1 /*- 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 33 */ 34 35 /*- 36 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 37 * All rights reserved. 38 * 39 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 40 * 41 * Permission to use, copy, modify and distribute this software and 42 * its documentation is hereby granted, provided that both the copyright 43 * notice and this permission notice appear in all copies of the 44 * software, derivative works or modified versions, and any portions 45 * thereof, and that both notices appear in supporting documentation. 46 * 47 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 48 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 49 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 50 * 51 * Carnegie Mellon requests users of this software to return to 52 * 53 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 54 * School of Computer Science 55 * Carnegie Mellon University 56 * Pittsburgh PA 15213-3890 57 * 58 * any improvements or extensions that they make and grant Carnegie the 59 * rights to redistribute these changes. 60 */ 61 62 /* 63 * GENERAL RULES ON VM_PAGE MANIPULATION 64 * 65 * - a pageq mutex is required when adding or removing a page from a 66 * page queue (vm_page_queue[]), regardless of other mutexes or the 67 * busy state of a page. 68 * 69 * - a hash chain mutex is required when associating or disassociating 70 * a page from the VM PAGE CACHE hash table (vm_page_buckets), 71 * regardless of other mutexes or the busy state of a page. 72 * 73 * - either a hash chain mutex OR a busied page is required in order 74 * to modify the page flags. A hash chain mutex must be obtained in 75 * order to busy a page. A page's flags cannot be modified by a 76 * hash chain mutex if the page is marked busy. 77 * 78 * - The object memq mutex is held when inserting or removing 79 * pages from an object (vm_page_insert() or vm_page_remove()). This 80 * is different from the object's main mutex. 81 * 82 * Generally speaking, you have to be aware of side effects when running 83 * vm_page ops. A vm_page_lookup() will return with the hash chain 84 * locked, whether it was able to lookup the page or not. vm_page_free(), 85 * vm_page_cache(), vm_page_activate(), and a number of other routines 86 * will release the hash chain mutex for you. Intermediate manipulation 87 * routines such as vm_page_flag_set() expect the hash chain to be held 88 * on entry and the hash chain will remain held on return. 89 * 90 * pageq scanning can only occur with the pageq in question locked. 91 * We have a known bottleneck with the active queue, but the cache 92 * and free queues are actually arrays already. 93 */ 94 95 /* 96 * Resident memory management module. 97 */ 98 99 #include <sys/cdefs.h> 100 __FBSDID("$FreeBSD$"); 101 102 #include <sys/param.h> 103 #include <sys/systm.h> 104 #include <sys/lock.h> 105 #include <sys/kernel.h> 106 #include <sys/malloc.h> 107 #include <sys/mutex.h> 108 #include <sys/proc.h> 109 #include <sys/sysctl.h> 110 #include <sys/vmmeter.h> 111 #include <sys/vnode.h> 112 113 #include <vm/vm.h> 114 #include <vm/vm_param.h> 115 #include <vm/vm_kern.h> 116 #include <vm/vm_object.h> 117 #include <vm/vm_page.h> 118 #include <vm/vm_pageout.h> 119 #include <vm/vm_pager.h> 120 #include <vm/vm_phys.h> 121 #include <vm/vm_extern.h> 122 #include <vm/uma.h> 123 #include <vm/uma_int.h> 124 125 #include <machine/md_var.h> 126 127 /* 128 * Associated with page of user-allocatable memory is a 129 * page structure. 130 */ 131 132 struct mtx vm_page_queue_mtx; 133 struct mtx vm_page_queue_free_mtx; 134 135 vm_page_t vm_page_array = 0; 136 int vm_page_array_size = 0; 137 long first_page = 0; 138 int vm_page_zero_count = 0; 139 140 static int boot_pages = UMA_BOOT_PAGES; 141 TUNABLE_INT("vm.boot_pages", &boot_pages); 142 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0, 143 "number of pages allocated for bootstrapping the VM system"); 144 145 /* 146 * vm_set_page_size: 147 * 148 * Sets the page size, perhaps based upon the memory 149 * size. Must be called before any use of page-size 150 * dependent functions. 151 */ 152 void 153 vm_set_page_size(void) 154 { 155 if (cnt.v_page_size == 0) 156 cnt.v_page_size = PAGE_SIZE; 157 if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0) 158 panic("vm_set_page_size: page size not a power of two"); 159 } 160 161 /* 162 * vm_page_blacklist_lookup: 163 * 164 * See if a physical address in this page has been listed 165 * in the blacklist tunable. Entries in the tunable are 166 * separated by spaces or commas. If an invalid integer is 167 * encountered then the rest of the string is skipped. 168 */ 169 static int 170 vm_page_blacklist_lookup(char *list, vm_paddr_t pa) 171 { 172 vm_paddr_t bad; 173 char *cp, *pos; 174 175 for (pos = list; *pos != '\0'; pos = cp) { 176 bad = strtoq(pos, &cp, 0); 177 if (*cp != '\0') { 178 if (*cp == ' ' || *cp == ',') { 179 cp++; 180 if (cp == pos) 181 continue; 182 } else 183 break; 184 } 185 if (pa == trunc_page(bad)) 186 return (1); 187 } 188 return (0); 189 } 190 191 /* 192 * vm_page_startup: 193 * 194 * Initializes the resident memory module. 195 * 196 * Allocates memory for the page cells, and 197 * for the object/offset-to-page hash table headers. 198 * Each page cell is initialized and placed on the free list. 199 */ 200 vm_offset_t 201 vm_page_startup(vm_offset_t vaddr) 202 { 203 vm_offset_t mapped; 204 vm_size_t npages; 205 vm_paddr_t page_range; 206 vm_paddr_t new_end; 207 int i; 208 vm_paddr_t pa; 209 int nblocks; 210 vm_paddr_t last_pa; 211 char *list; 212 213 /* the biggest memory array is the second group of pages */ 214 vm_paddr_t end; 215 vm_paddr_t biggestsize; 216 vm_paddr_t low_water, high_water; 217 int biggestone; 218 219 vm_paddr_t total; 220 221 total = 0; 222 biggestsize = 0; 223 biggestone = 0; 224 nblocks = 0; 225 vaddr = round_page(vaddr); 226 227 for (i = 0; phys_avail[i + 1]; i += 2) { 228 phys_avail[i] = round_page(phys_avail[i]); 229 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 230 } 231 232 low_water = phys_avail[0]; 233 high_water = phys_avail[1]; 234 235 for (i = 0; phys_avail[i + 1]; i += 2) { 236 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 237 238 if (size > biggestsize) { 239 biggestone = i; 240 biggestsize = size; 241 } 242 if (phys_avail[i] < low_water) 243 low_water = phys_avail[i]; 244 if (phys_avail[i + 1] > high_water) 245 high_water = phys_avail[i + 1]; 246 ++nblocks; 247 total += size; 248 } 249 250 end = phys_avail[biggestone+1]; 251 252 /* 253 * Initialize the locks. 254 */ 255 mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF | 256 MTX_RECURSE); 257 mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL, 258 MTX_DEF); 259 260 /* 261 * Initialize the queue headers for the free queue, the active queue 262 * and the inactive queue. 263 */ 264 vm_pageq_init(); 265 266 /* 267 * Allocate memory for use when boot strapping the kernel memory 268 * allocator. 269 */ 270 new_end = end - (boot_pages * UMA_SLAB_SIZE); 271 new_end = trunc_page(new_end); 272 mapped = pmap_map(&vaddr, new_end, end, 273 VM_PROT_READ | VM_PROT_WRITE); 274 bzero((void *)mapped, end - new_end); 275 uma_startup((void *)mapped, boot_pages); 276 277 #if defined(__amd64__) || defined(__i386__) 278 /* 279 * Allocate a bitmap to indicate that a random physical page 280 * needs to be included in a minidump. 281 * 282 * The amd64 port needs this to indicate which direct map pages 283 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 284 * 285 * However, i386 still needs this workspace internally within the 286 * minidump code. In theory, they are not needed on i386, but are 287 * included should the sf_buf code decide to use them. 288 */ 289 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE; 290 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 291 new_end -= vm_page_dump_size; 292 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, 293 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); 294 bzero((void *)vm_page_dump, vm_page_dump_size); 295 #endif 296 /* 297 * Compute the number of pages of memory that will be available for 298 * use (taking into account the overhead of a page structure per 299 * page). 300 */ 301 first_page = low_water / PAGE_SIZE; 302 #ifdef VM_PHYSSEG_SPARSE 303 page_range = 0; 304 for (i = 0; phys_avail[i + 1] != 0; i += 2) 305 page_range += atop(phys_avail[i + 1] - phys_avail[i]); 306 #elif defined(VM_PHYSSEG_DENSE) 307 page_range = high_water / PAGE_SIZE - first_page; 308 #else 309 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 310 #endif 311 npages = (total - (page_range * sizeof(struct vm_page)) - 312 (end - new_end)) / PAGE_SIZE; 313 end = new_end; 314 315 /* 316 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 317 */ 318 vaddr += PAGE_SIZE; 319 320 /* 321 * Initialize the mem entry structures now, and put them in the free 322 * queue. 323 */ 324 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 325 mapped = pmap_map(&vaddr, new_end, end, 326 VM_PROT_READ | VM_PROT_WRITE); 327 vm_page_array = (vm_page_t) mapped; 328 #ifdef __amd64__ 329 /* 330 * pmap_map on amd64 comes out of the direct-map, not kvm like i386, 331 * so the pages must be tracked for a crashdump to include this data. 332 * This includes the vm_page_array and the early UMA bootstrap pages. 333 */ 334 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE) 335 dump_add_page(pa); 336 #endif 337 phys_avail[biggestone + 1] = new_end; 338 339 /* 340 * Clear all of the page structures 341 */ 342 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 343 for (i = 0; i < page_range; i++) 344 vm_page_array[i].order = VM_NFREEORDER; 345 vm_page_array_size = page_range; 346 347 /* 348 * This assertion tests the hypothesis that npages and total are 349 * redundant. XXX 350 */ 351 page_range = 0; 352 for (i = 0; phys_avail[i + 1] != 0; i += 2) 353 page_range += atop(phys_avail[i + 1] - phys_avail[i]); 354 KASSERT(page_range == npages, 355 ("vm_page_startup: inconsistent page counts")); 356 357 /* 358 * Initialize the physical memory allocator. 359 */ 360 vm_phys_init(); 361 362 /* 363 * Add every available physical page that is not blacklisted to 364 * the free lists. 365 */ 366 cnt.v_page_count = 0; 367 cnt.v_free_count = 0; 368 list = getenv("vm.blacklist"); 369 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 370 pa = phys_avail[i]; 371 last_pa = phys_avail[i + 1]; 372 while (pa < last_pa) { 373 if (list != NULL && 374 vm_page_blacklist_lookup(list, pa)) 375 printf("Skipping page with pa 0x%jx\n", 376 (uintmax_t)pa); 377 else 378 vm_phys_add_page(pa); 379 pa += PAGE_SIZE; 380 } 381 } 382 freeenv(list); 383 return (vaddr); 384 } 385 386 void 387 vm_page_flag_set(vm_page_t m, unsigned short bits) 388 { 389 390 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 391 m->flags |= bits; 392 } 393 394 void 395 vm_page_flag_clear(vm_page_t m, unsigned short bits) 396 { 397 398 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 399 m->flags &= ~bits; 400 } 401 402 void 403 vm_page_busy(vm_page_t m) 404 { 405 406 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 407 KASSERT((m->oflags & VPO_BUSY) == 0, 408 ("vm_page_busy: page already busy!!!")); 409 m->oflags |= VPO_BUSY; 410 } 411 412 /* 413 * vm_page_flash: 414 * 415 * wakeup anyone waiting for the page. 416 */ 417 void 418 vm_page_flash(vm_page_t m) 419 { 420 421 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 422 if (m->oflags & VPO_WANTED) { 423 m->oflags &= ~VPO_WANTED; 424 wakeup(m); 425 } 426 } 427 428 /* 429 * vm_page_wakeup: 430 * 431 * clear the VPO_BUSY flag and wakeup anyone waiting for the 432 * page. 433 * 434 */ 435 void 436 vm_page_wakeup(vm_page_t m) 437 { 438 439 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 440 KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!")); 441 m->oflags &= ~VPO_BUSY; 442 vm_page_flash(m); 443 } 444 445 void 446 vm_page_io_start(vm_page_t m) 447 { 448 449 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 450 m->busy++; 451 } 452 453 void 454 vm_page_io_finish(vm_page_t m) 455 { 456 457 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 458 m->busy--; 459 if (m->busy == 0) 460 vm_page_flash(m); 461 } 462 463 /* 464 * Keep page from being freed by the page daemon 465 * much of the same effect as wiring, except much lower 466 * overhead and should be used only for *very* temporary 467 * holding ("wiring"). 468 */ 469 void 470 vm_page_hold(vm_page_t mem) 471 { 472 473 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 474 mem->hold_count++; 475 } 476 477 void 478 vm_page_unhold(vm_page_t mem) 479 { 480 481 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 482 --mem->hold_count; 483 KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!")); 484 if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD)) 485 vm_page_free_toq(mem); 486 } 487 488 /* 489 * vm_page_free: 490 * 491 * Free a page. 492 */ 493 void 494 vm_page_free(vm_page_t m) 495 { 496 497 m->flags &= ~PG_ZERO; 498 vm_page_free_toq(m); 499 } 500 501 /* 502 * vm_page_free_zero: 503 * 504 * Free a page to the zerod-pages queue 505 */ 506 void 507 vm_page_free_zero(vm_page_t m) 508 { 509 510 m->flags |= PG_ZERO; 511 vm_page_free_toq(m); 512 } 513 514 /* 515 * vm_page_sleep: 516 * 517 * Sleep and release the page queues lock. 518 * 519 * The object containing the given page must be locked. 520 */ 521 void 522 vm_page_sleep(vm_page_t m, const char *msg) 523 { 524 525 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 526 if (!mtx_owned(&vm_page_queue_mtx)) 527 vm_page_lock_queues(); 528 vm_page_flag_set(m, PG_REFERENCED); 529 vm_page_unlock_queues(); 530 531 /* 532 * It's possible that while we sleep, the page will get 533 * unbusied and freed. If we are holding the object 534 * lock, we will assume we hold a reference to the object 535 * such that even if m->object changes, we can re-lock 536 * it. 537 */ 538 m->oflags |= VPO_WANTED; 539 msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0); 540 } 541 542 /* 543 * vm_page_dirty: 544 * 545 * make page all dirty 546 */ 547 void 548 vm_page_dirty(vm_page_t m) 549 { 550 KASSERT((m->flags & PG_CACHED) == 0, 551 ("vm_page_dirty: page in cache!")); 552 KASSERT(!VM_PAGE_IS_FREE(m), 553 ("vm_page_dirty: page is free!")); 554 m->dirty = VM_PAGE_BITS_ALL; 555 } 556 557 /* 558 * vm_page_splay: 559 * 560 * Implements Sleator and Tarjan's top-down splay algorithm. Returns 561 * the vm_page containing the given pindex. If, however, that 562 * pindex is not found in the vm_object, returns a vm_page that is 563 * adjacent to the pindex, coming before or after it. 564 */ 565 vm_page_t 566 vm_page_splay(vm_pindex_t pindex, vm_page_t root) 567 { 568 struct vm_page dummy; 569 vm_page_t lefttreemax, righttreemin, y; 570 571 if (root == NULL) 572 return (root); 573 lefttreemax = righttreemin = &dummy; 574 for (;; root = y) { 575 if (pindex < root->pindex) { 576 if ((y = root->left) == NULL) 577 break; 578 if (pindex < y->pindex) { 579 /* Rotate right. */ 580 root->left = y->right; 581 y->right = root; 582 root = y; 583 if ((y = root->left) == NULL) 584 break; 585 } 586 /* Link into the new root's right tree. */ 587 righttreemin->left = root; 588 righttreemin = root; 589 } else if (pindex > root->pindex) { 590 if ((y = root->right) == NULL) 591 break; 592 if (pindex > y->pindex) { 593 /* Rotate left. */ 594 root->right = y->left; 595 y->left = root; 596 root = y; 597 if ((y = root->right) == NULL) 598 break; 599 } 600 /* Link into the new root's left tree. */ 601 lefttreemax->right = root; 602 lefttreemax = root; 603 } else 604 break; 605 } 606 /* Assemble the new root. */ 607 lefttreemax->right = root->left; 608 righttreemin->left = root->right; 609 root->left = dummy.right; 610 root->right = dummy.left; 611 return (root); 612 } 613 614 /* 615 * vm_page_insert: [ internal use only ] 616 * 617 * Inserts the given mem entry into the object and object list. 618 * 619 * The pagetables are not updated but will presumably fault the page 620 * in if necessary, or if a kernel page the caller will at some point 621 * enter the page into the kernel's pmap. We are not allowed to block 622 * here so we *can't* do this anyway. 623 * 624 * The object and page must be locked. 625 * This routine may not block. 626 */ 627 void 628 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 629 { 630 vm_page_t root; 631 632 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 633 if (m->object != NULL) 634 panic("vm_page_insert: page already inserted"); 635 636 /* 637 * Record the object/offset pair in this page 638 */ 639 m->object = object; 640 m->pindex = pindex; 641 642 /* 643 * Now link into the object's ordered list of backed pages. 644 */ 645 root = object->root; 646 if (root == NULL) { 647 m->left = NULL; 648 m->right = NULL; 649 TAILQ_INSERT_TAIL(&object->memq, m, listq); 650 } else { 651 root = vm_page_splay(pindex, root); 652 if (pindex < root->pindex) { 653 m->left = root->left; 654 m->right = root; 655 root->left = NULL; 656 TAILQ_INSERT_BEFORE(root, m, listq); 657 } else if (pindex == root->pindex) 658 panic("vm_page_insert: offset already allocated"); 659 else { 660 m->right = root->right; 661 m->left = root; 662 root->right = NULL; 663 TAILQ_INSERT_AFTER(&object->memq, root, m, listq); 664 } 665 } 666 object->root = m; 667 object->generation++; 668 669 /* 670 * show that the object has one more resident page. 671 */ 672 object->resident_page_count++; 673 /* 674 * Hold the vnode until the last page is released. 675 */ 676 if (object->resident_page_count == 1 && object->type == OBJT_VNODE) 677 vhold((struct vnode *)object->handle); 678 679 /* 680 * Since we are inserting a new and possibly dirty page, 681 * update the object's OBJ_MIGHTBEDIRTY flag. 682 */ 683 if (m->flags & PG_WRITEABLE) 684 vm_object_set_writeable_dirty(object); 685 } 686 687 /* 688 * vm_page_remove: 689 * NOTE: used by device pager as well -wfj 690 * 691 * Removes the given mem entry from the object/offset-page 692 * table and the object page list, but do not invalidate/terminate 693 * the backing store. 694 * 695 * The object and page must be locked. 696 * The underlying pmap entry (if any) is NOT removed here. 697 * This routine may not block. 698 */ 699 void 700 vm_page_remove(vm_page_t m) 701 { 702 vm_object_t object; 703 vm_page_t root; 704 705 if ((object = m->object) == NULL) 706 return; 707 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 708 if (m->oflags & VPO_BUSY) { 709 m->oflags &= ~VPO_BUSY; 710 vm_page_flash(m); 711 } 712 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 713 714 /* 715 * Now remove from the object's list of backed pages. 716 */ 717 if (m != object->root) 718 vm_page_splay(m->pindex, object->root); 719 if (m->left == NULL) 720 root = m->right; 721 else { 722 root = vm_page_splay(m->pindex, m->left); 723 root->right = m->right; 724 } 725 object->root = root; 726 TAILQ_REMOVE(&object->memq, m, listq); 727 728 /* 729 * And show that the object has one fewer resident page. 730 */ 731 object->resident_page_count--; 732 object->generation++; 733 /* 734 * The vnode may now be recycled. 735 */ 736 if (object->resident_page_count == 0 && object->type == OBJT_VNODE) 737 vdrop((struct vnode *)object->handle); 738 739 m->object = NULL; 740 } 741 742 /* 743 * vm_page_lookup: 744 * 745 * Returns the page associated with the object/offset 746 * pair specified; if none is found, NULL is returned. 747 * 748 * The object must be locked. 749 * This routine may not block. 750 * This is a critical path routine 751 */ 752 vm_page_t 753 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 754 { 755 vm_page_t m; 756 757 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 758 if ((m = object->root) != NULL && m->pindex != pindex) { 759 m = vm_page_splay(pindex, m); 760 if ((object->root = m)->pindex != pindex) 761 m = NULL; 762 } 763 return (m); 764 } 765 766 /* 767 * vm_page_rename: 768 * 769 * Move the given memory entry from its 770 * current object to the specified target object/offset. 771 * 772 * The object must be locked. 773 * This routine may not block. 774 * 775 * Note: swap associated with the page must be invalidated by the move. We 776 * have to do this for several reasons: (1) we aren't freeing the 777 * page, (2) we are dirtying the page, (3) the VM system is probably 778 * moving the page from object A to B, and will then later move 779 * the backing store from A to B and we can't have a conflict. 780 * 781 * Note: we *always* dirty the page. It is necessary both for the 782 * fact that we moved it, and because we may be invalidating 783 * swap. If the page is on the cache, we have to deactivate it 784 * or vm_page_dirty() will panic. Dirty pages are not allowed 785 * on the cache. 786 */ 787 void 788 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 789 { 790 791 vm_page_remove(m); 792 vm_page_insert(m, new_object, new_pindex); 793 vm_page_dirty(m); 794 } 795 796 /* 797 * Convert all of the given object's cached pages that have a 798 * pindex within the given range into free pages. If the value 799 * zero is given for "end", then the range's upper bound is 800 * infinity. If the given object is backed by a vnode and it 801 * transitions from having one or more cached pages to none, the 802 * vnode's hold count is reduced. 803 */ 804 void 805 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 806 { 807 vm_page_t m, m_next; 808 boolean_t empty; 809 810 mtx_lock(&vm_page_queue_free_mtx); 811 if (__predict_false(object->cache == NULL)) { 812 mtx_unlock(&vm_page_queue_free_mtx); 813 return; 814 } 815 m = object->cache = vm_page_splay(start, object->cache); 816 if (m->pindex < start) { 817 if (m->right == NULL) 818 m = NULL; 819 else { 820 m_next = vm_page_splay(start, m->right); 821 m_next->left = m; 822 m->right = NULL; 823 m = object->cache = m_next; 824 } 825 } 826 827 /* 828 * At this point, "m" is either (1) a reference to the page 829 * with the least pindex that is greater than or equal to 830 * "start" or (2) NULL. 831 */ 832 for (; m != NULL && (m->pindex < end || end == 0); m = m_next) { 833 /* 834 * Find "m"'s successor and remove "m" from the 835 * object's cache. 836 */ 837 if (m->right == NULL) { 838 object->cache = m->left; 839 m_next = NULL; 840 } else { 841 m_next = vm_page_splay(start, m->right); 842 m_next->left = m->left; 843 object->cache = m_next; 844 } 845 /* Convert "m" to a free page. */ 846 m->object = NULL; 847 m->valid = 0; 848 /* Clear PG_CACHED and set PG_FREE. */ 849 m->flags ^= PG_CACHED | PG_FREE; 850 KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE, 851 ("vm_page_cache_free: page %p has inconsistent flags", m)); 852 cnt.v_cache_count--; 853 cnt.v_free_count++; 854 } 855 empty = object->cache == NULL; 856 mtx_unlock(&vm_page_queue_free_mtx); 857 if (object->type == OBJT_VNODE && empty) 858 vdrop(object->handle); 859 } 860 861 /* 862 * Returns the cached page that is associated with the given 863 * object and offset. If, however, none exists, returns NULL. 864 * 865 * The free page queue must be locked. 866 */ 867 static inline vm_page_t 868 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex) 869 { 870 vm_page_t m; 871 872 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 873 if ((m = object->cache) != NULL && m->pindex != pindex) { 874 m = vm_page_splay(pindex, m); 875 if ((object->cache = m)->pindex != pindex) 876 m = NULL; 877 } 878 return (m); 879 } 880 881 /* 882 * Remove the given cached page from its containing object's 883 * collection of cached pages. 884 * 885 * The free page queue must be locked. 886 */ 887 void 888 vm_page_cache_remove(vm_page_t m) 889 { 890 vm_object_t object; 891 vm_page_t root; 892 893 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 894 KASSERT((m->flags & PG_CACHED) != 0, 895 ("vm_page_cache_remove: page %p is not cached", m)); 896 object = m->object; 897 if (m != object->cache) { 898 root = vm_page_splay(m->pindex, object->cache); 899 KASSERT(root == m, 900 ("vm_page_cache_remove: page %p is not cached in object %p", 901 m, object)); 902 } 903 if (m->left == NULL) 904 root = m->right; 905 else if (m->right == NULL) 906 root = m->left; 907 else { 908 root = vm_page_splay(m->pindex, m->left); 909 root->right = m->right; 910 } 911 object->cache = root; 912 m->object = NULL; 913 cnt.v_cache_count--; 914 } 915 916 /* 917 * Transfer all of the cached pages with offset greater than or 918 * equal to 'offidxstart' from the original object's cache to the 919 * new object's cache. Initially, the new object's cache must be 920 * empty. Offset 'offidxstart' in the original object must 921 * correspond to offset zero in the new object. 922 * 923 * The new object must be locked. 924 */ 925 void 926 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart, 927 vm_object_t new_object) 928 { 929 vm_page_t m, m_next; 930 931 /* 932 * Insertion into an object's collection of cached pages 933 * requires the object to be locked. In contrast, removal does 934 * not. 935 */ 936 VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED); 937 KASSERT(new_object->cache == NULL, 938 ("vm_page_cache_transfer: object %p has cached pages", 939 new_object)); 940 mtx_lock(&vm_page_queue_free_mtx); 941 if ((m = orig_object->cache) != NULL) { 942 /* 943 * Transfer all of the pages with offset greater than or 944 * equal to 'offidxstart' from the original object's 945 * cache to the new object's cache. 946 */ 947 m = vm_page_splay(offidxstart, m); 948 if (m->pindex < offidxstart) { 949 orig_object->cache = m; 950 new_object->cache = m->right; 951 m->right = NULL; 952 } else { 953 orig_object->cache = m->left; 954 new_object->cache = m; 955 m->left = NULL; 956 } 957 KASSERT(new_object->cache == NULL || 958 new_object->type == OBJT_SWAP, 959 ("vm_page_cache_transfer: object %p's type is incompatible" 960 " with cached pages", new_object)); 961 962 /* 963 * Update the object and offset of each page that was 964 * transferred to the new object's cache. 965 */ 966 while ((m = new_object->cache) != NULL) { 967 m_next = vm_page_splay(m->pindex, m->right); 968 m->object = new_object; 969 m->pindex -= offidxstart; 970 if (m_next == NULL) 971 break; 972 m->right = NULL; 973 m_next->left = m; 974 new_object->cache = m_next; 975 } 976 } 977 mtx_unlock(&vm_page_queue_free_mtx); 978 } 979 980 /* 981 * vm_page_alloc: 982 * 983 * Allocate and return a memory cell associated 984 * with this VM object/offset pair. 985 * 986 * page_req classes: 987 * VM_ALLOC_NORMAL normal process request 988 * VM_ALLOC_SYSTEM system *really* needs a page 989 * VM_ALLOC_INTERRUPT interrupt time request 990 * VM_ALLOC_ZERO zero page 991 * 992 * This routine may not block. 993 */ 994 vm_page_t 995 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 996 { 997 struct vnode *vp = NULL; 998 vm_object_t m_object; 999 vm_page_t m; 1000 int flags, page_req; 1001 1002 page_req = req & VM_ALLOC_CLASS_MASK; 1003 KASSERT(curthread->td_intr_nesting_level == 0 || 1004 page_req == VM_ALLOC_INTERRUPT, 1005 ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context")); 1006 1007 if ((req & VM_ALLOC_NOOBJ) == 0) { 1008 KASSERT(object != NULL, 1009 ("vm_page_alloc: NULL object.")); 1010 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1011 } 1012 1013 /* 1014 * The pager is allowed to eat deeper into the free page list. 1015 */ 1016 if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) { 1017 page_req = VM_ALLOC_SYSTEM; 1018 }; 1019 1020 mtx_lock(&vm_page_queue_free_mtx); 1021 if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved || 1022 (page_req == VM_ALLOC_SYSTEM && 1023 cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) || 1024 (page_req == VM_ALLOC_INTERRUPT && 1025 cnt.v_free_count + cnt.v_cache_count > 0)) { 1026 /* 1027 * Allocate from the free queue if the number of free pages 1028 * exceeds the minimum for the request class. 1029 */ 1030 if (object != NULL && 1031 (m = vm_page_cache_lookup(object, pindex)) != NULL) { 1032 if ((req & VM_ALLOC_IFNOTCACHED) != 0) { 1033 mtx_unlock(&vm_page_queue_free_mtx); 1034 return (NULL); 1035 } 1036 vm_phys_unfree_page(m); 1037 } else if ((req & VM_ALLOC_IFCACHED) != 0) { 1038 mtx_unlock(&vm_page_queue_free_mtx); 1039 return (NULL); 1040 } else 1041 m = vm_phys_alloc_pages(object != NULL ? 1042 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0); 1043 } else { 1044 /* 1045 * Not allocatable, give up. 1046 */ 1047 mtx_unlock(&vm_page_queue_free_mtx); 1048 atomic_add_int(&vm_pageout_deficit, 1); 1049 pagedaemon_wakeup(); 1050 return (NULL); 1051 } 1052 1053 /* 1054 * At this point we had better have found a good page. 1055 */ 1056 1057 KASSERT( 1058 m != NULL, 1059 ("vm_page_alloc(): missing page on free queue") 1060 ); 1061 if ((m->flags & PG_CACHED) != 0) { 1062 KASSERT(m->valid != 0, 1063 ("vm_page_alloc: cached page %p is invalid", m)); 1064 if (m->object == object && m->pindex == pindex) 1065 cnt.v_reactivated++; 1066 else 1067 m->valid = 0; 1068 m_object = m->object; 1069 vm_page_cache_remove(m); 1070 if (m_object->type == OBJT_VNODE && m_object->cache == NULL) 1071 vp = m_object->handle; 1072 } else { 1073 KASSERT(VM_PAGE_IS_FREE(m), 1074 ("vm_page_alloc: page %p is not free", m)); 1075 KASSERT(m->valid == 0, 1076 ("vm_page_alloc: free page %p is valid", m)); 1077 cnt.v_free_count--; 1078 } 1079 1080 /* 1081 * Initialize structure. Only the PG_ZERO flag is inherited. 1082 */ 1083 flags = 0; 1084 if (m->flags & PG_ZERO) { 1085 vm_page_zero_count--; 1086 if (req & VM_ALLOC_ZERO) 1087 flags = PG_ZERO; 1088 } 1089 if (object == NULL || object->type == OBJT_PHYS) 1090 flags |= PG_UNMANAGED; 1091 m->flags = flags; 1092 if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ)) 1093 m->oflags = 0; 1094 else 1095 m->oflags = VPO_BUSY; 1096 if (req & VM_ALLOC_WIRED) { 1097 atomic_add_int(&cnt.v_wire_count, 1); 1098 m->wire_count = 1; 1099 } else 1100 m->wire_count = 0; 1101 m->hold_count = 0; 1102 m->act_count = 0; 1103 m->busy = 0; 1104 KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m)); 1105 mtx_unlock(&vm_page_queue_free_mtx); 1106 1107 if ((req & VM_ALLOC_NOOBJ) == 0) 1108 vm_page_insert(m, object, pindex); 1109 else 1110 m->pindex = pindex; 1111 1112 /* 1113 * The following call to vdrop() must come after the above call 1114 * to vm_page_insert() in case both affect the same object and 1115 * vnode. Otherwise, the affected vnode's hold count could 1116 * temporarily become zero. 1117 */ 1118 if (vp != NULL) 1119 vdrop(vp); 1120 1121 /* 1122 * Don't wakeup too often - wakeup the pageout daemon when 1123 * we would be nearly out of memory. 1124 */ 1125 if (vm_paging_needed()) 1126 pagedaemon_wakeup(); 1127 1128 return (m); 1129 } 1130 1131 /* 1132 * vm_wait: (also see VM_WAIT macro) 1133 * 1134 * Block until free pages are available for allocation 1135 * - Called in various places before memory allocations. 1136 */ 1137 void 1138 vm_wait(void) 1139 { 1140 1141 mtx_lock(&vm_page_queue_free_mtx); 1142 if (curproc == pageproc) { 1143 vm_pageout_pages_needed = 1; 1144 msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx, 1145 PDROP | PSWP, "VMWait", 0); 1146 } else { 1147 if (!vm_pages_needed) { 1148 vm_pages_needed = 1; 1149 wakeup(&vm_pages_needed); 1150 } 1151 msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM, 1152 "vmwait", 0); 1153 } 1154 } 1155 1156 /* 1157 * vm_waitpfault: (also see VM_WAITPFAULT macro) 1158 * 1159 * Block until free pages are available for allocation 1160 * - Called only in vm_fault so that processes page faulting 1161 * can be easily tracked. 1162 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 1163 * processes will be able to grab memory first. Do not change 1164 * this balance without careful testing first. 1165 */ 1166 void 1167 vm_waitpfault(void) 1168 { 1169 1170 mtx_lock(&vm_page_queue_free_mtx); 1171 if (!vm_pages_needed) { 1172 vm_pages_needed = 1; 1173 wakeup(&vm_pages_needed); 1174 } 1175 msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER, 1176 "pfault", 0); 1177 } 1178 1179 /* 1180 * vm_page_activate: 1181 * 1182 * Put the specified page on the active list (if appropriate). 1183 * Ensure that act_count is at least ACT_INIT but do not otherwise 1184 * mess with it. 1185 * 1186 * The page queues must be locked. 1187 * This routine may not block. 1188 */ 1189 void 1190 vm_page_activate(vm_page_t m) 1191 { 1192 1193 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1194 if (VM_PAGE_GETKNOWNQUEUE2(m) != PQ_ACTIVE) { 1195 vm_pageq_remove(m); 1196 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1197 if (m->act_count < ACT_INIT) 1198 m->act_count = ACT_INIT; 1199 vm_pageq_enqueue(PQ_ACTIVE, m); 1200 } 1201 } else { 1202 if (m->act_count < ACT_INIT) 1203 m->act_count = ACT_INIT; 1204 } 1205 } 1206 1207 /* 1208 * vm_page_free_wakeup: 1209 * 1210 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 1211 * routine is called when a page has been added to the cache or free 1212 * queues. 1213 * 1214 * The page queues must be locked. 1215 * This routine may not block. 1216 */ 1217 static inline void 1218 vm_page_free_wakeup(void) 1219 { 1220 1221 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1222 /* 1223 * if pageout daemon needs pages, then tell it that there are 1224 * some free. 1225 */ 1226 if (vm_pageout_pages_needed && 1227 cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) { 1228 wakeup(&vm_pageout_pages_needed); 1229 vm_pageout_pages_needed = 0; 1230 } 1231 /* 1232 * wakeup processes that are waiting on memory if we hit a 1233 * high water mark. And wakeup scheduler process if we have 1234 * lots of memory. this process will swapin processes. 1235 */ 1236 if (vm_pages_needed && !vm_page_count_min()) { 1237 vm_pages_needed = 0; 1238 wakeup(&cnt.v_free_count); 1239 } 1240 } 1241 1242 /* 1243 * vm_page_free_toq: 1244 * 1245 * Returns the given page to the free list, 1246 * disassociating it with any VM object. 1247 * 1248 * Object and page must be locked prior to entry. 1249 * This routine may not block. 1250 */ 1251 1252 void 1253 vm_page_free_toq(vm_page_t m) 1254 { 1255 1256 if (VM_PAGE_GETQUEUE(m) != PQ_NONE) 1257 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1258 KASSERT(!pmap_page_is_mapped(m), 1259 ("vm_page_free_toq: freeing mapped page %p", m)); 1260 PCPU_INC(cnt.v_tfree); 1261 1262 if (m->busy || VM_PAGE_IS_FREE(m)) { 1263 printf( 1264 "vm_page_free: pindex(%lu), busy(%d), VPO_BUSY(%d), hold(%d)\n", 1265 (u_long)m->pindex, m->busy, (m->oflags & VPO_BUSY) ? 1 : 0, 1266 m->hold_count); 1267 if (VM_PAGE_IS_FREE(m)) 1268 panic("vm_page_free: freeing free page"); 1269 else 1270 panic("vm_page_free: freeing busy page"); 1271 } 1272 1273 /* 1274 * unqueue, then remove page. Note that we cannot destroy 1275 * the page here because we do not want to call the pager's 1276 * callback routine until after we've put the page on the 1277 * appropriate free queue. 1278 */ 1279 vm_pageq_remove(m); 1280 vm_page_remove(m); 1281 1282 /* 1283 * If fictitious remove object association and 1284 * return, otherwise delay object association removal. 1285 */ 1286 if ((m->flags & PG_FICTITIOUS) != 0) { 1287 return; 1288 } 1289 1290 m->valid = 0; 1291 vm_page_undirty(m); 1292 1293 if (m->wire_count != 0) { 1294 if (m->wire_count > 1) { 1295 panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx", 1296 m->wire_count, (long)m->pindex); 1297 } 1298 panic("vm_page_free: freeing wired page"); 1299 } 1300 if (m->hold_count != 0) { 1301 m->flags &= ~PG_ZERO; 1302 vm_pageq_enqueue(PQ_HOLD, m); 1303 } else { 1304 m->flags |= PG_FREE; 1305 mtx_lock(&vm_page_queue_free_mtx); 1306 cnt.v_free_count++; 1307 if ((m->flags & PG_ZERO) != 0) { 1308 vm_phys_free_pages(m, 0); 1309 ++vm_page_zero_count; 1310 } else { 1311 vm_phys_free_pages(m, 0); 1312 vm_page_zero_idle_wakeup(); 1313 } 1314 vm_page_free_wakeup(); 1315 mtx_unlock(&vm_page_queue_free_mtx); 1316 } 1317 } 1318 1319 /* 1320 * vm_page_wire: 1321 * 1322 * Mark this page as wired down by yet 1323 * another map, removing it from paging queues 1324 * as necessary. 1325 * 1326 * The page queues must be locked. 1327 * This routine may not block. 1328 */ 1329 void 1330 vm_page_wire(vm_page_t m) 1331 { 1332 1333 /* 1334 * Only bump the wire statistics if the page is not already wired, 1335 * and only unqueue the page if it is on some queue (if it is unmanaged 1336 * it is already off the queues). 1337 */ 1338 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1339 if (m->flags & PG_FICTITIOUS) 1340 return; 1341 if (m->wire_count == 0) { 1342 if ((m->flags & PG_UNMANAGED) == 0) 1343 vm_pageq_remove(m); 1344 atomic_add_int(&cnt.v_wire_count, 1); 1345 } 1346 m->wire_count++; 1347 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 1348 } 1349 1350 /* 1351 * vm_page_unwire: 1352 * 1353 * Release one wiring of this page, potentially 1354 * enabling it to be paged again. 1355 * 1356 * Many pages placed on the inactive queue should actually go 1357 * into the cache, but it is difficult to figure out which. What 1358 * we do instead, if the inactive target is well met, is to put 1359 * clean pages at the head of the inactive queue instead of the tail. 1360 * This will cause them to be moved to the cache more quickly and 1361 * if not actively re-referenced, freed more quickly. If we just 1362 * stick these pages at the end of the inactive queue, heavy filesystem 1363 * meta-data accesses can cause an unnecessary paging load on memory bound 1364 * processes. This optimization causes one-time-use metadata to be 1365 * reused more quickly. 1366 * 1367 * BUT, if we are in a low-memory situation we have no choice but to 1368 * put clean pages on the cache queue. 1369 * 1370 * A number of routines use vm_page_unwire() to guarantee that the page 1371 * will go into either the inactive or active queues, and will NEVER 1372 * be placed in the cache - for example, just after dirtying a page. 1373 * dirty pages in the cache are not allowed. 1374 * 1375 * The page queues must be locked. 1376 * This routine may not block. 1377 */ 1378 void 1379 vm_page_unwire(vm_page_t m, int activate) 1380 { 1381 1382 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1383 if (m->flags & PG_FICTITIOUS) 1384 return; 1385 if (m->wire_count > 0) { 1386 m->wire_count--; 1387 if (m->wire_count == 0) { 1388 atomic_subtract_int(&cnt.v_wire_count, 1); 1389 if (m->flags & PG_UNMANAGED) { 1390 ; 1391 } else if (activate) 1392 vm_pageq_enqueue(PQ_ACTIVE, m); 1393 else { 1394 vm_page_flag_clear(m, PG_WINATCFLS); 1395 vm_pageq_enqueue(PQ_INACTIVE, m); 1396 } 1397 } 1398 } else { 1399 panic("vm_page_unwire: invalid wire count: %d", m->wire_count); 1400 } 1401 } 1402 1403 1404 /* 1405 * Move the specified page to the inactive queue. If the page has 1406 * any associated swap, the swap is deallocated. 1407 * 1408 * Normally athead is 0 resulting in LRU operation. athead is set 1409 * to 1 if we want this page to be 'as if it were placed in the cache', 1410 * except without unmapping it from the process address space. 1411 * 1412 * This routine may not block. 1413 */ 1414 static inline void 1415 _vm_page_deactivate(vm_page_t m, int athead) 1416 { 1417 1418 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1419 1420 /* 1421 * Ignore if already inactive. 1422 */ 1423 if (VM_PAGE_INQUEUE2(m, PQ_INACTIVE)) 1424 return; 1425 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1426 vm_page_flag_clear(m, PG_WINATCFLS); 1427 vm_pageq_remove(m); 1428 if (athead) 1429 TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1430 else 1431 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1432 VM_PAGE_SETQUEUE2(m, PQ_INACTIVE); 1433 cnt.v_inactive_count++; 1434 } 1435 } 1436 1437 void 1438 vm_page_deactivate(vm_page_t m) 1439 { 1440 _vm_page_deactivate(m, 0); 1441 } 1442 1443 /* 1444 * vm_page_try_to_cache: 1445 * 1446 * Returns 0 on failure, 1 on success 1447 */ 1448 int 1449 vm_page_try_to_cache(vm_page_t m) 1450 { 1451 1452 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1453 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1454 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1455 (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) { 1456 return (0); 1457 } 1458 pmap_remove_all(m); 1459 if (m->dirty) 1460 return (0); 1461 vm_page_cache(m); 1462 return (1); 1463 } 1464 1465 /* 1466 * vm_page_try_to_free() 1467 * 1468 * Attempt to free the page. If we cannot free it, we do nothing. 1469 * 1 is returned on success, 0 on failure. 1470 */ 1471 int 1472 vm_page_try_to_free(vm_page_t m) 1473 { 1474 1475 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1476 if (m->object != NULL) 1477 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1478 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1479 (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) { 1480 return (0); 1481 } 1482 pmap_remove_all(m); 1483 if (m->dirty) 1484 return (0); 1485 vm_page_free(m); 1486 return (1); 1487 } 1488 1489 /* 1490 * vm_page_cache 1491 * 1492 * Put the specified page onto the page cache queue (if appropriate). 1493 * 1494 * This routine may not block. 1495 */ 1496 void 1497 vm_page_cache(vm_page_t m) 1498 { 1499 vm_object_t object; 1500 vm_page_t root; 1501 1502 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1503 object = m->object; 1504 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1505 if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy || 1506 m->hold_count || m->wire_count) { 1507 panic("vm_page_cache: attempting to cache busy page"); 1508 } 1509 pmap_remove_all(m); 1510 if (m->dirty != 0) 1511 panic("vm_page_cache: page %p is dirty", m); 1512 if (m->valid == 0 || object->type == OBJT_DEFAULT) { 1513 /* 1514 * Hypothesis: A cache-elgible page belonging to a 1515 * default object must be zero filled. 1516 */ 1517 vm_page_free(m); 1518 return; 1519 } 1520 KASSERT((m->flags & PG_CACHED) == 0, 1521 ("vm_page_cache: page %p is already cached", m)); 1522 cnt.v_tcached++; 1523 1524 /* 1525 * Remove the page from the paging queues. 1526 */ 1527 vm_pageq_remove(m); 1528 1529 /* 1530 * Remove the page from the object's collection of resident 1531 * pages. 1532 */ 1533 if (m != object->root) 1534 vm_page_splay(m->pindex, object->root); 1535 if (m->left == NULL) 1536 root = m->right; 1537 else { 1538 root = vm_page_splay(m->pindex, m->left); 1539 root->right = m->right; 1540 } 1541 object->root = root; 1542 TAILQ_REMOVE(&object->memq, m, listq); 1543 object->resident_page_count--; 1544 object->generation++; 1545 1546 /* 1547 * Insert the page into the object's collection of cached pages 1548 * and the physical memory allocator's cache/free page queues. 1549 */ 1550 vm_page_flag_set(m, PG_CACHED); 1551 vm_page_flag_clear(m, PG_ZERO); 1552 mtx_lock(&vm_page_queue_free_mtx); 1553 vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0); 1554 cnt.v_cache_count++; 1555 root = object->cache; 1556 if (root == NULL) { 1557 m->left = NULL; 1558 m->right = NULL; 1559 } else { 1560 root = vm_page_splay(m->pindex, root); 1561 if (m->pindex < root->pindex) { 1562 m->left = root->left; 1563 m->right = root; 1564 root->left = NULL; 1565 } else if (__predict_false(m->pindex == root->pindex)) 1566 panic("vm_page_cache: offset already cached"); 1567 else { 1568 m->right = root->right; 1569 m->left = root; 1570 root->right = NULL; 1571 } 1572 } 1573 object->cache = m; 1574 vm_phys_free_pages(m, 0); 1575 vm_page_free_wakeup(); 1576 mtx_unlock(&vm_page_queue_free_mtx); 1577 1578 /* 1579 * Increment the vnode's hold count if this is the object's only 1580 * cached page. Decrement the vnode's hold count if this was 1581 * the object's only resident page. 1582 */ 1583 if (object->type == OBJT_VNODE) { 1584 if (root == NULL && object->resident_page_count != 0) 1585 vhold(object->handle); 1586 else if (root != NULL && object->resident_page_count == 0) 1587 vdrop(object->handle); 1588 } 1589 } 1590 1591 /* 1592 * vm_page_dontneed 1593 * 1594 * Cache, deactivate, or do nothing as appropriate. This routine 1595 * is typically used by madvise() MADV_DONTNEED. 1596 * 1597 * Generally speaking we want to move the page into the cache so 1598 * it gets reused quickly. However, this can result in a silly syndrome 1599 * due to the page recycling too quickly. Small objects will not be 1600 * fully cached. On the otherhand, if we move the page to the inactive 1601 * queue we wind up with a problem whereby very large objects 1602 * unnecessarily blow away our inactive and cache queues. 1603 * 1604 * The solution is to move the pages based on a fixed weighting. We 1605 * either leave them alone, deactivate them, or move them to the cache, 1606 * where moving them to the cache has the highest weighting. 1607 * By forcing some pages into other queues we eventually force the 1608 * system to balance the queues, potentially recovering other unrelated 1609 * space from active. The idea is to not force this to happen too 1610 * often. 1611 */ 1612 void 1613 vm_page_dontneed(vm_page_t m) 1614 { 1615 static int dnweight; 1616 int dnw; 1617 int head; 1618 1619 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1620 dnw = ++dnweight; 1621 1622 /* 1623 * occassionally leave the page alone 1624 */ 1625 if ((dnw & 0x01F0) == 0 || 1626 VM_PAGE_INQUEUE2(m, PQ_INACTIVE)) { 1627 if (m->act_count >= ACT_INIT) 1628 --m->act_count; 1629 return; 1630 } 1631 1632 if (m->dirty == 0 && pmap_is_modified(m)) 1633 vm_page_dirty(m); 1634 1635 if (m->dirty || (dnw & 0x0070) == 0) { 1636 /* 1637 * Deactivate the page 3 times out of 32. 1638 */ 1639 head = 0; 1640 } else { 1641 /* 1642 * Cache the page 28 times out of every 32. Note that 1643 * the page is deactivated instead of cached, but placed 1644 * at the head of the queue instead of the tail. 1645 */ 1646 head = 1; 1647 } 1648 _vm_page_deactivate(m, head); 1649 } 1650 1651 /* 1652 * Grab a page, waiting until we are waken up due to the page 1653 * changing state. We keep on waiting, if the page continues 1654 * to be in the object. If the page doesn't exist, first allocate it 1655 * and then conditionally zero it. 1656 * 1657 * This routine may block. 1658 */ 1659 vm_page_t 1660 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 1661 { 1662 vm_page_t m; 1663 1664 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1665 retrylookup: 1666 if ((m = vm_page_lookup(object, pindex)) != NULL) { 1667 if (vm_page_sleep_if_busy(m, TRUE, "pgrbwt")) { 1668 if ((allocflags & VM_ALLOC_RETRY) == 0) 1669 return (NULL); 1670 goto retrylookup; 1671 } else { 1672 if ((allocflags & VM_ALLOC_WIRED) != 0) { 1673 vm_page_lock_queues(); 1674 vm_page_wire(m); 1675 vm_page_unlock_queues(); 1676 } 1677 if ((allocflags & VM_ALLOC_NOBUSY) == 0) 1678 vm_page_busy(m); 1679 return (m); 1680 } 1681 } 1682 m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY); 1683 if (m == NULL) { 1684 VM_OBJECT_UNLOCK(object); 1685 VM_WAIT; 1686 VM_OBJECT_LOCK(object); 1687 if ((allocflags & VM_ALLOC_RETRY) == 0) 1688 return (NULL); 1689 goto retrylookup; 1690 } else if (m->valid != 0) 1691 return (m); 1692 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 1693 pmap_zero_page(m); 1694 return (m); 1695 } 1696 1697 /* 1698 * Mapping function for valid bits or for dirty bits in 1699 * a page. May not block. 1700 * 1701 * Inputs are required to range within a page. 1702 */ 1703 int 1704 vm_page_bits(int base, int size) 1705 { 1706 int first_bit; 1707 int last_bit; 1708 1709 KASSERT( 1710 base + size <= PAGE_SIZE, 1711 ("vm_page_bits: illegal base/size %d/%d", base, size) 1712 ); 1713 1714 if (size == 0) /* handle degenerate case */ 1715 return (0); 1716 1717 first_bit = base >> DEV_BSHIFT; 1718 last_bit = (base + size - 1) >> DEV_BSHIFT; 1719 1720 return ((2 << last_bit) - (1 << first_bit)); 1721 } 1722 1723 /* 1724 * vm_page_set_validclean: 1725 * 1726 * Sets portions of a page valid and clean. The arguments are expected 1727 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 1728 * of any partial chunks touched by the range. The invalid portion of 1729 * such chunks will be zero'd. 1730 * 1731 * This routine may not block. 1732 * 1733 * (base + size) must be less then or equal to PAGE_SIZE. 1734 */ 1735 void 1736 vm_page_set_validclean(vm_page_t m, int base, int size) 1737 { 1738 int pagebits; 1739 int frag; 1740 int endoff; 1741 1742 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1743 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1744 if (size == 0) /* handle degenerate case */ 1745 return; 1746 1747 /* 1748 * If the base is not DEV_BSIZE aligned and the valid 1749 * bit is clear, we have to zero out a portion of the 1750 * first block. 1751 */ 1752 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 1753 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 1754 pmap_zero_page_area(m, frag, base - frag); 1755 1756 /* 1757 * If the ending offset is not DEV_BSIZE aligned and the 1758 * valid bit is clear, we have to zero out a portion of 1759 * the last block. 1760 */ 1761 endoff = base + size; 1762 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 1763 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 1764 pmap_zero_page_area(m, endoff, 1765 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 1766 1767 /* 1768 * Set valid, clear dirty bits. If validating the entire 1769 * page we can safely clear the pmap modify bit. We also 1770 * use this opportunity to clear the VPO_NOSYNC flag. If a process 1771 * takes a write fault on a MAP_NOSYNC memory area the flag will 1772 * be set again. 1773 * 1774 * We set valid bits inclusive of any overlap, but we can only 1775 * clear dirty bits for DEV_BSIZE chunks that are fully within 1776 * the range. 1777 */ 1778 pagebits = vm_page_bits(base, size); 1779 m->valid |= pagebits; 1780 #if 0 /* NOT YET */ 1781 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 1782 frag = DEV_BSIZE - frag; 1783 base += frag; 1784 size -= frag; 1785 if (size < 0) 1786 size = 0; 1787 } 1788 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 1789 #endif 1790 m->dirty &= ~pagebits; 1791 if (base == 0 && size == PAGE_SIZE) { 1792 pmap_clear_modify(m); 1793 m->oflags &= ~VPO_NOSYNC; 1794 } 1795 } 1796 1797 void 1798 vm_page_clear_dirty(vm_page_t m, int base, int size) 1799 { 1800 1801 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1802 m->dirty &= ~vm_page_bits(base, size); 1803 } 1804 1805 /* 1806 * vm_page_set_invalid: 1807 * 1808 * Invalidates DEV_BSIZE'd chunks within a page. Both the 1809 * valid and dirty bits for the effected areas are cleared. 1810 * 1811 * May not block. 1812 */ 1813 void 1814 vm_page_set_invalid(vm_page_t m, int base, int size) 1815 { 1816 int bits; 1817 1818 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1819 bits = vm_page_bits(base, size); 1820 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1821 if (m->valid == VM_PAGE_BITS_ALL && bits != 0) 1822 pmap_remove_all(m); 1823 m->valid &= ~bits; 1824 m->dirty &= ~bits; 1825 m->object->generation++; 1826 } 1827 1828 /* 1829 * vm_page_zero_invalid() 1830 * 1831 * The kernel assumes that the invalid portions of a page contain 1832 * garbage, but such pages can be mapped into memory by user code. 1833 * When this occurs, we must zero out the non-valid portions of the 1834 * page so user code sees what it expects. 1835 * 1836 * Pages are most often semi-valid when the end of a file is mapped 1837 * into memory and the file's size is not page aligned. 1838 */ 1839 void 1840 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 1841 { 1842 int b; 1843 int i; 1844 1845 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1846 /* 1847 * Scan the valid bits looking for invalid sections that 1848 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 1849 * valid bit may be set ) have already been zerod by 1850 * vm_page_set_validclean(). 1851 */ 1852 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 1853 if (i == (PAGE_SIZE / DEV_BSIZE) || 1854 (m->valid & (1 << i)) 1855 ) { 1856 if (i > b) { 1857 pmap_zero_page_area(m, 1858 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 1859 } 1860 b = i + 1; 1861 } 1862 } 1863 1864 /* 1865 * setvalid is TRUE when we can safely set the zero'd areas 1866 * as being valid. We can do this if there are no cache consistancy 1867 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 1868 */ 1869 if (setvalid) 1870 m->valid = VM_PAGE_BITS_ALL; 1871 } 1872 1873 /* 1874 * vm_page_is_valid: 1875 * 1876 * Is (partial) page valid? Note that the case where size == 0 1877 * will return FALSE in the degenerate case where the page is 1878 * entirely invalid, and TRUE otherwise. 1879 * 1880 * May not block. 1881 */ 1882 int 1883 vm_page_is_valid(vm_page_t m, int base, int size) 1884 { 1885 int bits = vm_page_bits(base, size); 1886 1887 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1888 if (m->valid && ((m->valid & bits) == bits)) 1889 return 1; 1890 else 1891 return 0; 1892 } 1893 1894 /* 1895 * update dirty bits from pmap/mmu. May not block. 1896 */ 1897 void 1898 vm_page_test_dirty(vm_page_t m) 1899 { 1900 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) { 1901 vm_page_dirty(m); 1902 } 1903 } 1904 1905 int so_zerocp_fullpage = 0; 1906 1907 /* 1908 * Replace the given page with a copy. The copied page assumes 1909 * the portion of the given page's "wire_count" that is not the 1910 * responsibility of this copy-on-write mechanism. 1911 * 1912 * The object containing the given page must have a non-zero 1913 * paging-in-progress count and be locked. 1914 */ 1915 void 1916 vm_page_cowfault(vm_page_t m) 1917 { 1918 vm_page_t mnew; 1919 vm_object_t object; 1920 vm_pindex_t pindex; 1921 1922 object = m->object; 1923 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1924 KASSERT(object->paging_in_progress != 0, 1925 ("vm_page_cowfault: object %p's paging-in-progress count is zero.", 1926 object)); 1927 pindex = m->pindex; 1928 1929 retry_alloc: 1930 pmap_remove_all(m); 1931 vm_page_remove(m); 1932 mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY); 1933 if (mnew == NULL) { 1934 vm_page_insert(m, object, pindex); 1935 vm_page_unlock_queues(); 1936 VM_OBJECT_UNLOCK(object); 1937 VM_WAIT; 1938 VM_OBJECT_LOCK(object); 1939 if (m == vm_page_lookup(object, pindex)) { 1940 vm_page_lock_queues(); 1941 goto retry_alloc; 1942 } else { 1943 /* 1944 * Page disappeared during the wait. 1945 */ 1946 vm_page_lock_queues(); 1947 return; 1948 } 1949 } 1950 1951 if (m->cow == 0) { 1952 /* 1953 * check to see if we raced with an xmit complete when 1954 * waiting to allocate a page. If so, put things back 1955 * the way they were 1956 */ 1957 vm_page_free(mnew); 1958 vm_page_insert(m, object, pindex); 1959 } else { /* clear COW & copy page */ 1960 if (!so_zerocp_fullpage) 1961 pmap_copy_page(m, mnew); 1962 mnew->valid = VM_PAGE_BITS_ALL; 1963 vm_page_dirty(mnew); 1964 mnew->wire_count = m->wire_count - m->cow; 1965 m->wire_count = m->cow; 1966 } 1967 } 1968 1969 void 1970 vm_page_cowclear(vm_page_t m) 1971 { 1972 1973 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1974 if (m->cow) { 1975 m->cow--; 1976 /* 1977 * let vm_fault add back write permission lazily 1978 */ 1979 } 1980 /* 1981 * sf_buf_free() will free the page, so we needn't do it here 1982 */ 1983 } 1984 1985 void 1986 vm_page_cowsetup(vm_page_t m) 1987 { 1988 1989 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1990 m->cow++; 1991 pmap_remove_write(m); 1992 } 1993 1994 #include "opt_ddb.h" 1995 #ifdef DDB 1996 #include <sys/kernel.h> 1997 1998 #include <ddb/ddb.h> 1999 2000 DB_SHOW_COMMAND(page, vm_page_print_page_info) 2001 { 2002 db_printf("cnt.v_free_count: %d\n", cnt.v_free_count); 2003 db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count); 2004 db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count); 2005 db_printf("cnt.v_active_count: %d\n", cnt.v_active_count); 2006 db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count); 2007 db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved); 2008 db_printf("cnt.v_free_min: %d\n", cnt.v_free_min); 2009 db_printf("cnt.v_free_target: %d\n", cnt.v_free_target); 2010 db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min); 2011 db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target); 2012 } 2013 2014 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 2015 { 2016 2017 db_printf("PQ_FREE:"); 2018 db_printf(" %d", cnt.v_free_count); 2019 db_printf("\n"); 2020 2021 db_printf("PQ_CACHE:"); 2022 db_printf(" %d", cnt.v_cache_count); 2023 db_printf("\n"); 2024 2025 db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n", 2026 *vm_page_queues[PQ_ACTIVE].cnt, 2027 *vm_page_queues[PQ_INACTIVE].cnt); 2028 } 2029 #endif /* DDB */ 2030