1 /*- 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * The Mach Operating System project at Carnegie-Mellon University. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 34 */ 35 36 /*- 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * GENERAL RULES ON VM_PAGE MANIPULATION 65 * 66 * - A page queue lock is required when adding or removing a page from a 67 * page queue regardless of other locks or the busy state of a page. 68 * 69 * * In general, no thread besides the page daemon can acquire or 70 * hold more than one page queue lock at a time. 71 * 72 * * The page daemon can acquire and hold any pair of page queue 73 * locks in any order. 74 * 75 * - The object lock is required when inserting or removing 76 * pages from an object (vm_page_insert() or vm_page_remove()). 77 * 78 */ 79 80 /* 81 * Resident memory management module. 82 */ 83 84 #include <sys/cdefs.h> 85 __FBSDID("$FreeBSD$"); 86 87 #include "opt_vm.h" 88 89 #include <sys/param.h> 90 #include <sys/systm.h> 91 #include <sys/lock.h> 92 #include <sys/kernel.h> 93 #include <sys/limits.h> 94 #include <sys/malloc.h> 95 #include <sys/mman.h> 96 #include <sys/msgbuf.h> 97 #include <sys/mutex.h> 98 #include <sys/proc.h> 99 #include <sys/rwlock.h> 100 #include <sys/sysctl.h> 101 #include <sys/vmmeter.h> 102 #include <sys/vnode.h> 103 104 #include <vm/vm.h> 105 #include <vm/pmap.h> 106 #include <vm/vm_param.h> 107 #include <vm/vm_kern.h> 108 #include <vm/vm_object.h> 109 #include <vm/vm_page.h> 110 #include <vm/vm_pageout.h> 111 #include <vm/vm_pager.h> 112 #include <vm/vm_phys.h> 113 #include <vm/vm_radix.h> 114 #include <vm/vm_reserv.h> 115 #include <vm/vm_extern.h> 116 #include <vm/uma.h> 117 #include <vm/uma_int.h> 118 119 #include <machine/md_var.h> 120 121 /* 122 * Associated with page of user-allocatable memory is a 123 * page structure. 124 */ 125 126 struct vm_domain vm_dom[MAXMEMDOM]; 127 struct mtx_padalign vm_page_queue_free_mtx; 128 129 struct mtx_padalign pa_lock[PA_LOCK_COUNT]; 130 131 vm_page_t vm_page_array; 132 long vm_page_array_size; 133 long first_page; 134 int vm_page_zero_count; 135 136 static int boot_pages = UMA_BOOT_PAGES; 137 TUNABLE_INT("vm.boot_pages", &boot_pages); 138 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0, 139 "number of pages allocated for bootstrapping the VM system"); 140 141 static int pa_tryrelock_restart; 142 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD, 143 &pa_tryrelock_restart, 0, "Number of tryrelock restarts"); 144 145 static uma_zone_t fakepg_zone; 146 147 static struct vnode *vm_page_alloc_init(vm_page_t m); 148 static void vm_page_cache_turn_free(vm_page_t m); 149 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits); 150 static void vm_page_enqueue(int queue, vm_page_t m); 151 static void vm_page_init_fakepg(void *dummy); 152 static int vm_page_insert_after(vm_page_t m, vm_object_t object, 153 vm_pindex_t pindex, vm_page_t mpred); 154 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object, 155 vm_page_t mpred); 156 157 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL); 158 159 static void 160 vm_page_init_fakepg(void *dummy) 161 { 162 163 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL, 164 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 165 } 166 167 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */ 168 #if PAGE_SIZE == 32768 169 #ifdef CTASSERT 170 CTASSERT(sizeof(u_long) >= 8); 171 #endif 172 #endif 173 174 /* 175 * Try to acquire a physical address lock while a pmap is locked. If we 176 * fail to trylock we unlock and lock the pmap directly and cache the 177 * locked pa in *locked. The caller should then restart their loop in case 178 * the virtual to physical mapping has changed. 179 */ 180 int 181 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked) 182 { 183 vm_paddr_t lockpa; 184 185 lockpa = *locked; 186 *locked = pa; 187 if (lockpa) { 188 PA_LOCK_ASSERT(lockpa, MA_OWNED); 189 if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa)) 190 return (0); 191 PA_UNLOCK(lockpa); 192 } 193 if (PA_TRYLOCK(pa)) 194 return (0); 195 PMAP_UNLOCK(pmap); 196 atomic_add_int(&pa_tryrelock_restart, 1); 197 PA_LOCK(pa); 198 PMAP_LOCK(pmap); 199 return (EAGAIN); 200 } 201 202 /* 203 * vm_set_page_size: 204 * 205 * Sets the page size, perhaps based upon the memory 206 * size. Must be called before any use of page-size 207 * dependent functions. 208 */ 209 void 210 vm_set_page_size(void) 211 { 212 if (vm_cnt.v_page_size == 0) 213 vm_cnt.v_page_size = PAGE_SIZE; 214 if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0) 215 panic("vm_set_page_size: page size not a power of two"); 216 } 217 218 /* 219 * vm_page_blacklist_lookup: 220 * 221 * See if a physical address in this page has been listed 222 * in the blacklist tunable. Entries in the tunable are 223 * separated by spaces or commas. If an invalid integer is 224 * encountered then the rest of the string is skipped. 225 */ 226 static int 227 vm_page_blacklist_lookup(char *list, vm_paddr_t pa) 228 { 229 vm_paddr_t bad; 230 char *cp, *pos; 231 232 for (pos = list; *pos != '\0'; pos = cp) { 233 bad = strtoq(pos, &cp, 0); 234 if (*cp != '\0') { 235 if (*cp == ' ' || *cp == ',') { 236 cp++; 237 if (cp == pos) 238 continue; 239 } else 240 break; 241 } 242 if (pa == trunc_page(bad)) 243 return (1); 244 } 245 return (0); 246 } 247 248 static void 249 vm_page_domain_init(struct vm_domain *vmd) 250 { 251 struct vm_pagequeue *pq; 252 int i; 253 254 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) = 255 "vm inactive pagequeue"; 256 *__DECONST(int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) = 257 &vm_cnt.v_inactive_count; 258 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) = 259 "vm active pagequeue"; 260 *__DECONST(int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) = 261 &vm_cnt.v_active_count; 262 vmd->vmd_page_count = 0; 263 vmd->vmd_free_count = 0; 264 vmd->vmd_segs = 0; 265 vmd->vmd_oom = FALSE; 266 vmd->vmd_pass = 0; 267 for (i = 0; i < PQ_COUNT; i++) { 268 pq = &vmd->vmd_pagequeues[i]; 269 TAILQ_INIT(&pq->pq_pl); 270 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue", 271 MTX_DEF | MTX_DUPOK); 272 } 273 } 274 275 /* 276 * vm_page_startup: 277 * 278 * Initializes the resident memory module. 279 * 280 * Allocates memory for the page cells, and 281 * for the object/offset-to-page hash table headers. 282 * Each page cell is initialized and placed on the free list. 283 */ 284 vm_offset_t 285 vm_page_startup(vm_offset_t vaddr) 286 { 287 vm_offset_t mapped; 288 vm_paddr_t page_range; 289 vm_paddr_t new_end; 290 int i; 291 vm_paddr_t pa; 292 vm_paddr_t last_pa; 293 char *list; 294 295 /* the biggest memory array is the second group of pages */ 296 vm_paddr_t end; 297 vm_paddr_t biggestsize; 298 vm_paddr_t low_water, high_water; 299 int biggestone; 300 301 biggestsize = 0; 302 biggestone = 0; 303 vaddr = round_page(vaddr); 304 305 for (i = 0; phys_avail[i + 1]; i += 2) { 306 phys_avail[i] = round_page(phys_avail[i]); 307 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 308 } 309 310 low_water = phys_avail[0]; 311 high_water = phys_avail[1]; 312 313 for (i = 0; phys_avail[i + 1]; i += 2) { 314 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 315 316 if (size > biggestsize) { 317 biggestone = i; 318 biggestsize = size; 319 } 320 if (phys_avail[i] < low_water) 321 low_water = phys_avail[i]; 322 if (phys_avail[i + 1] > high_water) 323 high_water = phys_avail[i + 1]; 324 } 325 326 #ifdef XEN 327 low_water = 0; 328 #endif 329 330 end = phys_avail[biggestone+1]; 331 332 /* 333 * Initialize the page and queue locks. 334 */ 335 mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF); 336 for (i = 0; i < PA_LOCK_COUNT; i++) 337 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF); 338 for (i = 0; i < vm_ndomains; i++) 339 vm_page_domain_init(&vm_dom[i]); 340 341 /* 342 * Allocate memory for use when boot strapping the kernel memory 343 * allocator. 344 */ 345 new_end = end - (boot_pages * UMA_SLAB_SIZE); 346 new_end = trunc_page(new_end); 347 mapped = pmap_map(&vaddr, new_end, end, 348 VM_PROT_READ | VM_PROT_WRITE); 349 bzero((void *)mapped, end - new_end); 350 uma_startup((void *)mapped, boot_pages); 351 352 #if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \ 353 defined(__mips__) 354 /* 355 * Allocate a bitmap to indicate that a random physical page 356 * needs to be included in a minidump. 357 * 358 * The amd64 port needs this to indicate which direct map pages 359 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 360 * 361 * However, i386 still needs this workspace internally within the 362 * minidump code. In theory, they are not needed on i386, but are 363 * included should the sf_buf code decide to use them. 364 */ 365 last_pa = 0; 366 for (i = 0; dump_avail[i + 1] != 0; i += 2) 367 if (dump_avail[i + 1] > last_pa) 368 last_pa = dump_avail[i + 1]; 369 page_range = last_pa / PAGE_SIZE; 370 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 371 new_end -= vm_page_dump_size; 372 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, 373 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); 374 bzero((void *)vm_page_dump, vm_page_dump_size); 375 #endif 376 #ifdef __amd64__ 377 /* 378 * Request that the physical pages underlying the message buffer be 379 * included in a crash dump. Since the message buffer is accessed 380 * through the direct map, they are not automatically included. 381 */ 382 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr); 383 last_pa = pa + round_page(msgbufsize); 384 while (pa < last_pa) { 385 dump_add_page(pa); 386 pa += PAGE_SIZE; 387 } 388 #endif 389 /* 390 * Compute the number of pages of memory that will be available for 391 * use (taking into account the overhead of a page structure per 392 * page). 393 */ 394 first_page = low_water / PAGE_SIZE; 395 #ifdef VM_PHYSSEG_SPARSE 396 page_range = 0; 397 for (i = 0; phys_avail[i + 1] != 0; i += 2) 398 page_range += atop(phys_avail[i + 1] - phys_avail[i]); 399 #elif defined(VM_PHYSSEG_DENSE) 400 page_range = high_water / PAGE_SIZE - first_page; 401 #else 402 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 403 #endif 404 end = new_end; 405 406 /* 407 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 408 */ 409 vaddr += PAGE_SIZE; 410 411 /* 412 * Initialize the mem entry structures now, and put them in the free 413 * queue. 414 */ 415 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 416 mapped = pmap_map(&vaddr, new_end, end, 417 VM_PROT_READ | VM_PROT_WRITE); 418 vm_page_array = (vm_page_t) mapped; 419 #if VM_NRESERVLEVEL > 0 420 /* 421 * Allocate memory for the reservation management system's data 422 * structures. 423 */ 424 new_end = vm_reserv_startup(&vaddr, new_end, high_water); 425 #endif 426 #if defined(__amd64__) || defined(__mips__) 427 /* 428 * pmap_map on amd64 and mips can come out of the direct-map, not kvm 429 * like i386, so the pages must be tracked for a crashdump to include 430 * this data. This includes the vm_page_array and the early UMA 431 * bootstrap pages. 432 */ 433 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE) 434 dump_add_page(pa); 435 #endif 436 phys_avail[biggestone + 1] = new_end; 437 438 /* 439 * Clear all of the page structures 440 */ 441 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 442 for (i = 0; i < page_range; i++) 443 vm_page_array[i].order = VM_NFREEORDER; 444 vm_page_array_size = page_range; 445 446 /* 447 * Initialize the physical memory allocator. 448 */ 449 vm_phys_init(); 450 451 /* 452 * Add every available physical page that is not blacklisted to 453 * the free lists. 454 */ 455 vm_cnt.v_page_count = 0; 456 vm_cnt.v_free_count = 0; 457 list = getenv("vm.blacklist"); 458 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 459 pa = phys_avail[i]; 460 last_pa = phys_avail[i + 1]; 461 while (pa < last_pa) { 462 if (list != NULL && 463 vm_page_blacklist_lookup(list, pa)) 464 printf("Skipping page with pa 0x%jx\n", 465 (uintmax_t)pa); 466 else 467 vm_phys_add_page(pa); 468 pa += PAGE_SIZE; 469 } 470 } 471 freeenv(list); 472 #if VM_NRESERVLEVEL > 0 473 /* 474 * Initialize the reservation management system. 475 */ 476 vm_reserv_init(); 477 #endif 478 return (vaddr); 479 } 480 481 void 482 vm_page_reference(vm_page_t m) 483 { 484 485 vm_page_aflag_set(m, PGA_REFERENCED); 486 } 487 488 /* 489 * vm_page_busy_downgrade: 490 * 491 * Downgrade an exclusive busy page into a single shared busy page. 492 */ 493 void 494 vm_page_busy_downgrade(vm_page_t m) 495 { 496 u_int x; 497 498 vm_page_assert_xbusied(m); 499 500 for (;;) { 501 x = m->busy_lock; 502 x &= VPB_BIT_WAITERS; 503 if (atomic_cmpset_rel_int(&m->busy_lock, 504 VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1) | x)) 505 break; 506 } 507 } 508 509 /* 510 * vm_page_sbusied: 511 * 512 * Return a positive value if the page is shared busied, 0 otherwise. 513 */ 514 int 515 vm_page_sbusied(vm_page_t m) 516 { 517 u_int x; 518 519 x = m->busy_lock; 520 return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED); 521 } 522 523 /* 524 * vm_page_sunbusy: 525 * 526 * Shared unbusy a page. 527 */ 528 void 529 vm_page_sunbusy(vm_page_t m) 530 { 531 u_int x; 532 533 vm_page_assert_sbusied(m); 534 535 for (;;) { 536 x = m->busy_lock; 537 if (VPB_SHARERS(x) > 1) { 538 if (atomic_cmpset_int(&m->busy_lock, x, 539 x - VPB_ONE_SHARER)) 540 break; 541 continue; 542 } 543 if ((x & VPB_BIT_WAITERS) == 0) { 544 KASSERT(x == VPB_SHARERS_WORD(1), 545 ("vm_page_sunbusy: invalid lock state")); 546 if (atomic_cmpset_int(&m->busy_lock, 547 VPB_SHARERS_WORD(1), VPB_UNBUSIED)) 548 break; 549 continue; 550 } 551 KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS), 552 ("vm_page_sunbusy: invalid lock state for waiters")); 553 554 vm_page_lock(m); 555 if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) { 556 vm_page_unlock(m); 557 continue; 558 } 559 wakeup(m); 560 vm_page_unlock(m); 561 break; 562 } 563 } 564 565 /* 566 * vm_page_busy_sleep: 567 * 568 * Sleep and release the page lock, using the page pointer as wchan. 569 * This is used to implement the hard-path of busying mechanism. 570 * 571 * The given page must be locked. 572 */ 573 void 574 vm_page_busy_sleep(vm_page_t m, const char *wmesg) 575 { 576 u_int x; 577 578 vm_page_lock_assert(m, MA_OWNED); 579 580 x = m->busy_lock; 581 if (x == VPB_UNBUSIED) { 582 vm_page_unlock(m); 583 return; 584 } 585 if ((x & VPB_BIT_WAITERS) == 0 && 586 !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS)) { 587 vm_page_unlock(m); 588 return; 589 } 590 msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0); 591 } 592 593 /* 594 * vm_page_trysbusy: 595 * 596 * Try to shared busy a page. 597 * If the operation succeeds 1 is returned otherwise 0. 598 * The operation never sleeps. 599 */ 600 int 601 vm_page_trysbusy(vm_page_t m) 602 { 603 u_int x; 604 605 for (;;) { 606 x = m->busy_lock; 607 if ((x & VPB_BIT_SHARED) == 0) 608 return (0); 609 if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER)) 610 return (1); 611 } 612 } 613 614 /* 615 * vm_page_xunbusy_hard: 616 * 617 * Called after the first try the exclusive unbusy of a page failed. 618 * It is assumed that the waiters bit is on. 619 */ 620 void 621 vm_page_xunbusy_hard(vm_page_t m) 622 { 623 624 vm_page_assert_xbusied(m); 625 626 vm_page_lock(m); 627 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED); 628 wakeup(m); 629 vm_page_unlock(m); 630 } 631 632 /* 633 * vm_page_flash: 634 * 635 * Wakeup anyone waiting for the page. 636 * The ownership bits do not change. 637 * 638 * The given page must be locked. 639 */ 640 void 641 vm_page_flash(vm_page_t m) 642 { 643 u_int x; 644 645 vm_page_lock_assert(m, MA_OWNED); 646 647 for (;;) { 648 x = m->busy_lock; 649 if ((x & VPB_BIT_WAITERS) == 0) 650 return; 651 if (atomic_cmpset_int(&m->busy_lock, x, 652 x & (~VPB_BIT_WAITERS))) 653 break; 654 } 655 wakeup(m); 656 } 657 658 /* 659 * Keep page from being freed by the page daemon 660 * much of the same effect as wiring, except much lower 661 * overhead and should be used only for *very* temporary 662 * holding ("wiring"). 663 */ 664 void 665 vm_page_hold(vm_page_t mem) 666 { 667 668 vm_page_lock_assert(mem, MA_OWNED); 669 mem->hold_count++; 670 } 671 672 void 673 vm_page_unhold(vm_page_t mem) 674 { 675 676 vm_page_lock_assert(mem, MA_OWNED); 677 KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!")); 678 --mem->hold_count; 679 if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0) 680 vm_page_free_toq(mem); 681 } 682 683 /* 684 * vm_page_unhold_pages: 685 * 686 * Unhold each of the pages that is referenced by the given array. 687 */ 688 void 689 vm_page_unhold_pages(vm_page_t *ma, int count) 690 { 691 struct mtx *mtx, *new_mtx; 692 693 mtx = NULL; 694 for (; count != 0; count--) { 695 /* 696 * Avoid releasing and reacquiring the same page lock. 697 */ 698 new_mtx = vm_page_lockptr(*ma); 699 if (mtx != new_mtx) { 700 if (mtx != NULL) 701 mtx_unlock(mtx); 702 mtx = new_mtx; 703 mtx_lock(mtx); 704 } 705 vm_page_unhold(*ma); 706 ma++; 707 } 708 if (mtx != NULL) 709 mtx_unlock(mtx); 710 } 711 712 vm_page_t 713 PHYS_TO_VM_PAGE(vm_paddr_t pa) 714 { 715 vm_page_t m; 716 717 #ifdef VM_PHYSSEG_SPARSE 718 m = vm_phys_paddr_to_vm_page(pa); 719 if (m == NULL) 720 m = vm_phys_fictitious_to_vm_page(pa); 721 return (m); 722 #elif defined(VM_PHYSSEG_DENSE) 723 long pi; 724 725 pi = atop(pa); 726 if (pi >= first_page && (pi - first_page) < vm_page_array_size) { 727 m = &vm_page_array[pi - first_page]; 728 return (m); 729 } 730 return (vm_phys_fictitious_to_vm_page(pa)); 731 #else 732 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 733 #endif 734 } 735 736 /* 737 * vm_page_getfake: 738 * 739 * Create a fictitious page with the specified physical address and 740 * memory attribute. The memory attribute is the only the machine- 741 * dependent aspect of a fictitious page that must be initialized. 742 */ 743 vm_page_t 744 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr) 745 { 746 vm_page_t m; 747 748 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO); 749 vm_page_initfake(m, paddr, memattr); 750 return (m); 751 } 752 753 void 754 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 755 { 756 757 if ((m->flags & PG_FICTITIOUS) != 0) { 758 /* 759 * The page's memattr might have changed since the 760 * previous initialization. Update the pmap to the 761 * new memattr. 762 */ 763 goto memattr; 764 } 765 m->phys_addr = paddr; 766 m->queue = PQ_NONE; 767 /* Fictitious pages don't use "segind". */ 768 m->flags = PG_FICTITIOUS; 769 /* Fictitious pages don't use "order" or "pool". */ 770 m->oflags = VPO_UNMANAGED; 771 m->busy_lock = VPB_SINGLE_EXCLUSIVER; 772 m->wire_count = 1; 773 pmap_page_init(m); 774 memattr: 775 pmap_page_set_memattr(m, memattr); 776 } 777 778 /* 779 * vm_page_putfake: 780 * 781 * Release a fictitious page. 782 */ 783 void 784 vm_page_putfake(vm_page_t m) 785 { 786 787 KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m)); 788 KASSERT((m->flags & PG_FICTITIOUS) != 0, 789 ("vm_page_putfake: bad page %p", m)); 790 uma_zfree(fakepg_zone, m); 791 } 792 793 /* 794 * vm_page_updatefake: 795 * 796 * Update the given fictitious page to the specified physical address and 797 * memory attribute. 798 */ 799 void 800 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 801 { 802 803 KASSERT((m->flags & PG_FICTITIOUS) != 0, 804 ("vm_page_updatefake: bad page %p", m)); 805 m->phys_addr = paddr; 806 pmap_page_set_memattr(m, memattr); 807 } 808 809 /* 810 * vm_page_free: 811 * 812 * Free a page. 813 */ 814 void 815 vm_page_free(vm_page_t m) 816 { 817 818 m->flags &= ~PG_ZERO; 819 vm_page_free_toq(m); 820 } 821 822 /* 823 * vm_page_free_zero: 824 * 825 * Free a page to the zerod-pages queue 826 */ 827 void 828 vm_page_free_zero(vm_page_t m) 829 { 830 831 m->flags |= PG_ZERO; 832 vm_page_free_toq(m); 833 } 834 835 /* 836 * Unbusy and handle the page queueing for a page from the VOP_GETPAGES() 837 * array which is not the request page. 838 */ 839 void 840 vm_page_readahead_finish(vm_page_t m) 841 { 842 843 if (m->valid != 0) { 844 /* 845 * Since the page is not the requested page, whether 846 * it should be activated or deactivated is not 847 * obvious. Empirical results have shown that 848 * deactivating the page is usually the best choice, 849 * unless the page is wanted by another thread. 850 */ 851 vm_page_lock(m); 852 if ((m->busy_lock & VPB_BIT_WAITERS) != 0) 853 vm_page_activate(m); 854 else 855 vm_page_deactivate(m); 856 vm_page_unlock(m); 857 vm_page_xunbusy(m); 858 } else { 859 /* 860 * Free the completely invalid page. Such page state 861 * occurs due to the short read operation which did 862 * not covered our page at all, or in case when a read 863 * error happens. 864 */ 865 vm_page_lock(m); 866 vm_page_free(m); 867 vm_page_unlock(m); 868 } 869 } 870 871 /* 872 * vm_page_sleep_if_busy: 873 * 874 * Sleep and release the page queues lock if the page is busied. 875 * Returns TRUE if the thread slept. 876 * 877 * The given page must be unlocked and object containing it must 878 * be locked. 879 */ 880 int 881 vm_page_sleep_if_busy(vm_page_t m, const char *msg) 882 { 883 vm_object_t obj; 884 885 vm_page_lock_assert(m, MA_NOTOWNED); 886 VM_OBJECT_ASSERT_WLOCKED(m->object); 887 888 if (vm_page_busied(m)) { 889 /* 890 * The page-specific object must be cached because page 891 * identity can change during the sleep, causing the 892 * re-lock of a different object. 893 * It is assumed that a reference to the object is already 894 * held by the callers. 895 */ 896 obj = m->object; 897 vm_page_lock(m); 898 VM_OBJECT_WUNLOCK(obj); 899 vm_page_busy_sleep(m, msg); 900 VM_OBJECT_WLOCK(obj); 901 return (TRUE); 902 } 903 return (FALSE); 904 } 905 906 /* 907 * vm_page_dirty_KBI: [ internal use only ] 908 * 909 * Set all bits in the page's dirty field. 910 * 911 * The object containing the specified page must be locked if the 912 * call is made from the machine-independent layer. 913 * 914 * See vm_page_clear_dirty_mask(). 915 * 916 * This function should only be called by vm_page_dirty(). 917 */ 918 void 919 vm_page_dirty_KBI(vm_page_t m) 920 { 921 922 /* These assertions refer to this operation by its public name. */ 923 KASSERT((m->flags & PG_CACHED) == 0, 924 ("vm_page_dirty: page in cache!")); 925 KASSERT(m->valid == VM_PAGE_BITS_ALL, 926 ("vm_page_dirty: page is invalid!")); 927 m->dirty = VM_PAGE_BITS_ALL; 928 } 929 930 /* 931 * vm_page_insert: [ internal use only ] 932 * 933 * Inserts the given mem entry into the object and object list. 934 * 935 * The object must be locked. 936 */ 937 int 938 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 939 { 940 vm_page_t mpred; 941 942 VM_OBJECT_ASSERT_WLOCKED(object); 943 mpred = vm_radix_lookup_le(&object->rtree, pindex); 944 return (vm_page_insert_after(m, object, pindex, mpred)); 945 } 946 947 /* 948 * vm_page_insert_after: 949 * 950 * Inserts the page "m" into the specified object at offset "pindex". 951 * 952 * The page "mpred" must immediately precede the offset "pindex" within 953 * the specified object. 954 * 955 * The object must be locked. 956 */ 957 static int 958 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex, 959 vm_page_t mpred) 960 { 961 vm_pindex_t sidx; 962 vm_object_t sobj; 963 vm_page_t msucc; 964 965 VM_OBJECT_ASSERT_WLOCKED(object); 966 KASSERT(m->object == NULL, 967 ("vm_page_insert_after: page already inserted")); 968 if (mpred != NULL) { 969 KASSERT(mpred->object == object, 970 ("vm_page_insert_after: object doesn't contain mpred")); 971 KASSERT(mpred->pindex < pindex, 972 ("vm_page_insert_after: mpred doesn't precede pindex")); 973 msucc = TAILQ_NEXT(mpred, listq); 974 } else 975 msucc = TAILQ_FIRST(&object->memq); 976 if (msucc != NULL) 977 KASSERT(msucc->pindex > pindex, 978 ("vm_page_insert_after: msucc doesn't succeed pindex")); 979 980 /* 981 * Record the object/offset pair in this page 982 */ 983 sobj = m->object; 984 sidx = m->pindex; 985 m->object = object; 986 m->pindex = pindex; 987 988 /* 989 * Now link into the object's ordered list of backed pages. 990 */ 991 if (vm_radix_insert(&object->rtree, m)) { 992 m->object = sobj; 993 m->pindex = sidx; 994 return (1); 995 } 996 vm_page_insert_radixdone(m, object, mpred); 997 return (0); 998 } 999 1000 /* 1001 * vm_page_insert_radixdone: 1002 * 1003 * Complete page "m" insertion into the specified object after the 1004 * radix trie hooking. 1005 * 1006 * The page "mpred" must precede the offset "m->pindex" within the 1007 * specified object. 1008 * 1009 * The object must be locked. 1010 */ 1011 static void 1012 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred) 1013 { 1014 1015 VM_OBJECT_ASSERT_WLOCKED(object); 1016 KASSERT(object != NULL && m->object == object, 1017 ("vm_page_insert_radixdone: page %p has inconsistent object", m)); 1018 if (mpred != NULL) { 1019 KASSERT(mpred->object == object, 1020 ("vm_page_insert_after: object doesn't contain mpred")); 1021 KASSERT(mpred->pindex < m->pindex, 1022 ("vm_page_insert_after: mpred doesn't precede pindex")); 1023 } 1024 1025 if (mpred != NULL) 1026 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq); 1027 else 1028 TAILQ_INSERT_HEAD(&object->memq, m, listq); 1029 1030 /* 1031 * Show that the object has one more resident page. 1032 */ 1033 object->resident_page_count++; 1034 1035 /* 1036 * Hold the vnode until the last page is released. 1037 */ 1038 if (object->resident_page_count == 1 && object->type == OBJT_VNODE) 1039 vhold(object->handle); 1040 1041 /* 1042 * Since we are inserting a new and possibly dirty page, 1043 * update the object's OBJ_MIGHTBEDIRTY flag. 1044 */ 1045 if (pmap_page_is_write_mapped(m)) 1046 vm_object_set_writeable_dirty(object); 1047 } 1048 1049 /* 1050 * vm_page_remove: 1051 * 1052 * Removes the given mem entry from the object/offset-page 1053 * table and the object page list, but do not invalidate/terminate 1054 * the backing store. 1055 * 1056 * The object must be locked. The page must be locked if it is managed. 1057 */ 1058 void 1059 vm_page_remove(vm_page_t m) 1060 { 1061 vm_object_t object; 1062 boolean_t lockacq; 1063 1064 if ((m->oflags & VPO_UNMANAGED) == 0) 1065 vm_page_lock_assert(m, MA_OWNED); 1066 if ((object = m->object) == NULL) 1067 return; 1068 VM_OBJECT_ASSERT_WLOCKED(object); 1069 if (vm_page_xbusied(m)) { 1070 lockacq = FALSE; 1071 if ((m->oflags & VPO_UNMANAGED) != 0 && 1072 !mtx_owned(vm_page_lockptr(m))) { 1073 lockacq = TRUE; 1074 vm_page_lock(m); 1075 } 1076 vm_page_flash(m); 1077 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED); 1078 if (lockacq) 1079 vm_page_unlock(m); 1080 } 1081 1082 /* 1083 * Now remove from the object's list of backed pages. 1084 */ 1085 vm_radix_remove(&object->rtree, m->pindex); 1086 TAILQ_REMOVE(&object->memq, m, listq); 1087 1088 /* 1089 * And show that the object has one fewer resident page. 1090 */ 1091 object->resident_page_count--; 1092 1093 /* 1094 * The vnode may now be recycled. 1095 */ 1096 if (object->resident_page_count == 0 && object->type == OBJT_VNODE) 1097 vdrop(object->handle); 1098 1099 m->object = NULL; 1100 } 1101 1102 /* 1103 * vm_page_lookup: 1104 * 1105 * Returns the page associated with the object/offset 1106 * pair specified; if none is found, NULL is returned. 1107 * 1108 * The object must be locked. 1109 */ 1110 vm_page_t 1111 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 1112 { 1113 1114 VM_OBJECT_ASSERT_LOCKED(object); 1115 return (vm_radix_lookup(&object->rtree, pindex)); 1116 } 1117 1118 /* 1119 * vm_page_find_least: 1120 * 1121 * Returns the page associated with the object with least pindex 1122 * greater than or equal to the parameter pindex, or NULL. 1123 * 1124 * The object must be locked. 1125 */ 1126 vm_page_t 1127 vm_page_find_least(vm_object_t object, vm_pindex_t pindex) 1128 { 1129 vm_page_t m; 1130 1131 VM_OBJECT_ASSERT_LOCKED(object); 1132 if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex) 1133 m = vm_radix_lookup_ge(&object->rtree, pindex); 1134 return (m); 1135 } 1136 1137 /* 1138 * Returns the given page's successor (by pindex) within the object if it is 1139 * resident; if none is found, NULL is returned. 1140 * 1141 * The object must be locked. 1142 */ 1143 vm_page_t 1144 vm_page_next(vm_page_t m) 1145 { 1146 vm_page_t next; 1147 1148 VM_OBJECT_ASSERT_WLOCKED(m->object); 1149 if ((next = TAILQ_NEXT(m, listq)) != NULL && 1150 next->pindex != m->pindex + 1) 1151 next = NULL; 1152 return (next); 1153 } 1154 1155 /* 1156 * Returns the given page's predecessor (by pindex) within the object if it is 1157 * resident; if none is found, NULL is returned. 1158 * 1159 * The object must be locked. 1160 */ 1161 vm_page_t 1162 vm_page_prev(vm_page_t m) 1163 { 1164 vm_page_t prev; 1165 1166 VM_OBJECT_ASSERT_WLOCKED(m->object); 1167 if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL && 1168 prev->pindex != m->pindex - 1) 1169 prev = NULL; 1170 return (prev); 1171 } 1172 1173 /* 1174 * Uses the page mnew as a replacement for an existing page at index 1175 * pindex which must be already present in the object. 1176 * 1177 * The existing page must not be on a paging queue. 1178 */ 1179 vm_page_t 1180 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex) 1181 { 1182 vm_page_t mold, mpred; 1183 1184 VM_OBJECT_ASSERT_WLOCKED(object); 1185 1186 /* 1187 * This function mostly follows vm_page_insert() and 1188 * vm_page_remove() without the radix, object count and vnode 1189 * dance. Double check such functions for more comments. 1190 */ 1191 mpred = vm_radix_lookup(&object->rtree, pindex); 1192 KASSERT(mpred != NULL, 1193 ("vm_page_replace: replacing page not present with pindex")); 1194 mpred = TAILQ_PREV(mpred, respgs, listq); 1195 if (mpred != NULL) 1196 KASSERT(mpred->pindex < pindex, 1197 ("vm_page_insert_after: mpred doesn't precede pindex")); 1198 1199 mnew->object = object; 1200 mnew->pindex = pindex; 1201 mold = vm_radix_replace(&object->rtree, mnew); 1202 KASSERT(mold->queue == PQ_NONE, 1203 ("vm_page_replace: mold is on a paging queue")); 1204 1205 /* Detach the old page from the resident tailq. */ 1206 TAILQ_REMOVE(&object->memq, mold, listq); 1207 1208 mold->object = NULL; 1209 vm_page_xunbusy(mold); 1210 1211 /* Insert the new page in the resident tailq. */ 1212 if (mpred != NULL) 1213 TAILQ_INSERT_AFTER(&object->memq, mpred, mnew, listq); 1214 else 1215 TAILQ_INSERT_HEAD(&object->memq, mnew, listq); 1216 if (pmap_page_is_write_mapped(mnew)) 1217 vm_object_set_writeable_dirty(object); 1218 return (mold); 1219 } 1220 1221 /* 1222 * vm_page_rename: 1223 * 1224 * Move the given memory entry from its 1225 * current object to the specified target object/offset. 1226 * 1227 * Note: swap associated with the page must be invalidated by the move. We 1228 * have to do this for several reasons: (1) we aren't freeing the 1229 * page, (2) we are dirtying the page, (3) the VM system is probably 1230 * moving the page from object A to B, and will then later move 1231 * the backing store from A to B and we can't have a conflict. 1232 * 1233 * Note: we *always* dirty the page. It is necessary both for the 1234 * fact that we moved it, and because we may be invalidating 1235 * swap. If the page is on the cache, we have to deactivate it 1236 * or vm_page_dirty() will panic. Dirty pages are not allowed 1237 * on the cache. 1238 * 1239 * The objects must be locked. 1240 */ 1241 int 1242 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 1243 { 1244 vm_page_t mpred; 1245 vm_pindex_t opidx; 1246 1247 VM_OBJECT_ASSERT_WLOCKED(new_object); 1248 1249 mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex); 1250 KASSERT(mpred == NULL || mpred->pindex != new_pindex, 1251 ("vm_page_rename: pindex already renamed")); 1252 1253 /* 1254 * Create a custom version of vm_page_insert() which does not depend 1255 * by m_prev and can cheat on the implementation aspects of the 1256 * function. 1257 */ 1258 opidx = m->pindex; 1259 m->pindex = new_pindex; 1260 if (vm_radix_insert(&new_object->rtree, m)) { 1261 m->pindex = opidx; 1262 return (1); 1263 } 1264 1265 /* 1266 * The operation cannot fail anymore. The removal must happen before 1267 * the listq iterator is tainted. 1268 */ 1269 m->pindex = opidx; 1270 vm_page_lock(m); 1271 vm_page_remove(m); 1272 1273 /* Return back to the new pindex to complete vm_page_insert(). */ 1274 m->pindex = new_pindex; 1275 m->object = new_object; 1276 vm_page_unlock(m); 1277 vm_page_insert_radixdone(m, new_object, mpred); 1278 vm_page_dirty(m); 1279 return (0); 1280 } 1281 1282 /* 1283 * Convert all of the given object's cached pages that have a 1284 * pindex within the given range into free pages. If the value 1285 * zero is given for "end", then the range's upper bound is 1286 * infinity. If the given object is backed by a vnode and it 1287 * transitions from having one or more cached pages to none, the 1288 * vnode's hold count is reduced. 1289 */ 1290 void 1291 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1292 { 1293 vm_page_t m; 1294 boolean_t empty; 1295 1296 mtx_lock(&vm_page_queue_free_mtx); 1297 if (__predict_false(vm_radix_is_empty(&object->cache))) { 1298 mtx_unlock(&vm_page_queue_free_mtx); 1299 return; 1300 } 1301 while ((m = vm_radix_lookup_ge(&object->cache, start)) != NULL) { 1302 if (end != 0 && m->pindex >= end) 1303 break; 1304 vm_radix_remove(&object->cache, m->pindex); 1305 vm_page_cache_turn_free(m); 1306 } 1307 empty = vm_radix_is_empty(&object->cache); 1308 mtx_unlock(&vm_page_queue_free_mtx); 1309 if (object->type == OBJT_VNODE && empty) 1310 vdrop(object->handle); 1311 } 1312 1313 /* 1314 * Returns the cached page that is associated with the given 1315 * object and offset. If, however, none exists, returns NULL. 1316 * 1317 * The free page queue must be locked. 1318 */ 1319 static inline vm_page_t 1320 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex) 1321 { 1322 1323 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1324 return (vm_radix_lookup(&object->cache, pindex)); 1325 } 1326 1327 /* 1328 * Remove the given cached page from its containing object's 1329 * collection of cached pages. 1330 * 1331 * The free page queue must be locked. 1332 */ 1333 static void 1334 vm_page_cache_remove(vm_page_t m) 1335 { 1336 1337 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1338 KASSERT((m->flags & PG_CACHED) != 0, 1339 ("vm_page_cache_remove: page %p is not cached", m)); 1340 vm_radix_remove(&m->object->cache, m->pindex); 1341 m->object = NULL; 1342 vm_cnt.v_cache_count--; 1343 } 1344 1345 /* 1346 * Transfer all of the cached pages with offset greater than or 1347 * equal to 'offidxstart' from the original object's cache to the 1348 * new object's cache. However, any cached pages with offset 1349 * greater than or equal to the new object's size are kept in the 1350 * original object. Initially, the new object's cache must be 1351 * empty. Offset 'offidxstart' in the original object must 1352 * correspond to offset zero in the new object. 1353 * 1354 * The new object must be locked. 1355 */ 1356 void 1357 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart, 1358 vm_object_t new_object) 1359 { 1360 vm_page_t m; 1361 1362 /* 1363 * Insertion into an object's collection of cached pages 1364 * requires the object to be locked. In contrast, removal does 1365 * not. 1366 */ 1367 VM_OBJECT_ASSERT_WLOCKED(new_object); 1368 KASSERT(vm_radix_is_empty(&new_object->cache), 1369 ("vm_page_cache_transfer: object %p has cached pages", 1370 new_object)); 1371 mtx_lock(&vm_page_queue_free_mtx); 1372 while ((m = vm_radix_lookup_ge(&orig_object->cache, 1373 offidxstart)) != NULL) { 1374 /* 1375 * Transfer all of the pages with offset greater than or 1376 * equal to 'offidxstart' from the original object's 1377 * cache to the new object's cache. 1378 */ 1379 if ((m->pindex - offidxstart) >= new_object->size) 1380 break; 1381 vm_radix_remove(&orig_object->cache, m->pindex); 1382 /* Update the page's object and offset. */ 1383 m->object = new_object; 1384 m->pindex -= offidxstart; 1385 if (vm_radix_insert(&new_object->cache, m)) 1386 vm_page_cache_turn_free(m); 1387 } 1388 mtx_unlock(&vm_page_queue_free_mtx); 1389 } 1390 1391 /* 1392 * Returns TRUE if a cached page is associated with the given object and 1393 * offset, and FALSE otherwise. 1394 * 1395 * The object must be locked. 1396 */ 1397 boolean_t 1398 vm_page_is_cached(vm_object_t object, vm_pindex_t pindex) 1399 { 1400 vm_page_t m; 1401 1402 /* 1403 * Insertion into an object's collection of cached pages requires the 1404 * object to be locked. Therefore, if the object is locked and the 1405 * object's collection is empty, there is no need to acquire the free 1406 * page queues lock in order to prove that the specified page doesn't 1407 * exist. 1408 */ 1409 VM_OBJECT_ASSERT_WLOCKED(object); 1410 if (__predict_true(vm_object_cache_is_empty(object))) 1411 return (FALSE); 1412 mtx_lock(&vm_page_queue_free_mtx); 1413 m = vm_page_cache_lookup(object, pindex); 1414 mtx_unlock(&vm_page_queue_free_mtx); 1415 return (m != NULL); 1416 } 1417 1418 /* 1419 * vm_page_alloc: 1420 * 1421 * Allocate and return a page that is associated with the specified 1422 * object and offset pair. By default, this page is exclusive busied. 1423 * 1424 * The caller must always specify an allocation class. 1425 * 1426 * allocation classes: 1427 * VM_ALLOC_NORMAL normal process request 1428 * VM_ALLOC_SYSTEM system *really* needs a page 1429 * VM_ALLOC_INTERRUPT interrupt time request 1430 * 1431 * optional allocation flags: 1432 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 1433 * intends to allocate 1434 * VM_ALLOC_IFCACHED return page only if it is cached 1435 * VM_ALLOC_IFNOTCACHED return NULL, do not reactivate if the page 1436 * is cached 1437 * VM_ALLOC_NOBUSY do not exclusive busy the page 1438 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 1439 * VM_ALLOC_NOOBJ page is not associated with an object and 1440 * should not be exclusive busy 1441 * VM_ALLOC_SBUSY shared busy the allocated page 1442 * VM_ALLOC_WIRED wire the allocated page 1443 * VM_ALLOC_ZERO prefer a zeroed page 1444 * 1445 * This routine may not sleep. 1446 */ 1447 vm_page_t 1448 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 1449 { 1450 struct vnode *vp = NULL; 1451 vm_object_t m_object; 1452 vm_page_t m, mpred; 1453 int flags, req_class; 1454 1455 mpred = 0; /* XXX: pacify gcc */ 1456 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) && 1457 (object != NULL || (req & VM_ALLOC_SBUSY) == 0) && 1458 ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 1459 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 1460 ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object, 1461 req)); 1462 if (object != NULL) 1463 VM_OBJECT_ASSERT_WLOCKED(object); 1464 1465 req_class = req & VM_ALLOC_CLASS_MASK; 1466 1467 /* 1468 * The page daemon is allowed to dig deeper into the free page list. 1469 */ 1470 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 1471 req_class = VM_ALLOC_SYSTEM; 1472 1473 if (object != NULL) { 1474 mpred = vm_radix_lookup_le(&object->rtree, pindex); 1475 KASSERT(mpred == NULL || mpred->pindex != pindex, 1476 ("vm_page_alloc: pindex already allocated")); 1477 } 1478 1479 /* 1480 * The page allocation request can came from consumers which already 1481 * hold the free page queue mutex, like vm_page_insert() in 1482 * vm_page_cache(). 1483 */ 1484 mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE); 1485 if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved || 1486 (req_class == VM_ALLOC_SYSTEM && 1487 vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) || 1488 (req_class == VM_ALLOC_INTERRUPT && 1489 vm_cnt.v_free_count + vm_cnt.v_cache_count > 0)) { 1490 /* 1491 * Allocate from the free queue if the number of free pages 1492 * exceeds the minimum for the request class. 1493 */ 1494 if (object != NULL && 1495 (m = vm_page_cache_lookup(object, pindex)) != NULL) { 1496 if ((req & VM_ALLOC_IFNOTCACHED) != 0) { 1497 mtx_unlock(&vm_page_queue_free_mtx); 1498 return (NULL); 1499 } 1500 if (vm_phys_unfree_page(m)) 1501 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0); 1502 #if VM_NRESERVLEVEL > 0 1503 else if (!vm_reserv_reactivate_page(m)) 1504 #else 1505 else 1506 #endif 1507 panic("vm_page_alloc: cache page %p is missing" 1508 " from the free queue", m); 1509 } else if ((req & VM_ALLOC_IFCACHED) != 0) { 1510 mtx_unlock(&vm_page_queue_free_mtx); 1511 return (NULL); 1512 #if VM_NRESERVLEVEL > 0 1513 } else if (object == NULL || (object->flags & (OBJ_COLORED | 1514 OBJ_FICTITIOUS)) != OBJ_COLORED || (m = 1515 vm_reserv_alloc_page(object, pindex, mpred)) == NULL) { 1516 #else 1517 } else { 1518 #endif 1519 m = vm_phys_alloc_pages(object != NULL ? 1520 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0); 1521 #if VM_NRESERVLEVEL > 0 1522 if (m == NULL && vm_reserv_reclaim_inactive()) { 1523 m = vm_phys_alloc_pages(object != NULL ? 1524 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 1525 0); 1526 } 1527 #endif 1528 } 1529 } else { 1530 /* 1531 * Not allocatable, give up. 1532 */ 1533 mtx_unlock(&vm_page_queue_free_mtx); 1534 atomic_add_int(&vm_pageout_deficit, 1535 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); 1536 pagedaemon_wakeup(); 1537 return (NULL); 1538 } 1539 1540 /* 1541 * At this point we had better have found a good page. 1542 */ 1543 KASSERT(m != NULL, ("vm_page_alloc: missing page")); 1544 KASSERT(m->queue == PQ_NONE, 1545 ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue)); 1546 KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m)); 1547 KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m)); 1548 KASSERT(!vm_page_sbusied(m), 1549 ("vm_page_alloc: page %p is busy", m)); 1550 KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m)); 1551 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, 1552 ("vm_page_alloc: page %p has unexpected memattr %d", m, 1553 pmap_page_get_memattr(m))); 1554 if ((m->flags & PG_CACHED) != 0) { 1555 KASSERT((m->flags & PG_ZERO) == 0, 1556 ("vm_page_alloc: cached page %p is PG_ZERO", m)); 1557 KASSERT(m->valid != 0, 1558 ("vm_page_alloc: cached page %p is invalid", m)); 1559 if (m->object == object && m->pindex == pindex) 1560 vm_cnt.v_reactivated++; 1561 else 1562 m->valid = 0; 1563 m_object = m->object; 1564 vm_page_cache_remove(m); 1565 if (m_object->type == OBJT_VNODE && 1566 vm_object_cache_is_empty(m_object)) 1567 vp = m_object->handle; 1568 } else { 1569 KASSERT(m->valid == 0, 1570 ("vm_page_alloc: free page %p is valid", m)); 1571 vm_phys_freecnt_adj(m, -1); 1572 if ((m->flags & PG_ZERO) != 0) 1573 vm_page_zero_count--; 1574 } 1575 mtx_unlock(&vm_page_queue_free_mtx); 1576 1577 /* 1578 * Initialize the page. Only the PG_ZERO flag is inherited. 1579 */ 1580 flags = 0; 1581 if ((req & VM_ALLOC_ZERO) != 0) 1582 flags = PG_ZERO; 1583 flags &= m->flags; 1584 if ((req & VM_ALLOC_NODUMP) != 0) 1585 flags |= PG_NODUMP; 1586 m->flags = flags; 1587 m->aflags = 0; 1588 m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ? 1589 VPO_UNMANAGED : 0; 1590 m->busy_lock = VPB_UNBUSIED; 1591 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0) 1592 m->busy_lock = VPB_SINGLE_EXCLUSIVER; 1593 if ((req & VM_ALLOC_SBUSY) != 0) 1594 m->busy_lock = VPB_SHARERS_WORD(1); 1595 if (req & VM_ALLOC_WIRED) { 1596 /* 1597 * The page lock is not required for wiring a page until that 1598 * page is inserted into the object. 1599 */ 1600 atomic_add_int(&vm_cnt.v_wire_count, 1); 1601 m->wire_count = 1; 1602 } 1603 m->act_count = 0; 1604 1605 if (object != NULL) { 1606 if (vm_page_insert_after(m, object, pindex, mpred)) { 1607 /* See the comment below about hold count. */ 1608 if (vp != NULL) 1609 vdrop(vp); 1610 pagedaemon_wakeup(); 1611 if (req & VM_ALLOC_WIRED) { 1612 atomic_subtract_int(&vm_cnt.v_wire_count, 1); 1613 m->wire_count = 0; 1614 } 1615 m->object = NULL; 1616 vm_page_free(m); 1617 return (NULL); 1618 } 1619 1620 /* Ignore device objects; the pager sets "memattr" for them. */ 1621 if (object->memattr != VM_MEMATTR_DEFAULT && 1622 (object->flags & OBJ_FICTITIOUS) == 0) 1623 pmap_page_set_memattr(m, object->memattr); 1624 } else 1625 m->pindex = pindex; 1626 1627 /* 1628 * The following call to vdrop() must come after the above call 1629 * to vm_page_insert() in case both affect the same object and 1630 * vnode. Otherwise, the affected vnode's hold count could 1631 * temporarily become zero. 1632 */ 1633 if (vp != NULL) 1634 vdrop(vp); 1635 1636 /* 1637 * Don't wakeup too often - wakeup the pageout daemon when 1638 * we would be nearly out of memory. 1639 */ 1640 if (vm_paging_needed()) 1641 pagedaemon_wakeup(); 1642 1643 return (m); 1644 } 1645 1646 static void 1647 vm_page_alloc_contig_vdrop(struct spglist *lst) 1648 { 1649 1650 while (!SLIST_EMPTY(lst)) { 1651 vdrop((struct vnode *)SLIST_FIRST(lst)-> plinks.s.pv); 1652 SLIST_REMOVE_HEAD(lst, plinks.s.ss); 1653 } 1654 } 1655 1656 /* 1657 * vm_page_alloc_contig: 1658 * 1659 * Allocate a contiguous set of physical pages of the given size "npages" 1660 * from the free lists. All of the physical pages must be at or above 1661 * the given physical address "low" and below the given physical address 1662 * "high". The given value "alignment" determines the alignment of the 1663 * first physical page in the set. If the given value "boundary" is 1664 * non-zero, then the set of physical pages cannot cross any physical 1665 * address boundary that is a multiple of that value. Both "alignment" 1666 * and "boundary" must be a power of two. 1667 * 1668 * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT, 1669 * then the memory attribute setting for the physical pages is configured 1670 * to the object's memory attribute setting. Otherwise, the memory 1671 * attribute setting for the physical pages is configured to "memattr", 1672 * overriding the object's memory attribute setting. However, if the 1673 * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the 1674 * memory attribute setting for the physical pages cannot be configured 1675 * to VM_MEMATTR_DEFAULT. 1676 * 1677 * The caller must always specify an allocation class. 1678 * 1679 * allocation classes: 1680 * VM_ALLOC_NORMAL normal process request 1681 * VM_ALLOC_SYSTEM system *really* needs a page 1682 * VM_ALLOC_INTERRUPT interrupt time request 1683 * 1684 * optional allocation flags: 1685 * VM_ALLOC_NOBUSY do not exclusive busy the page 1686 * VM_ALLOC_NOOBJ page is not associated with an object and 1687 * should not be exclusive busy 1688 * VM_ALLOC_SBUSY shared busy the allocated page 1689 * VM_ALLOC_WIRED wire the allocated page 1690 * VM_ALLOC_ZERO prefer a zeroed page 1691 * 1692 * This routine may not sleep. 1693 */ 1694 vm_page_t 1695 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req, 1696 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 1697 vm_paddr_t boundary, vm_memattr_t memattr) 1698 { 1699 struct vnode *drop; 1700 struct spglist deferred_vdrop_list; 1701 vm_page_t m, m_tmp, m_ret; 1702 u_int flags; 1703 int req_class; 1704 1705 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) && 1706 (object != NULL || (req & VM_ALLOC_SBUSY) == 0) && 1707 ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 1708 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 1709 ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object, 1710 req)); 1711 if (object != NULL) { 1712 VM_OBJECT_ASSERT_WLOCKED(object); 1713 KASSERT(object->type == OBJT_PHYS, 1714 ("vm_page_alloc_contig: object %p isn't OBJT_PHYS", 1715 object)); 1716 } 1717 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero")); 1718 req_class = req & VM_ALLOC_CLASS_MASK; 1719 1720 /* 1721 * The page daemon is allowed to dig deeper into the free page list. 1722 */ 1723 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 1724 req_class = VM_ALLOC_SYSTEM; 1725 1726 SLIST_INIT(&deferred_vdrop_list); 1727 mtx_lock(&vm_page_queue_free_mtx); 1728 if (vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages + 1729 vm_cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM && 1730 vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages + 1731 vm_cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT && 1732 vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages)) { 1733 #if VM_NRESERVLEVEL > 0 1734 retry: 1735 if (object == NULL || (object->flags & OBJ_COLORED) == 0 || 1736 (m_ret = vm_reserv_alloc_contig(object, pindex, npages, 1737 low, high, alignment, boundary)) == NULL) 1738 #endif 1739 m_ret = vm_phys_alloc_contig(npages, low, high, 1740 alignment, boundary); 1741 } else { 1742 mtx_unlock(&vm_page_queue_free_mtx); 1743 atomic_add_int(&vm_pageout_deficit, npages); 1744 pagedaemon_wakeup(); 1745 return (NULL); 1746 } 1747 if (m_ret != NULL) 1748 for (m = m_ret; m < &m_ret[npages]; m++) { 1749 drop = vm_page_alloc_init(m); 1750 if (drop != NULL) { 1751 /* 1752 * Enqueue the vnode for deferred vdrop(). 1753 */ 1754 m->plinks.s.pv = drop; 1755 SLIST_INSERT_HEAD(&deferred_vdrop_list, m, 1756 plinks.s.ss); 1757 } 1758 } 1759 else { 1760 #if VM_NRESERVLEVEL > 0 1761 if (vm_reserv_reclaim_contig(npages, low, high, alignment, 1762 boundary)) 1763 goto retry; 1764 #endif 1765 } 1766 mtx_unlock(&vm_page_queue_free_mtx); 1767 if (m_ret == NULL) 1768 return (NULL); 1769 1770 /* 1771 * Initialize the pages. Only the PG_ZERO flag is inherited. 1772 */ 1773 flags = 0; 1774 if ((req & VM_ALLOC_ZERO) != 0) 1775 flags = PG_ZERO; 1776 if ((req & VM_ALLOC_NODUMP) != 0) 1777 flags |= PG_NODUMP; 1778 if ((req & VM_ALLOC_WIRED) != 0) 1779 atomic_add_int(&vm_cnt.v_wire_count, npages); 1780 if (object != NULL) { 1781 if (object->memattr != VM_MEMATTR_DEFAULT && 1782 memattr == VM_MEMATTR_DEFAULT) 1783 memattr = object->memattr; 1784 } 1785 for (m = m_ret; m < &m_ret[npages]; m++) { 1786 m->aflags = 0; 1787 m->flags = (m->flags | PG_NODUMP) & flags; 1788 m->busy_lock = VPB_UNBUSIED; 1789 if (object != NULL) { 1790 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0) 1791 m->busy_lock = VPB_SINGLE_EXCLUSIVER; 1792 if ((req & VM_ALLOC_SBUSY) != 0) 1793 m->busy_lock = VPB_SHARERS_WORD(1); 1794 } 1795 if ((req & VM_ALLOC_WIRED) != 0) 1796 m->wire_count = 1; 1797 /* Unmanaged pages don't use "act_count". */ 1798 m->oflags = VPO_UNMANAGED; 1799 if (object != NULL) { 1800 if (vm_page_insert(m, object, pindex)) { 1801 vm_page_alloc_contig_vdrop( 1802 &deferred_vdrop_list); 1803 if (vm_paging_needed()) 1804 pagedaemon_wakeup(); 1805 if ((req & VM_ALLOC_WIRED) != 0) 1806 atomic_subtract_int(&vm_cnt.v_wire_count, 1807 npages); 1808 for (m_tmp = m, m = m_ret; 1809 m < &m_ret[npages]; m++) { 1810 if ((req & VM_ALLOC_WIRED) != 0) 1811 m->wire_count = 0; 1812 if (m >= m_tmp) 1813 m->object = NULL; 1814 vm_page_free(m); 1815 } 1816 return (NULL); 1817 } 1818 } else 1819 m->pindex = pindex; 1820 if (memattr != VM_MEMATTR_DEFAULT) 1821 pmap_page_set_memattr(m, memattr); 1822 pindex++; 1823 } 1824 vm_page_alloc_contig_vdrop(&deferred_vdrop_list); 1825 if (vm_paging_needed()) 1826 pagedaemon_wakeup(); 1827 return (m_ret); 1828 } 1829 1830 /* 1831 * Initialize a page that has been freshly dequeued from a freelist. 1832 * The caller has to drop the vnode returned, if it is not NULL. 1833 * 1834 * This function may only be used to initialize unmanaged pages. 1835 * 1836 * To be called with vm_page_queue_free_mtx held. 1837 */ 1838 static struct vnode * 1839 vm_page_alloc_init(vm_page_t m) 1840 { 1841 struct vnode *drop; 1842 vm_object_t m_object; 1843 1844 KASSERT(m->queue == PQ_NONE, 1845 ("vm_page_alloc_init: page %p has unexpected queue %d", 1846 m, m->queue)); 1847 KASSERT(m->wire_count == 0, 1848 ("vm_page_alloc_init: page %p is wired", m)); 1849 KASSERT(m->hold_count == 0, 1850 ("vm_page_alloc_init: page %p is held", m)); 1851 KASSERT(!vm_page_sbusied(m), 1852 ("vm_page_alloc_init: page %p is busy", m)); 1853 KASSERT(m->dirty == 0, 1854 ("vm_page_alloc_init: page %p is dirty", m)); 1855 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, 1856 ("vm_page_alloc_init: page %p has unexpected memattr %d", 1857 m, pmap_page_get_memattr(m))); 1858 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1859 drop = NULL; 1860 if ((m->flags & PG_CACHED) != 0) { 1861 KASSERT((m->flags & PG_ZERO) == 0, 1862 ("vm_page_alloc_init: cached page %p is PG_ZERO", m)); 1863 m->valid = 0; 1864 m_object = m->object; 1865 vm_page_cache_remove(m); 1866 if (m_object->type == OBJT_VNODE && 1867 vm_object_cache_is_empty(m_object)) 1868 drop = m_object->handle; 1869 } else { 1870 KASSERT(m->valid == 0, 1871 ("vm_page_alloc_init: free page %p is valid", m)); 1872 vm_phys_freecnt_adj(m, -1); 1873 if ((m->flags & PG_ZERO) != 0) 1874 vm_page_zero_count--; 1875 } 1876 return (drop); 1877 } 1878 1879 /* 1880 * vm_page_alloc_freelist: 1881 * 1882 * Allocate a physical page from the specified free page list. 1883 * 1884 * The caller must always specify an allocation class. 1885 * 1886 * allocation classes: 1887 * VM_ALLOC_NORMAL normal process request 1888 * VM_ALLOC_SYSTEM system *really* needs a page 1889 * VM_ALLOC_INTERRUPT interrupt time request 1890 * 1891 * optional allocation flags: 1892 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 1893 * intends to allocate 1894 * VM_ALLOC_WIRED wire the allocated page 1895 * VM_ALLOC_ZERO prefer a zeroed page 1896 * 1897 * This routine may not sleep. 1898 */ 1899 vm_page_t 1900 vm_page_alloc_freelist(int flind, int req) 1901 { 1902 struct vnode *drop; 1903 vm_page_t m; 1904 u_int flags; 1905 int req_class; 1906 1907 req_class = req & VM_ALLOC_CLASS_MASK; 1908 1909 /* 1910 * The page daemon is allowed to dig deeper into the free page list. 1911 */ 1912 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 1913 req_class = VM_ALLOC_SYSTEM; 1914 1915 /* 1916 * Do not allocate reserved pages unless the req has asked for it. 1917 */ 1918 mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE); 1919 if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved || 1920 (req_class == VM_ALLOC_SYSTEM && 1921 vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) || 1922 (req_class == VM_ALLOC_INTERRUPT && 1923 vm_cnt.v_free_count + vm_cnt.v_cache_count > 0)) 1924 m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0); 1925 else { 1926 mtx_unlock(&vm_page_queue_free_mtx); 1927 atomic_add_int(&vm_pageout_deficit, 1928 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); 1929 pagedaemon_wakeup(); 1930 return (NULL); 1931 } 1932 if (m == NULL) { 1933 mtx_unlock(&vm_page_queue_free_mtx); 1934 return (NULL); 1935 } 1936 drop = vm_page_alloc_init(m); 1937 mtx_unlock(&vm_page_queue_free_mtx); 1938 1939 /* 1940 * Initialize the page. Only the PG_ZERO flag is inherited. 1941 */ 1942 m->aflags = 0; 1943 flags = 0; 1944 if ((req & VM_ALLOC_ZERO) != 0) 1945 flags = PG_ZERO; 1946 m->flags &= flags; 1947 if ((req & VM_ALLOC_WIRED) != 0) { 1948 /* 1949 * The page lock is not required for wiring a page that does 1950 * not belong to an object. 1951 */ 1952 atomic_add_int(&vm_cnt.v_wire_count, 1); 1953 m->wire_count = 1; 1954 } 1955 /* Unmanaged pages don't use "act_count". */ 1956 m->oflags = VPO_UNMANAGED; 1957 if (drop != NULL) 1958 vdrop(drop); 1959 if (vm_paging_needed()) 1960 pagedaemon_wakeup(); 1961 return (m); 1962 } 1963 1964 /* 1965 * vm_wait: (also see VM_WAIT macro) 1966 * 1967 * Sleep until free pages are available for allocation. 1968 * - Called in various places before memory allocations. 1969 */ 1970 void 1971 vm_wait(void) 1972 { 1973 1974 mtx_lock(&vm_page_queue_free_mtx); 1975 if (curproc == pageproc) { 1976 vm_pageout_pages_needed = 1; 1977 msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx, 1978 PDROP | PSWP, "VMWait", 0); 1979 } else { 1980 if (!vm_pages_needed) { 1981 vm_pages_needed = 1; 1982 wakeup(&vm_pages_needed); 1983 } 1984 msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM, 1985 "vmwait", 0); 1986 } 1987 } 1988 1989 /* 1990 * vm_waitpfault: (also see VM_WAITPFAULT macro) 1991 * 1992 * Sleep until free pages are available for allocation. 1993 * - Called only in vm_fault so that processes page faulting 1994 * can be easily tracked. 1995 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 1996 * processes will be able to grab memory first. Do not change 1997 * this balance without careful testing first. 1998 */ 1999 void 2000 vm_waitpfault(void) 2001 { 2002 2003 mtx_lock(&vm_page_queue_free_mtx); 2004 if (!vm_pages_needed) { 2005 vm_pages_needed = 1; 2006 wakeup(&vm_pages_needed); 2007 } 2008 msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER, 2009 "pfault", 0); 2010 } 2011 2012 struct vm_pagequeue * 2013 vm_page_pagequeue(vm_page_t m) 2014 { 2015 2016 return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]); 2017 } 2018 2019 /* 2020 * vm_page_dequeue: 2021 * 2022 * Remove the given page from its current page queue. 2023 * 2024 * The page must be locked. 2025 */ 2026 void 2027 vm_page_dequeue(vm_page_t m) 2028 { 2029 struct vm_pagequeue *pq; 2030 2031 vm_page_assert_locked(m); 2032 KASSERT(m->queue == PQ_ACTIVE || m->queue == PQ_INACTIVE, 2033 ("vm_page_dequeue: page %p is not queued", m)); 2034 pq = vm_page_pagequeue(m); 2035 vm_pagequeue_lock(pq); 2036 m->queue = PQ_NONE; 2037 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 2038 vm_pagequeue_cnt_dec(pq); 2039 vm_pagequeue_unlock(pq); 2040 } 2041 2042 /* 2043 * vm_page_dequeue_locked: 2044 * 2045 * Remove the given page from its current page queue. 2046 * 2047 * The page and page queue must be locked. 2048 */ 2049 void 2050 vm_page_dequeue_locked(vm_page_t m) 2051 { 2052 struct vm_pagequeue *pq; 2053 2054 vm_page_lock_assert(m, MA_OWNED); 2055 pq = vm_page_pagequeue(m); 2056 vm_pagequeue_assert_locked(pq); 2057 m->queue = PQ_NONE; 2058 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 2059 vm_pagequeue_cnt_dec(pq); 2060 } 2061 2062 /* 2063 * vm_page_enqueue: 2064 * 2065 * Add the given page to the specified page queue. 2066 * 2067 * The page must be locked. 2068 */ 2069 static void 2070 vm_page_enqueue(int queue, vm_page_t m) 2071 { 2072 struct vm_pagequeue *pq; 2073 2074 vm_page_lock_assert(m, MA_OWNED); 2075 pq = &vm_phys_domain(m)->vmd_pagequeues[queue]; 2076 vm_pagequeue_lock(pq); 2077 m->queue = queue; 2078 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 2079 vm_pagequeue_cnt_inc(pq); 2080 vm_pagequeue_unlock(pq); 2081 } 2082 2083 /* 2084 * vm_page_requeue: 2085 * 2086 * Move the given page to the tail of its current page queue. 2087 * 2088 * The page must be locked. 2089 */ 2090 void 2091 vm_page_requeue(vm_page_t m) 2092 { 2093 struct vm_pagequeue *pq; 2094 2095 vm_page_lock_assert(m, MA_OWNED); 2096 KASSERT(m->queue != PQ_NONE, 2097 ("vm_page_requeue: page %p is not queued", m)); 2098 pq = vm_page_pagequeue(m); 2099 vm_pagequeue_lock(pq); 2100 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 2101 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 2102 vm_pagequeue_unlock(pq); 2103 } 2104 2105 /* 2106 * vm_page_requeue_locked: 2107 * 2108 * Move the given page to the tail of its current page queue. 2109 * 2110 * The page queue must be locked. 2111 */ 2112 void 2113 vm_page_requeue_locked(vm_page_t m) 2114 { 2115 struct vm_pagequeue *pq; 2116 2117 KASSERT(m->queue != PQ_NONE, 2118 ("vm_page_requeue_locked: page %p is not queued", m)); 2119 pq = vm_page_pagequeue(m); 2120 vm_pagequeue_assert_locked(pq); 2121 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 2122 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 2123 } 2124 2125 /* 2126 * vm_page_activate: 2127 * 2128 * Put the specified page on the active list (if appropriate). 2129 * Ensure that act_count is at least ACT_INIT but do not otherwise 2130 * mess with it. 2131 * 2132 * The page must be locked. 2133 */ 2134 void 2135 vm_page_activate(vm_page_t m) 2136 { 2137 int queue; 2138 2139 vm_page_lock_assert(m, MA_OWNED); 2140 if ((queue = m->queue) != PQ_ACTIVE) { 2141 if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) { 2142 if (m->act_count < ACT_INIT) 2143 m->act_count = ACT_INIT; 2144 if (queue != PQ_NONE) 2145 vm_page_dequeue(m); 2146 vm_page_enqueue(PQ_ACTIVE, m); 2147 } else 2148 KASSERT(queue == PQ_NONE, 2149 ("vm_page_activate: wired page %p is queued", m)); 2150 } else { 2151 if (m->act_count < ACT_INIT) 2152 m->act_count = ACT_INIT; 2153 } 2154 } 2155 2156 /* 2157 * vm_page_free_wakeup: 2158 * 2159 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 2160 * routine is called when a page has been added to the cache or free 2161 * queues. 2162 * 2163 * The page queues must be locked. 2164 */ 2165 static inline void 2166 vm_page_free_wakeup(void) 2167 { 2168 2169 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 2170 /* 2171 * if pageout daemon needs pages, then tell it that there are 2172 * some free. 2173 */ 2174 if (vm_pageout_pages_needed && 2175 vm_cnt.v_cache_count + vm_cnt.v_free_count >= vm_cnt.v_pageout_free_min) { 2176 wakeup(&vm_pageout_pages_needed); 2177 vm_pageout_pages_needed = 0; 2178 } 2179 /* 2180 * wakeup processes that are waiting on memory if we hit a 2181 * high water mark. And wakeup scheduler process if we have 2182 * lots of memory. this process will swapin processes. 2183 */ 2184 if (vm_pages_needed && !vm_page_count_min()) { 2185 vm_pages_needed = 0; 2186 wakeup(&vm_cnt.v_free_count); 2187 } 2188 } 2189 2190 /* 2191 * Turn a cached page into a free page, by changing its attributes. 2192 * Keep the statistics up-to-date. 2193 * 2194 * The free page queue must be locked. 2195 */ 2196 static void 2197 vm_page_cache_turn_free(vm_page_t m) 2198 { 2199 2200 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 2201 2202 m->object = NULL; 2203 m->valid = 0; 2204 KASSERT((m->flags & PG_CACHED) != 0, 2205 ("vm_page_cache_turn_free: page %p is not cached", m)); 2206 m->flags &= ~PG_CACHED; 2207 vm_cnt.v_cache_count--; 2208 vm_phys_freecnt_adj(m, 1); 2209 } 2210 2211 /* 2212 * vm_page_free_toq: 2213 * 2214 * Returns the given page to the free list, 2215 * disassociating it with any VM object. 2216 * 2217 * The object must be locked. The page must be locked if it is managed. 2218 */ 2219 void 2220 vm_page_free_toq(vm_page_t m) 2221 { 2222 2223 if ((m->oflags & VPO_UNMANAGED) == 0) { 2224 vm_page_lock_assert(m, MA_OWNED); 2225 KASSERT(!pmap_page_is_mapped(m), 2226 ("vm_page_free_toq: freeing mapped page %p", m)); 2227 } else 2228 KASSERT(m->queue == PQ_NONE, 2229 ("vm_page_free_toq: unmanaged page %p is queued", m)); 2230 PCPU_INC(cnt.v_tfree); 2231 2232 if (vm_page_sbusied(m)) 2233 panic("vm_page_free: freeing busy page %p", m); 2234 2235 /* 2236 * Unqueue, then remove page. Note that we cannot destroy 2237 * the page here because we do not want to call the pager's 2238 * callback routine until after we've put the page on the 2239 * appropriate free queue. 2240 */ 2241 vm_page_remque(m); 2242 vm_page_remove(m); 2243 2244 /* 2245 * If fictitious remove object association and 2246 * return, otherwise delay object association removal. 2247 */ 2248 if ((m->flags & PG_FICTITIOUS) != 0) { 2249 return; 2250 } 2251 2252 m->valid = 0; 2253 vm_page_undirty(m); 2254 2255 if (m->wire_count != 0) 2256 panic("vm_page_free: freeing wired page %p", m); 2257 if (m->hold_count != 0) { 2258 m->flags &= ~PG_ZERO; 2259 KASSERT((m->flags & PG_UNHOLDFREE) == 0, 2260 ("vm_page_free: freeing PG_UNHOLDFREE page %p", m)); 2261 m->flags |= PG_UNHOLDFREE; 2262 } else { 2263 /* 2264 * Restore the default memory attribute to the page. 2265 */ 2266 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) 2267 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); 2268 2269 /* 2270 * Insert the page into the physical memory allocator's 2271 * cache/free page queues. 2272 */ 2273 mtx_lock(&vm_page_queue_free_mtx); 2274 vm_phys_freecnt_adj(m, 1); 2275 #if VM_NRESERVLEVEL > 0 2276 if (!vm_reserv_free_page(m)) 2277 #else 2278 if (TRUE) 2279 #endif 2280 vm_phys_free_pages(m, 0); 2281 if ((m->flags & PG_ZERO) != 0) 2282 ++vm_page_zero_count; 2283 else 2284 vm_page_zero_idle_wakeup(); 2285 vm_page_free_wakeup(); 2286 mtx_unlock(&vm_page_queue_free_mtx); 2287 } 2288 } 2289 2290 /* 2291 * vm_page_wire: 2292 * 2293 * Mark this page as wired down by yet 2294 * another map, removing it from paging queues 2295 * as necessary. 2296 * 2297 * If the page is fictitious, then its wire count must remain one. 2298 * 2299 * The page must be locked. 2300 */ 2301 void 2302 vm_page_wire(vm_page_t m) 2303 { 2304 2305 /* 2306 * Only bump the wire statistics if the page is not already wired, 2307 * and only unqueue the page if it is on some queue (if it is unmanaged 2308 * it is already off the queues). 2309 */ 2310 vm_page_lock_assert(m, MA_OWNED); 2311 if ((m->flags & PG_FICTITIOUS) != 0) { 2312 KASSERT(m->wire_count == 1, 2313 ("vm_page_wire: fictitious page %p's wire count isn't one", 2314 m)); 2315 return; 2316 } 2317 if (m->wire_count == 0) { 2318 KASSERT((m->oflags & VPO_UNMANAGED) == 0 || 2319 m->queue == PQ_NONE, 2320 ("vm_page_wire: unmanaged page %p is queued", m)); 2321 vm_page_remque(m); 2322 atomic_add_int(&vm_cnt.v_wire_count, 1); 2323 } 2324 m->wire_count++; 2325 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 2326 } 2327 2328 /* 2329 * vm_page_unwire: 2330 * 2331 * Release one wiring of the specified page, potentially enabling it to be 2332 * paged again. If paging is enabled, then the value of the parameter 2333 * "activate" determines to which queue the page is added. If "activate" is 2334 * non-zero, then the page is added to the active queue. Otherwise, it is 2335 * added to the inactive queue. 2336 * 2337 * However, unless the page belongs to an object, it is not enqueued because 2338 * it cannot be paged out. 2339 * 2340 * If a page is fictitious, then its wire count must always be one. 2341 * 2342 * A managed page must be locked. 2343 */ 2344 void 2345 vm_page_unwire(vm_page_t m, int activate) 2346 { 2347 2348 if ((m->oflags & VPO_UNMANAGED) == 0) 2349 vm_page_lock_assert(m, MA_OWNED); 2350 if ((m->flags & PG_FICTITIOUS) != 0) { 2351 KASSERT(m->wire_count == 1, 2352 ("vm_page_unwire: fictitious page %p's wire count isn't one", m)); 2353 return; 2354 } 2355 if (m->wire_count > 0) { 2356 m->wire_count--; 2357 if (m->wire_count == 0) { 2358 atomic_subtract_int(&vm_cnt.v_wire_count, 1); 2359 if ((m->oflags & VPO_UNMANAGED) != 0 || 2360 m->object == NULL) 2361 return; 2362 if (!activate) 2363 m->flags &= ~PG_WINATCFLS; 2364 vm_page_enqueue(activate ? PQ_ACTIVE : PQ_INACTIVE, m); 2365 } 2366 } else 2367 panic("vm_page_unwire: page %p's wire count is zero", m); 2368 } 2369 2370 /* 2371 * Move the specified page to the inactive queue. 2372 * 2373 * Many pages placed on the inactive queue should actually go 2374 * into the cache, but it is difficult to figure out which. What 2375 * we do instead, if the inactive target is well met, is to put 2376 * clean pages at the head of the inactive queue instead of the tail. 2377 * This will cause them to be moved to the cache more quickly and 2378 * if not actively re-referenced, reclaimed more quickly. If we just 2379 * stick these pages at the end of the inactive queue, heavy filesystem 2380 * meta-data accesses can cause an unnecessary paging load on memory bound 2381 * processes. This optimization causes one-time-use metadata to be 2382 * reused more quickly. 2383 * 2384 * Normally athead is 0 resulting in LRU operation. athead is set 2385 * to 1 if we want this page to be 'as if it were placed in the cache', 2386 * except without unmapping it from the process address space. 2387 * 2388 * The page must be locked. 2389 */ 2390 static inline void 2391 _vm_page_deactivate(vm_page_t m, int athead) 2392 { 2393 struct vm_pagequeue *pq; 2394 int queue; 2395 2396 vm_page_lock_assert(m, MA_OWNED); 2397 2398 /* 2399 * Ignore if already inactive. 2400 */ 2401 if ((queue = m->queue) == PQ_INACTIVE) 2402 return; 2403 if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) { 2404 if (queue != PQ_NONE) 2405 vm_page_dequeue(m); 2406 m->flags &= ~PG_WINATCFLS; 2407 pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE]; 2408 vm_pagequeue_lock(pq); 2409 m->queue = PQ_INACTIVE; 2410 if (athead) 2411 TAILQ_INSERT_HEAD(&pq->pq_pl, m, plinks.q); 2412 else 2413 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 2414 vm_pagequeue_cnt_inc(pq); 2415 vm_pagequeue_unlock(pq); 2416 } 2417 } 2418 2419 /* 2420 * Move the specified page to the inactive queue. 2421 * 2422 * The page must be locked. 2423 */ 2424 void 2425 vm_page_deactivate(vm_page_t m) 2426 { 2427 2428 _vm_page_deactivate(m, 0); 2429 } 2430 2431 /* 2432 * vm_page_try_to_cache: 2433 * 2434 * Returns 0 on failure, 1 on success 2435 */ 2436 int 2437 vm_page_try_to_cache(vm_page_t m) 2438 { 2439 2440 vm_page_lock_assert(m, MA_OWNED); 2441 VM_OBJECT_ASSERT_WLOCKED(m->object); 2442 if (m->dirty || m->hold_count || m->wire_count || 2443 (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m)) 2444 return (0); 2445 pmap_remove_all(m); 2446 if (m->dirty) 2447 return (0); 2448 vm_page_cache(m); 2449 return (1); 2450 } 2451 2452 /* 2453 * vm_page_try_to_free() 2454 * 2455 * Attempt to free the page. If we cannot free it, we do nothing. 2456 * 1 is returned on success, 0 on failure. 2457 */ 2458 int 2459 vm_page_try_to_free(vm_page_t m) 2460 { 2461 2462 vm_page_lock_assert(m, MA_OWNED); 2463 if (m->object != NULL) 2464 VM_OBJECT_ASSERT_WLOCKED(m->object); 2465 if (m->dirty || m->hold_count || m->wire_count || 2466 (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m)) 2467 return (0); 2468 pmap_remove_all(m); 2469 if (m->dirty) 2470 return (0); 2471 vm_page_free(m); 2472 return (1); 2473 } 2474 2475 /* 2476 * vm_page_cache 2477 * 2478 * Put the specified page onto the page cache queue (if appropriate). 2479 * 2480 * The object and page must be locked. 2481 */ 2482 void 2483 vm_page_cache(vm_page_t m) 2484 { 2485 vm_object_t object; 2486 boolean_t cache_was_empty; 2487 2488 vm_page_lock_assert(m, MA_OWNED); 2489 object = m->object; 2490 VM_OBJECT_ASSERT_WLOCKED(object); 2491 if (vm_page_busied(m) || (m->oflags & VPO_UNMANAGED) || 2492 m->hold_count || m->wire_count) 2493 panic("vm_page_cache: attempting to cache busy page"); 2494 KASSERT(!pmap_page_is_mapped(m), 2495 ("vm_page_cache: page %p is mapped", m)); 2496 KASSERT(m->dirty == 0, ("vm_page_cache: page %p is dirty", m)); 2497 if (m->valid == 0 || object->type == OBJT_DEFAULT || 2498 (object->type == OBJT_SWAP && 2499 !vm_pager_has_page(object, m->pindex, NULL, NULL))) { 2500 /* 2501 * Hypothesis: A cache-elgible page belonging to a 2502 * default object or swap object but without a backing 2503 * store must be zero filled. 2504 */ 2505 vm_page_free(m); 2506 return; 2507 } 2508 KASSERT((m->flags & PG_CACHED) == 0, 2509 ("vm_page_cache: page %p is already cached", m)); 2510 2511 /* 2512 * Remove the page from the paging queues. 2513 */ 2514 vm_page_remque(m); 2515 2516 /* 2517 * Remove the page from the object's collection of resident 2518 * pages. 2519 */ 2520 vm_radix_remove(&object->rtree, m->pindex); 2521 TAILQ_REMOVE(&object->memq, m, listq); 2522 object->resident_page_count--; 2523 2524 /* 2525 * Restore the default memory attribute to the page. 2526 */ 2527 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) 2528 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); 2529 2530 /* 2531 * Insert the page into the object's collection of cached pages 2532 * and the physical memory allocator's cache/free page queues. 2533 */ 2534 m->flags &= ~PG_ZERO; 2535 mtx_lock(&vm_page_queue_free_mtx); 2536 cache_was_empty = vm_radix_is_empty(&object->cache); 2537 if (vm_radix_insert(&object->cache, m)) { 2538 mtx_unlock(&vm_page_queue_free_mtx); 2539 if (object->resident_page_count == 0) 2540 vdrop(object->handle); 2541 m->object = NULL; 2542 vm_page_free(m); 2543 return; 2544 } 2545 2546 /* 2547 * The above call to vm_radix_insert() could reclaim the one pre- 2548 * existing cached page from this object, resulting in a call to 2549 * vdrop(). 2550 */ 2551 if (!cache_was_empty) 2552 cache_was_empty = vm_radix_is_singleton(&object->cache); 2553 2554 m->flags |= PG_CACHED; 2555 vm_cnt.v_cache_count++; 2556 PCPU_INC(cnt.v_tcached); 2557 #if VM_NRESERVLEVEL > 0 2558 if (!vm_reserv_free_page(m)) { 2559 #else 2560 if (TRUE) { 2561 #endif 2562 vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0); 2563 vm_phys_free_pages(m, 0); 2564 } 2565 vm_page_free_wakeup(); 2566 mtx_unlock(&vm_page_queue_free_mtx); 2567 2568 /* 2569 * Increment the vnode's hold count if this is the object's only 2570 * cached page. Decrement the vnode's hold count if this was 2571 * the object's only resident page. 2572 */ 2573 if (object->type == OBJT_VNODE) { 2574 if (cache_was_empty && object->resident_page_count != 0) 2575 vhold(object->handle); 2576 else if (!cache_was_empty && object->resident_page_count == 0) 2577 vdrop(object->handle); 2578 } 2579 } 2580 2581 /* 2582 * vm_page_advise 2583 * 2584 * Cache, deactivate, or do nothing as appropriate. This routine 2585 * is used by madvise(). 2586 * 2587 * Generally speaking we want to move the page into the cache so 2588 * it gets reused quickly. However, this can result in a silly syndrome 2589 * due to the page recycling too quickly. Small objects will not be 2590 * fully cached. On the other hand, if we move the page to the inactive 2591 * queue we wind up with a problem whereby very large objects 2592 * unnecessarily blow away our inactive and cache queues. 2593 * 2594 * The solution is to move the pages based on a fixed weighting. We 2595 * either leave them alone, deactivate them, or move them to the cache, 2596 * where moving them to the cache has the highest weighting. 2597 * By forcing some pages into other queues we eventually force the 2598 * system to balance the queues, potentially recovering other unrelated 2599 * space from active. The idea is to not force this to happen too 2600 * often. 2601 * 2602 * The object and page must be locked. 2603 */ 2604 void 2605 vm_page_advise(vm_page_t m, int advice) 2606 { 2607 int dnw, head; 2608 2609 vm_page_assert_locked(m); 2610 VM_OBJECT_ASSERT_WLOCKED(m->object); 2611 if (advice == MADV_FREE) { 2612 /* 2613 * Mark the page clean. This will allow the page to be freed 2614 * up by the system. However, such pages are often reused 2615 * quickly by malloc() so we do not do anything that would 2616 * cause a page fault if we can help it. 2617 * 2618 * Specifically, we do not try to actually free the page now 2619 * nor do we try to put it in the cache (which would cause a 2620 * page fault on reuse). 2621 * 2622 * But we do make the page is freeable as we can without 2623 * actually taking the step of unmapping it. 2624 */ 2625 m->dirty = 0; 2626 m->act_count = 0; 2627 } else if (advice != MADV_DONTNEED) 2628 return; 2629 dnw = PCPU_GET(dnweight); 2630 PCPU_INC(dnweight); 2631 2632 /* 2633 * Occasionally leave the page alone. 2634 */ 2635 if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) { 2636 if (m->act_count >= ACT_INIT) 2637 --m->act_count; 2638 return; 2639 } 2640 2641 /* 2642 * Clear any references to the page. Otherwise, the page daemon will 2643 * immediately reactivate the page. 2644 */ 2645 vm_page_aflag_clear(m, PGA_REFERENCED); 2646 2647 if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m)) 2648 vm_page_dirty(m); 2649 2650 if (m->dirty || (dnw & 0x0070) == 0) { 2651 /* 2652 * Deactivate the page 3 times out of 32. 2653 */ 2654 head = 0; 2655 } else { 2656 /* 2657 * Cache the page 28 times out of every 32. Note that 2658 * the page is deactivated instead of cached, but placed 2659 * at the head of the queue instead of the tail. 2660 */ 2661 head = 1; 2662 } 2663 _vm_page_deactivate(m, head); 2664 } 2665 2666 /* 2667 * Grab a page, waiting until we are waken up due to the page 2668 * changing state. We keep on waiting, if the page continues 2669 * to be in the object. If the page doesn't exist, first allocate it 2670 * and then conditionally zero it. 2671 * 2672 * This routine may sleep. 2673 * 2674 * The object must be locked on entry. The lock will, however, be released 2675 * and reacquired if the routine sleeps. 2676 */ 2677 vm_page_t 2678 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 2679 { 2680 vm_page_t m; 2681 int sleep; 2682 2683 VM_OBJECT_ASSERT_WLOCKED(object); 2684 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 2685 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 2686 ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch")); 2687 retrylookup: 2688 if ((m = vm_page_lookup(object, pindex)) != NULL) { 2689 sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ? 2690 vm_page_xbusied(m) : vm_page_busied(m); 2691 if (sleep) { 2692 /* 2693 * Reference the page before unlocking and 2694 * sleeping so that the page daemon is less 2695 * likely to reclaim it. 2696 */ 2697 vm_page_aflag_set(m, PGA_REFERENCED); 2698 vm_page_lock(m); 2699 VM_OBJECT_WUNLOCK(object); 2700 vm_page_busy_sleep(m, "pgrbwt"); 2701 VM_OBJECT_WLOCK(object); 2702 goto retrylookup; 2703 } else { 2704 if ((allocflags & VM_ALLOC_WIRED) != 0) { 2705 vm_page_lock(m); 2706 vm_page_wire(m); 2707 vm_page_unlock(m); 2708 } 2709 if ((allocflags & 2710 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0) 2711 vm_page_xbusy(m); 2712 if ((allocflags & VM_ALLOC_SBUSY) != 0) 2713 vm_page_sbusy(m); 2714 return (m); 2715 } 2716 } 2717 m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_IGN_SBUSY); 2718 if (m == NULL) { 2719 VM_OBJECT_WUNLOCK(object); 2720 VM_WAIT; 2721 VM_OBJECT_WLOCK(object); 2722 goto retrylookup; 2723 } else if (m->valid != 0) 2724 return (m); 2725 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 2726 pmap_zero_page(m); 2727 return (m); 2728 } 2729 2730 /* 2731 * Mapping function for valid or dirty bits in a page. 2732 * 2733 * Inputs are required to range within a page. 2734 */ 2735 vm_page_bits_t 2736 vm_page_bits(int base, int size) 2737 { 2738 int first_bit; 2739 int last_bit; 2740 2741 KASSERT( 2742 base + size <= PAGE_SIZE, 2743 ("vm_page_bits: illegal base/size %d/%d", base, size) 2744 ); 2745 2746 if (size == 0) /* handle degenerate case */ 2747 return (0); 2748 2749 first_bit = base >> DEV_BSHIFT; 2750 last_bit = (base + size - 1) >> DEV_BSHIFT; 2751 2752 return (((vm_page_bits_t)2 << last_bit) - 2753 ((vm_page_bits_t)1 << first_bit)); 2754 } 2755 2756 /* 2757 * vm_page_set_valid_range: 2758 * 2759 * Sets portions of a page valid. The arguments are expected 2760 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 2761 * of any partial chunks touched by the range. The invalid portion of 2762 * such chunks will be zeroed. 2763 * 2764 * (base + size) must be less then or equal to PAGE_SIZE. 2765 */ 2766 void 2767 vm_page_set_valid_range(vm_page_t m, int base, int size) 2768 { 2769 int endoff, frag; 2770 2771 VM_OBJECT_ASSERT_WLOCKED(m->object); 2772 if (size == 0) /* handle degenerate case */ 2773 return; 2774 2775 /* 2776 * If the base is not DEV_BSIZE aligned and the valid 2777 * bit is clear, we have to zero out a portion of the 2778 * first block. 2779 */ 2780 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 2781 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 2782 pmap_zero_page_area(m, frag, base - frag); 2783 2784 /* 2785 * If the ending offset is not DEV_BSIZE aligned and the 2786 * valid bit is clear, we have to zero out a portion of 2787 * the last block. 2788 */ 2789 endoff = base + size; 2790 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 2791 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 2792 pmap_zero_page_area(m, endoff, 2793 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 2794 2795 /* 2796 * Assert that no previously invalid block that is now being validated 2797 * is already dirty. 2798 */ 2799 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0, 2800 ("vm_page_set_valid_range: page %p is dirty", m)); 2801 2802 /* 2803 * Set valid bits inclusive of any overlap. 2804 */ 2805 m->valid |= vm_page_bits(base, size); 2806 } 2807 2808 /* 2809 * Clear the given bits from the specified page's dirty field. 2810 */ 2811 static __inline void 2812 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits) 2813 { 2814 uintptr_t addr; 2815 #if PAGE_SIZE < 16384 2816 int shift; 2817 #endif 2818 2819 /* 2820 * If the object is locked and the page is neither exclusive busy nor 2821 * write mapped, then the page's dirty field cannot possibly be 2822 * set by a concurrent pmap operation. 2823 */ 2824 VM_OBJECT_ASSERT_WLOCKED(m->object); 2825 if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) 2826 m->dirty &= ~pagebits; 2827 else { 2828 /* 2829 * The pmap layer can call vm_page_dirty() without 2830 * holding a distinguished lock. The combination of 2831 * the object's lock and an atomic operation suffice 2832 * to guarantee consistency of the page dirty field. 2833 * 2834 * For PAGE_SIZE == 32768 case, compiler already 2835 * properly aligns the dirty field, so no forcible 2836 * alignment is needed. Only require existence of 2837 * atomic_clear_64 when page size is 32768. 2838 */ 2839 addr = (uintptr_t)&m->dirty; 2840 #if PAGE_SIZE == 32768 2841 atomic_clear_64((uint64_t *)addr, pagebits); 2842 #elif PAGE_SIZE == 16384 2843 atomic_clear_32((uint32_t *)addr, pagebits); 2844 #else /* PAGE_SIZE <= 8192 */ 2845 /* 2846 * Use a trick to perform a 32-bit atomic on the 2847 * containing aligned word, to not depend on the existence 2848 * of atomic_clear_{8, 16}. 2849 */ 2850 shift = addr & (sizeof(uint32_t) - 1); 2851 #if BYTE_ORDER == BIG_ENDIAN 2852 shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY; 2853 #else 2854 shift *= NBBY; 2855 #endif 2856 addr &= ~(sizeof(uint32_t) - 1); 2857 atomic_clear_32((uint32_t *)addr, pagebits << shift); 2858 #endif /* PAGE_SIZE */ 2859 } 2860 } 2861 2862 /* 2863 * vm_page_set_validclean: 2864 * 2865 * Sets portions of a page valid and clean. The arguments are expected 2866 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 2867 * of any partial chunks touched by the range. The invalid portion of 2868 * such chunks will be zero'd. 2869 * 2870 * (base + size) must be less then or equal to PAGE_SIZE. 2871 */ 2872 void 2873 vm_page_set_validclean(vm_page_t m, int base, int size) 2874 { 2875 vm_page_bits_t oldvalid, pagebits; 2876 int endoff, frag; 2877 2878 VM_OBJECT_ASSERT_WLOCKED(m->object); 2879 if (size == 0) /* handle degenerate case */ 2880 return; 2881 2882 /* 2883 * If the base is not DEV_BSIZE aligned and the valid 2884 * bit is clear, we have to zero out a portion of the 2885 * first block. 2886 */ 2887 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 2888 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0) 2889 pmap_zero_page_area(m, frag, base - frag); 2890 2891 /* 2892 * If the ending offset is not DEV_BSIZE aligned and the 2893 * valid bit is clear, we have to zero out a portion of 2894 * the last block. 2895 */ 2896 endoff = base + size; 2897 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 2898 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0) 2899 pmap_zero_page_area(m, endoff, 2900 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 2901 2902 /* 2903 * Set valid, clear dirty bits. If validating the entire 2904 * page we can safely clear the pmap modify bit. We also 2905 * use this opportunity to clear the VPO_NOSYNC flag. If a process 2906 * takes a write fault on a MAP_NOSYNC memory area the flag will 2907 * be set again. 2908 * 2909 * We set valid bits inclusive of any overlap, but we can only 2910 * clear dirty bits for DEV_BSIZE chunks that are fully within 2911 * the range. 2912 */ 2913 oldvalid = m->valid; 2914 pagebits = vm_page_bits(base, size); 2915 m->valid |= pagebits; 2916 #if 0 /* NOT YET */ 2917 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 2918 frag = DEV_BSIZE - frag; 2919 base += frag; 2920 size -= frag; 2921 if (size < 0) 2922 size = 0; 2923 } 2924 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 2925 #endif 2926 if (base == 0 && size == PAGE_SIZE) { 2927 /* 2928 * The page can only be modified within the pmap if it is 2929 * mapped, and it can only be mapped if it was previously 2930 * fully valid. 2931 */ 2932 if (oldvalid == VM_PAGE_BITS_ALL) 2933 /* 2934 * Perform the pmap_clear_modify() first. Otherwise, 2935 * a concurrent pmap operation, such as 2936 * pmap_protect(), could clear a modification in the 2937 * pmap and set the dirty field on the page before 2938 * pmap_clear_modify() had begun and after the dirty 2939 * field was cleared here. 2940 */ 2941 pmap_clear_modify(m); 2942 m->dirty = 0; 2943 m->oflags &= ~VPO_NOSYNC; 2944 } else if (oldvalid != VM_PAGE_BITS_ALL) 2945 m->dirty &= ~pagebits; 2946 else 2947 vm_page_clear_dirty_mask(m, pagebits); 2948 } 2949 2950 void 2951 vm_page_clear_dirty(vm_page_t m, int base, int size) 2952 { 2953 2954 vm_page_clear_dirty_mask(m, vm_page_bits(base, size)); 2955 } 2956 2957 /* 2958 * vm_page_set_invalid: 2959 * 2960 * Invalidates DEV_BSIZE'd chunks within a page. Both the 2961 * valid and dirty bits for the effected areas are cleared. 2962 */ 2963 void 2964 vm_page_set_invalid(vm_page_t m, int base, int size) 2965 { 2966 vm_page_bits_t bits; 2967 vm_object_t object; 2968 2969 object = m->object; 2970 VM_OBJECT_ASSERT_WLOCKED(object); 2971 if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) + 2972 size >= object->un_pager.vnp.vnp_size) 2973 bits = VM_PAGE_BITS_ALL; 2974 else 2975 bits = vm_page_bits(base, size); 2976 if (m->valid == VM_PAGE_BITS_ALL && bits != 0) 2977 pmap_remove_all(m); 2978 KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) || 2979 !pmap_page_is_mapped(m), 2980 ("vm_page_set_invalid: page %p is mapped", m)); 2981 m->valid &= ~bits; 2982 m->dirty &= ~bits; 2983 } 2984 2985 /* 2986 * vm_page_zero_invalid() 2987 * 2988 * The kernel assumes that the invalid portions of a page contain 2989 * garbage, but such pages can be mapped into memory by user code. 2990 * When this occurs, we must zero out the non-valid portions of the 2991 * page so user code sees what it expects. 2992 * 2993 * Pages are most often semi-valid when the end of a file is mapped 2994 * into memory and the file's size is not page aligned. 2995 */ 2996 void 2997 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 2998 { 2999 int b; 3000 int i; 3001 3002 VM_OBJECT_ASSERT_WLOCKED(m->object); 3003 /* 3004 * Scan the valid bits looking for invalid sections that 3005 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 3006 * valid bit may be set ) have already been zerod by 3007 * vm_page_set_validclean(). 3008 */ 3009 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 3010 if (i == (PAGE_SIZE / DEV_BSIZE) || 3011 (m->valid & ((vm_page_bits_t)1 << i))) { 3012 if (i > b) { 3013 pmap_zero_page_area(m, 3014 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 3015 } 3016 b = i + 1; 3017 } 3018 } 3019 3020 /* 3021 * setvalid is TRUE when we can safely set the zero'd areas 3022 * as being valid. We can do this if there are no cache consistancy 3023 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 3024 */ 3025 if (setvalid) 3026 m->valid = VM_PAGE_BITS_ALL; 3027 } 3028 3029 /* 3030 * vm_page_is_valid: 3031 * 3032 * Is (partial) page valid? Note that the case where size == 0 3033 * will return FALSE in the degenerate case where the page is 3034 * entirely invalid, and TRUE otherwise. 3035 */ 3036 int 3037 vm_page_is_valid(vm_page_t m, int base, int size) 3038 { 3039 vm_page_bits_t bits; 3040 3041 VM_OBJECT_ASSERT_LOCKED(m->object); 3042 bits = vm_page_bits(base, size); 3043 return (m->valid != 0 && (m->valid & bits) == bits); 3044 } 3045 3046 /* 3047 * Set the page's dirty bits if the page is modified. 3048 */ 3049 void 3050 vm_page_test_dirty(vm_page_t m) 3051 { 3052 3053 VM_OBJECT_ASSERT_WLOCKED(m->object); 3054 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m)) 3055 vm_page_dirty(m); 3056 } 3057 3058 void 3059 vm_page_lock_KBI(vm_page_t m, const char *file, int line) 3060 { 3061 3062 mtx_lock_flags_(vm_page_lockptr(m), 0, file, line); 3063 } 3064 3065 void 3066 vm_page_unlock_KBI(vm_page_t m, const char *file, int line) 3067 { 3068 3069 mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line); 3070 } 3071 3072 int 3073 vm_page_trylock_KBI(vm_page_t m, const char *file, int line) 3074 { 3075 3076 return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line)); 3077 } 3078 3079 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT) 3080 void 3081 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line) 3082 { 3083 3084 vm_page_lock_assert_KBI(m, MA_OWNED, file, line); 3085 } 3086 3087 void 3088 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line) 3089 { 3090 3091 mtx_assert_(vm_page_lockptr(m), a, file, line); 3092 } 3093 #endif 3094 3095 #ifdef INVARIANTS 3096 void 3097 vm_page_object_lock_assert(vm_page_t m) 3098 { 3099 3100 /* 3101 * Certain of the page's fields may only be modified by the 3102 * holder of the containing object's lock or the exclusive busy. 3103 * holder. Unfortunately, the holder of the write busy is 3104 * not recorded, and thus cannot be checked here. 3105 */ 3106 if (m->object != NULL && !vm_page_xbusied(m)) 3107 VM_OBJECT_ASSERT_WLOCKED(m->object); 3108 } 3109 #endif 3110 3111 #include "opt_ddb.h" 3112 #ifdef DDB 3113 #include <sys/kernel.h> 3114 3115 #include <ddb/ddb.h> 3116 3117 DB_SHOW_COMMAND(page, vm_page_print_page_info) 3118 { 3119 db_printf("vm_cnt.v_free_count: %d\n", vm_cnt.v_free_count); 3120 db_printf("vm_cnt.v_cache_count: %d\n", vm_cnt.v_cache_count); 3121 db_printf("vm_cnt.v_inactive_count: %d\n", vm_cnt.v_inactive_count); 3122 db_printf("vm_cnt.v_active_count: %d\n", vm_cnt.v_active_count); 3123 db_printf("vm_cnt.v_wire_count: %d\n", vm_cnt.v_wire_count); 3124 db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved); 3125 db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min); 3126 db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target); 3127 db_printf("vm_cnt.v_cache_min: %d\n", vm_cnt.v_cache_min); 3128 db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target); 3129 } 3130 3131 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 3132 { 3133 int dom; 3134 3135 db_printf("pq_free %d pq_cache %d\n", 3136 vm_cnt.v_free_count, vm_cnt.v_cache_count); 3137 for (dom = 0; dom < vm_ndomains; dom++) { 3138 db_printf( 3139 "dom %d page_cnt %d free %d pq_act %d pq_inact %d pass %d\n", 3140 dom, 3141 vm_dom[dom].vmd_page_count, 3142 vm_dom[dom].vmd_free_count, 3143 vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt, 3144 vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt, 3145 vm_dom[dom].vmd_pass); 3146 } 3147 } 3148 3149 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo) 3150 { 3151 vm_page_t m; 3152 boolean_t phys; 3153 3154 if (!have_addr) { 3155 db_printf("show pginfo addr\n"); 3156 return; 3157 } 3158 3159 phys = strchr(modif, 'p') != NULL; 3160 if (phys) 3161 m = PHYS_TO_VM_PAGE(addr); 3162 else 3163 m = (vm_page_t)addr; 3164 db_printf( 3165 "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n" 3166 " af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n", 3167 m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr, 3168 m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags, 3169 m->flags, m->act_count, m->busy_lock, m->valid, m->dirty); 3170 } 3171 #endif /* DDB */ 3172