xref: /freebsd/sys/vm/vm_page.c (revision 38f0b757fd84d17d0fc24739a7cda160c4516d81)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * The Mach Operating System project at Carnegie-Mellon University.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34  */
35 
36 /*-
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *			GENERAL RULES ON VM_PAGE MANIPULATION
65  *
66  *	- A page queue lock is required when adding or removing a page from a
67  *	  page queue regardless of other locks or the busy state of a page.
68  *
69  *		* In general, no thread besides the page daemon can acquire or
70  *		  hold more than one page queue lock at a time.
71  *
72  *		* The page daemon can acquire and hold any pair of page queue
73  *		  locks in any order.
74  *
75  *	- The object lock is required when inserting or removing
76  *	  pages from an object (vm_page_insert() or vm_page_remove()).
77  *
78  */
79 
80 /*
81  *	Resident memory management module.
82  */
83 
84 #include <sys/cdefs.h>
85 __FBSDID("$FreeBSD$");
86 
87 #include "opt_vm.h"
88 
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/lock.h>
92 #include <sys/kernel.h>
93 #include <sys/limits.h>
94 #include <sys/malloc.h>
95 #include <sys/mman.h>
96 #include <sys/msgbuf.h>
97 #include <sys/mutex.h>
98 #include <sys/proc.h>
99 #include <sys/rwlock.h>
100 #include <sys/sysctl.h>
101 #include <sys/vmmeter.h>
102 #include <sys/vnode.h>
103 
104 #include <vm/vm.h>
105 #include <vm/pmap.h>
106 #include <vm/vm_param.h>
107 #include <vm/vm_kern.h>
108 #include <vm/vm_object.h>
109 #include <vm/vm_page.h>
110 #include <vm/vm_pageout.h>
111 #include <vm/vm_pager.h>
112 #include <vm/vm_phys.h>
113 #include <vm/vm_radix.h>
114 #include <vm/vm_reserv.h>
115 #include <vm/vm_extern.h>
116 #include <vm/uma.h>
117 #include <vm/uma_int.h>
118 
119 #include <machine/md_var.h>
120 
121 /*
122  *	Associated with page of user-allocatable memory is a
123  *	page structure.
124  */
125 
126 struct vm_domain vm_dom[MAXMEMDOM];
127 struct mtx_padalign vm_page_queue_free_mtx;
128 
129 struct mtx_padalign pa_lock[PA_LOCK_COUNT];
130 
131 vm_page_t vm_page_array;
132 long vm_page_array_size;
133 long first_page;
134 int vm_page_zero_count;
135 
136 static int boot_pages = UMA_BOOT_PAGES;
137 TUNABLE_INT("vm.boot_pages", &boot_pages);
138 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
139 	"number of pages allocated for bootstrapping the VM system");
140 
141 static int pa_tryrelock_restart;
142 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
143     &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
144 
145 static uma_zone_t fakepg_zone;
146 
147 static struct vnode *vm_page_alloc_init(vm_page_t m);
148 static void vm_page_cache_turn_free(vm_page_t m);
149 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
150 static void vm_page_enqueue(int queue, vm_page_t m);
151 static void vm_page_init_fakepg(void *dummy);
152 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
153     vm_pindex_t pindex, vm_page_t mpred);
154 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
155     vm_page_t mpred);
156 
157 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
158 
159 static void
160 vm_page_init_fakepg(void *dummy)
161 {
162 
163 	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
164 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
165 }
166 
167 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
168 #if PAGE_SIZE == 32768
169 #ifdef CTASSERT
170 CTASSERT(sizeof(u_long) >= 8);
171 #endif
172 #endif
173 
174 /*
175  * Try to acquire a physical address lock while a pmap is locked.  If we
176  * fail to trylock we unlock and lock the pmap directly and cache the
177  * locked pa in *locked.  The caller should then restart their loop in case
178  * the virtual to physical mapping has changed.
179  */
180 int
181 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
182 {
183 	vm_paddr_t lockpa;
184 
185 	lockpa = *locked;
186 	*locked = pa;
187 	if (lockpa) {
188 		PA_LOCK_ASSERT(lockpa, MA_OWNED);
189 		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
190 			return (0);
191 		PA_UNLOCK(lockpa);
192 	}
193 	if (PA_TRYLOCK(pa))
194 		return (0);
195 	PMAP_UNLOCK(pmap);
196 	atomic_add_int(&pa_tryrelock_restart, 1);
197 	PA_LOCK(pa);
198 	PMAP_LOCK(pmap);
199 	return (EAGAIN);
200 }
201 
202 /*
203  *	vm_set_page_size:
204  *
205  *	Sets the page size, perhaps based upon the memory
206  *	size.  Must be called before any use of page-size
207  *	dependent functions.
208  */
209 void
210 vm_set_page_size(void)
211 {
212 	if (vm_cnt.v_page_size == 0)
213 		vm_cnt.v_page_size = PAGE_SIZE;
214 	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
215 		panic("vm_set_page_size: page size not a power of two");
216 }
217 
218 /*
219  *	vm_page_blacklist_lookup:
220  *
221  *	See if a physical address in this page has been listed
222  *	in the blacklist tunable.  Entries in the tunable are
223  *	separated by spaces or commas.  If an invalid integer is
224  *	encountered then the rest of the string is skipped.
225  */
226 static int
227 vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
228 {
229 	vm_paddr_t bad;
230 	char *cp, *pos;
231 
232 	for (pos = list; *pos != '\0'; pos = cp) {
233 		bad = strtoq(pos, &cp, 0);
234 		if (*cp != '\0') {
235 			if (*cp == ' ' || *cp == ',') {
236 				cp++;
237 				if (cp == pos)
238 					continue;
239 			} else
240 				break;
241 		}
242 		if (pa == trunc_page(bad))
243 			return (1);
244 	}
245 	return (0);
246 }
247 
248 static void
249 vm_page_domain_init(struct vm_domain *vmd)
250 {
251 	struct vm_pagequeue *pq;
252 	int i;
253 
254 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
255 	    "vm inactive pagequeue";
256 	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) =
257 	    &vm_cnt.v_inactive_count;
258 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
259 	    "vm active pagequeue";
260 	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) =
261 	    &vm_cnt.v_active_count;
262 	vmd->vmd_page_count = 0;
263 	vmd->vmd_free_count = 0;
264 	vmd->vmd_segs = 0;
265 	vmd->vmd_oom = FALSE;
266 	vmd->vmd_pass = 0;
267 	for (i = 0; i < PQ_COUNT; i++) {
268 		pq = &vmd->vmd_pagequeues[i];
269 		TAILQ_INIT(&pq->pq_pl);
270 		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
271 		    MTX_DEF | MTX_DUPOK);
272 	}
273 }
274 
275 /*
276  *	vm_page_startup:
277  *
278  *	Initializes the resident memory module.
279  *
280  *	Allocates memory for the page cells, and
281  *	for the object/offset-to-page hash table headers.
282  *	Each page cell is initialized and placed on the free list.
283  */
284 vm_offset_t
285 vm_page_startup(vm_offset_t vaddr)
286 {
287 	vm_offset_t mapped;
288 	vm_paddr_t page_range;
289 	vm_paddr_t new_end;
290 	int i;
291 	vm_paddr_t pa;
292 	vm_paddr_t last_pa;
293 	char *list;
294 
295 	/* the biggest memory array is the second group of pages */
296 	vm_paddr_t end;
297 	vm_paddr_t biggestsize;
298 	vm_paddr_t low_water, high_water;
299 	int biggestone;
300 
301 	biggestsize = 0;
302 	biggestone = 0;
303 	vaddr = round_page(vaddr);
304 
305 	for (i = 0; phys_avail[i + 1]; i += 2) {
306 		phys_avail[i] = round_page(phys_avail[i]);
307 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
308 	}
309 
310 	low_water = phys_avail[0];
311 	high_water = phys_avail[1];
312 
313 	for (i = 0; phys_avail[i + 1]; i += 2) {
314 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
315 
316 		if (size > biggestsize) {
317 			biggestone = i;
318 			biggestsize = size;
319 		}
320 		if (phys_avail[i] < low_water)
321 			low_water = phys_avail[i];
322 		if (phys_avail[i + 1] > high_water)
323 			high_water = phys_avail[i + 1];
324 	}
325 
326 #ifdef XEN
327 	low_water = 0;
328 #endif
329 
330 	end = phys_avail[biggestone+1];
331 
332 	/*
333 	 * Initialize the page and queue locks.
334 	 */
335 	mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
336 	for (i = 0; i < PA_LOCK_COUNT; i++)
337 		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
338 	for (i = 0; i < vm_ndomains; i++)
339 		vm_page_domain_init(&vm_dom[i]);
340 
341 	/*
342 	 * Allocate memory for use when boot strapping the kernel memory
343 	 * allocator.
344 	 */
345 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
346 	new_end = trunc_page(new_end);
347 	mapped = pmap_map(&vaddr, new_end, end,
348 	    VM_PROT_READ | VM_PROT_WRITE);
349 	bzero((void *)mapped, end - new_end);
350 	uma_startup((void *)mapped, boot_pages);
351 
352 #if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \
353     defined(__mips__)
354 	/*
355 	 * Allocate a bitmap to indicate that a random physical page
356 	 * needs to be included in a minidump.
357 	 *
358 	 * The amd64 port needs this to indicate which direct map pages
359 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
360 	 *
361 	 * However, i386 still needs this workspace internally within the
362 	 * minidump code.  In theory, they are not needed on i386, but are
363 	 * included should the sf_buf code decide to use them.
364 	 */
365 	last_pa = 0;
366 	for (i = 0; dump_avail[i + 1] != 0; i += 2)
367 		if (dump_avail[i + 1] > last_pa)
368 			last_pa = dump_avail[i + 1];
369 	page_range = last_pa / PAGE_SIZE;
370 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
371 	new_end -= vm_page_dump_size;
372 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
373 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
374 	bzero((void *)vm_page_dump, vm_page_dump_size);
375 #endif
376 #ifdef __amd64__
377 	/*
378 	 * Request that the physical pages underlying the message buffer be
379 	 * included in a crash dump.  Since the message buffer is accessed
380 	 * through the direct map, they are not automatically included.
381 	 */
382 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
383 	last_pa = pa + round_page(msgbufsize);
384 	while (pa < last_pa) {
385 		dump_add_page(pa);
386 		pa += PAGE_SIZE;
387 	}
388 #endif
389 	/*
390 	 * Compute the number of pages of memory that will be available for
391 	 * use (taking into account the overhead of a page structure per
392 	 * page).
393 	 */
394 	first_page = low_water / PAGE_SIZE;
395 #ifdef VM_PHYSSEG_SPARSE
396 	page_range = 0;
397 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
398 		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
399 #elif defined(VM_PHYSSEG_DENSE)
400 	page_range = high_water / PAGE_SIZE - first_page;
401 #else
402 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
403 #endif
404 	end = new_end;
405 
406 	/*
407 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
408 	 */
409 	vaddr += PAGE_SIZE;
410 
411 	/*
412 	 * Initialize the mem entry structures now, and put them in the free
413 	 * queue.
414 	 */
415 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
416 	mapped = pmap_map(&vaddr, new_end, end,
417 	    VM_PROT_READ | VM_PROT_WRITE);
418 	vm_page_array = (vm_page_t) mapped;
419 #if VM_NRESERVLEVEL > 0
420 	/*
421 	 * Allocate memory for the reservation management system's data
422 	 * structures.
423 	 */
424 	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
425 #endif
426 #if defined(__amd64__) || defined(__mips__)
427 	/*
428 	 * pmap_map on amd64 and mips can come out of the direct-map, not kvm
429 	 * like i386, so the pages must be tracked for a crashdump to include
430 	 * this data.  This includes the vm_page_array and the early UMA
431 	 * bootstrap pages.
432 	 */
433 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
434 		dump_add_page(pa);
435 #endif
436 	phys_avail[biggestone + 1] = new_end;
437 
438 	/*
439 	 * Clear all of the page structures
440 	 */
441 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
442 	for (i = 0; i < page_range; i++)
443 		vm_page_array[i].order = VM_NFREEORDER;
444 	vm_page_array_size = page_range;
445 
446 	/*
447 	 * Initialize the physical memory allocator.
448 	 */
449 	vm_phys_init();
450 
451 	/*
452 	 * Add every available physical page that is not blacklisted to
453 	 * the free lists.
454 	 */
455 	vm_cnt.v_page_count = 0;
456 	vm_cnt.v_free_count = 0;
457 	list = getenv("vm.blacklist");
458 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
459 		pa = phys_avail[i];
460 		last_pa = phys_avail[i + 1];
461 		while (pa < last_pa) {
462 			if (list != NULL &&
463 			    vm_page_blacklist_lookup(list, pa))
464 				printf("Skipping page with pa 0x%jx\n",
465 				    (uintmax_t)pa);
466 			else
467 				vm_phys_add_page(pa);
468 			pa += PAGE_SIZE;
469 		}
470 	}
471 	freeenv(list);
472 #if VM_NRESERVLEVEL > 0
473 	/*
474 	 * Initialize the reservation management system.
475 	 */
476 	vm_reserv_init();
477 #endif
478 	return (vaddr);
479 }
480 
481 void
482 vm_page_reference(vm_page_t m)
483 {
484 
485 	vm_page_aflag_set(m, PGA_REFERENCED);
486 }
487 
488 /*
489  *	vm_page_busy_downgrade:
490  *
491  *	Downgrade an exclusive busy page into a single shared busy page.
492  */
493 void
494 vm_page_busy_downgrade(vm_page_t m)
495 {
496 	u_int x;
497 
498 	vm_page_assert_xbusied(m);
499 
500 	for (;;) {
501 		x = m->busy_lock;
502 		x &= VPB_BIT_WAITERS;
503 		if (atomic_cmpset_rel_int(&m->busy_lock,
504 		    VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1) | x))
505 			break;
506 	}
507 }
508 
509 /*
510  *	vm_page_sbusied:
511  *
512  *	Return a positive value if the page is shared busied, 0 otherwise.
513  */
514 int
515 vm_page_sbusied(vm_page_t m)
516 {
517 	u_int x;
518 
519 	x = m->busy_lock;
520 	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
521 }
522 
523 /*
524  *	vm_page_sunbusy:
525  *
526  *	Shared unbusy a page.
527  */
528 void
529 vm_page_sunbusy(vm_page_t m)
530 {
531 	u_int x;
532 
533 	vm_page_assert_sbusied(m);
534 
535 	for (;;) {
536 		x = m->busy_lock;
537 		if (VPB_SHARERS(x) > 1) {
538 			if (atomic_cmpset_int(&m->busy_lock, x,
539 			    x - VPB_ONE_SHARER))
540 				break;
541 			continue;
542 		}
543 		if ((x & VPB_BIT_WAITERS) == 0) {
544 			KASSERT(x == VPB_SHARERS_WORD(1),
545 			    ("vm_page_sunbusy: invalid lock state"));
546 			if (atomic_cmpset_int(&m->busy_lock,
547 			    VPB_SHARERS_WORD(1), VPB_UNBUSIED))
548 				break;
549 			continue;
550 		}
551 		KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS),
552 		    ("vm_page_sunbusy: invalid lock state for waiters"));
553 
554 		vm_page_lock(m);
555 		if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) {
556 			vm_page_unlock(m);
557 			continue;
558 		}
559 		wakeup(m);
560 		vm_page_unlock(m);
561 		break;
562 	}
563 }
564 
565 /*
566  *	vm_page_busy_sleep:
567  *
568  *	Sleep and release the page lock, using the page pointer as wchan.
569  *	This is used to implement the hard-path of busying mechanism.
570  *
571  *	The given page must be locked.
572  */
573 void
574 vm_page_busy_sleep(vm_page_t m, const char *wmesg)
575 {
576 	u_int x;
577 
578 	vm_page_lock_assert(m, MA_OWNED);
579 
580 	x = m->busy_lock;
581 	if (x == VPB_UNBUSIED) {
582 		vm_page_unlock(m);
583 		return;
584 	}
585 	if ((x & VPB_BIT_WAITERS) == 0 &&
586 	    !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS)) {
587 		vm_page_unlock(m);
588 		return;
589 	}
590 	msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0);
591 }
592 
593 /*
594  *	vm_page_trysbusy:
595  *
596  *	Try to shared busy a page.
597  *	If the operation succeeds 1 is returned otherwise 0.
598  *	The operation never sleeps.
599  */
600 int
601 vm_page_trysbusy(vm_page_t m)
602 {
603 	u_int x;
604 
605 	for (;;) {
606 		x = m->busy_lock;
607 		if ((x & VPB_BIT_SHARED) == 0)
608 			return (0);
609 		if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER))
610 			return (1);
611 	}
612 }
613 
614 /*
615  *	vm_page_xunbusy_hard:
616  *
617  *	Called after the first try the exclusive unbusy of a page failed.
618  *	It is assumed that the waiters bit is on.
619  */
620 void
621 vm_page_xunbusy_hard(vm_page_t m)
622 {
623 
624 	vm_page_assert_xbusied(m);
625 
626 	vm_page_lock(m);
627 	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
628 	wakeup(m);
629 	vm_page_unlock(m);
630 }
631 
632 /*
633  *	vm_page_flash:
634  *
635  *	Wakeup anyone waiting for the page.
636  *	The ownership bits do not change.
637  *
638  *	The given page must be locked.
639  */
640 void
641 vm_page_flash(vm_page_t m)
642 {
643 	u_int x;
644 
645 	vm_page_lock_assert(m, MA_OWNED);
646 
647 	for (;;) {
648 		x = m->busy_lock;
649 		if ((x & VPB_BIT_WAITERS) == 0)
650 			return;
651 		if (atomic_cmpset_int(&m->busy_lock, x,
652 		    x & (~VPB_BIT_WAITERS)))
653 			break;
654 	}
655 	wakeup(m);
656 }
657 
658 /*
659  * Keep page from being freed by the page daemon
660  * much of the same effect as wiring, except much lower
661  * overhead and should be used only for *very* temporary
662  * holding ("wiring").
663  */
664 void
665 vm_page_hold(vm_page_t mem)
666 {
667 
668 	vm_page_lock_assert(mem, MA_OWNED);
669         mem->hold_count++;
670 }
671 
672 void
673 vm_page_unhold(vm_page_t mem)
674 {
675 
676 	vm_page_lock_assert(mem, MA_OWNED);
677 	KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!"));
678 	--mem->hold_count;
679 	if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
680 		vm_page_free_toq(mem);
681 }
682 
683 /*
684  *	vm_page_unhold_pages:
685  *
686  *	Unhold each of the pages that is referenced by the given array.
687  */
688 void
689 vm_page_unhold_pages(vm_page_t *ma, int count)
690 {
691 	struct mtx *mtx, *new_mtx;
692 
693 	mtx = NULL;
694 	for (; count != 0; count--) {
695 		/*
696 		 * Avoid releasing and reacquiring the same page lock.
697 		 */
698 		new_mtx = vm_page_lockptr(*ma);
699 		if (mtx != new_mtx) {
700 			if (mtx != NULL)
701 				mtx_unlock(mtx);
702 			mtx = new_mtx;
703 			mtx_lock(mtx);
704 		}
705 		vm_page_unhold(*ma);
706 		ma++;
707 	}
708 	if (mtx != NULL)
709 		mtx_unlock(mtx);
710 }
711 
712 vm_page_t
713 PHYS_TO_VM_PAGE(vm_paddr_t pa)
714 {
715 	vm_page_t m;
716 
717 #ifdef VM_PHYSSEG_SPARSE
718 	m = vm_phys_paddr_to_vm_page(pa);
719 	if (m == NULL)
720 		m = vm_phys_fictitious_to_vm_page(pa);
721 	return (m);
722 #elif defined(VM_PHYSSEG_DENSE)
723 	long pi;
724 
725 	pi = atop(pa);
726 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
727 		m = &vm_page_array[pi - first_page];
728 		return (m);
729 	}
730 	return (vm_phys_fictitious_to_vm_page(pa));
731 #else
732 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
733 #endif
734 }
735 
736 /*
737  *	vm_page_getfake:
738  *
739  *	Create a fictitious page with the specified physical address and
740  *	memory attribute.  The memory attribute is the only the machine-
741  *	dependent aspect of a fictitious page that must be initialized.
742  */
743 vm_page_t
744 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
745 {
746 	vm_page_t m;
747 
748 	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
749 	vm_page_initfake(m, paddr, memattr);
750 	return (m);
751 }
752 
753 void
754 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
755 {
756 
757 	if ((m->flags & PG_FICTITIOUS) != 0) {
758 		/*
759 		 * The page's memattr might have changed since the
760 		 * previous initialization.  Update the pmap to the
761 		 * new memattr.
762 		 */
763 		goto memattr;
764 	}
765 	m->phys_addr = paddr;
766 	m->queue = PQ_NONE;
767 	/* Fictitious pages don't use "segind". */
768 	m->flags = PG_FICTITIOUS;
769 	/* Fictitious pages don't use "order" or "pool". */
770 	m->oflags = VPO_UNMANAGED;
771 	m->busy_lock = VPB_SINGLE_EXCLUSIVER;
772 	m->wire_count = 1;
773 	pmap_page_init(m);
774 memattr:
775 	pmap_page_set_memattr(m, memattr);
776 }
777 
778 /*
779  *	vm_page_putfake:
780  *
781  *	Release a fictitious page.
782  */
783 void
784 vm_page_putfake(vm_page_t m)
785 {
786 
787 	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
788 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
789 	    ("vm_page_putfake: bad page %p", m));
790 	uma_zfree(fakepg_zone, m);
791 }
792 
793 /*
794  *	vm_page_updatefake:
795  *
796  *	Update the given fictitious page to the specified physical address and
797  *	memory attribute.
798  */
799 void
800 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
801 {
802 
803 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
804 	    ("vm_page_updatefake: bad page %p", m));
805 	m->phys_addr = paddr;
806 	pmap_page_set_memattr(m, memattr);
807 }
808 
809 /*
810  *	vm_page_free:
811  *
812  *	Free a page.
813  */
814 void
815 vm_page_free(vm_page_t m)
816 {
817 
818 	m->flags &= ~PG_ZERO;
819 	vm_page_free_toq(m);
820 }
821 
822 /*
823  *	vm_page_free_zero:
824  *
825  *	Free a page to the zerod-pages queue
826  */
827 void
828 vm_page_free_zero(vm_page_t m)
829 {
830 
831 	m->flags |= PG_ZERO;
832 	vm_page_free_toq(m);
833 }
834 
835 /*
836  * Unbusy and handle the page queueing for a page from the VOP_GETPAGES()
837  * array which is not the request page.
838  */
839 void
840 vm_page_readahead_finish(vm_page_t m)
841 {
842 
843 	if (m->valid != 0) {
844 		/*
845 		 * Since the page is not the requested page, whether
846 		 * it should be activated or deactivated is not
847 		 * obvious.  Empirical results have shown that
848 		 * deactivating the page is usually the best choice,
849 		 * unless the page is wanted by another thread.
850 		 */
851 		vm_page_lock(m);
852 		if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
853 			vm_page_activate(m);
854 		else
855 			vm_page_deactivate(m);
856 		vm_page_unlock(m);
857 		vm_page_xunbusy(m);
858 	} else {
859 		/*
860 		 * Free the completely invalid page.  Such page state
861 		 * occurs due to the short read operation which did
862 		 * not covered our page at all, or in case when a read
863 		 * error happens.
864 		 */
865 		vm_page_lock(m);
866 		vm_page_free(m);
867 		vm_page_unlock(m);
868 	}
869 }
870 
871 /*
872  *	vm_page_sleep_if_busy:
873  *
874  *	Sleep and release the page queues lock if the page is busied.
875  *	Returns TRUE if the thread slept.
876  *
877  *	The given page must be unlocked and object containing it must
878  *	be locked.
879  */
880 int
881 vm_page_sleep_if_busy(vm_page_t m, const char *msg)
882 {
883 	vm_object_t obj;
884 
885 	vm_page_lock_assert(m, MA_NOTOWNED);
886 	VM_OBJECT_ASSERT_WLOCKED(m->object);
887 
888 	if (vm_page_busied(m)) {
889 		/*
890 		 * The page-specific object must be cached because page
891 		 * identity can change during the sleep, causing the
892 		 * re-lock of a different object.
893 		 * It is assumed that a reference to the object is already
894 		 * held by the callers.
895 		 */
896 		obj = m->object;
897 		vm_page_lock(m);
898 		VM_OBJECT_WUNLOCK(obj);
899 		vm_page_busy_sleep(m, msg);
900 		VM_OBJECT_WLOCK(obj);
901 		return (TRUE);
902 	}
903 	return (FALSE);
904 }
905 
906 /*
907  *	vm_page_dirty_KBI:		[ internal use only ]
908  *
909  *	Set all bits in the page's dirty field.
910  *
911  *	The object containing the specified page must be locked if the
912  *	call is made from the machine-independent layer.
913  *
914  *	See vm_page_clear_dirty_mask().
915  *
916  *	This function should only be called by vm_page_dirty().
917  */
918 void
919 vm_page_dirty_KBI(vm_page_t m)
920 {
921 
922 	/* These assertions refer to this operation by its public name. */
923 	KASSERT((m->flags & PG_CACHED) == 0,
924 	    ("vm_page_dirty: page in cache!"));
925 	KASSERT(m->valid == VM_PAGE_BITS_ALL,
926 	    ("vm_page_dirty: page is invalid!"));
927 	m->dirty = VM_PAGE_BITS_ALL;
928 }
929 
930 /*
931  *	vm_page_insert:		[ internal use only ]
932  *
933  *	Inserts the given mem entry into the object and object list.
934  *
935  *	The object must be locked.
936  */
937 int
938 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
939 {
940 	vm_page_t mpred;
941 
942 	VM_OBJECT_ASSERT_WLOCKED(object);
943 	mpred = vm_radix_lookup_le(&object->rtree, pindex);
944 	return (vm_page_insert_after(m, object, pindex, mpred));
945 }
946 
947 /*
948  *	vm_page_insert_after:
949  *
950  *	Inserts the page "m" into the specified object at offset "pindex".
951  *
952  *	The page "mpred" must immediately precede the offset "pindex" within
953  *	the specified object.
954  *
955  *	The object must be locked.
956  */
957 static int
958 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
959     vm_page_t mpred)
960 {
961 	vm_pindex_t sidx;
962 	vm_object_t sobj;
963 	vm_page_t msucc;
964 
965 	VM_OBJECT_ASSERT_WLOCKED(object);
966 	KASSERT(m->object == NULL,
967 	    ("vm_page_insert_after: page already inserted"));
968 	if (mpred != NULL) {
969 		KASSERT(mpred->object == object,
970 		    ("vm_page_insert_after: object doesn't contain mpred"));
971 		KASSERT(mpred->pindex < pindex,
972 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
973 		msucc = TAILQ_NEXT(mpred, listq);
974 	} else
975 		msucc = TAILQ_FIRST(&object->memq);
976 	if (msucc != NULL)
977 		KASSERT(msucc->pindex > pindex,
978 		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
979 
980 	/*
981 	 * Record the object/offset pair in this page
982 	 */
983 	sobj = m->object;
984 	sidx = m->pindex;
985 	m->object = object;
986 	m->pindex = pindex;
987 
988 	/*
989 	 * Now link into the object's ordered list of backed pages.
990 	 */
991 	if (vm_radix_insert(&object->rtree, m)) {
992 		m->object = sobj;
993 		m->pindex = sidx;
994 		return (1);
995 	}
996 	vm_page_insert_radixdone(m, object, mpred);
997 	return (0);
998 }
999 
1000 /*
1001  *	vm_page_insert_radixdone:
1002  *
1003  *	Complete page "m" insertion into the specified object after the
1004  *	radix trie hooking.
1005  *
1006  *	The page "mpred" must precede the offset "m->pindex" within the
1007  *	specified object.
1008  *
1009  *	The object must be locked.
1010  */
1011 static void
1012 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1013 {
1014 
1015 	VM_OBJECT_ASSERT_WLOCKED(object);
1016 	KASSERT(object != NULL && m->object == object,
1017 	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1018 	if (mpred != NULL) {
1019 		KASSERT(mpred->object == object,
1020 		    ("vm_page_insert_after: object doesn't contain mpred"));
1021 		KASSERT(mpred->pindex < m->pindex,
1022 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1023 	}
1024 
1025 	if (mpred != NULL)
1026 		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1027 	else
1028 		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1029 
1030 	/*
1031 	 * Show that the object has one more resident page.
1032 	 */
1033 	object->resident_page_count++;
1034 
1035 	/*
1036 	 * Hold the vnode until the last page is released.
1037 	 */
1038 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1039 		vhold(object->handle);
1040 
1041 	/*
1042 	 * Since we are inserting a new and possibly dirty page,
1043 	 * update the object's OBJ_MIGHTBEDIRTY flag.
1044 	 */
1045 	if (pmap_page_is_write_mapped(m))
1046 		vm_object_set_writeable_dirty(object);
1047 }
1048 
1049 /*
1050  *	vm_page_remove:
1051  *
1052  *	Removes the given mem entry from the object/offset-page
1053  *	table and the object page list, but do not invalidate/terminate
1054  *	the backing store.
1055  *
1056  *	The object must be locked.  The page must be locked if it is managed.
1057  */
1058 void
1059 vm_page_remove(vm_page_t m)
1060 {
1061 	vm_object_t object;
1062 	boolean_t lockacq;
1063 
1064 	if ((m->oflags & VPO_UNMANAGED) == 0)
1065 		vm_page_lock_assert(m, MA_OWNED);
1066 	if ((object = m->object) == NULL)
1067 		return;
1068 	VM_OBJECT_ASSERT_WLOCKED(object);
1069 	if (vm_page_xbusied(m)) {
1070 		lockacq = FALSE;
1071 		if ((m->oflags & VPO_UNMANAGED) != 0 &&
1072 		    !mtx_owned(vm_page_lockptr(m))) {
1073 			lockacq = TRUE;
1074 			vm_page_lock(m);
1075 		}
1076 		vm_page_flash(m);
1077 		atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1078 		if (lockacq)
1079 			vm_page_unlock(m);
1080 	}
1081 
1082 	/*
1083 	 * Now remove from the object's list of backed pages.
1084 	 */
1085 	vm_radix_remove(&object->rtree, m->pindex);
1086 	TAILQ_REMOVE(&object->memq, m, listq);
1087 
1088 	/*
1089 	 * And show that the object has one fewer resident page.
1090 	 */
1091 	object->resident_page_count--;
1092 
1093 	/*
1094 	 * The vnode may now be recycled.
1095 	 */
1096 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1097 		vdrop(object->handle);
1098 
1099 	m->object = NULL;
1100 }
1101 
1102 /*
1103  *	vm_page_lookup:
1104  *
1105  *	Returns the page associated with the object/offset
1106  *	pair specified; if none is found, NULL is returned.
1107  *
1108  *	The object must be locked.
1109  */
1110 vm_page_t
1111 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1112 {
1113 
1114 	VM_OBJECT_ASSERT_LOCKED(object);
1115 	return (vm_radix_lookup(&object->rtree, pindex));
1116 }
1117 
1118 /*
1119  *	vm_page_find_least:
1120  *
1121  *	Returns the page associated with the object with least pindex
1122  *	greater than or equal to the parameter pindex, or NULL.
1123  *
1124  *	The object must be locked.
1125  */
1126 vm_page_t
1127 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1128 {
1129 	vm_page_t m;
1130 
1131 	VM_OBJECT_ASSERT_LOCKED(object);
1132 	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1133 		m = vm_radix_lookup_ge(&object->rtree, pindex);
1134 	return (m);
1135 }
1136 
1137 /*
1138  * Returns the given page's successor (by pindex) within the object if it is
1139  * resident; if none is found, NULL is returned.
1140  *
1141  * The object must be locked.
1142  */
1143 vm_page_t
1144 vm_page_next(vm_page_t m)
1145 {
1146 	vm_page_t next;
1147 
1148 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1149 	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
1150 	    next->pindex != m->pindex + 1)
1151 		next = NULL;
1152 	return (next);
1153 }
1154 
1155 /*
1156  * Returns the given page's predecessor (by pindex) within the object if it is
1157  * resident; if none is found, NULL is returned.
1158  *
1159  * The object must be locked.
1160  */
1161 vm_page_t
1162 vm_page_prev(vm_page_t m)
1163 {
1164 	vm_page_t prev;
1165 
1166 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1167 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
1168 	    prev->pindex != m->pindex - 1)
1169 		prev = NULL;
1170 	return (prev);
1171 }
1172 
1173 /*
1174  * Uses the page mnew as a replacement for an existing page at index
1175  * pindex which must be already present in the object.
1176  *
1177  * The existing page must not be on a paging queue.
1178  */
1179 vm_page_t
1180 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1181 {
1182 	vm_page_t mold, mpred;
1183 
1184 	VM_OBJECT_ASSERT_WLOCKED(object);
1185 
1186 	/*
1187 	 * This function mostly follows vm_page_insert() and
1188 	 * vm_page_remove() without the radix, object count and vnode
1189 	 * dance.  Double check such functions for more comments.
1190 	 */
1191 	mpred = vm_radix_lookup(&object->rtree, pindex);
1192 	KASSERT(mpred != NULL,
1193 	    ("vm_page_replace: replacing page not present with pindex"));
1194 	mpred = TAILQ_PREV(mpred, respgs, listq);
1195 	if (mpred != NULL)
1196 		KASSERT(mpred->pindex < pindex,
1197 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1198 
1199 	mnew->object = object;
1200 	mnew->pindex = pindex;
1201 	mold = vm_radix_replace(&object->rtree, mnew);
1202 	KASSERT(mold->queue == PQ_NONE,
1203 	    ("vm_page_replace: mold is on a paging queue"));
1204 
1205 	/* Detach the old page from the resident tailq. */
1206 	TAILQ_REMOVE(&object->memq, mold, listq);
1207 
1208 	mold->object = NULL;
1209 	vm_page_xunbusy(mold);
1210 
1211 	/* Insert the new page in the resident tailq. */
1212 	if (mpred != NULL)
1213 		TAILQ_INSERT_AFTER(&object->memq, mpred, mnew, listq);
1214 	else
1215 		TAILQ_INSERT_HEAD(&object->memq, mnew, listq);
1216 	if (pmap_page_is_write_mapped(mnew))
1217 		vm_object_set_writeable_dirty(object);
1218 	return (mold);
1219 }
1220 
1221 /*
1222  *	vm_page_rename:
1223  *
1224  *	Move the given memory entry from its
1225  *	current object to the specified target object/offset.
1226  *
1227  *	Note: swap associated with the page must be invalidated by the move.  We
1228  *	      have to do this for several reasons:  (1) we aren't freeing the
1229  *	      page, (2) we are dirtying the page, (3) the VM system is probably
1230  *	      moving the page from object A to B, and will then later move
1231  *	      the backing store from A to B and we can't have a conflict.
1232  *
1233  *	Note: we *always* dirty the page.  It is necessary both for the
1234  *	      fact that we moved it, and because we may be invalidating
1235  *	      swap.  If the page is on the cache, we have to deactivate it
1236  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
1237  *	      on the cache.
1238  *
1239  *	The objects must be locked.
1240  */
1241 int
1242 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1243 {
1244 	vm_page_t mpred;
1245 	vm_pindex_t opidx;
1246 
1247 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1248 
1249 	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1250 	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1251 	    ("vm_page_rename: pindex already renamed"));
1252 
1253 	/*
1254 	 * Create a custom version of vm_page_insert() which does not depend
1255 	 * by m_prev and can cheat on the implementation aspects of the
1256 	 * function.
1257 	 */
1258 	opidx = m->pindex;
1259 	m->pindex = new_pindex;
1260 	if (vm_radix_insert(&new_object->rtree, m)) {
1261 		m->pindex = opidx;
1262 		return (1);
1263 	}
1264 
1265 	/*
1266 	 * The operation cannot fail anymore.  The removal must happen before
1267 	 * the listq iterator is tainted.
1268 	 */
1269 	m->pindex = opidx;
1270 	vm_page_lock(m);
1271 	vm_page_remove(m);
1272 
1273 	/* Return back to the new pindex to complete vm_page_insert(). */
1274 	m->pindex = new_pindex;
1275 	m->object = new_object;
1276 	vm_page_unlock(m);
1277 	vm_page_insert_radixdone(m, new_object, mpred);
1278 	vm_page_dirty(m);
1279 	return (0);
1280 }
1281 
1282 /*
1283  *	Convert all of the given object's cached pages that have a
1284  *	pindex within the given range into free pages.  If the value
1285  *	zero is given for "end", then the range's upper bound is
1286  *	infinity.  If the given object is backed by a vnode and it
1287  *	transitions from having one or more cached pages to none, the
1288  *	vnode's hold count is reduced.
1289  */
1290 void
1291 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1292 {
1293 	vm_page_t m;
1294 	boolean_t empty;
1295 
1296 	mtx_lock(&vm_page_queue_free_mtx);
1297 	if (__predict_false(vm_radix_is_empty(&object->cache))) {
1298 		mtx_unlock(&vm_page_queue_free_mtx);
1299 		return;
1300 	}
1301 	while ((m = vm_radix_lookup_ge(&object->cache, start)) != NULL) {
1302 		if (end != 0 && m->pindex >= end)
1303 			break;
1304 		vm_radix_remove(&object->cache, m->pindex);
1305 		vm_page_cache_turn_free(m);
1306 	}
1307 	empty = vm_radix_is_empty(&object->cache);
1308 	mtx_unlock(&vm_page_queue_free_mtx);
1309 	if (object->type == OBJT_VNODE && empty)
1310 		vdrop(object->handle);
1311 }
1312 
1313 /*
1314  *	Returns the cached page that is associated with the given
1315  *	object and offset.  If, however, none exists, returns NULL.
1316  *
1317  *	The free page queue must be locked.
1318  */
1319 static inline vm_page_t
1320 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1321 {
1322 
1323 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1324 	return (vm_radix_lookup(&object->cache, pindex));
1325 }
1326 
1327 /*
1328  *	Remove the given cached page from its containing object's
1329  *	collection of cached pages.
1330  *
1331  *	The free page queue must be locked.
1332  */
1333 static void
1334 vm_page_cache_remove(vm_page_t m)
1335 {
1336 
1337 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1338 	KASSERT((m->flags & PG_CACHED) != 0,
1339 	    ("vm_page_cache_remove: page %p is not cached", m));
1340 	vm_radix_remove(&m->object->cache, m->pindex);
1341 	m->object = NULL;
1342 	vm_cnt.v_cache_count--;
1343 }
1344 
1345 /*
1346  *	Transfer all of the cached pages with offset greater than or
1347  *	equal to 'offidxstart' from the original object's cache to the
1348  *	new object's cache.  However, any cached pages with offset
1349  *	greater than or equal to the new object's size are kept in the
1350  *	original object.  Initially, the new object's cache must be
1351  *	empty.  Offset 'offidxstart' in the original object must
1352  *	correspond to offset zero in the new object.
1353  *
1354  *	The new object must be locked.
1355  */
1356 void
1357 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1358     vm_object_t new_object)
1359 {
1360 	vm_page_t m;
1361 
1362 	/*
1363 	 * Insertion into an object's collection of cached pages
1364 	 * requires the object to be locked.  In contrast, removal does
1365 	 * not.
1366 	 */
1367 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1368 	KASSERT(vm_radix_is_empty(&new_object->cache),
1369 	    ("vm_page_cache_transfer: object %p has cached pages",
1370 	    new_object));
1371 	mtx_lock(&vm_page_queue_free_mtx);
1372 	while ((m = vm_radix_lookup_ge(&orig_object->cache,
1373 	    offidxstart)) != NULL) {
1374 		/*
1375 		 * Transfer all of the pages with offset greater than or
1376 		 * equal to 'offidxstart' from the original object's
1377 		 * cache to the new object's cache.
1378 		 */
1379 		if ((m->pindex - offidxstart) >= new_object->size)
1380 			break;
1381 		vm_radix_remove(&orig_object->cache, m->pindex);
1382 		/* Update the page's object and offset. */
1383 		m->object = new_object;
1384 		m->pindex -= offidxstart;
1385 		if (vm_radix_insert(&new_object->cache, m))
1386 			vm_page_cache_turn_free(m);
1387 	}
1388 	mtx_unlock(&vm_page_queue_free_mtx);
1389 }
1390 
1391 /*
1392  *	Returns TRUE if a cached page is associated with the given object and
1393  *	offset, and FALSE otherwise.
1394  *
1395  *	The object must be locked.
1396  */
1397 boolean_t
1398 vm_page_is_cached(vm_object_t object, vm_pindex_t pindex)
1399 {
1400 	vm_page_t m;
1401 
1402 	/*
1403 	 * Insertion into an object's collection of cached pages requires the
1404 	 * object to be locked.  Therefore, if the object is locked and the
1405 	 * object's collection is empty, there is no need to acquire the free
1406 	 * page queues lock in order to prove that the specified page doesn't
1407 	 * exist.
1408 	 */
1409 	VM_OBJECT_ASSERT_WLOCKED(object);
1410 	if (__predict_true(vm_object_cache_is_empty(object)))
1411 		return (FALSE);
1412 	mtx_lock(&vm_page_queue_free_mtx);
1413 	m = vm_page_cache_lookup(object, pindex);
1414 	mtx_unlock(&vm_page_queue_free_mtx);
1415 	return (m != NULL);
1416 }
1417 
1418 /*
1419  *	vm_page_alloc:
1420  *
1421  *	Allocate and return a page that is associated with the specified
1422  *	object and offset pair.  By default, this page is exclusive busied.
1423  *
1424  *	The caller must always specify an allocation class.
1425  *
1426  *	allocation classes:
1427  *	VM_ALLOC_NORMAL		normal process request
1428  *	VM_ALLOC_SYSTEM		system *really* needs a page
1429  *	VM_ALLOC_INTERRUPT	interrupt time request
1430  *
1431  *	optional allocation flags:
1432  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1433  *				intends to allocate
1434  *	VM_ALLOC_IFCACHED	return page only if it is cached
1435  *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1436  *				is cached
1437  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1438  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1439  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1440  *				should not be exclusive busy
1441  *	VM_ALLOC_SBUSY		shared busy the allocated page
1442  *	VM_ALLOC_WIRED		wire the allocated page
1443  *	VM_ALLOC_ZERO		prefer a zeroed page
1444  *
1445  *	This routine may not sleep.
1446  */
1447 vm_page_t
1448 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1449 {
1450 	struct vnode *vp = NULL;
1451 	vm_object_t m_object;
1452 	vm_page_t m, mpred;
1453 	int flags, req_class;
1454 
1455 	mpred = 0;	/* XXX: pacify gcc */
1456 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1457 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1458 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1459 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1460 	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1461 	    req));
1462 	if (object != NULL)
1463 		VM_OBJECT_ASSERT_WLOCKED(object);
1464 
1465 	req_class = req & VM_ALLOC_CLASS_MASK;
1466 
1467 	/*
1468 	 * The page daemon is allowed to dig deeper into the free page list.
1469 	 */
1470 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1471 		req_class = VM_ALLOC_SYSTEM;
1472 
1473 	if (object != NULL) {
1474 		mpred = vm_radix_lookup_le(&object->rtree, pindex);
1475 		KASSERT(mpred == NULL || mpred->pindex != pindex,
1476 		   ("vm_page_alloc: pindex already allocated"));
1477 	}
1478 
1479 	/*
1480 	 * The page allocation request can came from consumers which already
1481 	 * hold the free page queue mutex, like vm_page_insert() in
1482 	 * vm_page_cache().
1483 	 */
1484 	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
1485 	if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved ||
1486 	    (req_class == VM_ALLOC_SYSTEM &&
1487 	    vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) ||
1488 	    (req_class == VM_ALLOC_INTERRUPT &&
1489 	    vm_cnt.v_free_count + vm_cnt.v_cache_count > 0)) {
1490 		/*
1491 		 * Allocate from the free queue if the number of free pages
1492 		 * exceeds the minimum for the request class.
1493 		 */
1494 		if (object != NULL &&
1495 		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1496 			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1497 				mtx_unlock(&vm_page_queue_free_mtx);
1498 				return (NULL);
1499 			}
1500 			if (vm_phys_unfree_page(m))
1501 				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1502 #if VM_NRESERVLEVEL > 0
1503 			else if (!vm_reserv_reactivate_page(m))
1504 #else
1505 			else
1506 #endif
1507 				panic("vm_page_alloc: cache page %p is missing"
1508 				    " from the free queue", m);
1509 		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1510 			mtx_unlock(&vm_page_queue_free_mtx);
1511 			return (NULL);
1512 #if VM_NRESERVLEVEL > 0
1513 		} else if (object == NULL || (object->flags & (OBJ_COLORED |
1514 		    OBJ_FICTITIOUS)) != OBJ_COLORED || (m =
1515 		    vm_reserv_alloc_page(object, pindex, mpred)) == NULL) {
1516 #else
1517 		} else {
1518 #endif
1519 			m = vm_phys_alloc_pages(object != NULL ?
1520 			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1521 #if VM_NRESERVLEVEL > 0
1522 			if (m == NULL && vm_reserv_reclaim_inactive()) {
1523 				m = vm_phys_alloc_pages(object != NULL ?
1524 				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1525 				    0);
1526 			}
1527 #endif
1528 		}
1529 	} else {
1530 		/*
1531 		 * Not allocatable, give up.
1532 		 */
1533 		mtx_unlock(&vm_page_queue_free_mtx);
1534 		atomic_add_int(&vm_pageout_deficit,
1535 		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1536 		pagedaemon_wakeup();
1537 		return (NULL);
1538 	}
1539 
1540 	/*
1541 	 *  At this point we had better have found a good page.
1542 	 */
1543 	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1544 	KASSERT(m->queue == PQ_NONE,
1545 	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1546 	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1547 	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1548 	KASSERT(!vm_page_sbusied(m),
1549 	    ("vm_page_alloc: page %p is busy", m));
1550 	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1551 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1552 	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1553 	    pmap_page_get_memattr(m)));
1554 	if ((m->flags & PG_CACHED) != 0) {
1555 		KASSERT((m->flags & PG_ZERO) == 0,
1556 		    ("vm_page_alloc: cached page %p is PG_ZERO", m));
1557 		KASSERT(m->valid != 0,
1558 		    ("vm_page_alloc: cached page %p is invalid", m));
1559 		if (m->object == object && m->pindex == pindex)
1560 			vm_cnt.v_reactivated++;
1561 		else
1562 			m->valid = 0;
1563 		m_object = m->object;
1564 		vm_page_cache_remove(m);
1565 		if (m_object->type == OBJT_VNODE &&
1566 		    vm_object_cache_is_empty(m_object))
1567 			vp = m_object->handle;
1568 	} else {
1569 		KASSERT(m->valid == 0,
1570 		    ("vm_page_alloc: free page %p is valid", m));
1571 		vm_phys_freecnt_adj(m, -1);
1572 		if ((m->flags & PG_ZERO) != 0)
1573 			vm_page_zero_count--;
1574 	}
1575 	mtx_unlock(&vm_page_queue_free_mtx);
1576 
1577 	/*
1578 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1579 	 */
1580 	flags = 0;
1581 	if ((req & VM_ALLOC_ZERO) != 0)
1582 		flags = PG_ZERO;
1583 	flags &= m->flags;
1584 	if ((req & VM_ALLOC_NODUMP) != 0)
1585 		flags |= PG_NODUMP;
1586 	m->flags = flags;
1587 	m->aflags = 0;
1588 	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1589 	    VPO_UNMANAGED : 0;
1590 	m->busy_lock = VPB_UNBUSIED;
1591 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1592 		m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1593 	if ((req & VM_ALLOC_SBUSY) != 0)
1594 		m->busy_lock = VPB_SHARERS_WORD(1);
1595 	if (req & VM_ALLOC_WIRED) {
1596 		/*
1597 		 * The page lock is not required for wiring a page until that
1598 		 * page is inserted into the object.
1599 		 */
1600 		atomic_add_int(&vm_cnt.v_wire_count, 1);
1601 		m->wire_count = 1;
1602 	}
1603 	m->act_count = 0;
1604 
1605 	if (object != NULL) {
1606 		if (vm_page_insert_after(m, object, pindex, mpred)) {
1607 			/* See the comment below about hold count. */
1608 			if (vp != NULL)
1609 				vdrop(vp);
1610 			pagedaemon_wakeup();
1611 			if (req & VM_ALLOC_WIRED) {
1612 				atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1613 				m->wire_count = 0;
1614 			}
1615 			m->object = NULL;
1616 			vm_page_free(m);
1617 			return (NULL);
1618 		}
1619 
1620 		/* Ignore device objects; the pager sets "memattr" for them. */
1621 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1622 		    (object->flags & OBJ_FICTITIOUS) == 0)
1623 			pmap_page_set_memattr(m, object->memattr);
1624 	} else
1625 		m->pindex = pindex;
1626 
1627 	/*
1628 	 * The following call to vdrop() must come after the above call
1629 	 * to vm_page_insert() in case both affect the same object and
1630 	 * vnode.  Otherwise, the affected vnode's hold count could
1631 	 * temporarily become zero.
1632 	 */
1633 	if (vp != NULL)
1634 		vdrop(vp);
1635 
1636 	/*
1637 	 * Don't wakeup too often - wakeup the pageout daemon when
1638 	 * we would be nearly out of memory.
1639 	 */
1640 	if (vm_paging_needed())
1641 		pagedaemon_wakeup();
1642 
1643 	return (m);
1644 }
1645 
1646 static void
1647 vm_page_alloc_contig_vdrop(struct spglist *lst)
1648 {
1649 
1650 	while (!SLIST_EMPTY(lst)) {
1651 		vdrop((struct vnode *)SLIST_FIRST(lst)-> plinks.s.pv);
1652 		SLIST_REMOVE_HEAD(lst, plinks.s.ss);
1653 	}
1654 }
1655 
1656 /*
1657  *	vm_page_alloc_contig:
1658  *
1659  *	Allocate a contiguous set of physical pages of the given size "npages"
1660  *	from the free lists.  All of the physical pages must be at or above
1661  *	the given physical address "low" and below the given physical address
1662  *	"high".  The given value "alignment" determines the alignment of the
1663  *	first physical page in the set.  If the given value "boundary" is
1664  *	non-zero, then the set of physical pages cannot cross any physical
1665  *	address boundary that is a multiple of that value.  Both "alignment"
1666  *	and "boundary" must be a power of two.
1667  *
1668  *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1669  *	then the memory attribute setting for the physical pages is configured
1670  *	to the object's memory attribute setting.  Otherwise, the memory
1671  *	attribute setting for the physical pages is configured to "memattr",
1672  *	overriding the object's memory attribute setting.  However, if the
1673  *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1674  *	memory attribute setting for the physical pages cannot be configured
1675  *	to VM_MEMATTR_DEFAULT.
1676  *
1677  *	The caller must always specify an allocation class.
1678  *
1679  *	allocation classes:
1680  *	VM_ALLOC_NORMAL		normal process request
1681  *	VM_ALLOC_SYSTEM		system *really* needs a page
1682  *	VM_ALLOC_INTERRUPT	interrupt time request
1683  *
1684  *	optional allocation flags:
1685  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1686  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1687  *				should not be exclusive busy
1688  *	VM_ALLOC_SBUSY		shared busy the allocated page
1689  *	VM_ALLOC_WIRED		wire the allocated page
1690  *	VM_ALLOC_ZERO		prefer a zeroed page
1691  *
1692  *	This routine may not sleep.
1693  */
1694 vm_page_t
1695 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1696     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1697     vm_paddr_t boundary, vm_memattr_t memattr)
1698 {
1699 	struct vnode *drop;
1700 	struct spglist deferred_vdrop_list;
1701 	vm_page_t m, m_tmp, m_ret;
1702 	u_int flags;
1703 	int req_class;
1704 
1705 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1706 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1707 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1708 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1709 	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1710 	    req));
1711 	if (object != NULL) {
1712 		VM_OBJECT_ASSERT_WLOCKED(object);
1713 		KASSERT(object->type == OBJT_PHYS,
1714 		    ("vm_page_alloc_contig: object %p isn't OBJT_PHYS",
1715 		    object));
1716 	}
1717 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1718 	req_class = req & VM_ALLOC_CLASS_MASK;
1719 
1720 	/*
1721 	 * The page daemon is allowed to dig deeper into the free page list.
1722 	 */
1723 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1724 		req_class = VM_ALLOC_SYSTEM;
1725 
1726 	SLIST_INIT(&deferred_vdrop_list);
1727 	mtx_lock(&vm_page_queue_free_mtx);
1728 	if (vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages +
1729 	    vm_cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM &&
1730 	    vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages +
1731 	    vm_cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT &&
1732 	    vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages)) {
1733 #if VM_NRESERVLEVEL > 0
1734 retry:
1735 		if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
1736 		    (m_ret = vm_reserv_alloc_contig(object, pindex, npages,
1737 		    low, high, alignment, boundary)) == NULL)
1738 #endif
1739 			m_ret = vm_phys_alloc_contig(npages, low, high,
1740 			    alignment, boundary);
1741 	} else {
1742 		mtx_unlock(&vm_page_queue_free_mtx);
1743 		atomic_add_int(&vm_pageout_deficit, npages);
1744 		pagedaemon_wakeup();
1745 		return (NULL);
1746 	}
1747 	if (m_ret != NULL)
1748 		for (m = m_ret; m < &m_ret[npages]; m++) {
1749 			drop = vm_page_alloc_init(m);
1750 			if (drop != NULL) {
1751 				/*
1752 				 * Enqueue the vnode for deferred vdrop().
1753 				 */
1754 				m->plinks.s.pv = drop;
1755 				SLIST_INSERT_HEAD(&deferred_vdrop_list, m,
1756 				    plinks.s.ss);
1757 			}
1758 		}
1759 	else {
1760 #if VM_NRESERVLEVEL > 0
1761 		if (vm_reserv_reclaim_contig(npages, low, high, alignment,
1762 		    boundary))
1763 			goto retry;
1764 #endif
1765 	}
1766 	mtx_unlock(&vm_page_queue_free_mtx);
1767 	if (m_ret == NULL)
1768 		return (NULL);
1769 
1770 	/*
1771 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
1772 	 */
1773 	flags = 0;
1774 	if ((req & VM_ALLOC_ZERO) != 0)
1775 		flags = PG_ZERO;
1776 	if ((req & VM_ALLOC_NODUMP) != 0)
1777 		flags |= PG_NODUMP;
1778 	if ((req & VM_ALLOC_WIRED) != 0)
1779 		atomic_add_int(&vm_cnt.v_wire_count, npages);
1780 	if (object != NULL) {
1781 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1782 		    memattr == VM_MEMATTR_DEFAULT)
1783 			memattr = object->memattr;
1784 	}
1785 	for (m = m_ret; m < &m_ret[npages]; m++) {
1786 		m->aflags = 0;
1787 		m->flags = (m->flags | PG_NODUMP) & flags;
1788 		m->busy_lock = VPB_UNBUSIED;
1789 		if (object != NULL) {
1790 			if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
1791 				m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1792 			if ((req & VM_ALLOC_SBUSY) != 0)
1793 				m->busy_lock = VPB_SHARERS_WORD(1);
1794 		}
1795 		if ((req & VM_ALLOC_WIRED) != 0)
1796 			m->wire_count = 1;
1797 		/* Unmanaged pages don't use "act_count". */
1798 		m->oflags = VPO_UNMANAGED;
1799 		if (object != NULL) {
1800 			if (vm_page_insert(m, object, pindex)) {
1801 				vm_page_alloc_contig_vdrop(
1802 				    &deferred_vdrop_list);
1803 				if (vm_paging_needed())
1804 					pagedaemon_wakeup();
1805 				if ((req & VM_ALLOC_WIRED) != 0)
1806 					atomic_subtract_int(&vm_cnt.v_wire_count,
1807 					    npages);
1808 				for (m_tmp = m, m = m_ret;
1809 				    m < &m_ret[npages]; m++) {
1810 					if ((req & VM_ALLOC_WIRED) != 0)
1811 						m->wire_count = 0;
1812 					if (m >= m_tmp)
1813 						m->object = NULL;
1814 					vm_page_free(m);
1815 				}
1816 				return (NULL);
1817 			}
1818 		} else
1819 			m->pindex = pindex;
1820 		if (memattr != VM_MEMATTR_DEFAULT)
1821 			pmap_page_set_memattr(m, memattr);
1822 		pindex++;
1823 	}
1824 	vm_page_alloc_contig_vdrop(&deferred_vdrop_list);
1825 	if (vm_paging_needed())
1826 		pagedaemon_wakeup();
1827 	return (m_ret);
1828 }
1829 
1830 /*
1831  * Initialize a page that has been freshly dequeued from a freelist.
1832  * The caller has to drop the vnode returned, if it is not NULL.
1833  *
1834  * This function may only be used to initialize unmanaged pages.
1835  *
1836  * To be called with vm_page_queue_free_mtx held.
1837  */
1838 static struct vnode *
1839 vm_page_alloc_init(vm_page_t m)
1840 {
1841 	struct vnode *drop;
1842 	vm_object_t m_object;
1843 
1844 	KASSERT(m->queue == PQ_NONE,
1845 	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1846 	    m, m->queue));
1847 	KASSERT(m->wire_count == 0,
1848 	    ("vm_page_alloc_init: page %p is wired", m));
1849 	KASSERT(m->hold_count == 0,
1850 	    ("vm_page_alloc_init: page %p is held", m));
1851 	KASSERT(!vm_page_sbusied(m),
1852 	    ("vm_page_alloc_init: page %p is busy", m));
1853 	KASSERT(m->dirty == 0,
1854 	    ("vm_page_alloc_init: page %p is dirty", m));
1855 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1856 	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
1857 	    m, pmap_page_get_memattr(m)));
1858 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1859 	drop = NULL;
1860 	if ((m->flags & PG_CACHED) != 0) {
1861 		KASSERT((m->flags & PG_ZERO) == 0,
1862 		    ("vm_page_alloc_init: cached page %p is PG_ZERO", m));
1863 		m->valid = 0;
1864 		m_object = m->object;
1865 		vm_page_cache_remove(m);
1866 		if (m_object->type == OBJT_VNODE &&
1867 		    vm_object_cache_is_empty(m_object))
1868 			drop = m_object->handle;
1869 	} else {
1870 		KASSERT(m->valid == 0,
1871 		    ("vm_page_alloc_init: free page %p is valid", m));
1872 		vm_phys_freecnt_adj(m, -1);
1873 		if ((m->flags & PG_ZERO) != 0)
1874 			vm_page_zero_count--;
1875 	}
1876 	return (drop);
1877 }
1878 
1879 /*
1880  * 	vm_page_alloc_freelist:
1881  *
1882  *	Allocate a physical page from the specified free page list.
1883  *
1884  *	The caller must always specify an allocation class.
1885  *
1886  *	allocation classes:
1887  *	VM_ALLOC_NORMAL		normal process request
1888  *	VM_ALLOC_SYSTEM		system *really* needs a page
1889  *	VM_ALLOC_INTERRUPT	interrupt time request
1890  *
1891  *	optional allocation flags:
1892  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1893  *				intends to allocate
1894  *	VM_ALLOC_WIRED		wire the allocated page
1895  *	VM_ALLOC_ZERO		prefer a zeroed page
1896  *
1897  *	This routine may not sleep.
1898  */
1899 vm_page_t
1900 vm_page_alloc_freelist(int flind, int req)
1901 {
1902 	struct vnode *drop;
1903 	vm_page_t m;
1904 	u_int flags;
1905 	int req_class;
1906 
1907 	req_class = req & VM_ALLOC_CLASS_MASK;
1908 
1909 	/*
1910 	 * The page daemon is allowed to dig deeper into the free page list.
1911 	 */
1912 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1913 		req_class = VM_ALLOC_SYSTEM;
1914 
1915 	/*
1916 	 * Do not allocate reserved pages unless the req has asked for it.
1917 	 */
1918 	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
1919 	if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved ||
1920 	    (req_class == VM_ALLOC_SYSTEM &&
1921 	    vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) ||
1922 	    (req_class == VM_ALLOC_INTERRUPT &&
1923 	    vm_cnt.v_free_count + vm_cnt.v_cache_count > 0))
1924 		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
1925 	else {
1926 		mtx_unlock(&vm_page_queue_free_mtx);
1927 		atomic_add_int(&vm_pageout_deficit,
1928 		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1929 		pagedaemon_wakeup();
1930 		return (NULL);
1931 	}
1932 	if (m == NULL) {
1933 		mtx_unlock(&vm_page_queue_free_mtx);
1934 		return (NULL);
1935 	}
1936 	drop = vm_page_alloc_init(m);
1937 	mtx_unlock(&vm_page_queue_free_mtx);
1938 
1939 	/*
1940 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1941 	 */
1942 	m->aflags = 0;
1943 	flags = 0;
1944 	if ((req & VM_ALLOC_ZERO) != 0)
1945 		flags = PG_ZERO;
1946 	m->flags &= flags;
1947 	if ((req & VM_ALLOC_WIRED) != 0) {
1948 		/*
1949 		 * The page lock is not required for wiring a page that does
1950 		 * not belong to an object.
1951 		 */
1952 		atomic_add_int(&vm_cnt.v_wire_count, 1);
1953 		m->wire_count = 1;
1954 	}
1955 	/* Unmanaged pages don't use "act_count". */
1956 	m->oflags = VPO_UNMANAGED;
1957 	if (drop != NULL)
1958 		vdrop(drop);
1959 	if (vm_paging_needed())
1960 		pagedaemon_wakeup();
1961 	return (m);
1962 }
1963 
1964 /*
1965  *	vm_wait:	(also see VM_WAIT macro)
1966  *
1967  *	Sleep until free pages are available for allocation.
1968  *	- Called in various places before memory allocations.
1969  */
1970 void
1971 vm_wait(void)
1972 {
1973 
1974 	mtx_lock(&vm_page_queue_free_mtx);
1975 	if (curproc == pageproc) {
1976 		vm_pageout_pages_needed = 1;
1977 		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1978 		    PDROP | PSWP, "VMWait", 0);
1979 	} else {
1980 		if (!vm_pages_needed) {
1981 			vm_pages_needed = 1;
1982 			wakeup(&vm_pages_needed);
1983 		}
1984 		msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1985 		    "vmwait", 0);
1986 	}
1987 }
1988 
1989 /*
1990  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1991  *
1992  *	Sleep until free pages are available for allocation.
1993  *	- Called only in vm_fault so that processes page faulting
1994  *	  can be easily tracked.
1995  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1996  *	  processes will be able to grab memory first.  Do not change
1997  *	  this balance without careful testing first.
1998  */
1999 void
2000 vm_waitpfault(void)
2001 {
2002 
2003 	mtx_lock(&vm_page_queue_free_mtx);
2004 	if (!vm_pages_needed) {
2005 		vm_pages_needed = 1;
2006 		wakeup(&vm_pages_needed);
2007 	}
2008 	msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
2009 	    "pfault", 0);
2010 }
2011 
2012 struct vm_pagequeue *
2013 vm_page_pagequeue(vm_page_t m)
2014 {
2015 
2016 	return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]);
2017 }
2018 
2019 /*
2020  *	vm_page_dequeue:
2021  *
2022  *	Remove the given page from its current page queue.
2023  *
2024  *	The page must be locked.
2025  */
2026 void
2027 vm_page_dequeue(vm_page_t m)
2028 {
2029 	struct vm_pagequeue *pq;
2030 
2031 	vm_page_assert_locked(m);
2032 	KASSERT(m->queue == PQ_ACTIVE || m->queue == PQ_INACTIVE,
2033 	    ("vm_page_dequeue: page %p is not queued", m));
2034 	pq = vm_page_pagequeue(m);
2035 	vm_pagequeue_lock(pq);
2036 	m->queue = PQ_NONE;
2037 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2038 	vm_pagequeue_cnt_dec(pq);
2039 	vm_pagequeue_unlock(pq);
2040 }
2041 
2042 /*
2043  *	vm_page_dequeue_locked:
2044  *
2045  *	Remove the given page from its current page queue.
2046  *
2047  *	The page and page queue must be locked.
2048  */
2049 void
2050 vm_page_dequeue_locked(vm_page_t m)
2051 {
2052 	struct vm_pagequeue *pq;
2053 
2054 	vm_page_lock_assert(m, MA_OWNED);
2055 	pq = vm_page_pagequeue(m);
2056 	vm_pagequeue_assert_locked(pq);
2057 	m->queue = PQ_NONE;
2058 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2059 	vm_pagequeue_cnt_dec(pq);
2060 }
2061 
2062 /*
2063  *	vm_page_enqueue:
2064  *
2065  *	Add the given page to the specified page queue.
2066  *
2067  *	The page must be locked.
2068  */
2069 static void
2070 vm_page_enqueue(int queue, vm_page_t m)
2071 {
2072 	struct vm_pagequeue *pq;
2073 
2074 	vm_page_lock_assert(m, MA_OWNED);
2075 	pq = &vm_phys_domain(m)->vmd_pagequeues[queue];
2076 	vm_pagequeue_lock(pq);
2077 	m->queue = queue;
2078 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2079 	vm_pagequeue_cnt_inc(pq);
2080 	vm_pagequeue_unlock(pq);
2081 }
2082 
2083 /*
2084  *	vm_page_requeue:
2085  *
2086  *	Move the given page to the tail of its current page queue.
2087  *
2088  *	The page must be locked.
2089  */
2090 void
2091 vm_page_requeue(vm_page_t m)
2092 {
2093 	struct vm_pagequeue *pq;
2094 
2095 	vm_page_lock_assert(m, MA_OWNED);
2096 	KASSERT(m->queue != PQ_NONE,
2097 	    ("vm_page_requeue: page %p is not queued", m));
2098 	pq = vm_page_pagequeue(m);
2099 	vm_pagequeue_lock(pq);
2100 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2101 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2102 	vm_pagequeue_unlock(pq);
2103 }
2104 
2105 /*
2106  *	vm_page_requeue_locked:
2107  *
2108  *	Move the given page to the tail of its current page queue.
2109  *
2110  *	The page queue must be locked.
2111  */
2112 void
2113 vm_page_requeue_locked(vm_page_t m)
2114 {
2115 	struct vm_pagequeue *pq;
2116 
2117 	KASSERT(m->queue != PQ_NONE,
2118 	    ("vm_page_requeue_locked: page %p is not queued", m));
2119 	pq = vm_page_pagequeue(m);
2120 	vm_pagequeue_assert_locked(pq);
2121 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2122 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2123 }
2124 
2125 /*
2126  *	vm_page_activate:
2127  *
2128  *	Put the specified page on the active list (if appropriate).
2129  *	Ensure that act_count is at least ACT_INIT but do not otherwise
2130  *	mess with it.
2131  *
2132  *	The page must be locked.
2133  */
2134 void
2135 vm_page_activate(vm_page_t m)
2136 {
2137 	int queue;
2138 
2139 	vm_page_lock_assert(m, MA_OWNED);
2140 	if ((queue = m->queue) != PQ_ACTIVE) {
2141 		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2142 			if (m->act_count < ACT_INIT)
2143 				m->act_count = ACT_INIT;
2144 			if (queue != PQ_NONE)
2145 				vm_page_dequeue(m);
2146 			vm_page_enqueue(PQ_ACTIVE, m);
2147 		} else
2148 			KASSERT(queue == PQ_NONE,
2149 			    ("vm_page_activate: wired page %p is queued", m));
2150 	} else {
2151 		if (m->act_count < ACT_INIT)
2152 			m->act_count = ACT_INIT;
2153 	}
2154 }
2155 
2156 /*
2157  *	vm_page_free_wakeup:
2158  *
2159  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
2160  *	routine is called when a page has been added to the cache or free
2161  *	queues.
2162  *
2163  *	The page queues must be locked.
2164  */
2165 static inline void
2166 vm_page_free_wakeup(void)
2167 {
2168 
2169 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2170 	/*
2171 	 * if pageout daemon needs pages, then tell it that there are
2172 	 * some free.
2173 	 */
2174 	if (vm_pageout_pages_needed &&
2175 	    vm_cnt.v_cache_count + vm_cnt.v_free_count >= vm_cnt.v_pageout_free_min) {
2176 		wakeup(&vm_pageout_pages_needed);
2177 		vm_pageout_pages_needed = 0;
2178 	}
2179 	/*
2180 	 * wakeup processes that are waiting on memory if we hit a
2181 	 * high water mark. And wakeup scheduler process if we have
2182 	 * lots of memory. this process will swapin processes.
2183 	 */
2184 	if (vm_pages_needed && !vm_page_count_min()) {
2185 		vm_pages_needed = 0;
2186 		wakeup(&vm_cnt.v_free_count);
2187 	}
2188 }
2189 
2190 /*
2191  *	Turn a cached page into a free page, by changing its attributes.
2192  *	Keep the statistics up-to-date.
2193  *
2194  *	The free page queue must be locked.
2195  */
2196 static void
2197 vm_page_cache_turn_free(vm_page_t m)
2198 {
2199 
2200 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2201 
2202 	m->object = NULL;
2203 	m->valid = 0;
2204 	KASSERT((m->flags & PG_CACHED) != 0,
2205 	    ("vm_page_cache_turn_free: page %p is not cached", m));
2206 	m->flags &= ~PG_CACHED;
2207 	vm_cnt.v_cache_count--;
2208 	vm_phys_freecnt_adj(m, 1);
2209 }
2210 
2211 /*
2212  *	vm_page_free_toq:
2213  *
2214  *	Returns the given page to the free list,
2215  *	disassociating it with any VM object.
2216  *
2217  *	The object must be locked.  The page must be locked if it is managed.
2218  */
2219 void
2220 vm_page_free_toq(vm_page_t m)
2221 {
2222 
2223 	if ((m->oflags & VPO_UNMANAGED) == 0) {
2224 		vm_page_lock_assert(m, MA_OWNED);
2225 		KASSERT(!pmap_page_is_mapped(m),
2226 		    ("vm_page_free_toq: freeing mapped page %p", m));
2227 	} else
2228 		KASSERT(m->queue == PQ_NONE,
2229 		    ("vm_page_free_toq: unmanaged page %p is queued", m));
2230 	PCPU_INC(cnt.v_tfree);
2231 
2232 	if (vm_page_sbusied(m))
2233 		panic("vm_page_free: freeing busy page %p", m);
2234 
2235 	/*
2236 	 * Unqueue, then remove page.  Note that we cannot destroy
2237 	 * the page here because we do not want to call the pager's
2238 	 * callback routine until after we've put the page on the
2239 	 * appropriate free queue.
2240 	 */
2241 	vm_page_remque(m);
2242 	vm_page_remove(m);
2243 
2244 	/*
2245 	 * If fictitious remove object association and
2246 	 * return, otherwise delay object association removal.
2247 	 */
2248 	if ((m->flags & PG_FICTITIOUS) != 0) {
2249 		return;
2250 	}
2251 
2252 	m->valid = 0;
2253 	vm_page_undirty(m);
2254 
2255 	if (m->wire_count != 0)
2256 		panic("vm_page_free: freeing wired page %p", m);
2257 	if (m->hold_count != 0) {
2258 		m->flags &= ~PG_ZERO;
2259 		KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2260 		    ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
2261 		m->flags |= PG_UNHOLDFREE;
2262 	} else {
2263 		/*
2264 		 * Restore the default memory attribute to the page.
2265 		 */
2266 		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2267 			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2268 
2269 		/*
2270 		 * Insert the page into the physical memory allocator's
2271 		 * cache/free page queues.
2272 		 */
2273 		mtx_lock(&vm_page_queue_free_mtx);
2274 		vm_phys_freecnt_adj(m, 1);
2275 #if VM_NRESERVLEVEL > 0
2276 		if (!vm_reserv_free_page(m))
2277 #else
2278 		if (TRUE)
2279 #endif
2280 			vm_phys_free_pages(m, 0);
2281 		if ((m->flags & PG_ZERO) != 0)
2282 			++vm_page_zero_count;
2283 		else
2284 			vm_page_zero_idle_wakeup();
2285 		vm_page_free_wakeup();
2286 		mtx_unlock(&vm_page_queue_free_mtx);
2287 	}
2288 }
2289 
2290 /*
2291  *	vm_page_wire:
2292  *
2293  *	Mark this page as wired down by yet
2294  *	another map, removing it from paging queues
2295  *	as necessary.
2296  *
2297  *	If the page is fictitious, then its wire count must remain one.
2298  *
2299  *	The page must be locked.
2300  */
2301 void
2302 vm_page_wire(vm_page_t m)
2303 {
2304 
2305 	/*
2306 	 * Only bump the wire statistics if the page is not already wired,
2307 	 * and only unqueue the page if it is on some queue (if it is unmanaged
2308 	 * it is already off the queues).
2309 	 */
2310 	vm_page_lock_assert(m, MA_OWNED);
2311 	if ((m->flags & PG_FICTITIOUS) != 0) {
2312 		KASSERT(m->wire_count == 1,
2313 		    ("vm_page_wire: fictitious page %p's wire count isn't one",
2314 		    m));
2315 		return;
2316 	}
2317 	if (m->wire_count == 0) {
2318 		KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
2319 		    m->queue == PQ_NONE,
2320 		    ("vm_page_wire: unmanaged page %p is queued", m));
2321 		vm_page_remque(m);
2322 		atomic_add_int(&vm_cnt.v_wire_count, 1);
2323 	}
2324 	m->wire_count++;
2325 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
2326 }
2327 
2328 /*
2329  * vm_page_unwire:
2330  *
2331  * Release one wiring of the specified page, potentially enabling it to be
2332  * paged again.  If paging is enabled, then the value of the parameter
2333  * "activate" determines to which queue the page is added.  If "activate" is
2334  * non-zero, then the page is added to the active queue.  Otherwise, it is
2335  * added to the inactive queue.
2336  *
2337  * However, unless the page belongs to an object, it is not enqueued because
2338  * it cannot be paged out.
2339  *
2340  * If a page is fictitious, then its wire count must always be one.
2341  *
2342  * A managed page must be locked.
2343  */
2344 void
2345 vm_page_unwire(vm_page_t m, int activate)
2346 {
2347 
2348 	if ((m->oflags & VPO_UNMANAGED) == 0)
2349 		vm_page_lock_assert(m, MA_OWNED);
2350 	if ((m->flags & PG_FICTITIOUS) != 0) {
2351 		KASSERT(m->wire_count == 1,
2352 	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
2353 		return;
2354 	}
2355 	if (m->wire_count > 0) {
2356 		m->wire_count--;
2357 		if (m->wire_count == 0) {
2358 			atomic_subtract_int(&vm_cnt.v_wire_count, 1);
2359 			if ((m->oflags & VPO_UNMANAGED) != 0 ||
2360 			    m->object == NULL)
2361 				return;
2362 			if (!activate)
2363 				m->flags &= ~PG_WINATCFLS;
2364 			vm_page_enqueue(activate ? PQ_ACTIVE : PQ_INACTIVE, m);
2365 		}
2366 	} else
2367 		panic("vm_page_unwire: page %p's wire count is zero", m);
2368 }
2369 
2370 /*
2371  * Move the specified page to the inactive queue.
2372  *
2373  * Many pages placed on the inactive queue should actually go
2374  * into the cache, but it is difficult to figure out which.  What
2375  * we do instead, if the inactive target is well met, is to put
2376  * clean pages at the head of the inactive queue instead of the tail.
2377  * This will cause them to be moved to the cache more quickly and
2378  * if not actively re-referenced, reclaimed more quickly.  If we just
2379  * stick these pages at the end of the inactive queue, heavy filesystem
2380  * meta-data accesses can cause an unnecessary paging load on memory bound
2381  * processes.  This optimization causes one-time-use metadata to be
2382  * reused more quickly.
2383  *
2384  * Normally athead is 0 resulting in LRU operation.  athead is set
2385  * to 1 if we want this page to be 'as if it were placed in the cache',
2386  * except without unmapping it from the process address space.
2387  *
2388  * The page must be locked.
2389  */
2390 static inline void
2391 _vm_page_deactivate(vm_page_t m, int athead)
2392 {
2393 	struct vm_pagequeue *pq;
2394 	int queue;
2395 
2396 	vm_page_lock_assert(m, MA_OWNED);
2397 
2398 	/*
2399 	 * Ignore if already inactive.
2400 	 */
2401 	if ((queue = m->queue) == PQ_INACTIVE)
2402 		return;
2403 	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2404 		if (queue != PQ_NONE)
2405 			vm_page_dequeue(m);
2406 		m->flags &= ~PG_WINATCFLS;
2407 		pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE];
2408 		vm_pagequeue_lock(pq);
2409 		m->queue = PQ_INACTIVE;
2410 		if (athead)
2411 			TAILQ_INSERT_HEAD(&pq->pq_pl, m, plinks.q);
2412 		else
2413 			TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2414 		vm_pagequeue_cnt_inc(pq);
2415 		vm_pagequeue_unlock(pq);
2416 	}
2417 }
2418 
2419 /*
2420  * Move the specified page to the inactive queue.
2421  *
2422  * The page must be locked.
2423  */
2424 void
2425 vm_page_deactivate(vm_page_t m)
2426 {
2427 
2428 	_vm_page_deactivate(m, 0);
2429 }
2430 
2431 /*
2432  * vm_page_try_to_cache:
2433  *
2434  * Returns 0 on failure, 1 on success
2435  */
2436 int
2437 vm_page_try_to_cache(vm_page_t m)
2438 {
2439 
2440 	vm_page_lock_assert(m, MA_OWNED);
2441 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2442 	if (m->dirty || m->hold_count || m->wire_count ||
2443 	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
2444 		return (0);
2445 	pmap_remove_all(m);
2446 	if (m->dirty)
2447 		return (0);
2448 	vm_page_cache(m);
2449 	return (1);
2450 }
2451 
2452 /*
2453  * vm_page_try_to_free()
2454  *
2455  *	Attempt to free the page.  If we cannot free it, we do nothing.
2456  *	1 is returned on success, 0 on failure.
2457  */
2458 int
2459 vm_page_try_to_free(vm_page_t m)
2460 {
2461 
2462 	vm_page_lock_assert(m, MA_OWNED);
2463 	if (m->object != NULL)
2464 		VM_OBJECT_ASSERT_WLOCKED(m->object);
2465 	if (m->dirty || m->hold_count || m->wire_count ||
2466 	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
2467 		return (0);
2468 	pmap_remove_all(m);
2469 	if (m->dirty)
2470 		return (0);
2471 	vm_page_free(m);
2472 	return (1);
2473 }
2474 
2475 /*
2476  * vm_page_cache
2477  *
2478  * Put the specified page onto the page cache queue (if appropriate).
2479  *
2480  * The object and page must be locked.
2481  */
2482 void
2483 vm_page_cache(vm_page_t m)
2484 {
2485 	vm_object_t object;
2486 	boolean_t cache_was_empty;
2487 
2488 	vm_page_lock_assert(m, MA_OWNED);
2489 	object = m->object;
2490 	VM_OBJECT_ASSERT_WLOCKED(object);
2491 	if (vm_page_busied(m) || (m->oflags & VPO_UNMANAGED) ||
2492 	    m->hold_count || m->wire_count)
2493 		panic("vm_page_cache: attempting to cache busy page");
2494 	KASSERT(!pmap_page_is_mapped(m),
2495 	    ("vm_page_cache: page %p is mapped", m));
2496 	KASSERT(m->dirty == 0, ("vm_page_cache: page %p is dirty", m));
2497 	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
2498 	    (object->type == OBJT_SWAP &&
2499 	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
2500 		/*
2501 		 * Hypothesis: A cache-elgible page belonging to a
2502 		 * default object or swap object but without a backing
2503 		 * store must be zero filled.
2504 		 */
2505 		vm_page_free(m);
2506 		return;
2507 	}
2508 	KASSERT((m->flags & PG_CACHED) == 0,
2509 	    ("vm_page_cache: page %p is already cached", m));
2510 
2511 	/*
2512 	 * Remove the page from the paging queues.
2513 	 */
2514 	vm_page_remque(m);
2515 
2516 	/*
2517 	 * Remove the page from the object's collection of resident
2518 	 * pages.
2519 	 */
2520 	vm_radix_remove(&object->rtree, m->pindex);
2521 	TAILQ_REMOVE(&object->memq, m, listq);
2522 	object->resident_page_count--;
2523 
2524 	/*
2525 	 * Restore the default memory attribute to the page.
2526 	 */
2527 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2528 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2529 
2530 	/*
2531 	 * Insert the page into the object's collection of cached pages
2532 	 * and the physical memory allocator's cache/free page queues.
2533 	 */
2534 	m->flags &= ~PG_ZERO;
2535 	mtx_lock(&vm_page_queue_free_mtx);
2536 	cache_was_empty = vm_radix_is_empty(&object->cache);
2537 	if (vm_radix_insert(&object->cache, m)) {
2538 		mtx_unlock(&vm_page_queue_free_mtx);
2539 		if (object->resident_page_count == 0)
2540 			vdrop(object->handle);
2541 		m->object = NULL;
2542 		vm_page_free(m);
2543 		return;
2544 	}
2545 
2546 	/*
2547 	 * The above call to vm_radix_insert() could reclaim the one pre-
2548 	 * existing cached page from this object, resulting in a call to
2549 	 * vdrop().
2550 	 */
2551 	if (!cache_was_empty)
2552 		cache_was_empty = vm_radix_is_singleton(&object->cache);
2553 
2554 	m->flags |= PG_CACHED;
2555 	vm_cnt.v_cache_count++;
2556 	PCPU_INC(cnt.v_tcached);
2557 #if VM_NRESERVLEVEL > 0
2558 	if (!vm_reserv_free_page(m)) {
2559 #else
2560 	if (TRUE) {
2561 #endif
2562 		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
2563 		vm_phys_free_pages(m, 0);
2564 	}
2565 	vm_page_free_wakeup();
2566 	mtx_unlock(&vm_page_queue_free_mtx);
2567 
2568 	/*
2569 	 * Increment the vnode's hold count if this is the object's only
2570 	 * cached page.  Decrement the vnode's hold count if this was
2571 	 * the object's only resident page.
2572 	 */
2573 	if (object->type == OBJT_VNODE) {
2574 		if (cache_was_empty && object->resident_page_count != 0)
2575 			vhold(object->handle);
2576 		else if (!cache_was_empty && object->resident_page_count == 0)
2577 			vdrop(object->handle);
2578 	}
2579 }
2580 
2581 /*
2582  * vm_page_advise
2583  *
2584  *	Cache, deactivate, or do nothing as appropriate.  This routine
2585  *	is used by madvise().
2586  *
2587  *	Generally speaking we want to move the page into the cache so
2588  *	it gets reused quickly.  However, this can result in a silly syndrome
2589  *	due to the page recycling too quickly.  Small objects will not be
2590  *	fully cached.  On the other hand, if we move the page to the inactive
2591  *	queue we wind up with a problem whereby very large objects
2592  *	unnecessarily blow away our inactive and cache queues.
2593  *
2594  *	The solution is to move the pages based on a fixed weighting.  We
2595  *	either leave them alone, deactivate them, or move them to the cache,
2596  *	where moving them to the cache has the highest weighting.
2597  *	By forcing some pages into other queues we eventually force the
2598  *	system to balance the queues, potentially recovering other unrelated
2599  *	space from active.  The idea is to not force this to happen too
2600  *	often.
2601  *
2602  *	The object and page must be locked.
2603  */
2604 void
2605 vm_page_advise(vm_page_t m, int advice)
2606 {
2607 	int dnw, head;
2608 
2609 	vm_page_assert_locked(m);
2610 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2611 	if (advice == MADV_FREE) {
2612 		/*
2613 		 * Mark the page clean.  This will allow the page to be freed
2614 		 * up by the system.  However, such pages are often reused
2615 		 * quickly by malloc() so we do not do anything that would
2616 		 * cause a page fault if we can help it.
2617 		 *
2618 		 * Specifically, we do not try to actually free the page now
2619 		 * nor do we try to put it in the cache (which would cause a
2620 		 * page fault on reuse).
2621 		 *
2622 		 * But we do make the page is freeable as we can without
2623 		 * actually taking the step of unmapping it.
2624 		 */
2625 		m->dirty = 0;
2626 		m->act_count = 0;
2627 	} else if (advice != MADV_DONTNEED)
2628 		return;
2629 	dnw = PCPU_GET(dnweight);
2630 	PCPU_INC(dnweight);
2631 
2632 	/*
2633 	 * Occasionally leave the page alone.
2634 	 */
2635 	if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) {
2636 		if (m->act_count >= ACT_INIT)
2637 			--m->act_count;
2638 		return;
2639 	}
2640 
2641 	/*
2642 	 * Clear any references to the page.  Otherwise, the page daemon will
2643 	 * immediately reactivate the page.
2644 	 */
2645 	vm_page_aflag_clear(m, PGA_REFERENCED);
2646 
2647 	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
2648 		vm_page_dirty(m);
2649 
2650 	if (m->dirty || (dnw & 0x0070) == 0) {
2651 		/*
2652 		 * Deactivate the page 3 times out of 32.
2653 		 */
2654 		head = 0;
2655 	} else {
2656 		/*
2657 		 * Cache the page 28 times out of every 32.  Note that
2658 		 * the page is deactivated instead of cached, but placed
2659 		 * at the head of the queue instead of the tail.
2660 		 */
2661 		head = 1;
2662 	}
2663 	_vm_page_deactivate(m, head);
2664 }
2665 
2666 /*
2667  * Grab a page, waiting until we are waken up due to the page
2668  * changing state.  We keep on waiting, if the page continues
2669  * to be in the object.  If the page doesn't exist, first allocate it
2670  * and then conditionally zero it.
2671  *
2672  * This routine may sleep.
2673  *
2674  * The object must be locked on entry.  The lock will, however, be released
2675  * and reacquired if the routine sleeps.
2676  */
2677 vm_page_t
2678 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2679 {
2680 	vm_page_t m;
2681 	int sleep;
2682 
2683 	VM_OBJECT_ASSERT_WLOCKED(object);
2684 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
2685 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
2686 	    ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
2687 retrylookup:
2688 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
2689 		sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
2690 		    vm_page_xbusied(m) : vm_page_busied(m);
2691 		if (sleep) {
2692 			/*
2693 			 * Reference the page before unlocking and
2694 			 * sleeping so that the page daemon is less
2695 			 * likely to reclaim it.
2696 			 */
2697 			vm_page_aflag_set(m, PGA_REFERENCED);
2698 			vm_page_lock(m);
2699 			VM_OBJECT_WUNLOCK(object);
2700 			vm_page_busy_sleep(m, "pgrbwt");
2701 			VM_OBJECT_WLOCK(object);
2702 			goto retrylookup;
2703 		} else {
2704 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
2705 				vm_page_lock(m);
2706 				vm_page_wire(m);
2707 				vm_page_unlock(m);
2708 			}
2709 			if ((allocflags &
2710 			    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2711 				vm_page_xbusy(m);
2712 			if ((allocflags & VM_ALLOC_SBUSY) != 0)
2713 				vm_page_sbusy(m);
2714 			return (m);
2715 		}
2716 	}
2717 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_IGN_SBUSY);
2718 	if (m == NULL) {
2719 		VM_OBJECT_WUNLOCK(object);
2720 		VM_WAIT;
2721 		VM_OBJECT_WLOCK(object);
2722 		goto retrylookup;
2723 	} else if (m->valid != 0)
2724 		return (m);
2725 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2726 		pmap_zero_page(m);
2727 	return (m);
2728 }
2729 
2730 /*
2731  * Mapping function for valid or dirty bits in a page.
2732  *
2733  * Inputs are required to range within a page.
2734  */
2735 vm_page_bits_t
2736 vm_page_bits(int base, int size)
2737 {
2738 	int first_bit;
2739 	int last_bit;
2740 
2741 	KASSERT(
2742 	    base + size <= PAGE_SIZE,
2743 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2744 	);
2745 
2746 	if (size == 0)		/* handle degenerate case */
2747 		return (0);
2748 
2749 	first_bit = base >> DEV_BSHIFT;
2750 	last_bit = (base + size - 1) >> DEV_BSHIFT;
2751 
2752 	return (((vm_page_bits_t)2 << last_bit) -
2753 	    ((vm_page_bits_t)1 << first_bit));
2754 }
2755 
2756 /*
2757  *	vm_page_set_valid_range:
2758  *
2759  *	Sets portions of a page valid.  The arguments are expected
2760  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2761  *	of any partial chunks touched by the range.  The invalid portion of
2762  *	such chunks will be zeroed.
2763  *
2764  *	(base + size) must be less then or equal to PAGE_SIZE.
2765  */
2766 void
2767 vm_page_set_valid_range(vm_page_t m, int base, int size)
2768 {
2769 	int endoff, frag;
2770 
2771 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2772 	if (size == 0)	/* handle degenerate case */
2773 		return;
2774 
2775 	/*
2776 	 * If the base is not DEV_BSIZE aligned and the valid
2777 	 * bit is clear, we have to zero out a portion of the
2778 	 * first block.
2779 	 */
2780 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2781 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2782 		pmap_zero_page_area(m, frag, base - frag);
2783 
2784 	/*
2785 	 * If the ending offset is not DEV_BSIZE aligned and the
2786 	 * valid bit is clear, we have to zero out a portion of
2787 	 * the last block.
2788 	 */
2789 	endoff = base + size;
2790 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2791 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2792 		pmap_zero_page_area(m, endoff,
2793 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2794 
2795 	/*
2796 	 * Assert that no previously invalid block that is now being validated
2797 	 * is already dirty.
2798 	 */
2799 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2800 	    ("vm_page_set_valid_range: page %p is dirty", m));
2801 
2802 	/*
2803 	 * Set valid bits inclusive of any overlap.
2804 	 */
2805 	m->valid |= vm_page_bits(base, size);
2806 }
2807 
2808 /*
2809  * Clear the given bits from the specified page's dirty field.
2810  */
2811 static __inline void
2812 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
2813 {
2814 	uintptr_t addr;
2815 #if PAGE_SIZE < 16384
2816 	int shift;
2817 #endif
2818 
2819 	/*
2820 	 * If the object is locked and the page is neither exclusive busy nor
2821 	 * write mapped, then the page's dirty field cannot possibly be
2822 	 * set by a concurrent pmap operation.
2823 	 */
2824 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2825 	if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
2826 		m->dirty &= ~pagebits;
2827 	else {
2828 		/*
2829 		 * The pmap layer can call vm_page_dirty() without
2830 		 * holding a distinguished lock.  The combination of
2831 		 * the object's lock and an atomic operation suffice
2832 		 * to guarantee consistency of the page dirty field.
2833 		 *
2834 		 * For PAGE_SIZE == 32768 case, compiler already
2835 		 * properly aligns the dirty field, so no forcible
2836 		 * alignment is needed. Only require existence of
2837 		 * atomic_clear_64 when page size is 32768.
2838 		 */
2839 		addr = (uintptr_t)&m->dirty;
2840 #if PAGE_SIZE == 32768
2841 		atomic_clear_64((uint64_t *)addr, pagebits);
2842 #elif PAGE_SIZE == 16384
2843 		atomic_clear_32((uint32_t *)addr, pagebits);
2844 #else		/* PAGE_SIZE <= 8192 */
2845 		/*
2846 		 * Use a trick to perform a 32-bit atomic on the
2847 		 * containing aligned word, to not depend on the existence
2848 		 * of atomic_clear_{8, 16}.
2849 		 */
2850 		shift = addr & (sizeof(uint32_t) - 1);
2851 #if BYTE_ORDER == BIG_ENDIAN
2852 		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
2853 #else
2854 		shift *= NBBY;
2855 #endif
2856 		addr &= ~(sizeof(uint32_t) - 1);
2857 		atomic_clear_32((uint32_t *)addr, pagebits << shift);
2858 #endif		/* PAGE_SIZE */
2859 	}
2860 }
2861 
2862 /*
2863  *	vm_page_set_validclean:
2864  *
2865  *	Sets portions of a page valid and clean.  The arguments are expected
2866  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2867  *	of any partial chunks touched by the range.  The invalid portion of
2868  *	such chunks will be zero'd.
2869  *
2870  *	(base + size) must be less then or equal to PAGE_SIZE.
2871  */
2872 void
2873 vm_page_set_validclean(vm_page_t m, int base, int size)
2874 {
2875 	vm_page_bits_t oldvalid, pagebits;
2876 	int endoff, frag;
2877 
2878 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2879 	if (size == 0)	/* handle degenerate case */
2880 		return;
2881 
2882 	/*
2883 	 * If the base is not DEV_BSIZE aligned and the valid
2884 	 * bit is clear, we have to zero out a portion of the
2885 	 * first block.
2886 	 */
2887 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2888 	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
2889 		pmap_zero_page_area(m, frag, base - frag);
2890 
2891 	/*
2892 	 * If the ending offset is not DEV_BSIZE aligned and the
2893 	 * valid bit is clear, we have to zero out a portion of
2894 	 * the last block.
2895 	 */
2896 	endoff = base + size;
2897 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2898 	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
2899 		pmap_zero_page_area(m, endoff,
2900 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2901 
2902 	/*
2903 	 * Set valid, clear dirty bits.  If validating the entire
2904 	 * page we can safely clear the pmap modify bit.  We also
2905 	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
2906 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
2907 	 * be set again.
2908 	 *
2909 	 * We set valid bits inclusive of any overlap, but we can only
2910 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
2911 	 * the range.
2912 	 */
2913 	oldvalid = m->valid;
2914 	pagebits = vm_page_bits(base, size);
2915 	m->valid |= pagebits;
2916 #if 0	/* NOT YET */
2917 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2918 		frag = DEV_BSIZE - frag;
2919 		base += frag;
2920 		size -= frag;
2921 		if (size < 0)
2922 			size = 0;
2923 	}
2924 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2925 #endif
2926 	if (base == 0 && size == PAGE_SIZE) {
2927 		/*
2928 		 * The page can only be modified within the pmap if it is
2929 		 * mapped, and it can only be mapped if it was previously
2930 		 * fully valid.
2931 		 */
2932 		if (oldvalid == VM_PAGE_BITS_ALL)
2933 			/*
2934 			 * Perform the pmap_clear_modify() first.  Otherwise,
2935 			 * a concurrent pmap operation, such as
2936 			 * pmap_protect(), could clear a modification in the
2937 			 * pmap and set the dirty field on the page before
2938 			 * pmap_clear_modify() had begun and after the dirty
2939 			 * field was cleared here.
2940 			 */
2941 			pmap_clear_modify(m);
2942 		m->dirty = 0;
2943 		m->oflags &= ~VPO_NOSYNC;
2944 	} else if (oldvalid != VM_PAGE_BITS_ALL)
2945 		m->dirty &= ~pagebits;
2946 	else
2947 		vm_page_clear_dirty_mask(m, pagebits);
2948 }
2949 
2950 void
2951 vm_page_clear_dirty(vm_page_t m, int base, int size)
2952 {
2953 
2954 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
2955 }
2956 
2957 /*
2958  *	vm_page_set_invalid:
2959  *
2960  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
2961  *	valid and dirty bits for the effected areas are cleared.
2962  */
2963 void
2964 vm_page_set_invalid(vm_page_t m, int base, int size)
2965 {
2966 	vm_page_bits_t bits;
2967 	vm_object_t object;
2968 
2969 	object = m->object;
2970 	VM_OBJECT_ASSERT_WLOCKED(object);
2971 	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
2972 	    size >= object->un_pager.vnp.vnp_size)
2973 		bits = VM_PAGE_BITS_ALL;
2974 	else
2975 		bits = vm_page_bits(base, size);
2976 	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
2977 		pmap_remove_all(m);
2978 	KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) ||
2979 	    !pmap_page_is_mapped(m),
2980 	    ("vm_page_set_invalid: page %p is mapped", m));
2981 	m->valid &= ~bits;
2982 	m->dirty &= ~bits;
2983 }
2984 
2985 /*
2986  * vm_page_zero_invalid()
2987  *
2988  *	The kernel assumes that the invalid portions of a page contain
2989  *	garbage, but such pages can be mapped into memory by user code.
2990  *	When this occurs, we must zero out the non-valid portions of the
2991  *	page so user code sees what it expects.
2992  *
2993  *	Pages are most often semi-valid when the end of a file is mapped
2994  *	into memory and the file's size is not page aligned.
2995  */
2996 void
2997 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2998 {
2999 	int b;
3000 	int i;
3001 
3002 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3003 	/*
3004 	 * Scan the valid bits looking for invalid sections that
3005 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
3006 	 * valid bit may be set ) have already been zerod by
3007 	 * vm_page_set_validclean().
3008 	 */
3009 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3010 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
3011 		    (m->valid & ((vm_page_bits_t)1 << i))) {
3012 			if (i > b) {
3013 				pmap_zero_page_area(m,
3014 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
3015 			}
3016 			b = i + 1;
3017 		}
3018 	}
3019 
3020 	/*
3021 	 * setvalid is TRUE when we can safely set the zero'd areas
3022 	 * as being valid.  We can do this if there are no cache consistancy
3023 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
3024 	 */
3025 	if (setvalid)
3026 		m->valid = VM_PAGE_BITS_ALL;
3027 }
3028 
3029 /*
3030  *	vm_page_is_valid:
3031  *
3032  *	Is (partial) page valid?  Note that the case where size == 0
3033  *	will return FALSE in the degenerate case where the page is
3034  *	entirely invalid, and TRUE otherwise.
3035  */
3036 int
3037 vm_page_is_valid(vm_page_t m, int base, int size)
3038 {
3039 	vm_page_bits_t bits;
3040 
3041 	VM_OBJECT_ASSERT_LOCKED(m->object);
3042 	bits = vm_page_bits(base, size);
3043 	return (m->valid != 0 && (m->valid & bits) == bits);
3044 }
3045 
3046 /*
3047  * Set the page's dirty bits if the page is modified.
3048  */
3049 void
3050 vm_page_test_dirty(vm_page_t m)
3051 {
3052 
3053 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3054 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
3055 		vm_page_dirty(m);
3056 }
3057 
3058 void
3059 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
3060 {
3061 
3062 	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
3063 }
3064 
3065 void
3066 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
3067 {
3068 
3069 	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
3070 }
3071 
3072 int
3073 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
3074 {
3075 
3076 	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
3077 }
3078 
3079 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
3080 void
3081 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
3082 {
3083 
3084 	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
3085 }
3086 
3087 void
3088 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
3089 {
3090 
3091 	mtx_assert_(vm_page_lockptr(m), a, file, line);
3092 }
3093 #endif
3094 
3095 #ifdef INVARIANTS
3096 void
3097 vm_page_object_lock_assert(vm_page_t m)
3098 {
3099 
3100 	/*
3101 	 * Certain of the page's fields may only be modified by the
3102 	 * holder of the containing object's lock or the exclusive busy.
3103 	 * holder.  Unfortunately, the holder of the write busy is
3104 	 * not recorded, and thus cannot be checked here.
3105 	 */
3106 	if (m->object != NULL && !vm_page_xbusied(m))
3107 		VM_OBJECT_ASSERT_WLOCKED(m->object);
3108 }
3109 #endif
3110 
3111 #include "opt_ddb.h"
3112 #ifdef DDB
3113 #include <sys/kernel.h>
3114 
3115 #include <ddb/ddb.h>
3116 
3117 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3118 {
3119 	db_printf("vm_cnt.v_free_count: %d\n", vm_cnt.v_free_count);
3120 	db_printf("vm_cnt.v_cache_count: %d\n", vm_cnt.v_cache_count);
3121 	db_printf("vm_cnt.v_inactive_count: %d\n", vm_cnt.v_inactive_count);
3122 	db_printf("vm_cnt.v_active_count: %d\n", vm_cnt.v_active_count);
3123 	db_printf("vm_cnt.v_wire_count: %d\n", vm_cnt.v_wire_count);
3124 	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
3125 	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
3126 	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
3127 	db_printf("vm_cnt.v_cache_min: %d\n", vm_cnt.v_cache_min);
3128 	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
3129 }
3130 
3131 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3132 {
3133 	int dom;
3134 
3135 	db_printf("pq_free %d pq_cache %d\n",
3136 	    vm_cnt.v_free_count, vm_cnt.v_cache_count);
3137 	for (dom = 0; dom < vm_ndomains; dom++) {
3138 		db_printf(
3139 	"dom %d page_cnt %d free %d pq_act %d pq_inact %d pass %d\n",
3140 		    dom,
3141 		    vm_dom[dom].vmd_page_count,
3142 		    vm_dom[dom].vmd_free_count,
3143 		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
3144 		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
3145 		    vm_dom[dom].vmd_pass);
3146 	}
3147 }
3148 
3149 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
3150 {
3151 	vm_page_t m;
3152 	boolean_t phys;
3153 
3154 	if (!have_addr) {
3155 		db_printf("show pginfo addr\n");
3156 		return;
3157 	}
3158 
3159 	phys = strchr(modif, 'p') != NULL;
3160 	if (phys)
3161 		m = PHYS_TO_VM_PAGE(addr);
3162 	else
3163 		m = (vm_page_t)addr;
3164 	db_printf(
3165     "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
3166     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
3167 	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
3168 	    m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
3169 	    m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
3170 }
3171 #endif /* DDB */
3172