1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * The Mach Operating System project at Carnegie-Mellon University. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 36 */ 37 38 /*- 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 */ 64 65 /* 66 * Resident memory management module. 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include "opt_vm.h" 73 74 #include <sys/param.h> 75 #include <sys/systm.h> 76 #include <sys/counter.h> 77 #include <sys/domainset.h> 78 #include <sys/kernel.h> 79 #include <sys/limits.h> 80 #include <sys/linker.h> 81 #include <sys/lock.h> 82 #include <sys/malloc.h> 83 #include <sys/mman.h> 84 #include <sys/msgbuf.h> 85 #include <sys/mutex.h> 86 #include <sys/proc.h> 87 #include <sys/rwlock.h> 88 #include <sys/sleepqueue.h> 89 #include <sys/sbuf.h> 90 #include <sys/sched.h> 91 #include <sys/smp.h> 92 #include <sys/sysctl.h> 93 #include <sys/vmmeter.h> 94 #include <sys/vnode.h> 95 96 #include <vm/vm.h> 97 #include <vm/pmap.h> 98 #include <vm/vm_param.h> 99 #include <vm/vm_domainset.h> 100 #include <vm/vm_kern.h> 101 #include <vm/vm_map.h> 102 #include <vm/vm_object.h> 103 #include <vm/vm_page.h> 104 #include <vm/vm_pageout.h> 105 #include <vm/vm_phys.h> 106 #include <vm/vm_pagequeue.h> 107 #include <vm/vm_pager.h> 108 #include <vm/vm_radix.h> 109 #include <vm/vm_reserv.h> 110 #include <vm/vm_extern.h> 111 #include <vm/vm_dumpset.h> 112 #include <vm/uma.h> 113 #include <vm/uma_int.h> 114 115 #include <machine/md_var.h> 116 117 struct vm_domain vm_dom[MAXMEMDOM]; 118 119 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]); 120 121 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT]; 122 123 struct mtx_padalign __exclusive_cache_line vm_domainset_lock; 124 /* The following fields are protected by the domainset lock. */ 125 domainset_t __exclusive_cache_line vm_min_domains; 126 domainset_t __exclusive_cache_line vm_severe_domains; 127 static int vm_min_waiters; 128 static int vm_severe_waiters; 129 static int vm_pageproc_waiters; 130 131 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 132 "VM page statistics"); 133 134 static COUNTER_U64_DEFINE_EARLY(pqstate_commit_retries); 135 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries, 136 CTLFLAG_RD, &pqstate_commit_retries, 137 "Number of failed per-page atomic queue state updates"); 138 139 static COUNTER_U64_DEFINE_EARLY(queue_ops); 140 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops, 141 CTLFLAG_RD, &queue_ops, 142 "Number of batched queue operations"); 143 144 static COUNTER_U64_DEFINE_EARLY(queue_nops); 145 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops, 146 CTLFLAG_RD, &queue_nops, 147 "Number of batched queue operations with no effects"); 148 149 /* 150 * bogus page -- for I/O to/from partially complete buffers, 151 * or for paging into sparsely invalid regions. 152 */ 153 vm_page_t bogus_page; 154 155 vm_page_t vm_page_array; 156 long vm_page_array_size; 157 long first_page; 158 159 struct bitset *vm_page_dump; 160 long vm_page_dump_pages; 161 162 static TAILQ_HEAD(, vm_page) blacklist_head; 163 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS); 164 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD | 165 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages"); 166 167 static uma_zone_t fakepg_zone; 168 169 static void vm_page_alloc_check(vm_page_t m); 170 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, 171 vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked); 172 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits); 173 static void vm_page_enqueue(vm_page_t m, uint8_t queue); 174 static bool vm_page_free_prep(vm_page_t m); 175 static void vm_page_free_toq(vm_page_t m); 176 static void vm_page_init(void *dummy); 177 static int vm_page_insert_after(vm_page_t m, vm_object_t object, 178 vm_pindex_t pindex, vm_page_t mpred); 179 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object, 180 vm_page_t mpred); 181 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue, 182 const uint16_t nflag); 183 static int vm_page_reclaim_run(int req_class, int domain, u_long npages, 184 vm_page_t m_run, vm_paddr_t high); 185 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse); 186 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, 187 int req); 188 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain, 189 int flags); 190 static void vm_page_zone_release(void *arg, void **store, int cnt); 191 192 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL); 193 194 static void 195 vm_page_init(void *dummy) 196 { 197 198 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL, 199 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 200 bogus_page = vm_page_alloc_noobj(VM_ALLOC_WIRED); 201 } 202 203 /* 204 * The cache page zone is initialized later since we need to be able to allocate 205 * pages before UMA is fully initialized. 206 */ 207 static void 208 vm_page_init_cache_zones(void *dummy __unused) 209 { 210 struct vm_domain *vmd; 211 struct vm_pgcache *pgcache; 212 int cache, domain, maxcache, pool; 213 214 maxcache = 0; 215 TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &maxcache); 216 maxcache *= mp_ncpus; 217 for (domain = 0; domain < vm_ndomains; domain++) { 218 vmd = VM_DOMAIN(domain); 219 for (pool = 0; pool < VM_NFREEPOOL; pool++) { 220 pgcache = &vmd->vmd_pgcache[pool]; 221 pgcache->domain = domain; 222 pgcache->pool = pool; 223 pgcache->zone = uma_zcache_create("vm pgcache", 224 PAGE_SIZE, NULL, NULL, NULL, NULL, 225 vm_page_zone_import, vm_page_zone_release, pgcache, 226 UMA_ZONE_VM); 227 228 /* 229 * Limit each pool's zone to 0.1% of the pages in the 230 * domain. 231 */ 232 cache = maxcache != 0 ? maxcache : 233 vmd->vmd_page_count / 1000; 234 uma_zone_set_maxcache(pgcache->zone, cache); 235 } 236 } 237 } 238 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL); 239 240 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */ 241 #if PAGE_SIZE == 32768 242 #ifdef CTASSERT 243 CTASSERT(sizeof(u_long) >= 8); 244 #endif 245 #endif 246 247 /* 248 * vm_set_page_size: 249 * 250 * Sets the page size, perhaps based upon the memory 251 * size. Must be called before any use of page-size 252 * dependent functions. 253 */ 254 void 255 vm_set_page_size(void) 256 { 257 if (vm_cnt.v_page_size == 0) 258 vm_cnt.v_page_size = PAGE_SIZE; 259 if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0) 260 panic("vm_set_page_size: page size not a power of two"); 261 } 262 263 /* 264 * vm_page_blacklist_next: 265 * 266 * Find the next entry in the provided string of blacklist 267 * addresses. Entries are separated by space, comma, or newline. 268 * If an invalid integer is encountered then the rest of the 269 * string is skipped. Updates the list pointer to the next 270 * character, or NULL if the string is exhausted or invalid. 271 */ 272 static vm_paddr_t 273 vm_page_blacklist_next(char **list, char *end) 274 { 275 vm_paddr_t bad; 276 char *cp, *pos; 277 278 if (list == NULL || *list == NULL) 279 return (0); 280 if (**list =='\0') { 281 *list = NULL; 282 return (0); 283 } 284 285 /* 286 * If there's no end pointer then the buffer is coming from 287 * the kenv and we know it's null-terminated. 288 */ 289 if (end == NULL) 290 end = *list + strlen(*list); 291 292 /* Ensure that strtoq() won't walk off the end */ 293 if (*end != '\0') { 294 if (*end == '\n' || *end == ' ' || *end == ',') 295 *end = '\0'; 296 else { 297 printf("Blacklist not terminated, skipping\n"); 298 *list = NULL; 299 return (0); 300 } 301 } 302 303 for (pos = *list; *pos != '\0'; pos = cp) { 304 bad = strtoq(pos, &cp, 0); 305 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') { 306 if (bad == 0) { 307 if (++cp < end) 308 continue; 309 else 310 break; 311 } 312 } else 313 break; 314 if (*cp == '\0' || ++cp >= end) 315 *list = NULL; 316 else 317 *list = cp; 318 return (trunc_page(bad)); 319 } 320 printf("Garbage in RAM blacklist, skipping\n"); 321 *list = NULL; 322 return (0); 323 } 324 325 bool 326 vm_page_blacklist_add(vm_paddr_t pa, bool verbose) 327 { 328 struct vm_domain *vmd; 329 vm_page_t m; 330 int ret; 331 332 m = vm_phys_paddr_to_vm_page(pa); 333 if (m == NULL) 334 return (true); /* page does not exist, no failure */ 335 336 vmd = vm_pagequeue_domain(m); 337 vm_domain_free_lock(vmd); 338 ret = vm_phys_unfree_page(m); 339 vm_domain_free_unlock(vmd); 340 if (ret != 0) { 341 vm_domain_freecnt_inc(vmd, -1); 342 TAILQ_INSERT_TAIL(&blacklist_head, m, listq); 343 if (verbose) 344 printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa); 345 } 346 return (ret); 347 } 348 349 /* 350 * vm_page_blacklist_check: 351 * 352 * Iterate through the provided string of blacklist addresses, pulling 353 * each entry out of the physical allocator free list and putting it 354 * onto a list for reporting via the vm.page_blacklist sysctl. 355 */ 356 static void 357 vm_page_blacklist_check(char *list, char *end) 358 { 359 vm_paddr_t pa; 360 char *next; 361 362 next = list; 363 while (next != NULL) { 364 if ((pa = vm_page_blacklist_next(&next, end)) == 0) 365 continue; 366 vm_page_blacklist_add(pa, bootverbose); 367 } 368 } 369 370 /* 371 * vm_page_blacklist_load: 372 * 373 * Search for a special module named "ram_blacklist". It'll be a 374 * plain text file provided by the user via the loader directive 375 * of the same name. 376 */ 377 static void 378 vm_page_blacklist_load(char **list, char **end) 379 { 380 void *mod; 381 u_char *ptr; 382 u_int len; 383 384 mod = NULL; 385 ptr = NULL; 386 387 mod = preload_search_by_type("ram_blacklist"); 388 if (mod != NULL) { 389 ptr = preload_fetch_addr(mod); 390 len = preload_fetch_size(mod); 391 } 392 *list = ptr; 393 if (ptr != NULL) 394 *end = ptr + len; 395 else 396 *end = NULL; 397 return; 398 } 399 400 static int 401 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS) 402 { 403 vm_page_t m; 404 struct sbuf sbuf; 405 int error, first; 406 407 first = 1; 408 error = sysctl_wire_old_buffer(req, 0); 409 if (error != 0) 410 return (error); 411 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 412 TAILQ_FOREACH(m, &blacklist_head, listq) { 413 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",", 414 (uintmax_t)m->phys_addr); 415 first = 0; 416 } 417 error = sbuf_finish(&sbuf); 418 sbuf_delete(&sbuf); 419 return (error); 420 } 421 422 /* 423 * Initialize a dummy page for use in scans of the specified paging queue. 424 * In principle, this function only needs to set the flag PG_MARKER. 425 * Nonetheless, it write busies the page as a safety precaution. 426 */ 427 void 428 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags) 429 { 430 431 bzero(marker, sizeof(*marker)); 432 marker->flags = PG_MARKER; 433 marker->a.flags = aflags; 434 marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE; 435 marker->a.queue = queue; 436 } 437 438 static void 439 vm_page_domain_init(int domain) 440 { 441 struct vm_domain *vmd; 442 struct vm_pagequeue *pq; 443 int i; 444 445 vmd = VM_DOMAIN(domain); 446 bzero(vmd, sizeof(*vmd)); 447 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) = 448 "vm inactive pagequeue"; 449 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) = 450 "vm active pagequeue"; 451 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) = 452 "vm laundry pagequeue"; 453 *__DECONST(const char **, 454 &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) = 455 "vm unswappable pagequeue"; 456 vmd->vmd_domain = domain; 457 vmd->vmd_page_count = 0; 458 vmd->vmd_free_count = 0; 459 vmd->vmd_segs = 0; 460 vmd->vmd_oom = FALSE; 461 for (i = 0; i < PQ_COUNT; i++) { 462 pq = &vmd->vmd_pagequeues[i]; 463 TAILQ_INIT(&pq->pq_pl); 464 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue", 465 MTX_DEF | MTX_DUPOK); 466 pq->pq_pdpages = 0; 467 vm_page_init_marker(&vmd->vmd_markers[i], i, 0); 468 } 469 mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF); 470 mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF); 471 snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain); 472 473 /* 474 * inacthead is used to provide FIFO ordering for LRU-bypassing 475 * insertions. 476 */ 477 vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED); 478 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl, 479 &vmd->vmd_inacthead, plinks.q); 480 481 /* 482 * The clock pages are used to implement active queue scanning without 483 * requeues. Scans start at clock[0], which is advanced after the scan 484 * ends. When the two clock hands meet, they are reset and scanning 485 * resumes from the head of the queue. 486 */ 487 vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED); 488 vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED); 489 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl, 490 &vmd->vmd_clock[0], plinks.q); 491 TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl, 492 &vmd->vmd_clock[1], plinks.q); 493 } 494 495 /* 496 * Initialize a physical page in preparation for adding it to the free 497 * lists. 498 */ 499 void 500 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind) 501 { 502 503 m->object = NULL; 504 m->ref_count = 0; 505 m->busy_lock = VPB_FREED; 506 m->flags = m->a.flags = 0; 507 m->phys_addr = pa; 508 m->a.queue = PQ_NONE; 509 m->psind = 0; 510 m->segind = segind; 511 m->order = VM_NFREEORDER; 512 m->pool = VM_FREEPOOL_DEFAULT; 513 m->valid = m->dirty = 0; 514 pmap_page_init(m); 515 } 516 517 #ifndef PMAP_HAS_PAGE_ARRAY 518 static vm_paddr_t 519 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range) 520 { 521 vm_paddr_t new_end; 522 523 /* 524 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 525 * However, because this page is allocated from KVM, out-of-bounds 526 * accesses using the direct map will not be trapped. 527 */ 528 *vaddr += PAGE_SIZE; 529 530 /* 531 * Allocate physical memory for the page structures, and map it. 532 */ 533 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 534 vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end, 535 VM_PROT_READ | VM_PROT_WRITE); 536 vm_page_array_size = page_range; 537 538 return (new_end); 539 } 540 #endif 541 542 /* 543 * vm_page_startup: 544 * 545 * Initializes the resident memory module. Allocates physical memory for 546 * bootstrapping UMA and some data structures that are used to manage 547 * physical pages. Initializes these structures, and populates the free 548 * page queues. 549 */ 550 vm_offset_t 551 vm_page_startup(vm_offset_t vaddr) 552 { 553 struct vm_phys_seg *seg; 554 struct vm_domain *vmd; 555 vm_page_t m; 556 char *list, *listend; 557 vm_paddr_t end, high_avail, low_avail, new_end, size; 558 vm_paddr_t page_range __unused; 559 vm_paddr_t last_pa, pa, startp, endp; 560 u_long pagecount; 561 #if MINIDUMP_PAGE_TRACKING 562 u_long vm_page_dump_size; 563 #endif 564 int biggestone, i, segind; 565 #ifdef WITNESS 566 vm_offset_t mapped; 567 int witness_size; 568 #endif 569 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE) 570 long ii; 571 #endif 572 573 vaddr = round_page(vaddr); 574 575 vm_phys_early_startup(); 576 biggestone = vm_phys_avail_largest(); 577 end = phys_avail[biggestone+1]; 578 579 /* 580 * Initialize the page and queue locks. 581 */ 582 mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF); 583 for (i = 0; i < PA_LOCK_COUNT; i++) 584 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF); 585 for (i = 0; i < vm_ndomains; i++) 586 vm_page_domain_init(i); 587 588 new_end = end; 589 #ifdef WITNESS 590 witness_size = round_page(witness_startup_count()); 591 new_end -= witness_size; 592 mapped = pmap_map(&vaddr, new_end, new_end + witness_size, 593 VM_PROT_READ | VM_PROT_WRITE); 594 bzero((void *)mapped, witness_size); 595 witness_startup((void *)mapped); 596 #endif 597 598 #if MINIDUMP_PAGE_TRACKING 599 /* 600 * Allocate a bitmap to indicate that a random physical page 601 * needs to be included in a minidump. 602 * 603 * The amd64 port needs this to indicate which direct map pages 604 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 605 * 606 * However, i386 still needs this workspace internally within the 607 * minidump code. In theory, they are not needed on i386, but are 608 * included should the sf_buf code decide to use them. 609 */ 610 last_pa = 0; 611 vm_page_dump_pages = 0; 612 for (i = 0; dump_avail[i + 1] != 0; i += 2) { 613 vm_page_dump_pages += howmany(dump_avail[i + 1], PAGE_SIZE) - 614 dump_avail[i] / PAGE_SIZE; 615 if (dump_avail[i + 1] > last_pa) 616 last_pa = dump_avail[i + 1]; 617 } 618 vm_page_dump_size = round_page(BITSET_SIZE(vm_page_dump_pages)); 619 new_end -= vm_page_dump_size; 620 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, 621 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); 622 bzero((void *)vm_page_dump, vm_page_dump_size); 623 #else 624 (void)last_pa; 625 #endif 626 #if defined(__aarch64__) || defined(__amd64__) || \ 627 defined(__riscv) || defined(__powerpc64__) 628 /* 629 * Include the UMA bootstrap pages, witness pages and vm_page_dump 630 * in a crash dump. When pmap_map() uses the direct map, they are 631 * not automatically included. 632 */ 633 for (pa = new_end; pa < end; pa += PAGE_SIZE) 634 dump_add_page(pa); 635 #endif 636 phys_avail[biggestone + 1] = new_end; 637 #ifdef __amd64__ 638 /* 639 * Request that the physical pages underlying the message buffer be 640 * included in a crash dump. Since the message buffer is accessed 641 * through the direct map, they are not automatically included. 642 */ 643 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr); 644 last_pa = pa + round_page(msgbufsize); 645 while (pa < last_pa) { 646 dump_add_page(pa); 647 pa += PAGE_SIZE; 648 } 649 #endif 650 /* 651 * Compute the number of pages of memory that will be available for 652 * use, taking into account the overhead of a page structure per page. 653 * In other words, solve 654 * "available physical memory" - round_page(page_range * 655 * sizeof(struct vm_page)) = page_range * PAGE_SIZE 656 * for page_range. 657 */ 658 low_avail = phys_avail[0]; 659 high_avail = phys_avail[1]; 660 for (i = 0; i < vm_phys_nsegs; i++) { 661 if (vm_phys_segs[i].start < low_avail) 662 low_avail = vm_phys_segs[i].start; 663 if (vm_phys_segs[i].end > high_avail) 664 high_avail = vm_phys_segs[i].end; 665 } 666 /* Skip the first chunk. It is already accounted for. */ 667 for (i = 2; phys_avail[i + 1] != 0; i += 2) { 668 if (phys_avail[i] < low_avail) 669 low_avail = phys_avail[i]; 670 if (phys_avail[i + 1] > high_avail) 671 high_avail = phys_avail[i + 1]; 672 } 673 first_page = low_avail / PAGE_SIZE; 674 #ifdef VM_PHYSSEG_SPARSE 675 size = 0; 676 for (i = 0; i < vm_phys_nsegs; i++) 677 size += vm_phys_segs[i].end - vm_phys_segs[i].start; 678 for (i = 0; phys_avail[i + 1] != 0; i += 2) 679 size += phys_avail[i + 1] - phys_avail[i]; 680 #elif defined(VM_PHYSSEG_DENSE) 681 size = high_avail - low_avail; 682 #else 683 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 684 #endif 685 686 #ifdef PMAP_HAS_PAGE_ARRAY 687 pmap_page_array_startup(size / PAGE_SIZE); 688 biggestone = vm_phys_avail_largest(); 689 end = new_end = phys_avail[biggestone + 1]; 690 #else 691 #ifdef VM_PHYSSEG_DENSE 692 /* 693 * In the VM_PHYSSEG_DENSE case, the number of pages can account for 694 * the overhead of a page structure per page only if vm_page_array is 695 * allocated from the last physical memory chunk. Otherwise, we must 696 * allocate page structures representing the physical memory 697 * underlying vm_page_array, even though they will not be used. 698 */ 699 if (new_end != high_avail) 700 page_range = size / PAGE_SIZE; 701 else 702 #endif 703 { 704 page_range = size / (PAGE_SIZE + sizeof(struct vm_page)); 705 706 /* 707 * If the partial bytes remaining are large enough for 708 * a page (PAGE_SIZE) without a corresponding 709 * 'struct vm_page', then new_end will contain an 710 * extra page after subtracting the length of the VM 711 * page array. Compensate by subtracting an extra 712 * page from new_end. 713 */ 714 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) { 715 if (new_end == high_avail) 716 high_avail -= PAGE_SIZE; 717 new_end -= PAGE_SIZE; 718 } 719 } 720 end = new_end; 721 new_end = vm_page_array_alloc(&vaddr, end, page_range); 722 #endif 723 724 #if VM_NRESERVLEVEL > 0 725 /* 726 * Allocate physical memory for the reservation management system's 727 * data structures, and map it. 728 */ 729 new_end = vm_reserv_startup(&vaddr, new_end); 730 #endif 731 #if defined(__aarch64__) || defined(__amd64__) || \ 732 defined(__riscv) || defined(__powerpc64__) 733 /* 734 * Include vm_page_array and vm_reserv_array in a crash dump. 735 */ 736 for (pa = new_end; pa < end; pa += PAGE_SIZE) 737 dump_add_page(pa); 738 #endif 739 phys_avail[biggestone + 1] = new_end; 740 741 /* 742 * Add physical memory segments corresponding to the available 743 * physical pages. 744 */ 745 for (i = 0; phys_avail[i + 1] != 0; i += 2) 746 if (vm_phys_avail_size(i) != 0) 747 vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]); 748 749 /* 750 * Initialize the physical memory allocator. 751 */ 752 vm_phys_init(); 753 754 /* 755 * Initialize the page structures and add every available page to the 756 * physical memory allocator's free lists. 757 */ 758 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE) 759 for (ii = 0; ii < vm_page_array_size; ii++) { 760 m = &vm_page_array[ii]; 761 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0); 762 m->flags = PG_FICTITIOUS; 763 } 764 #endif 765 vm_cnt.v_page_count = 0; 766 for (segind = 0; segind < vm_phys_nsegs; segind++) { 767 seg = &vm_phys_segs[segind]; 768 for (m = seg->first_page, pa = seg->start; pa < seg->end; 769 m++, pa += PAGE_SIZE) 770 vm_page_init_page(m, pa, segind); 771 772 /* 773 * Add the segment's pages that are covered by one of 774 * phys_avail's ranges to the free lists. 775 */ 776 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 777 if (seg->end <= phys_avail[i] || 778 seg->start >= phys_avail[i + 1]) 779 continue; 780 781 startp = MAX(seg->start, phys_avail[i]); 782 endp = MIN(seg->end, phys_avail[i + 1]); 783 pagecount = (u_long)atop(endp - startp); 784 if (pagecount == 0) 785 continue; 786 787 m = seg->first_page + atop(startp - seg->start); 788 vmd = VM_DOMAIN(seg->domain); 789 vm_domain_free_lock(vmd); 790 vm_phys_enqueue_contig(m, pagecount); 791 vm_domain_free_unlock(vmd); 792 vm_domain_freecnt_inc(vmd, pagecount); 793 vm_cnt.v_page_count += (u_int)pagecount; 794 vmd->vmd_page_count += (u_int)pagecount; 795 vmd->vmd_segs |= 1UL << segind; 796 } 797 } 798 799 /* 800 * Remove blacklisted pages from the physical memory allocator. 801 */ 802 TAILQ_INIT(&blacklist_head); 803 vm_page_blacklist_load(&list, &listend); 804 vm_page_blacklist_check(list, listend); 805 806 list = kern_getenv("vm.blacklist"); 807 vm_page_blacklist_check(list, NULL); 808 809 freeenv(list); 810 #if VM_NRESERVLEVEL > 0 811 /* 812 * Initialize the reservation management system. 813 */ 814 vm_reserv_init(); 815 #endif 816 817 return (vaddr); 818 } 819 820 void 821 vm_page_reference(vm_page_t m) 822 { 823 824 vm_page_aflag_set(m, PGA_REFERENCED); 825 } 826 827 /* 828 * vm_page_trybusy 829 * 830 * Helper routine for grab functions to trylock busy. 831 * 832 * Returns true on success and false on failure. 833 */ 834 static bool 835 vm_page_trybusy(vm_page_t m, int allocflags) 836 { 837 838 if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0) 839 return (vm_page_trysbusy(m)); 840 else 841 return (vm_page_tryxbusy(m)); 842 } 843 844 /* 845 * vm_page_tryacquire 846 * 847 * Helper routine for grab functions to trylock busy and wire. 848 * 849 * Returns true on success and false on failure. 850 */ 851 static inline bool 852 vm_page_tryacquire(vm_page_t m, int allocflags) 853 { 854 bool locked; 855 856 locked = vm_page_trybusy(m, allocflags); 857 if (locked && (allocflags & VM_ALLOC_WIRED) != 0) 858 vm_page_wire(m); 859 return (locked); 860 } 861 862 /* 863 * vm_page_busy_acquire: 864 * 865 * Acquire the busy lock as described by VM_ALLOC_* flags. Will loop 866 * and drop the object lock if necessary. 867 */ 868 bool 869 vm_page_busy_acquire(vm_page_t m, int allocflags) 870 { 871 vm_object_t obj; 872 bool locked; 873 874 /* 875 * The page-specific object must be cached because page 876 * identity can change during the sleep, causing the 877 * re-lock of a different object. 878 * It is assumed that a reference to the object is already 879 * held by the callers. 880 */ 881 obj = atomic_load_ptr(&m->object); 882 for (;;) { 883 if (vm_page_tryacquire(m, allocflags)) 884 return (true); 885 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 886 return (false); 887 if (obj != NULL) 888 locked = VM_OBJECT_WOWNED(obj); 889 else 890 locked = false; 891 MPASS(locked || vm_page_wired(m)); 892 if (_vm_page_busy_sleep(obj, m, m->pindex, "vmpba", allocflags, 893 locked) && locked) 894 VM_OBJECT_WLOCK(obj); 895 if ((allocflags & VM_ALLOC_WAITFAIL) != 0) 896 return (false); 897 KASSERT(m->object == obj || m->object == NULL, 898 ("vm_page_busy_acquire: page %p does not belong to %p", 899 m, obj)); 900 } 901 } 902 903 /* 904 * vm_page_busy_downgrade: 905 * 906 * Downgrade an exclusive busy page into a single shared busy page. 907 */ 908 void 909 vm_page_busy_downgrade(vm_page_t m) 910 { 911 u_int x; 912 913 vm_page_assert_xbusied(m); 914 915 x = vm_page_busy_fetch(m); 916 for (;;) { 917 if (atomic_fcmpset_rel_int(&m->busy_lock, 918 &x, VPB_SHARERS_WORD(1))) 919 break; 920 } 921 if ((x & VPB_BIT_WAITERS) != 0) 922 wakeup(m); 923 } 924 925 /* 926 * 927 * vm_page_busy_tryupgrade: 928 * 929 * Attempt to upgrade a single shared busy into an exclusive busy. 930 */ 931 int 932 vm_page_busy_tryupgrade(vm_page_t m) 933 { 934 u_int ce, x; 935 936 vm_page_assert_sbusied(m); 937 938 x = vm_page_busy_fetch(m); 939 ce = VPB_CURTHREAD_EXCLUSIVE; 940 for (;;) { 941 if (VPB_SHARERS(x) > 1) 942 return (0); 943 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1), 944 ("vm_page_busy_tryupgrade: invalid lock state")); 945 if (!atomic_fcmpset_acq_int(&m->busy_lock, &x, 946 ce | (x & VPB_BIT_WAITERS))) 947 continue; 948 return (1); 949 } 950 } 951 952 /* 953 * vm_page_sbusied: 954 * 955 * Return a positive value if the page is shared busied, 0 otherwise. 956 */ 957 int 958 vm_page_sbusied(vm_page_t m) 959 { 960 u_int x; 961 962 x = vm_page_busy_fetch(m); 963 return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED); 964 } 965 966 /* 967 * vm_page_sunbusy: 968 * 969 * Shared unbusy a page. 970 */ 971 void 972 vm_page_sunbusy(vm_page_t m) 973 { 974 u_int x; 975 976 vm_page_assert_sbusied(m); 977 978 x = vm_page_busy_fetch(m); 979 for (;;) { 980 KASSERT(x != VPB_FREED, 981 ("vm_page_sunbusy: Unlocking freed page.")); 982 if (VPB_SHARERS(x) > 1) { 983 if (atomic_fcmpset_int(&m->busy_lock, &x, 984 x - VPB_ONE_SHARER)) 985 break; 986 continue; 987 } 988 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1), 989 ("vm_page_sunbusy: invalid lock state")); 990 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED)) 991 continue; 992 if ((x & VPB_BIT_WAITERS) == 0) 993 break; 994 wakeup(m); 995 break; 996 } 997 } 998 999 /* 1000 * vm_page_busy_sleep: 1001 * 1002 * Sleep if the page is busy, using the page pointer as wchan. 1003 * This is used to implement the hard-path of the busying mechanism. 1004 * 1005 * If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function 1006 * will not sleep if the page is shared-busy. 1007 * 1008 * The object lock must be held on entry. 1009 * 1010 * Returns true if it slept and dropped the object lock, or false 1011 * if there was no sleep and the lock is still held. 1012 */ 1013 bool 1014 vm_page_busy_sleep(vm_page_t m, const char *wmesg, int allocflags) 1015 { 1016 vm_object_t obj; 1017 1018 obj = m->object; 1019 VM_OBJECT_ASSERT_LOCKED(obj); 1020 1021 return (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, allocflags, 1022 true)); 1023 } 1024 1025 /* 1026 * vm_page_busy_sleep_unlocked: 1027 * 1028 * Sleep if the page is busy, using the page pointer as wchan. 1029 * This is used to implement the hard-path of busying mechanism. 1030 * 1031 * If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function 1032 * will not sleep if the page is shared-busy. 1033 * 1034 * The object lock must not be held on entry. The operation will 1035 * return if the page changes identity. 1036 */ 1037 void 1038 vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, vm_pindex_t pindex, 1039 const char *wmesg, int allocflags) 1040 { 1041 VM_OBJECT_ASSERT_UNLOCKED(obj); 1042 1043 (void)_vm_page_busy_sleep(obj, m, pindex, wmesg, allocflags, false); 1044 } 1045 1046 /* 1047 * _vm_page_busy_sleep: 1048 * 1049 * Internal busy sleep function. Verifies the page identity and 1050 * lockstate against parameters. Returns true if it sleeps and 1051 * false otherwise. 1052 * 1053 * allocflags uses VM_ALLOC_* flags to specify the lock required. 1054 * 1055 * If locked is true the lock will be dropped for any true returns 1056 * and held for any false returns. 1057 */ 1058 static bool 1059 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, vm_pindex_t pindex, 1060 const char *wmesg, int allocflags, bool locked) 1061 { 1062 bool xsleep; 1063 u_int x; 1064 1065 /* 1066 * If the object is busy we must wait for that to drain to zero 1067 * before trying the page again. 1068 */ 1069 if (obj != NULL && vm_object_busied(obj)) { 1070 if (locked) 1071 VM_OBJECT_DROP(obj); 1072 vm_object_busy_wait(obj, wmesg); 1073 return (true); 1074 } 1075 1076 if (!vm_page_busied(m)) 1077 return (false); 1078 1079 xsleep = (allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0; 1080 sleepq_lock(m); 1081 x = vm_page_busy_fetch(m); 1082 do { 1083 /* 1084 * If the page changes objects or becomes unlocked we can 1085 * simply return. 1086 */ 1087 if (x == VPB_UNBUSIED || 1088 (xsleep && (x & VPB_BIT_SHARED) != 0) || 1089 m->object != obj || m->pindex != pindex) { 1090 sleepq_release(m); 1091 return (false); 1092 } 1093 if ((x & VPB_BIT_WAITERS) != 0) 1094 break; 1095 } while (!atomic_fcmpset_int(&m->busy_lock, &x, x | VPB_BIT_WAITERS)); 1096 if (locked) 1097 VM_OBJECT_DROP(obj); 1098 DROP_GIANT(); 1099 sleepq_add(m, NULL, wmesg, 0, 0); 1100 sleepq_wait(m, PVM); 1101 PICKUP_GIANT(); 1102 return (true); 1103 } 1104 1105 /* 1106 * vm_page_trysbusy: 1107 * 1108 * Try to shared busy a page. 1109 * If the operation succeeds 1 is returned otherwise 0. 1110 * The operation never sleeps. 1111 */ 1112 int 1113 vm_page_trysbusy(vm_page_t m) 1114 { 1115 vm_object_t obj; 1116 u_int x; 1117 1118 obj = m->object; 1119 x = vm_page_busy_fetch(m); 1120 for (;;) { 1121 if ((x & VPB_BIT_SHARED) == 0) 1122 return (0); 1123 /* 1124 * Reduce the window for transient busies that will trigger 1125 * false negatives in vm_page_ps_test(). 1126 */ 1127 if (obj != NULL && vm_object_busied(obj)) 1128 return (0); 1129 if (atomic_fcmpset_acq_int(&m->busy_lock, &x, 1130 x + VPB_ONE_SHARER)) 1131 break; 1132 } 1133 1134 /* Refetch the object now that we're guaranteed that it is stable. */ 1135 obj = m->object; 1136 if (obj != NULL && vm_object_busied(obj)) { 1137 vm_page_sunbusy(m); 1138 return (0); 1139 } 1140 return (1); 1141 } 1142 1143 /* 1144 * vm_page_tryxbusy: 1145 * 1146 * Try to exclusive busy a page. 1147 * If the operation succeeds 1 is returned otherwise 0. 1148 * The operation never sleeps. 1149 */ 1150 int 1151 vm_page_tryxbusy(vm_page_t m) 1152 { 1153 vm_object_t obj; 1154 1155 if (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED, 1156 VPB_CURTHREAD_EXCLUSIVE) == 0) 1157 return (0); 1158 1159 obj = m->object; 1160 if (obj != NULL && vm_object_busied(obj)) { 1161 vm_page_xunbusy(m); 1162 return (0); 1163 } 1164 return (1); 1165 } 1166 1167 static void 1168 vm_page_xunbusy_hard_tail(vm_page_t m) 1169 { 1170 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED); 1171 /* Wake the waiter. */ 1172 wakeup(m); 1173 } 1174 1175 /* 1176 * vm_page_xunbusy_hard: 1177 * 1178 * Called when unbusy has failed because there is a waiter. 1179 */ 1180 void 1181 vm_page_xunbusy_hard(vm_page_t m) 1182 { 1183 vm_page_assert_xbusied(m); 1184 vm_page_xunbusy_hard_tail(m); 1185 } 1186 1187 void 1188 vm_page_xunbusy_hard_unchecked(vm_page_t m) 1189 { 1190 vm_page_assert_xbusied_unchecked(m); 1191 vm_page_xunbusy_hard_tail(m); 1192 } 1193 1194 static void 1195 vm_page_busy_free(vm_page_t m) 1196 { 1197 u_int x; 1198 1199 atomic_thread_fence_rel(); 1200 x = atomic_swap_int(&m->busy_lock, VPB_FREED); 1201 if ((x & VPB_BIT_WAITERS) != 0) 1202 wakeup(m); 1203 } 1204 1205 /* 1206 * vm_page_unhold_pages: 1207 * 1208 * Unhold each of the pages that is referenced by the given array. 1209 */ 1210 void 1211 vm_page_unhold_pages(vm_page_t *ma, int count) 1212 { 1213 1214 for (; count != 0; count--) { 1215 vm_page_unwire(*ma, PQ_ACTIVE); 1216 ma++; 1217 } 1218 } 1219 1220 vm_page_t 1221 PHYS_TO_VM_PAGE(vm_paddr_t pa) 1222 { 1223 vm_page_t m; 1224 1225 #ifdef VM_PHYSSEG_SPARSE 1226 m = vm_phys_paddr_to_vm_page(pa); 1227 if (m == NULL) 1228 m = vm_phys_fictitious_to_vm_page(pa); 1229 return (m); 1230 #elif defined(VM_PHYSSEG_DENSE) 1231 long pi; 1232 1233 pi = atop(pa); 1234 if (pi >= first_page && (pi - first_page) < vm_page_array_size) { 1235 m = &vm_page_array[pi - first_page]; 1236 return (m); 1237 } 1238 return (vm_phys_fictitious_to_vm_page(pa)); 1239 #else 1240 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 1241 #endif 1242 } 1243 1244 /* 1245 * vm_page_getfake: 1246 * 1247 * Create a fictitious page with the specified physical address and 1248 * memory attribute. The memory attribute is the only the machine- 1249 * dependent aspect of a fictitious page that must be initialized. 1250 */ 1251 vm_page_t 1252 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr) 1253 { 1254 vm_page_t m; 1255 1256 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO); 1257 vm_page_initfake(m, paddr, memattr); 1258 return (m); 1259 } 1260 1261 void 1262 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 1263 { 1264 1265 if ((m->flags & PG_FICTITIOUS) != 0) { 1266 /* 1267 * The page's memattr might have changed since the 1268 * previous initialization. Update the pmap to the 1269 * new memattr. 1270 */ 1271 goto memattr; 1272 } 1273 m->phys_addr = paddr; 1274 m->a.queue = PQ_NONE; 1275 /* Fictitious pages don't use "segind". */ 1276 m->flags = PG_FICTITIOUS; 1277 /* Fictitious pages don't use "order" or "pool". */ 1278 m->oflags = VPO_UNMANAGED; 1279 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE; 1280 /* Fictitious pages are unevictable. */ 1281 m->ref_count = 1; 1282 pmap_page_init(m); 1283 memattr: 1284 pmap_page_set_memattr(m, memattr); 1285 } 1286 1287 /* 1288 * vm_page_putfake: 1289 * 1290 * Release a fictitious page. 1291 */ 1292 void 1293 vm_page_putfake(vm_page_t m) 1294 { 1295 1296 KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m)); 1297 KASSERT((m->flags & PG_FICTITIOUS) != 0, 1298 ("vm_page_putfake: bad page %p", m)); 1299 vm_page_assert_xbusied(m); 1300 vm_page_busy_free(m); 1301 uma_zfree(fakepg_zone, m); 1302 } 1303 1304 /* 1305 * vm_page_updatefake: 1306 * 1307 * Update the given fictitious page to the specified physical address and 1308 * memory attribute. 1309 */ 1310 void 1311 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 1312 { 1313 1314 KASSERT((m->flags & PG_FICTITIOUS) != 0, 1315 ("vm_page_updatefake: bad page %p", m)); 1316 m->phys_addr = paddr; 1317 pmap_page_set_memattr(m, memattr); 1318 } 1319 1320 /* 1321 * vm_page_free: 1322 * 1323 * Free a page. 1324 */ 1325 void 1326 vm_page_free(vm_page_t m) 1327 { 1328 1329 m->flags &= ~PG_ZERO; 1330 vm_page_free_toq(m); 1331 } 1332 1333 /* 1334 * vm_page_free_zero: 1335 * 1336 * Free a page to the zerod-pages queue 1337 */ 1338 void 1339 vm_page_free_zero(vm_page_t m) 1340 { 1341 1342 m->flags |= PG_ZERO; 1343 vm_page_free_toq(m); 1344 } 1345 1346 /* 1347 * Unbusy and handle the page queueing for a page from a getpages request that 1348 * was optionally read ahead or behind. 1349 */ 1350 void 1351 vm_page_readahead_finish(vm_page_t m) 1352 { 1353 1354 /* We shouldn't put invalid pages on queues. */ 1355 KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m)); 1356 1357 /* 1358 * Since the page is not the actually needed one, whether it should 1359 * be activated or deactivated is not obvious. Empirical results 1360 * have shown that deactivating the page is usually the best choice, 1361 * unless the page is wanted by another thread. 1362 */ 1363 if ((vm_page_busy_fetch(m) & VPB_BIT_WAITERS) != 0) 1364 vm_page_activate(m); 1365 else 1366 vm_page_deactivate(m); 1367 vm_page_xunbusy_unchecked(m); 1368 } 1369 1370 /* 1371 * Destroy the identity of an invalid page and free it if possible. 1372 * This is intended to be used when reading a page from backing store fails. 1373 */ 1374 void 1375 vm_page_free_invalid(vm_page_t m) 1376 { 1377 1378 KASSERT(vm_page_none_valid(m), ("page %p is valid", m)); 1379 KASSERT(!pmap_page_is_mapped(m), ("page %p is mapped", m)); 1380 KASSERT(m->object != NULL, ("page %p has no object", m)); 1381 VM_OBJECT_ASSERT_WLOCKED(m->object); 1382 1383 /* 1384 * We may be attempting to free the page as part of the handling for an 1385 * I/O error, in which case the page was xbusied by a different thread. 1386 */ 1387 vm_page_xbusy_claim(m); 1388 1389 /* 1390 * If someone has wired this page while the object lock 1391 * was not held, then the thread that unwires is responsible 1392 * for freeing the page. Otherwise just free the page now. 1393 * The wire count of this unmapped page cannot change while 1394 * we have the page xbusy and the page's object wlocked. 1395 */ 1396 if (vm_page_remove(m)) 1397 vm_page_free(m); 1398 } 1399 1400 /* 1401 * vm_page_dirty_KBI: [ internal use only ] 1402 * 1403 * Set all bits in the page's dirty field. 1404 * 1405 * The object containing the specified page must be locked if the 1406 * call is made from the machine-independent layer. 1407 * 1408 * See vm_page_clear_dirty_mask(). 1409 * 1410 * This function should only be called by vm_page_dirty(). 1411 */ 1412 void 1413 vm_page_dirty_KBI(vm_page_t m) 1414 { 1415 1416 /* Refer to this operation by its public name. */ 1417 KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!")); 1418 m->dirty = VM_PAGE_BITS_ALL; 1419 } 1420 1421 /* 1422 * vm_page_insert: [ internal use only ] 1423 * 1424 * Inserts the given mem entry into the object and object list. 1425 * 1426 * The object must be locked. 1427 */ 1428 int 1429 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 1430 { 1431 vm_page_t mpred; 1432 1433 VM_OBJECT_ASSERT_WLOCKED(object); 1434 mpred = vm_radix_lookup_le(&object->rtree, pindex); 1435 return (vm_page_insert_after(m, object, pindex, mpred)); 1436 } 1437 1438 /* 1439 * vm_page_insert_after: 1440 * 1441 * Inserts the page "m" into the specified object at offset "pindex". 1442 * 1443 * The page "mpred" must immediately precede the offset "pindex" within 1444 * the specified object. 1445 * 1446 * The object must be locked. 1447 */ 1448 static int 1449 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex, 1450 vm_page_t mpred) 1451 { 1452 vm_page_t msucc; 1453 1454 VM_OBJECT_ASSERT_WLOCKED(object); 1455 KASSERT(m->object == NULL, 1456 ("vm_page_insert_after: page already inserted")); 1457 if (mpred != NULL) { 1458 KASSERT(mpred->object == object, 1459 ("vm_page_insert_after: object doesn't contain mpred")); 1460 KASSERT(mpred->pindex < pindex, 1461 ("vm_page_insert_after: mpred doesn't precede pindex")); 1462 msucc = TAILQ_NEXT(mpred, listq); 1463 } else 1464 msucc = TAILQ_FIRST(&object->memq); 1465 if (msucc != NULL) 1466 KASSERT(msucc->pindex > pindex, 1467 ("vm_page_insert_after: msucc doesn't succeed pindex")); 1468 1469 /* 1470 * Record the object/offset pair in this page. 1471 */ 1472 m->object = object; 1473 m->pindex = pindex; 1474 m->ref_count |= VPRC_OBJREF; 1475 1476 /* 1477 * Now link into the object's ordered list of backed pages. 1478 */ 1479 if (vm_radix_insert(&object->rtree, m)) { 1480 m->object = NULL; 1481 m->pindex = 0; 1482 m->ref_count &= ~VPRC_OBJREF; 1483 return (1); 1484 } 1485 vm_page_insert_radixdone(m, object, mpred); 1486 return (0); 1487 } 1488 1489 /* 1490 * vm_page_insert_radixdone: 1491 * 1492 * Complete page "m" insertion into the specified object after the 1493 * radix trie hooking. 1494 * 1495 * The page "mpred" must precede the offset "m->pindex" within the 1496 * specified object. 1497 * 1498 * The object must be locked. 1499 */ 1500 static void 1501 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred) 1502 { 1503 1504 VM_OBJECT_ASSERT_WLOCKED(object); 1505 KASSERT(object != NULL && m->object == object, 1506 ("vm_page_insert_radixdone: page %p has inconsistent object", m)); 1507 KASSERT((m->ref_count & VPRC_OBJREF) != 0, 1508 ("vm_page_insert_radixdone: page %p is missing object ref", m)); 1509 if (mpred != NULL) { 1510 KASSERT(mpred->object == object, 1511 ("vm_page_insert_radixdone: object doesn't contain mpred")); 1512 KASSERT(mpred->pindex < m->pindex, 1513 ("vm_page_insert_radixdone: mpred doesn't precede pindex")); 1514 } 1515 1516 if (mpred != NULL) 1517 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq); 1518 else 1519 TAILQ_INSERT_HEAD(&object->memq, m, listq); 1520 1521 /* 1522 * Show that the object has one more resident page. 1523 */ 1524 object->resident_page_count++; 1525 1526 /* 1527 * Hold the vnode until the last page is released. 1528 */ 1529 if (object->resident_page_count == 1 && object->type == OBJT_VNODE) 1530 vhold(object->handle); 1531 1532 /* 1533 * Since we are inserting a new and possibly dirty page, 1534 * update the object's generation count. 1535 */ 1536 if (pmap_page_is_write_mapped(m)) 1537 vm_object_set_writeable_dirty(object); 1538 } 1539 1540 /* 1541 * Do the work to remove a page from its object. The caller is responsible for 1542 * updating the page's fields to reflect this removal. 1543 */ 1544 static void 1545 vm_page_object_remove(vm_page_t m) 1546 { 1547 vm_object_t object; 1548 vm_page_t mrem __diagused; 1549 1550 vm_page_assert_xbusied(m); 1551 object = m->object; 1552 VM_OBJECT_ASSERT_WLOCKED(object); 1553 KASSERT((m->ref_count & VPRC_OBJREF) != 0, 1554 ("page %p is missing its object ref", m)); 1555 1556 /* Deferred free of swap space. */ 1557 if ((m->a.flags & PGA_SWAP_FREE) != 0) 1558 vm_pager_page_unswapped(m); 1559 1560 m->object = NULL; 1561 mrem = vm_radix_remove(&object->rtree, m->pindex); 1562 KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m)); 1563 1564 /* 1565 * Now remove from the object's list of backed pages. 1566 */ 1567 TAILQ_REMOVE(&object->memq, m, listq); 1568 1569 /* 1570 * And show that the object has one fewer resident page. 1571 */ 1572 object->resident_page_count--; 1573 1574 /* 1575 * The vnode may now be recycled. 1576 */ 1577 if (object->resident_page_count == 0 && object->type == OBJT_VNODE) 1578 vdrop(object->handle); 1579 } 1580 1581 /* 1582 * vm_page_remove: 1583 * 1584 * Removes the specified page from its containing object, but does not 1585 * invalidate any backing storage. Returns true if the object's reference 1586 * was the last reference to the page, and false otherwise. 1587 * 1588 * The object must be locked and the page must be exclusively busied. 1589 * The exclusive busy will be released on return. If this is not the 1590 * final ref and the caller does not hold a wire reference it may not 1591 * continue to access the page. 1592 */ 1593 bool 1594 vm_page_remove(vm_page_t m) 1595 { 1596 bool dropped; 1597 1598 dropped = vm_page_remove_xbusy(m); 1599 vm_page_xunbusy(m); 1600 1601 return (dropped); 1602 } 1603 1604 /* 1605 * vm_page_remove_xbusy 1606 * 1607 * Removes the page but leaves the xbusy held. Returns true if this 1608 * removed the final ref and false otherwise. 1609 */ 1610 bool 1611 vm_page_remove_xbusy(vm_page_t m) 1612 { 1613 1614 vm_page_object_remove(m); 1615 return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF); 1616 } 1617 1618 /* 1619 * vm_page_lookup: 1620 * 1621 * Returns the page associated with the object/offset 1622 * pair specified; if none is found, NULL is returned. 1623 * 1624 * The object must be locked. 1625 */ 1626 vm_page_t 1627 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 1628 { 1629 1630 VM_OBJECT_ASSERT_LOCKED(object); 1631 return (vm_radix_lookup(&object->rtree, pindex)); 1632 } 1633 1634 /* 1635 * vm_page_lookup_unlocked: 1636 * 1637 * Returns the page associated with the object/offset pair specified; 1638 * if none is found, NULL is returned. The page may be no longer be 1639 * present in the object at the time that this function returns. Only 1640 * useful for opportunistic checks such as inmem(). 1641 */ 1642 vm_page_t 1643 vm_page_lookup_unlocked(vm_object_t object, vm_pindex_t pindex) 1644 { 1645 1646 return (vm_radix_lookup_unlocked(&object->rtree, pindex)); 1647 } 1648 1649 /* 1650 * vm_page_relookup: 1651 * 1652 * Returns a page that must already have been busied by 1653 * the caller. Used for bogus page replacement. 1654 */ 1655 vm_page_t 1656 vm_page_relookup(vm_object_t object, vm_pindex_t pindex) 1657 { 1658 vm_page_t m; 1659 1660 m = vm_radix_lookup_unlocked(&object->rtree, pindex); 1661 KASSERT(m != NULL && (vm_page_busied(m) || vm_page_wired(m)) && 1662 m->object == object && m->pindex == pindex, 1663 ("vm_page_relookup: Invalid page %p", m)); 1664 return (m); 1665 } 1666 1667 /* 1668 * This should only be used by lockless functions for releasing transient 1669 * incorrect acquires. The page may have been freed after we acquired a 1670 * busy lock. In this case busy_lock == VPB_FREED and we have nothing 1671 * further to do. 1672 */ 1673 static void 1674 vm_page_busy_release(vm_page_t m) 1675 { 1676 u_int x; 1677 1678 x = vm_page_busy_fetch(m); 1679 for (;;) { 1680 if (x == VPB_FREED) 1681 break; 1682 if ((x & VPB_BIT_SHARED) != 0 && VPB_SHARERS(x) > 1) { 1683 if (atomic_fcmpset_int(&m->busy_lock, &x, 1684 x - VPB_ONE_SHARER)) 1685 break; 1686 continue; 1687 } 1688 KASSERT((x & VPB_BIT_SHARED) != 0 || 1689 (x & ~VPB_BIT_WAITERS) == VPB_CURTHREAD_EXCLUSIVE, 1690 ("vm_page_busy_release: %p xbusy not owned.", m)); 1691 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED)) 1692 continue; 1693 if ((x & VPB_BIT_WAITERS) != 0) 1694 wakeup(m); 1695 break; 1696 } 1697 } 1698 1699 /* 1700 * vm_page_find_least: 1701 * 1702 * Returns the page associated with the object with least pindex 1703 * greater than or equal to the parameter pindex, or NULL. 1704 * 1705 * The object must be locked. 1706 */ 1707 vm_page_t 1708 vm_page_find_least(vm_object_t object, vm_pindex_t pindex) 1709 { 1710 vm_page_t m; 1711 1712 VM_OBJECT_ASSERT_LOCKED(object); 1713 if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex) 1714 m = vm_radix_lookup_ge(&object->rtree, pindex); 1715 return (m); 1716 } 1717 1718 /* 1719 * Returns the given page's successor (by pindex) within the object if it is 1720 * resident; if none is found, NULL is returned. 1721 * 1722 * The object must be locked. 1723 */ 1724 vm_page_t 1725 vm_page_next(vm_page_t m) 1726 { 1727 vm_page_t next; 1728 1729 VM_OBJECT_ASSERT_LOCKED(m->object); 1730 if ((next = TAILQ_NEXT(m, listq)) != NULL) { 1731 MPASS(next->object == m->object); 1732 if (next->pindex != m->pindex + 1) 1733 next = NULL; 1734 } 1735 return (next); 1736 } 1737 1738 /* 1739 * Returns the given page's predecessor (by pindex) within the object if it is 1740 * resident; if none is found, NULL is returned. 1741 * 1742 * The object must be locked. 1743 */ 1744 vm_page_t 1745 vm_page_prev(vm_page_t m) 1746 { 1747 vm_page_t prev; 1748 1749 VM_OBJECT_ASSERT_LOCKED(m->object); 1750 if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) { 1751 MPASS(prev->object == m->object); 1752 if (prev->pindex != m->pindex - 1) 1753 prev = NULL; 1754 } 1755 return (prev); 1756 } 1757 1758 /* 1759 * Uses the page mnew as a replacement for an existing page at index 1760 * pindex which must be already present in the object. 1761 * 1762 * Both pages must be exclusively busied on enter. The old page is 1763 * unbusied on exit. 1764 * 1765 * A return value of true means mold is now free. If this is not the 1766 * final ref and the caller does not hold a wire reference it may not 1767 * continue to access the page. 1768 */ 1769 static bool 1770 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex, 1771 vm_page_t mold) 1772 { 1773 vm_page_t mret __diagused; 1774 bool dropped; 1775 1776 VM_OBJECT_ASSERT_WLOCKED(object); 1777 vm_page_assert_xbusied(mold); 1778 KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0, 1779 ("vm_page_replace: page %p already in object", mnew)); 1780 1781 /* 1782 * This function mostly follows vm_page_insert() and 1783 * vm_page_remove() without the radix, object count and vnode 1784 * dance. Double check such functions for more comments. 1785 */ 1786 1787 mnew->object = object; 1788 mnew->pindex = pindex; 1789 atomic_set_int(&mnew->ref_count, VPRC_OBJREF); 1790 mret = vm_radix_replace(&object->rtree, mnew); 1791 KASSERT(mret == mold, 1792 ("invalid page replacement, mold=%p, mret=%p", mold, mret)); 1793 KASSERT((mold->oflags & VPO_UNMANAGED) == 1794 (mnew->oflags & VPO_UNMANAGED), 1795 ("vm_page_replace: mismatched VPO_UNMANAGED")); 1796 1797 /* Keep the resident page list in sorted order. */ 1798 TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq); 1799 TAILQ_REMOVE(&object->memq, mold, listq); 1800 mold->object = NULL; 1801 1802 /* 1803 * The object's resident_page_count does not change because we have 1804 * swapped one page for another, but the generation count should 1805 * change if the page is dirty. 1806 */ 1807 if (pmap_page_is_write_mapped(mnew)) 1808 vm_object_set_writeable_dirty(object); 1809 dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF; 1810 vm_page_xunbusy(mold); 1811 1812 return (dropped); 1813 } 1814 1815 void 1816 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex, 1817 vm_page_t mold) 1818 { 1819 1820 vm_page_assert_xbusied(mnew); 1821 1822 if (vm_page_replace_hold(mnew, object, pindex, mold)) 1823 vm_page_free(mold); 1824 } 1825 1826 /* 1827 * vm_page_rename: 1828 * 1829 * Move the given memory entry from its 1830 * current object to the specified target object/offset. 1831 * 1832 * Note: swap associated with the page must be invalidated by the move. We 1833 * have to do this for several reasons: (1) we aren't freeing the 1834 * page, (2) we are dirtying the page, (3) the VM system is probably 1835 * moving the page from object A to B, and will then later move 1836 * the backing store from A to B and we can't have a conflict. 1837 * 1838 * Note: we *always* dirty the page. It is necessary both for the 1839 * fact that we moved it, and because we may be invalidating 1840 * swap. 1841 * 1842 * The objects must be locked. 1843 */ 1844 int 1845 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 1846 { 1847 vm_page_t mpred; 1848 vm_pindex_t opidx; 1849 1850 VM_OBJECT_ASSERT_WLOCKED(new_object); 1851 1852 KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m)); 1853 mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex); 1854 KASSERT(mpred == NULL || mpred->pindex != new_pindex, 1855 ("vm_page_rename: pindex already renamed")); 1856 1857 /* 1858 * Create a custom version of vm_page_insert() which does not depend 1859 * by m_prev and can cheat on the implementation aspects of the 1860 * function. 1861 */ 1862 opidx = m->pindex; 1863 m->pindex = new_pindex; 1864 if (vm_radix_insert(&new_object->rtree, m)) { 1865 m->pindex = opidx; 1866 return (1); 1867 } 1868 1869 /* 1870 * The operation cannot fail anymore. The removal must happen before 1871 * the listq iterator is tainted. 1872 */ 1873 m->pindex = opidx; 1874 vm_page_object_remove(m); 1875 1876 /* Return back to the new pindex to complete vm_page_insert(). */ 1877 m->pindex = new_pindex; 1878 m->object = new_object; 1879 1880 vm_page_insert_radixdone(m, new_object, mpred); 1881 vm_page_dirty(m); 1882 return (0); 1883 } 1884 1885 /* 1886 * vm_page_alloc: 1887 * 1888 * Allocate and return a page that is associated with the specified 1889 * object and offset pair. By default, this page is exclusive busied. 1890 * 1891 * The caller must always specify an allocation class. 1892 * 1893 * allocation classes: 1894 * VM_ALLOC_NORMAL normal process request 1895 * VM_ALLOC_SYSTEM system *really* needs a page 1896 * VM_ALLOC_INTERRUPT interrupt time request 1897 * 1898 * optional allocation flags: 1899 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 1900 * intends to allocate 1901 * VM_ALLOC_NOBUSY do not exclusive busy the page 1902 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 1903 * VM_ALLOC_SBUSY shared busy the allocated page 1904 * VM_ALLOC_WIRED wire the allocated page 1905 * VM_ALLOC_ZERO prefer a zeroed page 1906 */ 1907 vm_page_t 1908 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 1909 { 1910 1911 return (vm_page_alloc_after(object, pindex, req, 1912 vm_radix_lookup_le(&object->rtree, pindex))); 1913 } 1914 1915 vm_page_t 1916 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain, 1917 int req) 1918 { 1919 1920 return (vm_page_alloc_domain_after(object, pindex, domain, req, 1921 vm_radix_lookup_le(&object->rtree, pindex))); 1922 } 1923 1924 /* 1925 * Allocate a page in the specified object with the given page index. To 1926 * optimize insertion of the page into the object, the caller must also specifiy 1927 * the resident page in the object with largest index smaller than the given 1928 * page index, or NULL if no such page exists. 1929 */ 1930 vm_page_t 1931 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex, 1932 int req, vm_page_t mpred) 1933 { 1934 struct vm_domainset_iter di; 1935 vm_page_t m; 1936 int domain; 1937 1938 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req); 1939 do { 1940 m = vm_page_alloc_domain_after(object, pindex, domain, req, 1941 mpred); 1942 if (m != NULL) 1943 break; 1944 } while (vm_domainset_iter_page(&di, object, &domain) == 0); 1945 1946 return (m); 1947 } 1948 1949 /* 1950 * Returns true if the number of free pages exceeds the minimum 1951 * for the request class and false otherwise. 1952 */ 1953 static int 1954 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages) 1955 { 1956 u_int limit, old, new; 1957 1958 if (req_class == VM_ALLOC_INTERRUPT) 1959 limit = 0; 1960 else if (req_class == VM_ALLOC_SYSTEM) 1961 limit = vmd->vmd_interrupt_free_min; 1962 else 1963 limit = vmd->vmd_free_reserved; 1964 1965 /* 1966 * Attempt to reserve the pages. Fail if we're below the limit. 1967 */ 1968 limit += npages; 1969 old = vmd->vmd_free_count; 1970 do { 1971 if (old < limit) 1972 return (0); 1973 new = old - npages; 1974 } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0); 1975 1976 /* Wake the page daemon if we've crossed the threshold. */ 1977 if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old)) 1978 pagedaemon_wakeup(vmd->vmd_domain); 1979 1980 /* Only update bitsets on transitions. */ 1981 if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) || 1982 (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe)) 1983 vm_domain_set(vmd); 1984 1985 return (1); 1986 } 1987 1988 int 1989 vm_domain_allocate(struct vm_domain *vmd, int req, int npages) 1990 { 1991 int req_class; 1992 1993 /* 1994 * The page daemon is allowed to dig deeper into the free page list. 1995 */ 1996 req_class = req & VM_ALLOC_CLASS_MASK; 1997 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 1998 req_class = VM_ALLOC_SYSTEM; 1999 return (_vm_domain_allocate(vmd, req_class, npages)); 2000 } 2001 2002 vm_page_t 2003 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain, 2004 int req, vm_page_t mpred) 2005 { 2006 struct vm_domain *vmd; 2007 vm_page_t m; 2008 int flags; 2009 2010 #define VPA_FLAGS (VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL | \ 2011 VM_ALLOC_NOWAIT | VM_ALLOC_NOBUSY | \ 2012 VM_ALLOC_SBUSY | VM_ALLOC_WIRED | \ 2013 VM_ALLOC_NODUMP | VM_ALLOC_ZERO | VM_ALLOC_COUNT_MASK) 2014 KASSERT((req & ~VPA_FLAGS) == 0, 2015 ("invalid request %#x", req)); 2016 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 2017 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 2018 ("invalid request %#x", req)); 2019 KASSERT(mpred == NULL || mpred->pindex < pindex, 2020 ("mpred %p doesn't precede pindex 0x%jx", mpred, 2021 (uintmax_t)pindex)); 2022 VM_OBJECT_ASSERT_WLOCKED(object); 2023 2024 flags = 0; 2025 m = NULL; 2026 again: 2027 #if VM_NRESERVLEVEL > 0 2028 /* 2029 * Can we allocate the page from a reservation? 2030 */ 2031 if (vm_object_reserv(object) && 2032 (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) != 2033 NULL) { 2034 goto found; 2035 } 2036 #endif 2037 vmd = VM_DOMAIN(domain); 2038 if (vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone != NULL) { 2039 m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone, 2040 M_NOWAIT | M_NOVM); 2041 if (m != NULL) { 2042 flags |= PG_PCPU_CACHE; 2043 goto found; 2044 } 2045 } 2046 if (vm_domain_allocate(vmd, req, 1)) { 2047 /* 2048 * If not, allocate it from the free page queues. 2049 */ 2050 vm_domain_free_lock(vmd); 2051 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, 0); 2052 vm_domain_free_unlock(vmd); 2053 if (m == NULL) { 2054 vm_domain_freecnt_inc(vmd, 1); 2055 #if VM_NRESERVLEVEL > 0 2056 if (vm_reserv_reclaim_inactive(domain)) 2057 goto again; 2058 #endif 2059 } 2060 } 2061 if (m == NULL) { 2062 /* 2063 * Not allocatable, give up. 2064 */ 2065 if (vm_domain_alloc_fail(vmd, object, req)) 2066 goto again; 2067 return (NULL); 2068 } 2069 2070 /* 2071 * At this point we had better have found a good page. 2072 */ 2073 found: 2074 vm_page_dequeue(m); 2075 vm_page_alloc_check(m); 2076 2077 /* 2078 * Initialize the page. Only the PG_ZERO flag is inherited. 2079 */ 2080 flags |= m->flags & PG_ZERO; 2081 if ((req & VM_ALLOC_NODUMP) != 0) 2082 flags |= PG_NODUMP; 2083 m->flags = flags; 2084 m->a.flags = 0; 2085 m->oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0; 2086 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0) 2087 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE; 2088 else if ((req & VM_ALLOC_SBUSY) != 0) 2089 m->busy_lock = VPB_SHARERS_WORD(1); 2090 else 2091 m->busy_lock = VPB_UNBUSIED; 2092 if (req & VM_ALLOC_WIRED) { 2093 vm_wire_add(1); 2094 m->ref_count = 1; 2095 } 2096 m->a.act_count = 0; 2097 2098 if (vm_page_insert_after(m, object, pindex, mpred)) { 2099 if (req & VM_ALLOC_WIRED) { 2100 vm_wire_sub(1); 2101 m->ref_count = 0; 2102 } 2103 KASSERT(m->object == NULL, ("page %p has object", m)); 2104 m->oflags = VPO_UNMANAGED; 2105 m->busy_lock = VPB_UNBUSIED; 2106 /* Don't change PG_ZERO. */ 2107 vm_page_free_toq(m); 2108 if (req & VM_ALLOC_WAITFAIL) { 2109 VM_OBJECT_WUNLOCK(object); 2110 vm_radix_wait(); 2111 VM_OBJECT_WLOCK(object); 2112 } 2113 return (NULL); 2114 } 2115 2116 /* Ignore device objects; the pager sets "memattr" for them. */ 2117 if (object->memattr != VM_MEMATTR_DEFAULT && 2118 (object->flags & OBJ_FICTITIOUS) == 0) 2119 pmap_page_set_memattr(m, object->memattr); 2120 2121 return (m); 2122 } 2123 2124 /* 2125 * vm_page_alloc_contig: 2126 * 2127 * Allocate a contiguous set of physical pages of the given size "npages" 2128 * from the free lists. All of the physical pages must be at or above 2129 * the given physical address "low" and below the given physical address 2130 * "high". The given value "alignment" determines the alignment of the 2131 * first physical page in the set. If the given value "boundary" is 2132 * non-zero, then the set of physical pages cannot cross any physical 2133 * address boundary that is a multiple of that value. Both "alignment" 2134 * and "boundary" must be a power of two. 2135 * 2136 * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT, 2137 * then the memory attribute setting for the physical pages is configured 2138 * to the object's memory attribute setting. Otherwise, the memory 2139 * attribute setting for the physical pages is configured to "memattr", 2140 * overriding the object's memory attribute setting. However, if the 2141 * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the 2142 * memory attribute setting for the physical pages cannot be configured 2143 * to VM_MEMATTR_DEFAULT. 2144 * 2145 * The specified object may not contain fictitious pages. 2146 * 2147 * The caller must always specify an allocation class. 2148 * 2149 * allocation classes: 2150 * VM_ALLOC_NORMAL normal process request 2151 * VM_ALLOC_SYSTEM system *really* needs a page 2152 * VM_ALLOC_INTERRUPT interrupt time request 2153 * 2154 * optional allocation flags: 2155 * VM_ALLOC_NOBUSY do not exclusive busy the page 2156 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 2157 * VM_ALLOC_SBUSY shared busy the allocated page 2158 * VM_ALLOC_WIRED wire the allocated page 2159 * VM_ALLOC_ZERO prefer a zeroed page 2160 */ 2161 vm_page_t 2162 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req, 2163 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 2164 vm_paddr_t boundary, vm_memattr_t memattr) 2165 { 2166 struct vm_domainset_iter di; 2167 vm_page_t m; 2168 int domain; 2169 2170 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req); 2171 do { 2172 m = vm_page_alloc_contig_domain(object, pindex, domain, req, 2173 npages, low, high, alignment, boundary, memattr); 2174 if (m != NULL) 2175 break; 2176 } while (vm_domainset_iter_page(&di, object, &domain) == 0); 2177 2178 return (m); 2179 } 2180 2181 static vm_page_t 2182 vm_page_find_contig_domain(int domain, int req, u_long npages, vm_paddr_t low, 2183 vm_paddr_t high, u_long alignment, vm_paddr_t boundary) 2184 { 2185 struct vm_domain *vmd; 2186 vm_page_t m_ret; 2187 2188 /* 2189 * Can we allocate the pages without the number of free pages falling 2190 * below the lower bound for the allocation class? 2191 */ 2192 vmd = VM_DOMAIN(domain); 2193 if (!vm_domain_allocate(vmd, req, npages)) 2194 return (NULL); 2195 /* 2196 * Try to allocate the pages from the free page queues. 2197 */ 2198 vm_domain_free_lock(vmd); 2199 m_ret = vm_phys_alloc_contig(domain, npages, low, high, 2200 alignment, boundary); 2201 vm_domain_free_unlock(vmd); 2202 if (m_ret != NULL) 2203 return (m_ret); 2204 #if VM_NRESERVLEVEL > 0 2205 /* 2206 * Try to break a reservation to allocate the pages. 2207 */ 2208 if ((req & VM_ALLOC_NORECLAIM) == 0) { 2209 m_ret = vm_reserv_reclaim_contig(domain, npages, low, 2210 high, alignment, boundary); 2211 if (m_ret != NULL) 2212 return (m_ret); 2213 } 2214 #endif 2215 vm_domain_freecnt_inc(vmd, npages); 2216 return (NULL); 2217 } 2218 2219 vm_page_t 2220 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain, 2221 int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 2222 vm_paddr_t boundary, vm_memattr_t memattr) 2223 { 2224 vm_page_t m, m_ret, mpred; 2225 u_int busy_lock, flags, oflags; 2226 2227 #define VPAC_FLAGS (VPA_FLAGS | VM_ALLOC_NORECLAIM) 2228 KASSERT((req & ~VPAC_FLAGS) == 0, 2229 ("invalid request %#x", req)); 2230 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 2231 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 2232 ("invalid request %#x", req)); 2233 KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) != 2234 (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM), 2235 ("invalid request %#x", req)); 2236 VM_OBJECT_ASSERT_WLOCKED(object); 2237 KASSERT((object->flags & OBJ_FICTITIOUS) == 0, 2238 ("vm_page_alloc_contig: object %p has fictitious pages", 2239 object)); 2240 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero")); 2241 2242 mpred = vm_radix_lookup_le(&object->rtree, pindex); 2243 KASSERT(mpred == NULL || mpred->pindex != pindex, 2244 ("vm_page_alloc_contig: pindex already allocated")); 2245 for (;;) { 2246 #if VM_NRESERVLEVEL > 0 2247 /* 2248 * Can we allocate the pages from a reservation? 2249 */ 2250 if (vm_object_reserv(object) && 2251 (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req, 2252 mpred, npages, low, high, alignment, boundary)) != NULL) { 2253 break; 2254 } 2255 #endif 2256 if ((m_ret = vm_page_find_contig_domain(domain, req, npages, 2257 low, high, alignment, boundary)) != NULL) 2258 break; 2259 if (!vm_domain_alloc_fail(VM_DOMAIN(domain), object, req)) 2260 return (NULL); 2261 } 2262 for (m = m_ret; m < &m_ret[npages]; m++) { 2263 vm_page_dequeue(m); 2264 vm_page_alloc_check(m); 2265 } 2266 2267 /* 2268 * Initialize the pages. Only the PG_ZERO flag is inherited. 2269 */ 2270 flags = PG_ZERO; 2271 if ((req & VM_ALLOC_NODUMP) != 0) 2272 flags |= PG_NODUMP; 2273 oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0; 2274 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0) 2275 busy_lock = VPB_CURTHREAD_EXCLUSIVE; 2276 else if ((req & VM_ALLOC_SBUSY) != 0) 2277 busy_lock = VPB_SHARERS_WORD(1); 2278 else 2279 busy_lock = VPB_UNBUSIED; 2280 if ((req & VM_ALLOC_WIRED) != 0) 2281 vm_wire_add(npages); 2282 if (object->memattr != VM_MEMATTR_DEFAULT && 2283 memattr == VM_MEMATTR_DEFAULT) 2284 memattr = object->memattr; 2285 for (m = m_ret; m < &m_ret[npages]; m++) { 2286 m->a.flags = 0; 2287 m->flags = (m->flags | PG_NODUMP) & flags; 2288 m->busy_lock = busy_lock; 2289 if ((req & VM_ALLOC_WIRED) != 0) 2290 m->ref_count = 1; 2291 m->a.act_count = 0; 2292 m->oflags = oflags; 2293 if (vm_page_insert_after(m, object, pindex, mpred)) { 2294 if ((req & VM_ALLOC_WIRED) != 0) 2295 vm_wire_sub(npages); 2296 KASSERT(m->object == NULL, 2297 ("page %p has object", m)); 2298 mpred = m; 2299 for (m = m_ret; m < &m_ret[npages]; m++) { 2300 if (m <= mpred && 2301 (req & VM_ALLOC_WIRED) != 0) 2302 m->ref_count = 0; 2303 m->oflags = VPO_UNMANAGED; 2304 m->busy_lock = VPB_UNBUSIED; 2305 /* Don't change PG_ZERO. */ 2306 vm_page_free_toq(m); 2307 } 2308 if (req & VM_ALLOC_WAITFAIL) { 2309 VM_OBJECT_WUNLOCK(object); 2310 vm_radix_wait(); 2311 VM_OBJECT_WLOCK(object); 2312 } 2313 return (NULL); 2314 } 2315 mpred = m; 2316 if (memattr != VM_MEMATTR_DEFAULT) 2317 pmap_page_set_memattr(m, memattr); 2318 pindex++; 2319 } 2320 return (m_ret); 2321 } 2322 2323 /* 2324 * Allocate a physical page that is not intended to be inserted into a VM 2325 * object. If the "freelist" parameter is not equal to VM_NFREELIST, then only 2326 * pages from the specified vm_phys freelist will be returned. 2327 */ 2328 static __always_inline vm_page_t 2329 _vm_page_alloc_noobj_domain(int domain, const int freelist, int req) 2330 { 2331 struct vm_domain *vmd; 2332 vm_page_t m; 2333 int flags; 2334 2335 #define VPAN_FLAGS (VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL | \ 2336 VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | \ 2337 VM_ALLOC_NOBUSY | VM_ALLOC_WIRED | \ 2338 VM_ALLOC_NODUMP | VM_ALLOC_ZERO | VM_ALLOC_COUNT_MASK) 2339 KASSERT((req & ~VPAN_FLAGS) == 0, 2340 ("invalid request %#x", req)); 2341 2342 flags = (req & VM_ALLOC_NODUMP) != 0 ? PG_NODUMP : 0; 2343 vmd = VM_DOMAIN(domain); 2344 again: 2345 if (freelist == VM_NFREELIST && 2346 vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone != NULL) { 2347 m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone, 2348 M_NOWAIT | M_NOVM); 2349 if (m != NULL) { 2350 flags |= PG_PCPU_CACHE; 2351 goto found; 2352 } 2353 } 2354 2355 if (vm_domain_allocate(vmd, req, 1)) { 2356 vm_domain_free_lock(vmd); 2357 if (freelist == VM_NFREELIST) 2358 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DIRECT, 0); 2359 else 2360 m = vm_phys_alloc_freelist_pages(domain, freelist, 2361 VM_FREEPOOL_DIRECT, 0); 2362 vm_domain_free_unlock(vmd); 2363 if (m == NULL) { 2364 vm_domain_freecnt_inc(vmd, 1); 2365 #if VM_NRESERVLEVEL > 0 2366 if (freelist == VM_NFREELIST && 2367 vm_reserv_reclaim_inactive(domain)) 2368 goto again; 2369 #endif 2370 } 2371 } 2372 if (m == NULL) { 2373 if (vm_domain_alloc_fail(vmd, NULL, req)) 2374 goto again; 2375 return (NULL); 2376 } 2377 2378 found: 2379 vm_page_dequeue(m); 2380 vm_page_alloc_check(m); 2381 2382 /* 2383 * Consumers should not rely on a useful default pindex value. 2384 */ 2385 m->pindex = 0xdeadc0dedeadc0de; 2386 m->flags = (m->flags & PG_ZERO) | flags; 2387 m->a.flags = 0; 2388 m->oflags = VPO_UNMANAGED; 2389 m->busy_lock = VPB_UNBUSIED; 2390 if ((req & VM_ALLOC_WIRED) != 0) { 2391 vm_wire_add(1); 2392 m->ref_count = 1; 2393 } 2394 2395 if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0) 2396 pmap_zero_page(m); 2397 2398 return (m); 2399 } 2400 2401 vm_page_t 2402 vm_page_alloc_freelist(int freelist, int req) 2403 { 2404 struct vm_domainset_iter di; 2405 vm_page_t m; 2406 int domain; 2407 2408 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req); 2409 do { 2410 m = vm_page_alloc_freelist_domain(domain, freelist, req); 2411 if (m != NULL) 2412 break; 2413 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0); 2414 2415 return (m); 2416 } 2417 2418 vm_page_t 2419 vm_page_alloc_freelist_domain(int domain, int freelist, int req) 2420 { 2421 KASSERT(freelist >= 0 && freelist < VM_NFREELIST, 2422 ("%s: invalid freelist %d", __func__, freelist)); 2423 2424 return (_vm_page_alloc_noobj_domain(domain, freelist, req)); 2425 } 2426 2427 vm_page_t 2428 vm_page_alloc_noobj(int req) 2429 { 2430 struct vm_domainset_iter di; 2431 vm_page_t m; 2432 int domain; 2433 2434 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req); 2435 do { 2436 m = vm_page_alloc_noobj_domain(domain, req); 2437 if (m != NULL) 2438 break; 2439 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0); 2440 2441 return (m); 2442 } 2443 2444 vm_page_t 2445 vm_page_alloc_noobj_domain(int domain, int req) 2446 { 2447 return (_vm_page_alloc_noobj_domain(domain, VM_NFREELIST, req)); 2448 } 2449 2450 vm_page_t 2451 vm_page_alloc_noobj_contig(int req, u_long npages, vm_paddr_t low, 2452 vm_paddr_t high, u_long alignment, vm_paddr_t boundary, 2453 vm_memattr_t memattr) 2454 { 2455 struct vm_domainset_iter di; 2456 vm_page_t m; 2457 int domain; 2458 2459 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req); 2460 do { 2461 m = vm_page_alloc_noobj_contig_domain(domain, req, npages, low, 2462 high, alignment, boundary, memattr); 2463 if (m != NULL) 2464 break; 2465 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0); 2466 2467 return (m); 2468 } 2469 2470 vm_page_t 2471 vm_page_alloc_noobj_contig_domain(int domain, int req, u_long npages, 2472 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, 2473 vm_memattr_t memattr) 2474 { 2475 vm_page_t m, m_ret; 2476 u_int flags; 2477 2478 #define VPANC_FLAGS (VPAN_FLAGS | VM_ALLOC_NORECLAIM) 2479 KASSERT((req & ~VPANC_FLAGS) == 0, 2480 ("invalid request %#x", req)); 2481 KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) != 2482 (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM), 2483 ("invalid request %#x", req)); 2484 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 2485 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 2486 ("invalid request %#x", req)); 2487 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero")); 2488 2489 while ((m_ret = vm_page_find_contig_domain(domain, req, npages, 2490 low, high, alignment, boundary)) == NULL) { 2491 if (!vm_domain_alloc_fail(VM_DOMAIN(domain), NULL, req)) 2492 return (NULL); 2493 } 2494 2495 /* 2496 * Initialize the pages. Only the PG_ZERO flag is inherited. 2497 */ 2498 flags = PG_ZERO; 2499 if ((req & VM_ALLOC_NODUMP) != 0) 2500 flags |= PG_NODUMP; 2501 if ((req & VM_ALLOC_WIRED) != 0) 2502 vm_wire_add(npages); 2503 for (m = m_ret; m < &m_ret[npages]; m++) { 2504 vm_page_dequeue(m); 2505 vm_page_alloc_check(m); 2506 2507 /* 2508 * Consumers should not rely on a useful default pindex value. 2509 */ 2510 m->pindex = 0xdeadc0dedeadc0de; 2511 m->a.flags = 0; 2512 m->flags = (m->flags | PG_NODUMP) & flags; 2513 m->busy_lock = VPB_UNBUSIED; 2514 if ((req & VM_ALLOC_WIRED) != 0) 2515 m->ref_count = 1; 2516 m->a.act_count = 0; 2517 m->oflags = VPO_UNMANAGED; 2518 2519 /* 2520 * Zero the page before updating any mappings since the page is 2521 * not yet shared with any devices which might require the 2522 * non-default memory attribute. pmap_page_set_memattr() 2523 * flushes data caches before returning. 2524 */ 2525 if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0) 2526 pmap_zero_page(m); 2527 if (memattr != VM_MEMATTR_DEFAULT) 2528 pmap_page_set_memattr(m, memattr); 2529 } 2530 return (m_ret); 2531 } 2532 2533 /* 2534 * Check a page that has been freshly dequeued from a freelist. 2535 */ 2536 static void 2537 vm_page_alloc_check(vm_page_t m) 2538 { 2539 2540 KASSERT(m->object == NULL, ("page %p has object", m)); 2541 KASSERT(m->a.queue == PQ_NONE && 2542 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0, 2543 ("page %p has unexpected queue %d, flags %#x", 2544 m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK))); 2545 KASSERT(m->ref_count == 0, ("page %p has references", m)); 2546 KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m)); 2547 KASSERT(m->dirty == 0, ("page %p is dirty", m)); 2548 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, 2549 ("page %p has unexpected memattr %d", 2550 m, pmap_page_get_memattr(m))); 2551 KASSERT(m->valid == 0, ("free page %p is valid", m)); 2552 pmap_vm_page_alloc_check(m); 2553 } 2554 2555 static int 2556 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags) 2557 { 2558 struct vm_domain *vmd; 2559 struct vm_pgcache *pgcache; 2560 int i; 2561 2562 pgcache = arg; 2563 vmd = VM_DOMAIN(pgcache->domain); 2564 2565 /* 2566 * The page daemon should avoid creating extra memory pressure since its 2567 * main purpose is to replenish the store of free pages. 2568 */ 2569 if (vmd->vmd_severeset || curproc == pageproc || 2570 !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt)) 2571 return (0); 2572 domain = vmd->vmd_domain; 2573 vm_domain_free_lock(vmd); 2574 i = vm_phys_alloc_npages(domain, pgcache->pool, cnt, 2575 (vm_page_t *)store); 2576 vm_domain_free_unlock(vmd); 2577 if (cnt != i) 2578 vm_domain_freecnt_inc(vmd, cnt - i); 2579 2580 return (i); 2581 } 2582 2583 static void 2584 vm_page_zone_release(void *arg, void **store, int cnt) 2585 { 2586 struct vm_domain *vmd; 2587 struct vm_pgcache *pgcache; 2588 vm_page_t m; 2589 int i; 2590 2591 pgcache = arg; 2592 vmd = VM_DOMAIN(pgcache->domain); 2593 vm_domain_free_lock(vmd); 2594 for (i = 0; i < cnt; i++) { 2595 m = (vm_page_t)store[i]; 2596 vm_phys_free_pages(m, 0); 2597 } 2598 vm_domain_free_unlock(vmd); 2599 vm_domain_freecnt_inc(vmd, cnt); 2600 } 2601 2602 #define VPSC_ANY 0 /* No restrictions. */ 2603 #define VPSC_NORESERV 1 /* Skip reservations; implies VPSC_NOSUPER. */ 2604 #define VPSC_NOSUPER 2 /* Skip superpages. */ 2605 2606 /* 2607 * vm_page_scan_contig: 2608 * 2609 * Scan vm_page_array[] between the specified entries "m_start" and 2610 * "m_end" for a run of contiguous physical pages that satisfy the 2611 * specified conditions, and return the lowest page in the run. The 2612 * specified "alignment" determines the alignment of the lowest physical 2613 * page in the run. If the specified "boundary" is non-zero, then the 2614 * run of physical pages cannot span a physical address that is a 2615 * multiple of "boundary". 2616 * 2617 * "m_end" is never dereferenced, so it need not point to a vm_page 2618 * structure within vm_page_array[]. 2619 * 2620 * "npages" must be greater than zero. "m_start" and "m_end" must not 2621 * span a hole (or discontiguity) in the physical address space. Both 2622 * "alignment" and "boundary" must be a power of two. 2623 */ 2624 vm_page_t 2625 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end, 2626 u_long alignment, vm_paddr_t boundary, int options) 2627 { 2628 vm_object_t object; 2629 vm_paddr_t pa; 2630 vm_page_t m, m_run; 2631 #if VM_NRESERVLEVEL > 0 2632 int level; 2633 #endif 2634 int m_inc, order, run_ext, run_len; 2635 2636 KASSERT(npages > 0, ("npages is 0")); 2637 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 2638 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 2639 m_run = NULL; 2640 run_len = 0; 2641 for (m = m_start; m < m_end && run_len < npages; m += m_inc) { 2642 KASSERT((m->flags & PG_MARKER) == 0, 2643 ("page %p is PG_MARKER", m)); 2644 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1, 2645 ("fictitious page %p has invalid ref count", m)); 2646 2647 /* 2648 * If the current page would be the start of a run, check its 2649 * physical address against the end, alignment, and boundary 2650 * conditions. If it doesn't satisfy these conditions, either 2651 * terminate the scan or advance to the next page that 2652 * satisfies the failed condition. 2653 */ 2654 if (run_len == 0) { 2655 KASSERT(m_run == NULL, ("m_run != NULL")); 2656 if (m + npages > m_end) 2657 break; 2658 pa = VM_PAGE_TO_PHYS(m); 2659 if (!vm_addr_align_ok(pa, alignment)) { 2660 m_inc = atop(roundup2(pa, alignment) - pa); 2661 continue; 2662 } 2663 if (!vm_addr_bound_ok(pa, ptoa(npages), boundary)) { 2664 m_inc = atop(roundup2(pa, boundary) - pa); 2665 continue; 2666 } 2667 } else 2668 KASSERT(m_run != NULL, ("m_run == NULL")); 2669 2670 retry: 2671 m_inc = 1; 2672 if (vm_page_wired(m)) 2673 run_ext = 0; 2674 #if VM_NRESERVLEVEL > 0 2675 else if ((level = vm_reserv_level(m)) >= 0 && 2676 (options & VPSC_NORESERV) != 0) { 2677 run_ext = 0; 2678 /* Advance to the end of the reservation. */ 2679 pa = VM_PAGE_TO_PHYS(m); 2680 m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) - 2681 pa); 2682 } 2683 #endif 2684 else if ((object = atomic_load_ptr(&m->object)) != NULL) { 2685 /* 2686 * The page is considered eligible for relocation if 2687 * and only if it could be laundered or reclaimed by 2688 * the page daemon. 2689 */ 2690 VM_OBJECT_RLOCK(object); 2691 if (object != m->object) { 2692 VM_OBJECT_RUNLOCK(object); 2693 goto retry; 2694 } 2695 /* Don't care: PG_NODUMP, PG_ZERO. */ 2696 if ((object->flags & OBJ_SWAP) == 0 && 2697 object->type != OBJT_VNODE) { 2698 run_ext = 0; 2699 #if VM_NRESERVLEVEL > 0 2700 } else if ((options & VPSC_NOSUPER) != 0 && 2701 (level = vm_reserv_level_iffullpop(m)) >= 0) { 2702 run_ext = 0; 2703 /* Advance to the end of the superpage. */ 2704 pa = VM_PAGE_TO_PHYS(m); 2705 m_inc = atop(roundup2(pa + 1, 2706 vm_reserv_size(level)) - pa); 2707 #endif 2708 } else if (object->memattr == VM_MEMATTR_DEFAULT && 2709 vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) { 2710 /* 2711 * The page is allocated but eligible for 2712 * relocation. Extend the current run by one 2713 * page. 2714 */ 2715 KASSERT(pmap_page_get_memattr(m) == 2716 VM_MEMATTR_DEFAULT, 2717 ("page %p has an unexpected memattr", m)); 2718 KASSERT((m->oflags & (VPO_SWAPINPROG | 2719 VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0, 2720 ("page %p has unexpected oflags", m)); 2721 /* Don't care: PGA_NOSYNC. */ 2722 run_ext = 1; 2723 } else 2724 run_ext = 0; 2725 VM_OBJECT_RUNLOCK(object); 2726 #if VM_NRESERVLEVEL > 0 2727 } else if (level >= 0) { 2728 /* 2729 * The page is reserved but not yet allocated. In 2730 * other words, it is still free. Extend the current 2731 * run by one page. 2732 */ 2733 run_ext = 1; 2734 #endif 2735 } else if ((order = m->order) < VM_NFREEORDER) { 2736 /* 2737 * The page is enqueued in the physical memory 2738 * allocator's free page queues. Moreover, it is the 2739 * first page in a power-of-two-sized run of 2740 * contiguous free pages. Add these pages to the end 2741 * of the current run, and jump ahead. 2742 */ 2743 run_ext = 1 << order; 2744 m_inc = 1 << order; 2745 } else { 2746 /* 2747 * Skip the page for one of the following reasons: (1) 2748 * It is enqueued in the physical memory allocator's 2749 * free page queues. However, it is not the first 2750 * page in a run of contiguous free pages. (This case 2751 * rarely occurs because the scan is performed in 2752 * ascending order.) (2) It is not reserved, and it is 2753 * transitioning from free to allocated. (Conversely, 2754 * the transition from allocated to free for managed 2755 * pages is blocked by the page busy lock.) (3) It is 2756 * allocated but not contained by an object and not 2757 * wired, e.g., allocated by Xen's balloon driver. 2758 */ 2759 run_ext = 0; 2760 } 2761 2762 /* 2763 * Extend or reset the current run of pages. 2764 */ 2765 if (run_ext > 0) { 2766 if (run_len == 0) 2767 m_run = m; 2768 run_len += run_ext; 2769 } else { 2770 if (run_len > 0) { 2771 m_run = NULL; 2772 run_len = 0; 2773 } 2774 } 2775 } 2776 if (run_len >= npages) 2777 return (m_run); 2778 return (NULL); 2779 } 2780 2781 /* 2782 * vm_page_reclaim_run: 2783 * 2784 * Try to relocate each of the allocated virtual pages within the 2785 * specified run of physical pages to a new physical address. Free the 2786 * physical pages underlying the relocated virtual pages. A virtual page 2787 * is relocatable if and only if it could be laundered or reclaimed by 2788 * the page daemon. Whenever possible, a virtual page is relocated to a 2789 * physical address above "high". 2790 * 2791 * Returns 0 if every physical page within the run was already free or 2792 * just freed by a successful relocation. Otherwise, returns a non-zero 2793 * value indicating why the last attempt to relocate a virtual page was 2794 * unsuccessful. 2795 * 2796 * "req_class" must be an allocation class. 2797 */ 2798 static int 2799 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run, 2800 vm_paddr_t high) 2801 { 2802 struct vm_domain *vmd; 2803 struct spglist free; 2804 vm_object_t object; 2805 vm_paddr_t pa; 2806 vm_page_t m, m_end, m_new; 2807 int error, order, req; 2808 2809 KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class, 2810 ("req_class is not an allocation class")); 2811 SLIST_INIT(&free); 2812 error = 0; 2813 m = m_run; 2814 m_end = m_run + npages; 2815 for (; error == 0 && m < m_end; m++) { 2816 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0, 2817 ("page %p is PG_FICTITIOUS or PG_MARKER", m)); 2818 2819 /* 2820 * Racily check for wirings. Races are handled once the object 2821 * lock is held and the page is unmapped. 2822 */ 2823 if (vm_page_wired(m)) 2824 error = EBUSY; 2825 else if ((object = atomic_load_ptr(&m->object)) != NULL) { 2826 /* 2827 * The page is relocated if and only if it could be 2828 * laundered or reclaimed by the page daemon. 2829 */ 2830 VM_OBJECT_WLOCK(object); 2831 /* Don't care: PG_NODUMP, PG_ZERO. */ 2832 if (m->object != object || 2833 ((object->flags & OBJ_SWAP) == 0 && 2834 object->type != OBJT_VNODE)) 2835 error = EINVAL; 2836 else if (object->memattr != VM_MEMATTR_DEFAULT) 2837 error = EINVAL; 2838 else if (vm_page_queue(m) != PQ_NONE && 2839 vm_page_tryxbusy(m) != 0) { 2840 if (vm_page_wired(m)) { 2841 vm_page_xunbusy(m); 2842 error = EBUSY; 2843 goto unlock; 2844 } 2845 KASSERT(pmap_page_get_memattr(m) == 2846 VM_MEMATTR_DEFAULT, 2847 ("page %p has an unexpected memattr", m)); 2848 KASSERT(m->oflags == 0, 2849 ("page %p has unexpected oflags", m)); 2850 /* Don't care: PGA_NOSYNC. */ 2851 if (!vm_page_none_valid(m)) { 2852 /* 2853 * First, try to allocate a new page 2854 * that is above "high". Failing 2855 * that, try to allocate a new page 2856 * that is below "m_run". Allocate 2857 * the new page between the end of 2858 * "m_run" and "high" only as a last 2859 * resort. 2860 */ 2861 req = req_class; 2862 if ((m->flags & PG_NODUMP) != 0) 2863 req |= VM_ALLOC_NODUMP; 2864 if (trunc_page(high) != 2865 ~(vm_paddr_t)PAGE_MASK) { 2866 m_new = 2867 vm_page_alloc_noobj_contig( 2868 req, 1, round_page(high), 2869 ~(vm_paddr_t)0, PAGE_SIZE, 2870 0, VM_MEMATTR_DEFAULT); 2871 } else 2872 m_new = NULL; 2873 if (m_new == NULL) { 2874 pa = VM_PAGE_TO_PHYS(m_run); 2875 m_new = 2876 vm_page_alloc_noobj_contig( 2877 req, 1, 0, pa - 1, 2878 PAGE_SIZE, 0, 2879 VM_MEMATTR_DEFAULT); 2880 } 2881 if (m_new == NULL) { 2882 pa += ptoa(npages); 2883 m_new = 2884 vm_page_alloc_noobj_contig( 2885 req, 1, pa, high, PAGE_SIZE, 2886 0, VM_MEMATTR_DEFAULT); 2887 } 2888 if (m_new == NULL) { 2889 vm_page_xunbusy(m); 2890 error = ENOMEM; 2891 goto unlock; 2892 } 2893 2894 /* 2895 * Unmap the page and check for new 2896 * wirings that may have been acquired 2897 * through a pmap lookup. 2898 */ 2899 if (object->ref_count != 0 && 2900 !vm_page_try_remove_all(m)) { 2901 vm_page_xunbusy(m); 2902 vm_page_free(m_new); 2903 error = EBUSY; 2904 goto unlock; 2905 } 2906 2907 /* 2908 * Replace "m" with the new page. For 2909 * vm_page_replace(), "m" must be busy 2910 * and dequeued. Finally, change "m" 2911 * as if vm_page_free() was called. 2912 */ 2913 m_new->a.flags = m->a.flags & 2914 ~PGA_QUEUE_STATE_MASK; 2915 KASSERT(m_new->oflags == VPO_UNMANAGED, 2916 ("page %p is managed", m_new)); 2917 m_new->oflags = 0; 2918 pmap_copy_page(m, m_new); 2919 m_new->valid = m->valid; 2920 m_new->dirty = m->dirty; 2921 m->flags &= ~PG_ZERO; 2922 vm_page_dequeue(m); 2923 if (vm_page_replace_hold(m_new, object, 2924 m->pindex, m) && 2925 vm_page_free_prep(m)) 2926 SLIST_INSERT_HEAD(&free, m, 2927 plinks.s.ss); 2928 2929 /* 2930 * The new page must be deactivated 2931 * before the object is unlocked. 2932 */ 2933 vm_page_deactivate(m_new); 2934 } else { 2935 m->flags &= ~PG_ZERO; 2936 vm_page_dequeue(m); 2937 if (vm_page_free_prep(m)) 2938 SLIST_INSERT_HEAD(&free, m, 2939 plinks.s.ss); 2940 KASSERT(m->dirty == 0, 2941 ("page %p is dirty", m)); 2942 } 2943 } else 2944 error = EBUSY; 2945 unlock: 2946 VM_OBJECT_WUNLOCK(object); 2947 } else { 2948 MPASS(vm_page_domain(m) == domain); 2949 vmd = VM_DOMAIN(domain); 2950 vm_domain_free_lock(vmd); 2951 order = m->order; 2952 if (order < VM_NFREEORDER) { 2953 /* 2954 * The page is enqueued in the physical memory 2955 * allocator's free page queues. Moreover, it 2956 * is the first page in a power-of-two-sized 2957 * run of contiguous free pages. Jump ahead 2958 * to the last page within that run, and 2959 * continue from there. 2960 */ 2961 m += (1 << order) - 1; 2962 } 2963 #if VM_NRESERVLEVEL > 0 2964 else if (vm_reserv_is_page_free(m)) 2965 order = 0; 2966 #endif 2967 vm_domain_free_unlock(vmd); 2968 if (order == VM_NFREEORDER) 2969 error = EINVAL; 2970 } 2971 } 2972 if ((m = SLIST_FIRST(&free)) != NULL) { 2973 int cnt; 2974 2975 vmd = VM_DOMAIN(domain); 2976 cnt = 0; 2977 vm_domain_free_lock(vmd); 2978 do { 2979 MPASS(vm_page_domain(m) == domain); 2980 SLIST_REMOVE_HEAD(&free, plinks.s.ss); 2981 vm_phys_free_pages(m, 0); 2982 cnt++; 2983 } while ((m = SLIST_FIRST(&free)) != NULL); 2984 vm_domain_free_unlock(vmd); 2985 vm_domain_freecnt_inc(vmd, cnt); 2986 } 2987 return (error); 2988 } 2989 2990 #define NRUNS 16 2991 2992 CTASSERT(powerof2(NRUNS)); 2993 2994 #define RUN_INDEX(count) ((count) & (NRUNS - 1)) 2995 2996 #define MIN_RECLAIM 8 2997 2998 /* 2999 * vm_page_reclaim_contig: 3000 * 3001 * Reclaim allocated, contiguous physical memory satisfying the specified 3002 * conditions by relocating the virtual pages using that physical memory. 3003 * Returns true if reclamation is successful and false otherwise. Since 3004 * relocation requires the allocation of physical pages, reclamation may 3005 * fail due to a shortage of free pages. When reclamation fails, callers 3006 * are expected to perform vm_wait() before retrying a failed allocation 3007 * operation, e.g., vm_page_alloc_contig(). 3008 * 3009 * The caller must always specify an allocation class through "req". 3010 * 3011 * allocation classes: 3012 * VM_ALLOC_NORMAL normal process request 3013 * VM_ALLOC_SYSTEM system *really* needs a page 3014 * VM_ALLOC_INTERRUPT interrupt time request 3015 * 3016 * The optional allocation flags are ignored. 3017 * 3018 * "npages" must be greater than zero. Both "alignment" and "boundary" 3019 * must be a power of two. 3020 */ 3021 bool 3022 vm_page_reclaim_contig_domain(int domain, int req, u_long npages, 3023 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary) 3024 { 3025 struct vm_domain *vmd; 3026 vm_paddr_t curr_low; 3027 vm_page_t m_run, m_runs[NRUNS]; 3028 u_long count, minalign, reclaimed; 3029 int error, i, options, req_class; 3030 3031 KASSERT(npages > 0, ("npages is 0")); 3032 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 3033 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 3034 3035 /* 3036 * The caller will attempt an allocation after some runs have been 3037 * reclaimed and added to the vm_phys buddy lists. Due to limitations 3038 * of vm_phys_alloc_contig(), round up the requested length to the next 3039 * power of two or maximum chunk size, and ensure that each run is 3040 * suitably aligned. 3041 */ 3042 minalign = 1ul << imin(flsl(npages - 1), VM_NFREEORDER - 1); 3043 npages = roundup2(npages, minalign); 3044 if (alignment < ptoa(minalign)) 3045 alignment = ptoa(minalign); 3046 3047 /* 3048 * The page daemon is allowed to dig deeper into the free page list. 3049 */ 3050 req_class = req & VM_ALLOC_CLASS_MASK; 3051 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 3052 req_class = VM_ALLOC_SYSTEM; 3053 3054 /* 3055 * Return if the number of free pages cannot satisfy the requested 3056 * allocation. 3057 */ 3058 vmd = VM_DOMAIN(domain); 3059 count = vmd->vmd_free_count; 3060 if (count < npages + vmd->vmd_free_reserved || (count < npages + 3061 vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) || 3062 (count < npages && req_class == VM_ALLOC_INTERRUPT)) 3063 return (false); 3064 3065 /* 3066 * Scan up to three times, relaxing the restrictions ("options") on 3067 * the reclamation of reservations and superpages each time. 3068 */ 3069 for (options = VPSC_NORESERV;;) { 3070 /* 3071 * Find the highest runs that satisfy the given constraints 3072 * and restrictions, and record them in "m_runs". 3073 */ 3074 curr_low = low; 3075 count = 0; 3076 for (;;) { 3077 m_run = vm_phys_scan_contig(domain, npages, curr_low, 3078 high, alignment, boundary, options); 3079 if (m_run == NULL) 3080 break; 3081 curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages); 3082 m_runs[RUN_INDEX(count)] = m_run; 3083 count++; 3084 } 3085 3086 /* 3087 * Reclaim the highest runs in LIFO (descending) order until 3088 * the number of reclaimed pages, "reclaimed", is at least 3089 * MIN_RECLAIM. Reset "reclaimed" each time because each 3090 * reclamation is idempotent, and runs will (likely) recur 3091 * from one scan to the next as restrictions are relaxed. 3092 */ 3093 reclaimed = 0; 3094 for (i = 0; count > 0 && i < NRUNS; i++) { 3095 count--; 3096 m_run = m_runs[RUN_INDEX(count)]; 3097 error = vm_page_reclaim_run(req_class, domain, npages, 3098 m_run, high); 3099 if (error == 0) { 3100 reclaimed += npages; 3101 if (reclaimed >= MIN_RECLAIM) 3102 return (true); 3103 } 3104 } 3105 3106 /* 3107 * Either relax the restrictions on the next scan or return if 3108 * the last scan had no restrictions. 3109 */ 3110 if (options == VPSC_NORESERV) 3111 options = VPSC_NOSUPER; 3112 else if (options == VPSC_NOSUPER) 3113 options = VPSC_ANY; 3114 else if (options == VPSC_ANY) 3115 return (reclaimed != 0); 3116 } 3117 } 3118 3119 bool 3120 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high, 3121 u_long alignment, vm_paddr_t boundary) 3122 { 3123 struct vm_domainset_iter di; 3124 int domain; 3125 bool ret; 3126 3127 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req); 3128 do { 3129 ret = vm_page_reclaim_contig_domain(domain, req, npages, low, 3130 high, alignment, boundary); 3131 if (ret) 3132 break; 3133 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0); 3134 3135 return (ret); 3136 } 3137 3138 /* 3139 * Set the domain in the appropriate page level domainset. 3140 */ 3141 void 3142 vm_domain_set(struct vm_domain *vmd) 3143 { 3144 3145 mtx_lock(&vm_domainset_lock); 3146 if (!vmd->vmd_minset && vm_paging_min(vmd)) { 3147 vmd->vmd_minset = 1; 3148 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains); 3149 } 3150 if (!vmd->vmd_severeset && vm_paging_severe(vmd)) { 3151 vmd->vmd_severeset = 1; 3152 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains); 3153 } 3154 mtx_unlock(&vm_domainset_lock); 3155 } 3156 3157 /* 3158 * Clear the domain from the appropriate page level domainset. 3159 */ 3160 void 3161 vm_domain_clear(struct vm_domain *vmd) 3162 { 3163 3164 mtx_lock(&vm_domainset_lock); 3165 if (vmd->vmd_minset && !vm_paging_min(vmd)) { 3166 vmd->vmd_minset = 0; 3167 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains); 3168 if (vm_min_waiters != 0) { 3169 vm_min_waiters = 0; 3170 wakeup(&vm_min_domains); 3171 } 3172 } 3173 if (vmd->vmd_severeset && !vm_paging_severe(vmd)) { 3174 vmd->vmd_severeset = 0; 3175 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains); 3176 if (vm_severe_waiters != 0) { 3177 vm_severe_waiters = 0; 3178 wakeup(&vm_severe_domains); 3179 } 3180 } 3181 3182 /* 3183 * If pageout daemon needs pages, then tell it that there are 3184 * some free. 3185 */ 3186 if (vmd->vmd_pageout_pages_needed && 3187 vmd->vmd_free_count >= vmd->vmd_pageout_free_min) { 3188 wakeup(&vmd->vmd_pageout_pages_needed); 3189 vmd->vmd_pageout_pages_needed = 0; 3190 } 3191 3192 /* See comments in vm_wait_doms(). */ 3193 if (vm_pageproc_waiters) { 3194 vm_pageproc_waiters = 0; 3195 wakeup(&vm_pageproc_waiters); 3196 } 3197 mtx_unlock(&vm_domainset_lock); 3198 } 3199 3200 /* 3201 * Wait for free pages to exceed the min threshold globally. 3202 */ 3203 void 3204 vm_wait_min(void) 3205 { 3206 3207 mtx_lock(&vm_domainset_lock); 3208 while (vm_page_count_min()) { 3209 vm_min_waiters++; 3210 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0); 3211 } 3212 mtx_unlock(&vm_domainset_lock); 3213 } 3214 3215 /* 3216 * Wait for free pages to exceed the severe threshold globally. 3217 */ 3218 void 3219 vm_wait_severe(void) 3220 { 3221 3222 mtx_lock(&vm_domainset_lock); 3223 while (vm_page_count_severe()) { 3224 vm_severe_waiters++; 3225 msleep(&vm_severe_domains, &vm_domainset_lock, PVM, 3226 "vmwait", 0); 3227 } 3228 mtx_unlock(&vm_domainset_lock); 3229 } 3230 3231 u_int 3232 vm_wait_count(void) 3233 { 3234 3235 return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters); 3236 } 3237 3238 int 3239 vm_wait_doms(const domainset_t *wdoms, int mflags) 3240 { 3241 int error; 3242 3243 error = 0; 3244 3245 /* 3246 * We use racey wakeup synchronization to avoid expensive global 3247 * locking for the pageproc when sleeping with a non-specific vm_wait. 3248 * To handle this, we only sleep for one tick in this instance. It 3249 * is expected that most allocations for the pageproc will come from 3250 * kmem or vm_page_grab* which will use the more specific and 3251 * race-free vm_wait_domain(). 3252 */ 3253 if (curproc == pageproc) { 3254 mtx_lock(&vm_domainset_lock); 3255 vm_pageproc_waiters++; 3256 error = msleep(&vm_pageproc_waiters, &vm_domainset_lock, 3257 PVM | PDROP | mflags, "pageprocwait", 1); 3258 } else { 3259 /* 3260 * XXX Ideally we would wait only until the allocation could 3261 * be satisfied. This condition can cause new allocators to 3262 * consume all freed pages while old allocators wait. 3263 */ 3264 mtx_lock(&vm_domainset_lock); 3265 if (vm_page_count_min_set(wdoms)) { 3266 if (pageproc == NULL) 3267 panic("vm_wait in early boot"); 3268 vm_min_waiters++; 3269 error = msleep(&vm_min_domains, &vm_domainset_lock, 3270 PVM | PDROP | mflags, "vmwait", 0); 3271 } else 3272 mtx_unlock(&vm_domainset_lock); 3273 } 3274 return (error); 3275 } 3276 3277 /* 3278 * vm_wait_domain: 3279 * 3280 * Sleep until free pages are available for allocation. 3281 * - Called in various places after failed memory allocations. 3282 */ 3283 void 3284 vm_wait_domain(int domain) 3285 { 3286 struct vm_domain *vmd; 3287 domainset_t wdom; 3288 3289 vmd = VM_DOMAIN(domain); 3290 vm_domain_free_assert_unlocked(vmd); 3291 3292 if (curproc == pageproc) { 3293 mtx_lock(&vm_domainset_lock); 3294 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) { 3295 vmd->vmd_pageout_pages_needed = 1; 3296 msleep(&vmd->vmd_pageout_pages_needed, 3297 &vm_domainset_lock, PDROP | PSWP, "VMWait", 0); 3298 } else 3299 mtx_unlock(&vm_domainset_lock); 3300 } else { 3301 DOMAINSET_ZERO(&wdom); 3302 DOMAINSET_SET(vmd->vmd_domain, &wdom); 3303 vm_wait_doms(&wdom, 0); 3304 } 3305 } 3306 3307 static int 3308 vm_wait_flags(vm_object_t obj, int mflags) 3309 { 3310 struct domainset *d; 3311 3312 d = NULL; 3313 3314 /* 3315 * Carefully fetch pointers only once: the struct domainset 3316 * itself is ummutable but the pointer might change. 3317 */ 3318 if (obj != NULL) 3319 d = obj->domain.dr_policy; 3320 if (d == NULL) 3321 d = curthread->td_domain.dr_policy; 3322 3323 return (vm_wait_doms(&d->ds_mask, mflags)); 3324 } 3325 3326 /* 3327 * vm_wait: 3328 * 3329 * Sleep until free pages are available for allocation in the 3330 * affinity domains of the obj. If obj is NULL, the domain set 3331 * for the calling thread is used. 3332 * Called in various places after failed memory allocations. 3333 */ 3334 void 3335 vm_wait(vm_object_t obj) 3336 { 3337 (void)vm_wait_flags(obj, 0); 3338 } 3339 3340 int 3341 vm_wait_intr(vm_object_t obj) 3342 { 3343 return (vm_wait_flags(obj, PCATCH)); 3344 } 3345 3346 /* 3347 * vm_domain_alloc_fail: 3348 * 3349 * Called when a page allocation function fails. Informs the 3350 * pagedaemon and performs the requested wait. Requires the 3351 * domain_free and object lock on entry. Returns with the 3352 * object lock held and free lock released. Returns an error when 3353 * retry is necessary. 3354 * 3355 */ 3356 static int 3357 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req) 3358 { 3359 3360 vm_domain_free_assert_unlocked(vmd); 3361 3362 atomic_add_int(&vmd->vmd_pageout_deficit, 3363 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); 3364 if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) { 3365 if (object != NULL) 3366 VM_OBJECT_WUNLOCK(object); 3367 vm_wait_domain(vmd->vmd_domain); 3368 if (object != NULL) 3369 VM_OBJECT_WLOCK(object); 3370 if (req & VM_ALLOC_WAITOK) 3371 return (EAGAIN); 3372 } 3373 3374 return (0); 3375 } 3376 3377 /* 3378 * vm_waitpfault: 3379 * 3380 * Sleep until free pages are available for allocation. 3381 * - Called only in vm_fault so that processes page faulting 3382 * can be easily tracked. 3383 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 3384 * processes will be able to grab memory first. Do not change 3385 * this balance without careful testing first. 3386 */ 3387 void 3388 vm_waitpfault(struct domainset *dset, int timo) 3389 { 3390 3391 /* 3392 * XXX Ideally we would wait only until the allocation could 3393 * be satisfied. This condition can cause new allocators to 3394 * consume all freed pages while old allocators wait. 3395 */ 3396 mtx_lock(&vm_domainset_lock); 3397 if (vm_page_count_min_set(&dset->ds_mask)) { 3398 vm_min_waiters++; 3399 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP, 3400 "pfault", timo); 3401 } else 3402 mtx_unlock(&vm_domainset_lock); 3403 } 3404 3405 static struct vm_pagequeue * 3406 _vm_page_pagequeue(vm_page_t m, uint8_t queue) 3407 { 3408 3409 return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]); 3410 } 3411 3412 #ifdef INVARIANTS 3413 static struct vm_pagequeue * 3414 vm_page_pagequeue(vm_page_t m) 3415 { 3416 3417 return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue)); 3418 } 3419 #endif 3420 3421 static __always_inline bool 3422 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new) 3423 { 3424 vm_page_astate_t tmp; 3425 3426 tmp = *old; 3427 do { 3428 if (__predict_true(vm_page_astate_fcmpset(m, old, new))) 3429 return (true); 3430 counter_u64_add(pqstate_commit_retries, 1); 3431 } while (old->_bits == tmp._bits); 3432 3433 return (false); 3434 } 3435 3436 /* 3437 * Do the work of committing a queue state update that moves the page out of 3438 * its current queue. 3439 */ 3440 static bool 3441 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m, 3442 vm_page_astate_t *old, vm_page_astate_t new) 3443 { 3444 vm_page_t next; 3445 3446 vm_pagequeue_assert_locked(pq); 3447 KASSERT(vm_page_pagequeue(m) == pq, 3448 ("%s: queue %p does not match page %p", __func__, pq, m)); 3449 KASSERT(old->queue != PQ_NONE && new.queue != old->queue, 3450 ("%s: invalid queue indices %d %d", 3451 __func__, old->queue, new.queue)); 3452 3453 /* 3454 * Once the queue index of the page changes there is nothing 3455 * synchronizing with further updates to the page's physical 3456 * queue state. Therefore we must speculatively remove the page 3457 * from the queue now and be prepared to roll back if the queue 3458 * state update fails. If the page is not physically enqueued then 3459 * we just update its queue index. 3460 */ 3461 if ((old->flags & PGA_ENQUEUED) != 0) { 3462 new.flags &= ~PGA_ENQUEUED; 3463 next = TAILQ_NEXT(m, plinks.q); 3464 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 3465 vm_pagequeue_cnt_dec(pq); 3466 if (!vm_page_pqstate_fcmpset(m, old, new)) { 3467 if (next == NULL) 3468 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 3469 else 3470 TAILQ_INSERT_BEFORE(next, m, plinks.q); 3471 vm_pagequeue_cnt_inc(pq); 3472 return (false); 3473 } else { 3474 return (true); 3475 } 3476 } else { 3477 return (vm_page_pqstate_fcmpset(m, old, new)); 3478 } 3479 } 3480 3481 static bool 3482 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old, 3483 vm_page_astate_t new) 3484 { 3485 struct vm_pagequeue *pq; 3486 vm_page_astate_t as; 3487 bool ret; 3488 3489 pq = _vm_page_pagequeue(m, old->queue); 3490 3491 /* 3492 * The queue field and PGA_ENQUEUED flag are stable only so long as the 3493 * corresponding page queue lock is held. 3494 */ 3495 vm_pagequeue_lock(pq); 3496 as = vm_page_astate_load(m); 3497 if (__predict_false(as._bits != old->_bits)) { 3498 *old = as; 3499 ret = false; 3500 } else { 3501 ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new); 3502 } 3503 vm_pagequeue_unlock(pq); 3504 return (ret); 3505 } 3506 3507 /* 3508 * Commit a queue state update that enqueues or requeues a page. 3509 */ 3510 static bool 3511 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m, 3512 vm_page_astate_t *old, vm_page_astate_t new) 3513 { 3514 struct vm_domain *vmd; 3515 3516 vm_pagequeue_assert_locked(pq); 3517 KASSERT(old->queue != PQ_NONE && new.queue == old->queue, 3518 ("%s: invalid queue indices %d %d", 3519 __func__, old->queue, new.queue)); 3520 3521 new.flags |= PGA_ENQUEUED; 3522 if (!vm_page_pqstate_fcmpset(m, old, new)) 3523 return (false); 3524 3525 if ((old->flags & PGA_ENQUEUED) != 0) 3526 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 3527 else 3528 vm_pagequeue_cnt_inc(pq); 3529 3530 /* 3531 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE. In particular, if 3532 * both flags are set in close succession, only PGA_REQUEUE_HEAD will be 3533 * applied, even if it was set first. 3534 */ 3535 if ((old->flags & PGA_REQUEUE_HEAD) != 0) { 3536 vmd = vm_pagequeue_domain(m); 3537 KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE], 3538 ("%s: invalid page queue for page %p", __func__, m)); 3539 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q); 3540 } else { 3541 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 3542 } 3543 return (true); 3544 } 3545 3546 /* 3547 * Commit a queue state update that encodes a request for a deferred queue 3548 * operation. 3549 */ 3550 static bool 3551 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old, 3552 vm_page_astate_t new) 3553 { 3554 3555 KASSERT(old->queue == new.queue || new.queue != PQ_NONE, 3556 ("%s: invalid state, queue %d flags %x", 3557 __func__, new.queue, new.flags)); 3558 3559 if (old->_bits != new._bits && 3560 !vm_page_pqstate_fcmpset(m, old, new)) 3561 return (false); 3562 vm_page_pqbatch_submit(m, new.queue); 3563 return (true); 3564 } 3565 3566 /* 3567 * A generic queue state update function. This handles more cases than the 3568 * specialized functions above. 3569 */ 3570 bool 3571 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new) 3572 { 3573 3574 if (old->_bits == new._bits) 3575 return (true); 3576 3577 if (old->queue != PQ_NONE && new.queue != old->queue) { 3578 if (!vm_page_pqstate_commit_dequeue(m, old, new)) 3579 return (false); 3580 if (new.queue != PQ_NONE) 3581 vm_page_pqbatch_submit(m, new.queue); 3582 } else { 3583 if (!vm_page_pqstate_fcmpset(m, old, new)) 3584 return (false); 3585 if (new.queue != PQ_NONE && 3586 ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0) 3587 vm_page_pqbatch_submit(m, new.queue); 3588 } 3589 return (true); 3590 } 3591 3592 /* 3593 * Apply deferred queue state updates to a page. 3594 */ 3595 static inline void 3596 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue) 3597 { 3598 vm_page_astate_t new, old; 3599 3600 CRITICAL_ASSERT(curthread); 3601 vm_pagequeue_assert_locked(pq); 3602 KASSERT(queue < PQ_COUNT, 3603 ("%s: invalid queue index %d", __func__, queue)); 3604 KASSERT(pq == _vm_page_pagequeue(m, queue), 3605 ("%s: page %p does not belong to queue %p", __func__, m, pq)); 3606 3607 for (old = vm_page_astate_load(m);;) { 3608 if (__predict_false(old.queue != queue || 3609 (old.flags & PGA_QUEUE_OP_MASK) == 0)) { 3610 counter_u64_add(queue_nops, 1); 3611 break; 3612 } 3613 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 3614 ("%s: page %p is unmanaged", __func__, m)); 3615 3616 new = old; 3617 if ((old.flags & PGA_DEQUEUE) != 0) { 3618 new.flags &= ~PGA_QUEUE_OP_MASK; 3619 new.queue = PQ_NONE; 3620 if (__predict_true(_vm_page_pqstate_commit_dequeue(pq, 3621 m, &old, new))) { 3622 counter_u64_add(queue_ops, 1); 3623 break; 3624 } 3625 } else { 3626 new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD); 3627 if (__predict_true(_vm_page_pqstate_commit_requeue(pq, 3628 m, &old, new))) { 3629 counter_u64_add(queue_ops, 1); 3630 break; 3631 } 3632 } 3633 } 3634 } 3635 3636 static void 3637 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq, 3638 uint8_t queue) 3639 { 3640 int i; 3641 3642 for (i = 0; i < bq->bq_cnt; i++) 3643 vm_pqbatch_process_page(pq, bq->bq_pa[i], queue); 3644 vm_batchqueue_init(bq); 3645 } 3646 3647 /* 3648 * vm_page_pqbatch_submit: [ internal use only ] 3649 * 3650 * Enqueue a page in the specified page queue's batched work queue. 3651 * The caller must have encoded the requested operation in the page 3652 * structure's a.flags field. 3653 */ 3654 void 3655 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue) 3656 { 3657 struct vm_batchqueue *bq; 3658 struct vm_pagequeue *pq; 3659 int domain; 3660 3661 KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue)); 3662 3663 domain = vm_page_domain(m); 3664 critical_enter(); 3665 bq = DPCPU_PTR(pqbatch[domain][queue]); 3666 if (vm_batchqueue_insert(bq, m)) { 3667 critical_exit(); 3668 return; 3669 } 3670 critical_exit(); 3671 3672 pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue]; 3673 vm_pagequeue_lock(pq); 3674 critical_enter(); 3675 bq = DPCPU_PTR(pqbatch[domain][queue]); 3676 vm_pqbatch_process(pq, bq, queue); 3677 vm_pqbatch_process_page(pq, m, queue); 3678 vm_pagequeue_unlock(pq); 3679 critical_exit(); 3680 } 3681 3682 /* 3683 * vm_page_pqbatch_drain: [ internal use only ] 3684 * 3685 * Force all per-CPU page queue batch queues to be drained. This is 3686 * intended for use in severe memory shortages, to ensure that pages 3687 * do not remain stuck in the batch queues. 3688 */ 3689 void 3690 vm_page_pqbatch_drain(void) 3691 { 3692 struct thread *td; 3693 struct vm_domain *vmd; 3694 struct vm_pagequeue *pq; 3695 int cpu, domain, queue; 3696 3697 td = curthread; 3698 CPU_FOREACH(cpu) { 3699 thread_lock(td); 3700 sched_bind(td, cpu); 3701 thread_unlock(td); 3702 3703 for (domain = 0; domain < vm_ndomains; domain++) { 3704 vmd = VM_DOMAIN(domain); 3705 for (queue = 0; queue < PQ_COUNT; queue++) { 3706 pq = &vmd->vmd_pagequeues[queue]; 3707 vm_pagequeue_lock(pq); 3708 critical_enter(); 3709 vm_pqbatch_process(pq, 3710 DPCPU_PTR(pqbatch[domain][queue]), queue); 3711 critical_exit(); 3712 vm_pagequeue_unlock(pq); 3713 } 3714 } 3715 } 3716 thread_lock(td); 3717 sched_unbind(td); 3718 thread_unlock(td); 3719 } 3720 3721 /* 3722 * vm_page_dequeue_deferred: [ internal use only ] 3723 * 3724 * Request removal of the given page from its current page 3725 * queue. Physical removal from the queue may be deferred 3726 * indefinitely. 3727 */ 3728 void 3729 vm_page_dequeue_deferred(vm_page_t m) 3730 { 3731 vm_page_astate_t new, old; 3732 3733 old = vm_page_astate_load(m); 3734 do { 3735 if (old.queue == PQ_NONE) { 3736 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0, 3737 ("%s: page %p has unexpected queue state", 3738 __func__, m)); 3739 break; 3740 } 3741 new = old; 3742 new.flags |= PGA_DEQUEUE; 3743 } while (!vm_page_pqstate_commit_request(m, &old, new)); 3744 } 3745 3746 /* 3747 * vm_page_dequeue: 3748 * 3749 * Remove the page from whichever page queue it's in, if any, before 3750 * returning. 3751 */ 3752 void 3753 vm_page_dequeue(vm_page_t m) 3754 { 3755 vm_page_astate_t new, old; 3756 3757 old = vm_page_astate_load(m); 3758 do { 3759 if (old.queue == PQ_NONE) { 3760 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0, 3761 ("%s: page %p has unexpected queue state", 3762 __func__, m)); 3763 break; 3764 } 3765 new = old; 3766 new.flags &= ~PGA_QUEUE_OP_MASK; 3767 new.queue = PQ_NONE; 3768 } while (!vm_page_pqstate_commit_dequeue(m, &old, new)); 3769 3770 } 3771 3772 /* 3773 * Schedule the given page for insertion into the specified page queue. 3774 * Physical insertion of the page may be deferred indefinitely. 3775 */ 3776 static void 3777 vm_page_enqueue(vm_page_t m, uint8_t queue) 3778 { 3779 3780 KASSERT(m->a.queue == PQ_NONE && 3781 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0, 3782 ("%s: page %p is already enqueued", __func__, m)); 3783 KASSERT(m->ref_count > 0, 3784 ("%s: page %p does not carry any references", __func__, m)); 3785 3786 m->a.queue = queue; 3787 if ((m->a.flags & PGA_REQUEUE) == 0) 3788 vm_page_aflag_set(m, PGA_REQUEUE); 3789 vm_page_pqbatch_submit(m, queue); 3790 } 3791 3792 /* 3793 * vm_page_free_prep: 3794 * 3795 * Prepares the given page to be put on the free list, 3796 * disassociating it from any VM object. The caller may return 3797 * the page to the free list only if this function returns true. 3798 * 3799 * The object, if it exists, must be locked, and then the page must 3800 * be xbusy. Otherwise the page must be not busied. A managed 3801 * page must be unmapped. 3802 */ 3803 static bool 3804 vm_page_free_prep(vm_page_t m) 3805 { 3806 3807 /* 3808 * Synchronize with threads that have dropped a reference to this 3809 * page. 3810 */ 3811 atomic_thread_fence_acq(); 3812 3813 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP) 3814 if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) { 3815 uint64_t *p; 3816 int i; 3817 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 3818 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++) 3819 KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx", 3820 m, i, (uintmax_t)*p)); 3821 } 3822 #endif 3823 if ((m->oflags & VPO_UNMANAGED) == 0) { 3824 KASSERT(!pmap_page_is_mapped(m), 3825 ("vm_page_free_prep: freeing mapped page %p", m)); 3826 KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0, 3827 ("vm_page_free_prep: mapping flags set in page %p", m)); 3828 } else { 3829 KASSERT(m->a.queue == PQ_NONE, 3830 ("vm_page_free_prep: unmanaged page %p is queued", m)); 3831 } 3832 VM_CNT_INC(v_tfree); 3833 3834 if (m->object != NULL) { 3835 KASSERT(((m->oflags & VPO_UNMANAGED) != 0) == 3836 ((m->object->flags & OBJ_UNMANAGED) != 0), 3837 ("vm_page_free_prep: managed flag mismatch for page %p", 3838 m)); 3839 vm_page_assert_xbusied(m); 3840 3841 /* 3842 * The object reference can be released without an atomic 3843 * operation. 3844 */ 3845 KASSERT((m->flags & PG_FICTITIOUS) != 0 || 3846 m->ref_count == VPRC_OBJREF, 3847 ("vm_page_free_prep: page %p has unexpected ref_count %u", 3848 m, m->ref_count)); 3849 vm_page_object_remove(m); 3850 m->ref_count -= VPRC_OBJREF; 3851 } else 3852 vm_page_assert_unbusied(m); 3853 3854 vm_page_busy_free(m); 3855 3856 /* 3857 * If fictitious remove object association and 3858 * return. 3859 */ 3860 if ((m->flags & PG_FICTITIOUS) != 0) { 3861 KASSERT(m->ref_count == 1, 3862 ("fictitious page %p is referenced", m)); 3863 KASSERT(m->a.queue == PQ_NONE, 3864 ("fictitious page %p is queued", m)); 3865 return (false); 3866 } 3867 3868 /* 3869 * Pages need not be dequeued before they are returned to the physical 3870 * memory allocator, but they must at least be marked for a deferred 3871 * dequeue. 3872 */ 3873 if ((m->oflags & VPO_UNMANAGED) == 0) 3874 vm_page_dequeue_deferred(m); 3875 3876 m->valid = 0; 3877 vm_page_undirty(m); 3878 3879 if (m->ref_count != 0) 3880 panic("vm_page_free_prep: page %p has references", m); 3881 3882 /* 3883 * Restore the default memory attribute to the page. 3884 */ 3885 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) 3886 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); 3887 3888 #if VM_NRESERVLEVEL > 0 3889 /* 3890 * Determine whether the page belongs to a reservation. If the page was 3891 * allocated from a per-CPU cache, it cannot belong to a reservation, so 3892 * as an optimization, we avoid the check in that case. 3893 */ 3894 if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m)) 3895 return (false); 3896 #endif 3897 3898 return (true); 3899 } 3900 3901 /* 3902 * vm_page_free_toq: 3903 * 3904 * Returns the given page to the free list, disassociating it 3905 * from any VM object. 3906 * 3907 * The object must be locked. The page must be exclusively busied if it 3908 * belongs to an object. 3909 */ 3910 static void 3911 vm_page_free_toq(vm_page_t m) 3912 { 3913 struct vm_domain *vmd; 3914 uma_zone_t zone; 3915 3916 if (!vm_page_free_prep(m)) 3917 return; 3918 3919 vmd = vm_pagequeue_domain(m); 3920 zone = vmd->vmd_pgcache[m->pool].zone; 3921 if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) { 3922 uma_zfree(zone, m); 3923 return; 3924 } 3925 vm_domain_free_lock(vmd); 3926 vm_phys_free_pages(m, 0); 3927 vm_domain_free_unlock(vmd); 3928 vm_domain_freecnt_inc(vmd, 1); 3929 } 3930 3931 /* 3932 * vm_page_free_pages_toq: 3933 * 3934 * Returns a list of pages to the free list, disassociating it 3935 * from any VM object. In other words, this is equivalent to 3936 * calling vm_page_free_toq() for each page of a list of VM objects. 3937 */ 3938 void 3939 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count) 3940 { 3941 vm_page_t m; 3942 int count; 3943 3944 if (SLIST_EMPTY(free)) 3945 return; 3946 3947 count = 0; 3948 while ((m = SLIST_FIRST(free)) != NULL) { 3949 count++; 3950 SLIST_REMOVE_HEAD(free, plinks.s.ss); 3951 vm_page_free_toq(m); 3952 } 3953 3954 if (update_wire_count) 3955 vm_wire_sub(count); 3956 } 3957 3958 /* 3959 * Mark this page as wired down. For managed pages, this prevents reclamation 3960 * by the page daemon, or when the containing object, if any, is destroyed. 3961 */ 3962 void 3963 vm_page_wire(vm_page_t m) 3964 { 3965 u_int old; 3966 3967 #ifdef INVARIANTS 3968 if (m->object != NULL && !vm_page_busied(m) && 3969 !vm_object_busied(m->object)) 3970 VM_OBJECT_ASSERT_LOCKED(m->object); 3971 #endif 3972 KASSERT((m->flags & PG_FICTITIOUS) == 0 || 3973 VPRC_WIRE_COUNT(m->ref_count) >= 1, 3974 ("vm_page_wire: fictitious page %p has zero wirings", m)); 3975 3976 old = atomic_fetchadd_int(&m->ref_count, 1); 3977 KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX, 3978 ("vm_page_wire: counter overflow for page %p", m)); 3979 if (VPRC_WIRE_COUNT(old) == 0) { 3980 if ((m->oflags & VPO_UNMANAGED) == 0) 3981 vm_page_aflag_set(m, PGA_DEQUEUE); 3982 vm_wire_add(1); 3983 } 3984 } 3985 3986 /* 3987 * Attempt to wire a mapped page following a pmap lookup of that page. 3988 * This may fail if a thread is concurrently tearing down mappings of the page. 3989 * The transient failure is acceptable because it translates to the 3990 * failure of the caller pmap_extract_and_hold(), which should be then 3991 * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages(). 3992 */ 3993 bool 3994 vm_page_wire_mapped(vm_page_t m) 3995 { 3996 u_int old; 3997 3998 old = m->ref_count; 3999 do { 4000 KASSERT(old > 0, 4001 ("vm_page_wire_mapped: wiring unreferenced page %p", m)); 4002 if ((old & VPRC_BLOCKED) != 0) 4003 return (false); 4004 } while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1)); 4005 4006 if (VPRC_WIRE_COUNT(old) == 0) { 4007 if ((m->oflags & VPO_UNMANAGED) == 0) 4008 vm_page_aflag_set(m, PGA_DEQUEUE); 4009 vm_wire_add(1); 4010 } 4011 return (true); 4012 } 4013 4014 /* 4015 * Release a wiring reference to a managed page. If the page still belongs to 4016 * an object, update its position in the page queues to reflect the reference. 4017 * If the wiring was the last reference to the page, free the page. 4018 */ 4019 static void 4020 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse) 4021 { 4022 u_int old; 4023 4024 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4025 ("%s: page %p is unmanaged", __func__, m)); 4026 4027 /* 4028 * Update LRU state before releasing the wiring reference. 4029 * Use a release store when updating the reference count to 4030 * synchronize with vm_page_free_prep(). 4031 */ 4032 old = m->ref_count; 4033 do { 4034 KASSERT(VPRC_WIRE_COUNT(old) > 0, 4035 ("vm_page_unwire: wire count underflow for page %p", m)); 4036 4037 if (old > VPRC_OBJREF + 1) { 4038 /* 4039 * The page has at least one other wiring reference. An 4040 * earlier iteration of this loop may have called 4041 * vm_page_release_toq() and cleared PGA_DEQUEUE, so 4042 * re-set it if necessary. 4043 */ 4044 if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0) 4045 vm_page_aflag_set(m, PGA_DEQUEUE); 4046 } else if (old == VPRC_OBJREF + 1) { 4047 /* 4048 * This is the last wiring. Clear PGA_DEQUEUE and 4049 * update the page's queue state to reflect the 4050 * reference. If the page does not belong to an object 4051 * (i.e., the VPRC_OBJREF bit is clear), we only need to 4052 * clear leftover queue state. 4053 */ 4054 vm_page_release_toq(m, nqueue, noreuse); 4055 } else if (old == 1) { 4056 vm_page_aflag_clear(m, PGA_DEQUEUE); 4057 } 4058 } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1)); 4059 4060 if (VPRC_WIRE_COUNT(old) == 1) { 4061 vm_wire_sub(1); 4062 if (old == 1) 4063 vm_page_free(m); 4064 } 4065 } 4066 4067 /* 4068 * Release one wiring of the specified page, potentially allowing it to be 4069 * paged out. 4070 * 4071 * Only managed pages belonging to an object can be paged out. If the number 4072 * of wirings transitions to zero and the page is eligible for page out, then 4073 * the page is added to the specified paging queue. If the released wiring 4074 * represented the last reference to the page, the page is freed. 4075 */ 4076 void 4077 vm_page_unwire(vm_page_t m, uint8_t nqueue) 4078 { 4079 4080 KASSERT(nqueue < PQ_COUNT, 4081 ("vm_page_unwire: invalid queue %u request for page %p", 4082 nqueue, m)); 4083 4084 if ((m->oflags & VPO_UNMANAGED) != 0) { 4085 if (vm_page_unwire_noq(m) && m->ref_count == 0) 4086 vm_page_free(m); 4087 return; 4088 } 4089 vm_page_unwire_managed(m, nqueue, false); 4090 } 4091 4092 /* 4093 * Unwire a page without (re-)inserting it into a page queue. It is up 4094 * to the caller to enqueue, requeue, or free the page as appropriate. 4095 * In most cases involving managed pages, vm_page_unwire() should be used 4096 * instead. 4097 */ 4098 bool 4099 vm_page_unwire_noq(vm_page_t m) 4100 { 4101 u_int old; 4102 4103 old = vm_page_drop(m, 1); 4104 KASSERT(VPRC_WIRE_COUNT(old) != 0, 4105 ("%s: counter underflow for page %p", __func__, m)); 4106 KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1, 4107 ("%s: missing ref on fictitious page %p", __func__, m)); 4108 4109 if (VPRC_WIRE_COUNT(old) > 1) 4110 return (false); 4111 if ((m->oflags & VPO_UNMANAGED) == 0) 4112 vm_page_aflag_clear(m, PGA_DEQUEUE); 4113 vm_wire_sub(1); 4114 return (true); 4115 } 4116 4117 /* 4118 * Ensure that the page ends up in the specified page queue. If the page is 4119 * active or being moved to the active queue, ensure that its act_count is 4120 * at least ACT_INIT but do not otherwise mess with it. 4121 */ 4122 static __always_inline void 4123 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag) 4124 { 4125 vm_page_astate_t old, new; 4126 4127 KASSERT(m->ref_count > 0, 4128 ("%s: page %p does not carry any references", __func__, m)); 4129 KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD, 4130 ("%s: invalid flags %x", __func__, nflag)); 4131 4132 if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m)) 4133 return; 4134 4135 old = vm_page_astate_load(m); 4136 do { 4137 if ((old.flags & PGA_DEQUEUE) != 0) 4138 break; 4139 new = old; 4140 new.flags &= ~PGA_QUEUE_OP_MASK; 4141 if (nqueue == PQ_ACTIVE) 4142 new.act_count = max(old.act_count, ACT_INIT); 4143 if (old.queue == nqueue) { 4144 /* 4145 * There is no need to requeue pages already in the 4146 * active queue. 4147 */ 4148 if (nqueue != PQ_ACTIVE || 4149 (old.flags & PGA_ENQUEUED) == 0) 4150 new.flags |= nflag; 4151 } else { 4152 new.flags |= nflag; 4153 new.queue = nqueue; 4154 } 4155 } while (!vm_page_pqstate_commit(m, &old, new)); 4156 } 4157 4158 /* 4159 * Put the specified page on the active list (if appropriate). 4160 */ 4161 void 4162 vm_page_activate(vm_page_t m) 4163 { 4164 4165 vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE); 4166 } 4167 4168 /* 4169 * Move the specified page to the tail of the inactive queue, or requeue 4170 * the page if it is already in the inactive queue. 4171 */ 4172 void 4173 vm_page_deactivate(vm_page_t m) 4174 { 4175 4176 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE); 4177 } 4178 4179 void 4180 vm_page_deactivate_noreuse(vm_page_t m) 4181 { 4182 4183 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD); 4184 } 4185 4186 /* 4187 * Put a page in the laundry, or requeue it if it is already there. 4188 */ 4189 void 4190 vm_page_launder(vm_page_t m) 4191 { 4192 4193 vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE); 4194 } 4195 4196 /* 4197 * Put a page in the PQ_UNSWAPPABLE holding queue. 4198 */ 4199 void 4200 vm_page_unswappable(vm_page_t m) 4201 { 4202 4203 KASSERT(!vm_page_wired(m) && (m->oflags & VPO_UNMANAGED) == 0, 4204 ("page %p already unswappable", m)); 4205 4206 vm_page_dequeue(m); 4207 vm_page_enqueue(m, PQ_UNSWAPPABLE); 4208 } 4209 4210 /* 4211 * Release a page back to the page queues in preparation for unwiring. 4212 */ 4213 static void 4214 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse) 4215 { 4216 vm_page_astate_t old, new; 4217 uint16_t nflag; 4218 4219 /* 4220 * Use a check of the valid bits to determine whether we should 4221 * accelerate reclamation of the page. The object lock might not be 4222 * held here, in which case the check is racy. At worst we will either 4223 * accelerate reclamation of a valid page and violate LRU, or 4224 * unnecessarily defer reclamation of an invalid page. 4225 * 4226 * If we were asked to not cache the page, place it near the head of the 4227 * inactive queue so that is reclaimed sooner. 4228 */ 4229 if (noreuse || m->valid == 0) { 4230 nqueue = PQ_INACTIVE; 4231 nflag = PGA_REQUEUE_HEAD; 4232 } else { 4233 nflag = PGA_REQUEUE; 4234 } 4235 4236 old = vm_page_astate_load(m); 4237 do { 4238 new = old; 4239 4240 /* 4241 * If the page is already in the active queue and we are not 4242 * trying to accelerate reclamation, simply mark it as 4243 * referenced and avoid any queue operations. 4244 */ 4245 new.flags &= ~PGA_QUEUE_OP_MASK; 4246 if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE && 4247 (old.flags & PGA_ENQUEUED) != 0) 4248 new.flags |= PGA_REFERENCED; 4249 else { 4250 new.flags |= nflag; 4251 new.queue = nqueue; 4252 } 4253 } while (!vm_page_pqstate_commit(m, &old, new)); 4254 } 4255 4256 /* 4257 * Unwire a page and either attempt to free it or re-add it to the page queues. 4258 */ 4259 void 4260 vm_page_release(vm_page_t m, int flags) 4261 { 4262 vm_object_t object; 4263 4264 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4265 ("vm_page_release: page %p is unmanaged", m)); 4266 4267 if ((flags & VPR_TRYFREE) != 0) { 4268 for (;;) { 4269 object = atomic_load_ptr(&m->object); 4270 if (object == NULL) 4271 break; 4272 /* Depends on type-stability. */ 4273 if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object)) 4274 break; 4275 if (object == m->object) { 4276 vm_page_release_locked(m, flags); 4277 VM_OBJECT_WUNLOCK(object); 4278 return; 4279 } 4280 VM_OBJECT_WUNLOCK(object); 4281 } 4282 } 4283 vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0); 4284 } 4285 4286 /* See vm_page_release(). */ 4287 void 4288 vm_page_release_locked(vm_page_t m, int flags) 4289 { 4290 4291 VM_OBJECT_ASSERT_WLOCKED(m->object); 4292 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4293 ("vm_page_release_locked: page %p is unmanaged", m)); 4294 4295 if (vm_page_unwire_noq(m)) { 4296 if ((flags & VPR_TRYFREE) != 0 && 4297 (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) && 4298 m->dirty == 0 && vm_page_tryxbusy(m)) { 4299 /* 4300 * An unlocked lookup may have wired the page before the 4301 * busy lock was acquired, in which case the page must 4302 * not be freed. 4303 */ 4304 if (__predict_true(!vm_page_wired(m))) { 4305 vm_page_free(m); 4306 return; 4307 } 4308 vm_page_xunbusy(m); 4309 } else { 4310 vm_page_release_toq(m, PQ_INACTIVE, flags != 0); 4311 } 4312 } 4313 } 4314 4315 static bool 4316 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t)) 4317 { 4318 u_int old; 4319 4320 KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0, 4321 ("vm_page_try_blocked_op: page %p has no object", m)); 4322 KASSERT(vm_page_busied(m), 4323 ("vm_page_try_blocked_op: page %p is not busy", m)); 4324 VM_OBJECT_ASSERT_LOCKED(m->object); 4325 4326 old = m->ref_count; 4327 do { 4328 KASSERT(old != 0, 4329 ("vm_page_try_blocked_op: page %p has no references", m)); 4330 if (VPRC_WIRE_COUNT(old) != 0) 4331 return (false); 4332 } while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED)); 4333 4334 (op)(m); 4335 4336 /* 4337 * If the object is read-locked, new wirings may be created via an 4338 * object lookup. 4339 */ 4340 old = vm_page_drop(m, VPRC_BLOCKED); 4341 KASSERT(!VM_OBJECT_WOWNED(m->object) || 4342 old == (VPRC_BLOCKED | VPRC_OBJREF), 4343 ("vm_page_try_blocked_op: unexpected refcount value %u for %p", 4344 old, m)); 4345 return (true); 4346 } 4347 4348 /* 4349 * Atomically check for wirings and remove all mappings of the page. 4350 */ 4351 bool 4352 vm_page_try_remove_all(vm_page_t m) 4353 { 4354 4355 return (vm_page_try_blocked_op(m, pmap_remove_all)); 4356 } 4357 4358 /* 4359 * Atomically check for wirings and remove all writeable mappings of the page. 4360 */ 4361 bool 4362 vm_page_try_remove_write(vm_page_t m) 4363 { 4364 4365 return (vm_page_try_blocked_op(m, pmap_remove_write)); 4366 } 4367 4368 /* 4369 * vm_page_advise 4370 * 4371 * Apply the specified advice to the given page. 4372 */ 4373 void 4374 vm_page_advise(vm_page_t m, int advice) 4375 { 4376 4377 VM_OBJECT_ASSERT_WLOCKED(m->object); 4378 vm_page_assert_xbusied(m); 4379 4380 if (advice == MADV_FREE) 4381 /* 4382 * Mark the page clean. This will allow the page to be freed 4383 * without first paging it out. MADV_FREE pages are often 4384 * quickly reused by malloc(3), so we do not do anything that 4385 * would result in a page fault on a later access. 4386 */ 4387 vm_page_undirty(m); 4388 else if (advice != MADV_DONTNEED) { 4389 if (advice == MADV_WILLNEED) 4390 vm_page_activate(m); 4391 return; 4392 } 4393 4394 if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m)) 4395 vm_page_dirty(m); 4396 4397 /* 4398 * Clear any references to the page. Otherwise, the page daemon will 4399 * immediately reactivate the page. 4400 */ 4401 vm_page_aflag_clear(m, PGA_REFERENCED); 4402 4403 /* 4404 * Place clean pages near the head of the inactive queue rather than 4405 * the tail, thus defeating the queue's LRU operation and ensuring that 4406 * the page will be reused quickly. Dirty pages not already in the 4407 * laundry are moved there. 4408 */ 4409 if (m->dirty == 0) 4410 vm_page_deactivate_noreuse(m); 4411 else if (!vm_page_in_laundry(m)) 4412 vm_page_launder(m); 4413 } 4414 4415 /* 4416 * vm_page_grab_release 4417 * 4418 * Helper routine for grab functions to release busy on return. 4419 */ 4420 static inline void 4421 vm_page_grab_release(vm_page_t m, int allocflags) 4422 { 4423 4424 if ((allocflags & VM_ALLOC_NOBUSY) != 0) { 4425 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0) 4426 vm_page_sunbusy(m); 4427 else 4428 vm_page_xunbusy(m); 4429 } 4430 } 4431 4432 /* 4433 * vm_page_grab_sleep 4434 * 4435 * Sleep for busy according to VM_ALLOC_ parameters. Returns true 4436 * if the caller should retry and false otherwise. 4437 * 4438 * If the object is locked on entry the object will be unlocked with 4439 * false returns and still locked but possibly having been dropped 4440 * with true returns. 4441 */ 4442 static bool 4443 vm_page_grab_sleep(vm_object_t object, vm_page_t m, vm_pindex_t pindex, 4444 const char *wmesg, int allocflags, bool locked) 4445 { 4446 4447 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 4448 return (false); 4449 4450 /* 4451 * Reference the page before unlocking and sleeping so that 4452 * the page daemon is less likely to reclaim it. 4453 */ 4454 if (locked && (allocflags & VM_ALLOC_NOCREAT) == 0) 4455 vm_page_reference(m); 4456 4457 if (_vm_page_busy_sleep(object, m, pindex, wmesg, allocflags, locked) && 4458 locked) 4459 VM_OBJECT_WLOCK(object); 4460 if ((allocflags & VM_ALLOC_WAITFAIL) != 0) 4461 return (false); 4462 4463 return (true); 4464 } 4465 4466 /* 4467 * Assert that the grab flags are valid. 4468 */ 4469 static inline void 4470 vm_page_grab_check(int allocflags) 4471 { 4472 4473 KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 || 4474 (allocflags & VM_ALLOC_WIRED) != 0, 4475 ("vm_page_grab*: the pages must be busied or wired")); 4476 4477 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 4478 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 4479 ("vm_page_grab*: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch")); 4480 } 4481 4482 /* 4483 * Calculate the page allocation flags for grab. 4484 */ 4485 static inline int 4486 vm_page_grab_pflags(int allocflags) 4487 { 4488 int pflags; 4489 4490 pflags = allocflags & 4491 ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL | 4492 VM_ALLOC_NOBUSY | VM_ALLOC_IGN_SBUSY); 4493 if ((allocflags & VM_ALLOC_NOWAIT) == 0) 4494 pflags |= VM_ALLOC_WAITFAIL; 4495 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0) 4496 pflags |= VM_ALLOC_SBUSY; 4497 4498 return (pflags); 4499 } 4500 4501 /* 4502 * Grab a page, waiting until we are waken up due to the page 4503 * changing state. We keep on waiting, if the page continues 4504 * to be in the object. If the page doesn't exist, first allocate it 4505 * and then conditionally zero it. 4506 * 4507 * This routine may sleep. 4508 * 4509 * The object must be locked on entry. The lock will, however, be released 4510 * and reacquired if the routine sleeps. 4511 */ 4512 vm_page_t 4513 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 4514 { 4515 vm_page_t m; 4516 4517 VM_OBJECT_ASSERT_WLOCKED(object); 4518 vm_page_grab_check(allocflags); 4519 4520 retrylookup: 4521 if ((m = vm_page_lookup(object, pindex)) != NULL) { 4522 if (!vm_page_tryacquire(m, allocflags)) { 4523 if (vm_page_grab_sleep(object, m, pindex, "pgrbwt", 4524 allocflags, true)) 4525 goto retrylookup; 4526 return (NULL); 4527 } 4528 goto out; 4529 } 4530 if ((allocflags & VM_ALLOC_NOCREAT) != 0) 4531 return (NULL); 4532 m = vm_page_alloc(object, pindex, vm_page_grab_pflags(allocflags)); 4533 if (m == NULL) { 4534 if ((allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0) 4535 return (NULL); 4536 goto retrylookup; 4537 } 4538 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 4539 pmap_zero_page(m); 4540 4541 out: 4542 vm_page_grab_release(m, allocflags); 4543 4544 return (m); 4545 } 4546 4547 /* 4548 * Locklessly attempt to acquire a page given a (object, pindex) tuple 4549 * and an optional previous page to avoid the radix lookup. The resulting 4550 * page will be validated against the identity tuple and busied or wired 4551 * as requested. A NULL *mp return guarantees that the page was not in 4552 * radix at the time of the call but callers must perform higher level 4553 * synchronization or retry the operation under a lock if they require 4554 * an atomic answer. This is the only lock free validation routine, 4555 * other routines can depend on the resulting page state. 4556 * 4557 * The return value indicates whether the operation failed due to caller 4558 * flags. The return is tri-state with mp: 4559 * 4560 * (true, *mp != NULL) - The operation was successful. 4561 * (true, *mp == NULL) - The page was not found in tree. 4562 * (false, *mp == NULL) - WAITFAIL or NOWAIT prevented acquisition. 4563 */ 4564 static bool 4565 vm_page_acquire_unlocked(vm_object_t object, vm_pindex_t pindex, 4566 vm_page_t prev, vm_page_t *mp, int allocflags) 4567 { 4568 vm_page_t m; 4569 4570 vm_page_grab_check(allocflags); 4571 MPASS(prev == NULL || vm_page_busied(prev) || vm_page_wired(prev)); 4572 4573 *mp = NULL; 4574 for (;;) { 4575 /* 4576 * We may see a false NULL here because the previous page 4577 * has been removed or just inserted and the list is loaded 4578 * without barriers. Switch to radix to verify. 4579 */ 4580 if (prev == NULL || (m = TAILQ_NEXT(prev, listq)) == NULL || 4581 QMD_IS_TRASHED(m) || m->pindex != pindex || 4582 atomic_load_ptr(&m->object) != object) { 4583 prev = NULL; 4584 /* 4585 * This guarantees the result is instantaneously 4586 * correct. 4587 */ 4588 m = vm_radix_lookup_unlocked(&object->rtree, pindex); 4589 } 4590 if (m == NULL) 4591 return (true); 4592 if (vm_page_trybusy(m, allocflags)) { 4593 if (m->object == object && m->pindex == pindex) 4594 break; 4595 /* relookup. */ 4596 vm_page_busy_release(m); 4597 cpu_spinwait(); 4598 continue; 4599 } 4600 if (!vm_page_grab_sleep(object, m, pindex, "pgnslp", 4601 allocflags, false)) 4602 return (false); 4603 } 4604 if ((allocflags & VM_ALLOC_WIRED) != 0) 4605 vm_page_wire(m); 4606 vm_page_grab_release(m, allocflags); 4607 *mp = m; 4608 return (true); 4609 } 4610 4611 /* 4612 * Try to locklessly grab a page and fall back to the object lock if NOCREAT 4613 * is not set. 4614 */ 4615 vm_page_t 4616 vm_page_grab_unlocked(vm_object_t object, vm_pindex_t pindex, int allocflags) 4617 { 4618 vm_page_t m; 4619 4620 vm_page_grab_check(allocflags); 4621 4622 if (!vm_page_acquire_unlocked(object, pindex, NULL, &m, allocflags)) 4623 return (NULL); 4624 if (m != NULL) 4625 return (m); 4626 4627 /* 4628 * The radix lockless lookup should never return a false negative 4629 * errors. If the user specifies NOCREAT they are guaranteed there 4630 * was no page present at the instant of the call. A NOCREAT caller 4631 * must handle create races gracefully. 4632 */ 4633 if ((allocflags & VM_ALLOC_NOCREAT) != 0) 4634 return (NULL); 4635 4636 VM_OBJECT_WLOCK(object); 4637 m = vm_page_grab(object, pindex, allocflags); 4638 VM_OBJECT_WUNLOCK(object); 4639 4640 return (m); 4641 } 4642 4643 /* 4644 * Grab a page and make it valid, paging in if necessary. Pages missing from 4645 * their pager are zero filled and validated. If a VM_ALLOC_COUNT is supplied 4646 * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought 4647 * in simultaneously. Additional pages will be left on a paging queue but 4648 * will neither be wired nor busy regardless of allocflags. 4649 */ 4650 int 4651 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags) 4652 { 4653 vm_page_t m; 4654 vm_page_t ma[VM_INITIAL_PAGEIN]; 4655 int after, i, pflags, rv; 4656 4657 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 4658 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 4659 ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch")); 4660 KASSERT((allocflags & 4661 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0, 4662 ("vm_page_grab_valid: Invalid flags 0x%X", allocflags)); 4663 VM_OBJECT_ASSERT_WLOCKED(object); 4664 pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY | 4665 VM_ALLOC_WIRED | VM_ALLOC_IGN_SBUSY); 4666 pflags |= VM_ALLOC_WAITFAIL; 4667 4668 retrylookup: 4669 if ((m = vm_page_lookup(object, pindex)) != NULL) { 4670 /* 4671 * If the page is fully valid it can only become invalid 4672 * with the object lock held. If it is not valid it can 4673 * become valid with the busy lock held. Therefore, we 4674 * may unnecessarily lock the exclusive busy here if we 4675 * race with I/O completion not using the object lock. 4676 * However, we will not end up with an invalid page and a 4677 * shared lock. 4678 */ 4679 if (!vm_page_trybusy(m, 4680 vm_page_all_valid(m) ? allocflags : 0)) { 4681 (void)vm_page_grab_sleep(object, m, pindex, "pgrbwt", 4682 allocflags, true); 4683 goto retrylookup; 4684 } 4685 if (vm_page_all_valid(m)) 4686 goto out; 4687 if ((allocflags & VM_ALLOC_NOCREAT) != 0) { 4688 vm_page_busy_release(m); 4689 *mp = NULL; 4690 return (VM_PAGER_FAIL); 4691 } 4692 } else if ((allocflags & VM_ALLOC_NOCREAT) != 0) { 4693 *mp = NULL; 4694 return (VM_PAGER_FAIL); 4695 } else if ((m = vm_page_alloc(object, pindex, pflags)) == NULL) { 4696 goto retrylookup; 4697 } 4698 4699 vm_page_assert_xbusied(m); 4700 if (vm_pager_has_page(object, pindex, NULL, &after)) { 4701 after = MIN(after, VM_INITIAL_PAGEIN); 4702 after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT); 4703 after = MAX(after, 1); 4704 ma[0] = m; 4705 for (i = 1; i < after; i++) { 4706 if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) { 4707 if (ma[i]->valid || !vm_page_tryxbusy(ma[i])) 4708 break; 4709 } else { 4710 ma[i] = vm_page_alloc(object, m->pindex + i, 4711 VM_ALLOC_NORMAL); 4712 if (ma[i] == NULL) 4713 break; 4714 } 4715 } 4716 after = i; 4717 vm_object_pip_add(object, after); 4718 VM_OBJECT_WUNLOCK(object); 4719 rv = vm_pager_get_pages(object, ma, after, NULL, NULL); 4720 VM_OBJECT_WLOCK(object); 4721 vm_object_pip_wakeupn(object, after); 4722 /* Pager may have replaced a page. */ 4723 m = ma[0]; 4724 if (rv != VM_PAGER_OK) { 4725 for (i = 0; i < after; i++) { 4726 if (!vm_page_wired(ma[i])) 4727 vm_page_free(ma[i]); 4728 else 4729 vm_page_xunbusy(ma[i]); 4730 } 4731 *mp = NULL; 4732 return (rv); 4733 } 4734 for (i = 1; i < after; i++) 4735 vm_page_readahead_finish(ma[i]); 4736 MPASS(vm_page_all_valid(m)); 4737 } else { 4738 vm_page_zero_invalid(m, TRUE); 4739 } 4740 out: 4741 if ((allocflags & VM_ALLOC_WIRED) != 0) 4742 vm_page_wire(m); 4743 if ((allocflags & VM_ALLOC_SBUSY) != 0 && vm_page_xbusied(m)) 4744 vm_page_busy_downgrade(m); 4745 else if ((allocflags & VM_ALLOC_NOBUSY) != 0) 4746 vm_page_busy_release(m); 4747 *mp = m; 4748 return (VM_PAGER_OK); 4749 } 4750 4751 /* 4752 * Locklessly grab a valid page. If the page is not valid or not yet 4753 * allocated this will fall back to the object lock method. 4754 */ 4755 int 4756 vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object, 4757 vm_pindex_t pindex, int allocflags) 4758 { 4759 vm_page_t m; 4760 int flags; 4761 int error; 4762 4763 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 4764 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 4765 ("vm_page_grab_valid_unlocked: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY " 4766 "mismatch")); 4767 KASSERT((allocflags & 4768 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0, 4769 ("vm_page_grab_valid_unlocked: Invalid flags 0x%X", allocflags)); 4770 4771 /* 4772 * Attempt a lockless lookup and busy. We need at least an sbusy 4773 * before we can inspect the valid field and return a wired page. 4774 */ 4775 flags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_WIRED); 4776 if (!vm_page_acquire_unlocked(object, pindex, NULL, mp, flags)) 4777 return (VM_PAGER_FAIL); 4778 if ((m = *mp) != NULL) { 4779 if (vm_page_all_valid(m)) { 4780 if ((allocflags & VM_ALLOC_WIRED) != 0) 4781 vm_page_wire(m); 4782 vm_page_grab_release(m, allocflags); 4783 return (VM_PAGER_OK); 4784 } 4785 vm_page_busy_release(m); 4786 } 4787 if ((allocflags & VM_ALLOC_NOCREAT) != 0) { 4788 *mp = NULL; 4789 return (VM_PAGER_FAIL); 4790 } 4791 VM_OBJECT_WLOCK(object); 4792 error = vm_page_grab_valid(mp, object, pindex, allocflags); 4793 VM_OBJECT_WUNLOCK(object); 4794 4795 return (error); 4796 } 4797 4798 /* 4799 * Return the specified range of pages from the given object. For each 4800 * page offset within the range, if a page already exists within the object 4801 * at that offset and it is busy, then wait for it to change state. If, 4802 * instead, the page doesn't exist, then allocate it. 4803 * 4804 * The caller must always specify an allocation class. 4805 * 4806 * allocation classes: 4807 * VM_ALLOC_NORMAL normal process request 4808 * VM_ALLOC_SYSTEM system *really* needs the pages 4809 * 4810 * The caller must always specify that the pages are to be busied and/or 4811 * wired. 4812 * 4813 * optional allocation flags: 4814 * VM_ALLOC_IGN_SBUSY do not sleep on soft busy pages 4815 * VM_ALLOC_NOBUSY do not exclusive busy the page 4816 * VM_ALLOC_NOWAIT do not sleep 4817 * VM_ALLOC_SBUSY set page to sbusy state 4818 * VM_ALLOC_WIRED wire the pages 4819 * VM_ALLOC_ZERO zero and validate any invalid pages 4820 * 4821 * If VM_ALLOC_NOWAIT is not specified, this routine may sleep. Otherwise, it 4822 * may return a partial prefix of the requested range. 4823 */ 4824 int 4825 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags, 4826 vm_page_t *ma, int count) 4827 { 4828 vm_page_t m, mpred; 4829 int pflags; 4830 int i; 4831 4832 VM_OBJECT_ASSERT_WLOCKED(object); 4833 KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0, 4834 ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed")); 4835 KASSERT(count > 0, 4836 ("vm_page_grab_pages: invalid page count %d", count)); 4837 vm_page_grab_check(allocflags); 4838 4839 pflags = vm_page_grab_pflags(allocflags); 4840 i = 0; 4841 retrylookup: 4842 m = vm_radix_lookup_le(&object->rtree, pindex + i); 4843 if (m == NULL || m->pindex != pindex + i) { 4844 mpred = m; 4845 m = NULL; 4846 } else 4847 mpred = TAILQ_PREV(m, pglist, listq); 4848 for (; i < count; i++) { 4849 if (m != NULL) { 4850 if (!vm_page_tryacquire(m, allocflags)) { 4851 if (vm_page_grab_sleep(object, m, pindex + i, 4852 "grbmaw", allocflags, true)) 4853 goto retrylookup; 4854 break; 4855 } 4856 } else { 4857 if ((allocflags & VM_ALLOC_NOCREAT) != 0) 4858 break; 4859 m = vm_page_alloc_after(object, pindex + i, 4860 pflags | VM_ALLOC_COUNT(count - i), mpred); 4861 if (m == NULL) { 4862 if ((allocflags & (VM_ALLOC_NOWAIT | 4863 VM_ALLOC_WAITFAIL)) != 0) 4864 break; 4865 goto retrylookup; 4866 } 4867 } 4868 if (vm_page_none_valid(m) && 4869 (allocflags & VM_ALLOC_ZERO) != 0) { 4870 if ((m->flags & PG_ZERO) == 0) 4871 pmap_zero_page(m); 4872 vm_page_valid(m); 4873 } 4874 vm_page_grab_release(m, allocflags); 4875 ma[i] = mpred = m; 4876 m = vm_page_next(m); 4877 } 4878 return (i); 4879 } 4880 4881 /* 4882 * Unlocked variant of vm_page_grab_pages(). This accepts the same flags 4883 * and will fall back to the locked variant to handle allocation. 4884 */ 4885 int 4886 vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex, 4887 int allocflags, vm_page_t *ma, int count) 4888 { 4889 vm_page_t m, pred; 4890 int flags; 4891 int i; 4892 4893 KASSERT(count > 0, 4894 ("vm_page_grab_pages_unlocked: invalid page count %d", count)); 4895 vm_page_grab_check(allocflags); 4896 4897 /* 4898 * Modify flags for lockless acquire to hold the page until we 4899 * set it valid if necessary. 4900 */ 4901 flags = allocflags & ~VM_ALLOC_NOBUSY; 4902 pred = NULL; 4903 for (i = 0; i < count; i++, pindex++) { 4904 if (!vm_page_acquire_unlocked(object, pindex, pred, &m, flags)) 4905 return (i); 4906 if (m == NULL) 4907 break; 4908 if ((flags & VM_ALLOC_ZERO) != 0 && vm_page_none_valid(m)) { 4909 if ((m->flags & PG_ZERO) == 0) 4910 pmap_zero_page(m); 4911 vm_page_valid(m); 4912 } 4913 /* m will still be wired or busy according to flags. */ 4914 vm_page_grab_release(m, allocflags); 4915 pred = ma[i] = m; 4916 } 4917 if (i == count || (allocflags & VM_ALLOC_NOCREAT) != 0) 4918 return (i); 4919 count -= i; 4920 VM_OBJECT_WLOCK(object); 4921 i += vm_page_grab_pages(object, pindex, allocflags, &ma[i], count); 4922 VM_OBJECT_WUNLOCK(object); 4923 4924 return (i); 4925 } 4926 4927 /* 4928 * Mapping function for valid or dirty bits in a page. 4929 * 4930 * Inputs are required to range within a page. 4931 */ 4932 vm_page_bits_t 4933 vm_page_bits(int base, int size) 4934 { 4935 int first_bit; 4936 int last_bit; 4937 4938 KASSERT( 4939 base + size <= PAGE_SIZE, 4940 ("vm_page_bits: illegal base/size %d/%d", base, size) 4941 ); 4942 4943 if (size == 0) /* handle degenerate case */ 4944 return (0); 4945 4946 first_bit = base >> DEV_BSHIFT; 4947 last_bit = (base + size - 1) >> DEV_BSHIFT; 4948 4949 return (((vm_page_bits_t)2 << last_bit) - 4950 ((vm_page_bits_t)1 << first_bit)); 4951 } 4952 4953 void 4954 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set) 4955 { 4956 4957 #if PAGE_SIZE == 32768 4958 atomic_set_64((uint64_t *)bits, set); 4959 #elif PAGE_SIZE == 16384 4960 atomic_set_32((uint32_t *)bits, set); 4961 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16) 4962 atomic_set_16((uint16_t *)bits, set); 4963 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8) 4964 atomic_set_8((uint8_t *)bits, set); 4965 #else /* PAGE_SIZE <= 8192 */ 4966 uintptr_t addr; 4967 int shift; 4968 4969 addr = (uintptr_t)bits; 4970 /* 4971 * Use a trick to perform a 32-bit atomic on the 4972 * containing aligned word, to not depend on the existence 4973 * of atomic_{set, clear}_{8, 16}. 4974 */ 4975 shift = addr & (sizeof(uint32_t) - 1); 4976 #if BYTE_ORDER == BIG_ENDIAN 4977 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY; 4978 #else 4979 shift *= NBBY; 4980 #endif 4981 addr &= ~(sizeof(uint32_t) - 1); 4982 atomic_set_32((uint32_t *)addr, set << shift); 4983 #endif /* PAGE_SIZE */ 4984 } 4985 4986 static inline void 4987 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear) 4988 { 4989 4990 #if PAGE_SIZE == 32768 4991 atomic_clear_64((uint64_t *)bits, clear); 4992 #elif PAGE_SIZE == 16384 4993 atomic_clear_32((uint32_t *)bits, clear); 4994 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16) 4995 atomic_clear_16((uint16_t *)bits, clear); 4996 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8) 4997 atomic_clear_8((uint8_t *)bits, clear); 4998 #else /* PAGE_SIZE <= 8192 */ 4999 uintptr_t addr; 5000 int shift; 5001 5002 addr = (uintptr_t)bits; 5003 /* 5004 * Use a trick to perform a 32-bit atomic on the 5005 * containing aligned word, to not depend on the existence 5006 * of atomic_{set, clear}_{8, 16}. 5007 */ 5008 shift = addr & (sizeof(uint32_t) - 1); 5009 #if BYTE_ORDER == BIG_ENDIAN 5010 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY; 5011 #else 5012 shift *= NBBY; 5013 #endif 5014 addr &= ~(sizeof(uint32_t) - 1); 5015 atomic_clear_32((uint32_t *)addr, clear << shift); 5016 #endif /* PAGE_SIZE */ 5017 } 5018 5019 static inline vm_page_bits_t 5020 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits) 5021 { 5022 #if PAGE_SIZE == 32768 5023 uint64_t old; 5024 5025 old = *bits; 5026 while (atomic_fcmpset_64(bits, &old, newbits) == 0); 5027 return (old); 5028 #elif PAGE_SIZE == 16384 5029 uint32_t old; 5030 5031 old = *bits; 5032 while (atomic_fcmpset_32(bits, &old, newbits) == 0); 5033 return (old); 5034 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16) 5035 uint16_t old; 5036 5037 old = *bits; 5038 while (atomic_fcmpset_16(bits, &old, newbits) == 0); 5039 return (old); 5040 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8) 5041 uint8_t old; 5042 5043 old = *bits; 5044 while (atomic_fcmpset_8(bits, &old, newbits) == 0); 5045 return (old); 5046 #else /* PAGE_SIZE <= 4096*/ 5047 uintptr_t addr; 5048 uint32_t old, new, mask; 5049 int shift; 5050 5051 addr = (uintptr_t)bits; 5052 /* 5053 * Use a trick to perform a 32-bit atomic on the 5054 * containing aligned word, to not depend on the existence 5055 * of atomic_{set, swap, clear}_{8, 16}. 5056 */ 5057 shift = addr & (sizeof(uint32_t) - 1); 5058 #if BYTE_ORDER == BIG_ENDIAN 5059 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY; 5060 #else 5061 shift *= NBBY; 5062 #endif 5063 addr &= ~(sizeof(uint32_t) - 1); 5064 mask = VM_PAGE_BITS_ALL << shift; 5065 5066 old = *bits; 5067 do { 5068 new = old & ~mask; 5069 new |= newbits << shift; 5070 } while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0); 5071 return (old >> shift); 5072 #endif /* PAGE_SIZE */ 5073 } 5074 5075 /* 5076 * vm_page_set_valid_range: 5077 * 5078 * Sets portions of a page valid. The arguments are expected 5079 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 5080 * of any partial chunks touched by the range. The invalid portion of 5081 * such chunks will be zeroed. 5082 * 5083 * (base + size) must be less then or equal to PAGE_SIZE. 5084 */ 5085 void 5086 vm_page_set_valid_range(vm_page_t m, int base, int size) 5087 { 5088 int endoff, frag; 5089 vm_page_bits_t pagebits; 5090 5091 vm_page_assert_busied(m); 5092 if (size == 0) /* handle degenerate case */ 5093 return; 5094 5095 /* 5096 * If the base is not DEV_BSIZE aligned and the valid 5097 * bit is clear, we have to zero out a portion of the 5098 * first block. 5099 */ 5100 if ((frag = rounddown2(base, DEV_BSIZE)) != base && 5101 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 5102 pmap_zero_page_area(m, frag, base - frag); 5103 5104 /* 5105 * If the ending offset is not DEV_BSIZE aligned and the 5106 * valid bit is clear, we have to zero out a portion of 5107 * the last block. 5108 */ 5109 endoff = base + size; 5110 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && 5111 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 5112 pmap_zero_page_area(m, endoff, 5113 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 5114 5115 /* 5116 * Assert that no previously invalid block that is now being validated 5117 * is already dirty. 5118 */ 5119 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0, 5120 ("vm_page_set_valid_range: page %p is dirty", m)); 5121 5122 /* 5123 * Set valid bits inclusive of any overlap. 5124 */ 5125 pagebits = vm_page_bits(base, size); 5126 if (vm_page_xbusied(m)) 5127 m->valid |= pagebits; 5128 else 5129 vm_page_bits_set(m, &m->valid, pagebits); 5130 } 5131 5132 /* 5133 * Set the page dirty bits and free the invalid swap space if 5134 * present. Returns the previous dirty bits. 5135 */ 5136 vm_page_bits_t 5137 vm_page_set_dirty(vm_page_t m) 5138 { 5139 vm_page_bits_t old; 5140 5141 VM_PAGE_OBJECT_BUSY_ASSERT(m); 5142 5143 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) { 5144 old = m->dirty; 5145 m->dirty = VM_PAGE_BITS_ALL; 5146 } else 5147 old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL); 5148 if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0) 5149 vm_pager_page_unswapped(m); 5150 5151 return (old); 5152 } 5153 5154 /* 5155 * Clear the given bits from the specified page's dirty field. 5156 */ 5157 static __inline void 5158 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits) 5159 { 5160 5161 vm_page_assert_busied(m); 5162 5163 /* 5164 * If the page is xbusied and not write mapped we are the 5165 * only thread that can modify dirty bits. Otherwise, The pmap 5166 * layer can call vm_page_dirty() without holding a distinguished 5167 * lock. The combination of page busy and atomic operations 5168 * suffice to guarantee consistency of the page dirty field. 5169 */ 5170 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) 5171 m->dirty &= ~pagebits; 5172 else 5173 vm_page_bits_clear(m, &m->dirty, pagebits); 5174 } 5175 5176 /* 5177 * vm_page_set_validclean: 5178 * 5179 * Sets portions of a page valid and clean. The arguments are expected 5180 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 5181 * of any partial chunks touched by the range. The invalid portion of 5182 * such chunks will be zero'd. 5183 * 5184 * (base + size) must be less then or equal to PAGE_SIZE. 5185 */ 5186 void 5187 vm_page_set_validclean(vm_page_t m, int base, int size) 5188 { 5189 vm_page_bits_t oldvalid, pagebits; 5190 int endoff, frag; 5191 5192 vm_page_assert_busied(m); 5193 if (size == 0) /* handle degenerate case */ 5194 return; 5195 5196 /* 5197 * If the base is not DEV_BSIZE aligned and the valid 5198 * bit is clear, we have to zero out a portion of the 5199 * first block. 5200 */ 5201 if ((frag = rounddown2(base, DEV_BSIZE)) != base && 5202 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0) 5203 pmap_zero_page_area(m, frag, base - frag); 5204 5205 /* 5206 * If the ending offset is not DEV_BSIZE aligned and the 5207 * valid bit is clear, we have to zero out a portion of 5208 * the last block. 5209 */ 5210 endoff = base + size; 5211 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && 5212 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0) 5213 pmap_zero_page_area(m, endoff, 5214 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 5215 5216 /* 5217 * Set valid, clear dirty bits. If validating the entire 5218 * page we can safely clear the pmap modify bit. We also 5219 * use this opportunity to clear the PGA_NOSYNC flag. If a process 5220 * takes a write fault on a MAP_NOSYNC memory area the flag will 5221 * be set again. 5222 * 5223 * We set valid bits inclusive of any overlap, but we can only 5224 * clear dirty bits for DEV_BSIZE chunks that are fully within 5225 * the range. 5226 */ 5227 oldvalid = m->valid; 5228 pagebits = vm_page_bits(base, size); 5229 if (vm_page_xbusied(m)) 5230 m->valid |= pagebits; 5231 else 5232 vm_page_bits_set(m, &m->valid, pagebits); 5233 #if 0 /* NOT YET */ 5234 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 5235 frag = DEV_BSIZE - frag; 5236 base += frag; 5237 size -= frag; 5238 if (size < 0) 5239 size = 0; 5240 } 5241 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 5242 #endif 5243 if (base == 0 && size == PAGE_SIZE) { 5244 /* 5245 * The page can only be modified within the pmap if it is 5246 * mapped, and it can only be mapped if it was previously 5247 * fully valid. 5248 */ 5249 if (oldvalid == VM_PAGE_BITS_ALL) 5250 /* 5251 * Perform the pmap_clear_modify() first. Otherwise, 5252 * a concurrent pmap operation, such as 5253 * pmap_protect(), could clear a modification in the 5254 * pmap and set the dirty field on the page before 5255 * pmap_clear_modify() had begun and after the dirty 5256 * field was cleared here. 5257 */ 5258 pmap_clear_modify(m); 5259 m->dirty = 0; 5260 vm_page_aflag_clear(m, PGA_NOSYNC); 5261 } else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m)) 5262 m->dirty &= ~pagebits; 5263 else 5264 vm_page_clear_dirty_mask(m, pagebits); 5265 } 5266 5267 void 5268 vm_page_clear_dirty(vm_page_t m, int base, int size) 5269 { 5270 5271 vm_page_clear_dirty_mask(m, vm_page_bits(base, size)); 5272 } 5273 5274 /* 5275 * vm_page_set_invalid: 5276 * 5277 * Invalidates DEV_BSIZE'd chunks within a page. Both the 5278 * valid and dirty bits for the effected areas are cleared. 5279 */ 5280 void 5281 vm_page_set_invalid(vm_page_t m, int base, int size) 5282 { 5283 vm_page_bits_t bits; 5284 vm_object_t object; 5285 5286 /* 5287 * The object lock is required so that pages can't be mapped 5288 * read-only while we're in the process of invalidating them. 5289 */ 5290 object = m->object; 5291 VM_OBJECT_ASSERT_WLOCKED(object); 5292 vm_page_assert_busied(m); 5293 5294 if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) + 5295 size >= object->un_pager.vnp.vnp_size) 5296 bits = VM_PAGE_BITS_ALL; 5297 else 5298 bits = vm_page_bits(base, size); 5299 if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0) 5300 pmap_remove_all(m); 5301 KASSERT((bits == 0 && vm_page_all_valid(m)) || 5302 !pmap_page_is_mapped(m), 5303 ("vm_page_set_invalid: page %p is mapped", m)); 5304 if (vm_page_xbusied(m)) { 5305 m->valid &= ~bits; 5306 m->dirty &= ~bits; 5307 } else { 5308 vm_page_bits_clear(m, &m->valid, bits); 5309 vm_page_bits_clear(m, &m->dirty, bits); 5310 } 5311 } 5312 5313 /* 5314 * vm_page_invalid: 5315 * 5316 * Invalidates the entire page. The page must be busy, unmapped, and 5317 * the enclosing object must be locked. The object locks protects 5318 * against concurrent read-only pmap enter which is done without 5319 * busy. 5320 */ 5321 void 5322 vm_page_invalid(vm_page_t m) 5323 { 5324 5325 vm_page_assert_busied(m); 5326 VM_OBJECT_ASSERT_WLOCKED(m->object); 5327 MPASS(!pmap_page_is_mapped(m)); 5328 5329 if (vm_page_xbusied(m)) 5330 m->valid = 0; 5331 else 5332 vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL); 5333 } 5334 5335 /* 5336 * vm_page_zero_invalid() 5337 * 5338 * The kernel assumes that the invalid portions of a page contain 5339 * garbage, but such pages can be mapped into memory by user code. 5340 * When this occurs, we must zero out the non-valid portions of the 5341 * page so user code sees what it expects. 5342 * 5343 * Pages are most often semi-valid when the end of a file is mapped 5344 * into memory and the file's size is not page aligned. 5345 */ 5346 void 5347 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 5348 { 5349 int b; 5350 int i; 5351 5352 /* 5353 * Scan the valid bits looking for invalid sections that 5354 * must be zeroed. Invalid sub-DEV_BSIZE'd areas ( where the 5355 * valid bit may be set ) have already been zeroed by 5356 * vm_page_set_validclean(). 5357 */ 5358 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 5359 if (i == (PAGE_SIZE / DEV_BSIZE) || 5360 (m->valid & ((vm_page_bits_t)1 << i))) { 5361 if (i > b) { 5362 pmap_zero_page_area(m, 5363 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 5364 } 5365 b = i + 1; 5366 } 5367 } 5368 5369 /* 5370 * setvalid is TRUE when we can safely set the zero'd areas 5371 * as being valid. We can do this if there are no cache consistency 5372 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 5373 */ 5374 if (setvalid) 5375 vm_page_valid(m); 5376 } 5377 5378 /* 5379 * vm_page_is_valid: 5380 * 5381 * Is (partial) page valid? Note that the case where size == 0 5382 * will return FALSE in the degenerate case where the page is 5383 * entirely invalid, and TRUE otherwise. 5384 * 5385 * Some callers envoke this routine without the busy lock held and 5386 * handle races via higher level locks. Typical callers should 5387 * hold a busy lock to prevent invalidation. 5388 */ 5389 int 5390 vm_page_is_valid(vm_page_t m, int base, int size) 5391 { 5392 vm_page_bits_t bits; 5393 5394 bits = vm_page_bits(base, size); 5395 return (m->valid != 0 && (m->valid & bits) == bits); 5396 } 5397 5398 /* 5399 * Returns true if all of the specified predicates are true for the entire 5400 * (super)page and false otherwise. 5401 */ 5402 bool 5403 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m) 5404 { 5405 vm_object_t object; 5406 int i, npages; 5407 5408 object = m->object; 5409 if (skip_m != NULL && skip_m->object != object) 5410 return (false); 5411 VM_OBJECT_ASSERT_LOCKED(object); 5412 npages = atop(pagesizes[m->psind]); 5413 5414 /* 5415 * The physically contiguous pages that make up a superpage, i.e., a 5416 * page with a page size index ("psind") greater than zero, will 5417 * occupy adjacent entries in vm_page_array[]. 5418 */ 5419 for (i = 0; i < npages; i++) { 5420 /* Always test object consistency, including "skip_m". */ 5421 if (m[i].object != object) 5422 return (false); 5423 if (&m[i] == skip_m) 5424 continue; 5425 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i])) 5426 return (false); 5427 if ((flags & PS_ALL_DIRTY) != 0) { 5428 /* 5429 * Calling vm_page_test_dirty() or pmap_is_modified() 5430 * might stop this case from spuriously returning 5431 * "false". However, that would require a write lock 5432 * on the object containing "m[i]". 5433 */ 5434 if (m[i].dirty != VM_PAGE_BITS_ALL) 5435 return (false); 5436 } 5437 if ((flags & PS_ALL_VALID) != 0 && 5438 m[i].valid != VM_PAGE_BITS_ALL) 5439 return (false); 5440 } 5441 return (true); 5442 } 5443 5444 /* 5445 * Set the page's dirty bits if the page is modified. 5446 */ 5447 void 5448 vm_page_test_dirty(vm_page_t m) 5449 { 5450 5451 vm_page_assert_busied(m); 5452 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m)) 5453 vm_page_dirty(m); 5454 } 5455 5456 void 5457 vm_page_valid(vm_page_t m) 5458 { 5459 5460 vm_page_assert_busied(m); 5461 if (vm_page_xbusied(m)) 5462 m->valid = VM_PAGE_BITS_ALL; 5463 else 5464 vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL); 5465 } 5466 5467 void 5468 vm_page_lock_KBI(vm_page_t m, const char *file, int line) 5469 { 5470 5471 mtx_lock_flags_(vm_page_lockptr(m), 0, file, line); 5472 } 5473 5474 void 5475 vm_page_unlock_KBI(vm_page_t m, const char *file, int line) 5476 { 5477 5478 mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line); 5479 } 5480 5481 int 5482 vm_page_trylock_KBI(vm_page_t m, const char *file, int line) 5483 { 5484 5485 return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line)); 5486 } 5487 5488 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT) 5489 void 5490 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line) 5491 { 5492 5493 vm_page_lock_assert_KBI(m, MA_OWNED, file, line); 5494 } 5495 5496 void 5497 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line) 5498 { 5499 5500 mtx_assert_(vm_page_lockptr(m), a, file, line); 5501 } 5502 #endif 5503 5504 #ifdef INVARIANTS 5505 void 5506 vm_page_object_busy_assert(vm_page_t m) 5507 { 5508 5509 /* 5510 * Certain of the page's fields may only be modified by the 5511 * holder of a page or object busy. 5512 */ 5513 if (m->object != NULL && !vm_page_busied(m)) 5514 VM_OBJECT_ASSERT_BUSY(m->object); 5515 } 5516 5517 void 5518 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits) 5519 { 5520 5521 if ((bits & PGA_WRITEABLE) == 0) 5522 return; 5523 5524 /* 5525 * The PGA_WRITEABLE flag can only be set if the page is 5526 * managed, is exclusively busied or the object is locked. 5527 * Currently, this flag is only set by pmap_enter(). 5528 */ 5529 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 5530 ("PGA_WRITEABLE on unmanaged page")); 5531 if (!vm_page_xbusied(m)) 5532 VM_OBJECT_ASSERT_BUSY(m->object); 5533 } 5534 #endif 5535 5536 #include "opt_ddb.h" 5537 #ifdef DDB 5538 #include <sys/kernel.h> 5539 5540 #include <ddb/ddb.h> 5541 5542 DB_SHOW_COMMAND_FLAGS(page, vm_page_print_page_info, DB_CMD_MEMSAFE) 5543 { 5544 5545 db_printf("vm_cnt.v_free_count: %d\n", vm_free_count()); 5546 db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count()); 5547 db_printf("vm_cnt.v_active_count: %d\n", vm_active_count()); 5548 db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count()); 5549 db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count()); 5550 db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved); 5551 db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min); 5552 db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target); 5553 db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target); 5554 } 5555 5556 DB_SHOW_COMMAND_FLAGS(pageq, vm_page_print_pageq_info, DB_CMD_MEMSAFE) 5557 { 5558 int dom; 5559 5560 db_printf("pq_free %d\n", vm_free_count()); 5561 for (dom = 0; dom < vm_ndomains; dom++) { 5562 db_printf( 5563 "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n", 5564 dom, 5565 vm_dom[dom].vmd_page_count, 5566 vm_dom[dom].vmd_free_count, 5567 vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt, 5568 vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt, 5569 vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt, 5570 vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt); 5571 } 5572 } 5573 5574 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo) 5575 { 5576 vm_page_t m; 5577 boolean_t phys, virt; 5578 5579 if (!have_addr) { 5580 db_printf("show pginfo addr\n"); 5581 return; 5582 } 5583 5584 phys = strchr(modif, 'p') != NULL; 5585 virt = strchr(modif, 'v') != NULL; 5586 if (virt) 5587 m = PHYS_TO_VM_PAGE(pmap_kextract(addr)); 5588 else if (phys) 5589 m = PHYS_TO_VM_PAGE(addr); 5590 else 5591 m = (vm_page_t)addr; 5592 db_printf( 5593 "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref 0x%x\n" 5594 " af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n", 5595 m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr, 5596 m->a.queue, m->ref_count, m->a.flags, m->oflags, 5597 m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty); 5598 } 5599 #endif /* DDB */ 5600