1 /*- 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * The Mach Operating System project at Carnegie-Mellon University. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 34 */ 35 36 /*- 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * GENERAL RULES ON VM_PAGE MANIPULATION 65 * 66 * - a pageq mutex is required when adding or removing a page from a 67 * page queue (vm_page_queue[]), regardless of other mutexes or the 68 * busy state of a page. 69 * 70 * - a hash chain mutex is required when associating or disassociating 71 * a page from the VM PAGE CACHE hash table (vm_page_buckets), 72 * regardless of other mutexes or the busy state of a page. 73 * 74 * - either a hash chain mutex OR a busied page is required in order 75 * to modify the page flags. A hash chain mutex must be obtained in 76 * order to busy a page. A page's flags cannot be modified by a 77 * hash chain mutex if the page is marked busy. 78 * 79 * - The object memq mutex is held when inserting or removing 80 * pages from an object (vm_page_insert() or vm_page_remove()). This 81 * is different from the object's main mutex. 82 * 83 * Generally speaking, you have to be aware of side effects when running 84 * vm_page ops. A vm_page_lookup() will return with the hash chain 85 * locked, whether it was able to lookup the page or not. vm_page_free(), 86 * vm_page_cache(), vm_page_activate(), and a number of other routines 87 * will release the hash chain mutex for you. Intermediate manipulation 88 * routines such as vm_page_flag_set() expect the hash chain to be held 89 * on entry and the hash chain will remain held on return. 90 * 91 * pageq scanning can only occur with the pageq in question locked. 92 * We have a known bottleneck with the active queue, but the cache 93 * and free queues are actually arrays already. 94 */ 95 96 /* 97 * Resident memory management module. 98 */ 99 100 #include <sys/cdefs.h> 101 __FBSDID("$FreeBSD$"); 102 103 #include "opt_vm.h" 104 105 #include <sys/param.h> 106 #include <sys/systm.h> 107 #include <sys/lock.h> 108 #include <sys/kernel.h> 109 #include <sys/malloc.h> 110 #include <sys/mutex.h> 111 #include <sys/proc.h> 112 #include <sys/sysctl.h> 113 #include <sys/vmmeter.h> 114 #include <sys/vnode.h> 115 116 #include <vm/vm.h> 117 #include <vm/vm_param.h> 118 #include <vm/vm_kern.h> 119 #include <vm/vm_object.h> 120 #include <vm/vm_page.h> 121 #include <vm/vm_pageout.h> 122 #include <vm/vm_pager.h> 123 #include <vm/vm_phys.h> 124 #include <vm/vm_reserv.h> 125 #include <vm/vm_extern.h> 126 #include <vm/uma.h> 127 #include <vm/uma_int.h> 128 129 #include <machine/md_var.h> 130 131 /* 132 * Associated with page of user-allocatable memory is a 133 * page structure. 134 */ 135 136 struct vpgqueues vm_page_queues[PQ_COUNT]; 137 struct mtx vm_page_queue_mtx; 138 struct mtx vm_page_queue_free_mtx; 139 140 vm_page_t vm_page_array = 0; 141 int vm_page_array_size = 0; 142 long first_page = 0; 143 int vm_page_zero_count = 0; 144 145 static int boot_pages = UMA_BOOT_PAGES; 146 TUNABLE_INT("vm.boot_pages", &boot_pages); 147 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0, 148 "number of pages allocated for bootstrapping the VM system"); 149 150 static void vm_page_enqueue(int queue, vm_page_t m); 151 152 /* 153 * vm_set_page_size: 154 * 155 * Sets the page size, perhaps based upon the memory 156 * size. Must be called before any use of page-size 157 * dependent functions. 158 */ 159 void 160 vm_set_page_size(void) 161 { 162 if (cnt.v_page_size == 0) 163 cnt.v_page_size = PAGE_SIZE; 164 if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0) 165 panic("vm_set_page_size: page size not a power of two"); 166 } 167 168 /* 169 * vm_page_blacklist_lookup: 170 * 171 * See if a physical address in this page has been listed 172 * in the blacklist tunable. Entries in the tunable are 173 * separated by spaces or commas. If an invalid integer is 174 * encountered then the rest of the string is skipped. 175 */ 176 static int 177 vm_page_blacklist_lookup(char *list, vm_paddr_t pa) 178 { 179 vm_paddr_t bad; 180 char *cp, *pos; 181 182 for (pos = list; *pos != '\0'; pos = cp) { 183 bad = strtoq(pos, &cp, 0); 184 if (*cp != '\0') { 185 if (*cp == ' ' || *cp == ',') { 186 cp++; 187 if (cp == pos) 188 continue; 189 } else 190 break; 191 } 192 if (pa == trunc_page(bad)) 193 return (1); 194 } 195 return (0); 196 } 197 198 /* 199 * vm_page_startup: 200 * 201 * Initializes the resident memory module. 202 * 203 * Allocates memory for the page cells, and 204 * for the object/offset-to-page hash table headers. 205 * Each page cell is initialized and placed on the free list. 206 */ 207 vm_offset_t 208 vm_page_startup(vm_offset_t vaddr) 209 { 210 vm_offset_t mapped; 211 vm_paddr_t page_range; 212 vm_paddr_t new_end; 213 int i; 214 vm_paddr_t pa; 215 int nblocks; 216 vm_paddr_t last_pa; 217 char *list; 218 219 /* the biggest memory array is the second group of pages */ 220 vm_paddr_t end; 221 vm_paddr_t biggestsize; 222 vm_paddr_t low_water, high_water; 223 int biggestone; 224 225 biggestsize = 0; 226 biggestone = 0; 227 nblocks = 0; 228 vaddr = round_page(vaddr); 229 230 for (i = 0; phys_avail[i + 1]; i += 2) { 231 phys_avail[i] = round_page(phys_avail[i]); 232 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 233 } 234 235 low_water = phys_avail[0]; 236 high_water = phys_avail[1]; 237 238 for (i = 0; phys_avail[i + 1]; i += 2) { 239 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 240 241 if (size > biggestsize) { 242 biggestone = i; 243 biggestsize = size; 244 } 245 if (phys_avail[i] < low_water) 246 low_water = phys_avail[i]; 247 if (phys_avail[i + 1] > high_water) 248 high_water = phys_avail[i + 1]; 249 ++nblocks; 250 } 251 252 end = phys_avail[biggestone+1]; 253 254 /* 255 * Initialize the locks. 256 */ 257 mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF | 258 MTX_RECURSE); 259 mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL, 260 MTX_DEF); 261 262 /* 263 * Initialize the queue headers for the hold queue, the active queue, 264 * and the inactive queue. 265 */ 266 for (i = 0; i < PQ_COUNT; i++) 267 TAILQ_INIT(&vm_page_queues[i].pl); 268 vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count; 269 vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count; 270 vm_page_queues[PQ_HOLD].cnt = &cnt.v_active_count; 271 272 /* 273 * Allocate memory for use when boot strapping the kernel memory 274 * allocator. 275 */ 276 new_end = end - (boot_pages * UMA_SLAB_SIZE); 277 new_end = trunc_page(new_end); 278 mapped = pmap_map(&vaddr, new_end, end, 279 VM_PROT_READ | VM_PROT_WRITE); 280 bzero((void *)mapped, end - new_end); 281 uma_startup((void *)mapped, boot_pages); 282 283 #if defined(__amd64__) || defined(__i386__) 284 /* 285 * Allocate a bitmap to indicate that a random physical page 286 * needs to be included in a minidump. 287 * 288 * The amd64 port needs this to indicate which direct map pages 289 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 290 * 291 * However, i386 still needs this workspace internally within the 292 * minidump code. In theory, they are not needed on i386, but are 293 * included should the sf_buf code decide to use them. 294 */ 295 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE; 296 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 297 new_end -= vm_page_dump_size; 298 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, 299 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); 300 bzero((void *)vm_page_dump, vm_page_dump_size); 301 #endif 302 /* 303 * Compute the number of pages of memory that will be available for 304 * use (taking into account the overhead of a page structure per 305 * page). 306 */ 307 first_page = low_water / PAGE_SIZE; 308 #ifdef VM_PHYSSEG_SPARSE 309 page_range = 0; 310 for (i = 0; phys_avail[i + 1] != 0; i += 2) 311 page_range += atop(phys_avail[i + 1] - phys_avail[i]); 312 #elif defined(VM_PHYSSEG_DENSE) 313 page_range = high_water / PAGE_SIZE - first_page; 314 #else 315 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 316 #endif 317 end = new_end; 318 319 /* 320 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 321 */ 322 vaddr += PAGE_SIZE; 323 324 /* 325 * Initialize the mem entry structures now, and put them in the free 326 * queue. 327 */ 328 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 329 mapped = pmap_map(&vaddr, new_end, end, 330 VM_PROT_READ | VM_PROT_WRITE); 331 vm_page_array = (vm_page_t) mapped; 332 #if VM_NRESERVLEVEL > 0 333 /* 334 * Allocate memory for the reservation management system's data 335 * structures. 336 */ 337 new_end = vm_reserv_startup(&vaddr, new_end, high_water); 338 #endif 339 #ifdef __amd64__ 340 /* 341 * pmap_map on amd64 comes out of the direct-map, not kvm like i386, 342 * so the pages must be tracked for a crashdump to include this data. 343 * This includes the vm_page_array and the early UMA bootstrap pages. 344 */ 345 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE) 346 dump_add_page(pa); 347 #endif 348 phys_avail[biggestone + 1] = new_end; 349 350 /* 351 * Clear all of the page structures 352 */ 353 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 354 for (i = 0; i < page_range; i++) 355 vm_page_array[i].order = VM_NFREEORDER; 356 vm_page_array_size = page_range; 357 358 /* 359 * Initialize the physical memory allocator. 360 */ 361 vm_phys_init(); 362 363 /* 364 * Add every available physical page that is not blacklisted to 365 * the free lists. 366 */ 367 cnt.v_page_count = 0; 368 cnt.v_free_count = 0; 369 list = getenv("vm.blacklist"); 370 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 371 pa = phys_avail[i]; 372 last_pa = phys_avail[i + 1]; 373 while (pa < last_pa) { 374 if (list != NULL && 375 vm_page_blacklist_lookup(list, pa)) 376 printf("Skipping page with pa 0x%jx\n", 377 (uintmax_t)pa); 378 else 379 vm_phys_add_page(pa); 380 pa += PAGE_SIZE; 381 } 382 } 383 freeenv(list); 384 #if VM_NRESERVLEVEL > 0 385 /* 386 * Initialize the reservation management system. 387 */ 388 vm_reserv_init(); 389 #endif 390 return (vaddr); 391 } 392 393 void 394 vm_page_flag_set(vm_page_t m, unsigned short bits) 395 { 396 397 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 398 m->flags |= bits; 399 } 400 401 void 402 vm_page_flag_clear(vm_page_t m, unsigned short bits) 403 { 404 405 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 406 m->flags &= ~bits; 407 } 408 409 void 410 vm_page_busy(vm_page_t m) 411 { 412 413 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 414 KASSERT((m->oflags & VPO_BUSY) == 0, 415 ("vm_page_busy: page already busy!!!")); 416 m->oflags |= VPO_BUSY; 417 } 418 419 /* 420 * vm_page_flash: 421 * 422 * wakeup anyone waiting for the page. 423 */ 424 void 425 vm_page_flash(vm_page_t m) 426 { 427 428 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 429 if (m->oflags & VPO_WANTED) { 430 m->oflags &= ~VPO_WANTED; 431 wakeup(m); 432 } 433 } 434 435 /* 436 * vm_page_wakeup: 437 * 438 * clear the VPO_BUSY flag and wakeup anyone waiting for the 439 * page. 440 * 441 */ 442 void 443 vm_page_wakeup(vm_page_t m) 444 { 445 446 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 447 KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!")); 448 m->oflags &= ~VPO_BUSY; 449 vm_page_flash(m); 450 } 451 452 void 453 vm_page_io_start(vm_page_t m) 454 { 455 456 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 457 m->busy++; 458 } 459 460 void 461 vm_page_io_finish(vm_page_t m) 462 { 463 464 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 465 m->busy--; 466 if (m->busy == 0) 467 vm_page_flash(m); 468 } 469 470 /* 471 * Keep page from being freed by the page daemon 472 * much of the same effect as wiring, except much lower 473 * overhead and should be used only for *very* temporary 474 * holding ("wiring"). 475 */ 476 void 477 vm_page_hold(vm_page_t mem) 478 { 479 480 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 481 mem->hold_count++; 482 } 483 484 void 485 vm_page_unhold(vm_page_t mem) 486 { 487 488 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 489 --mem->hold_count; 490 KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!")); 491 if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD)) 492 vm_page_free_toq(mem); 493 } 494 495 /* 496 * vm_page_free: 497 * 498 * Free a page. 499 */ 500 void 501 vm_page_free(vm_page_t m) 502 { 503 504 m->flags &= ~PG_ZERO; 505 vm_page_free_toq(m); 506 } 507 508 /* 509 * vm_page_free_zero: 510 * 511 * Free a page to the zerod-pages queue 512 */ 513 void 514 vm_page_free_zero(vm_page_t m) 515 { 516 517 m->flags |= PG_ZERO; 518 vm_page_free_toq(m); 519 } 520 521 /* 522 * vm_page_sleep: 523 * 524 * Sleep and release the page queues lock. 525 * 526 * The object containing the given page must be locked. 527 */ 528 void 529 vm_page_sleep(vm_page_t m, const char *msg) 530 { 531 532 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 533 if (!mtx_owned(&vm_page_queue_mtx)) 534 vm_page_lock_queues(); 535 vm_page_flag_set(m, PG_REFERENCED); 536 vm_page_unlock_queues(); 537 538 /* 539 * It's possible that while we sleep, the page will get 540 * unbusied and freed. If we are holding the object 541 * lock, we will assume we hold a reference to the object 542 * such that even if m->object changes, we can re-lock 543 * it. 544 */ 545 m->oflags |= VPO_WANTED; 546 msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0); 547 } 548 549 /* 550 * vm_page_dirty: 551 * 552 * make page all dirty 553 */ 554 void 555 vm_page_dirty(vm_page_t m) 556 { 557 KASSERT((m->flags & PG_CACHED) == 0, 558 ("vm_page_dirty: page in cache!")); 559 KASSERT(!VM_PAGE_IS_FREE(m), 560 ("vm_page_dirty: page is free!")); 561 m->dirty = VM_PAGE_BITS_ALL; 562 } 563 564 /* 565 * vm_page_splay: 566 * 567 * Implements Sleator and Tarjan's top-down splay algorithm. Returns 568 * the vm_page containing the given pindex. If, however, that 569 * pindex is not found in the vm_object, returns a vm_page that is 570 * adjacent to the pindex, coming before or after it. 571 */ 572 vm_page_t 573 vm_page_splay(vm_pindex_t pindex, vm_page_t root) 574 { 575 struct vm_page dummy; 576 vm_page_t lefttreemax, righttreemin, y; 577 578 if (root == NULL) 579 return (root); 580 lefttreemax = righttreemin = &dummy; 581 for (;; root = y) { 582 if (pindex < root->pindex) { 583 if ((y = root->left) == NULL) 584 break; 585 if (pindex < y->pindex) { 586 /* Rotate right. */ 587 root->left = y->right; 588 y->right = root; 589 root = y; 590 if ((y = root->left) == NULL) 591 break; 592 } 593 /* Link into the new root's right tree. */ 594 righttreemin->left = root; 595 righttreemin = root; 596 } else if (pindex > root->pindex) { 597 if ((y = root->right) == NULL) 598 break; 599 if (pindex > y->pindex) { 600 /* Rotate left. */ 601 root->right = y->left; 602 y->left = root; 603 root = y; 604 if ((y = root->right) == NULL) 605 break; 606 } 607 /* Link into the new root's left tree. */ 608 lefttreemax->right = root; 609 lefttreemax = root; 610 } else 611 break; 612 } 613 /* Assemble the new root. */ 614 lefttreemax->right = root->left; 615 righttreemin->left = root->right; 616 root->left = dummy.right; 617 root->right = dummy.left; 618 return (root); 619 } 620 621 /* 622 * vm_page_insert: [ internal use only ] 623 * 624 * Inserts the given mem entry into the object and object list. 625 * 626 * The pagetables are not updated but will presumably fault the page 627 * in if necessary, or if a kernel page the caller will at some point 628 * enter the page into the kernel's pmap. We are not allowed to block 629 * here so we *can't* do this anyway. 630 * 631 * The object and page must be locked. 632 * This routine may not block. 633 */ 634 void 635 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 636 { 637 vm_page_t root; 638 639 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 640 if (m->object != NULL) 641 panic("vm_page_insert: page already inserted"); 642 643 /* 644 * Record the object/offset pair in this page 645 */ 646 m->object = object; 647 m->pindex = pindex; 648 649 /* 650 * Now link into the object's ordered list of backed pages. 651 */ 652 root = object->root; 653 if (root == NULL) { 654 m->left = NULL; 655 m->right = NULL; 656 TAILQ_INSERT_TAIL(&object->memq, m, listq); 657 } else { 658 root = vm_page_splay(pindex, root); 659 if (pindex < root->pindex) { 660 m->left = root->left; 661 m->right = root; 662 root->left = NULL; 663 TAILQ_INSERT_BEFORE(root, m, listq); 664 } else if (pindex == root->pindex) 665 panic("vm_page_insert: offset already allocated"); 666 else { 667 m->right = root->right; 668 m->left = root; 669 root->right = NULL; 670 TAILQ_INSERT_AFTER(&object->memq, root, m, listq); 671 } 672 } 673 object->root = m; 674 object->generation++; 675 676 /* 677 * show that the object has one more resident page. 678 */ 679 object->resident_page_count++; 680 /* 681 * Hold the vnode until the last page is released. 682 */ 683 if (object->resident_page_count == 1 && object->type == OBJT_VNODE) 684 vhold((struct vnode *)object->handle); 685 686 /* 687 * Since we are inserting a new and possibly dirty page, 688 * update the object's OBJ_MIGHTBEDIRTY flag. 689 */ 690 if (m->flags & PG_WRITEABLE) 691 vm_object_set_writeable_dirty(object); 692 } 693 694 /* 695 * vm_page_remove: 696 * NOTE: used by device pager as well -wfj 697 * 698 * Removes the given mem entry from the object/offset-page 699 * table and the object page list, but do not invalidate/terminate 700 * the backing store. 701 * 702 * The object and page must be locked. 703 * The underlying pmap entry (if any) is NOT removed here. 704 * This routine may not block. 705 */ 706 void 707 vm_page_remove(vm_page_t m) 708 { 709 vm_object_t object; 710 vm_page_t root; 711 712 if ((object = m->object) == NULL) 713 return; 714 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 715 if (m->oflags & VPO_BUSY) { 716 m->oflags &= ~VPO_BUSY; 717 vm_page_flash(m); 718 } 719 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 720 721 /* 722 * Now remove from the object's list of backed pages. 723 */ 724 if (m != object->root) 725 vm_page_splay(m->pindex, object->root); 726 if (m->left == NULL) 727 root = m->right; 728 else { 729 root = vm_page_splay(m->pindex, m->left); 730 root->right = m->right; 731 } 732 object->root = root; 733 TAILQ_REMOVE(&object->memq, m, listq); 734 735 /* 736 * And show that the object has one fewer resident page. 737 */ 738 object->resident_page_count--; 739 object->generation++; 740 /* 741 * The vnode may now be recycled. 742 */ 743 if (object->resident_page_count == 0 && object->type == OBJT_VNODE) 744 vdrop((struct vnode *)object->handle); 745 746 m->object = NULL; 747 } 748 749 /* 750 * vm_page_lookup: 751 * 752 * Returns the page associated with the object/offset 753 * pair specified; if none is found, NULL is returned. 754 * 755 * The object must be locked. 756 * This routine may not block. 757 * This is a critical path routine 758 */ 759 vm_page_t 760 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 761 { 762 vm_page_t m; 763 764 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 765 if ((m = object->root) != NULL && m->pindex != pindex) { 766 m = vm_page_splay(pindex, m); 767 if ((object->root = m)->pindex != pindex) 768 m = NULL; 769 } 770 return (m); 771 } 772 773 /* 774 * vm_page_rename: 775 * 776 * Move the given memory entry from its 777 * current object to the specified target object/offset. 778 * 779 * The object must be locked. 780 * This routine may not block. 781 * 782 * Note: swap associated with the page must be invalidated by the move. We 783 * have to do this for several reasons: (1) we aren't freeing the 784 * page, (2) we are dirtying the page, (3) the VM system is probably 785 * moving the page from object A to B, and will then later move 786 * the backing store from A to B and we can't have a conflict. 787 * 788 * Note: we *always* dirty the page. It is necessary both for the 789 * fact that we moved it, and because we may be invalidating 790 * swap. If the page is on the cache, we have to deactivate it 791 * or vm_page_dirty() will panic. Dirty pages are not allowed 792 * on the cache. 793 */ 794 void 795 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 796 { 797 798 vm_page_remove(m); 799 vm_page_insert(m, new_object, new_pindex); 800 vm_page_dirty(m); 801 } 802 803 /* 804 * Convert all of the given object's cached pages that have a 805 * pindex within the given range into free pages. If the value 806 * zero is given for "end", then the range's upper bound is 807 * infinity. If the given object is backed by a vnode and it 808 * transitions from having one or more cached pages to none, the 809 * vnode's hold count is reduced. 810 */ 811 void 812 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 813 { 814 vm_page_t m, m_next; 815 boolean_t empty; 816 817 mtx_lock(&vm_page_queue_free_mtx); 818 if (__predict_false(object->cache == NULL)) { 819 mtx_unlock(&vm_page_queue_free_mtx); 820 return; 821 } 822 m = object->cache = vm_page_splay(start, object->cache); 823 if (m->pindex < start) { 824 if (m->right == NULL) 825 m = NULL; 826 else { 827 m_next = vm_page_splay(start, m->right); 828 m_next->left = m; 829 m->right = NULL; 830 m = object->cache = m_next; 831 } 832 } 833 834 /* 835 * At this point, "m" is either (1) a reference to the page 836 * with the least pindex that is greater than or equal to 837 * "start" or (2) NULL. 838 */ 839 for (; m != NULL && (m->pindex < end || end == 0); m = m_next) { 840 /* 841 * Find "m"'s successor and remove "m" from the 842 * object's cache. 843 */ 844 if (m->right == NULL) { 845 object->cache = m->left; 846 m_next = NULL; 847 } else { 848 m_next = vm_page_splay(start, m->right); 849 m_next->left = m->left; 850 object->cache = m_next; 851 } 852 /* Convert "m" to a free page. */ 853 m->object = NULL; 854 m->valid = 0; 855 /* Clear PG_CACHED and set PG_FREE. */ 856 m->flags ^= PG_CACHED | PG_FREE; 857 KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE, 858 ("vm_page_cache_free: page %p has inconsistent flags", m)); 859 cnt.v_cache_count--; 860 cnt.v_free_count++; 861 } 862 empty = object->cache == NULL; 863 mtx_unlock(&vm_page_queue_free_mtx); 864 if (object->type == OBJT_VNODE && empty) 865 vdrop(object->handle); 866 } 867 868 /* 869 * Returns the cached page that is associated with the given 870 * object and offset. If, however, none exists, returns NULL. 871 * 872 * The free page queue must be locked. 873 */ 874 static inline vm_page_t 875 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex) 876 { 877 vm_page_t m; 878 879 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 880 if ((m = object->cache) != NULL && m->pindex != pindex) { 881 m = vm_page_splay(pindex, m); 882 if ((object->cache = m)->pindex != pindex) 883 m = NULL; 884 } 885 return (m); 886 } 887 888 /* 889 * Remove the given cached page from its containing object's 890 * collection of cached pages. 891 * 892 * The free page queue must be locked. 893 */ 894 void 895 vm_page_cache_remove(vm_page_t m) 896 { 897 vm_object_t object; 898 vm_page_t root; 899 900 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 901 KASSERT((m->flags & PG_CACHED) != 0, 902 ("vm_page_cache_remove: page %p is not cached", m)); 903 object = m->object; 904 if (m != object->cache) { 905 root = vm_page_splay(m->pindex, object->cache); 906 KASSERT(root == m, 907 ("vm_page_cache_remove: page %p is not cached in object %p", 908 m, object)); 909 } 910 if (m->left == NULL) 911 root = m->right; 912 else if (m->right == NULL) 913 root = m->left; 914 else { 915 root = vm_page_splay(m->pindex, m->left); 916 root->right = m->right; 917 } 918 object->cache = root; 919 m->object = NULL; 920 cnt.v_cache_count--; 921 } 922 923 /* 924 * Transfer all of the cached pages with offset greater than or 925 * equal to 'offidxstart' from the original object's cache to the 926 * new object's cache. However, any cached pages with offset 927 * greater than or equal to the new object's size are kept in the 928 * original object. Initially, the new object's cache must be 929 * empty. Offset 'offidxstart' in the original object must 930 * correspond to offset zero in the new object. 931 * 932 * The new object must be locked. 933 */ 934 void 935 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart, 936 vm_object_t new_object) 937 { 938 vm_page_t m, m_next; 939 940 /* 941 * Insertion into an object's collection of cached pages 942 * requires the object to be locked. In contrast, removal does 943 * not. 944 */ 945 VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED); 946 KASSERT(new_object->cache == NULL, 947 ("vm_page_cache_transfer: object %p has cached pages", 948 new_object)); 949 mtx_lock(&vm_page_queue_free_mtx); 950 if ((m = orig_object->cache) != NULL) { 951 /* 952 * Transfer all of the pages with offset greater than or 953 * equal to 'offidxstart' from the original object's 954 * cache to the new object's cache. 955 */ 956 m = vm_page_splay(offidxstart, m); 957 if (m->pindex < offidxstart) { 958 orig_object->cache = m; 959 new_object->cache = m->right; 960 m->right = NULL; 961 } else { 962 orig_object->cache = m->left; 963 new_object->cache = m; 964 m->left = NULL; 965 } 966 while ((m = new_object->cache) != NULL) { 967 if ((m->pindex - offidxstart) >= new_object->size) { 968 /* 969 * Return all of the cached pages with 970 * offset greater than or equal to the 971 * new object's size to the original 972 * object's cache. 973 */ 974 new_object->cache = m->left; 975 m->left = orig_object->cache; 976 orig_object->cache = m; 977 break; 978 } 979 m_next = vm_page_splay(m->pindex, m->right); 980 /* Update the page's object and offset. */ 981 m->object = new_object; 982 m->pindex -= offidxstart; 983 if (m_next == NULL) 984 break; 985 m->right = NULL; 986 m_next->left = m; 987 new_object->cache = m_next; 988 } 989 KASSERT(new_object->cache == NULL || 990 new_object->type == OBJT_SWAP, 991 ("vm_page_cache_transfer: object %p's type is incompatible" 992 " with cached pages", new_object)); 993 } 994 mtx_unlock(&vm_page_queue_free_mtx); 995 } 996 997 /* 998 * vm_page_alloc: 999 * 1000 * Allocate and return a memory cell associated 1001 * with this VM object/offset pair. 1002 * 1003 * page_req classes: 1004 * VM_ALLOC_NORMAL normal process request 1005 * VM_ALLOC_SYSTEM system *really* needs a page 1006 * VM_ALLOC_INTERRUPT interrupt time request 1007 * VM_ALLOC_ZERO zero page 1008 * 1009 * This routine may not block. 1010 */ 1011 vm_page_t 1012 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 1013 { 1014 struct vnode *vp = NULL; 1015 vm_object_t m_object; 1016 vm_page_t m; 1017 int flags, page_req; 1018 1019 page_req = req & VM_ALLOC_CLASS_MASK; 1020 KASSERT(curthread->td_intr_nesting_level == 0 || 1021 page_req == VM_ALLOC_INTERRUPT, 1022 ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context")); 1023 1024 if ((req & VM_ALLOC_NOOBJ) == 0) { 1025 KASSERT(object != NULL, 1026 ("vm_page_alloc: NULL object.")); 1027 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1028 } 1029 1030 /* 1031 * The pager is allowed to eat deeper into the free page list. 1032 */ 1033 if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) { 1034 page_req = VM_ALLOC_SYSTEM; 1035 }; 1036 1037 mtx_lock(&vm_page_queue_free_mtx); 1038 if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved || 1039 (page_req == VM_ALLOC_SYSTEM && 1040 cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) || 1041 (page_req == VM_ALLOC_INTERRUPT && 1042 cnt.v_free_count + cnt.v_cache_count > 0)) { 1043 /* 1044 * Allocate from the free queue if the number of free pages 1045 * exceeds the minimum for the request class. 1046 */ 1047 if (object != NULL && 1048 (m = vm_page_cache_lookup(object, pindex)) != NULL) { 1049 if ((req & VM_ALLOC_IFNOTCACHED) != 0) { 1050 mtx_unlock(&vm_page_queue_free_mtx); 1051 return (NULL); 1052 } 1053 if (vm_phys_unfree_page(m)) 1054 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0); 1055 #if VM_NRESERVLEVEL > 0 1056 else if (!vm_reserv_reactivate_page(m)) 1057 #else 1058 else 1059 #endif 1060 panic("vm_page_alloc: cache page %p is missing" 1061 " from the free queue", m); 1062 } else if ((req & VM_ALLOC_IFCACHED) != 0) { 1063 mtx_unlock(&vm_page_queue_free_mtx); 1064 return (NULL); 1065 #if VM_NRESERVLEVEL > 0 1066 } else if (object == NULL || 1067 (object->flags & OBJ_COLORED) == 0 || 1068 (m = vm_reserv_alloc_page(object, pindex)) == NULL) { 1069 #else 1070 } else { 1071 #endif 1072 m = vm_phys_alloc_pages(object != NULL ? 1073 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0); 1074 #if VM_NRESERVLEVEL > 0 1075 if (m == NULL && vm_reserv_reclaim_inactive()) { 1076 m = vm_phys_alloc_pages(object != NULL ? 1077 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 1078 0); 1079 } 1080 #endif 1081 } 1082 } else { 1083 /* 1084 * Not allocatable, give up. 1085 */ 1086 mtx_unlock(&vm_page_queue_free_mtx); 1087 atomic_add_int(&vm_pageout_deficit, 1); 1088 pagedaemon_wakeup(); 1089 return (NULL); 1090 } 1091 1092 /* 1093 * At this point we had better have found a good page. 1094 */ 1095 1096 KASSERT( 1097 m != NULL, 1098 ("vm_page_alloc(): missing page on free queue") 1099 ); 1100 if ((m->flags & PG_CACHED) != 0) { 1101 KASSERT(m->valid != 0, 1102 ("vm_page_alloc: cached page %p is invalid", m)); 1103 if (m->object == object && m->pindex == pindex) 1104 cnt.v_reactivated++; 1105 else 1106 m->valid = 0; 1107 m_object = m->object; 1108 vm_page_cache_remove(m); 1109 if (m_object->type == OBJT_VNODE && m_object->cache == NULL) 1110 vp = m_object->handle; 1111 } else { 1112 KASSERT(VM_PAGE_IS_FREE(m), 1113 ("vm_page_alloc: page %p is not free", m)); 1114 KASSERT(m->valid == 0, 1115 ("vm_page_alloc: free page %p is valid", m)); 1116 cnt.v_free_count--; 1117 } 1118 1119 /* 1120 * Initialize structure. Only the PG_ZERO flag is inherited. 1121 */ 1122 flags = 0; 1123 if (m->flags & PG_ZERO) { 1124 vm_page_zero_count--; 1125 if (req & VM_ALLOC_ZERO) 1126 flags = PG_ZERO; 1127 } 1128 if (object == NULL || object->type == OBJT_PHYS) 1129 flags |= PG_UNMANAGED; 1130 m->flags = flags; 1131 if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ)) 1132 m->oflags = 0; 1133 else 1134 m->oflags = VPO_BUSY; 1135 if (req & VM_ALLOC_WIRED) { 1136 atomic_add_int(&cnt.v_wire_count, 1); 1137 m->wire_count = 1; 1138 } else 1139 m->wire_count = 0; 1140 m->hold_count = 0; 1141 m->act_count = 0; 1142 m->busy = 0; 1143 KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m)); 1144 mtx_unlock(&vm_page_queue_free_mtx); 1145 1146 if ((req & VM_ALLOC_NOOBJ) == 0) 1147 vm_page_insert(m, object, pindex); 1148 else 1149 m->pindex = pindex; 1150 1151 /* 1152 * The following call to vdrop() must come after the above call 1153 * to vm_page_insert() in case both affect the same object and 1154 * vnode. Otherwise, the affected vnode's hold count could 1155 * temporarily become zero. 1156 */ 1157 if (vp != NULL) 1158 vdrop(vp); 1159 1160 /* 1161 * Don't wakeup too often - wakeup the pageout daemon when 1162 * we would be nearly out of memory. 1163 */ 1164 if (vm_paging_needed()) 1165 pagedaemon_wakeup(); 1166 1167 return (m); 1168 } 1169 1170 /* 1171 * vm_wait: (also see VM_WAIT macro) 1172 * 1173 * Block until free pages are available for allocation 1174 * - Called in various places before memory allocations. 1175 */ 1176 void 1177 vm_wait(void) 1178 { 1179 1180 mtx_lock(&vm_page_queue_free_mtx); 1181 if (curproc == pageproc) { 1182 vm_pageout_pages_needed = 1; 1183 msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx, 1184 PDROP | PSWP, "VMWait", 0); 1185 } else { 1186 if (!vm_pages_needed) { 1187 vm_pages_needed = 1; 1188 wakeup(&vm_pages_needed); 1189 } 1190 msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM, 1191 "vmwait", 0); 1192 } 1193 } 1194 1195 /* 1196 * vm_waitpfault: (also see VM_WAITPFAULT macro) 1197 * 1198 * Block until free pages are available for allocation 1199 * - Called only in vm_fault so that processes page faulting 1200 * can be easily tracked. 1201 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 1202 * processes will be able to grab memory first. Do not change 1203 * this balance without careful testing first. 1204 */ 1205 void 1206 vm_waitpfault(void) 1207 { 1208 1209 mtx_lock(&vm_page_queue_free_mtx); 1210 if (!vm_pages_needed) { 1211 vm_pages_needed = 1; 1212 wakeup(&vm_pages_needed); 1213 } 1214 msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER, 1215 "pfault", 0); 1216 } 1217 1218 /* 1219 * vm_page_requeue: 1220 * 1221 * If the given page is contained within a page queue, move it to the tail 1222 * of that queue. 1223 * 1224 * The page queues must be locked. 1225 */ 1226 void 1227 vm_page_requeue(vm_page_t m) 1228 { 1229 int queue = VM_PAGE_GETQUEUE(m); 1230 struct vpgqueues *vpq; 1231 1232 if (queue != PQ_NONE) { 1233 vpq = &vm_page_queues[queue]; 1234 TAILQ_REMOVE(&vpq->pl, m, pageq); 1235 TAILQ_INSERT_TAIL(&vpq->pl, m, pageq); 1236 } 1237 } 1238 1239 /* 1240 * vm_pageq_remove: 1241 * 1242 * Remove a page from its queue. 1243 * 1244 * The queue containing the given page must be locked. 1245 * This routine may not block. 1246 */ 1247 void 1248 vm_pageq_remove(vm_page_t m) 1249 { 1250 int queue = VM_PAGE_GETQUEUE(m); 1251 struct vpgqueues *pq; 1252 1253 if (queue != PQ_NONE) { 1254 VM_PAGE_SETQUEUE2(m, PQ_NONE); 1255 pq = &vm_page_queues[queue]; 1256 TAILQ_REMOVE(&pq->pl, m, pageq); 1257 (*pq->cnt)--; 1258 } 1259 } 1260 1261 /* 1262 * vm_page_enqueue: 1263 * 1264 * Add the given page to the specified queue. 1265 * 1266 * The page queues must be locked. 1267 */ 1268 static void 1269 vm_page_enqueue(int queue, vm_page_t m) 1270 { 1271 struct vpgqueues *vpq; 1272 1273 vpq = &vm_page_queues[queue]; 1274 VM_PAGE_SETQUEUE2(m, queue); 1275 TAILQ_INSERT_TAIL(&vpq->pl, m, pageq); 1276 ++*vpq->cnt; 1277 } 1278 1279 /* 1280 * vm_page_activate: 1281 * 1282 * Put the specified page on the active list (if appropriate). 1283 * Ensure that act_count is at least ACT_INIT but do not otherwise 1284 * mess with it. 1285 * 1286 * The page queues must be locked. 1287 * This routine may not block. 1288 */ 1289 void 1290 vm_page_activate(vm_page_t m) 1291 { 1292 1293 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1294 if (VM_PAGE_GETKNOWNQUEUE2(m) != PQ_ACTIVE) { 1295 vm_pageq_remove(m); 1296 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1297 if (m->act_count < ACT_INIT) 1298 m->act_count = ACT_INIT; 1299 vm_page_enqueue(PQ_ACTIVE, m); 1300 } 1301 } else { 1302 if (m->act_count < ACT_INIT) 1303 m->act_count = ACT_INIT; 1304 } 1305 } 1306 1307 /* 1308 * vm_page_free_wakeup: 1309 * 1310 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 1311 * routine is called when a page has been added to the cache or free 1312 * queues. 1313 * 1314 * The page queues must be locked. 1315 * This routine may not block. 1316 */ 1317 static inline void 1318 vm_page_free_wakeup(void) 1319 { 1320 1321 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1322 /* 1323 * if pageout daemon needs pages, then tell it that there are 1324 * some free. 1325 */ 1326 if (vm_pageout_pages_needed && 1327 cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) { 1328 wakeup(&vm_pageout_pages_needed); 1329 vm_pageout_pages_needed = 0; 1330 } 1331 /* 1332 * wakeup processes that are waiting on memory if we hit a 1333 * high water mark. And wakeup scheduler process if we have 1334 * lots of memory. this process will swapin processes. 1335 */ 1336 if (vm_pages_needed && !vm_page_count_min()) { 1337 vm_pages_needed = 0; 1338 wakeup(&cnt.v_free_count); 1339 } 1340 } 1341 1342 /* 1343 * vm_page_free_toq: 1344 * 1345 * Returns the given page to the free list, 1346 * disassociating it with any VM object. 1347 * 1348 * Object and page must be locked prior to entry. 1349 * This routine may not block. 1350 */ 1351 1352 void 1353 vm_page_free_toq(vm_page_t m) 1354 { 1355 1356 if (VM_PAGE_GETQUEUE(m) != PQ_NONE) 1357 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1358 KASSERT(!pmap_page_is_mapped(m), 1359 ("vm_page_free_toq: freeing mapped page %p", m)); 1360 PCPU_INC(cnt.v_tfree); 1361 1362 if (m->busy || VM_PAGE_IS_FREE(m)) { 1363 printf( 1364 "vm_page_free: pindex(%lu), busy(%d), VPO_BUSY(%d), hold(%d)\n", 1365 (u_long)m->pindex, m->busy, (m->oflags & VPO_BUSY) ? 1 : 0, 1366 m->hold_count); 1367 if (VM_PAGE_IS_FREE(m)) 1368 panic("vm_page_free: freeing free page"); 1369 else 1370 panic("vm_page_free: freeing busy page"); 1371 } 1372 1373 /* 1374 * unqueue, then remove page. Note that we cannot destroy 1375 * the page here because we do not want to call the pager's 1376 * callback routine until after we've put the page on the 1377 * appropriate free queue. 1378 */ 1379 vm_pageq_remove(m); 1380 vm_page_remove(m); 1381 1382 /* 1383 * If fictitious remove object association and 1384 * return, otherwise delay object association removal. 1385 */ 1386 if ((m->flags & PG_FICTITIOUS) != 0) { 1387 return; 1388 } 1389 1390 m->valid = 0; 1391 vm_page_undirty(m); 1392 1393 if (m->wire_count != 0) { 1394 if (m->wire_count > 1) { 1395 panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx", 1396 m->wire_count, (long)m->pindex); 1397 } 1398 panic("vm_page_free: freeing wired page"); 1399 } 1400 if (m->hold_count != 0) { 1401 m->flags &= ~PG_ZERO; 1402 vm_page_enqueue(PQ_HOLD, m); 1403 } else { 1404 mtx_lock(&vm_page_queue_free_mtx); 1405 m->flags |= PG_FREE; 1406 cnt.v_free_count++; 1407 #if VM_NRESERVLEVEL > 0 1408 if (!vm_reserv_free_page(m)) 1409 #else 1410 if (TRUE) 1411 #endif 1412 vm_phys_free_pages(m, 0); 1413 if ((m->flags & PG_ZERO) != 0) 1414 ++vm_page_zero_count; 1415 else 1416 vm_page_zero_idle_wakeup(); 1417 vm_page_free_wakeup(); 1418 mtx_unlock(&vm_page_queue_free_mtx); 1419 } 1420 } 1421 1422 /* 1423 * vm_page_wire: 1424 * 1425 * Mark this page as wired down by yet 1426 * another map, removing it from paging queues 1427 * as necessary. 1428 * 1429 * The page queues must be locked. 1430 * This routine may not block. 1431 */ 1432 void 1433 vm_page_wire(vm_page_t m) 1434 { 1435 1436 /* 1437 * Only bump the wire statistics if the page is not already wired, 1438 * and only unqueue the page if it is on some queue (if it is unmanaged 1439 * it is already off the queues). 1440 */ 1441 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1442 if (m->flags & PG_FICTITIOUS) 1443 return; 1444 if (m->wire_count == 0) { 1445 if ((m->flags & PG_UNMANAGED) == 0) 1446 vm_pageq_remove(m); 1447 atomic_add_int(&cnt.v_wire_count, 1); 1448 } 1449 m->wire_count++; 1450 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 1451 } 1452 1453 /* 1454 * vm_page_unwire: 1455 * 1456 * Release one wiring of this page, potentially 1457 * enabling it to be paged again. 1458 * 1459 * Many pages placed on the inactive queue should actually go 1460 * into the cache, but it is difficult to figure out which. What 1461 * we do instead, if the inactive target is well met, is to put 1462 * clean pages at the head of the inactive queue instead of the tail. 1463 * This will cause them to be moved to the cache more quickly and 1464 * if not actively re-referenced, freed more quickly. If we just 1465 * stick these pages at the end of the inactive queue, heavy filesystem 1466 * meta-data accesses can cause an unnecessary paging load on memory bound 1467 * processes. This optimization causes one-time-use metadata to be 1468 * reused more quickly. 1469 * 1470 * BUT, if we are in a low-memory situation we have no choice but to 1471 * put clean pages on the cache queue. 1472 * 1473 * A number of routines use vm_page_unwire() to guarantee that the page 1474 * will go into either the inactive or active queues, and will NEVER 1475 * be placed in the cache - for example, just after dirtying a page. 1476 * dirty pages in the cache are not allowed. 1477 * 1478 * The page queues must be locked. 1479 * This routine may not block. 1480 */ 1481 void 1482 vm_page_unwire(vm_page_t m, int activate) 1483 { 1484 1485 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1486 if (m->flags & PG_FICTITIOUS) 1487 return; 1488 if (m->wire_count > 0) { 1489 m->wire_count--; 1490 if (m->wire_count == 0) { 1491 atomic_subtract_int(&cnt.v_wire_count, 1); 1492 if (m->flags & PG_UNMANAGED) { 1493 ; 1494 } else if (activate) 1495 vm_page_enqueue(PQ_ACTIVE, m); 1496 else { 1497 vm_page_flag_clear(m, PG_WINATCFLS); 1498 vm_page_enqueue(PQ_INACTIVE, m); 1499 } 1500 } 1501 } else { 1502 panic("vm_page_unwire: invalid wire count: %d", m->wire_count); 1503 } 1504 } 1505 1506 1507 /* 1508 * Move the specified page to the inactive queue. If the page has 1509 * any associated swap, the swap is deallocated. 1510 * 1511 * Normally athead is 0 resulting in LRU operation. athead is set 1512 * to 1 if we want this page to be 'as if it were placed in the cache', 1513 * except without unmapping it from the process address space. 1514 * 1515 * This routine may not block. 1516 */ 1517 static inline void 1518 _vm_page_deactivate(vm_page_t m, int athead) 1519 { 1520 1521 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1522 1523 /* 1524 * Ignore if already inactive. 1525 */ 1526 if (VM_PAGE_INQUEUE2(m, PQ_INACTIVE)) 1527 return; 1528 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1529 vm_page_flag_clear(m, PG_WINATCFLS); 1530 vm_pageq_remove(m); 1531 if (athead) 1532 TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1533 else 1534 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1535 VM_PAGE_SETQUEUE2(m, PQ_INACTIVE); 1536 cnt.v_inactive_count++; 1537 } 1538 } 1539 1540 void 1541 vm_page_deactivate(vm_page_t m) 1542 { 1543 _vm_page_deactivate(m, 0); 1544 } 1545 1546 /* 1547 * vm_page_try_to_cache: 1548 * 1549 * Returns 0 on failure, 1 on success 1550 */ 1551 int 1552 vm_page_try_to_cache(vm_page_t m) 1553 { 1554 1555 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1556 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1557 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1558 (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) { 1559 return (0); 1560 } 1561 pmap_remove_all(m); 1562 if (m->dirty) 1563 return (0); 1564 vm_page_cache(m); 1565 return (1); 1566 } 1567 1568 /* 1569 * vm_page_try_to_free() 1570 * 1571 * Attempt to free the page. If we cannot free it, we do nothing. 1572 * 1 is returned on success, 0 on failure. 1573 */ 1574 int 1575 vm_page_try_to_free(vm_page_t m) 1576 { 1577 1578 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1579 if (m->object != NULL) 1580 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1581 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1582 (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) { 1583 return (0); 1584 } 1585 pmap_remove_all(m); 1586 if (m->dirty) 1587 return (0); 1588 vm_page_free(m); 1589 return (1); 1590 } 1591 1592 /* 1593 * vm_page_cache 1594 * 1595 * Put the specified page onto the page cache queue (if appropriate). 1596 * 1597 * This routine may not block. 1598 */ 1599 void 1600 vm_page_cache(vm_page_t m) 1601 { 1602 vm_object_t object; 1603 vm_page_t root; 1604 1605 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1606 object = m->object; 1607 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1608 if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy || 1609 m->hold_count || m->wire_count) { 1610 panic("vm_page_cache: attempting to cache busy page"); 1611 } 1612 pmap_remove_all(m); 1613 if (m->dirty != 0) 1614 panic("vm_page_cache: page %p is dirty", m); 1615 if (m->valid == 0 || object->type == OBJT_DEFAULT || 1616 (object->type == OBJT_SWAP && 1617 !vm_pager_has_page(object, m->pindex, NULL, NULL))) { 1618 /* 1619 * Hypothesis: A cache-elgible page belonging to a 1620 * default object or swap object but without a backing 1621 * store must be zero filled. 1622 */ 1623 vm_page_free(m); 1624 return; 1625 } 1626 KASSERT((m->flags & PG_CACHED) == 0, 1627 ("vm_page_cache: page %p is already cached", m)); 1628 cnt.v_tcached++; 1629 1630 /* 1631 * Remove the page from the paging queues. 1632 */ 1633 vm_pageq_remove(m); 1634 1635 /* 1636 * Remove the page from the object's collection of resident 1637 * pages. 1638 */ 1639 if (m != object->root) 1640 vm_page_splay(m->pindex, object->root); 1641 if (m->left == NULL) 1642 root = m->right; 1643 else { 1644 root = vm_page_splay(m->pindex, m->left); 1645 root->right = m->right; 1646 } 1647 object->root = root; 1648 TAILQ_REMOVE(&object->memq, m, listq); 1649 object->resident_page_count--; 1650 object->generation++; 1651 1652 /* 1653 * Insert the page into the object's collection of cached pages 1654 * and the physical memory allocator's cache/free page queues. 1655 */ 1656 vm_page_flag_clear(m, PG_ZERO); 1657 mtx_lock(&vm_page_queue_free_mtx); 1658 m->flags |= PG_CACHED; 1659 cnt.v_cache_count++; 1660 root = object->cache; 1661 if (root == NULL) { 1662 m->left = NULL; 1663 m->right = NULL; 1664 } else { 1665 root = vm_page_splay(m->pindex, root); 1666 if (m->pindex < root->pindex) { 1667 m->left = root->left; 1668 m->right = root; 1669 root->left = NULL; 1670 } else if (__predict_false(m->pindex == root->pindex)) 1671 panic("vm_page_cache: offset already cached"); 1672 else { 1673 m->right = root->right; 1674 m->left = root; 1675 root->right = NULL; 1676 } 1677 } 1678 object->cache = m; 1679 #if VM_NRESERVLEVEL > 0 1680 if (!vm_reserv_free_page(m)) { 1681 #else 1682 if (TRUE) { 1683 #endif 1684 vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0); 1685 vm_phys_free_pages(m, 0); 1686 } 1687 vm_page_free_wakeup(); 1688 mtx_unlock(&vm_page_queue_free_mtx); 1689 1690 /* 1691 * Increment the vnode's hold count if this is the object's only 1692 * cached page. Decrement the vnode's hold count if this was 1693 * the object's only resident page. 1694 */ 1695 if (object->type == OBJT_VNODE) { 1696 if (root == NULL && object->resident_page_count != 0) 1697 vhold(object->handle); 1698 else if (root != NULL && object->resident_page_count == 0) 1699 vdrop(object->handle); 1700 } 1701 } 1702 1703 /* 1704 * vm_page_dontneed 1705 * 1706 * Cache, deactivate, or do nothing as appropriate. This routine 1707 * is typically used by madvise() MADV_DONTNEED. 1708 * 1709 * Generally speaking we want to move the page into the cache so 1710 * it gets reused quickly. However, this can result in a silly syndrome 1711 * due to the page recycling too quickly. Small objects will not be 1712 * fully cached. On the otherhand, if we move the page to the inactive 1713 * queue we wind up with a problem whereby very large objects 1714 * unnecessarily blow away our inactive and cache queues. 1715 * 1716 * The solution is to move the pages based on a fixed weighting. We 1717 * either leave them alone, deactivate them, or move them to the cache, 1718 * where moving them to the cache has the highest weighting. 1719 * By forcing some pages into other queues we eventually force the 1720 * system to balance the queues, potentially recovering other unrelated 1721 * space from active. The idea is to not force this to happen too 1722 * often. 1723 */ 1724 void 1725 vm_page_dontneed(vm_page_t m) 1726 { 1727 static int dnweight; 1728 int dnw; 1729 int head; 1730 1731 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1732 dnw = ++dnweight; 1733 1734 /* 1735 * occassionally leave the page alone 1736 */ 1737 if ((dnw & 0x01F0) == 0 || 1738 VM_PAGE_INQUEUE2(m, PQ_INACTIVE)) { 1739 if (m->act_count >= ACT_INIT) 1740 --m->act_count; 1741 return; 1742 } 1743 1744 if (m->dirty == 0 && pmap_is_modified(m)) 1745 vm_page_dirty(m); 1746 1747 if (m->dirty || (dnw & 0x0070) == 0) { 1748 /* 1749 * Deactivate the page 3 times out of 32. 1750 */ 1751 head = 0; 1752 } else { 1753 /* 1754 * Cache the page 28 times out of every 32. Note that 1755 * the page is deactivated instead of cached, but placed 1756 * at the head of the queue instead of the tail. 1757 */ 1758 head = 1; 1759 } 1760 _vm_page_deactivate(m, head); 1761 } 1762 1763 /* 1764 * Grab a page, waiting until we are waken up due to the page 1765 * changing state. We keep on waiting, if the page continues 1766 * to be in the object. If the page doesn't exist, first allocate it 1767 * and then conditionally zero it. 1768 * 1769 * This routine may block. 1770 */ 1771 vm_page_t 1772 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 1773 { 1774 vm_page_t m; 1775 1776 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1777 retrylookup: 1778 if ((m = vm_page_lookup(object, pindex)) != NULL) { 1779 if (vm_page_sleep_if_busy(m, TRUE, "pgrbwt")) { 1780 if ((allocflags & VM_ALLOC_RETRY) == 0) 1781 return (NULL); 1782 goto retrylookup; 1783 } else { 1784 if ((allocflags & VM_ALLOC_WIRED) != 0) { 1785 vm_page_lock_queues(); 1786 vm_page_wire(m); 1787 vm_page_unlock_queues(); 1788 } 1789 if ((allocflags & VM_ALLOC_NOBUSY) == 0) 1790 vm_page_busy(m); 1791 return (m); 1792 } 1793 } 1794 m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY); 1795 if (m == NULL) { 1796 VM_OBJECT_UNLOCK(object); 1797 VM_WAIT; 1798 VM_OBJECT_LOCK(object); 1799 if ((allocflags & VM_ALLOC_RETRY) == 0) 1800 return (NULL); 1801 goto retrylookup; 1802 } else if (m->valid != 0) 1803 return (m); 1804 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 1805 pmap_zero_page(m); 1806 return (m); 1807 } 1808 1809 /* 1810 * Mapping function for valid bits or for dirty bits in 1811 * a page. May not block. 1812 * 1813 * Inputs are required to range within a page. 1814 */ 1815 int 1816 vm_page_bits(int base, int size) 1817 { 1818 int first_bit; 1819 int last_bit; 1820 1821 KASSERT( 1822 base + size <= PAGE_SIZE, 1823 ("vm_page_bits: illegal base/size %d/%d", base, size) 1824 ); 1825 1826 if (size == 0) /* handle degenerate case */ 1827 return (0); 1828 1829 first_bit = base >> DEV_BSHIFT; 1830 last_bit = (base + size - 1) >> DEV_BSHIFT; 1831 1832 return ((2 << last_bit) - (1 << first_bit)); 1833 } 1834 1835 /* 1836 * vm_page_set_validclean: 1837 * 1838 * Sets portions of a page valid and clean. The arguments are expected 1839 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 1840 * of any partial chunks touched by the range. The invalid portion of 1841 * such chunks will be zero'd. 1842 * 1843 * This routine may not block. 1844 * 1845 * (base + size) must be less then or equal to PAGE_SIZE. 1846 */ 1847 void 1848 vm_page_set_validclean(vm_page_t m, int base, int size) 1849 { 1850 int pagebits; 1851 int frag; 1852 int endoff; 1853 1854 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1855 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1856 if (size == 0) /* handle degenerate case */ 1857 return; 1858 1859 /* 1860 * If the base is not DEV_BSIZE aligned and the valid 1861 * bit is clear, we have to zero out a portion of the 1862 * first block. 1863 */ 1864 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 1865 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 1866 pmap_zero_page_area(m, frag, base - frag); 1867 1868 /* 1869 * If the ending offset is not DEV_BSIZE aligned and the 1870 * valid bit is clear, we have to zero out a portion of 1871 * the last block. 1872 */ 1873 endoff = base + size; 1874 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 1875 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 1876 pmap_zero_page_area(m, endoff, 1877 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 1878 1879 /* 1880 * Set valid, clear dirty bits. If validating the entire 1881 * page we can safely clear the pmap modify bit. We also 1882 * use this opportunity to clear the VPO_NOSYNC flag. If a process 1883 * takes a write fault on a MAP_NOSYNC memory area the flag will 1884 * be set again. 1885 * 1886 * We set valid bits inclusive of any overlap, but we can only 1887 * clear dirty bits for DEV_BSIZE chunks that are fully within 1888 * the range. 1889 */ 1890 pagebits = vm_page_bits(base, size); 1891 m->valid |= pagebits; 1892 #if 0 /* NOT YET */ 1893 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 1894 frag = DEV_BSIZE - frag; 1895 base += frag; 1896 size -= frag; 1897 if (size < 0) 1898 size = 0; 1899 } 1900 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 1901 #endif 1902 m->dirty &= ~pagebits; 1903 if (base == 0 && size == PAGE_SIZE) { 1904 pmap_clear_modify(m); 1905 m->oflags &= ~VPO_NOSYNC; 1906 } 1907 } 1908 1909 void 1910 vm_page_clear_dirty(vm_page_t m, int base, int size) 1911 { 1912 1913 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1914 m->dirty &= ~vm_page_bits(base, size); 1915 } 1916 1917 /* 1918 * vm_page_set_invalid: 1919 * 1920 * Invalidates DEV_BSIZE'd chunks within a page. Both the 1921 * valid and dirty bits for the effected areas are cleared. 1922 * 1923 * May not block. 1924 */ 1925 void 1926 vm_page_set_invalid(vm_page_t m, int base, int size) 1927 { 1928 int bits; 1929 1930 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1931 bits = vm_page_bits(base, size); 1932 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1933 if (m->valid == VM_PAGE_BITS_ALL && bits != 0) 1934 pmap_remove_all(m); 1935 m->valid &= ~bits; 1936 m->dirty &= ~bits; 1937 m->object->generation++; 1938 } 1939 1940 /* 1941 * vm_page_zero_invalid() 1942 * 1943 * The kernel assumes that the invalid portions of a page contain 1944 * garbage, but such pages can be mapped into memory by user code. 1945 * When this occurs, we must zero out the non-valid portions of the 1946 * page so user code sees what it expects. 1947 * 1948 * Pages are most often semi-valid when the end of a file is mapped 1949 * into memory and the file's size is not page aligned. 1950 */ 1951 void 1952 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 1953 { 1954 int b; 1955 int i; 1956 1957 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1958 /* 1959 * Scan the valid bits looking for invalid sections that 1960 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 1961 * valid bit may be set ) have already been zerod by 1962 * vm_page_set_validclean(). 1963 */ 1964 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 1965 if (i == (PAGE_SIZE / DEV_BSIZE) || 1966 (m->valid & (1 << i)) 1967 ) { 1968 if (i > b) { 1969 pmap_zero_page_area(m, 1970 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 1971 } 1972 b = i + 1; 1973 } 1974 } 1975 1976 /* 1977 * setvalid is TRUE when we can safely set the zero'd areas 1978 * as being valid. We can do this if there are no cache consistancy 1979 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 1980 */ 1981 if (setvalid) 1982 m->valid = VM_PAGE_BITS_ALL; 1983 } 1984 1985 /* 1986 * vm_page_is_valid: 1987 * 1988 * Is (partial) page valid? Note that the case where size == 0 1989 * will return FALSE in the degenerate case where the page is 1990 * entirely invalid, and TRUE otherwise. 1991 * 1992 * May not block. 1993 */ 1994 int 1995 vm_page_is_valid(vm_page_t m, int base, int size) 1996 { 1997 int bits = vm_page_bits(base, size); 1998 1999 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 2000 if (m->valid && ((m->valid & bits) == bits)) 2001 return 1; 2002 else 2003 return 0; 2004 } 2005 2006 /* 2007 * update dirty bits from pmap/mmu. May not block. 2008 */ 2009 void 2010 vm_page_test_dirty(vm_page_t m) 2011 { 2012 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) { 2013 vm_page_dirty(m); 2014 } 2015 } 2016 2017 int so_zerocp_fullpage = 0; 2018 2019 /* 2020 * Replace the given page with a copy. The copied page assumes 2021 * the portion of the given page's "wire_count" that is not the 2022 * responsibility of this copy-on-write mechanism. 2023 * 2024 * The object containing the given page must have a non-zero 2025 * paging-in-progress count and be locked. 2026 */ 2027 void 2028 vm_page_cowfault(vm_page_t m) 2029 { 2030 vm_page_t mnew; 2031 vm_object_t object; 2032 vm_pindex_t pindex; 2033 2034 object = m->object; 2035 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 2036 KASSERT(object->paging_in_progress != 0, 2037 ("vm_page_cowfault: object %p's paging-in-progress count is zero.", 2038 object)); 2039 pindex = m->pindex; 2040 2041 retry_alloc: 2042 pmap_remove_all(m); 2043 vm_page_remove(m); 2044 mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY); 2045 if (mnew == NULL) { 2046 vm_page_insert(m, object, pindex); 2047 vm_page_unlock_queues(); 2048 VM_OBJECT_UNLOCK(object); 2049 VM_WAIT; 2050 VM_OBJECT_LOCK(object); 2051 if (m == vm_page_lookup(object, pindex)) { 2052 vm_page_lock_queues(); 2053 goto retry_alloc; 2054 } else { 2055 /* 2056 * Page disappeared during the wait. 2057 */ 2058 vm_page_lock_queues(); 2059 return; 2060 } 2061 } 2062 2063 if (m->cow == 0) { 2064 /* 2065 * check to see if we raced with an xmit complete when 2066 * waiting to allocate a page. If so, put things back 2067 * the way they were 2068 */ 2069 vm_page_free(mnew); 2070 vm_page_insert(m, object, pindex); 2071 } else { /* clear COW & copy page */ 2072 if (!so_zerocp_fullpage) 2073 pmap_copy_page(m, mnew); 2074 mnew->valid = VM_PAGE_BITS_ALL; 2075 vm_page_dirty(mnew); 2076 mnew->wire_count = m->wire_count - m->cow; 2077 m->wire_count = m->cow; 2078 } 2079 } 2080 2081 void 2082 vm_page_cowclear(vm_page_t m) 2083 { 2084 2085 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 2086 if (m->cow) { 2087 m->cow--; 2088 /* 2089 * let vm_fault add back write permission lazily 2090 */ 2091 } 2092 /* 2093 * sf_buf_free() will free the page, so we needn't do it here 2094 */ 2095 } 2096 2097 void 2098 vm_page_cowsetup(vm_page_t m) 2099 { 2100 2101 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 2102 m->cow++; 2103 pmap_remove_write(m); 2104 } 2105 2106 #include "opt_ddb.h" 2107 #ifdef DDB 2108 #include <sys/kernel.h> 2109 2110 #include <ddb/ddb.h> 2111 2112 DB_SHOW_COMMAND(page, vm_page_print_page_info) 2113 { 2114 db_printf("cnt.v_free_count: %d\n", cnt.v_free_count); 2115 db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count); 2116 db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count); 2117 db_printf("cnt.v_active_count: %d\n", cnt.v_active_count); 2118 db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count); 2119 db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved); 2120 db_printf("cnt.v_free_min: %d\n", cnt.v_free_min); 2121 db_printf("cnt.v_free_target: %d\n", cnt.v_free_target); 2122 db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min); 2123 db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target); 2124 } 2125 2126 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 2127 { 2128 2129 db_printf("PQ_FREE:"); 2130 db_printf(" %d", cnt.v_free_count); 2131 db_printf("\n"); 2132 2133 db_printf("PQ_CACHE:"); 2134 db_printf(" %d", cnt.v_cache_count); 2135 db_printf("\n"); 2136 2137 db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n", 2138 *vm_page_queues[PQ_ACTIVE].cnt, 2139 *vm_page_queues[PQ_INACTIVE].cnt); 2140 } 2141 #endif /* DDB */ 2142