1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * The Mach Operating System project at Carnegie-Mellon University. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 */ 35 36 /*- 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Resident memory management module. 65 */ 66 67 #include <sys/cdefs.h> 68 #include "opt_vm.h" 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/counter.h> 73 #include <sys/domainset.h> 74 #include <sys/kernel.h> 75 #include <sys/limits.h> 76 #include <sys/linker.h> 77 #include <sys/lock.h> 78 #include <sys/malloc.h> 79 #include <sys/mman.h> 80 #include <sys/msgbuf.h> 81 #include <sys/mutex.h> 82 #include <sys/proc.h> 83 #include <sys/rwlock.h> 84 #include <sys/sleepqueue.h> 85 #include <sys/sbuf.h> 86 #include <sys/sched.h> 87 #include <sys/smp.h> 88 #include <sys/sysctl.h> 89 #include <sys/vmmeter.h> 90 #include <sys/vnode.h> 91 92 #include <vm/vm.h> 93 #include <vm/pmap.h> 94 #include <vm/vm_param.h> 95 #include <vm/vm_domainset.h> 96 #include <vm/vm_kern.h> 97 #include <vm/vm_map.h> 98 #include <vm/vm_object.h> 99 #include <vm/vm_page.h> 100 #include <vm/vm_pageout.h> 101 #include <vm/vm_phys.h> 102 #include <vm/vm_pagequeue.h> 103 #include <vm/vm_pager.h> 104 #include <vm/vm_radix.h> 105 #include <vm/vm_reserv.h> 106 #include <vm/vm_extern.h> 107 #include <vm/vm_dumpset.h> 108 #include <vm/uma.h> 109 #include <vm/uma_int.h> 110 111 #include <machine/md_var.h> 112 113 struct vm_domain vm_dom[MAXMEMDOM]; 114 115 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]); 116 117 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT]; 118 119 struct mtx_padalign __exclusive_cache_line vm_domainset_lock; 120 /* The following fields are protected by the domainset lock. */ 121 domainset_t __exclusive_cache_line vm_min_domains; 122 domainset_t __exclusive_cache_line vm_severe_domains; 123 static int vm_min_waiters; 124 static int vm_severe_waiters; 125 static int vm_pageproc_waiters; 126 127 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 128 "VM page statistics"); 129 130 static COUNTER_U64_DEFINE_EARLY(pqstate_commit_retries); 131 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries, 132 CTLFLAG_RD, &pqstate_commit_retries, 133 "Number of failed per-page atomic queue state updates"); 134 135 static COUNTER_U64_DEFINE_EARLY(queue_ops); 136 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops, 137 CTLFLAG_RD, &queue_ops, 138 "Number of batched queue operations"); 139 140 static COUNTER_U64_DEFINE_EARLY(queue_nops); 141 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops, 142 CTLFLAG_RD, &queue_nops, 143 "Number of batched queue operations with no effects"); 144 145 /* 146 * bogus page -- for I/O to/from partially complete buffers, 147 * or for paging into sparsely invalid regions. 148 */ 149 vm_page_t bogus_page; 150 151 vm_page_t vm_page_array; 152 long vm_page_array_size; 153 long first_page; 154 155 struct bitset *vm_page_dump; 156 long vm_page_dump_pages; 157 158 static TAILQ_HEAD(, vm_page) blacklist_head; 159 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS); 160 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD | 161 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages"); 162 163 static uma_zone_t fakepg_zone; 164 165 static vm_page_t vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex, 166 int req, vm_page_t mpred); 167 static void vm_page_alloc_check(vm_page_t m); 168 static vm_page_t vm_page_alloc_nofree_domain(int domain, int req); 169 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, 170 vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked); 171 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits); 172 static void vm_page_enqueue(vm_page_t m, uint8_t queue); 173 static bool vm_page_free_prep(vm_page_t m); 174 static void vm_page_free_toq(vm_page_t m); 175 static void vm_page_init(void *dummy); 176 static int vm_page_insert_after(vm_page_t m, vm_object_t object, 177 vm_pindex_t pindex, vm_page_t mpred); 178 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object, 179 vm_page_t mpred); 180 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue, 181 const uint16_t nflag); 182 static int vm_page_reclaim_run(int req_class, int domain, u_long npages, 183 vm_page_t m_run, vm_paddr_t high); 184 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse); 185 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, 186 int req); 187 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain, 188 int flags); 189 static void vm_page_zone_release(void *arg, void **store, int cnt); 190 191 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL); 192 193 static void 194 vm_page_init(void *dummy) 195 { 196 197 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL, 198 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 199 bogus_page = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_NOFREE); 200 } 201 202 static int pgcache_zone_max_pcpu; 203 SYSCTL_INT(_vm, OID_AUTO, pgcache_zone_max_pcpu, 204 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pgcache_zone_max_pcpu, 0, 205 "Per-CPU page cache size"); 206 207 /* 208 * The cache page zone is initialized later since we need to be able to allocate 209 * pages before UMA is fully initialized. 210 */ 211 static void 212 vm_page_init_cache_zones(void *dummy __unused) 213 { 214 struct vm_domain *vmd; 215 struct vm_pgcache *pgcache; 216 int cache, domain, maxcache, pool; 217 218 TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &pgcache_zone_max_pcpu); 219 maxcache = pgcache_zone_max_pcpu * mp_ncpus; 220 for (domain = 0; domain < vm_ndomains; domain++) { 221 vmd = VM_DOMAIN(domain); 222 for (pool = 0; pool < VM_NFREEPOOL; pool++) { 223 pgcache = &vmd->vmd_pgcache[pool]; 224 pgcache->domain = domain; 225 pgcache->pool = pool; 226 pgcache->zone = uma_zcache_create("vm pgcache", 227 PAGE_SIZE, NULL, NULL, NULL, NULL, 228 vm_page_zone_import, vm_page_zone_release, pgcache, 229 UMA_ZONE_VM); 230 231 /* 232 * Limit each pool's zone to 0.1% of the pages in the 233 * domain. 234 */ 235 cache = maxcache != 0 ? maxcache : 236 vmd->vmd_page_count / 1000; 237 uma_zone_set_maxcache(pgcache->zone, cache); 238 } 239 } 240 } 241 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL); 242 243 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */ 244 #if PAGE_SIZE == 32768 245 #ifdef CTASSERT 246 CTASSERT(sizeof(u_long) >= 8); 247 #endif 248 #endif 249 250 /* 251 * vm_set_page_size: 252 * 253 * Sets the page size, perhaps based upon the memory 254 * size. Must be called before any use of page-size 255 * dependent functions. 256 */ 257 void 258 vm_set_page_size(void) 259 { 260 if (vm_cnt.v_page_size == 0) 261 vm_cnt.v_page_size = PAGE_SIZE; 262 if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0) 263 panic("vm_set_page_size: page size not a power of two"); 264 } 265 266 /* 267 * vm_page_blacklist_next: 268 * 269 * Find the next entry in the provided string of blacklist 270 * addresses. Entries are separated by space, comma, or newline. 271 * If an invalid integer is encountered then the rest of the 272 * string is skipped. Updates the list pointer to the next 273 * character, or NULL if the string is exhausted or invalid. 274 */ 275 static vm_paddr_t 276 vm_page_blacklist_next(char **list, char *end) 277 { 278 vm_paddr_t bad; 279 char *cp, *pos; 280 281 if (list == NULL || *list == NULL) 282 return (0); 283 if (**list =='\0') { 284 *list = NULL; 285 return (0); 286 } 287 288 /* 289 * If there's no end pointer then the buffer is coming from 290 * the kenv and we know it's null-terminated. 291 */ 292 if (end == NULL) 293 end = *list + strlen(*list); 294 295 /* Ensure that strtoq() won't walk off the end */ 296 if (*end != '\0') { 297 if (*end == '\n' || *end == ' ' || *end == ',') 298 *end = '\0'; 299 else { 300 printf("Blacklist not terminated, skipping\n"); 301 *list = NULL; 302 return (0); 303 } 304 } 305 306 for (pos = *list; *pos != '\0'; pos = cp) { 307 bad = strtoq(pos, &cp, 0); 308 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') { 309 if (bad == 0) { 310 if (++cp < end) 311 continue; 312 else 313 break; 314 } 315 } else 316 break; 317 if (*cp == '\0' || ++cp >= end) 318 *list = NULL; 319 else 320 *list = cp; 321 return (trunc_page(bad)); 322 } 323 printf("Garbage in RAM blacklist, skipping\n"); 324 *list = NULL; 325 return (0); 326 } 327 328 bool 329 vm_page_blacklist_add(vm_paddr_t pa, bool verbose) 330 { 331 struct vm_domain *vmd; 332 vm_page_t m; 333 bool found; 334 335 m = vm_phys_paddr_to_vm_page(pa); 336 if (m == NULL) 337 return (true); /* page does not exist, no failure */ 338 339 vmd = VM_DOMAIN(vm_phys_domain(pa)); 340 vm_domain_free_lock(vmd); 341 found = vm_phys_unfree_page(pa); 342 vm_domain_free_unlock(vmd); 343 if (found) { 344 vm_domain_freecnt_inc(vmd, -1); 345 TAILQ_INSERT_TAIL(&blacklist_head, m, listq); 346 if (verbose) 347 printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa); 348 } 349 return (found); 350 } 351 352 /* 353 * vm_page_blacklist_check: 354 * 355 * Iterate through the provided string of blacklist addresses, pulling 356 * each entry out of the physical allocator free list and putting it 357 * onto a list for reporting via the vm.page_blacklist sysctl. 358 */ 359 static void 360 vm_page_blacklist_check(char *list, char *end) 361 { 362 vm_paddr_t pa; 363 char *next; 364 365 next = list; 366 while (next != NULL) { 367 if ((pa = vm_page_blacklist_next(&next, end)) == 0) 368 continue; 369 vm_page_blacklist_add(pa, bootverbose); 370 } 371 } 372 373 /* 374 * vm_page_blacklist_load: 375 * 376 * Search for a special module named "ram_blacklist". It'll be a 377 * plain text file provided by the user via the loader directive 378 * of the same name. 379 */ 380 static void 381 vm_page_blacklist_load(char **list, char **end) 382 { 383 void *mod; 384 u_char *ptr; 385 u_int len; 386 387 mod = NULL; 388 ptr = NULL; 389 390 mod = preload_search_by_type("ram_blacklist"); 391 if (mod != NULL) { 392 ptr = preload_fetch_addr(mod); 393 len = preload_fetch_size(mod); 394 } 395 *list = ptr; 396 if (ptr != NULL) 397 *end = ptr + len; 398 else 399 *end = NULL; 400 return; 401 } 402 403 static int 404 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS) 405 { 406 vm_page_t m; 407 struct sbuf sbuf; 408 int error, first; 409 410 first = 1; 411 error = sysctl_wire_old_buffer(req, 0); 412 if (error != 0) 413 return (error); 414 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 415 TAILQ_FOREACH(m, &blacklist_head, listq) { 416 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",", 417 (uintmax_t)m->phys_addr); 418 first = 0; 419 } 420 error = sbuf_finish(&sbuf); 421 sbuf_delete(&sbuf); 422 return (error); 423 } 424 425 /* 426 * Initialize a dummy page for use in scans of the specified paging queue. 427 * In principle, this function only needs to set the flag PG_MARKER. 428 * Nonetheless, it write busies the page as a safety precaution. 429 */ 430 void 431 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags) 432 { 433 434 bzero(marker, sizeof(*marker)); 435 marker->flags = PG_MARKER; 436 marker->a.flags = aflags; 437 marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE; 438 marker->a.queue = queue; 439 } 440 441 static void 442 vm_page_domain_init(int domain) 443 { 444 struct vm_domain *vmd; 445 struct vm_pagequeue *pq; 446 int i; 447 448 vmd = VM_DOMAIN(domain); 449 bzero(vmd, sizeof(*vmd)); 450 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) = 451 "vm inactive pagequeue"; 452 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) = 453 "vm active pagequeue"; 454 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) = 455 "vm laundry pagequeue"; 456 *__DECONST(const char **, 457 &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) = 458 "vm unswappable pagequeue"; 459 vmd->vmd_domain = domain; 460 vmd->vmd_page_count = 0; 461 vmd->vmd_free_count = 0; 462 vmd->vmd_segs = 0; 463 vmd->vmd_oom = FALSE; 464 for (i = 0; i < PQ_COUNT; i++) { 465 pq = &vmd->vmd_pagequeues[i]; 466 TAILQ_INIT(&pq->pq_pl); 467 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue", 468 MTX_DEF | MTX_DUPOK); 469 pq->pq_pdpages = 0; 470 vm_page_init_marker(&vmd->vmd_markers[i], i, 0); 471 } 472 mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF); 473 mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF); 474 snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain); 475 476 /* 477 * inacthead is used to provide FIFO ordering for LRU-bypassing 478 * insertions. 479 */ 480 vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED); 481 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl, 482 &vmd->vmd_inacthead, plinks.q); 483 484 /* 485 * The clock pages are used to implement active queue scanning without 486 * requeues. Scans start at clock[0], which is advanced after the scan 487 * ends. When the two clock hands meet, they are reset and scanning 488 * resumes from the head of the queue. 489 */ 490 vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED); 491 vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED); 492 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl, 493 &vmd->vmd_clock[0], plinks.q); 494 TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl, 495 &vmd->vmd_clock[1], plinks.q); 496 } 497 498 /* 499 * Initialize a physical page in preparation for adding it to the free 500 * lists. 501 */ 502 void 503 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind, int pool) 504 { 505 m->object = NULL; 506 m->ref_count = 0; 507 m->busy_lock = VPB_FREED; 508 m->flags = m->a.flags = 0; 509 m->phys_addr = pa; 510 m->a.queue = PQ_NONE; 511 m->psind = 0; 512 m->segind = segind; 513 m->order = VM_NFREEORDER; 514 m->pool = pool; 515 m->valid = m->dirty = 0; 516 pmap_page_init(m); 517 } 518 519 #ifndef PMAP_HAS_PAGE_ARRAY 520 static vm_paddr_t 521 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range) 522 { 523 vm_paddr_t new_end; 524 525 /* 526 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 527 * However, because this page is allocated from KVM, out-of-bounds 528 * accesses using the direct map will not be trapped. 529 */ 530 *vaddr += PAGE_SIZE; 531 532 /* 533 * Allocate physical memory for the page structures, and map it. 534 */ 535 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 536 vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end, 537 VM_PROT_READ | VM_PROT_WRITE); 538 vm_page_array_size = page_range; 539 540 return (new_end); 541 } 542 #endif 543 544 /* 545 * vm_page_startup: 546 * 547 * Initializes the resident memory module. Allocates physical memory for 548 * bootstrapping UMA and some data structures that are used to manage 549 * physical pages. Initializes these structures, and populates the free 550 * page queues. 551 */ 552 vm_offset_t 553 vm_page_startup(vm_offset_t vaddr) 554 { 555 struct vm_phys_seg *seg; 556 struct vm_domain *vmd; 557 vm_page_t m; 558 char *list, *listend; 559 vm_paddr_t end, high_avail, low_avail, new_end, size; 560 vm_paddr_t page_range __unused; 561 vm_paddr_t last_pa, pa, startp, endp; 562 u_long pagecount; 563 #if MINIDUMP_PAGE_TRACKING 564 u_long vm_page_dump_size; 565 #endif 566 int biggestone, i, segind; 567 #ifdef WITNESS 568 vm_offset_t mapped; 569 int witness_size; 570 #endif 571 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE) 572 long ii; 573 #endif 574 #ifdef VM_FREEPOOL_LAZYINIT 575 int lazyinit; 576 #endif 577 578 vaddr = round_page(vaddr); 579 580 vm_phys_early_startup(); 581 biggestone = vm_phys_avail_largest(); 582 end = phys_avail[biggestone+1]; 583 584 /* 585 * Initialize the page and queue locks. 586 */ 587 mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF); 588 for (i = 0; i < PA_LOCK_COUNT; i++) 589 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF); 590 for (i = 0; i < vm_ndomains; i++) 591 vm_page_domain_init(i); 592 593 new_end = end; 594 #ifdef WITNESS 595 witness_size = round_page(witness_startup_count()); 596 new_end -= witness_size; 597 mapped = pmap_map(&vaddr, new_end, new_end + witness_size, 598 VM_PROT_READ | VM_PROT_WRITE); 599 bzero((void *)mapped, witness_size); 600 witness_startup((void *)mapped); 601 #endif 602 603 #if MINIDUMP_PAGE_TRACKING 604 /* 605 * Allocate a bitmap to indicate that a random physical page 606 * needs to be included in a minidump. 607 * 608 * The amd64 port needs this to indicate which direct map pages 609 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 610 * 611 * However, i386 still needs this workspace internally within the 612 * minidump code. In theory, they are not needed on i386, but are 613 * included should the sf_buf code decide to use them. 614 */ 615 last_pa = 0; 616 vm_page_dump_pages = 0; 617 for (i = 0; dump_avail[i + 1] != 0; i += 2) { 618 vm_page_dump_pages += howmany(dump_avail[i + 1], PAGE_SIZE) - 619 dump_avail[i] / PAGE_SIZE; 620 if (dump_avail[i + 1] > last_pa) 621 last_pa = dump_avail[i + 1]; 622 } 623 vm_page_dump_size = round_page(BITSET_SIZE(vm_page_dump_pages)); 624 new_end -= vm_page_dump_size; 625 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, 626 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); 627 bzero((void *)vm_page_dump, vm_page_dump_size); 628 #if MINIDUMP_STARTUP_PAGE_TRACKING 629 /* 630 * Include the UMA bootstrap pages, witness pages and vm_page_dump 631 * in a crash dump. When pmap_map() uses the direct map, they are 632 * not automatically included. 633 */ 634 for (pa = new_end; pa < end; pa += PAGE_SIZE) 635 dump_add_page(pa); 636 #endif 637 #else 638 (void)last_pa; 639 #endif 640 phys_avail[biggestone + 1] = new_end; 641 #ifdef __amd64__ 642 /* 643 * Request that the physical pages underlying the message buffer be 644 * included in a crash dump. Since the message buffer is accessed 645 * through the direct map, they are not automatically included. 646 */ 647 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr); 648 last_pa = pa + round_page(msgbufsize); 649 while (pa < last_pa) { 650 dump_add_page(pa); 651 pa += PAGE_SIZE; 652 } 653 #endif 654 /* 655 * Compute the number of pages of memory that will be available for 656 * use, taking into account the overhead of a page structure per page. 657 * In other words, solve 658 * "available physical memory" - round_page(page_range * 659 * sizeof(struct vm_page)) = page_range * PAGE_SIZE 660 * for page_range. 661 */ 662 low_avail = phys_avail[0]; 663 high_avail = phys_avail[1]; 664 for (i = 0; i < vm_phys_nsegs; i++) { 665 if (vm_phys_segs[i].start < low_avail) 666 low_avail = vm_phys_segs[i].start; 667 if (vm_phys_segs[i].end > high_avail) 668 high_avail = vm_phys_segs[i].end; 669 } 670 /* Skip the first chunk. It is already accounted for. */ 671 for (i = 2; phys_avail[i + 1] != 0; i += 2) { 672 if (phys_avail[i] < low_avail) 673 low_avail = phys_avail[i]; 674 if (phys_avail[i + 1] > high_avail) 675 high_avail = phys_avail[i + 1]; 676 } 677 first_page = low_avail / PAGE_SIZE; 678 #ifdef VM_PHYSSEG_SPARSE 679 size = 0; 680 for (i = 0; i < vm_phys_nsegs; i++) 681 size += vm_phys_segs[i].end - vm_phys_segs[i].start; 682 for (i = 0; phys_avail[i + 1] != 0; i += 2) 683 size += phys_avail[i + 1] - phys_avail[i]; 684 #elif defined(VM_PHYSSEG_DENSE) 685 size = high_avail - low_avail; 686 #else 687 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 688 #endif 689 690 #ifdef PMAP_HAS_PAGE_ARRAY 691 pmap_page_array_startup(size / PAGE_SIZE); 692 biggestone = vm_phys_avail_largest(); 693 end = new_end = phys_avail[biggestone + 1]; 694 #else 695 #ifdef VM_PHYSSEG_DENSE 696 /* 697 * In the VM_PHYSSEG_DENSE case, the number of pages can account for 698 * the overhead of a page structure per page only if vm_page_array is 699 * allocated from the last physical memory chunk. Otherwise, we must 700 * allocate page structures representing the physical memory 701 * underlying vm_page_array, even though they will not be used. 702 */ 703 if (new_end != high_avail) 704 page_range = size / PAGE_SIZE; 705 else 706 #endif 707 { 708 page_range = size / (PAGE_SIZE + sizeof(struct vm_page)); 709 710 /* 711 * If the partial bytes remaining are large enough for 712 * a page (PAGE_SIZE) without a corresponding 713 * 'struct vm_page', then new_end will contain an 714 * extra page after subtracting the length of the VM 715 * page array. Compensate by subtracting an extra 716 * page from new_end. 717 */ 718 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) { 719 if (new_end == high_avail) 720 high_avail -= PAGE_SIZE; 721 new_end -= PAGE_SIZE; 722 } 723 } 724 end = new_end; 725 new_end = vm_page_array_alloc(&vaddr, end, page_range); 726 #endif 727 728 #if VM_NRESERVLEVEL > 0 729 /* 730 * Allocate physical memory for the reservation management system's 731 * data structures, and map it. 732 */ 733 new_end = vm_reserv_startup(&vaddr, new_end); 734 #endif 735 #if MINIDUMP_PAGE_TRACKING && MINIDUMP_STARTUP_PAGE_TRACKING 736 /* 737 * Include vm_page_array and vm_reserv_array in a crash dump. 738 */ 739 for (pa = new_end; pa < end; pa += PAGE_SIZE) 740 dump_add_page(pa); 741 #endif 742 phys_avail[biggestone + 1] = new_end; 743 744 /* 745 * Add physical memory segments corresponding to the available 746 * physical pages. 747 */ 748 for (i = 0; phys_avail[i + 1] != 0; i += 2) 749 if (vm_phys_avail_size(i) != 0) 750 vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]); 751 752 /* 753 * Initialize the physical memory allocator. 754 */ 755 vm_phys_init(); 756 757 #ifdef VM_FREEPOOL_LAZYINIT 758 lazyinit = 1; 759 TUNABLE_INT_FETCH("debug.vm.lazy_page_init", &lazyinit); 760 #endif 761 762 /* 763 * Initialize the page structures and add every available page to the 764 * physical memory allocator's free lists. 765 */ 766 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE) 767 for (ii = 0; ii < vm_page_array_size; ii++) { 768 m = &vm_page_array[ii]; 769 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0, 770 VM_FREEPOOL_DEFAULT); 771 m->flags = PG_FICTITIOUS; 772 } 773 #endif 774 vm_cnt.v_page_count = 0; 775 for (segind = 0; segind < vm_phys_nsegs; segind++) { 776 seg = &vm_phys_segs[segind]; 777 778 /* 779 * If lazy vm_page initialization is not enabled, simply 780 * initialize all of the pages in the segment. Otherwise, we 781 * only initialize: 782 * 1. Pages not covered by phys_avail[], since they might be 783 * freed to the allocator at some future point, e.g., by 784 * kmem_bootstrap_free(). 785 * 2. The first page of each run of free pages handed to the 786 * vm_phys allocator, which in turn defers initialization 787 * of pages until they are needed. 788 * This avoids blocking the boot process for long periods, which 789 * may be relevant for VMs (which ought to boot as quickly as 790 * possible) and/or systems with large amounts of physical 791 * memory. 792 */ 793 #ifdef VM_FREEPOOL_LAZYINIT 794 if (lazyinit) { 795 startp = seg->start; 796 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 797 if (startp >= seg->end) 798 break; 799 800 if (phys_avail[i + 1] < startp) 801 continue; 802 if (phys_avail[i] <= startp) { 803 startp = phys_avail[i + 1]; 804 continue; 805 } 806 807 m = vm_phys_seg_paddr_to_vm_page(seg, startp); 808 for (endp = MIN(phys_avail[i], seg->end); 809 startp < endp; startp += PAGE_SIZE, m++) { 810 vm_page_init_page(m, startp, segind, 811 VM_FREEPOOL_DEFAULT); 812 } 813 } 814 } else 815 #endif 816 for (m = seg->first_page, pa = seg->start; 817 pa < seg->end; m++, pa += PAGE_SIZE) { 818 vm_page_init_page(m, pa, segind, 819 VM_FREEPOOL_DEFAULT); 820 } 821 822 /* 823 * Add the segment's pages that are covered by one of 824 * phys_avail's ranges to the free lists. 825 */ 826 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 827 if (seg->end <= phys_avail[i] || 828 seg->start >= phys_avail[i + 1]) 829 continue; 830 831 startp = MAX(seg->start, phys_avail[i]); 832 endp = MIN(seg->end, phys_avail[i + 1]); 833 pagecount = (u_long)atop(endp - startp); 834 if (pagecount == 0) 835 continue; 836 837 m = vm_phys_seg_paddr_to_vm_page(seg, startp); 838 #ifdef VM_FREEPOOL_LAZYINIT 839 if (lazyinit) { 840 vm_page_init_page(m, startp, segind, 841 VM_FREEPOOL_LAZYINIT); 842 } 843 #endif 844 vmd = VM_DOMAIN(seg->domain); 845 vm_domain_free_lock(vmd); 846 vm_phys_enqueue_contig(m, pagecount); 847 vm_domain_free_unlock(vmd); 848 vm_domain_freecnt_inc(vmd, pagecount); 849 vm_cnt.v_page_count += (u_int)pagecount; 850 vmd->vmd_page_count += (u_int)pagecount; 851 vmd->vmd_segs |= 1UL << segind; 852 } 853 } 854 855 /* 856 * Remove blacklisted pages from the physical memory allocator. 857 */ 858 TAILQ_INIT(&blacklist_head); 859 vm_page_blacklist_load(&list, &listend); 860 vm_page_blacklist_check(list, listend); 861 862 list = kern_getenv("vm.blacklist"); 863 vm_page_blacklist_check(list, NULL); 864 865 freeenv(list); 866 #if VM_NRESERVLEVEL > 0 867 /* 868 * Initialize the reservation management system. 869 */ 870 vm_reserv_init(); 871 #endif 872 873 return (vaddr); 874 } 875 876 void 877 vm_page_reference(vm_page_t m) 878 { 879 880 vm_page_aflag_set(m, PGA_REFERENCED); 881 } 882 883 /* 884 * vm_page_trybusy 885 * 886 * Helper routine for grab functions to trylock busy. 887 * 888 * Returns true on success and false on failure. 889 */ 890 static bool 891 vm_page_trybusy(vm_page_t m, int allocflags) 892 { 893 894 if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0) 895 return (vm_page_trysbusy(m)); 896 else 897 return (vm_page_tryxbusy(m)); 898 } 899 900 /* 901 * vm_page_tryacquire 902 * 903 * Helper routine for grab functions to trylock busy and wire. 904 * 905 * Returns true on success and false on failure. 906 */ 907 static inline bool 908 vm_page_tryacquire(vm_page_t m, int allocflags) 909 { 910 bool locked; 911 912 locked = vm_page_trybusy(m, allocflags); 913 if (locked && (allocflags & VM_ALLOC_WIRED) != 0) 914 vm_page_wire(m); 915 return (locked); 916 } 917 918 /* 919 * vm_page_busy_acquire: 920 * 921 * Acquire the busy lock as described by VM_ALLOC_* flags. Will loop 922 * and drop the object lock if necessary. 923 */ 924 bool 925 vm_page_busy_acquire(vm_page_t m, int allocflags) 926 { 927 vm_object_t obj; 928 bool locked; 929 930 /* 931 * The page-specific object must be cached because page 932 * identity can change during the sleep, causing the 933 * re-lock of a different object. 934 * It is assumed that a reference to the object is already 935 * held by the callers. 936 */ 937 obj = atomic_load_ptr(&m->object); 938 for (;;) { 939 if (vm_page_tryacquire(m, allocflags)) 940 return (true); 941 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 942 return (false); 943 if (obj != NULL) 944 locked = VM_OBJECT_WOWNED(obj); 945 else 946 locked = false; 947 MPASS(locked || vm_page_wired(m)); 948 if (_vm_page_busy_sleep(obj, m, m->pindex, "vmpba", allocflags, 949 locked) && locked) 950 VM_OBJECT_WLOCK(obj); 951 if ((allocflags & VM_ALLOC_WAITFAIL) != 0) 952 return (false); 953 KASSERT(m->object == obj || m->object == NULL, 954 ("vm_page_busy_acquire: page %p does not belong to %p", 955 m, obj)); 956 } 957 } 958 959 /* 960 * vm_page_busy_downgrade: 961 * 962 * Downgrade an exclusive busy page into a single shared busy page. 963 */ 964 void 965 vm_page_busy_downgrade(vm_page_t m) 966 { 967 u_int x; 968 969 vm_page_assert_xbusied(m); 970 971 x = vm_page_busy_fetch(m); 972 for (;;) { 973 if (atomic_fcmpset_rel_int(&m->busy_lock, 974 &x, VPB_SHARERS_WORD(1))) 975 break; 976 } 977 if ((x & VPB_BIT_WAITERS) != 0) 978 wakeup(m); 979 } 980 981 /* 982 * 983 * vm_page_busy_tryupgrade: 984 * 985 * Attempt to upgrade a single shared busy into an exclusive busy. 986 */ 987 int 988 vm_page_busy_tryupgrade(vm_page_t m) 989 { 990 u_int ce, x; 991 992 vm_page_assert_sbusied(m); 993 994 x = vm_page_busy_fetch(m); 995 ce = VPB_CURTHREAD_EXCLUSIVE; 996 for (;;) { 997 if (VPB_SHARERS(x) > 1) 998 return (0); 999 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1), 1000 ("vm_page_busy_tryupgrade: invalid lock state")); 1001 if (!atomic_fcmpset_acq_int(&m->busy_lock, &x, 1002 ce | (x & VPB_BIT_WAITERS))) 1003 continue; 1004 return (1); 1005 } 1006 } 1007 1008 /* 1009 * vm_page_sbusied: 1010 * 1011 * Return a positive value if the page is shared busied, 0 otherwise. 1012 */ 1013 int 1014 vm_page_sbusied(vm_page_t m) 1015 { 1016 u_int x; 1017 1018 x = vm_page_busy_fetch(m); 1019 return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED); 1020 } 1021 1022 /* 1023 * vm_page_sunbusy: 1024 * 1025 * Shared unbusy a page. 1026 */ 1027 void 1028 vm_page_sunbusy(vm_page_t m) 1029 { 1030 u_int x; 1031 1032 vm_page_assert_sbusied(m); 1033 1034 x = vm_page_busy_fetch(m); 1035 for (;;) { 1036 KASSERT(x != VPB_FREED, 1037 ("vm_page_sunbusy: Unlocking freed page.")); 1038 if (VPB_SHARERS(x) > 1) { 1039 if (atomic_fcmpset_int(&m->busy_lock, &x, 1040 x - VPB_ONE_SHARER)) 1041 break; 1042 continue; 1043 } 1044 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1), 1045 ("vm_page_sunbusy: invalid lock state")); 1046 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED)) 1047 continue; 1048 if ((x & VPB_BIT_WAITERS) == 0) 1049 break; 1050 wakeup(m); 1051 break; 1052 } 1053 } 1054 1055 /* 1056 * vm_page_busy_sleep: 1057 * 1058 * Sleep if the page is busy, using the page pointer as wchan. 1059 * This is used to implement the hard-path of the busying mechanism. 1060 * 1061 * If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function 1062 * will not sleep if the page is shared-busy. 1063 * 1064 * The object lock must be held on entry. 1065 * 1066 * Returns true if it slept and dropped the object lock, or false 1067 * if there was no sleep and the lock is still held. 1068 */ 1069 bool 1070 vm_page_busy_sleep(vm_page_t m, const char *wmesg, int allocflags) 1071 { 1072 vm_object_t obj; 1073 1074 obj = m->object; 1075 VM_OBJECT_ASSERT_LOCKED(obj); 1076 1077 return (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, allocflags, 1078 true)); 1079 } 1080 1081 /* 1082 * vm_page_busy_sleep_unlocked: 1083 * 1084 * Sleep if the page is busy, using the page pointer as wchan. 1085 * This is used to implement the hard-path of busying mechanism. 1086 * 1087 * If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function 1088 * will not sleep if the page is shared-busy. 1089 * 1090 * The object lock must not be held on entry. The operation will 1091 * return if the page changes identity. 1092 */ 1093 void 1094 vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, vm_pindex_t pindex, 1095 const char *wmesg, int allocflags) 1096 { 1097 VM_OBJECT_ASSERT_UNLOCKED(obj); 1098 1099 (void)_vm_page_busy_sleep(obj, m, pindex, wmesg, allocflags, false); 1100 } 1101 1102 /* 1103 * _vm_page_busy_sleep: 1104 * 1105 * Internal busy sleep function. Verifies the page identity and 1106 * lockstate against parameters. Returns true if it sleeps and 1107 * false otherwise. 1108 * 1109 * allocflags uses VM_ALLOC_* flags to specify the lock required. 1110 * 1111 * If locked is true the lock will be dropped for any true returns 1112 * and held for any false returns. 1113 */ 1114 static bool 1115 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, vm_pindex_t pindex, 1116 const char *wmesg, int allocflags, bool locked) 1117 { 1118 bool xsleep; 1119 u_int x; 1120 1121 /* 1122 * If the object is busy we must wait for that to drain to zero 1123 * before trying the page again. 1124 */ 1125 if (obj != NULL && vm_object_busied(obj)) { 1126 if (locked) 1127 VM_OBJECT_DROP(obj); 1128 vm_object_busy_wait(obj, wmesg); 1129 return (true); 1130 } 1131 1132 if (!vm_page_busied(m)) 1133 return (false); 1134 1135 xsleep = (allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0; 1136 sleepq_lock(m); 1137 x = vm_page_busy_fetch(m); 1138 do { 1139 /* 1140 * If the page changes objects or becomes unlocked we can 1141 * simply return. 1142 */ 1143 if (x == VPB_UNBUSIED || 1144 (xsleep && (x & VPB_BIT_SHARED) != 0) || 1145 m->object != obj || m->pindex != pindex) { 1146 sleepq_release(m); 1147 return (false); 1148 } 1149 if ((x & VPB_BIT_WAITERS) != 0) 1150 break; 1151 } while (!atomic_fcmpset_int(&m->busy_lock, &x, x | VPB_BIT_WAITERS)); 1152 if (locked) 1153 VM_OBJECT_DROP(obj); 1154 DROP_GIANT(); 1155 sleepq_add(m, NULL, wmesg, 0, 0); 1156 sleepq_wait(m, PVM); 1157 PICKUP_GIANT(); 1158 return (true); 1159 } 1160 1161 /* 1162 * vm_page_trysbusy: 1163 * 1164 * Try to shared busy a page. 1165 * If the operation succeeds 1 is returned otherwise 0. 1166 * The operation never sleeps. 1167 */ 1168 int 1169 vm_page_trysbusy(vm_page_t m) 1170 { 1171 vm_object_t obj; 1172 u_int x; 1173 1174 obj = m->object; 1175 x = vm_page_busy_fetch(m); 1176 for (;;) { 1177 if ((x & VPB_BIT_SHARED) == 0) 1178 return (0); 1179 /* 1180 * Reduce the window for transient busies that will trigger 1181 * false negatives in vm_page_ps_test(). 1182 */ 1183 if (obj != NULL && vm_object_busied(obj)) 1184 return (0); 1185 if (atomic_fcmpset_acq_int(&m->busy_lock, &x, 1186 x + VPB_ONE_SHARER)) 1187 break; 1188 } 1189 1190 /* Refetch the object now that we're guaranteed that it is stable. */ 1191 obj = m->object; 1192 if (obj != NULL && vm_object_busied(obj)) { 1193 vm_page_sunbusy(m); 1194 return (0); 1195 } 1196 return (1); 1197 } 1198 1199 /* 1200 * vm_page_tryxbusy: 1201 * 1202 * Try to exclusive busy a page. 1203 * If the operation succeeds 1 is returned otherwise 0. 1204 * The operation never sleeps. 1205 */ 1206 int 1207 vm_page_tryxbusy(vm_page_t m) 1208 { 1209 vm_object_t obj; 1210 1211 if (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED, 1212 VPB_CURTHREAD_EXCLUSIVE) == 0) 1213 return (0); 1214 1215 obj = m->object; 1216 if (obj != NULL && vm_object_busied(obj)) { 1217 vm_page_xunbusy(m); 1218 return (0); 1219 } 1220 return (1); 1221 } 1222 1223 static void 1224 vm_page_xunbusy_hard_tail(vm_page_t m) 1225 { 1226 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED); 1227 /* Wake the waiter. */ 1228 wakeup(m); 1229 } 1230 1231 /* 1232 * vm_page_xunbusy_hard: 1233 * 1234 * Called when unbusy has failed because there is a waiter. 1235 */ 1236 void 1237 vm_page_xunbusy_hard(vm_page_t m) 1238 { 1239 vm_page_assert_xbusied(m); 1240 vm_page_xunbusy_hard_tail(m); 1241 } 1242 1243 void 1244 vm_page_xunbusy_hard_unchecked(vm_page_t m) 1245 { 1246 vm_page_assert_xbusied_unchecked(m); 1247 vm_page_xunbusy_hard_tail(m); 1248 } 1249 1250 static void 1251 vm_page_busy_free(vm_page_t m) 1252 { 1253 u_int x; 1254 1255 atomic_thread_fence_rel(); 1256 x = atomic_swap_int(&m->busy_lock, VPB_FREED); 1257 if ((x & VPB_BIT_WAITERS) != 0) 1258 wakeup(m); 1259 } 1260 1261 /* 1262 * vm_page_unhold_pages: 1263 * 1264 * Unhold each of the pages that is referenced by the given array. 1265 */ 1266 void 1267 vm_page_unhold_pages(vm_page_t *ma, int count) 1268 { 1269 1270 for (; count != 0; count--) { 1271 vm_page_unwire(*ma, PQ_ACTIVE); 1272 ma++; 1273 } 1274 } 1275 1276 vm_page_t 1277 PHYS_TO_VM_PAGE(vm_paddr_t pa) 1278 { 1279 vm_page_t m; 1280 1281 #ifdef VM_PHYSSEG_SPARSE 1282 m = vm_phys_paddr_to_vm_page(pa); 1283 if (m == NULL) 1284 m = vm_phys_fictitious_to_vm_page(pa); 1285 return (m); 1286 #elif defined(VM_PHYSSEG_DENSE) 1287 long pi; 1288 1289 pi = atop(pa); 1290 if (pi >= first_page && (pi - first_page) < vm_page_array_size) { 1291 m = &vm_page_array[pi - first_page]; 1292 return (m); 1293 } 1294 return (vm_phys_fictitious_to_vm_page(pa)); 1295 #else 1296 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 1297 #endif 1298 } 1299 1300 /* 1301 * vm_page_getfake: 1302 * 1303 * Create a fictitious page with the specified physical address and 1304 * memory attribute. The memory attribute is the only the machine- 1305 * dependent aspect of a fictitious page that must be initialized. 1306 */ 1307 vm_page_t 1308 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr) 1309 { 1310 vm_page_t m; 1311 1312 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO); 1313 vm_page_initfake(m, paddr, memattr); 1314 return (m); 1315 } 1316 1317 void 1318 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 1319 { 1320 1321 if ((m->flags & PG_FICTITIOUS) != 0) { 1322 /* 1323 * The page's memattr might have changed since the 1324 * previous initialization. Update the pmap to the 1325 * new memattr. 1326 */ 1327 goto memattr; 1328 } 1329 m->phys_addr = paddr; 1330 m->a.queue = PQ_NONE; 1331 /* Fictitious pages don't use "segind". */ 1332 m->flags = PG_FICTITIOUS; 1333 /* Fictitious pages don't use "order" or "pool". */ 1334 m->oflags = VPO_UNMANAGED; 1335 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE; 1336 /* Fictitious pages are unevictable. */ 1337 m->ref_count = 1; 1338 pmap_page_init(m); 1339 memattr: 1340 pmap_page_set_memattr(m, memattr); 1341 } 1342 1343 /* 1344 * vm_page_putfake: 1345 * 1346 * Release a fictitious page. 1347 */ 1348 void 1349 vm_page_putfake(vm_page_t m) 1350 { 1351 1352 KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m)); 1353 KASSERT((m->flags & PG_FICTITIOUS) != 0, 1354 ("vm_page_putfake: bad page %p", m)); 1355 vm_page_assert_xbusied(m); 1356 vm_page_busy_free(m); 1357 uma_zfree(fakepg_zone, m); 1358 } 1359 1360 /* 1361 * vm_page_updatefake: 1362 * 1363 * Update the given fictitious page to the specified physical address and 1364 * memory attribute. 1365 */ 1366 void 1367 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 1368 { 1369 1370 KASSERT((m->flags & PG_FICTITIOUS) != 0, 1371 ("vm_page_updatefake: bad page %p", m)); 1372 m->phys_addr = paddr; 1373 pmap_page_set_memattr(m, memattr); 1374 } 1375 1376 /* 1377 * vm_page_free: 1378 * 1379 * Free a page. 1380 */ 1381 void 1382 vm_page_free(vm_page_t m) 1383 { 1384 1385 m->flags &= ~PG_ZERO; 1386 vm_page_free_toq(m); 1387 } 1388 1389 /* 1390 * vm_page_free_zero: 1391 * 1392 * Free a page to the zerod-pages queue 1393 */ 1394 void 1395 vm_page_free_zero(vm_page_t m) 1396 { 1397 1398 m->flags |= PG_ZERO; 1399 vm_page_free_toq(m); 1400 } 1401 1402 /* 1403 * Unbusy and handle the page queueing for a page from a getpages request that 1404 * was optionally read ahead or behind. 1405 */ 1406 void 1407 vm_page_readahead_finish(vm_page_t m) 1408 { 1409 1410 /* We shouldn't put invalid pages on queues. */ 1411 KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m)); 1412 1413 /* 1414 * Since the page is not the actually needed one, whether it should 1415 * be activated or deactivated is not obvious. Empirical results 1416 * have shown that deactivating the page is usually the best choice, 1417 * unless the page is wanted by another thread. 1418 */ 1419 if ((vm_page_busy_fetch(m) & VPB_BIT_WAITERS) != 0) 1420 vm_page_activate(m); 1421 else 1422 vm_page_deactivate(m); 1423 vm_page_xunbusy_unchecked(m); 1424 } 1425 1426 /* 1427 * Destroy the identity of an invalid page and free it if possible. 1428 * This is intended to be used when reading a page from backing store fails. 1429 */ 1430 void 1431 vm_page_free_invalid(vm_page_t m) 1432 { 1433 1434 KASSERT(vm_page_none_valid(m), ("page %p is valid", m)); 1435 KASSERT(!pmap_page_is_mapped(m), ("page %p is mapped", m)); 1436 KASSERT(m->object != NULL, ("page %p has no object", m)); 1437 VM_OBJECT_ASSERT_WLOCKED(m->object); 1438 1439 /* 1440 * We may be attempting to free the page as part of the handling for an 1441 * I/O error, in which case the page was xbusied by a different thread. 1442 */ 1443 vm_page_xbusy_claim(m); 1444 1445 /* 1446 * If someone has wired this page while the object lock 1447 * was not held, then the thread that unwires is responsible 1448 * for freeing the page. Otherwise just free the page now. 1449 * The wire count of this unmapped page cannot change while 1450 * we have the page xbusy and the page's object wlocked. 1451 */ 1452 if (vm_page_remove(m)) 1453 vm_page_free(m); 1454 } 1455 1456 /* 1457 * vm_page_dirty_KBI: [ internal use only ] 1458 * 1459 * Set all bits in the page's dirty field. 1460 * 1461 * The object containing the specified page must be locked if the 1462 * call is made from the machine-independent layer. 1463 * 1464 * See vm_page_clear_dirty_mask(). 1465 * 1466 * This function should only be called by vm_page_dirty(). 1467 */ 1468 void 1469 vm_page_dirty_KBI(vm_page_t m) 1470 { 1471 1472 /* Refer to this operation by its public name. */ 1473 KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!")); 1474 m->dirty = VM_PAGE_BITS_ALL; 1475 } 1476 1477 /* 1478 * Insert the given page into the given object at the given pindex. mpred is 1479 * used for memq linkage. From vm_page_insert, lookup is true, mpred is 1480 * initially NULL, and this procedure looks it up. From vm_page_insert_after 1481 * and vm_page_iter_insert, lookup is false and mpred is known to the caller 1482 * to be valid, and may be NULL if this will be the page with the lowest 1483 * pindex. 1484 * 1485 * The procedure is marked __always_inline to suggest to the compiler to 1486 * eliminate the lookup parameter and the associated alternate branch. 1487 */ 1488 static __always_inline int 1489 vm_page_insert_lookup(vm_page_t m, vm_object_t object, vm_pindex_t pindex, 1490 struct pctrie_iter *pages, bool iter, vm_page_t mpred, bool lookup) 1491 { 1492 int error; 1493 1494 VM_OBJECT_ASSERT_WLOCKED(object); 1495 KASSERT(m->object == NULL, 1496 ("vm_page_insert: page %p already inserted", m)); 1497 1498 /* 1499 * Record the object/offset pair in this page. 1500 */ 1501 m->object = object; 1502 m->pindex = pindex; 1503 m->ref_count |= VPRC_OBJREF; 1504 1505 /* 1506 * Add this page to the object's radix tree, and look up mpred if 1507 * needed. 1508 */ 1509 if (iter) { 1510 KASSERT(!lookup, ("%s: cannot lookup mpred", __func__)); 1511 error = vm_radix_iter_insert(pages, m); 1512 } else if (lookup) 1513 error = vm_radix_insert_lookup_lt(&object->rtree, m, &mpred); 1514 else 1515 error = vm_radix_insert(&object->rtree, m); 1516 if (__predict_false(error != 0)) { 1517 m->object = NULL; 1518 m->pindex = 0; 1519 m->ref_count &= ~VPRC_OBJREF; 1520 return (1); 1521 } 1522 1523 /* 1524 * Now link into the object's ordered list of backed pages. 1525 */ 1526 vm_page_insert_radixdone(m, object, mpred); 1527 vm_pager_page_inserted(object, m); 1528 return (0); 1529 } 1530 1531 /* 1532 * vm_page_insert: [ internal use only ] 1533 * 1534 * Inserts the given mem entry into the object and object list. 1535 * 1536 * The object must be locked. 1537 */ 1538 int 1539 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 1540 { 1541 return (vm_page_insert_lookup(m, object, pindex, NULL, false, NULL, 1542 true)); 1543 } 1544 1545 /* 1546 * vm_page_insert_after: 1547 * 1548 * Inserts the page "m" into the specified object at offset "pindex". 1549 * 1550 * The page "mpred" must immediately precede the offset "pindex" within 1551 * the specified object. 1552 * 1553 * The object must be locked. 1554 */ 1555 static int 1556 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex, 1557 vm_page_t mpred) 1558 { 1559 return (vm_page_insert_lookup(m, object, pindex, NULL, false, mpred, 1560 false)); 1561 } 1562 1563 /* 1564 * vm_page_iter_insert: 1565 * 1566 * Tries to insert the page "m" into the specified object at offset 1567 * "pindex" using the iterator "pages". Returns 0 if the insertion was 1568 * successful. 1569 * 1570 * The page "mpred" must immediately precede the offset "pindex" within 1571 * the specified object. 1572 * 1573 * The object must be locked. 1574 */ 1575 static int 1576 vm_page_iter_insert(struct pctrie_iter *pages, vm_page_t m, vm_object_t object, 1577 vm_pindex_t pindex, vm_page_t mpred) 1578 { 1579 return (vm_page_insert_lookup(m, object, pindex, pages, true, mpred, 1580 false)); 1581 } 1582 1583 /* 1584 * vm_page_insert_radixdone: 1585 * 1586 * Complete page "m" insertion into the specified object after the 1587 * radix trie hooking. 1588 * 1589 * The page "mpred" must precede the offset "m->pindex" within the 1590 * specified object. 1591 * 1592 * The object must be locked. 1593 */ 1594 static void 1595 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred) 1596 { 1597 1598 VM_OBJECT_ASSERT_WLOCKED(object); 1599 KASSERT(object != NULL && m->object == object, 1600 ("vm_page_insert_radixdone: page %p has inconsistent object", m)); 1601 KASSERT((m->ref_count & VPRC_OBJREF) != 0, 1602 ("vm_page_insert_radixdone: page %p is missing object ref", m)); 1603 if (mpred != NULL) { 1604 KASSERT(mpred->object == object, 1605 ("vm_page_insert_radixdone: object doesn't contain mpred")); 1606 KASSERT(mpred->pindex < m->pindex, 1607 ("vm_page_insert_radixdone: mpred doesn't precede pindex")); 1608 KASSERT(TAILQ_NEXT(mpred, listq) == NULL || 1609 m->pindex < TAILQ_NEXT(mpred, listq)->pindex, 1610 ("vm_page_insert_radixdone: pindex doesn't precede msucc")); 1611 } else { 1612 KASSERT(TAILQ_EMPTY(&object->memq) || 1613 m->pindex < TAILQ_FIRST(&object->memq)->pindex, 1614 ("vm_page_insert_radixdone: no mpred but not first page")); 1615 } 1616 1617 if (mpred != NULL) 1618 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq); 1619 else 1620 TAILQ_INSERT_HEAD(&object->memq, m, listq); 1621 1622 /* 1623 * Show that the object has one more resident page. 1624 */ 1625 object->resident_page_count++; 1626 1627 /* 1628 * Hold the vnode until the last page is released. 1629 */ 1630 if (object->resident_page_count == 1 && object->type == OBJT_VNODE) 1631 vhold(object->handle); 1632 1633 /* 1634 * Since we are inserting a new and possibly dirty page, 1635 * update the object's generation count. 1636 */ 1637 if (pmap_page_is_write_mapped(m)) 1638 vm_object_set_writeable_dirty(object); 1639 } 1640 1641 /* 1642 * vm_page_remove_radixdone 1643 * 1644 * Complete page "m" removal from the specified object after the radix trie 1645 * unhooking. 1646 * 1647 * The caller is responsible for updating the page's fields to reflect this 1648 * removal. 1649 */ 1650 static void 1651 vm_page_remove_radixdone(vm_page_t m) 1652 { 1653 vm_object_t object; 1654 1655 vm_page_assert_xbusied(m); 1656 object = m->object; 1657 VM_OBJECT_ASSERT_WLOCKED(object); 1658 KASSERT((m->ref_count & VPRC_OBJREF) != 0, 1659 ("page %p is missing its object ref", m)); 1660 1661 /* Deferred free of swap space. */ 1662 if ((m->a.flags & PGA_SWAP_FREE) != 0) 1663 vm_pager_page_unswapped(m); 1664 1665 vm_pager_page_removed(object, m); 1666 m->object = NULL; 1667 1668 /* 1669 * Now remove from the object's list of backed pages. 1670 */ 1671 TAILQ_REMOVE(&object->memq, m, listq); 1672 1673 /* 1674 * And show that the object has one fewer resident page. 1675 */ 1676 object->resident_page_count--; 1677 1678 /* 1679 * The vnode may now be recycled. 1680 */ 1681 if (object->resident_page_count == 0 && object->type == OBJT_VNODE) 1682 vdrop(object->handle); 1683 } 1684 1685 /* 1686 * vm_page_free_object_prep: 1687 * 1688 * Disassociates the given page from its VM object. 1689 * 1690 * The object must be locked, and the page must be xbusy. 1691 */ 1692 static void 1693 vm_page_free_object_prep(vm_page_t m) 1694 { 1695 KASSERT(((m->oflags & VPO_UNMANAGED) != 0) == 1696 ((m->object->flags & OBJ_UNMANAGED) != 0), 1697 ("%s: managed flag mismatch for page %p", 1698 __func__, m)); 1699 vm_page_assert_xbusied(m); 1700 1701 /* 1702 * The object reference can be released without an atomic 1703 * operation. 1704 */ 1705 KASSERT((m->flags & PG_FICTITIOUS) != 0 || 1706 m->ref_count == VPRC_OBJREF, 1707 ("%s: page %p has unexpected ref_count %u", 1708 __func__, m, m->ref_count)); 1709 vm_page_remove_radixdone(m); 1710 m->ref_count -= VPRC_OBJREF; 1711 } 1712 1713 /* 1714 * vm_page_iter_free: 1715 * 1716 * Free the given page, and use the iterator to remove it from the radix 1717 * tree. 1718 */ 1719 void 1720 vm_page_iter_free(struct pctrie_iter *pages, vm_page_t m) 1721 { 1722 vm_radix_iter_remove(pages); 1723 vm_page_free_object_prep(m); 1724 vm_page_xunbusy(m); 1725 m->flags &= ~PG_ZERO; 1726 vm_page_free_toq(m); 1727 } 1728 1729 /* 1730 * vm_page_remove: 1731 * 1732 * Removes the specified page from its containing object, but does not 1733 * invalidate any backing storage. Returns true if the object's reference 1734 * was the last reference to the page, and false otherwise. 1735 * 1736 * The object must be locked and the page must be exclusively busied. 1737 * The exclusive busy will be released on return. If this is not the 1738 * final ref and the caller does not hold a wire reference it may not 1739 * continue to access the page. 1740 */ 1741 bool 1742 vm_page_remove(vm_page_t m) 1743 { 1744 bool dropped; 1745 1746 dropped = vm_page_remove_xbusy(m); 1747 vm_page_xunbusy(m); 1748 1749 return (dropped); 1750 } 1751 1752 /* 1753 * vm_page_iter_remove: 1754 * 1755 * Remove the current page, as identified by iterator, and remove it from the 1756 * radix tree. 1757 */ 1758 bool 1759 vm_page_iter_remove(struct pctrie_iter *pages) 1760 { 1761 vm_page_t m; 1762 bool dropped; 1763 1764 m = vm_radix_iter_page(pages); 1765 vm_radix_iter_remove(pages); 1766 vm_page_remove_radixdone(m); 1767 dropped = (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF); 1768 vm_page_xunbusy(m); 1769 1770 return (dropped); 1771 } 1772 1773 /* 1774 * vm_page_radix_remove 1775 * 1776 * Removes the specified page from the radix tree. 1777 */ 1778 static void 1779 vm_page_radix_remove(vm_page_t m) 1780 { 1781 vm_page_t mrem __diagused; 1782 1783 mrem = vm_radix_remove(&m->object->rtree, m->pindex); 1784 KASSERT(mrem == m, 1785 ("removed page %p, expected page %p", mrem, m)); 1786 } 1787 1788 /* 1789 * vm_page_remove_xbusy 1790 * 1791 * Removes the page but leaves the xbusy held. Returns true if this 1792 * removed the final ref and false otherwise. 1793 */ 1794 bool 1795 vm_page_remove_xbusy(vm_page_t m) 1796 { 1797 1798 vm_page_radix_remove(m); 1799 vm_page_remove_radixdone(m); 1800 return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF); 1801 } 1802 1803 /* 1804 * vm_page_lookup: 1805 * 1806 * Returns the page associated with the object/offset 1807 * pair specified; if none is found, NULL is returned. 1808 * 1809 * The object must be locked. 1810 */ 1811 vm_page_t 1812 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 1813 { 1814 1815 VM_OBJECT_ASSERT_LOCKED(object); 1816 return (vm_radix_lookup(&object->rtree, pindex)); 1817 } 1818 1819 /* 1820 * vm_page_iter_init: 1821 * 1822 * Initialize iterator for vm pages. 1823 */ 1824 void 1825 vm_page_iter_init(struct pctrie_iter *pages, vm_object_t object) 1826 { 1827 1828 vm_radix_iter_init(pages, &object->rtree); 1829 } 1830 1831 /* 1832 * vm_page_iter_init: 1833 * 1834 * Initialize iterator for vm pages. 1835 */ 1836 void 1837 vm_page_iter_limit_init(struct pctrie_iter *pages, vm_object_t object, 1838 vm_pindex_t limit) 1839 { 1840 1841 vm_radix_iter_limit_init(pages, &object->rtree, limit); 1842 } 1843 1844 /* 1845 * vm_page_iter_lookup: 1846 * 1847 * Returns the page associated with the object/offset pair specified, and 1848 * stores the path to its position; if none is found, NULL is returned. 1849 * 1850 * The iter pctrie must be locked. 1851 */ 1852 vm_page_t 1853 vm_page_iter_lookup(struct pctrie_iter *pages, vm_pindex_t pindex) 1854 { 1855 1856 return (vm_radix_iter_lookup(pages, pindex)); 1857 } 1858 1859 /* 1860 * vm_page_lookup_unlocked: 1861 * 1862 * Returns the page associated with the object/offset pair specified; 1863 * if none is found, NULL is returned. The page may be no longer be 1864 * present in the object at the time that this function returns. Only 1865 * useful for opportunistic checks such as inmem(). 1866 */ 1867 vm_page_t 1868 vm_page_lookup_unlocked(vm_object_t object, vm_pindex_t pindex) 1869 { 1870 1871 return (vm_radix_lookup_unlocked(&object->rtree, pindex)); 1872 } 1873 1874 /* 1875 * vm_page_relookup: 1876 * 1877 * Returns a page that must already have been busied by 1878 * the caller. Used for bogus page replacement. 1879 */ 1880 vm_page_t 1881 vm_page_relookup(vm_object_t object, vm_pindex_t pindex) 1882 { 1883 vm_page_t m; 1884 1885 m = vm_page_lookup_unlocked(object, pindex); 1886 KASSERT(m != NULL && (vm_page_busied(m) || vm_page_wired(m)) && 1887 m->object == object && m->pindex == pindex, 1888 ("vm_page_relookup: Invalid page %p", m)); 1889 return (m); 1890 } 1891 1892 /* 1893 * This should only be used by lockless functions for releasing transient 1894 * incorrect acquires. The page may have been freed after we acquired a 1895 * busy lock. In this case busy_lock == VPB_FREED and we have nothing 1896 * further to do. 1897 */ 1898 static void 1899 vm_page_busy_release(vm_page_t m) 1900 { 1901 u_int x; 1902 1903 x = vm_page_busy_fetch(m); 1904 for (;;) { 1905 if (x == VPB_FREED) 1906 break; 1907 if ((x & VPB_BIT_SHARED) != 0 && VPB_SHARERS(x) > 1) { 1908 if (atomic_fcmpset_int(&m->busy_lock, &x, 1909 x - VPB_ONE_SHARER)) 1910 break; 1911 continue; 1912 } 1913 KASSERT((x & VPB_BIT_SHARED) != 0 || 1914 (x & ~VPB_BIT_WAITERS) == VPB_CURTHREAD_EXCLUSIVE, 1915 ("vm_page_busy_release: %p xbusy not owned.", m)); 1916 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED)) 1917 continue; 1918 if ((x & VPB_BIT_WAITERS) != 0) 1919 wakeup(m); 1920 break; 1921 } 1922 } 1923 1924 /* 1925 * vm_page_find_least: 1926 * 1927 * Returns the page associated with the object with least pindex 1928 * greater than or equal to the parameter pindex, or NULL. 1929 * 1930 * The object must be locked. 1931 */ 1932 vm_page_t 1933 vm_page_find_least(vm_object_t object, vm_pindex_t pindex) 1934 { 1935 vm_page_t m; 1936 1937 VM_OBJECT_ASSERT_LOCKED(object); 1938 if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex) 1939 m = vm_radix_lookup_ge(&object->rtree, pindex); 1940 return (m); 1941 } 1942 1943 /* 1944 * vm_page_iter_lookup_ge: 1945 * 1946 * Returns the page associated with the object with least pindex 1947 * greater than or equal to the parameter pindex, or NULL. Initializes the 1948 * iterator to point to that page. 1949 * 1950 * The iter pctrie must be locked. 1951 */ 1952 vm_page_t 1953 vm_page_iter_lookup_ge(struct pctrie_iter *pages, vm_pindex_t pindex) 1954 { 1955 1956 return (vm_radix_iter_lookup_ge(pages, pindex)); 1957 } 1958 1959 /* 1960 * Returns the given page's successor (by pindex) within the object if it is 1961 * resident; if none is found, NULL is returned. 1962 * 1963 * The object must be locked. 1964 */ 1965 vm_page_t 1966 vm_page_next(vm_page_t m) 1967 { 1968 vm_page_t next; 1969 1970 VM_OBJECT_ASSERT_LOCKED(m->object); 1971 if ((next = TAILQ_NEXT(m, listq)) != NULL) { 1972 MPASS(next->object == m->object); 1973 if (next->pindex != m->pindex + 1) 1974 next = NULL; 1975 } 1976 return (next); 1977 } 1978 1979 /* 1980 * Returns the given page's predecessor (by pindex) within the object if it is 1981 * resident; if none is found, NULL is returned. 1982 * 1983 * The object must be locked. 1984 */ 1985 vm_page_t 1986 vm_page_prev(vm_page_t m) 1987 { 1988 vm_page_t prev; 1989 1990 VM_OBJECT_ASSERT_LOCKED(m->object); 1991 if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) { 1992 MPASS(prev->object == m->object); 1993 if (prev->pindex != m->pindex - 1) 1994 prev = NULL; 1995 } 1996 return (prev); 1997 } 1998 1999 /* 2000 * Uses the page mnew as a replacement for an existing page at index 2001 * pindex which must be already present in the object. 2002 * 2003 * Both pages must be exclusively busied on enter. The old page is 2004 * unbusied on exit. 2005 * 2006 * A return value of true means mold is now free. If this is not the 2007 * final ref and the caller does not hold a wire reference it may not 2008 * continue to access the page. 2009 */ 2010 static bool 2011 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex, 2012 vm_page_t mold) 2013 { 2014 vm_page_t mret __diagused; 2015 bool dropped; 2016 2017 VM_OBJECT_ASSERT_WLOCKED(object); 2018 vm_page_assert_xbusied(mold); 2019 KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0, 2020 ("vm_page_replace: page %p already in object", mnew)); 2021 2022 /* 2023 * This function mostly follows vm_page_insert() and 2024 * vm_page_remove() without the radix, object count and vnode 2025 * dance. Double check such functions for more comments. 2026 */ 2027 2028 mnew->object = object; 2029 mnew->pindex = pindex; 2030 atomic_set_int(&mnew->ref_count, VPRC_OBJREF); 2031 mret = vm_radix_replace(&object->rtree, mnew); 2032 KASSERT(mret == mold, 2033 ("invalid page replacement, mold=%p, mret=%p", mold, mret)); 2034 KASSERT((mold->oflags & VPO_UNMANAGED) == 2035 (mnew->oflags & VPO_UNMANAGED), 2036 ("vm_page_replace: mismatched VPO_UNMANAGED")); 2037 2038 /* Keep the resident page list in sorted order. */ 2039 TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq); 2040 TAILQ_REMOVE(&object->memq, mold, listq); 2041 mold->object = NULL; 2042 2043 /* 2044 * The object's resident_page_count does not change because we have 2045 * swapped one page for another, but the generation count should 2046 * change if the page is dirty. 2047 */ 2048 if (pmap_page_is_write_mapped(mnew)) 2049 vm_object_set_writeable_dirty(object); 2050 dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF; 2051 vm_page_xunbusy(mold); 2052 2053 return (dropped); 2054 } 2055 2056 void 2057 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex, 2058 vm_page_t mold) 2059 { 2060 2061 vm_page_assert_xbusied(mnew); 2062 2063 if (vm_page_replace_hold(mnew, object, pindex, mold)) 2064 vm_page_free(mold); 2065 } 2066 2067 /* 2068 * vm_page_rename: 2069 * 2070 * Move the current page, as identified by iterator, from its current 2071 * object to the specified target object/offset. 2072 * 2073 * Note: swap associated with the page must be invalidated by the move. We 2074 * have to do this for several reasons: (1) we aren't freeing the 2075 * page, (2) we are dirtying the page, (3) the VM system is probably 2076 * moving the page from object A to B, and will then later move 2077 * the backing store from A to B and we can't have a conflict. 2078 * 2079 * Note: we *always* dirty the page. It is necessary both for the 2080 * fact that we moved it, and because we may be invalidating 2081 * swap. 2082 * 2083 * The objects must be locked. 2084 */ 2085 int 2086 vm_page_rename(struct pctrie_iter *pages, 2087 vm_object_t new_object, vm_pindex_t new_pindex) 2088 { 2089 vm_page_t m, mpred; 2090 vm_pindex_t opidx; 2091 2092 VM_OBJECT_ASSERT_WLOCKED(new_object); 2093 2094 m = vm_radix_iter_page(pages); 2095 KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m)); 2096 2097 /* 2098 * Create a custom version of vm_page_insert() which does not depend 2099 * by m_prev and can cheat on the implementation aspects of the 2100 * function. 2101 */ 2102 opidx = m->pindex; 2103 m->pindex = new_pindex; 2104 if (vm_radix_insert_lookup_lt(&new_object->rtree, m, &mpred) != 0) { 2105 m->pindex = opidx; 2106 return (1); 2107 } 2108 2109 /* 2110 * The operation cannot fail anymore. The removal must happen before 2111 * the listq iterator is tainted. 2112 */ 2113 m->pindex = opidx; 2114 vm_radix_iter_remove(pages); 2115 vm_page_remove_radixdone(m); 2116 2117 /* Return back to the new pindex to complete vm_page_insert(). */ 2118 m->pindex = new_pindex; 2119 m->object = new_object; 2120 2121 vm_page_insert_radixdone(m, new_object, mpred); 2122 vm_page_dirty(m); 2123 vm_pager_page_inserted(new_object, m); 2124 return (0); 2125 } 2126 2127 /* 2128 * vm_page_mpred: 2129 * 2130 * Return the greatest page of the object with index <= pindex, 2131 * or NULL, if there is none. Assumes object lock is held. 2132 */ 2133 vm_page_t 2134 vm_page_mpred(vm_object_t object, vm_pindex_t pindex) 2135 { 2136 return (vm_radix_lookup_le(&object->rtree, pindex)); 2137 } 2138 2139 /* 2140 * vm_page_alloc: 2141 * 2142 * Allocate and return a page that is associated with the specified 2143 * object and offset pair. By default, this page is exclusive busied. 2144 * 2145 * The caller must always specify an allocation class. 2146 * 2147 * allocation classes: 2148 * VM_ALLOC_NORMAL normal process request 2149 * VM_ALLOC_SYSTEM system *really* needs a page 2150 * VM_ALLOC_INTERRUPT interrupt time request 2151 * 2152 * optional allocation flags: 2153 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 2154 * intends to allocate 2155 * VM_ALLOC_NOBUSY do not exclusive busy the page 2156 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 2157 * VM_ALLOC_SBUSY shared busy the allocated page 2158 * VM_ALLOC_WIRED wire the allocated page 2159 * VM_ALLOC_ZERO prefer a zeroed page 2160 */ 2161 vm_page_t 2162 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 2163 { 2164 2165 return (vm_page_alloc_after(object, pindex, req, 2166 vm_page_mpred(object, pindex))); 2167 } 2168 2169 /* 2170 * Allocate a page in the specified object with the given page index. To 2171 * optimize insertion of the page into the object, the caller must also specify 2172 * the resident page in the object with largest index smaller than the given 2173 * page index, or NULL if no such page exists. 2174 */ 2175 static vm_page_t 2176 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex, 2177 int req, vm_page_t mpred) 2178 { 2179 struct vm_domainset_iter di; 2180 vm_page_t m; 2181 int domain; 2182 2183 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req); 2184 do { 2185 m = vm_page_alloc_domain_after(object, pindex, domain, req, 2186 mpred); 2187 if (m != NULL) 2188 break; 2189 } while (vm_domainset_iter_page(&di, object, &domain) == 0); 2190 2191 return (m); 2192 } 2193 2194 /* 2195 * Returns true if the number of free pages exceeds the minimum 2196 * for the request class and false otherwise. 2197 */ 2198 static int 2199 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages) 2200 { 2201 u_int limit, old, new; 2202 2203 if (req_class == VM_ALLOC_INTERRUPT) 2204 limit = 0; 2205 else if (req_class == VM_ALLOC_SYSTEM) 2206 limit = vmd->vmd_interrupt_free_min; 2207 else 2208 limit = vmd->vmd_free_reserved; 2209 2210 /* 2211 * Attempt to reserve the pages. Fail if we're below the limit. 2212 */ 2213 limit += npages; 2214 old = atomic_load_int(&vmd->vmd_free_count); 2215 do { 2216 if (old < limit) 2217 return (0); 2218 new = old - npages; 2219 } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0); 2220 2221 /* Wake the page daemon if we've crossed the threshold. */ 2222 if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old)) 2223 pagedaemon_wakeup(vmd->vmd_domain); 2224 2225 /* Only update bitsets on transitions. */ 2226 if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) || 2227 (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe)) 2228 vm_domain_set(vmd); 2229 2230 return (1); 2231 } 2232 2233 int 2234 vm_domain_allocate(struct vm_domain *vmd, int req, int npages) 2235 { 2236 int req_class; 2237 2238 /* 2239 * The page daemon is allowed to dig deeper into the free page list. 2240 */ 2241 req_class = req & VM_ALLOC_CLASS_MASK; 2242 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 2243 req_class = VM_ALLOC_SYSTEM; 2244 return (_vm_domain_allocate(vmd, req_class, npages)); 2245 } 2246 2247 vm_page_t 2248 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain, 2249 int req, vm_page_t mpred) 2250 { 2251 struct vm_domain *vmd; 2252 vm_page_t m; 2253 int flags; 2254 2255 #define VPA_FLAGS (VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL | \ 2256 VM_ALLOC_NOWAIT | VM_ALLOC_NOBUSY | \ 2257 VM_ALLOC_SBUSY | VM_ALLOC_WIRED | \ 2258 VM_ALLOC_NODUMP | VM_ALLOC_ZERO | \ 2259 VM_ALLOC_NOFREE | VM_ALLOC_COUNT_MASK) 2260 KASSERT((req & ~VPA_FLAGS) == 0, 2261 ("invalid request %#x", req)); 2262 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 2263 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 2264 ("invalid request %#x", req)); 2265 KASSERT(mpred == NULL || mpred->pindex < pindex, 2266 ("mpred %p doesn't precede pindex 0x%jx", mpred, 2267 (uintmax_t)pindex)); 2268 VM_OBJECT_ASSERT_WLOCKED(object); 2269 2270 flags = 0; 2271 m = NULL; 2272 if (!vm_pager_can_alloc_page(object, pindex)) 2273 return (NULL); 2274 again: 2275 if (__predict_false((req & VM_ALLOC_NOFREE) != 0)) { 2276 m = vm_page_alloc_nofree_domain(domain, req); 2277 if (m != NULL) 2278 goto found; 2279 } 2280 #if VM_NRESERVLEVEL > 0 2281 /* 2282 * Can we allocate the page from a reservation? 2283 */ 2284 if (vm_object_reserv(object) && 2285 (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) != 2286 NULL) { 2287 goto found; 2288 } 2289 #endif 2290 vmd = VM_DOMAIN(domain); 2291 if (vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone != NULL) { 2292 m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone, 2293 M_NOWAIT | M_NOVM); 2294 if (m != NULL) { 2295 flags |= PG_PCPU_CACHE; 2296 goto found; 2297 } 2298 } 2299 if (vm_domain_allocate(vmd, req, 1)) { 2300 /* 2301 * If not, allocate it from the free page queues. 2302 */ 2303 vm_domain_free_lock(vmd); 2304 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, 0); 2305 vm_domain_free_unlock(vmd); 2306 if (m == NULL) { 2307 vm_domain_freecnt_inc(vmd, 1); 2308 #if VM_NRESERVLEVEL > 0 2309 if (vm_reserv_reclaim_inactive(domain)) 2310 goto again; 2311 #endif 2312 } 2313 } 2314 if (m == NULL) { 2315 /* 2316 * Not allocatable, give up. 2317 */ 2318 if (vm_domain_alloc_fail(vmd, object, req)) 2319 goto again; 2320 return (NULL); 2321 } 2322 2323 /* 2324 * At this point we had better have found a good page. 2325 */ 2326 found: 2327 vm_page_dequeue(m); 2328 vm_page_alloc_check(m); 2329 2330 /* 2331 * Initialize the page. Only the PG_ZERO flag is inherited. 2332 */ 2333 flags |= m->flags & PG_ZERO; 2334 if ((req & VM_ALLOC_NODUMP) != 0) 2335 flags |= PG_NODUMP; 2336 if ((req & VM_ALLOC_NOFREE) != 0) 2337 flags |= PG_NOFREE; 2338 m->flags = flags; 2339 m->a.flags = 0; 2340 m->oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0; 2341 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0) 2342 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE; 2343 else if ((req & VM_ALLOC_SBUSY) != 0) 2344 m->busy_lock = VPB_SHARERS_WORD(1); 2345 else 2346 m->busy_lock = VPB_UNBUSIED; 2347 if (req & VM_ALLOC_WIRED) { 2348 vm_wire_add(1); 2349 m->ref_count = 1; 2350 } 2351 m->a.act_count = 0; 2352 2353 if (vm_page_insert_after(m, object, pindex, mpred)) { 2354 if (req & VM_ALLOC_WIRED) { 2355 vm_wire_sub(1); 2356 m->ref_count = 0; 2357 } 2358 KASSERT(m->object == NULL, ("page %p has object", m)); 2359 m->oflags = VPO_UNMANAGED; 2360 m->busy_lock = VPB_UNBUSIED; 2361 /* Don't change PG_ZERO. */ 2362 vm_page_free_toq(m); 2363 if (req & VM_ALLOC_WAITFAIL) { 2364 VM_OBJECT_WUNLOCK(object); 2365 vm_radix_wait(); 2366 VM_OBJECT_WLOCK(object); 2367 } 2368 return (NULL); 2369 } 2370 2371 /* Ignore device objects; the pager sets "memattr" for them. */ 2372 if (object->memattr != VM_MEMATTR_DEFAULT && 2373 (object->flags & OBJ_FICTITIOUS) == 0) 2374 pmap_page_set_memattr(m, object->memattr); 2375 2376 return (m); 2377 } 2378 2379 /* 2380 * vm_page_alloc_contig: 2381 * 2382 * Allocate a contiguous set of physical pages of the given size "npages" 2383 * from the free lists. All of the physical pages must be at or above 2384 * the given physical address "low" and below the given physical address 2385 * "high". The given value "alignment" determines the alignment of the 2386 * first physical page in the set. If the given value "boundary" is 2387 * non-zero, then the set of physical pages cannot cross any physical 2388 * address boundary that is a multiple of that value. Both "alignment" 2389 * and "boundary" must be a power of two. 2390 * 2391 * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT, 2392 * then the memory attribute setting for the physical pages is configured 2393 * to the object's memory attribute setting. Otherwise, the memory 2394 * attribute setting for the physical pages is configured to "memattr", 2395 * overriding the object's memory attribute setting. However, if the 2396 * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the 2397 * memory attribute setting for the physical pages cannot be configured 2398 * to VM_MEMATTR_DEFAULT. 2399 * 2400 * The specified object may not contain fictitious pages. 2401 * 2402 * The caller must always specify an allocation class. 2403 * 2404 * allocation classes: 2405 * VM_ALLOC_NORMAL normal process request 2406 * VM_ALLOC_SYSTEM system *really* needs a page 2407 * VM_ALLOC_INTERRUPT interrupt time request 2408 * 2409 * optional allocation flags: 2410 * VM_ALLOC_NOBUSY do not exclusive busy the page 2411 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 2412 * VM_ALLOC_SBUSY shared busy the allocated page 2413 * VM_ALLOC_WIRED wire the allocated page 2414 * VM_ALLOC_ZERO prefer a zeroed page 2415 */ 2416 vm_page_t 2417 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req, 2418 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 2419 vm_paddr_t boundary, vm_memattr_t memattr) 2420 { 2421 struct vm_domainset_iter di; 2422 vm_page_t bounds[2]; 2423 vm_page_t m; 2424 int domain; 2425 int start_segind; 2426 2427 start_segind = -1; 2428 2429 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req); 2430 do { 2431 m = vm_page_alloc_contig_domain(object, pindex, domain, req, 2432 npages, low, high, alignment, boundary, memattr); 2433 if (m != NULL) 2434 break; 2435 if (start_segind == -1) 2436 start_segind = vm_phys_lookup_segind(low); 2437 if (vm_phys_find_range(bounds, start_segind, domain, 2438 npages, low, high) == -1) { 2439 vm_domainset_iter_ignore(&di, domain); 2440 } 2441 } while (vm_domainset_iter_page(&di, object, &domain) == 0); 2442 2443 return (m); 2444 } 2445 2446 static vm_page_t 2447 vm_page_find_contig_domain(int domain, int req, u_long npages, vm_paddr_t low, 2448 vm_paddr_t high, u_long alignment, vm_paddr_t boundary) 2449 { 2450 struct vm_domain *vmd; 2451 vm_page_t m_ret; 2452 2453 /* 2454 * Can we allocate the pages without the number of free pages falling 2455 * below the lower bound for the allocation class? 2456 */ 2457 vmd = VM_DOMAIN(domain); 2458 if (!vm_domain_allocate(vmd, req, npages)) 2459 return (NULL); 2460 /* 2461 * Try to allocate the pages from the free page queues. 2462 */ 2463 vm_domain_free_lock(vmd); 2464 m_ret = vm_phys_alloc_contig(domain, npages, low, high, 2465 alignment, boundary); 2466 vm_domain_free_unlock(vmd); 2467 if (m_ret != NULL) 2468 return (m_ret); 2469 #if VM_NRESERVLEVEL > 0 2470 /* 2471 * Try to break a reservation to allocate the pages. 2472 */ 2473 if ((req & VM_ALLOC_NORECLAIM) == 0) { 2474 m_ret = vm_reserv_reclaim_contig(domain, npages, low, 2475 high, alignment, boundary); 2476 if (m_ret != NULL) 2477 return (m_ret); 2478 } 2479 #endif 2480 vm_domain_freecnt_inc(vmd, npages); 2481 return (NULL); 2482 } 2483 2484 vm_page_t 2485 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain, 2486 int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 2487 vm_paddr_t boundary, vm_memattr_t memattr) 2488 { 2489 struct pctrie_iter pages; 2490 vm_page_t m, m_ret, mpred; 2491 u_int busy_lock, flags, oflags; 2492 2493 #define VPAC_FLAGS (VPA_FLAGS | VM_ALLOC_NORECLAIM) 2494 KASSERT((req & ~VPAC_FLAGS) == 0, 2495 ("invalid request %#x", req)); 2496 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 2497 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 2498 ("invalid request %#x", req)); 2499 KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) != 2500 (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM), 2501 ("invalid request %#x", req)); 2502 VM_OBJECT_ASSERT_WLOCKED(object); 2503 KASSERT((object->flags & OBJ_FICTITIOUS) == 0, 2504 ("vm_page_alloc_contig: object %p has fictitious pages", 2505 object)); 2506 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero")); 2507 2508 vm_page_iter_init(&pages, object); 2509 mpred = vm_radix_iter_lookup_le(&pages, pindex); 2510 KASSERT(mpred == NULL || mpred->pindex != pindex, 2511 ("vm_page_alloc_contig: pindex already allocated")); 2512 for (;;) { 2513 #if VM_NRESERVLEVEL > 0 2514 /* 2515 * Can we allocate the pages from a reservation? 2516 */ 2517 if (vm_object_reserv(object) && 2518 (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req, 2519 mpred, npages, low, high, alignment, boundary)) != NULL) { 2520 break; 2521 } 2522 #endif 2523 if ((m_ret = vm_page_find_contig_domain(domain, req, npages, 2524 low, high, alignment, boundary)) != NULL) 2525 break; 2526 if (!vm_domain_alloc_fail(VM_DOMAIN(domain), object, req)) 2527 return (NULL); 2528 } 2529 2530 /* 2531 * Initialize the pages. Only the PG_ZERO flag is inherited. 2532 */ 2533 flags = PG_ZERO; 2534 if ((req & VM_ALLOC_NODUMP) != 0) 2535 flags |= PG_NODUMP; 2536 oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0; 2537 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0) 2538 busy_lock = VPB_CURTHREAD_EXCLUSIVE; 2539 else if ((req & VM_ALLOC_SBUSY) != 0) 2540 busy_lock = VPB_SHARERS_WORD(1); 2541 else 2542 busy_lock = VPB_UNBUSIED; 2543 if ((req & VM_ALLOC_WIRED) != 0) 2544 vm_wire_add(npages); 2545 if (object->memattr != VM_MEMATTR_DEFAULT && 2546 memattr == VM_MEMATTR_DEFAULT) 2547 memattr = object->memattr; 2548 for (m = m_ret; m < &m_ret[npages]; m++) { 2549 vm_page_dequeue(m); 2550 vm_page_alloc_check(m); 2551 m->a.flags = 0; 2552 m->flags = (m->flags | PG_NODUMP) & flags; 2553 m->busy_lock = busy_lock; 2554 if ((req & VM_ALLOC_WIRED) != 0) 2555 m->ref_count = 1; 2556 m->a.act_count = 0; 2557 m->oflags = oflags; 2558 if (vm_page_iter_insert(&pages, m, object, pindex, mpred)) { 2559 if ((req & VM_ALLOC_WIRED) != 0) 2560 vm_wire_sub(npages); 2561 KASSERT(m->object == NULL, 2562 ("page %p has object", m)); 2563 mpred = m; 2564 for (m = m_ret; m < &m_ret[npages]; m++) { 2565 if (m <= mpred && 2566 (req & VM_ALLOC_WIRED) != 0) 2567 m->ref_count = 0; 2568 m->oflags = VPO_UNMANAGED; 2569 m->busy_lock = VPB_UNBUSIED; 2570 /* Don't change PG_ZERO. */ 2571 vm_page_free_toq(m); 2572 } 2573 if (req & VM_ALLOC_WAITFAIL) { 2574 VM_OBJECT_WUNLOCK(object); 2575 vm_radix_wait(); 2576 VM_OBJECT_WLOCK(object); 2577 } 2578 return (NULL); 2579 } 2580 mpred = m; 2581 if (memattr != VM_MEMATTR_DEFAULT) 2582 pmap_page_set_memattr(m, memattr); 2583 pindex++; 2584 } 2585 return (m_ret); 2586 } 2587 2588 /* 2589 * Allocate a physical page that is not intended to be inserted into a VM 2590 * object. 2591 */ 2592 vm_page_t 2593 vm_page_alloc_noobj_domain(int domain, int req) 2594 { 2595 struct vm_domain *vmd; 2596 vm_page_t m; 2597 int flags; 2598 2599 #define VPAN_FLAGS (VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL | \ 2600 VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | \ 2601 VM_ALLOC_NOBUSY | VM_ALLOC_WIRED | \ 2602 VM_ALLOC_NODUMP | VM_ALLOC_ZERO | \ 2603 VM_ALLOC_NOFREE | VM_ALLOC_COUNT_MASK) 2604 KASSERT((req & ~VPAN_FLAGS) == 0, 2605 ("invalid request %#x", req)); 2606 2607 flags = ((req & VM_ALLOC_NODUMP) != 0 ? PG_NODUMP : 0) | 2608 ((req & VM_ALLOC_NOFREE) != 0 ? PG_NOFREE : 0); 2609 vmd = VM_DOMAIN(domain); 2610 again: 2611 if (__predict_false((req & VM_ALLOC_NOFREE) != 0)) { 2612 m = vm_page_alloc_nofree_domain(domain, req); 2613 if (m != NULL) 2614 goto found; 2615 } 2616 2617 if (vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone != NULL) { 2618 m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone, 2619 M_NOWAIT | M_NOVM); 2620 if (m != NULL) { 2621 flags |= PG_PCPU_CACHE; 2622 goto found; 2623 } 2624 } 2625 2626 if (vm_domain_allocate(vmd, req, 1)) { 2627 vm_domain_free_lock(vmd); 2628 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DIRECT, 0); 2629 vm_domain_free_unlock(vmd); 2630 if (m == NULL) { 2631 vm_domain_freecnt_inc(vmd, 1); 2632 #if VM_NRESERVLEVEL > 0 2633 if (vm_reserv_reclaim_inactive(domain)) 2634 goto again; 2635 #endif 2636 } 2637 } 2638 if (m == NULL) { 2639 if (vm_domain_alloc_fail(vmd, NULL, req)) 2640 goto again; 2641 return (NULL); 2642 } 2643 2644 found: 2645 vm_page_dequeue(m); 2646 vm_page_alloc_check(m); 2647 2648 /* 2649 * Consumers should not rely on a useful default pindex value. 2650 */ 2651 m->pindex = 0xdeadc0dedeadc0de; 2652 m->flags = (m->flags & PG_ZERO) | flags; 2653 m->a.flags = 0; 2654 m->oflags = VPO_UNMANAGED; 2655 m->busy_lock = VPB_UNBUSIED; 2656 if ((req & VM_ALLOC_WIRED) != 0) { 2657 vm_wire_add(1); 2658 m->ref_count = 1; 2659 } 2660 2661 if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0) 2662 pmap_zero_page(m); 2663 2664 return (m); 2665 } 2666 2667 #if VM_NRESERVLEVEL > 1 2668 #define VM_NOFREE_IMPORT_ORDER (VM_LEVEL_1_ORDER + VM_LEVEL_0_ORDER) 2669 #elif VM_NRESERVLEVEL > 0 2670 #define VM_NOFREE_IMPORT_ORDER VM_LEVEL_0_ORDER 2671 #else 2672 #define VM_NOFREE_IMPORT_ORDER 8 2673 #endif 2674 2675 /* 2676 * Allocate a single NOFREE page. 2677 * 2678 * This routine hands out NOFREE pages from higher-order 2679 * physical memory blocks in order to reduce memory fragmentation. 2680 * When a NOFREE for a given domain chunk is used up, 2681 * the routine will try to fetch a new one from the freelists 2682 * and discard the old one. 2683 */ 2684 static vm_page_t 2685 vm_page_alloc_nofree_domain(int domain, int req) 2686 { 2687 vm_page_t m; 2688 struct vm_domain *vmd; 2689 struct vm_nofreeq *nqp; 2690 2691 KASSERT((req & VM_ALLOC_NOFREE) != 0, ("invalid request %#x", req)); 2692 2693 vmd = VM_DOMAIN(domain); 2694 nqp = &vmd->vmd_nofreeq; 2695 vm_domain_free_lock(vmd); 2696 if (nqp->offs >= (1 << VM_NOFREE_IMPORT_ORDER) || nqp->ma == NULL) { 2697 if (!vm_domain_allocate(vmd, req, 2698 1 << VM_NOFREE_IMPORT_ORDER)) { 2699 vm_domain_free_unlock(vmd); 2700 return (NULL); 2701 } 2702 nqp->ma = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, 2703 VM_NOFREE_IMPORT_ORDER); 2704 if (nqp->ma == NULL) { 2705 vm_domain_freecnt_inc(vmd, 1 << VM_NOFREE_IMPORT_ORDER); 2706 vm_domain_free_unlock(vmd); 2707 return (NULL); 2708 } 2709 nqp->offs = 0; 2710 } 2711 m = &nqp->ma[nqp->offs++]; 2712 vm_domain_free_unlock(vmd); 2713 VM_CNT_ADD(v_nofree_count, 1); 2714 2715 return (m); 2716 } 2717 2718 vm_page_t 2719 vm_page_alloc_noobj(int req) 2720 { 2721 struct vm_domainset_iter di; 2722 vm_page_t m; 2723 int domain; 2724 2725 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req); 2726 do { 2727 m = vm_page_alloc_noobj_domain(domain, req); 2728 if (m != NULL) 2729 break; 2730 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0); 2731 2732 return (m); 2733 } 2734 2735 vm_page_t 2736 vm_page_alloc_noobj_contig(int req, u_long npages, vm_paddr_t low, 2737 vm_paddr_t high, u_long alignment, vm_paddr_t boundary, 2738 vm_memattr_t memattr) 2739 { 2740 struct vm_domainset_iter di; 2741 vm_page_t m; 2742 int domain; 2743 2744 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req); 2745 do { 2746 m = vm_page_alloc_noobj_contig_domain(domain, req, npages, low, 2747 high, alignment, boundary, memattr); 2748 if (m != NULL) 2749 break; 2750 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0); 2751 2752 return (m); 2753 } 2754 2755 vm_page_t 2756 vm_page_alloc_noobj_contig_domain(int domain, int req, u_long npages, 2757 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, 2758 vm_memattr_t memattr) 2759 { 2760 vm_page_t m, m_ret; 2761 u_int flags; 2762 2763 #define VPANC_FLAGS (VPAN_FLAGS | VM_ALLOC_NORECLAIM) 2764 KASSERT((req & ~VPANC_FLAGS) == 0, 2765 ("invalid request %#x", req)); 2766 KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) != 2767 (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM), 2768 ("invalid request %#x", req)); 2769 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 2770 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 2771 ("invalid request %#x", req)); 2772 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero")); 2773 2774 while ((m_ret = vm_page_find_contig_domain(domain, req, npages, 2775 low, high, alignment, boundary)) == NULL) { 2776 if (!vm_domain_alloc_fail(VM_DOMAIN(domain), NULL, req)) 2777 return (NULL); 2778 } 2779 2780 /* 2781 * Initialize the pages. Only the PG_ZERO flag is inherited. 2782 */ 2783 flags = PG_ZERO; 2784 if ((req & VM_ALLOC_NODUMP) != 0) 2785 flags |= PG_NODUMP; 2786 if ((req & VM_ALLOC_WIRED) != 0) 2787 vm_wire_add(npages); 2788 for (m = m_ret; m < &m_ret[npages]; m++) { 2789 vm_page_dequeue(m); 2790 vm_page_alloc_check(m); 2791 2792 /* 2793 * Consumers should not rely on a useful default pindex value. 2794 */ 2795 m->pindex = 0xdeadc0dedeadc0de; 2796 m->a.flags = 0; 2797 m->flags = (m->flags | PG_NODUMP) & flags; 2798 m->busy_lock = VPB_UNBUSIED; 2799 if ((req & VM_ALLOC_WIRED) != 0) 2800 m->ref_count = 1; 2801 m->a.act_count = 0; 2802 m->oflags = VPO_UNMANAGED; 2803 2804 /* 2805 * Zero the page before updating any mappings since the page is 2806 * not yet shared with any devices which might require the 2807 * non-default memory attribute. pmap_page_set_memattr() 2808 * flushes data caches before returning. 2809 */ 2810 if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0) 2811 pmap_zero_page(m); 2812 if (memattr != VM_MEMATTR_DEFAULT) 2813 pmap_page_set_memattr(m, memattr); 2814 } 2815 return (m_ret); 2816 } 2817 2818 /* 2819 * Check a page that has been freshly dequeued from a freelist. 2820 */ 2821 static void 2822 vm_page_alloc_check(vm_page_t m) 2823 { 2824 2825 KASSERT(m->object == NULL, ("page %p has object", m)); 2826 KASSERT(m->a.queue == PQ_NONE && 2827 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0, 2828 ("page %p has unexpected queue %d, flags %#x", 2829 m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK))); 2830 KASSERT(m->ref_count == 0, ("page %p has references", m)); 2831 KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m)); 2832 KASSERT(m->dirty == 0, ("page %p is dirty", m)); 2833 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, 2834 ("page %p has unexpected memattr %d", 2835 m, pmap_page_get_memattr(m))); 2836 KASSERT(vm_page_none_valid(m), ("free page %p is valid", m)); 2837 pmap_vm_page_alloc_check(m); 2838 } 2839 2840 static int 2841 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags) 2842 { 2843 struct vm_domain *vmd; 2844 struct vm_pgcache *pgcache; 2845 int i; 2846 2847 pgcache = arg; 2848 vmd = VM_DOMAIN(pgcache->domain); 2849 2850 /* 2851 * The page daemon should avoid creating extra memory pressure since its 2852 * main purpose is to replenish the store of free pages. 2853 */ 2854 if (vmd->vmd_severeset || curproc == pageproc || 2855 !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt)) 2856 return (0); 2857 domain = vmd->vmd_domain; 2858 vm_domain_free_lock(vmd); 2859 i = vm_phys_alloc_npages(domain, pgcache->pool, cnt, 2860 (vm_page_t *)store); 2861 vm_domain_free_unlock(vmd); 2862 if (cnt != i) 2863 vm_domain_freecnt_inc(vmd, cnt - i); 2864 2865 return (i); 2866 } 2867 2868 static void 2869 vm_page_zone_release(void *arg, void **store, int cnt) 2870 { 2871 struct vm_domain *vmd; 2872 struct vm_pgcache *pgcache; 2873 vm_page_t m; 2874 int i; 2875 2876 pgcache = arg; 2877 vmd = VM_DOMAIN(pgcache->domain); 2878 vm_domain_free_lock(vmd); 2879 for (i = 0; i < cnt; i++) { 2880 m = (vm_page_t)store[i]; 2881 vm_phys_free_pages(m, 0); 2882 } 2883 vm_domain_free_unlock(vmd); 2884 vm_domain_freecnt_inc(vmd, cnt); 2885 } 2886 2887 #define VPSC_ANY 0 /* No restrictions. */ 2888 #define VPSC_NORESERV 1 /* Skip reservations; implies VPSC_NOSUPER. */ 2889 #define VPSC_NOSUPER 2 /* Skip superpages. */ 2890 2891 /* 2892 * vm_page_scan_contig: 2893 * 2894 * Scan vm_page_array[] between the specified entries "m_start" and 2895 * "m_end" for a run of contiguous physical pages that satisfy the 2896 * specified conditions, and return the lowest page in the run. The 2897 * specified "alignment" determines the alignment of the lowest physical 2898 * page in the run. If the specified "boundary" is non-zero, then the 2899 * run of physical pages cannot span a physical address that is a 2900 * multiple of "boundary". 2901 * 2902 * "m_end" is never dereferenced, so it need not point to a vm_page 2903 * structure within vm_page_array[]. 2904 * 2905 * "npages" must be greater than zero. "m_start" and "m_end" must not 2906 * span a hole (or discontiguity) in the physical address space. Both 2907 * "alignment" and "boundary" must be a power of two. 2908 */ 2909 static vm_page_t 2910 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end, 2911 u_long alignment, vm_paddr_t boundary, int options) 2912 { 2913 vm_object_t object; 2914 vm_paddr_t pa; 2915 vm_page_t m, m_run; 2916 #if VM_NRESERVLEVEL > 0 2917 int level; 2918 #endif 2919 int m_inc, order, run_ext, run_len; 2920 2921 KASSERT(npages > 0, ("npages is 0")); 2922 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 2923 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 2924 m_run = NULL; 2925 run_len = 0; 2926 for (m = m_start; m < m_end && run_len < npages; m += m_inc) { 2927 KASSERT((m->flags & PG_MARKER) == 0, 2928 ("page %p is PG_MARKER", m)); 2929 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1, 2930 ("fictitious page %p has invalid ref count", m)); 2931 2932 /* 2933 * If the current page would be the start of a run, check its 2934 * physical address against the end, alignment, and boundary 2935 * conditions. If it doesn't satisfy these conditions, either 2936 * terminate the scan or advance to the next page that 2937 * satisfies the failed condition. 2938 */ 2939 if (run_len == 0) { 2940 KASSERT(m_run == NULL, ("m_run != NULL")); 2941 if (m + npages > m_end) 2942 break; 2943 pa = VM_PAGE_TO_PHYS(m); 2944 if (!vm_addr_align_ok(pa, alignment)) { 2945 m_inc = atop(roundup2(pa, alignment) - pa); 2946 continue; 2947 } 2948 if (!vm_addr_bound_ok(pa, ptoa(npages), boundary)) { 2949 m_inc = atop(roundup2(pa, boundary) - pa); 2950 continue; 2951 } 2952 } else 2953 KASSERT(m_run != NULL, ("m_run == NULL")); 2954 2955 retry: 2956 m_inc = 1; 2957 if (vm_page_wired(m)) 2958 run_ext = 0; 2959 #if VM_NRESERVLEVEL > 0 2960 else if ((level = vm_reserv_level(m)) >= 0 && 2961 (options & VPSC_NORESERV) != 0) { 2962 run_ext = 0; 2963 /* Advance to the end of the reservation. */ 2964 pa = VM_PAGE_TO_PHYS(m); 2965 m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) - 2966 pa); 2967 } 2968 #endif 2969 else if ((object = atomic_load_ptr(&m->object)) != NULL) { 2970 /* 2971 * The page is considered eligible for relocation if 2972 * and only if it could be laundered or reclaimed by 2973 * the page daemon. 2974 */ 2975 VM_OBJECT_RLOCK(object); 2976 if (object != m->object) { 2977 VM_OBJECT_RUNLOCK(object); 2978 goto retry; 2979 } 2980 /* Don't care: PG_NODUMP, PG_ZERO. */ 2981 if ((object->flags & OBJ_SWAP) == 0 && 2982 object->type != OBJT_VNODE) { 2983 run_ext = 0; 2984 #if VM_NRESERVLEVEL > 0 2985 } else if ((options & VPSC_NOSUPER) != 0 && 2986 (level = vm_reserv_level_iffullpop(m)) >= 0) { 2987 run_ext = 0; 2988 /* Advance to the end of the superpage. */ 2989 pa = VM_PAGE_TO_PHYS(m); 2990 m_inc = atop(roundup2(pa + 1, 2991 vm_reserv_size(level)) - pa); 2992 #endif 2993 } else if (object->memattr == VM_MEMATTR_DEFAULT && 2994 vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) { 2995 /* 2996 * The page is allocated but eligible for 2997 * relocation. Extend the current run by one 2998 * page. 2999 */ 3000 KASSERT(pmap_page_get_memattr(m) == 3001 VM_MEMATTR_DEFAULT, 3002 ("page %p has an unexpected memattr", m)); 3003 KASSERT((m->oflags & (VPO_SWAPINPROG | 3004 VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0, 3005 ("page %p has unexpected oflags", m)); 3006 /* Don't care: PGA_NOSYNC. */ 3007 run_ext = 1; 3008 } else 3009 run_ext = 0; 3010 VM_OBJECT_RUNLOCK(object); 3011 #if VM_NRESERVLEVEL > 0 3012 } else if (level >= 0) { 3013 /* 3014 * The page is reserved but not yet allocated. In 3015 * other words, it is still free. Extend the current 3016 * run by one page. 3017 */ 3018 run_ext = 1; 3019 #endif 3020 } else if ((order = m->order) < VM_NFREEORDER) { 3021 /* 3022 * The page is enqueued in the physical memory 3023 * allocator's free page queues. Moreover, it is the 3024 * first page in a power-of-two-sized run of 3025 * contiguous free pages. Add these pages to the end 3026 * of the current run, and jump ahead. 3027 */ 3028 run_ext = 1 << order; 3029 m_inc = 1 << order; 3030 } else { 3031 /* 3032 * Skip the page for one of the following reasons: (1) 3033 * It is enqueued in the physical memory allocator's 3034 * free page queues. However, it is not the first 3035 * page in a run of contiguous free pages. (This case 3036 * rarely occurs because the scan is performed in 3037 * ascending order.) (2) It is not reserved, and it is 3038 * transitioning from free to allocated. (Conversely, 3039 * the transition from allocated to free for managed 3040 * pages is blocked by the page busy lock.) (3) It is 3041 * allocated but not contained by an object and not 3042 * wired, e.g., allocated by Xen's balloon driver. 3043 */ 3044 run_ext = 0; 3045 } 3046 3047 /* 3048 * Extend or reset the current run of pages. 3049 */ 3050 if (run_ext > 0) { 3051 if (run_len == 0) 3052 m_run = m; 3053 run_len += run_ext; 3054 } else { 3055 if (run_len > 0) { 3056 m_run = NULL; 3057 run_len = 0; 3058 } 3059 } 3060 } 3061 if (run_len >= npages) 3062 return (m_run); 3063 return (NULL); 3064 } 3065 3066 /* 3067 * vm_page_reclaim_run: 3068 * 3069 * Try to relocate each of the allocated virtual pages within the 3070 * specified run of physical pages to a new physical address. Free the 3071 * physical pages underlying the relocated virtual pages. A virtual page 3072 * is relocatable if and only if it could be laundered or reclaimed by 3073 * the page daemon. Whenever possible, a virtual page is relocated to a 3074 * physical address above "high". 3075 * 3076 * Returns 0 if every physical page within the run was already free or 3077 * just freed by a successful relocation. Otherwise, returns a non-zero 3078 * value indicating why the last attempt to relocate a virtual page was 3079 * unsuccessful. 3080 * 3081 * "req_class" must be an allocation class. 3082 */ 3083 static int 3084 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run, 3085 vm_paddr_t high) 3086 { 3087 struct vm_domain *vmd; 3088 struct spglist free; 3089 vm_object_t object; 3090 vm_paddr_t pa; 3091 vm_page_t m, m_end, m_new; 3092 int error, order, req; 3093 3094 KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class, 3095 ("req_class is not an allocation class")); 3096 SLIST_INIT(&free); 3097 error = 0; 3098 m = m_run; 3099 m_end = m_run + npages; 3100 for (; error == 0 && m < m_end; m++) { 3101 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0, 3102 ("page %p is PG_FICTITIOUS or PG_MARKER", m)); 3103 3104 /* 3105 * Racily check for wirings. Races are handled once the object 3106 * lock is held and the page is unmapped. 3107 */ 3108 if (vm_page_wired(m)) 3109 error = EBUSY; 3110 else if ((object = atomic_load_ptr(&m->object)) != NULL) { 3111 /* 3112 * The page is relocated if and only if it could be 3113 * laundered or reclaimed by the page daemon. 3114 */ 3115 VM_OBJECT_WLOCK(object); 3116 /* Don't care: PG_NODUMP, PG_ZERO. */ 3117 if (m->object != object || 3118 ((object->flags & OBJ_SWAP) == 0 && 3119 object->type != OBJT_VNODE)) 3120 error = EINVAL; 3121 else if (object->memattr != VM_MEMATTR_DEFAULT) 3122 error = EINVAL; 3123 else if (vm_page_queue(m) != PQ_NONE && 3124 vm_page_tryxbusy(m) != 0) { 3125 if (vm_page_wired(m)) { 3126 vm_page_xunbusy(m); 3127 error = EBUSY; 3128 goto unlock; 3129 } 3130 KASSERT(pmap_page_get_memattr(m) == 3131 VM_MEMATTR_DEFAULT, 3132 ("page %p has an unexpected memattr", m)); 3133 KASSERT(m->oflags == 0, 3134 ("page %p has unexpected oflags", m)); 3135 /* Don't care: PGA_NOSYNC. */ 3136 if (!vm_page_none_valid(m)) { 3137 /* 3138 * First, try to allocate a new page 3139 * that is above "high". Failing 3140 * that, try to allocate a new page 3141 * that is below "m_run". Allocate 3142 * the new page between the end of 3143 * "m_run" and "high" only as a last 3144 * resort. 3145 */ 3146 req = req_class; 3147 if ((m->flags & PG_NODUMP) != 0) 3148 req |= VM_ALLOC_NODUMP; 3149 if (trunc_page(high) != 3150 ~(vm_paddr_t)PAGE_MASK) { 3151 m_new = 3152 vm_page_alloc_noobj_contig( 3153 req, 1, round_page(high), 3154 ~(vm_paddr_t)0, PAGE_SIZE, 3155 0, VM_MEMATTR_DEFAULT); 3156 } else 3157 m_new = NULL; 3158 if (m_new == NULL) { 3159 pa = VM_PAGE_TO_PHYS(m_run); 3160 m_new = 3161 vm_page_alloc_noobj_contig( 3162 req, 1, 0, pa - 1, 3163 PAGE_SIZE, 0, 3164 VM_MEMATTR_DEFAULT); 3165 } 3166 if (m_new == NULL) { 3167 pa += ptoa(npages); 3168 m_new = 3169 vm_page_alloc_noobj_contig( 3170 req, 1, pa, high, PAGE_SIZE, 3171 0, VM_MEMATTR_DEFAULT); 3172 } 3173 if (m_new == NULL) { 3174 vm_page_xunbusy(m); 3175 error = ENOMEM; 3176 goto unlock; 3177 } 3178 3179 /* 3180 * Unmap the page and check for new 3181 * wirings that may have been acquired 3182 * through a pmap lookup. 3183 */ 3184 if (object->ref_count != 0 && 3185 !vm_page_try_remove_all(m)) { 3186 vm_page_xunbusy(m); 3187 vm_page_free(m_new); 3188 error = EBUSY; 3189 goto unlock; 3190 } 3191 3192 /* 3193 * Replace "m" with the new page. For 3194 * vm_page_replace(), "m" must be busy 3195 * and dequeued. Finally, change "m" 3196 * as if vm_page_free() was called. 3197 */ 3198 m_new->a.flags = m->a.flags & 3199 ~PGA_QUEUE_STATE_MASK; 3200 KASSERT(m_new->oflags == VPO_UNMANAGED, 3201 ("page %p is managed", m_new)); 3202 m_new->oflags = 0; 3203 pmap_copy_page(m, m_new); 3204 m_new->valid = m->valid; 3205 m_new->dirty = m->dirty; 3206 m->flags &= ~PG_ZERO; 3207 vm_page_dequeue(m); 3208 if (vm_page_replace_hold(m_new, object, 3209 m->pindex, m) && 3210 vm_page_free_prep(m)) 3211 SLIST_INSERT_HEAD(&free, m, 3212 plinks.s.ss); 3213 3214 /* 3215 * The new page must be deactivated 3216 * before the object is unlocked. 3217 */ 3218 vm_page_deactivate(m_new); 3219 } else { 3220 m->flags &= ~PG_ZERO; 3221 vm_page_dequeue(m); 3222 if (vm_page_free_prep(m)) 3223 SLIST_INSERT_HEAD(&free, m, 3224 plinks.s.ss); 3225 KASSERT(m->dirty == 0, 3226 ("page %p is dirty", m)); 3227 } 3228 } else 3229 error = EBUSY; 3230 unlock: 3231 VM_OBJECT_WUNLOCK(object); 3232 } else { 3233 MPASS(vm_page_domain(m) == domain); 3234 vmd = VM_DOMAIN(domain); 3235 vm_domain_free_lock(vmd); 3236 order = m->order; 3237 if (order < VM_NFREEORDER) { 3238 /* 3239 * The page is enqueued in the physical memory 3240 * allocator's free page queues. Moreover, it 3241 * is the first page in a power-of-two-sized 3242 * run of contiguous free pages. Jump ahead 3243 * to the last page within that run, and 3244 * continue from there. 3245 */ 3246 m += (1 << order) - 1; 3247 } 3248 #if VM_NRESERVLEVEL > 0 3249 else if (vm_reserv_is_page_free(m)) 3250 order = 0; 3251 #endif 3252 vm_domain_free_unlock(vmd); 3253 if (order == VM_NFREEORDER) 3254 error = EINVAL; 3255 } 3256 } 3257 if ((m = SLIST_FIRST(&free)) != NULL) { 3258 int cnt; 3259 3260 vmd = VM_DOMAIN(domain); 3261 cnt = 0; 3262 vm_domain_free_lock(vmd); 3263 do { 3264 MPASS(vm_page_domain(m) == domain); 3265 SLIST_REMOVE_HEAD(&free, plinks.s.ss); 3266 vm_phys_free_pages(m, 0); 3267 cnt++; 3268 } while ((m = SLIST_FIRST(&free)) != NULL); 3269 vm_domain_free_unlock(vmd); 3270 vm_domain_freecnt_inc(vmd, cnt); 3271 } 3272 return (error); 3273 } 3274 3275 #define NRUNS 16 3276 3277 #define RUN_INDEX(count, nruns) ((count) % (nruns)) 3278 3279 #define MIN_RECLAIM 8 3280 3281 /* 3282 * vm_page_reclaim_contig: 3283 * 3284 * Reclaim allocated, contiguous physical memory satisfying the specified 3285 * conditions by relocating the virtual pages using that physical memory. 3286 * Returns 0 if reclamation is successful, ERANGE if the specified domain 3287 * can't possibly satisfy the reclamation request, or ENOMEM if not 3288 * currently able to reclaim the requested number of pages. Since 3289 * relocation requires the allocation of physical pages, reclamation may 3290 * fail with ENOMEM due to a shortage of free pages. When reclamation 3291 * fails in this manner, callers are expected to perform vm_wait() before 3292 * retrying a failed allocation operation, e.g., vm_page_alloc_contig(). 3293 * 3294 * The caller must always specify an allocation class through "req". 3295 * 3296 * allocation classes: 3297 * VM_ALLOC_NORMAL normal process request 3298 * VM_ALLOC_SYSTEM system *really* needs a page 3299 * VM_ALLOC_INTERRUPT interrupt time request 3300 * 3301 * The optional allocation flags are ignored. 3302 * 3303 * "npages" must be greater than zero. Both "alignment" and "boundary" 3304 * must be a power of two. 3305 */ 3306 int 3307 vm_page_reclaim_contig_domain_ext(int domain, int req, u_long npages, 3308 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, 3309 int desired_runs) 3310 { 3311 struct vm_domain *vmd; 3312 vm_page_t bounds[2], m_run, _m_runs[NRUNS], *m_runs; 3313 u_long count, minalign, reclaimed; 3314 int error, i, min_reclaim, nruns, options, req_class; 3315 int segind, start_segind; 3316 int ret; 3317 3318 KASSERT(npages > 0, ("npages is 0")); 3319 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 3320 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 3321 3322 ret = ENOMEM; 3323 3324 /* 3325 * If the caller wants to reclaim multiple runs, try to allocate 3326 * space to store the runs. If that fails, fall back to the old 3327 * behavior of just reclaiming MIN_RECLAIM pages. 3328 */ 3329 if (desired_runs > 1) 3330 m_runs = malloc((NRUNS + desired_runs) * sizeof(*m_runs), 3331 M_TEMP, M_NOWAIT); 3332 else 3333 m_runs = NULL; 3334 3335 if (m_runs == NULL) { 3336 m_runs = _m_runs; 3337 nruns = NRUNS; 3338 } else { 3339 nruns = NRUNS + desired_runs - 1; 3340 } 3341 min_reclaim = MAX(desired_runs * npages, MIN_RECLAIM); 3342 3343 /* 3344 * The caller will attempt an allocation after some runs have been 3345 * reclaimed and added to the vm_phys buddy lists. Due to limitations 3346 * of vm_phys_alloc_contig(), round up the requested length to the next 3347 * power of two or maximum chunk size, and ensure that each run is 3348 * suitably aligned. 3349 */ 3350 minalign = 1ul << imin(flsl(npages - 1), VM_NFREEORDER - 1); 3351 npages = roundup2(npages, minalign); 3352 if (alignment < ptoa(minalign)) 3353 alignment = ptoa(minalign); 3354 3355 /* 3356 * The page daemon is allowed to dig deeper into the free page list. 3357 */ 3358 req_class = req & VM_ALLOC_CLASS_MASK; 3359 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 3360 req_class = VM_ALLOC_SYSTEM; 3361 3362 start_segind = vm_phys_lookup_segind(low); 3363 3364 /* 3365 * Return if the number of free pages cannot satisfy the requested 3366 * allocation. 3367 */ 3368 vmd = VM_DOMAIN(domain); 3369 count = vmd->vmd_free_count; 3370 if (count < npages + vmd->vmd_free_reserved || (count < npages + 3371 vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) || 3372 (count < npages && req_class == VM_ALLOC_INTERRUPT)) 3373 goto done; 3374 3375 /* 3376 * Scan up to three times, relaxing the restrictions ("options") on 3377 * the reclamation of reservations and superpages each time. 3378 */ 3379 for (options = VPSC_NORESERV;;) { 3380 bool phys_range_exists = false; 3381 3382 /* 3383 * Find the highest runs that satisfy the given constraints 3384 * and restrictions, and record them in "m_runs". 3385 */ 3386 count = 0; 3387 segind = start_segind; 3388 while ((segind = vm_phys_find_range(bounds, segind, domain, 3389 npages, low, high)) != -1) { 3390 phys_range_exists = true; 3391 while ((m_run = vm_page_scan_contig(npages, bounds[0], 3392 bounds[1], alignment, boundary, options))) { 3393 bounds[0] = m_run + npages; 3394 m_runs[RUN_INDEX(count, nruns)] = m_run; 3395 count++; 3396 } 3397 segind++; 3398 } 3399 3400 if (!phys_range_exists) { 3401 ret = ERANGE; 3402 goto done; 3403 } 3404 3405 /* 3406 * Reclaim the highest runs in LIFO (descending) order until 3407 * the number of reclaimed pages, "reclaimed", is at least 3408 * "min_reclaim". Reset "reclaimed" each time because each 3409 * reclamation is idempotent, and runs will (likely) recur 3410 * from one scan to the next as restrictions are relaxed. 3411 */ 3412 reclaimed = 0; 3413 for (i = 0; count > 0 && i < nruns; i++) { 3414 count--; 3415 m_run = m_runs[RUN_INDEX(count, nruns)]; 3416 error = vm_page_reclaim_run(req_class, domain, npages, 3417 m_run, high); 3418 if (error == 0) { 3419 reclaimed += npages; 3420 if (reclaimed >= min_reclaim) { 3421 ret = 0; 3422 goto done; 3423 } 3424 } 3425 } 3426 3427 /* 3428 * Either relax the restrictions on the next scan or return if 3429 * the last scan had no restrictions. 3430 */ 3431 if (options == VPSC_NORESERV) 3432 options = VPSC_NOSUPER; 3433 else if (options == VPSC_NOSUPER) 3434 options = VPSC_ANY; 3435 else if (options == VPSC_ANY) { 3436 if (reclaimed != 0) 3437 ret = 0; 3438 goto done; 3439 } 3440 } 3441 done: 3442 if (m_runs != _m_runs) 3443 free(m_runs, M_TEMP); 3444 return (ret); 3445 } 3446 3447 int 3448 vm_page_reclaim_contig_domain(int domain, int req, u_long npages, 3449 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary) 3450 { 3451 return (vm_page_reclaim_contig_domain_ext(domain, req, npages, low, high, 3452 alignment, boundary, 1)); 3453 } 3454 3455 int 3456 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high, 3457 u_long alignment, vm_paddr_t boundary) 3458 { 3459 struct vm_domainset_iter di; 3460 int domain, ret, status; 3461 3462 ret = ERANGE; 3463 3464 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req); 3465 do { 3466 status = vm_page_reclaim_contig_domain(domain, req, npages, low, 3467 high, alignment, boundary); 3468 if (status == 0) 3469 return (0); 3470 else if (status == ERANGE) 3471 vm_domainset_iter_ignore(&di, domain); 3472 else { 3473 KASSERT(status == ENOMEM, ("Unrecognized error %d " 3474 "from vm_page_reclaim_contig_domain()", status)); 3475 ret = ENOMEM; 3476 } 3477 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0); 3478 3479 return (ret); 3480 } 3481 3482 /* 3483 * Set the domain in the appropriate page level domainset. 3484 */ 3485 void 3486 vm_domain_set(struct vm_domain *vmd) 3487 { 3488 3489 mtx_lock(&vm_domainset_lock); 3490 if (!vmd->vmd_minset && vm_paging_min(vmd)) { 3491 vmd->vmd_minset = 1; 3492 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains); 3493 } 3494 if (!vmd->vmd_severeset && vm_paging_severe(vmd)) { 3495 vmd->vmd_severeset = 1; 3496 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains); 3497 } 3498 mtx_unlock(&vm_domainset_lock); 3499 } 3500 3501 /* 3502 * Clear the domain from the appropriate page level domainset. 3503 */ 3504 void 3505 vm_domain_clear(struct vm_domain *vmd) 3506 { 3507 3508 mtx_lock(&vm_domainset_lock); 3509 if (vmd->vmd_minset && !vm_paging_min(vmd)) { 3510 vmd->vmd_minset = 0; 3511 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains); 3512 if (vm_min_waiters != 0) { 3513 vm_min_waiters = 0; 3514 wakeup(&vm_min_domains); 3515 } 3516 } 3517 if (vmd->vmd_severeset && !vm_paging_severe(vmd)) { 3518 vmd->vmd_severeset = 0; 3519 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains); 3520 if (vm_severe_waiters != 0) { 3521 vm_severe_waiters = 0; 3522 wakeup(&vm_severe_domains); 3523 } 3524 } 3525 3526 /* 3527 * If pageout daemon needs pages, then tell it that there are 3528 * some free. 3529 */ 3530 if (vmd->vmd_pageout_pages_needed && 3531 vmd->vmd_free_count >= vmd->vmd_pageout_free_min) { 3532 wakeup(&vmd->vmd_pageout_pages_needed); 3533 vmd->vmd_pageout_pages_needed = 0; 3534 } 3535 3536 /* See comments in vm_wait_doms(). */ 3537 if (vm_pageproc_waiters) { 3538 vm_pageproc_waiters = 0; 3539 wakeup(&vm_pageproc_waiters); 3540 } 3541 mtx_unlock(&vm_domainset_lock); 3542 } 3543 3544 /* 3545 * Wait for free pages to exceed the min threshold globally. 3546 */ 3547 void 3548 vm_wait_min(void) 3549 { 3550 3551 mtx_lock(&vm_domainset_lock); 3552 while (vm_page_count_min()) { 3553 vm_min_waiters++; 3554 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0); 3555 } 3556 mtx_unlock(&vm_domainset_lock); 3557 } 3558 3559 /* 3560 * Wait for free pages to exceed the severe threshold globally. 3561 */ 3562 void 3563 vm_wait_severe(void) 3564 { 3565 3566 mtx_lock(&vm_domainset_lock); 3567 while (vm_page_count_severe()) { 3568 vm_severe_waiters++; 3569 msleep(&vm_severe_domains, &vm_domainset_lock, PVM, 3570 "vmwait", 0); 3571 } 3572 mtx_unlock(&vm_domainset_lock); 3573 } 3574 3575 u_int 3576 vm_wait_count(void) 3577 { 3578 3579 return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters); 3580 } 3581 3582 int 3583 vm_wait_doms(const domainset_t *wdoms, int mflags) 3584 { 3585 int error; 3586 3587 error = 0; 3588 3589 /* 3590 * We use racey wakeup synchronization to avoid expensive global 3591 * locking for the pageproc when sleeping with a non-specific vm_wait. 3592 * To handle this, we only sleep for one tick in this instance. It 3593 * is expected that most allocations for the pageproc will come from 3594 * kmem or vm_page_grab* which will use the more specific and 3595 * race-free vm_wait_domain(). 3596 */ 3597 if (curproc == pageproc) { 3598 mtx_lock(&vm_domainset_lock); 3599 vm_pageproc_waiters++; 3600 error = msleep(&vm_pageproc_waiters, &vm_domainset_lock, 3601 PVM | PDROP | mflags, "pageprocwait", 1); 3602 } else { 3603 /* 3604 * XXX Ideally we would wait only until the allocation could 3605 * be satisfied. This condition can cause new allocators to 3606 * consume all freed pages while old allocators wait. 3607 */ 3608 mtx_lock(&vm_domainset_lock); 3609 if (vm_page_count_min_set(wdoms)) { 3610 if (pageproc == NULL) 3611 panic("vm_wait in early boot"); 3612 vm_min_waiters++; 3613 error = msleep(&vm_min_domains, &vm_domainset_lock, 3614 PVM | PDROP | mflags, "vmwait", 0); 3615 } else 3616 mtx_unlock(&vm_domainset_lock); 3617 } 3618 return (error); 3619 } 3620 3621 /* 3622 * vm_wait_domain: 3623 * 3624 * Sleep until free pages are available for allocation. 3625 * - Called in various places after failed memory allocations. 3626 */ 3627 void 3628 vm_wait_domain(int domain) 3629 { 3630 struct vm_domain *vmd; 3631 domainset_t wdom; 3632 3633 vmd = VM_DOMAIN(domain); 3634 vm_domain_free_assert_unlocked(vmd); 3635 3636 if (curproc == pageproc) { 3637 mtx_lock(&vm_domainset_lock); 3638 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) { 3639 vmd->vmd_pageout_pages_needed = 1; 3640 msleep(&vmd->vmd_pageout_pages_needed, 3641 &vm_domainset_lock, PDROP | PSWP, "VMWait", 0); 3642 } else 3643 mtx_unlock(&vm_domainset_lock); 3644 } else { 3645 DOMAINSET_ZERO(&wdom); 3646 DOMAINSET_SET(vmd->vmd_domain, &wdom); 3647 vm_wait_doms(&wdom, 0); 3648 } 3649 } 3650 3651 static int 3652 vm_wait_flags(vm_object_t obj, int mflags) 3653 { 3654 struct domainset *d; 3655 3656 d = NULL; 3657 3658 /* 3659 * Carefully fetch pointers only once: the struct domainset 3660 * itself is ummutable but the pointer might change. 3661 */ 3662 if (obj != NULL) 3663 d = obj->domain.dr_policy; 3664 if (d == NULL) 3665 d = curthread->td_domain.dr_policy; 3666 3667 return (vm_wait_doms(&d->ds_mask, mflags)); 3668 } 3669 3670 /* 3671 * vm_wait: 3672 * 3673 * Sleep until free pages are available for allocation in the 3674 * affinity domains of the obj. If obj is NULL, the domain set 3675 * for the calling thread is used. 3676 * Called in various places after failed memory allocations. 3677 */ 3678 void 3679 vm_wait(vm_object_t obj) 3680 { 3681 (void)vm_wait_flags(obj, 0); 3682 } 3683 3684 int 3685 vm_wait_intr(vm_object_t obj) 3686 { 3687 return (vm_wait_flags(obj, PCATCH)); 3688 } 3689 3690 /* 3691 * vm_domain_alloc_fail: 3692 * 3693 * Called when a page allocation function fails. Informs the 3694 * pagedaemon and performs the requested wait. Requires the 3695 * domain_free and object lock on entry. Returns with the 3696 * object lock held and free lock released. Returns an error when 3697 * retry is necessary. 3698 * 3699 */ 3700 static int 3701 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req) 3702 { 3703 3704 vm_domain_free_assert_unlocked(vmd); 3705 3706 atomic_add_int(&vmd->vmd_pageout_deficit, 3707 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); 3708 if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) { 3709 if (object != NULL) 3710 VM_OBJECT_WUNLOCK(object); 3711 vm_wait_domain(vmd->vmd_domain); 3712 if (object != NULL) 3713 VM_OBJECT_WLOCK(object); 3714 if (req & VM_ALLOC_WAITOK) 3715 return (EAGAIN); 3716 } 3717 3718 return (0); 3719 } 3720 3721 /* 3722 * vm_waitpfault: 3723 * 3724 * Sleep until free pages are available for allocation. 3725 * - Called only in vm_fault so that processes page faulting 3726 * can be easily tracked. 3727 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 3728 * processes will be able to grab memory first. Do not change 3729 * this balance without careful testing first. 3730 */ 3731 void 3732 vm_waitpfault(struct domainset *dset, int timo) 3733 { 3734 3735 /* 3736 * XXX Ideally we would wait only until the allocation could 3737 * be satisfied. This condition can cause new allocators to 3738 * consume all freed pages while old allocators wait. 3739 */ 3740 mtx_lock(&vm_domainset_lock); 3741 if (vm_page_count_min_set(&dset->ds_mask)) { 3742 vm_min_waiters++; 3743 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP, 3744 "pfault", timo); 3745 } else 3746 mtx_unlock(&vm_domainset_lock); 3747 } 3748 3749 static struct vm_pagequeue * 3750 _vm_page_pagequeue(vm_page_t m, uint8_t queue) 3751 { 3752 3753 return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]); 3754 } 3755 3756 #ifdef INVARIANTS 3757 static struct vm_pagequeue * 3758 vm_page_pagequeue(vm_page_t m) 3759 { 3760 3761 return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue)); 3762 } 3763 #endif 3764 3765 static __always_inline bool 3766 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new) 3767 { 3768 vm_page_astate_t tmp; 3769 3770 tmp = *old; 3771 do { 3772 if (__predict_true(vm_page_astate_fcmpset(m, old, new))) 3773 return (true); 3774 counter_u64_add(pqstate_commit_retries, 1); 3775 } while (old->_bits == tmp._bits); 3776 3777 return (false); 3778 } 3779 3780 /* 3781 * Do the work of committing a queue state update that moves the page out of 3782 * its current queue. 3783 */ 3784 static bool 3785 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m, 3786 vm_page_astate_t *old, vm_page_astate_t new) 3787 { 3788 vm_page_t next; 3789 3790 vm_pagequeue_assert_locked(pq); 3791 KASSERT(vm_page_pagequeue(m) == pq, 3792 ("%s: queue %p does not match page %p", __func__, pq, m)); 3793 KASSERT(old->queue != PQ_NONE && new.queue != old->queue, 3794 ("%s: invalid queue indices %d %d", 3795 __func__, old->queue, new.queue)); 3796 3797 /* 3798 * Once the queue index of the page changes there is nothing 3799 * synchronizing with further updates to the page's physical 3800 * queue state. Therefore we must speculatively remove the page 3801 * from the queue now and be prepared to roll back if the queue 3802 * state update fails. If the page is not physically enqueued then 3803 * we just update its queue index. 3804 */ 3805 if ((old->flags & PGA_ENQUEUED) != 0) { 3806 new.flags &= ~PGA_ENQUEUED; 3807 next = TAILQ_NEXT(m, plinks.q); 3808 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 3809 vm_pagequeue_cnt_dec(pq); 3810 if (!vm_page_pqstate_fcmpset(m, old, new)) { 3811 if (next == NULL) 3812 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 3813 else 3814 TAILQ_INSERT_BEFORE(next, m, plinks.q); 3815 vm_pagequeue_cnt_inc(pq); 3816 return (false); 3817 } else { 3818 return (true); 3819 } 3820 } else { 3821 return (vm_page_pqstate_fcmpset(m, old, new)); 3822 } 3823 } 3824 3825 static bool 3826 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old, 3827 vm_page_astate_t new) 3828 { 3829 struct vm_pagequeue *pq; 3830 vm_page_astate_t as; 3831 bool ret; 3832 3833 pq = _vm_page_pagequeue(m, old->queue); 3834 3835 /* 3836 * The queue field and PGA_ENQUEUED flag are stable only so long as the 3837 * corresponding page queue lock is held. 3838 */ 3839 vm_pagequeue_lock(pq); 3840 as = vm_page_astate_load(m); 3841 if (__predict_false(as._bits != old->_bits)) { 3842 *old = as; 3843 ret = false; 3844 } else { 3845 ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new); 3846 } 3847 vm_pagequeue_unlock(pq); 3848 return (ret); 3849 } 3850 3851 /* 3852 * Commit a queue state update that enqueues or requeues a page. 3853 */ 3854 static bool 3855 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m, 3856 vm_page_astate_t *old, vm_page_astate_t new) 3857 { 3858 struct vm_domain *vmd; 3859 3860 vm_pagequeue_assert_locked(pq); 3861 KASSERT(old->queue != PQ_NONE && new.queue == old->queue, 3862 ("%s: invalid queue indices %d %d", 3863 __func__, old->queue, new.queue)); 3864 3865 new.flags |= PGA_ENQUEUED; 3866 if (!vm_page_pqstate_fcmpset(m, old, new)) 3867 return (false); 3868 3869 if ((old->flags & PGA_ENQUEUED) != 0) 3870 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 3871 else 3872 vm_pagequeue_cnt_inc(pq); 3873 3874 /* 3875 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE. In particular, if 3876 * both flags are set in close succession, only PGA_REQUEUE_HEAD will be 3877 * applied, even if it was set first. 3878 */ 3879 if ((old->flags & PGA_REQUEUE_HEAD) != 0) { 3880 vmd = vm_pagequeue_domain(m); 3881 KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE], 3882 ("%s: invalid page queue for page %p", __func__, m)); 3883 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q); 3884 } else { 3885 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 3886 } 3887 return (true); 3888 } 3889 3890 /* 3891 * Commit a queue state update that encodes a request for a deferred queue 3892 * operation. 3893 */ 3894 static bool 3895 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old, 3896 vm_page_astate_t new) 3897 { 3898 3899 KASSERT(old->queue == new.queue || new.queue != PQ_NONE, 3900 ("%s: invalid state, queue %d flags %x", 3901 __func__, new.queue, new.flags)); 3902 3903 if (old->_bits != new._bits && 3904 !vm_page_pqstate_fcmpset(m, old, new)) 3905 return (false); 3906 vm_page_pqbatch_submit(m, new.queue); 3907 return (true); 3908 } 3909 3910 /* 3911 * A generic queue state update function. This handles more cases than the 3912 * specialized functions above. 3913 */ 3914 bool 3915 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new) 3916 { 3917 3918 if (old->_bits == new._bits) 3919 return (true); 3920 3921 if (old->queue != PQ_NONE && new.queue != old->queue) { 3922 if (!vm_page_pqstate_commit_dequeue(m, old, new)) 3923 return (false); 3924 if (new.queue != PQ_NONE) 3925 vm_page_pqbatch_submit(m, new.queue); 3926 } else { 3927 if (!vm_page_pqstate_fcmpset(m, old, new)) 3928 return (false); 3929 if (new.queue != PQ_NONE && 3930 ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0) 3931 vm_page_pqbatch_submit(m, new.queue); 3932 } 3933 return (true); 3934 } 3935 3936 /* 3937 * Apply deferred queue state updates to a page. 3938 */ 3939 static inline void 3940 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue) 3941 { 3942 vm_page_astate_t new, old; 3943 3944 CRITICAL_ASSERT(curthread); 3945 vm_pagequeue_assert_locked(pq); 3946 KASSERT(queue < PQ_COUNT, 3947 ("%s: invalid queue index %d", __func__, queue)); 3948 KASSERT(pq == _vm_page_pagequeue(m, queue), 3949 ("%s: page %p does not belong to queue %p", __func__, m, pq)); 3950 3951 for (old = vm_page_astate_load(m);;) { 3952 if (__predict_false(old.queue != queue || 3953 (old.flags & PGA_QUEUE_OP_MASK) == 0)) { 3954 counter_u64_add(queue_nops, 1); 3955 break; 3956 } 3957 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 3958 ("%s: page %p is unmanaged", __func__, m)); 3959 3960 new = old; 3961 if ((old.flags & PGA_DEQUEUE) != 0) { 3962 new.flags &= ~PGA_QUEUE_OP_MASK; 3963 new.queue = PQ_NONE; 3964 if (__predict_true(_vm_page_pqstate_commit_dequeue(pq, 3965 m, &old, new))) { 3966 counter_u64_add(queue_ops, 1); 3967 break; 3968 } 3969 } else { 3970 new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD); 3971 if (__predict_true(_vm_page_pqstate_commit_requeue(pq, 3972 m, &old, new))) { 3973 counter_u64_add(queue_ops, 1); 3974 break; 3975 } 3976 } 3977 } 3978 } 3979 3980 static void 3981 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq, 3982 uint8_t queue) 3983 { 3984 int i; 3985 3986 for (i = 0; i < bq->bq_cnt; i++) 3987 vm_pqbatch_process_page(pq, bq->bq_pa[i], queue); 3988 vm_batchqueue_init(bq); 3989 } 3990 3991 /* 3992 * vm_page_pqbatch_submit: [ internal use only ] 3993 * 3994 * Enqueue a page in the specified page queue's batched work queue. 3995 * The caller must have encoded the requested operation in the page 3996 * structure's a.flags field. 3997 */ 3998 void 3999 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue) 4000 { 4001 struct vm_batchqueue *bq; 4002 struct vm_pagequeue *pq; 4003 int domain, slots_remaining; 4004 4005 KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue)); 4006 4007 domain = vm_page_domain(m); 4008 critical_enter(); 4009 bq = DPCPU_PTR(pqbatch[domain][queue]); 4010 slots_remaining = vm_batchqueue_insert(bq, m); 4011 if (slots_remaining > (VM_BATCHQUEUE_SIZE >> 1)) { 4012 /* keep building the bq */ 4013 critical_exit(); 4014 return; 4015 } else if (slots_remaining > 0 ) { 4016 /* Try to process the bq if we can get the lock */ 4017 pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue]; 4018 if (vm_pagequeue_trylock(pq)) { 4019 vm_pqbatch_process(pq, bq, queue); 4020 vm_pagequeue_unlock(pq); 4021 } 4022 critical_exit(); 4023 return; 4024 } 4025 critical_exit(); 4026 4027 /* if we make it here, the bq is full so wait for the lock */ 4028 4029 pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue]; 4030 vm_pagequeue_lock(pq); 4031 critical_enter(); 4032 bq = DPCPU_PTR(pqbatch[domain][queue]); 4033 vm_pqbatch_process(pq, bq, queue); 4034 vm_pqbatch_process_page(pq, m, queue); 4035 vm_pagequeue_unlock(pq); 4036 critical_exit(); 4037 } 4038 4039 /* 4040 * vm_page_pqbatch_drain: [ internal use only ] 4041 * 4042 * Force all per-CPU page queue batch queues to be drained. This is 4043 * intended for use in severe memory shortages, to ensure that pages 4044 * do not remain stuck in the batch queues. 4045 */ 4046 void 4047 vm_page_pqbatch_drain(void) 4048 { 4049 struct thread *td; 4050 struct vm_domain *vmd; 4051 struct vm_pagequeue *pq; 4052 int cpu, domain, queue; 4053 4054 td = curthread; 4055 CPU_FOREACH(cpu) { 4056 thread_lock(td); 4057 sched_bind(td, cpu); 4058 thread_unlock(td); 4059 4060 for (domain = 0; domain < vm_ndomains; domain++) { 4061 vmd = VM_DOMAIN(domain); 4062 for (queue = 0; queue < PQ_COUNT; queue++) { 4063 pq = &vmd->vmd_pagequeues[queue]; 4064 vm_pagequeue_lock(pq); 4065 critical_enter(); 4066 vm_pqbatch_process(pq, 4067 DPCPU_PTR(pqbatch[domain][queue]), queue); 4068 critical_exit(); 4069 vm_pagequeue_unlock(pq); 4070 } 4071 } 4072 } 4073 thread_lock(td); 4074 sched_unbind(td); 4075 thread_unlock(td); 4076 } 4077 4078 /* 4079 * vm_page_dequeue_deferred: [ internal use only ] 4080 * 4081 * Request removal of the given page from its current page 4082 * queue. Physical removal from the queue may be deferred 4083 * indefinitely. 4084 */ 4085 void 4086 vm_page_dequeue_deferred(vm_page_t m) 4087 { 4088 vm_page_astate_t new, old; 4089 4090 old = vm_page_astate_load(m); 4091 do { 4092 if (old.queue == PQ_NONE) { 4093 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0, 4094 ("%s: page %p has unexpected queue state", 4095 __func__, m)); 4096 break; 4097 } 4098 new = old; 4099 new.flags |= PGA_DEQUEUE; 4100 } while (!vm_page_pqstate_commit_request(m, &old, new)); 4101 } 4102 4103 /* 4104 * vm_page_dequeue: 4105 * 4106 * Remove the page from whichever page queue it's in, if any, before 4107 * returning. 4108 */ 4109 void 4110 vm_page_dequeue(vm_page_t m) 4111 { 4112 vm_page_astate_t new, old; 4113 4114 old = vm_page_astate_load(m); 4115 do { 4116 if (old.queue == PQ_NONE) { 4117 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0, 4118 ("%s: page %p has unexpected queue state", 4119 __func__, m)); 4120 break; 4121 } 4122 new = old; 4123 new.flags &= ~PGA_QUEUE_OP_MASK; 4124 new.queue = PQ_NONE; 4125 } while (!vm_page_pqstate_commit_dequeue(m, &old, new)); 4126 4127 } 4128 4129 /* 4130 * Schedule the given page for insertion into the specified page queue. 4131 * Physical insertion of the page may be deferred indefinitely. 4132 */ 4133 static void 4134 vm_page_enqueue(vm_page_t m, uint8_t queue) 4135 { 4136 4137 KASSERT(m->a.queue == PQ_NONE && 4138 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0, 4139 ("%s: page %p is already enqueued", __func__, m)); 4140 KASSERT(m->ref_count > 0, 4141 ("%s: page %p does not carry any references", __func__, m)); 4142 4143 m->a.queue = queue; 4144 if ((m->a.flags & PGA_REQUEUE) == 0) 4145 vm_page_aflag_set(m, PGA_REQUEUE); 4146 vm_page_pqbatch_submit(m, queue); 4147 } 4148 4149 /* 4150 * vm_page_free_prep: 4151 * 4152 * Prepares the given page to be put on the free list, 4153 * disassociating it from any VM object. The caller may return 4154 * the page to the free list only if this function returns true. 4155 * 4156 * The object, if it exists, must be locked, and then the page must 4157 * be xbusy. Otherwise the page must be not busied. A managed 4158 * page must be unmapped. 4159 */ 4160 static bool 4161 vm_page_free_prep(vm_page_t m) 4162 { 4163 4164 /* 4165 * Synchronize with threads that have dropped a reference to this 4166 * page. 4167 */ 4168 atomic_thread_fence_acq(); 4169 4170 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP) 4171 if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) { 4172 uint64_t *p; 4173 int i; 4174 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 4175 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++) 4176 KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx", 4177 m, i, (uintmax_t)*p)); 4178 } 4179 #endif 4180 KASSERT((m->flags & PG_NOFREE) == 0, 4181 ("%s: attempting to free a PG_NOFREE page", __func__)); 4182 if ((m->oflags & VPO_UNMANAGED) == 0) { 4183 KASSERT(!pmap_page_is_mapped(m), 4184 ("vm_page_free_prep: freeing mapped page %p", m)); 4185 KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0, 4186 ("vm_page_free_prep: mapping flags set in page %p", m)); 4187 } else { 4188 KASSERT(m->a.queue == PQ_NONE, 4189 ("vm_page_free_prep: unmanaged page %p is queued", m)); 4190 } 4191 VM_CNT_INC(v_tfree); 4192 4193 if (m->object != NULL) { 4194 vm_page_radix_remove(m); 4195 vm_page_free_object_prep(m); 4196 } else 4197 vm_page_assert_unbusied(m); 4198 4199 vm_page_busy_free(m); 4200 4201 /* 4202 * If fictitious remove object association and 4203 * return. 4204 */ 4205 if ((m->flags & PG_FICTITIOUS) != 0) { 4206 KASSERT(m->ref_count == 1, 4207 ("fictitious page %p is referenced", m)); 4208 KASSERT(m->a.queue == PQ_NONE, 4209 ("fictitious page %p is queued", m)); 4210 return (false); 4211 } 4212 4213 /* 4214 * Pages need not be dequeued before they are returned to the physical 4215 * memory allocator, but they must at least be marked for a deferred 4216 * dequeue. 4217 */ 4218 if ((m->oflags & VPO_UNMANAGED) == 0) 4219 vm_page_dequeue_deferred(m); 4220 4221 m->valid = 0; 4222 vm_page_undirty(m); 4223 4224 if (m->ref_count != 0) 4225 panic("vm_page_free_prep: page %p has references", m); 4226 4227 /* 4228 * Restore the default memory attribute to the page. 4229 */ 4230 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) 4231 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); 4232 4233 #if VM_NRESERVLEVEL > 0 4234 /* 4235 * Determine whether the page belongs to a reservation. If the page was 4236 * allocated from a per-CPU cache, it cannot belong to a reservation, so 4237 * as an optimization, we avoid the check in that case. 4238 */ 4239 if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m)) 4240 return (false); 4241 #endif 4242 4243 return (true); 4244 } 4245 4246 /* 4247 * vm_page_free_toq: 4248 * 4249 * Returns the given page to the free list, disassociating it 4250 * from any VM object. 4251 * 4252 * The object must be locked. The page must be exclusively busied if it 4253 * belongs to an object. 4254 */ 4255 static void 4256 vm_page_free_toq(vm_page_t m) 4257 { 4258 struct vm_domain *vmd; 4259 uma_zone_t zone; 4260 4261 if (!vm_page_free_prep(m)) 4262 return; 4263 4264 vmd = vm_pagequeue_domain(m); 4265 zone = vmd->vmd_pgcache[m->pool].zone; 4266 if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) { 4267 uma_zfree(zone, m); 4268 return; 4269 } 4270 vm_domain_free_lock(vmd); 4271 vm_phys_free_pages(m, 0); 4272 vm_domain_free_unlock(vmd); 4273 vm_domain_freecnt_inc(vmd, 1); 4274 } 4275 4276 /* 4277 * vm_page_free_pages_toq: 4278 * 4279 * Returns a list of pages to the free list, disassociating it 4280 * from any VM object. In other words, this is equivalent to 4281 * calling vm_page_free_toq() for each page of a list of VM objects. 4282 */ 4283 int 4284 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count) 4285 { 4286 vm_page_t m; 4287 int count; 4288 4289 if (SLIST_EMPTY(free)) 4290 return (0); 4291 4292 count = 0; 4293 while ((m = SLIST_FIRST(free)) != NULL) { 4294 count++; 4295 SLIST_REMOVE_HEAD(free, plinks.s.ss); 4296 vm_page_free_toq(m); 4297 } 4298 4299 if (update_wire_count) 4300 vm_wire_sub(count); 4301 return (count); 4302 } 4303 4304 /* 4305 * Mark this page as wired down. For managed pages, this prevents reclamation 4306 * by the page daemon, or when the containing object, if any, is destroyed. 4307 */ 4308 void 4309 vm_page_wire(vm_page_t m) 4310 { 4311 u_int old; 4312 4313 #ifdef INVARIANTS 4314 if (m->object != NULL && !vm_page_busied(m) && 4315 !vm_object_busied(m->object)) 4316 VM_OBJECT_ASSERT_LOCKED(m->object); 4317 #endif 4318 KASSERT((m->flags & PG_FICTITIOUS) == 0 || 4319 VPRC_WIRE_COUNT(m->ref_count) >= 1, 4320 ("vm_page_wire: fictitious page %p has zero wirings", m)); 4321 4322 old = atomic_fetchadd_int(&m->ref_count, 1); 4323 KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX, 4324 ("vm_page_wire: counter overflow for page %p", m)); 4325 if (VPRC_WIRE_COUNT(old) == 0) { 4326 if ((m->oflags & VPO_UNMANAGED) == 0) 4327 vm_page_aflag_set(m, PGA_DEQUEUE); 4328 vm_wire_add(1); 4329 } 4330 } 4331 4332 /* 4333 * Attempt to wire a mapped page following a pmap lookup of that page. 4334 * This may fail if a thread is concurrently tearing down mappings of the page. 4335 * The transient failure is acceptable because it translates to the 4336 * failure of the caller pmap_extract_and_hold(), which should be then 4337 * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages(). 4338 */ 4339 bool 4340 vm_page_wire_mapped(vm_page_t m) 4341 { 4342 u_int old; 4343 4344 old = atomic_load_int(&m->ref_count); 4345 do { 4346 KASSERT(old > 0, 4347 ("vm_page_wire_mapped: wiring unreferenced page %p", m)); 4348 if ((old & VPRC_BLOCKED) != 0) 4349 return (false); 4350 } while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1)); 4351 4352 if (VPRC_WIRE_COUNT(old) == 0) { 4353 if ((m->oflags & VPO_UNMANAGED) == 0) 4354 vm_page_aflag_set(m, PGA_DEQUEUE); 4355 vm_wire_add(1); 4356 } 4357 return (true); 4358 } 4359 4360 /* 4361 * Release a wiring reference to a managed page. If the page still belongs to 4362 * an object, update its position in the page queues to reflect the reference. 4363 * If the wiring was the last reference to the page, free the page. 4364 */ 4365 static void 4366 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse) 4367 { 4368 u_int old; 4369 4370 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4371 ("%s: page %p is unmanaged", __func__, m)); 4372 4373 /* 4374 * Update LRU state before releasing the wiring reference. 4375 * Use a release store when updating the reference count to 4376 * synchronize with vm_page_free_prep(). 4377 */ 4378 old = atomic_load_int(&m->ref_count); 4379 do { 4380 u_int count; 4381 4382 KASSERT(VPRC_WIRE_COUNT(old) > 0, 4383 ("vm_page_unwire: wire count underflow for page %p", m)); 4384 4385 count = old & ~VPRC_BLOCKED; 4386 if (count > VPRC_OBJREF + 1) { 4387 /* 4388 * The page has at least one other wiring reference. An 4389 * earlier iteration of this loop may have called 4390 * vm_page_release_toq() and cleared PGA_DEQUEUE, so 4391 * re-set it if necessary. 4392 */ 4393 if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0) 4394 vm_page_aflag_set(m, PGA_DEQUEUE); 4395 } else if (count == VPRC_OBJREF + 1) { 4396 /* 4397 * This is the last wiring. Clear PGA_DEQUEUE and 4398 * update the page's queue state to reflect the 4399 * reference. If the page does not belong to an object 4400 * (i.e., the VPRC_OBJREF bit is clear), we only need to 4401 * clear leftover queue state. 4402 */ 4403 vm_page_release_toq(m, nqueue, noreuse); 4404 } else if (count == 1) { 4405 vm_page_aflag_clear(m, PGA_DEQUEUE); 4406 } 4407 } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1)); 4408 4409 if (VPRC_WIRE_COUNT(old) == 1) { 4410 vm_wire_sub(1); 4411 if (old == 1) 4412 vm_page_free(m); 4413 } 4414 } 4415 4416 /* 4417 * Release one wiring of the specified page, potentially allowing it to be 4418 * paged out. 4419 * 4420 * Only managed pages belonging to an object can be paged out. If the number 4421 * of wirings transitions to zero and the page is eligible for page out, then 4422 * the page is added to the specified paging queue. If the released wiring 4423 * represented the last reference to the page, the page is freed. 4424 */ 4425 void 4426 vm_page_unwire(vm_page_t m, uint8_t nqueue) 4427 { 4428 4429 KASSERT(nqueue < PQ_COUNT, 4430 ("vm_page_unwire: invalid queue %u request for page %p", 4431 nqueue, m)); 4432 4433 if ((m->oflags & VPO_UNMANAGED) != 0) { 4434 if (vm_page_unwire_noq(m) && m->ref_count == 0) 4435 vm_page_free(m); 4436 return; 4437 } 4438 vm_page_unwire_managed(m, nqueue, false); 4439 } 4440 4441 /* 4442 * Unwire a page without (re-)inserting it into a page queue. It is up 4443 * to the caller to enqueue, requeue, or free the page as appropriate. 4444 * In most cases involving managed pages, vm_page_unwire() should be used 4445 * instead. 4446 */ 4447 bool 4448 vm_page_unwire_noq(vm_page_t m) 4449 { 4450 u_int old; 4451 4452 old = vm_page_drop(m, 1); 4453 KASSERT(VPRC_WIRE_COUNT(old) != 0, 4454 ("%s: counter underflow for page %p", __func__, m)); 4455 KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1, 4456 ("%s: missing ref on fictitious page %p", __func__, m)); 4457 4458 if (VPRC_WIRE_COUNT(old) > 1) 4459 return (false); 4460 if ((m->oflags & VPO_UNMANAGED) == 0) 4461 vm_page_aflag_clear(m, PGA_DEQUEUE); 4462 vm_wire_sub(1); 4463 return (true); 4464 } 4465 4466 /* 4467 * Ensure that the page ends up in the specified page queue. If the page is 4468 * active or being moved to the active queue, ensure that its act_count is 4469 * at least ACT_INIT but do not otherwise mess with it. 4470 */ 4471 static __always_inline void 4472 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag) 4473 { 4474 vm_page_astate_t old, new; 4475 4476 KASSERT(m->ref_count > 0, 4477 ("%s: page %p does not carry any references", __func__, m)); 4478 KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD, 4479 ("%s: invalid flags %x", __func__, nflag)); 4480 4481 if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m)) 4482 return; 4483 4484 old = vm_page_astate_load(m); 4485 do { 4486 if ((old.flags & PGA_DEQUEUE) != 0) 4487 break; 4488 new = old; 4489 new.flags &= ~PGA_QUEUE_OP_MASK; 4490 if (nqueue == PQ_ACTIVE) 4491 new.act_count = max(old.act_count, ACT_INIT); 4492 if (old.queue == nqueue) { 4493 /* 4494 * There is no need to requeue pages already in the 4495 * active queue. 4496 */ 4497 if (nqueue != PQ_ACTIVE || 4498 (old.flags & PGA_ENQUEUED) == 0) 4499 new.flags |= nflag; 4500 } else { 4501 new.flags |= nflag; 4502 new.queue = nqueue; 4503 } 4504 } while (!vm_page_pqstate_commit(m, &old, new)); 4505 } 4506 4507 /* 4508 * Put the specified page on the active list (if appropriate). 4509 */ 4510 void 4511 vm_page_activate(vm_page_t m) 4512 { 4513 4514 vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE); 4515 } 4516 4517 /* 4518 * Move the specified page to the tail of the inactive queue, or requeue 4519 * the page if it is already in the inactive queue. 4520 */ 4521 void 4522 vm_page_deactivate(vm_page_t m) 4523 { 4524 4525 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE); 4526 } 4527 4528 void 4529 vm_page_deactivate_noreuse(vm_page_t m) 4530 { 4531 4532 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD); 4533 } 4534 4535 /* 4536 * Put a page in the laundry, or requeue it if it is already there. 4537 */ 4538 void 4539 vm_page_launder(vm_page_t m) 4540 { 4541 4542 vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE); 4543 } 4544 4545 /* 4546 * Put a page in the PQ_UNSWAPPABLE holding queue. 4547 */ 4548 void 4549 vm_page_unswappable(vm_page_t m) 4550 { 4551 4552 VM_OBJECT_ASSERT_LOCKED(m->object); 4553 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4554 ("page %p already unswappable", m)); 4555 4556 vm_page_dequeue(m); 4557 vm_page_enqueue(m, PQ_UNSWAPPABLE); 4558 } 4559 4560 /* 4561 * Release a page back to the page queues in preparation for unwiring. 4562 */ 4563 static void 4564 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse) 4565 { 4566 vm_page_astate_t old, new; 4567 uint16_t nflag; 4568 4569 /* 4570 * Use a check of the valid bits to determine whether we should 4571 * accelerate reclamation of the page. The object lock might not be 4572 * held here, in which case the check is racy. At worst we will either 4573 * accelerate reclamation of a valid page and violate LRU, or 4574 * unnecessarily defer reclamation of an invalid page. 4575 * 4576 * If we were asked to not cache the page, place it near the head of the 4577 * inactive queue so that is reclaimed sooner. 4578 */ 4579 if (noreuse || vm_page_none_valid(m)) { 4580 nqueue = PQ_INACTIVE; 4581 nflag = PGA_REQUEUE_HEAD; 4582 } else { 4583 nflag = PGA_REQUEUE; 4584 } 4585 4586 old = vm_page_astate_load(m); 4587 do { 4588 new = old; 4589 4590 /* 4591 * If the page is already in the active queue and we are not 4592 * trying to accelerate reclamation, simply mark it as 4593 * referenced and avoid any queue operations. 4594 */ 4595 new.flags &= ~PGA_QUEUE_OP_MASK; 4596 if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE && 4597 (old.flags & PGA_ENQUEUED) != 0) 4598 new.flags |= PGA_REFERENCED; 4599 else { 4600 new.flags |= nflag; 4601 new.queue = nqueue; 4602 } 4603 } while (!vm_page_pqstate_commit(m, &old, new)); 4604 } 4605 4606 /* 4607 * Unwire a page and either attempt to free it or re-add it to the page queues. 4608 */ 4609 void 4610 vm_page_release(vm_page_t m, int flags) 4611 { 4612 vm_object_t object; 4613 4614 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4615 ("vm_page_release: page %p is unmanaged", m)); 4616 4617 if ((flags & VPR_TRYFREE) != 0) { 4618 for (;;) { 4619 object = atomic_load_ptr(&m->object); 4620 if (object == NULL) 4621 break; 4622 /* Depends on type-stability. */ 4623 if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object)) 4624 break; 4625 if (object == m->object) { 4626 vm_page_release_locked(m, flags); 4627 VM_OBJECT_WUNLOCK(object); 4628 return; 4629 } 4630 VM_OBJECT_WUNLOCK(object); 4631 } 4632 } 4633 vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0); 4634 } 4635 4636 /* See vm_page_release(). */ 4637 void 4638 vm_page_release_locked(vm_page_t m, int flags) 4639 { 4640 4641 VM_OBJECT_ASSERT_WLOCKED(m->object); 4642 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4643 ("vm_page_release_locked: page %p is unmanaged", m)); 4644 4645 if (vm_page_unwire_noq(m)) { 4646 if ((flags & VPR_TRYFREE) != 0 && 4647 (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) && 4648 m->dirty == 0 && vm_page_tryxbusy(m)) { 4649 /* 4650 * An unlocked lookup may have wired the page before the 4651 * busy lock was acquired, in which case the page must 4652 * not be freed. 4653 */ 4654 if (__predict_true(!vm_page_wired(m))) { 4655 vm_page_free(m); 4656 return; 4657 } 4658 vm_page_xunbusy(m); 4659 } else { 4660 vm_page_release_toq(m, PQ_INACTIVE, flags != 0); 4661 } 4662 } 4663 } 4664 4665 static bool 4666 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t)) 4667 { 4668 u_int old; 4669 4670 KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0, 4671 ("vm_page_try_blocked_op: page %p has no object", m)); 4672 KASSERT(vm_page_busied(m), 4673 ("vm_page_try_blocked_op: page %p is not busy", m)); 4674 VM_OBJECT_ASSERT_LOCKED(m->object); 4675 4676 old = atomic_load_int(&m->ref_count); 4677 do { 4678 KASSERT(old != 0, 4679 ("vm_page_try_blocked_op: page %p has no references", m)); 4680 KASSERT((old & VPRC_BLOCKED) == 0, 4681 ("vm_page_try_blocked_op: page %p blocks wirings", m)); 4682 if (VPRC_WIRE_COUNT(old) != 0) 4683 return (false); 4684 } while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED)); 4685 4686 (op)(m); 4687 4688 /* 4689 * If the object is read-locked, new wirings may be created via an 4690 * object lookup. 4691 */ 4692 old = vm_page_drop(m, VPRC_BLOCKED); 4693 KASSERT(!VM_OBJECT_WOWNED(m->object) || 4694 old == (VPRC_BLOCKED | VPRC_OBJREF), 4695 ("vm_page_try_blocked_op: unexpected refcount value %u for %p", 4696 old, m)); 4697 return (true); 4698 } 4699 4700 /* 4701 * Atomically check for wirings and remove all mappings of the page. 4702 */ 4703 bool 4704 vm_page_try_remove_all(vm_page_t m) 4705 { 4706 4707 return (vm_page_try_blocked_op(m, pmap_remove_all)); 4708 } 4709 4710 /* 4711 * Atomically check for wirings and remove all writeable mappings of the page. 4712 */ 4713 bool 4714 vm_page_try_remove_write(vm_page_t m) 4715 { 4716 4717 return (vm_page_try_blocked_op(m, pmap_remove_write)); 4718 } 4719 4720 /* 4721 * vm_page_advise 4722 * 4723 * Apply the specified advice to the given page. 4724 */ 4725 void 4726 vm_page_advise(vm_page_t m, int advice) 4727 { 4728 4729 VM_OBJECT_ASSERT_WLOCKED(m->object); 4730 vm_page_assert_xbusied(m); 4731 4732 if (advice == MADV_FREE) 4733 /* 4734 * Mark the page clean. This will allow the page to be freed 4735 * without first paging it out. MADV_FREE pages are often 4736 * quickly reused by malloc(3), so we do not do anything that 4737 * would result in a page fault on a later access. 4738 */ 4739 vm_page_undirty(m); 4740 else if (advice != MADV_DONTNEED) { 4741 if (advice == MADV_WILLNEED) 4742 vm_page_activate(m); 4743 return; 4744 } 4745 4746 if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m)) 4747 vm_page_dirty(m); 4748 4749 /* 4750 * Clear any references to the page. Otherwise, the page daemon will 4751 * immediately reactivate the page. 4752 */ 4753 vm_page_aflag_clear(m, PGA_REFERENCED); 4754 4755 /* 4756 * Place clean pages near the head of the inactive queue rather than 4757 * the tail, thus defeating the queue's LRU operation and ensuring that 4758 * the page will be reused quickly. Dirty pages not already in the 4759 * laundry are moved there. 4760 */ 4761 if (m->dirty == 0) 4762 vm_page_deactivate_noreuse(m); 4763 else if (!vm_page_in_laundry(m)) 4764 vm_page_launder(m); 4765 } 4766 4767 /* 4768 * vm_page_grab_release 4769 * 4770 * Helper routine for grab functions to release busy on return. 4771 */ 4772 static inline void 4773 vm_page_grab_release(vm_page_t m, int allocflags) 4774 { 4775 4776 if ((allocflags & VM_ALLOC_NOBUSY) != 0) { 4777 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0) 4778 vm_page_sunbusy(m); 4779 else 4780 vm_page_xunbusy(m); 4781 } 4782 } 4783 4784 /* 4785 * vm_page_grab_sleep 4786 * 4787 * Sleep for busy according to VM_ALLOC_ parameters. Returns true 4788 * if the caller should retry and false otherwise. 4789 * 4790 * If the object is locked on entry the object will be unlocked with 4791 * false returns and still locked but possibly having been dropped 4792 * with true returns. 4793 */ 4794 static bool 4795 vm_page_grab_sleep(vm_object_t object, vm_page_t m, vm_pindex_t pindex, 4796 const char *wmesg, int allocflags, bool locked) 4797 { 4798 4799 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 4800 return (false); 4801 4802 /* 4803 * Reference the page before unlocking and sleeping so that 4804 * the page daemon is less likely to reclaim it. 4805 */ 4806 if (locked && (allocflags & VM_ALLOC_NOCREAT) == 0) 4807 vm_page_reference(m); 4808 4809 if (_vm_page_busy_sleep(object, m, pindex, wmesg, allocflags, locked) && 4810 locked) 4811 VM_OBJECT_WLOCK(object); 4812 if ((allocflags & VM_ALLOC_WAITFAIL) != 0) 4813 return (false); 4814 4815 return (true); 4816 } 4817 4818 /* 4819 * Assert that the grab flags are valid. 4820 */ 4821 static inline void 4822 vm_page_grab_check(int allocflags) 4823 { 4824 4825 KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 || 4826 (allocflags & VM_ALLOC_WIRED) != 0, 4827 ("vm_page_grab*: the pages must be busied or wired")); 4828 4829 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 4830 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 4831 ("vm_page_grab*: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch")); 4832 } 4833 4834 /* 4835 * Calculate the page allocation flags for grab. 4836 */ 4837 static inline int 4838 vm_page_grab_pflags(int allocflags) 4839 { 4840 int pflags; 4841 4842 pflags = allocflags & 4843 ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL | 4844 VM_ALLOC_NOBUSY | VM_ALLOC_IGN_SBUSY); 4845 if ((allocflags & VM_ALLOC_NOWAIT) == 0) 4846 pflags |= VM_ALLOC_WAITFAIL; 4847 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0) 4848 pflags |= VM_ALLOC_SBUSY; 4849 4850 return (pflags); 4851 } 4852 4853 /* 4854 * Grab a page, waiting until we are waken up due to the page 4855 * changing state. We keep on waiting, if the page continues 4856 * to be in the object. If the page doesn't exist, first allocate it 4857 * and then conditionally zero it. 4858 * 4859 * This routine may sleep. 4860 * 4861 * The object must be locked on entry. The lock will, however, be released 4862 * and reacquired if the routine sleeps. 4863 */ 4864 vm_page_t 4865 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 4866 { 4867 vm_page_t m; 4868 4869 VM_OBJECT_ASSERT_WLOCKED(object); 4870 vm_page_grab_check(allocflags); 4871 4872 retrylookup: 4873 if ((m = vm_page_lookup(object, pindex)) != NULL) { 4874 if (!vm_page_tryacquire(m, allocflags)) { 4875 if (vm_page_grab_sleep(object, m, pindex, "pgrbwt", 4876 allocflags, true)) 4877 goto retrylookup; 4878 return (NULL); 4879 } 4880 goto out; 4881 } 4882 if ((allocflags & VM_ALLOC_NOCREAT) != 0) 4883 return (NULL); 4884 m = vm_page_alloc(object, pindex, vm_page_grab_pflags(allocflags)); 4885 if (m == NULL) { 4886 if ((allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0) 4887 return (NULL); 4888 goto retrylookup; 4889 } 4890 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 4891 pmap_zero_page(m); 4892 4893 out: 4894 vm_page_grab_release(m, allocflags); 4895 4896 return (m); 4897 } 4898 4899 /* 4900 * Attempt to validate a page, locklessly acquiring it if necessary, given a 4901 * (object, pindex) tuple and either an invalided page or NULL. The resulting 4902 * page will be validated against the identity tuple, and busied or wired as 4903 * requested. A NULL page returned guarantees that the page was not in radix at 4904 * the time of the call but callers must perform higher level synchronization or 4905 * retry the operation under a lock if they require an atomic answer. This is 4906 * the only lock free validation routine, other routines can depend on the 4907 * resulting page state. 4908 * 4909 * The return value PAGE_NOT_ACQUIRED indicates that the operation failed due to 4910 * caller flags. 4911 */ 4912 #define PAGE_NOT_ACQUIRED ((vm_page_t)1) 4913 static vm_page_t 4914 vm_page_acquire_unlocked(vm_object_t object, vm_pindex_t pindex, vm_page_t m, 4915 int allocflags) 4916 { 4917 if (m == NULL) 4918 m = vm_page_lookup_unlocked(object, pindex); 4919 for (; m != NULL; m = vm_page_lookup_unlocked(object, pindex)) { 4920 if (vm_page_trybusy(m, allocflags)) { 4921 if (m->object == object && m->pindex == pindex) { 4922 if ((allocflags & VM_ALLOC_WIRED) != 0) 4923 vm_page_wire(m); 4924 vm_page_grab_release(m, allocflags); 4925 break; 4926 } 4927 /* relookup. */ 4928 vm_page_busy_release(m); 4929 cpu_spinwait(); 4930 continue; 4931 } 4932 if (!vm_page_grab_sleep(object, m, pindex, "pgnslp", 4933 allocflags, false)) 4934 return (PAGE_NOT_ACQUIRED); 4935 } 4936 return (m); 4937 } 4938 4939 /* 4940 * Try to locklessly grab a page and fall back to the object lock if NOCREAT 4941 * is not set. 4942 */ 4943 vm_page_t 4944 vm_page_grab_unlocked(vm_object_t object, vm_pindex_t pindex, int allocflags) 4945 { 4946 vm_page_t m; 4947 4948 vm_page_grab_check(allocflags); 4949 m = vm_page_acquire_unlocked(object, pindex, NULL, allocflags); 4950 if (m == PAGE_NOT_ACQUIRED) 4951 return (NULL); 4952 if (m != NULL) 4953 return (m); 4954 4955 /* 4956 * The radix lockless lookup should never return a false negative 4957 * errors. If the user specifies NOCREAT they are guaranteed there 4958 * was no page present at the instant of the call. A NOCREAT caller 4959 * must handle create races gracefully. 4960 */ 4961 if ((allocflags & VM_ALLOC_NOCREAT) != 0) 4962 return (NULL); 4963 4964 VM_OBJECT_WLOCK(object); 4965 m = vm_page_grab(object, pindex, allocflags); 4966 VM_OBJECT_WUNLOCK(object); 4967 4968 return (m); 4969 } 4970 4971 /* 4972 * Grab a page and make it valid, paging in if necessary. Pages missing from 4973 * their pager are zero filled and validated. If a VM_ALLOC_COUNT is supplied 4974 * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought 4975 * in simultaneously. Additional pages will be left on a paging queue but 4976 * will neither be wired nor busy regardless of allocflags. 4977 */ 4978 int 4979 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags) 4980 { 4981 vm_page_t m; 4982 vm_page_t ma[VM_INITIAL_PAGEIN]; 4983 int after, i, pflags, rv; 4984 4985 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 4986 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 4987 ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch")); 4988 KASSERT((allocflags & 4989 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0, 4990 ("vm_page_grab_valid: Invalid flags 0x%X", allocflags)); 4991 VM_OBJECT_ASSERT_WLOCKED(object); 4992 pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY | 4993 VM_ALLOC_WIRED | VM_ALLOC_IGN_SBUSY); 4994 pflags |= VM_ALLOC_WAITFAIL; 4995 4996 retrylookup: 4997 if ((m = vm_page_lookup(object, pindex)) != NULL) { 4998 /* 4999 * If the page is fully valid it can only become invalid 5000 * with the object lock held. If it is not valid it can 5001 * become valid with the busy lock held. Therefore, we 5002 * may unnecessarily lock the exclusive busy here if we 5003 * race with I/O completion not using the object lock. 5004 * However, we will not end up with an invalid page and a 5005 * shared lock. 5006 */ 5007 if (!vm_page_trybusy(m, 5008 vm_page_all_valid(m) ? allocflags : 0)) { 5009 (void)vm_page_grab_sleep(object, m, pindex, "pgrbwt", 5010 allocflags, true); 5011 goto retrylookup; 5012 } 5013 if (vm_page_all_valid(m)) 5014 goto out; 5015 if ((allocflags & VM_ALLOC_NOCREAT) != 0) { 5016 vm_page_busy_release(m); 5017 *mp = NULL; 5018 return (VM_PAGER_FAIL); 5019 } 5020 } else if ((allocflags & VM_ALLOC_NOCREAT) != 0) { 5021 *mp = NULL; 5022 return (VM_PAGER_FAIL); 5023 } else if ((m = vm_page_alloc(object, pindex, pflags)) == NULL) { 5024 if (!vm_pager_can_alloc_page(object, pindex)) { 5025 *mp = NULL; 5026 return (VM_PAGER_AGAIN); 5027 } 5028 goto retrylookup; 5029 } 5030 5031 vm_page_assert_xbusied(m); 5032 if (vm_pager_has_page(object, pindex, NULL, &after)) { 5033 after = MIN(after, VM_INITIAL_PAGEIN); 5034 after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT); 5035 after = MAX(after, 1); 5036 ma[0] = m; 5037 for (i = 1; i < after; i++) { 5038 if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) { 5039 if (vm_page_any_valid(ma[i]) || 5040 !vm_page_tryxbusy(ma[i])) 5041 break; 5042 } else { 5043 ma[i] = vm_page_alloc(object, m->pindex + i, 5044 VM_ALLOC_NORMAL); 5045 if (ma[i] == NULL) 5046 break; 5047 } 5048 } 5049 after = i; 5050 vm_object_pip_add(object, after); 5051 VM_OBJECT_WUNLOCK(object); 5052 rv = vm_pager_get_pages(object, ma, after, NULL, NULL); 5053 VM_OBJECT_WLOCK(object); 5054 vm_object_pip_wakeupn(object, after); 5055 /* Pager may have replaced a page. */ 5056 m = ma[0]; 5057 if (rv != VM_PAGER_OK) { 5058 for (i = 0; i < after; i++) { 5059 if (!vm_page_wired(ma[i])) 5060 vm_page_free(ma[i]); 5061 else 5062 vm_page_xunbusy(ma[i]); 5063 } 5064 *mp = NULL; 5065 return (rv); 5066 } 5067 for (i = 1; i < after; i++) 5068 vm_page_readahead_finish(ma[i]); 5069 MPASS(vm_page_all_valid(m)); 5070 } else { 5071 vm_page_zero_invalid(m, TRUE); 5072 } 5073 out: 5074 if ((allocflags & VM_ALLOC_WIRED) != 0) 5075 vm_page_wire(m); 5076 if ((allocflags & VM_ALLOC_SBUSY) != 0 && vm_page_xbusied(m)) 5077 vm_page_busy_downgrade(m); 5078 else if ((allocflags & VM_ALLOC_NOBUSY) != 0) 5079 vm_page_busy_release(m); 5080 *mp = m; 5081 return (VM_PAGER_OK); 5082 } 5083 5084 /* 5085 * Locklessly grab a valid page. If the page is not valid or not yet 5086 * allocated this will fall back to the object lock method. 5087 */ 5088 int 5089 vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object, 5090 vm_pindex_t pindex, int allocflags) 5091 { 5092 vm_page_t m; 5093 int flags; 5094 int error; 5095 5096 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 5097 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 5098 ("vm_page_grab_valid_unlocked: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY " 5099 "mismatch")); 5100 KASSERT((allocflags & 5101 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0, 5102 ("vm_page_grab_valid_unlocked: Invalid flags 0x%X", allocflags)); 5103 5104 /* 5105 * Attempt a lockless lookup and busy. We need at least an sbusy 5106 * before we can inspect the valid field and return a wired page. 5107 */ 5108 flags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_WIRED); 5109 vm_page_grab_check(flags); 5110 m = vm_page_acquire_unlocked(object, pindex, NULL, flags); 5111 if (m == PAGE_NOT_ACQUIRED) 5112 return (VM_PAGER_FAIL); 5113 if (m != NULL) { 5114 if (vm_page_all_valid(m)) { 5115 if ((allocflags & VM_ALLOC_WIRED) != 0) 5116 vm_page_wire(m); 5117 vm_page_grab_release(m, allocflags); 5118 *mp = m; 5119 return (VM_PAGER_OK); 5120 } 5121 vm_page_busy_release(m); 5122 } 5123 if ((allocflags & VM_ALLOC_NOCREAT) != 0) { 5124 *mp = NULL; 5125 return (VM_PAGER_FAIL); 5126 } 5127 VM_OBJECT_WLOCK(object); 5128 error = vm_page_grab_valid(mp, object, pindex, allocflags); 5129 VM_OBJECT_WUNLOCK(object); 5130 5131 return (error); 5132 } 5133 5134 /* 5135 * Return the specified range of pages from the given object. For each 5136 * page offset within the range, if a page already exists within the object 5137 * at that offset and it is busy, then wait for it to change state. If, 5138 * instead, the page doesn't exist, then allocate it. 5139 * 5140 * The caller must always specify an allocation class. 5141 * 5142 * allocation classes: 5143 * VM_ALLOC_NORMAL normal process request 5144 * VM_ALLOC_SYSTEM system *really* needs the pages 5145 * 5146 * The caller must always specify that the pages are to be busied and/or 5147 * wired. 5148 * 5149 * optional allocation flags: 5150 * VM_ALLOC_IGN_SBUSY do not sleep on soft busy pages 5151 * VM_ALLOC_NOBUSY do not exclusive busy the page 5152 * VM_ALLOC_NOWAIT do not sleep 5153 * VM_ALLOC_SBUSY set page to sbusy state 5154 * VM_ALLOC_WIRED wire the pages 5155 * VM_ALLOC_ZERO zero and validate any invalid pages 5156 * 5157 * If VM_ALLOC_NOWAIT is not specified, this routine may sleep. Otherwise, it 5158 * may return a partial prefix of the requested range. 5159 */ 5160 int 5161 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags, 5162 vm_page_t *ma, int count) 5163 { 5164 vm_page_t m, mpred; 5165 int pflags; 5166 int i; 5167 5168 VM_OBJECT_ASSERT_WLOCKED(object); 5169 KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0, 5170 ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed")); 5171 KASSERT(count > 0, 5172 ("vm_page_grab_pages: invalid page count %d", count)); 5173 vm_page_grab_check(allocflags); 5174 5175 pflags = vm_page_grab_pflags(allocflags); 5176 i = 0; 5177 retrylookup: 5178 m = vm_page_mpred(object, pindex + i); 5179 if (m == NULL || m->pindex != pindex + i) { 5180 mpred = m; 5181 m = NULL; 5182 } else 5183 mpred = TAILQ_PREV(m, pglist, listq); 5184 for (; i < count; i++) { 5185 if (m != NULL) { 5186 if (!vm_page_tryacquire(m, allocflags)) { 5187 if (vm_page_grab_sleep(object, m, pindex + i, 5188 "grbmaw", allocflags, true)) 5189 goto retrylookup; 5190 break; 5191 } 5192 } else { 5193 if ((allocflags & VM_ALLOC_NOCREAT) != 0) 5194 break; 5195 m = vm_page_alloc_after(object, pindex + i, 5196 pflags | VM_ALLOC_COUNT(count - i), mpred); 5197 if (m == NULL) { 5198 if ((allocflags & (VM_ALLOC_NOWAIT | 5199 VM_ALLOC_WAITFAIL)) != 0) 5200 break; 5201 goto retrylookup; 5202 } 5203 } 5204 if (vm_page_none_valid(m) && 5205 (allocflags & VM_ALLOC_ZERO) != 0) { 5206 if ((m->flags & PG_ZERO) == 0) 5207 pmap_zero_page(m); 5208 vm_page_valid(m); 5209 } 5210 vm_page_grab_release(m, allocflags); 5211 ma[i] = mpred = m; 5212 m = vm_page_next(m); 5213 } 5214 return (i); 5215 } 5216 5217 /* 5218 * Unlocked variant of vm_page_grab_pages(). This accepts the same flags 5219 * and will fall back to the locked variant to handle allocation. 5220 */ 5221 int 5222 vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex, 5223 int allocflags, vm_page_t *ma, int count) 5224 { 5225 vm_page_t m; 5226 int flags; 5227 int i; 5228 5229 KASSERT(count > 0, 5230 ("vm_page_grab_pages_unlocked: invalid page count %d", count)); 5231 vm_page_grab_check(allocflags); 5232 5233 /* 5234 * Modify flags for lockless acquire to hold the page until we 5235 * set it valid if necessary. 5236 */ 5237 flags = allocflags & ~VM_ALLOC_NOBUSY; 5238 vm_page_grab_check(flags); 5239 m = NULL; 5240 for (i = 0; i < count; i++, pindex++) { 5241 /* 5242 * We may see a false NULL here because the previous page has 5243 * been removed or just inserted and the list is loaded without 5244 * barriers. Switch to radix to verify. 5245 */ 5246 if (m == NULL || QMD_IS_TRASHED(m) || m->pindex != pindex || 5247 atomic_load_ptr(&m->object) != object) { 5248 /* 5249 * This guarantees the result is instantaneously 5250 * correct. 5251 */ 5252 m = NULL; 5253 } 5254 m = vm_page_acquire_unlocked(object, pindex, m, flags); 5255 if (m == PAGE_NOT_ACQUIRED) 5256 return (i); 5257 if (m == NULL) 5258 break; 5259 if ((flags & VM_ALLOC_ZERO) != 0 && vm_page_none_valid(m)) { 5260 if ((m->flags & PG_ZERO) == 0) 5261 pmap_zero_page(m); 5262 vm_page_valid(m); 5263 } 5264 /* m will still be wired or busy according to flags. */ 5265 vm_page_grab_release(m, allocflags); 5266 ma[i] = m; 5267 m = TAILQ_NEXT(m, listq); 5268 } 5269 if (i == count || (allocflags & VM_ALLOC_NOCREAT) != 0) 5270 return (i); 5271 count -= i; 5272 VM_OBJECT_WLOCK(object); 5273 i += vm_page_grab_pages(object, pindex, allocflags, &ma[i], count); 5274 VM_OBJECT_WUNLOCK(object); 5275 5276 return (i); 5277 } 5278 5279 /* 5280 * Mapping function for valid or dirty bits in a page. 5281 * 5282 * Inputs are required to range within a page. 5283 */ 5284 vm_page_bits_t 5285 vm_page_bits(int base, int size) 5286 { 5287 int first_bit; 5288 int last_bit; 5289 5290 KASSERT( 5291 base + size <= PAGE_SIZE, 5292 ("vm_page_bits: illegal base/size %d/%d", base, size) 5293 ); 5294 5295 if (size == 0) /* handle degenerate case */ 5296 return (0); 5297 5298 first_bit = base >> DEV_BSHIFT; 5299 last_bit = (base + size - 1) >> DEV_BSHIFT; 5300 5301 return (((vm_page_bits_t)2 << last_bit) - 5302 ((vm_page_bits_t)1 << first_bit)); 5303 } 5304 5305 void 5306 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set) 5307 { 5308 5309 #if PAGE_SIZE == 32768 5310 atomic_set_64((uint64_t *)bits, set); 5311 #elif PAGE_SIZE == 16384 5312 atomic_set_32((uint32_t *)bits, set); 5313 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16) 5314 atomic_set_16((uint16_t *)bits, set); 5315 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8) 5316 atomic_set_8((uint8_t *)bits, set); 5317 #else /* PAGE_SIZE <= 8192 */ 5318 uintptr_t addr; 5319 int shift; 5320 5321 addr = (uintptr_t)bits; 5322 /* 5323 * Use a trick to perform a 32-bit atomic on the 5324 * containing aligned word, to not depend on the existence 5325 * of atomic_{set, clear}_{8, 16}. 5326 */ 5327 shift = addr & (sizeof(uint32_t) - 1); 5328 #if BYTE_ORDER == BIG_ENDIAN 5329 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY; 5330 #else 5331 shift *= NBBY; 5332 #endif 5333 addr &= ~(sizeof(uint32_t) - 1); 5334 atomic_set_32((uint32_t *)addr, set << shift); 5335 #endif /* PAGE_SIZE */ 5336 } 5337 5338 static inline void 5339 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear) 5340 { 5341 5342 #if PAGE_SIZE == 32768 5343 atomic_clear_64((uint64_t *)bits, clear); 5344 #elif PAGE_SIZE == 16384 5345 atomic_clear_32((uint32_t *)bits, clear); 5346 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16) 5347 atomic_clear_16((uint16_t *)bits, clear); 5348 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8) 5349 atomic_clear_8((uint8_t *)bits, clear); 5350 #else /* PAGE_SIZE <= 8192 */ 5351 uintptr_t addr; 5352 int shift; 5353 5354 addr = (uintptr_t)bits; 5355 /* 5356 * Use a trick to perform a 32-bit atomic on the 5357 * containing aligned word, to not depend on the existence 5358 * of atomic_{set, clear}_{8, 16}. 5359 */ 5360 shift = addr & (sizeof(uint32_t) - 1); 5361 #if BYTE_ORDER == BIG_ENDIAN 5362 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY; 5363 #else 5364 shift *= NBBY; 5365 #endif 5366 addr &= ~(sizeof(uint32_t) - 1); 5367 atomic_clear_32((uint32_t *)addr, clear << shift); 5368 #endif /* PAGE_SIZE */ 5369 } 5370 5371 static inline vm_page_bits_t 5372 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits) 5373 { 5374 #if PAGE_SIZE == 32768 5375 uint64_t old; 5376 5377 old = *bits; 5378 while (atomic_fcmpset_64(bits, &old, newbits) == 0); 5379 return (old); 5380 #elif PAGE_SIZE == 16384 5381 uint32_t old; 5382 5383 old = *bits; 5384 while (atomic_fcmpset_32(bits, &old, newbits) == 0); 5385 return (old); 5386 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16) 5387 uint16_t old; 5388 5389 old = *bits; 5390 while (atomic_fcmpset_16(bits, &old, newbits) == 0); 5391 return (old); 5392 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8) 5393 uint8_t old; 5394 5395 old = *bits; 5396 while (atomic_fcmpset_8(bits, &old, newbits) == 0); 5397 return (old); 5398 #else /* PAGE_SIZE <= 4096*/ 5399 uintptr_t addr; 5400 uint32_t old, new, mask; 5401 int shift; 5402 5403 addr = (uintptr_t)bits; 5404 /* 5405 * Use a trick to perform a 32-bit atomic on the 5406 * containing aligned word, to not depend on the existence 5407 * of atomic_{set, swap, clear}_{8, 16}. 5408 */ 5409 shift = addr & (sizeof(uint32_t) - 1); 5410 #if BYTE_ORDER == BIG_ENDIAN 5411 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY; 5412 #else 5413 shift *= NBBY; 5414 #endif 5415 addr &= ~(sizeof(uint32_t) - 1); 5416 mask = VM_PAGE_BITS_ALL << shift; 5417 5418 old = *bits; 5419 do { 5420 new = old & ~mask; 5421 new |= newbits << shift; 5422 } while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0); 5423 return (old >> shift); 5424 #endif /* PAGE_SIZE */ 5425 } 5426 5427 /* 5428 * vm_page_set_valid_range: 5429 * 5430 * Sets portions of a page valid. The arguments are expected 5431 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 5432 * of any partial chunks touched by the range. The invalid portion of 5433 * such chunks will be zeroed. 5434 * 5435 * (base + size) must be less then or equal to PAGE_SIZE. 5436 */ 5437 void 5438 vm_page_set_valid_range(vm_page_t m, int base, int size) 5439 { 5440 int endoff, frag; 5441 vm_page_bits_t pagebits; 5442 5443 vm_page_assert_busied(m); 5444 if (size == 0) /* handle degenerate case */ 5445 return; 5446 5447 /* 5448 * If the base is not DEV_BSIZE aligned and the valid 5449 * bit is clear, we have to zero out a portion of the 5450 * first block. 5451 */ 5452 if ((frag = rounddown2(base, DEV_BSIZE)) != base && 5453 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 5454 pmap_zero_page_area(m, frag, base - frag); 5455 5456 /* 5457 * If the ending offset is not DEV_BSIZE aligned and the 5458 * valid bit is clear, we have to zero out a portion of 5459 * the last block. 5460 */ 5461 endoff = base + size; 5462 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && 5463 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 5464 pmap_zero_page_area(m, endoff, 5465 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 5466 5467 /* 5468 * Assert that no previously invalid block that is now being validated 5469 * is already dirty. 5470 */ 5471 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0, 5472 ("vm_page_set_valid_range: page %p is dirty", m)); 5473 5474 /* 5475 * Set valid bits inclusive of any overlap. 5476 */ 5477 pagebits = vm_page_bits(base, size); 5478 if (vm_page_xbusied(m)) 5479 m->valid |= pagebits; 5480 else 5481 vm_page_bits_set(m, &m->valid, pagebits); 5482 } 5483 5484 /* 5485 * Set the page dirty bits and free the invalid swap space if 5486 * present. Returns the previous dirty bits. 5487 */ 5488 vm_page_bits_t 5489 vm_page_set_dirty(vm_page_t m) 5490 { 5491 vm_page_bits_t old; 5492 5493 VM_PAGE_OBJECT_BUSY_ASSERT(m); 5494 5495 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) { 5496 old = m->dirty; 5497 m->dirty = VM_PAGE_BITS_ALL; 5498 } else 5499 old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL); 5500 if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0) 5501 vm_pager_page_unswapped(m); 5502 5503 return (old); 5504 } 5505 5506 /* 5507 * Clear the given bits from the specified page's dirty field. 5508 */ 5509 static __inline void 5510 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits) 5511 { 5512 5513 vm_page_assert_busied(m); 5514 5515 /* 5516 * If the page is xbusied and not write mapped we are the 5517 * only thread that can modify dirty bits. Otherwise, The pmap 5518 * layer can call vm_page_dirty() without holding a distinguished 5519 * lock. The combination of page busy and atomic operations 5520 * suffice to guarantee consistency of the page dirty field. 5521 */ 5522 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) 5523 m->dirty &= ~pagebits; 5524 else 5525 vm_page_bits_clear(m, &m->dirty, pagebits); 5526 } 5527 5528 /* 5529 * vm_page_set_validclean: 5530 * 5531 * Sets portions of a page valid and clean. The arguments are expected 5532 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 5533 * of any partial chunks touched by the range. The invalid portion of 5534 * such chunks will be zero'd. 5535 * 5536 * (base + size) must be less then or equal to PAGE_SIZE. 5537 */ 5538 void 5539 vm_page_set_validclean(vm_page_t m, int base, int size) 5540 { 5541 vm_page_bits_t oldvalid, pagebits; 5542 int endoff, frag; 5543 5544 vm_page_assert_busied(m); 5545 if (size == 0) /* handle degenerate case */ 5546 return; 5547 5548 /* 5549 * If the base is not DEV_BSIZE aligned and the valid 5550 * bit is clear, we have to zero out a portion of the 5551 * first block. 5552 */ 5553 if ((frag = rounddown2(base, DEV_BSIZE)) != base && 5554 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0) 5555 pmap_zero_page_area(m, frag, base - frag); 5556 5557 /* 5558 * If the ending offset is not DEV_BSIZE aligned and the 5559 * valid bit is clear, we have to zero out a portion of 5560 * the last block. 5561 */ 5562 endoff = base + size; 5563 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && 5564 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0) 5565 pmap_zero_page_area(m, endoff, 5566 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 5567 5568 /* 5569 * Set valid, clear dirty bits. If validating the entire 5570 * page we can safely clear the pmap modify bit. We also 5571 * use this opportunity to clear the PGA_NOSYNC flag. If a process 5572 * takes a write fault on a MAP_NOSYNC memory area the flag will 5573 * be set again. 5574 * 5575 * We set valid bits inclusive of any overlap, but we can only 5576 * clear dirty bits for DEV_BSIZE chunks that are fully within 5577 * the range. 5578 */ 5579 oldvalid = m->valid; 5580 pagebits = vm_page_bits(base, size); 5581 if (vm_page_xbusied(m)) 5582 m->valid |= pagebits; 5583 else 5584 vm_page_bits_set(m, &m->valid, pagebits); 5585 #if 0 /* NOT YET */ 5586 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 5587 frag = DEV_BSIZE - frag; 5588 base += frag; 5589 size -= frag; 5590 if (size < 0) 5591 size = 0; 5592 } 5593 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 5594 #endif 5595 if (base == 0 && size == PAGE_SIZE) { 5596 /* 5597 * The page can only be modified within the pmap if it is 5598 * mapped, and it can only be mapped if it was previously 5599 * fully valid. 5600 */ 5601 if (oldvalid == VM_PAGE_BITS_ALL) 5602 /* 5603 * Perform the pmap_clear_modify() first. Otherwise, 5604 * a concurrent pmap operation, such as 5605 * pmap_protect(), could clear a modification in the 5606 * pmap and set the dirty field on the page before 5607 * pmap_clear_modify() had begun and after the dirty 5608 * field was cleared here. 5609 */ 5610 pmap_clear_modify(m); 5611 m->dirty = 0; 5612 vm_page_aflag_clear(m, PGA_NOSYNC); 5613 } else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m)) 5614 m->dirty &= ~pagebits; 5615 else 5616 vm_page_clear_dirty_mask(m, pagebits); 5617 } 5618 5619 void 5620 vm_page_clear_dirty(vm_page_t m, int base, int size) 5621 { 5622 5623 vm_page_clear_dirty_mask(m, vm_page_bits(base, size)); 5624 } 5625 5626 /* 5627 * vm_page_set_invalid: 5628 * 5629 * Invalidates DEV_BSIZE'd chunks within a page. Both the 5630 * valid and dirty bits for the effected areas are cleared. 5631 */ 5632 void 5633 vm_page_set_invalid(vm_page_t m, int base, int size) 5634 { 5635 vm_page_bits_t bits; 5636 vm_object_t object; 5637 5638 /* 5639 * The object lock is required so that pages can't be mapped 5640 * read-only while we're in the process of invalidating them. 5641 */ 5642 object = m->object; 5643 VM_OBJECT_ASSERT_WLOCKED(object); 5644 vm_page_assert_busied(m); 5645 5646 if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) + 5647 size >= object->un_pager.vnp.vnp_size) 5648 bits = VM_PAGE_BITS_ALL; 5649 else 5650 bits = vm_page_bits(base, size); 5651 if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0) 5652 pmap_remove_all(m); 5653 KASSERT((bits == 0 && vm_page_all_valid(m)) || 5654 !pmap_page_is_mapped(m), 5655 ("vm_page_set_invalid: page %p is mapped", m)); 5656 if (vm_page_xbusied(m)) { 5657 m->valid &= ~bits; 5658 m->dirty &= ~bits; 5659 } else { 5660 vm_page_bits_clear(m, &m->valid, bits); 5661 vm_page_bits_clear(m, &m->dirty, bits); 5662 } 5663 } 5664 5665 /* 5666 * vm_page_invalid: 5667 * 5668 * Invalidates the entire page. The page must be busy, unmapped, and 5669 * the enclosing object must be locked. The object locks protects 5670 * against concurrent read-only pmap enter which is done without 5671 * busy. 5672 */ 5673 void 5674 vm_page_invalid(vm_page_t m) 5675 { 5676 5677 vm_page_assert_busied(m); 5678 VM_OBJECT_ASSERT_WLOCKED(m->object); 5679 MPASS(!pmap_page_is_mapped(m)); 5680 5681 if (vm_page_xbusied(m)) 5682 m->valid = 0; 5683 else 5684 vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL); 5685 } 5686 5687 /* 5688 * vm_page_zero_invalid() 5689 * 5690 * The kernel assumes that the invalid portions of a page contain 5691 * garbage, but such pages can be mapped into memory by user code. 5692 * When this occurs, we must zero out the non-valid portions of the 5693 * page so user code sees what it expects. 5694 * 5695 * Pages are most often semi-valid when the end of a file is mapped 5696 * into memory and the file's size is not page aligned. 5697 */ 5698 void 5699 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 5700 { 5701 int b; 5702 int i; 5703 5704 /* 5705 * Scan the valid bits looking for invalid sections that 5706 * must be zeroed. Invalid sub-DEV_BSIZE'd areas ( where the 5707 * valid bit may be set ) have already been zeroed by 5708 * vm_page_set_validclean(). 5709 */ 5710 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 5711 if (i == (PAGE_SIZE / DEV_BSIZE) || 5712 (m->valid & ((vm_page_bits_t)1 << i))) { 5713 if (i > b) { 5714 pmap_zero_page_area(m, 5715 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 5716 } 5717 b = i + 1; 5718 } 5719 } 5720 5721 /* 5722 * setvalid is TRUE when we can safely set the zero'd areas 5723 * as being valid. We can do this if there are no cache consistency 5724 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 5725 */ 5726 if (setvalid) 5727 vm_page_valid(m); 5728 } 5729 5730 /* 5731 * vm_page_is_valid: 5732 * 5733 * Is (partial) page valid? Note that the case where size == 0 5734 * will return FALSE in the degenerate case where the page is 5735 * entirely invalid, and TRUE otherwise. 5736 * 5737 * Some callers envoke this routine without the busy lock held and 5738 * handle races via higher level locks. Typical callers should 5739 * hold a busy lock to prevent invalidation. 5740 */ 5741 int 5742 vm_page_is_valid(vm_page_t m, int base, int size) 5743 { 5744 vm_page_bits_t bits; 5745 5746 bits = vm_page_bits(base, size); 5747 return (vm_page_any_valid(m) && (m->valid & bits) == bits); 5748 } 5749 5750 /* 5751 * Returns true if all of the specified predicates are true for the entire 5752 * (super)page and false otherwise. 5753 */ 5754 bool 5755 vm_page_ps_test(vm_page_t m, int psind, int flags, vm_page_t skip_m) 5756 { 5757 vm_object_t object; 5758 int i, npages; 5759 5760 object = m->object; 5761 if (skip_m != NULL && skip_m->object != object) 5762 return (false); 5763 VM_OBJECT_ASSERT_LOCKED(object); 5764 KASSERT(psind <= m->psind, 5765 ("psind %d > psind %d of m %p", psind, m->psind, m)); 5766 npages = atop(pagesizes[psind]); 5767 5768 /* 5769 * The physically contiguous pages that make up a superpage, i.e., a 5770 * page with a page size index ("psind") greater than zero, will 5771 * occupy adjacent entries in vm_page_array[]. 5772 */ 5773 for (i = 0; i < npages; i++) { 5774 /* Always test object consistency, including "skip_m". */ 5775 if (m[i].object != object) 5776 return (false); 5777 if (&m[i] == skip_m) 5778 continue; 5779 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i])) 5780 return (false); 5781 if ((flags & PS_ALL_DIRTY) != 0) { 5782 /* 5783 * Calling vm_page_test_dirty() or pmap_is_modified() 5784 * might stop this case from spuriously returning 5785 * "false". However, that would require a write lock 5786 * on the object containing "m[i]". 5787 */ 5788 if (m[i].dirty != VM_PAGE_BITS_ALL) 5789 return (false); 5790 } 5791 if ((flags & PS_ALL_VALID) != 0 && 5792 m[i].valid != VM_PAGE_BITS_ALL) 5793 return (false); 5794 } 5795 return (true); 5796 } 5797 5798 /* 5799 * Set the page's dirty bits if the page is modified. 5800 */ 5801 void 5802 vm_page_test_dirty(vm_page_t m) 5803 { 5804 5805 vm_page_assert_busied(m); 5806 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m)) 5807 vm_page_dirty(m); 5808 } 5809 5810 void 5811 vm_page_valid(vm_page_t m) 5812 { 5813 5814 vm_page_assert_busied(m); 5815 if (vm_page_xbusied(m)) 5816 m->valid = VM_PAGE_BITS_ALL; 5817 else 5818 vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL); 5819 } 5820 5821 void 5822 vm_page_lock_KBI(vm_page_t m, const char *file, int line) 5823 { 5824 5825 mtx_lock_flags_(vm_page_lockptr(m), 0, file, line); 5826 } 5827 5828 void 5829 vm_page_unlock_KBI(vm_page_t m, const char *file, int line) 5830 { 5831 5832 mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line); 5833 } 5834 5835 int 5836 vm_page_trylock_KBI(vm_page_t m, const char *file, int line) 5837 { 5838 5839 return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line)); 5840 } 5841 5842 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT) 5843 void 5844 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line) 5845 { 5846 5847 vm_page_lock_assert_KBI(m, MA_OWNED, file, line); 5848 } 5849 5850 void 5851 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line) 5852 { 5853 5854 mtx_assert_(vm_page_lockptr(m), a, file, line); 5855 } 5856 #endif 5857 5858 #ifdef INVARIANTS 5859 void 5860 vm_page_object_busy_assert(vm_page_t m) 5861 { 5862 5863 /* 5864 * Certain of the page's fields may only be modified by the 5865 * holder of a page or object busy. 5866 */ 5867 if (m->object != NULL && !vm_page_busied(m)) 5868 VM_OBJECT_ASSERT_BUSY(m->object); 5869 } 5870 5871 void 5872 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits) 5873 { 5874 5875 if ((bits & PGA_WRITEABLE) == 0) 5876 return; 5877 5878 /* 5879 * The PGA_WRITEABLE flag can only be set if the page is 5880 * managed, is exclusively busied or the object is locked. 5881 * Currently, this flag is only set by pmap_enter(). 5882 */ 5883 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 5884 ("PGA_WRITEABLE on unmanaged page")); 5885 if (!vm_page_xbusied(m)) 5886 VM_OBJECT_ASSERT_BUSY(m->object); 5887 } 5888 #endif 5889 5890 #include "opt_ddb.h" 5891 #ifdef DDB 5892 #include <sys/kernel.h> 5893 5894 #include <ddb/ddb.h> 5895 5896 DB_SHOW_COMMAND_FLAGS(page, vm_page_print_page_info, DB_CMD_MEMSAFE) 5897 { 5898 5899 db_printf("vm_cnt.v_free_count: %d\n", vm_free_count()); 5900 db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count()); 5901 db_printf("vm_cnt.v_active_count: %d\n", vm_active_count()); 5902 db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count()); 5903 db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count()); 5904 db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved); 5905 db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min); 5906 db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target); 5907 db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target); 5908 } 5909 5910 DB_SHOW_COMMAND_FLAGS(pageq, vm_page_print_pageq_info, DB_CMD_MEMSAFE) 5911 { 5912 int dom; 5913 5914 db_printf("pq_free %d\n", vm_free_count()); 5915 for (dom = 0; dom < vm_ndomains; dom++) { 5916 db_printf( 5917 "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n", 5918 dom, 5919 vm_dom[dom].vmd_page_count, 5920 vm_dom[dom].vmd_free_count, 5921 vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt, 5922 vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt, 5923 vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt, 5924 vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt); 5925 } 5926 } 5927 5928 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo) 5929 { 5930 vm_page_t m; 5931 boolean_t phys, virt; 5932 5933 if (!have_addr) { 5934 db_printf("show pginfo addr\n"); 5935 return; 5936 } 5937 5938 phys = strchr(modif, 'p') != NULL; 5939 virt = strchr(modif, 'v') != NULL; 5940 if (virt) 5941 m = PHYS_TO_VM_PAGE(pmap_kextract(addr)); 5942 else if (phys) 5943 m = PHYS_TO_VM_PAGE(addr); 5944 else 5945 m = (vm_page_t)addr; 5946 db_printf( 5947 "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref 0x%x\n" 5948 " af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n", 5949 m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr, 5950 m->a.queue, m->ref_count, m->a.flags, m->oflags, 5951 m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty); 5952 } 5953 #endif /* DDB */ 5954