines such as vm_page_flag_set() expect the hash chain to be held 92 * on entry and the hash chain will remain held on return. 93 * 94 * pageq scanning can only occur with the pageq in question locked. 95 * We have a known bottleneck with the active queue, but the cache 96 * and free queues are actually arrays already. 97 */ 98 99 /* 100 * Resident memory management module. 101 */ 102 103 #include <sys/cdefs.h> 104 __FBSDID("$FreeBSD$"); 105 106 #include <sys/param.h> 107 #include <sys/systm.h> 108 #include <sys/lock.h> 109 #include <sys/malloc.h> 110 #include <sys/mutex.h> 111 #include <sys/proc.h> 112 #include <sys/vmmeter.h> 113 #include <sys/vnode.h> 114 115 #include <vm/vm.h> 116 #include <vm/vm_param.h> 117 #include <vm/vm_kern.h> 118 #include <vm/vm_object.h> 119 #include <vm/vm_page.h> 120 #include <vm/vm_pageout.h> 121 #include <vm/vm_pager.h> 122 #include <vm/vm_extern.h> 123 #include <vm/uma.h> 124 #include <vm/uma_int.h> 125 126 /* 127 * Associated with page of user-allocatable memory is a 128 * page structure. 129 */ 130 131 struct mtx vm_page_queue_mtx; 132 struct mtx vm_page_queue_free_mtx; 133 134 vm_page_t vm_page_array = 0; 135 int vm_page_array_size = 0; 136 long first_page = 0; 137 int vm_page_zero_count = 0; 138 139 /* 140 * vm_set_page_size: 141 * 142 * Sets the page size, perhaps based upon the memory 143 * size. Must be called before any use of page-size 144 * dependent functions. 145 */ 146 void 147 vm_set_page_size(void) 148 { 149 if (cnt.v_page_size == 0) 150 cnt.v_page_size = PAGE_SIZE; 151 if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0) 152 panic("vm_set_page_size: page size not a power of two"); 153 } 154 155 /* 156 * vm_page_startup: 157 * 158 * Initializes the resident memory module. 159 * 160 * Allocates memory for the page cells, and 161 * for the object/offset-to-page hash table headers. 162 * Each page cell is initialized and placed on the free list. 163 */ 164 vm_offset_t 165 vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr) 166 { 167 vm_offset_t mapped; 168 vm_size_t npages; 169 vm_paddr_t page_range; 170 vm_paddr_t new_end; 171 int i; 172 vm_paddr_t pa; 173 int nblocks; 174 vm_paddr_t last_pa; 175 176 /* the biggest memory array is the second group of pages */ 177 vm_paddr_t end; 178 vm_paddr_t biggestsize; 179 int biggestone; 180 181 vm_paddr_t total; 182 vm_size_t bootpages; 183 184 total = 0; 185 biggestsize = 0; 186 biggestone = 0; 187 nblocks = 0; 188 vaddr = round_page(vaddr); 189 190 for (i = 0; phys_avail[i + 1]; i += 2) { 191 phys_avail[i] = round_page(phys_avail[i]); 192 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 193 } 194 195 for (i = 0; phys_avail[i + 1]; i += 2) { 196 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 197 198 if (size > biggestsize) { 199 biggestone = i; 200 biggestsize = size; 201 } 202 ++nblocks; 203 total += size; 204 } 205 206 end = phys_avail[biggestone+1]; 207 208 /* 209 * Initialize the locks. 210 */ 211 mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF); 212 mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL, 213 MTX_SPIN); 214 215 /* 216 * Initialize the queue headers for the free queue, the active queue 217 * and the inactive queue. 218 */ 219 vm_pageq_init(); 220 221 /* 222 * Allocate memory for use when boot strapping the kernel memory 223 * allocator. 224 */ 225 bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE; 226 new_end = end - bootpages; 227 new_end = trunc_page(new_end); 228 mapped = pmap_map(&vaddr, new_end, end, 229 VM_PROT_READ | VM_PROT_WRITE); 230 bzero((caddr_t) mapped, end - new_end); 231 uma_startup((caddr_t)mapped); 232 233 /* 234 * Compute the number of pages of memory that will be available for 235 * use (taking into account the overhead of a page structure per 236 * page). 237 */ 238 first_page = phys_avail[0] / PAGE_SIZE; 239 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page; 240 npages = (total - (page_range * sizeof(struct vm_page)) - 241 (end - new_end)) / PAGE_SIZE; 242 end = new_end; 243 244 /* 245 * Initialize the mem entry structures now, and put them in the free 246 * queue. 247 */ 248 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 249 mapped = pmap_map(&vaddr, new_end, end, 250 VM_PROT_READ | VM_PROT_WRITE); 251 vm_page_array = (vm_page_t) mapped; 252 phys_avail[biggestone + 1] = new_end; 253 254 /* 255 * Clear all of the page structures 256 */ 257 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 258 vm_page_array_size = page_range; 259 260 /* 261 * Construct the free queue(s) in descending order (by physical 262 * address) so that the first 16MB of physical memory is allocated 263 * last rather than first. On large-memory machines, this avoids 264 * the exhaustion of low physical memory before isa_dmainit has run. 265 */ 266 cnt.v_page_count = 0; 267 cnt.v_free_count = 0; 268 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) { 269 pa = phys_avail[i]; 270 last_pa = phys_avail[i + 1]; 271 while (pa < last_pa && npages-- > 0) { 272 vm_pageq_add_new_page(pa); 273 pa += PAGE_SIZE; 274 } 275 } 276 return (vaddr); 277 } 278 279 void 280 vm_page_flag_set(vm_page_t m, unsigned short bits) 281 { 282 283 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 284 m->flags |= bits; 285 } 286 287 void 288 vm_page_flag_clear(vm_page_t m, unsigned short bits) 289 { 290 291 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 292 m->flags &= ~bits; 293 } 294 295 void 296 vm_page_busy(vm_page_t m) 297 { 298 KASSERT((m->flags & PG_BUSY) == 0, 299 ("vm_page_busy: page already busy!!!")); 300 vm_page_flag_set(m, PG_BUSY); 301 } 302 303 /* 304 * vm_page_flash: 305 * 306 * wakeup anyone waiting for the page. 307 */ 308 void 309 vm_page_flash(vm_page_t m) 310 { 311 if (m->flags & PG_WANTED) { 312 vm_page_flag_clear(m, PG_WANTED); 313 wakeup(m); 314 } 315 } 316 317 /* 318 * vm_page_wakeup: 319 * 320 * clear the PG_BUSY flag and wakeup anyone waiting for the 321 * page. 322 * 323 */ 324 void 325 vm_page_wakeup(vm_page_t m) 326 { 327 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!")); 328 vm_page_flag_clear(m, PG_BUSY); 329 vm_page_flash(m); 330 } 331 332 void 333 vm_page_io_start(vm_page_t m) 334 { 335 336 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 337 m->busy++; 338 } 339 340 void 341 vm_page_io_finish(vm_page_t m) 342 { 343 344 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 345 m->busy--; 346 if (m->busy == 0) 347 vm_page_flash(m); 348 } 349 350 /* 351 * Keep page from being freed by the page daemon 352 * much of the same effect as wiring, except much lower 353 * overhead and should be used only for *very* temporary 354 * holding ("wiring"). 355 */ 356 void 357 vm_page_hold(vm_page_t mem) 358 { 359 360 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 361 mem->hold_count++; 362 } 363 364 void 365 vm_page_unhold(vm_page_t mem) 366 { 367 368 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 369 --mem->hold_count; 370 KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!")); 371 if (mem->hold_count == 0 && mem->queue == PQ_HOLD) 372 vm_page_free_toq(mem); 373 } 374 375 /* 376 * vm_page_copy: 377 * 378 * Copy one page to another 379 */ 380 void 381 vm_page_copy(vm_page_t src_m, vm_page_t dest_m) 382 { 383 pmap_copy_page(src_m, dest_m); 384 dest_m->valid = VM_PAGE_BITS_ALL; 385 } 386 387 /* 388 * vm_page_free: 389 * 390 * Free a page 391 * 392 * The clearing of PG_ZERO is a temporary safety until the code can be 393 * reviewed to determine that PG_ZERO is being properly cleared on 394 * write faults or maps. PG_ZERO was previously cleared in 395 * vm_page_alloc(). 396 */ 397 void 398 vm_page_free(vm_page_t m) 399 { 400 vm_page_flag_clear(m, PG_ZERO); 401 vm_page_free_toq(m); 402 vm_page_zero_idle_wakeup(); 403 } 404 405 /* 406 * vm_page_free_zero: 407 * 408 * Free a page to the zerod-pages queue 409 */ 410 void 411 vm_page_free_zero(vm_page_t m) 412 { 413 vm_page_flag_set(m, PG_ZERO); 414 vm_page_free_toq(m); 415 } 416 417 /* 418 * vm_page_sleep_if_busy: 419 * 420 * Sleep and release the page queues lock if PG_BUSY is set or, 421 * if also_m_busy is TRUE, busy is non-zero. Returns TRUE if the 422 * thread slept and the page queues lock was released. 423 * Otherwise, retains the page queues lock and returns FALSE. 424 */ 425 int 426 vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg) 427 { 428 int is_object_locked; 429 430 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 431 if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) { 432 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 433 /* 434 * Remove mtx_owned() after vm_object locking is finished. 435 */ 436 if ((is_object_locked = m->object != NULL && 437 mtx_owned(&m->object->mtx))) 438 mtx_unlock(&m->object->mtx); 439 msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0); 440 if (is_object_locked) 441 mtx_lock(&m->object->mtx); 442 return (TRUE); 443 } 444 return (FALSE); 445 } 446 447 /* 448 * vm_page_dirty: 449 * 450 * make page all dirty 451 */ 452 void 453 vm_page_dirty(vm_page_t m) 454 { 455 KASSERT(m->queue - m->pc != PQ_CACHE, 456 ("vm_page_dirty: page in cache!")); 457 KASSERT(m->queue - m->pc != PQ_FREE, 458 ("vm_page_dirty: page is free!")); 459 m->dirty = VM_PAGE_BITS_ALL; 460 } 461 462 /* 463 * vm_page_splay: 464 * 465 * Implements Sleator and Tarjan's top-down splay algorithm. Returns 466 * the vm_page containing the given pindex. If, however, that 467 * pindex is not found in the vm_object, returns a vm_page that is 468 * adjacent to the pindex, coming before or after it. 469 */ 470 vm_page_t 471 vm_page_splay(vm_pindex_t pindex, vm_page_t root) 472 { 473 struct vm_page dummy; 474 vm_page_t lefttreemax, righttreemin, y; 475 476 if (root == NULL) 477 return (root); 478 lefttreemax = righttreemin = &dummy; 479 for (;; root = y) { 480 if (pindex < root->pindex) { 481 if ((y = root->left) == NULL) 482 break; 483 if (pindex < y->pindex) { 484 /* Rotate right. */ 485 root->left = y->right; 486 y->right = root; 487 root = y; 488 if ((y = root->left) == NULL) 489 break; 490 } 491 /* Link into the new root's right tree. */ 492 righttreemin->left = root; 493 righttreemin = root; 494 } else if (pindex > root->pindex) { 495 if ((y = root->right) == NULL) 496 break; 497 if (pindex > y->pindex) { 498 /* Rotate left. */ 499 root->right = y->left; 500 y->left = root; 501 root = y; 502 if ((y = root->right) == NULL) 503 break; 504 } 505 /* Link into the new root's left tree. */ 506 lefttreemax->right = root; 507 lefttreemax = root; 508 } else 509 break; 510 } 511 /* Assemble the new root. */ 512 lefttreemax->right = root->left; 513 righttreemin->left = root->right; 514 root->left = dummy.right; 515 root->right = dummy.left; 516 return (root); 517 } 518 519 /* 520 * vm_page_insert: [ internal use only ] 521 * 522 * Inserts the given mem entry into the object and object list. 523 * 524 * The pagetables are not updated but will presumably fault the page 525 * in if necessary, or if a kernel page the caller will at some point 526 * enter the page into the kernel's pmap. We are not allowed to block 527 * here so we *can't* do this anyway. 528 * 529 * The object and page must be locked, and must be splhigh. 530 * This routine may not block. 531 */ 532 void 533 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 534 { 535 vm_page_t root; 536 537 if (!VM_OBJECT_LOCKED(object)) 538 GIANT_REQUIRED; 539 if (m->object != NULL) 540 panic("vm_page_insert: already inserted"); 541 542 /* 543 * Record the object/offset pair in this page 544 */ 545 m->object = object; 546 m->pindex = pindex; 547 548 /* 549 * Now link into the object's ordered list of backed pages. 550 */ 551 root = object->root; 552 if (root == NULL) { 553 m->left = NULL; 554 m->right = NULL; 555 TAILQ_INSERT_TAIL(&object->memq, m, listq); 556 } else { 557 root = vm_page_splay(pindex, root); 558 if (pindex < root->pindex) { 559 m->left = root->left; 560 m->right = root; 561 root->left = NULL; 562 TAILQ_INSERT_BEFORE(root, m, listq); 563 } else { 564 m->right = root->right; 565 m->left = root; 566 root->right = NULL; 567 TAILQ_INSERT_AFTER(&object->memq, root, m, listq); 568 } 569 } 570 object->root = m; 571 object->generation++; 572 573 /* 574 * show that the object has one more resident page. 575 */ 576 object->resident_page_count++; 577 578 /* 579 * Since we are inserting a new and possibly dirty page, 580 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags. 581 */ 582 if (m->flags & PG_WRITEABLE) 583 vm_object_set_writeable_dirty(object); 584 } 585 586 /* 587 * vm_page_remove: 588 * NOTE: used by device pager as well -wfj 589 * 590 * Removes the given mem entry from the object/offset-page 591 * table and the object page list, but do not invalidate/terminate 592 * the backing store. 593 * 594 * The object and page must be locked, and at splhigh. 595 * The underlying pmap entry (if any) is NOT removed here. 596 * This routine may not block. 597 */ 598 void 599 vm_page_remove(vm_page_t m) 600 { 601 vm_object_t object; 602 vm_page_t root; 603 604 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 605 if (m->object == NULL) 606 return; 607 if (!VM_OBJECT_LOCKED(m->object)) 608 GIANT_REQUIRED; 609 if ((m->flags & PG_BUSY) == 0) { 610 panic("vm_page_remove: page not busy"); 611 } 612 613 /* 614 * Basically destroy the page. 615 */ 616 vm_page_wakeup(m); 617 618 object = m->object; 619 620 /* 621 * Now remove from the object's list of backed pages. 622 */ 623 if (m != object->root) 624 vm_page_splay(m->pindex, object->root); 625 if (m->left == NULL) 626 root = m->right; 627 else { 628 root = vm_page_splay(m->pindex, m->left); 629 root->right = m->right; 630 } 631 object->root = root; 632 TAILQ_REMOVE(&object->memq, m, listq); 633 634 /* 635 * And show that the object has one fewer resident page. 636 */ 637 object->resident_page_count--; 638 object->generation++; 639 640 m->object = NULL; 641 } 642 643 /* 644 * vm_page_lookup: 645 * 646 * Returns the page associated with the object/offset 647 * pair specified; if none is found, NULL is returned. 648 * 649 * The object must be locked. 650 * This routine may not block. 651 * This is a critical path routine 652 */ 653 vm_page_t 654 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 655 { 656 vm_page_t m; 657 658 if (!VM_OBJECT_LOCKED(object)) 659 GIANT_REQUIRED; 660 m = vm_page_splay(pindex, object->root); 661 if ((object->root = m) != NULL && m->pindex != pindex) 662 m = NULL; 663 return (m); 664 } 665 666 /* 667 * vm_page_rename: 668 * 669 * Move the given memory entry from its 670 * current object to the specified target object/offset. 671 * 672 * The object must be locked. 673 * This routine may not block. 674 * 675 * Note: this routine will raise itself to splvm(), the caller need not. 676 * 677 * Note: swap associated with the page must be invalidated by the move. We 678 * have to do this for several reasons: (1) we aren't freeing the 679 * page, (2) we are dirtying the page, (3) the VM system is probably 680 * moving the page from object A to B, and will then later move 681 * the backing store from A to B and we can't have a conflict. 682 * 683 * Note: we *always* dirty the page. It is necessary both for the 684 * fact that we moved it, and because we may be invalidating 685 * swap. If the page is on the cache, we have to deactivate it 686 * or vm_page_dirty() will panic. Dirty pages are not allowed 687 * on the cache. 688 */ 689 void 690 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 691 { 692 int s; 693 694 s = splvm(); 695 vm_page_remove(m); 696 vm_page_insert(m, new_object, new_pindex); 697 if (m->queue - m->pc == PQ_CACHE) 698 vm_page_deactivate(m); 699 vm_page_dirty(m); 700 splx(s); 701 } 702 703 /* 704 * vm_page_select_cache: 705 * 706 * Find a page on the cache queue with color optimization. As pages 707 * might be found, but not applicable, they are deactivated. This 708 * keeps us from using potentially busy cached pages. 709 * 710 * This routine must be called at splvm(). 711 * This routine may not block. 712 */ 713 static vm_page_t 714 vm_page_select_cache(int color) 715 { 716 vm_page_t m; 717 718 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 719 while (TRUE) { 720 m = vm_pageq_find(PQ_CACHE, color, FALSE); 721 if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || 722 m->hold_count || m->wire_count || 723 !VM_OBJECT_TRYLOCK(m->object))) { 724 vm_page_deactivate(m); 725 continue; 726 } 727 return m; 728 } 729 } 730 731 /* 732 * vm_page_alloc: 733 * 734 * Allocate and return a memory cell associated 735 * with this VM object/offset pair. 736 * 737 * page_req classes: 738 * VM_ALLOC_NORMAL normal process request 739 * VM_ALLOC_SYSTEM system *really* needs a page 740 * VM_ALLOC_INTERRUPT interrupt time request 741 * VM_ALLOC_ZERO zero page 742 * 743 * This routine may not block. 744 * 745 * Additional special handling is required when called from an 746 * interrupt (VM_ALLOC_INTERRUPT). We are not allowed to mess with 747 * the page cache in this case. 748 */ 749 vm_page_t 750 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 751 { 752 vm_object_t m_object; 753 vm_page_t m = NULL; 754 int color, flags, page_req, s; 755 756 page_req = req & VM_ALLOC_CLASS_MASK; 757 758 if ((req & VM_ALLOC_NOOBJ) == 0) { 759 KASSERT(object != NULL, 760 ("vm_page_alloc: NULL object.")); 761 KASSERT(!vm_page_lookup(object, pindex), 762 ("vm_page_alloc: page already allocated")); 763 color = (pindex + object->pg_color) & PQ_L2_MASK; 764 } else 765 color = pindex & PQ_L2_MASK; 766 767 /* 768 * The pager is allowed to eat deeper into the free page list. 769 */ 770 if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) { 771 page_req = VM_ALLOC_SYSTEM; 772 }; 773 774 s = splvm(); 775 loop: 776 mtx_lock_spin(&vm_page_queue_free_mtx); 777 if (cnt.v_free_count > cnt.v_free_reserved || 778 (page_req == VM_ALLOC_SYSTEM && 779 cnt.v_cache_count == 0 && 780 cnt.v_free_count > cnt.v_interrupt_free_min) || 781 (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) { 782 /* 783 * Allocate from the free queue if the number of free pages 784 * exceeds the minimum for the request class. 785 */ 786 m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0); 787 } else if (page_req != VM_ALLOC_INTERRUPT) { 788 mtx_unlock_spin(&vm_page_queue_free_mtx); 789 /* 790 * Allocatable from cache (non-interrupt only). On success, 791 * we must free the page and try again, thus ensuring that 792 * cnt.v_*_free_min counters are replenished. 793 */ 794 vm_page_lock_queues(); 795 if ((m = vm_page_select_cache(color)) == NULL) { 796 vm_page_unlock_queues(); 797 splx(s); 798 #if defined(DIAGNOSTIC) 799 if (cnt.v_cache_count > 0) 800 printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count); 801 #endif 802 atomic_add_int(&vm_pageout_deficit, 1); 803 pagedaemon_wakeup(); 804 return (NULL); 805 } 806 KASSERT(m->dirty == 0, ("Found dirty cache page %p", m)); 807 m_object = m->object; 808 VM_OBJECT_LOCK_ASSERT(m_object, MA_OWNED); 809 vm_page_busy(m); 810 pmap_remove_all(m); 811 vm_page_free(m); 812 vm_page_unlock_queues(); 813 VM_OBJECT_UNLOCK(m_object); 814 goto loop; 815 } else { 816 /* 817 * Not allocatable from cache from interrupt, give up. 818 */ 819 mtx_unlock_spin(&vm_page_queue_free_mtx); 820 splx(s); 821 atomic_add_int(&vm_pageout_deficit, 1); 822 pagedaemon_wakeup(); 823 return (NULL); 824 } 825 826 /* 827 * At this point we had better have found a good page. 828 */ 829 830 KASSERT( 831 m != NULL, 832 ("vm_page_alloc(): missing page on free queue\n") 833 ); 834 835 /* 836 * Remove from free queue 837 */ 838 839 vm_pageq_remove_nowakeup(m); 840 841 /* 842 * Initialize structure. Only the PG_ZERO flag is inherited. 843 */ 844 flags = PG_BUSY; 845 if (m->flags & PG_ZERO) { 846 vm_page_zero_count--; 847 if (req & VM_ALLOC_ZERO) 848 flags = PG_ZERO | PG_BUSY; 849 } 850 m->flags = flags; 851 if (req & VM_ALLOC_WIRED) { 852 atomic_add_int(&cnt.v_wire_count, 1); 853 m->wire_count = 1; 854 } else 855 m->wire_count = 0; 856 m->hold_count = 0; 857 m->act_count = 0; 858 m->busy = 0; 859 m->valid = 0; 860 KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m)); 861 mtx_unlock_spin(&vm_page_queue_free_mtx); 862 863 /* 864 * vm_page_insert() is safe prior to the splx(). Note also that 865 * inserting a page here does not insert it into the pmap (which 866 * could cause us to block allocating memory). We cannot block 867 * anywhere. 868 */ 869 if ((req & VM_ALLOC_NOOBJ) == 0) 870 vm_page_insert(m, object, pindex); 871 872 /* 873 * Don't wakeup too often - wakeup the pageout daemon when 874 * we would be nearly out of memory. 875 */ 876 if (vm_paging_needed()) 877 pagedaemon_wakeup(); 878 879 splx(s); 880 return (m); 881 } 882 883 /* 884 * vm_wait: (also see VM_WAIT macro) 885 * 886 * Block until free pages are available for allocation 887 * - Called in various places before memory allocations. 888 */ 889 void 890 vm_wait(void) 891 { 892 int s; 893 894 s = splvm(); 895 vm_page_lock_queues(); 896 if (curproc == pageproc) { 897 vm_pageout_pages_needed = 1; 898 msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx, 899 PDROP | PSWP, "VMWait", 0); 900 } else { 901 if (!vm_pages_needed) { 902 vm_pages_needed = 1; 903 wakeup(&vm_pages_needed); 904 } 905 msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM, 906 "vmwait", 0); 907 } 908 splx(s); 909 } 910 911 /* 912 * vm_waitpfault: (also see VM_WAITPFAULT macro) 913 * 914 * Block until free pages are available for allocation 915 * - Called only in vm_fault so that processes page faulting 916 * can be easily tracked. 917 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 918 * processes will be able to grab memory first. Do not change 919 * this balance without careful testing first. 920 */ 921 void 922 vm_waitpfault(void) 923 { 924 int s; 925 926 s = splvm(); 927 vm_page_lock_queues(); 928 if (!vm_pages_needed) { 929 vm_pages_needed = 1; 930 wakeup(&vm_pages_needed); 931 } 932 msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER, 933 "pfault", 0); 934 splx(s); 935 } 936 937 /* 938 * vm_page_activate: 939 * 940 * Put the specified page on the active list (if appropriate). 941 * Ensure that act_count is at least ACT_INIT but do not otherwise 942 * mess with it. 943 * 944 * The page queues must be locked. 945 * This routine may not block. 946 */ 947 void 948 vm_page_activate(vm_page_t m) 949 { 950 int s; 951 952 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 953 s = splvm(); 954 if (m->queue != PQ_ACTIVE) { 955 if ((m->queue - m->pc) == PQ_CACHE) 956 cnt.v_reactivated++; 957 vm_pageq_remove(m); 958 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 959 if (m->act_count < ACT_INIT) 960 m->act_count = ACT_INIT; 961 vm_pageq_enqueue(PQ_ACTIVE, m); 962 } 963 } else { 964 if (m->act_count < ACT_INIT) 965 m->act_count = ACT_INIT; 966 } 967 splx(s); 968 } 969 970 /* 971 * vm_page_free_wakeup: 972 * 973 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 974 * routine is called when a page has been added to the cache or free 975 * queues. 976 * 977 * This routine may not block. 978 * This routine must be called at splvm() 979 */ 980 static __inline void 981 vm_page_free_wakeup(void) 982 { 983 984 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 985 /* 986 * if pageout daemon needs pages, then tell it that there are 987 * some free. 988 */ 989 if (vm_pageout_pages_needed && 990 cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) { 991 wakeup(&vm_pageout_pages_needed); 992 vm_pageout_pages_needed = 0; 993 } 994 /* 995 * wakeup processes that are waiting on memory if we hit a 996 * high water mark. And wakeup scheduler process if we have 997 * lots of memory. this process will swapin processes. 998 */ 999 if (vm_pages_needed && !vm_page_count_min()) { 1000 vm_pages_needed = 0; 1001 wakeup(&cnt.v_free_count); 1002 } 1003 } 1004 1005 /* 1006 * vm_page_free_toq: 1007 * 1008 * Returns the given page to the PQ_FREE list, 1009 * disassociating it with any VM object. 1010 * 1011 * Object and page must be locked prior to entry. 1012 * This routine may not block. 1013 */ 1014 1015 void 1016 vm_page_free_toq(vm_page_t m) 1017 { 1018 int s; 1019 struct vpgqueues *pq; 1020 vm_object_t object = m->object; 1021 1022 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1023 s = splvm(); 1024 cnt.v_tfree++; 1025 1026 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) { 1027 printf( 1028 "vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n", 1029 (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0, 1030 m->hold_count); 1031 if ((m->queue - m->pc) == PQ_FREE) 1032 panic("vm_page_free: freeing free page"); 1033 else 1034 panic("vm_page_free: freeing busy page"); 1035 } 1036 1037 /* 1038 * unqueue, then remove page. Note that we cannot destroy 1039 * the page here because we do not want to call the pager's 1040 * callback routine until after we've put the page on the 1041 * appropriate free queue. 1042 */ 1043 vm_pageq_remove_nowakeup(m); 1044 vm_page_remove(m); 1045 1046 /* 1047 * If fictitious remove object association and 1048 * return, otherwise delay object association removal. 1049 */ 1050 if ((m->flags & PG_FICTITIOUS) != 0) { 1051 splx(s); 1052 return; 1053 } 1054 1055 m->valid = 0; 1056 vm_page_undirty(m); 1057 1058 if (m->wire_count != 0) { 1059 if (m->wire_count > 1) { 1060 panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx", 1061 m->wire_count, (long)m->pindex); 1062 } 1063 panic("vm_page_free: freeing wired page\n"); 1064 } 1065 1066 /* 1067 * If we've exhausted the object's resident pages we want to free 1068 * it up. 1069 */ 1070 if (object && 1071 (object->type == OBJT_VNODE) && 1072 ((object->flags & OBJ_DEAD) == 0) 1073 ) { 1074 struct vnode *vp = (struct vnode *)object->handle; 1075 1076 if (vp) { 1077 VI_LOCK(vp); 1078 if (VSHOULDFREE(vp)) 1079 vfree(vp); 1080 VI_UNLOCK(vp); 1081 } 1082 } 1083 1084 /* 1085 * Clear the UNMANAGED flag when freeing an unmanaged page. 1086 */ 1087 if (m->flags & PG_UNMANAGED) { 1088 m->flags &= ~PG_UNMANAGED; 1089 } 1090 1091 if (m->hold_count != 0) { 1092 m->flags &= ~PG_ZERO; 1093 m->queue = PQ_HOLD; 1094 } else 1095 m->queue = PQ_FREE + m->pc; 1096 pq = &vm_page_queues[m->queue]; 1097 mtx_lock_spin(&vm_page_queue_free_mtx); 1098 pq->lcnt++; 1099 ++(*pq->cnt); 1100 1101 /* 1102 * Put zero'd pages on the end ( where we look for zero'd pages 1103 * first ) and non-zerod pages at the head. 1104 */ 1105 if (m->flags & PG_ZERO) { 1106 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 1107 ++vm_page_zero_count; 1108 } else { 1109 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 1110 } 1111 mtx_unlock_spin(&vm_page_queue_free_mtx); 1112 vm_page_free_wakeup(); 1113 splx(s); 1114 } 1115 1116 /* 1117 * vm_page_unmanage: 1118 * 1119 * Prevent PV management from being done on the page. The page is 1120 * removed from the paging queues as if it were wired, and as a 1121 * consequence of no longer being managed the pageout daemon will not 1122 * touch it (since there is no way to locate the pte mappings for the 1123 * page). madvise() calls that mess with the pmap will also no longer 1124 * operate on the page. 1125 * 1126 * Beyond that the page is still reasonably 'normal'. Freeing the page 1127 * will clear the flag. 1128 * 1129 * This routine is used by OBJT_PHYS objects - objects using unswappable 1130 * physical memory as backing store rather then swap-backed memory and 1131 * will eventually be extended to support 4MB unmanaged physical 1132 * mappings. 1133 */ 1134 void 1135 vm_page_unmanage(vm_page_t m) 1136 { 1137 int s; 1138 1139 s = splvm(); 1140 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1141 if ((m->flags & PG_UNMANAGED) == 0) { 1142 if (m->wire_count == 0) 1143 vm_pageq_remove(m); 1144 } 1145 vm_page_flag_set(m, PG_UNMANAGED); 1146 splx(s); 1147 } 1148 1149 /* 1150 * vm_page_wire: 1151 * 1152 * Mark this page as wired down by yet 1153 * another map, removing it from paging queues 1154 * as necessary. 1155 * 1156 * The page queues must be locked. 1157 * This routine may not block. 1158 */ 1159 void 1160 vm_page_wire(vm_page_t m) 1161 { 1162 int s; 1163 1164 /* 1165 * Only bump the wire statistics if the page is not already wired, 1166 * and only unqueue the page if it is on some queue (if it is unmanaged 1167 * it is already off the queues). 1168 */ 1169 s = splvm(); 1170 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1171 if (m->wire_count == 0) { 1172 if ((m->flags & PG_UNMANAGED) == 0) 1173 vm_pageq_remove(m); 1174 atomic_add_int(&cnt.v_wire_count, 1); 1175 } 1176 m->wire_count++; 1177 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 1178 splx(s); 1179 } 1180 1181 /* 1182 * vm_page_unwire: 1183 * 1184 * Release one wiring of this page, potentially 1185 * enabling it to be paged again. 1186 * 1187 * Many pages placed on the inactive queue should actually go 1188 * into the cache, but it is difficult to figure out which. What 1189 * we do instead, if the inactive target is well met, is to put 1190 * clean pages at the head of the inactive queue instead of the tail. 1191 * This will cause them to be moved to the cache more quickly and 1192 * if not actively re-referenced, freed more quickly. If we just 1193 * stick these pages at the end of the inactive queue, heavy filesystem 1194 * meta-data accesses can cause an unnecessary paging load on memory bound 1195 * processes. This optimization causes one-time-use metadata to be 1196 * reused more quickly. 1197 * 1198 * BUT, if we are in a low-memory situation we have no choice but to 1199 * put clean pages on the cache queue. 1200 * 1201 * A number of routines use vm_page_unwire() to guarantee that the page 1202 * will go into either the inactive or active queues, and will NEVER 1203 * be placed in the cache - for example, just after dirtying a page. 1204 * dirty pages in the cache are not allowed. 1205 * 1206 * The page queues must be locked. 1207 * This routine may not block. 1208 */ 1209 void 1210 vm_page_unwire(vm_page_t m, int activate) 1211 { 1212 int s; 1213 1214 s = splvm(); 1215 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1216 if (m->wire_count > 0) { 1217 m->wire_count--; 1218 if (m->wire_count == 0) { 1219 atomic_subtract_int(&cnt.v_wire_count, 1); 1220 if (m->flags & PG_UNMANAGED) { 1221 ; 1222 } else if (activate) 1223 vm_pageq_enqueue(PQ_ACTIVE, m); 1224 else { 1225 vm_page_flag_clear(m, PG_WINATCFLS); 1226 vm_pageq_enqueue(PQ_INACTIVE, m); 1227 } 1228 } 1229 } else { 1230 panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count); 1231 } 1232 splx(s); 1233 } 1234 1235 1236 /* 1237 * Move the specified page to the inactive queue. If the page has 1238 * any associated swap, the swap is deallocated. 1239 * 1240 * Normally athead is 0 resulting in LRU operation. athead is set 1241 * to 1 if we want this page to be 'as if it were placed in the cache', 1242 * except without unmapping it from the process address space. 1243 * 1244 * This routine may not block. 1245 */ 1246 static __inline void 1247 _vm_page_deactivate(vm_page_t m, int athead) 1248 { 1249 int s; 1250 1251 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1252 /* 1253 * Ignore if already inactive. 1254 */ 1255 if (m->queue == PQ_INACTIVE) 1256 return; 1257 1258 s = splvm(); 1259 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1260 if ((m->queue - m->pc) == PQ_CACHE) 1261 cnt.v_reactivated++; 1262 vm_page_flag_clear(m, PG_WINATCFLS); 1263 vm_pageq_remove(m); 1264 if (athead) 1265 TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1266 else 1267 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1268 m->queue = PQ_INACTIVE; 1269 vm_page_queues[PQ_INACTIVE].lcnt++; 1270 cnt.v_inactive_count++; 1271 } 1272 splx(s); 1273 } 1274 1275 void 1276 vm_page_deactivate(vm_page_t m) 1277 { 1278 _vm_page_deactivate(m, 0); 1279 } 1280 1281 /* 1282 * vm_page_try_to_cache: 1283 * 1284 * Returns 0 on failure, 1 on success 1285 */ 1286 int 1287 vm_page_try_to_cache(vm_page_t m) 1288 { 1289 1290 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1291 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1292 (m->flags & (PG_BUSY|PG_UNMANAGED))) { 1293 return (0); 1294 } 1295 vm_page_test_dirty(m); 1296 if (m->dirty) 1297 return (0); 1298 vm_page_cache(m); 1299 return (1); 1300 } 1301 1302 /* 1303 * vm_page_try_to_free() 1304 * 1305 * Attempt to free the page. If we cannot free it, we do nothing. 1306 * 1 is returned on success, 0 on failure. 1307 */ 1308 int 1309 vm_page_try_to_free(vm_page_t m) 1310 { 1311 1312 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1313 if (m->object != NULL) 1314 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1315 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1316 (m->flags & (PG_BUSY|PG_UNMANAGED))) { 1317 return (0); 1318 } 1319 vm_page_test_dirty(m); 1320 if (m->dirty) 1321 return (0); 1322 vm_page_busy(m); 1323 pmap_remove_all(m); 1324 vm_page_free(m); 1325 return (1); 1326 } 1327 1328 /* 1329 * vm_page_cache 1330 * 1331 * Put the specified page onto the page cache queue (if appropriate). 1332 * 1333 * This routine may not block. 1334 */ 1335 void 1336 vm_page_cache(vm_page_t m) 1337 { 1338 int s; 1339 1340 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1341 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) { 1342 printf("vm_page_cache: attempting to cache busy page\n"); 1343 return; 1344 } 1345 if ((m->queue - m->pc) == PQ_CACHE) 1346 return; 1347 1348 /* 1349 * Remove all pmaps and indicate that the page is not 1350 * writeable or mapped. 1351 */ 1352 pmap_remove_all(m); 1353 if (m->dirty != 0) { 1354 panic("vm_page_cache: caching a dirty page, pindex: %ld", 1355 (long)m->pindex); 1356 } 1357 s = splvm(); 1358 vm_pageq_remove_nowakeup(m); 1359 vm_pageq_enqueue(PQ_CACHE + m->pc, m); 1360 vm_page_free_wakeup(); 1361 splx(s); 1362 } 1363 1364 /* 1365 * vm_page_dontneed 1366 * 1367 * Cache, deactivate, or do nothing as appropriate. This routine 1368 * is typically used by madvise() MADV_DONTNEED. 1369 * 1370 * Generally speaking we want to move the page into the cache so 1371 * it gets reused quickly. However, this can result in a silly syndrome 1372 * due to the page recycling too quickly. Small objects will not be 1373 * fully cached. On the otherhand, if we move the page to the inactive 1374 * queue we wind up with a problem whereby very large objects 1375 * unnecessarily blow away our inactive and cache queues. 1376 * 1377 * The solution is to move the pages based on a fixed weighting. We 1378 * either leave them alone, deactivate them, or move them to the cache, 1379 * where moving them to the cache has the highest weighting. 1380 * By forcing some pages into other queues we eventually force the 1381 * system to balance the queues, potentially recovering other unrelated 1382 * space from active. The idea is to not force this to happen too 1383 * often. 1384 */ 1385 void 1386 vm_page_dontneed(vm_page_t m) 1387 { 1388 static int dnweight; 1389 int dnw; 1390 int head; 1391 1392 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1393 dnw = ++dnweight; 1394 1395 /* 1396 * occassionally leave the page alone 1397 */ 1398 if ((dnw & 0x01F0) == 0 || 1399 m->queue == PQ_INACTIVE || 1400 m->queue - m->pc == PQ_CACHE 1401 ) { 1402 if (m->act_count >= ACT_INIT) 1403 --m->act_count; 1404 return; 1405 } 1406 1407 if (m->dirty == 0) 1408 vm_page_test_dirty(m); 1409 1410 if (m->dirty || (dnw & 0x0070) == 0) { 1411 /* 1412 * Deactivate the page 3 times out of 32. 1413 */ 1414 head = 0; 1415 } else { 1416 /* 1417 * Cache the page 28 times out of every 32. Note that 1418 * the page is deactivated instead of cached, but placed 1419 * at the head of the queue instead of the tail. 1420 */ 1421 head = 1; 1422 } 1423 _vm_page_deactivate(m, head); 1424 } 1425 1426 /* 1427 * Grab a page, waiting until we are waken up due to the page 1428 * changing state. We keep on waiting, if the page continues 1429 * to be in the object. If the page doesn't exist, allocate it. 1430 * 1431 * This routine may block. 1432 */ 1433 vm_page_t 1434 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 1435 { 1436 vm_page_t m; 1437 int s, generation, is_object_locked; 1438 1439 /* 1440 * Remove is_object_locked after vm_object locking is finished. 1441 */ 1442 if (!(is_object_locked = VM_OBJECT_LOCKED(object))) 1443 GIANT_REQUIRED; 1444 retrylookup: 1445 if ((m = vm_page_lookup(object, pindex)) != NULL) { 1446 vm_page_lock_queues(); 1447 if (m->busy || (m->flags & PG_BUSY)) { 1448 generation = object->generation; 1449 1450 s = splvm(); 1451 while ((object->generation == generation) && 1452 (m->busy || (m->flags & PG_BUSY))) { 1453 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 1454 if (is_object_locked) 1455 VM_OBJECT_UNLOCK(object); 1456 msleep(m, &vm_page_queue_mtx, PDROP | PVM, "pgrbwt", 0); 1457 if (is_object_locked) 1458 VM_OBJECT_LOCK(object); 1459 if ((allocflags & VM_ALLOC_RETRY) == 0) { 1460 splx(s); 1461 return NULL; 1462 } 1463 vm_page_lock_queues(); 1464 } 1465 vm_page_unlock_queues(); 1466 splx(s); 1467 goto retrylookup; 1468 } else { 1469 if (allocflags & VM_ALLOC_WIRED) 1470 vm_page_wire(m); 1471 vm_page_busy(m); 1472 vm_page_unlock_queues(); 1473 return m; 1474 } 1475 } 1476 1477 m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY); 1478 if (m == NULL) { 1479 if (is_object_locked) 1480 VM_OBJECT_UNLOCK(object); 1481 VM_WAIT; 1482 if (is_object_locked) 1483 VM_OBJECT_LOCK(object); 1484 if ((allocflags & VM_ALLOC_RETRY) == 0) 1485 return NULL; 1486 goto retrylookup; 1487 } 1488 1489 return m; 1490 } 1491 1492 /* 1493 * Mapping function for valid bits or for dirty bits in 1494 * a page. May not block. 1495 * 1496 * Inputs are required to range within a page. 1497 */ 1498 __inline int 1499 vm_page_bits(int base, int size) 1500 { 1501 int first_bit; 1502 int last_bit; 1503 1504 KASSERT( 1505 base + size <= PAGE_SIZE, 1506 ("vm_page_bits: illegal base/size %d/%d", base, size) 1507 ); 1508 1509 if (size == 0) /* handle degenerate case */ 1510 return (0); 1511 1512 first_bit = base >> DEV_BSHIFT; 1513 last_bit = (base + size - 1) >> DEV_BSHIFT; 1514 1515 return ((2 << last_bit) - (1 << first_bit)); 1516 } 1517 1518 /* 1519 * vm_page_set_validclean: 1520 * 1521 * Sets portions of a page valid and clean. The arguments are expected 1522 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 1523 * of any partial chunks touched by the range. The invalid portion of 1524 * such chunks will be zero'd. 1525 * 1526 * This routine may not block. 1527 * 1528 * (base + size) must be less then or equal to PAGE_SIZE. 1529 */ 1530 void 1531 vm_page_set_validclean(vm_page_t m, int base, int size) 1532 { 1533 int pagebits; 1534 int frag; 1535 int endoff; 1536 1537 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1538 if (size == 0) /* handle degenerate case */ 1539 return; 1540 1541 /* 1542 * If the base is not DEV_BSIZE aligned and the valid 1543 * bit is clear, we have to zero out a portion of the 1544 * first block. 1545 */ 1546 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 1547 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 1548 pmap_zero_page_area(m, frag, base - frag); 1549 1550 /* 1551 * If the ending offset is not DEV_BSIZE aligned and the 1552 * valid bit is clear, we have to zero out a portion of 1553 * the last block. 1554 */ 1555 endoff = base + size; 1556 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 1557 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 1558 pmap_zero_page_area(m, endoff, 1559 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 1560 1561 /* 1562 * Set valid, clear dirty bits. If validating the entire 1563 * page we can safely clear the pmap modify bit. We also 1564 * use this opportunity to clear the PG_NOSYNC flag. If a process 1565 * takes a write fault on a MAP_NOSYNC memory area the flag will 1566 * be set again. 1567 * 1568 * We set valid bits inclusive of any overlap, but we can only 1569 * clear dirty bits for DEV_BSIZE chunks that are fully within 1570 * the range. 1571 */ 1572 pagebits = vm_page_bits(base, size); 1573 m->valid |= pagebits; 1574 #if 0 /* NOT YET */ 1575 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 1576 frag = DEV_BSIZE - frag; 1577 base += frag; 1578 size -= frag; 1579 if (size < 0) 1580 size = 0; 1581 } 1582 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 1583 #endif 1584 m->dirty &= ~pagebits; 1585 if (base == 0 && size == PAGE_SIZE) { 1586 pmap_clear_modify(m); 1587 vm_page_flag_clear(m, PG_NOSYNC); 1588 } 1589 } 1590 1591 #if 0 1592 1593 void 1594 vm_page_set_dirty(vm_page_t m, int base, int size) 1595 { 1596 m->dirty |= vm_page_bits(base, size); 1597 } 1598 1599 #endif 1600 1601 void 1602 vm_page_clear_dirty(vm_page_t m, int base, int size) 1603 { 1604 GIANT_REQUIRED; 1605 m->dirty &= ~vm_page_bits(base, size); 1606 } 1607 1608 /* 1609 * vm_page_set_invalid: 1610 * 1611 * Invalidates DEV_BSIZE'd chunks within a page. Both the 1612 * valid and dirty bits for the effected areas are cleared. 1613 * 1614 * May not block. 1615 */ 1616 void 1617 vm_page_set_invalid(vm_page_t m, int base, int size) 1618 { 1619 int bits; 1620 1621 GIANT_REQUIRED; 1622 bits = vm_page_bits(base, size); 1623 m->valid &= ~bits; 1624 m->dirty &= ~bits; 1625 m->object->generation++; 1626 } 1627 1628 /* 1629 * vm_page_zero_invalid() 1630 * 1631 * The kernel assumes that the invalid portions of a page contain 1632 * garbage, but such pages can be mapped into memory by user code. 1633 * When this occurs, we must zero out the non-valid portions of the 1634 * page so user code sees what it expects. 1635 * 1636 * Pages are most often semi-valid when the end of a file is mapped 1637 * into memory and the file's size is not page aligned. 1638 */ 1639 void 1640 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 1641 { 1642 int b; 1643 int i; 1644 1645 /* 1646 * Scan the valid bits looking for invalid sections that 1647 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 1648 * valid bit may be set ) have already been zerod by 1649 * vm_page_set_validclean(). 1650 */ 1651 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 1652 if (i == (PAGE_SIZE / DEV_BSIZE) || 1653 (m->valid & (1 << i)) 1654 ) { 1655 if (i > b) { 1656 pmap_zero_page_area(m, 1657 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 1658 } 1659 b = i + 1; 1660 } 1661 } 1662 1663 /* 1664 * setvalid is TRUE when we can safely set the zero'd areas 1665 * as being valid. We can do this if there are no cache consistancy 1666 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 1667 */ 1668 if (setvalid) 1669 m->valid = VM_PAGE_BITS_ALL; 1670 } 1671 1672 /* 1673 * vm_page_is_valid: 1674 * 1675 * Is (partial) page valid? Note that the case where size == 0 1676 * will return FALSE in the degenerate case where the page is 1677 * entirely invalid, and TRUE otherwise. 1678 * 1679 * May not block. 1680 */ 1681 int 1682 vm_page_is_valid(vm_page_t m, int base, int size) 1683 { 1684 int bits = vm_page_bits(base, size); 1685 1686 if (m->valid && ((m->valid & bits) == bits)) 1687 return 1; 1688 else 1689 return 0; 1690 } 1691 1692 /* 1693 * update dirty bits from pmap/mmu. May not block. 1694 */ 1695 void 1696 vm_page_test_dirty(vm_page_t m) 1697 { 1698 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) { 1699 vm_page_dirty(m); 1700 } 1701 } 1702 1703 int so_zerocp_fullpage = 0; 1704 1705 void 1706 vm_page_cowfault(vm_page_t m) 1707 { 1708 vm_page_t mnew; 1709 vm_object_t object; 1710 vm_pindex_t pindex; 1711 1712 object = m->object; 1713 pindex = m->pindex; 1714 vm_page_busy(m); 1715 1716 retry_alloc: 1717 vm_page_remove(m); 1718 /* 1719 * An interrupt allocation is requested because the page 1720 * queues lock is held. 1721 */ 1722 mnew = vm_page_alloc(object, pindex, VM_ALLOC_INTERRUPT); 1723 if (mnew == NULL) { 1724 vm_page_insert(m, object, pindex); 1725 vm_page_unlock_queues(); 1726 VM_OBJECT_UNLOCK(object); 1727 VM_WAIT; 1728 VM_OBJECT_LOCK(object); 1729 vm_page_lock_queues(); 1730 goto retry_alloc; 1731 } 1732 1733 if (m->cow == 0) { 1734 /* 1735 * check to see if we raced with an xmit complete when 1736 * waiting to allocate a page. If so, put things back 1737 * the way they were 1738 */ 1739 vm_page_busy(mnew); 1740 vm_page_free(mnew); 1741 vm_page_insert(m, object, pindex); 1742 } else { /* clear COW & copy page */ 1743 if (so_zerocp_fullpage) { 1744 mnew->valid = VM_PAGE_BITS_ALL; 1745 } else { 1746 vm_page_copy(m, mnew); 1747 } 1748 vm_page_dirty(mnew); 1749 vm_page_flag_clear(mnew, PG_BUSY); 1750 } 1751 } 1752 1753 void 1754 vm_page_cowclear(vm_page_t m) 1755 { 1756 1757 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1758 if (m->cow) { 1759 m->cow--; 1760 /* 1761 * let vm_fault add back write permission lazily 1762 */ 1763 } 1764 /* 1765 * sf_buf_free() will free the page, so we needn't do it here 1766 */ 1767 } 1768 1769 void 1770 vm_page_cowsetup(vm_page_t m) 1771 { 1772 1773 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1774 m->cow++; 1775 pmap_page_protect(m, VM_PROT_READ); 1776 } 1777 1778 #include "opt_ddb.h" 1779 #ifdef DDB 1780 #include <sys/kernel.h> 1781 1782 #include <ddb/ddb.h> 1783 1784 DB_SHOW_COMMAND(page, vm_page_print_page_info) 1785 { 1786 db_printf("cnt.v_free_count: %d\n", cnt.v_free_count); 1787 db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count); 1788 db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count); 1789 db_printf("cnt.v_active_count: %d\n", cnt.v_active_count); 1790 db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count); 1791 db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved); 1792 db_printf("cnt.v_free_min: %d\n", cnt.v_free_min); 1793 db_printf("cnt.v_free_target: %d\n", cnt.v_free_target); 1794 db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min); 1795 db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target); 1796 } 1797 1798 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 1799 { 1800 int i; 1801 db_printf("PQ_FREE:"); 1802 for (i = 0; i < PQ_L2_SIZE; i++) { 1803 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt); 1804 } 1805 db_printf("\n"); 1806 1807 db_printf("PQ_CACHE:"); 1808 for (i = 0; i < PQ_L2_SIZE; i++) { 1809 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt); 1810 } 1811 db_printf("\n"); 1812 1813 db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n", 1814 vm_page_queues[PQ_ACTIVE].lcnt, 1815 vm_page_queues[PQ_INACTIVE].lcnt); 1816 } 1817 #endif /* DDB */ 1818