xref: /freebsd/sys/vm/vm_page.c (revision 30d239bc4c510432e65a84fa1c14ed67a3ab1c92)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
33  */
34 
35 /*-
36  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
37  * All rights reserved.
38  *
39  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
40  *
41  * Permission to use, copy, modify and distribute this software and
42  * its documentation is hereby granted, provided that both the copyright
43  * notice and this permission notice appear in all copies of the
44  * software, derivative works or modified versions, and any portions
45  * thereof, and that both notices appear in supporting documentation.
46  *
47  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
48  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
49  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
50  *
51  * Carnegie Mellon requests users of this software to return to
52  *
53  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
54  *  School of Computer Science
55  *  Carnegie Mellon University
56  *  Pittsburgh PA 15213-3890
57  *
58  * any improvements or extensions that they make and grant Carnegie the
59  * rights to redistribute these changes.
60  */
61 
62 /*
63  *			GENERAL RULES ON VM_PAGE MANIPULATION
64  *
65  *	- a pageq mutex is required when adding or removing a page from a
66  *	  page queue (vm_page_queue[]), regardless of other mutexes or the
67  *	  busy state of a page.
68  *
69  *	- a hash chain mutex is required when associating or disassociating
70  *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
71  *	  regardless of other mutexes or the busy state of a page.
72  *
73  *	- either a hash chain mutex OR a busied page is required in order
74  *	  to modify the page flags.  A hash chain mutex must be obtained in
75  *	  order to busy a page.  A page's flags cannot be modified by a
76  *	  hash chain mutex if the page is marked busy.
77  *
78  *	- The object memq mutex is held when inserting or removing
79  *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
80  *	  is different from the object's main mutex.
81  *
82  *	Generally speaking, you have to be aware of side effects when running
83  *	vm_page ops.  A vm_page_lookup() will return with the hash chain
84  *	locked, whether it was able to lookup the page or not.  vm_page_free(),
85  *	vm_page_cache(), vm_page_activate(), and a number of other routines
86  *	will release the hash chain mutex for you.  Intermediate manipulation
87  *	routines such as vm_page_flag_set() expect the hash chain to be held
88  *	on entry and the hash chain will remain held on return.
89  *
90  *	pageq scanning can only occur with the pageq in question locked.
91  *	We have a known bottleneck with the active queue, but the cache
92  *	and free queues are actually arrays already.
93  */
94 
95 /*
96  *	Resident memory management module.
97  */
98 
99 #include <sys/cdefs.h>
100 __FBSDID("$FreeBSD$");
101 
102 #include <sys/param.h>
103 #include <sys/systm.h>
104 #include <sys/lock.h>
105 #include <sys/kernel.h>
106 #include <sys/malloc.h>
107 #include <sys/mutex.h>
108 #include <sys/proc.h>
109 #include <sys/sysctl.h>
110 #include <sys/vmmeter.h>
111 #include <sys/vnode.h>
112 
113 #include <vm/vm.h>
114 #include <vm/vm_param.h>
115 #include <vm/vm_kern.h>
116 #include <vm/vm_object.h>
117 #include <vm/vm_page.h>
118 #include <vm/vm_pageout.h>
119 #include <vm/vm_pager.h>
120 #include <vm/vm_phys.h>
121 #include <vm/vm_extern.h>
122 #include <vm/uma.h>
123 #include <vm/uma_int.h>
124 
125 #include <machine/md_var.h>
126 
127 /*
128  *	Associated with page of user-allocatable memory is a
129  *	page structure.
130  */
131 
132 struct mtx vm_page_queue_mtx;
133 struct mtx vm_page_queue_free_mtx;
134 
135 vm_page_t vm_page_array = 0;
136 int vm_page_array_size = 0;
137 long first_page = 0;
138 int vm_page_zero_count = 0;
139 
140 static int boot_pages = UMA_BOOT_PAGES;
141 TUNABLE_INT("vm.boot_pages", &boot_pages);
142 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
143 	"number of pages allocated for bootstrapping the VM system");
144 
145 /*
146  *	vm_set_page_size:
147  *
148  *	Sets the page size, perhaps based upon the memory
149  *	size.  Must be called before any use of page-size
150  *	dependent functions.
151  */
152 void
153 vm_set_page_size(void)
154 {
155 	if (cnt.v_page_size == 0)
156 		cnt.v_page_size = PAGE_SIZE;
157 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
158 		panic("vm_set_page_size: page size not a power of two");
159 }
160 
161 /*
162  *	vm_page_blacklist_lookup:
163  *
164  *	See if a physical address in this page has been listed
165  *	in the blacklist tunable.  Entries in the tunable are
166  *	separated by spaces or commas.  If an invalid integer is
167  *	encountered then the rest of the string is skipped.
168  */
169 static int
170 vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
171 {
172 	vm_paddr_t bad;
173 	char *cp, *pos;
174 
175 	for (pos = list; *pos != '\0'; pos = cp) {
176 		bad = strtoq(pos, &cp, 0);
177 		if (*cp != '\0') {
178 			if (*cp == ' ' || *cp == ',') {
179 				cp++;
180 				if (cp == pos)
181 					continue;
182 			} else
183 				break;
184 		}
185 		if (pa == trunc_page(bad))
186 			return (1);
187 	}
188 	return (0);
189 }
190 
191 /*
192  *	vm_page_startup:
193  *
194  *	Initializes the resident memory module.
195  *
196  *	Allocates memory for the page cells, and
197  *	for the object/offset-to-page hash table headers.
198  *	Each page cell is initialized and placed on the free list.
199  */
200 vm_offset_t
201 vm_page_startup(vm_offset_t vaddr)
202 {
203 	vm_offset_t mapped;
204 	vm_size_t npages;
205 	vm_paddr_t page_range;
206 	vm_paddr_t new_end;
207 	int i;
208 	vm_paddr_t pa;
209 	int nblocks;
210 	vm_paddr_t last_pa;
211 	char *list;
212 
213 	/* the biggest memory array is the second group of pages */
214 	vm_paddr_t end;
215 	vm_paddr_t biggestsize;
216 	vm_paddr_t low_water, high_water;
217 	int biggestone;
218 
219 	vm_paddr_t total;
220 
221 	total = 0;
222 	biggestsize = 0;
223 	biggestone = 0;
224 	nblocks = 0;
225 	vaddr = round_page(vaddr);
226 
227 	for (i = 0; phys_avail[i + 1]; i += 2) {
228 		phys_avail[i] = round_page(phys_avail[i]);
229 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
230 	}
231 
232 	low_water = phys_avail[0];
233 	high_water = phys_avail[1];
234 
235 	for (i = 0; phys_avail[i + 1]; i += 2) {
236 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
237 
238 		if (size > biggestsize) {
239 			biggestone = i;
240 			biggestsize = size;
241 		}
242 		if (phys_avail[i] < low_water)
243 			low_water = phys_avail[i];
244 		if (phys_avail[i + 1] > high_water)
245 			high_water = phys_avail[i + 1];
246 		++nblocks;
247 		total += size;
248 	}
249 
250 	end = phys_avail[biggestone+1];
251 
252 	/*
253 	 * Initialize the locks.
254 	 */
255 	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
256 	    MTX_RECURSE);
257 	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
258 	    MTX_DEF);
259 
260 	/*
261 	 * Initialize the queue headers for the free queue, the active queue
262 	 * and the inactive queue.
263 	 */
264 	vm_pageq_init();
265 
266 	/*
267 	 * Allocate memory for use when boot strapping the kernel memory
268 	 * allocator.
269 	 */
270 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
271 	new_end = trunc_page(new_end);
272 	mapped = pmap_map(&vaddr, new_end, end,
273 	    VM_PROT_READ | VM_PROT_WRITE);
274 	bzero((void *)mapped, end - new_end);
275 	uma_startup((void *)mapped, boot_pages);
276 
277 #if defined(__amd64__) || defined(__i386__)
278 	/*
279 	 * Allocate a bitmap to indicate that a random physical page
280 	 * needs to be included in a minidump.
281 	 *
282 	 * The amd64 port needs this to indicate which direct map pages
283 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
284 	 *
285 	 * However, i386 still needs this workspace internally within the
286 	 * minidump code.  In theory, they are not needed on i386, but are
287 	 * included should the sf_buf code decide to use them.
288 	 */
289 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
290 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
291 	new_end -= vm_page_dump_size;
292 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
293 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
294 	bzero((void *)vm_page_dump, vm_page_dump_size);
295 #endif
296 	/*
297 	 * Compute the number of pages of memory that will be available for
298 	 * use (taking into account the overhead of a page structure per
299 	 * page).
300 	 */
301 	first_page = low_water / PAGE_SIZE;
302 #ifdef VM_PHYSSEG_SPARSE
303 	page_range = 0;
304 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
305 		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
306 #elif defined(VM_PHYSSEG_DENSE)
307 	page_range = high_water / PAGE_SIZE - first_page;
308 #else
309 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
310 #endif
311 	npages = (total - (page_range * sizeof(struct vm_page)) -
312 	    (end - new_end)) / PAGE_SIZE;
313 	end = new_end;
314 
315 	/*
316 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
317 	 */
318 	vaddr += PAGE_SIZE;
319 
320 	/*
321 	 * Initialize the mem entry structures now, and put them in the free
322 	 * queue.
323 	 */
324 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
325 	mapped = pmap_map(&vaddr, new_end, end,
326 	    VM_PROT_READ | VM_PROT_WRITE);
327 	vm_page_array = (vm_page_t) mapped;
328 #ifdef __amd64__
329 	/*
330 	 * pmap_map on amd64 comes out of the direct-map, not kvm like i386,
331 	 * so the pages must be tracked for a crashdump to include this data.
332 	 * This includes the vm_page_array and the early UMA bootstrap pages.
333 	 */
334 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
335 		dump_add_page(pa);
336 #endif
337 	phys_avail[biggestone + 1] = new_end;
338 
339 	/*
340 	 * Clear all of the page structures
341 	 */
342 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
343 	for (i = 0; i < page_range; i++)
344 		vm_page_array[i].order = VM_NFREEORDER;
345 	vm_page_array_size = page_range;
346 
347 	/*
348 	 * This assertion tests the hypothesis that npages and total are
349 	 * redundant.  XXX
350 	 */
351 	page_range = 0;
352 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
353 		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
354 	KASSERT(page_range == npages,
355 	    ("vm_page_startup: inconsistent page counts"));
356 
357 	/*
358 	 * Initialize the physical memory allocator.
359 	 */
360 	vm_phys_init();
361 
362 	/*
363 	 * Add every available physical page that is not blacklisted to
364 	 * the free lists.
365 	 */
366 	cnt.v_page_count = 0;
367 	cnt.v_free_count = 0;
368 	list = getenv("vm.blacklist");
369 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
370 		pa = phys_avail[i];
371 		last_pa = phys_avail[i + 1];
372 		while (pa < last_pa) {
373 			if (list != NULL &&
374 			    vm_page_blacklist_lookup(list, pa))
375 				printf("Skipping page with pa 0x%jx\n",
376 				    (uintmax_t)pa);
377 			else
378 				vm_phys_add_page(pa);
379 			pa += PAGE_SIZE;
380 		}
381 	}
382 	freeenv(list);
383 	return (vaddr);
384 }
385 
386 void
387 vm_page_flag_set(vm_page_t m, unsigned short bits)
388 {
389 
390 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
391 	m->flags |= bits;
392 }
393 
394 void
395 vm_page_flag_clear(vm_page_t m, unsigned short bits)
396 {
397 
398 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
399 	m->flags &= ~bits;
400 }
401 
402 void
403 vm_page_busy(vm_page_t m)
404 {
405 
406 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
407 	KASSERT((m->oflags & VPO_BUSY) == 0,
408 	    ("vm_page_busy: page already busy!!!"));
409 	m->oflags |= VPO_BUSY;
410 }
411 
412 /*
413  *      vm_page_flash:
414  *
415  *      wakeup anyone waiting for the page.
416  */
417 void
418 vm_page_flash(vm_page_t m)
419 {
420 
421 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
422 	if (m->oflags & VPO_WANTED) {
423 		m->oflags &= ~VPO_WANTED;
424 		wakeup(m);
425 	}
426 }
427 
428 /*
429  *      vm_page_wakeup:
430  *
431  *      clear the VPO_BUSY flag and wakeup anyone waiting for the
432  *      page.
433  *
434  */
435 void
436 vm_page_wakeup(vm_page_t m)
437 {
438 
439 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
440 	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
441 	m->oflags &= ~VPO_BUSY;
442 	vm_page_flash(m);
443 }
444 
445 void
446 vm_page_io_start(vm_page_t m)
447 {
448 
449 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
450 	m->busy++;
451 }
452 
453 void
454 vm_page_io_finish(vm_page_t m)
455 {
456 
457 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
458 	m->busy--;
459 	if (m->busy == 0)
460 		vm_page_flash(m);
461 }
462 
463 /*
464  * Keep page from being freed by the page daemon
465  * much of the same effect as wiring, except much lower
466  * overhead and should be used only for *very* temporary
467  * holding ("wiring").
468  */
469 void
470 vm_page_hold(vm_page_t mem)
471 {
472 
473 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
474         mem->hold_count++;
475 }
476 
477 void
478 vm_page_unhold(vm_page_t mem)
479 {
480 
481 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
482 	--mem->hold_count;
483 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
484 	if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD))
485 		vm_page_free_toq(mem);
486 }
487 
488 /*
489  *	vm_page_free:
490  *
491  *	Free a page.
492  */
493 void
494 vm_page_free(vm_page_t m)
495 {
496 
497 	m->flags &= ~PG_ZERO;
498 	vm_page_free_toq(m);
499 }
500 
501 /*
502  *	vm_page_free_zero:
503  *
504  *	Free a page to the zerod-pages queue
505  */
506 void
507 vm_page_free_zero(vm_page_t m)
508 {
509 
510 	m->flags |= PG_ZERO;
511 	vm_page_free_toq(m);
512 }
513 
514 /*
515  *	vm_page_sleep:
516  *
517  *	Sleep and release the page queues lock.
518  *
519  *	The object containing the given page must be locked.
520  */
521 void
522 vm_page_sleep(vm_page_t m, const char *msg)
523 {
524 
525 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
526 	if (!mtx_owned(&vm_page_queue_mtx))
527 		vm_page_lock_queues();
528 	vm_page_flag_set(m, PG_REFERENCED);
529 	vm_page_unlock_queues();
530 
531 	/*
532 	 * It's possible that while we sleep, the page will get
533 	 * unbusied and freed.  If we are holding the object
534 	 * lock, we will assume we hold a reference to the object
535 	 * such that even if m->object changes, we can re-lock
536 	 * it.
537 	 */
538 	m->oflags |= VPO_WANTED;
539 	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
540 }
541 
542 /*
543  *	vm_page_dirty:
544  *
545  *	make page all dirty
546  */
547 void
548 vm_page_dirty(vm_page_t m)
549 {
550 	KASSERT((m->flags & PG_CACHED) == 0,
551 	    ("vm_page_dirty: page in cache!"));
552 	KASSERT(!VM_PAGE_IS_FREE(m),
553 	    ("vm_page_dirty: page is free!"));
554 	m->dirty = VM_PAGE_BITS_ALL;
555 }
556 
557 /*
558  *	vm_page_splay:
559  *
560  *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
561  *	the vm_page containing the given pindex.  If, however, that
562  *	pindex is not found in the vm_object, returns a vm_page that is
563  *	adjacent to the pindex, coming before or after it.
564  */
565 vm_page_t
566 vm_page_splay(vm_pindex_t pindex, vm_page_t root)
567 {
568 	struct vm_page dummy;
569 	vm_page_t lefttreemax, righttreemin, y;
570 
571 	if (root == NULL)
572 		return (root);
573 	lefttreemax = righttreemin = &dummy;
574 	for (;; root = y) {
575 		if (pindex < root->pindex) {
576 			if ((y = root->left) == NULL)
577 				break;
578 			if (pindex < y->pindex) {
579 				/* Rotate right. */
580 				root->left = y->right;
581 				y->right = root;
582 				root = y;
583 				if ((y = root->left) == NULL)
584 					break;
585 			}
586 			/* Link into the new root's right tree. */
587 			righttreemin->left = root;
588 			righttreemin = root;
589 		} else if (pindex > root->pindex) {
590 			if ((y = root->right) == NULL)
591 				break;
592 			if (pindex > y->pindex) {
593 				/* Rotate left. */
594 				root->right = y->left;
595 				y->left = root;
596 				root = y;
597 				if ((y = root->right) == NULL)
598 					break;
599 			}
600 			/* Link into the new root's left tree. */
601 			lefttreemax->right = root;
602 			lefttreemax = root;
603 		} else
604 			break;
605 	}
606 	/* Assemble the new root. */
607 	lefttreemax->right = root->left;
608 	righttreemin->left = root->right;
609 	root->left = dummy.right;
610 	root->right = dummy.left;
611 	return (root);
612 }
613 
614 /*
615  *	vm_page_insert:		[ internal use only ]
616  *
617  *	Inserts the given mem entry into the object and object list.
618  *
619  *	The pagetables are not updated but will presumably fault the page
620  *	in if necessary, or if a kernel page the caller will at some point
621  *	enter the page into the kernel's pmap.  We are not allowed to block
622  *	here so we *can't* do this anyway.
623  *
624  *	The object and page must be locked.
625  *	This routine may not block.
626  */
627 void
628 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
629 {
630 	vm_page_t root;
631 
632 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
633 	if (m->object != NULL)
634 		panic("vm_page_insert: page already inserted");
635 
636 	/*
637 	 * Record the object/offset pair in this page
638 	 */
639 	m->object = object;
640 	m->pindex = pindex;
641 
642 	/*
643 	 * Now link into the object's ordered list of backed pages.
644 	 */
645 	root = object->root;
646 	if (root == NULL) {
647 		m->left = NULL;
648 		m->right = NULL;
649 		TAILQ_INSERT_TAIL(&object->memq, m, listq);
650 	} else {
651 		root = vm_page_splay(pindex, root);
652 		if (pindex < root->pindex) {
653 			m->left = root->left;
654 			m->right = root;
655 			root->left = NULL;
656 			TAILQ_INSERT_BEFORE(root, m, listq);
657 		} else if (pindex == root->pindex)
658 			panic("vm_page_insert: offset already allocated");
659 		else {
660 			m->right = root->right;
661 			m->left = root;
662 			root->right = NULL;
663 			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
664 		}
665 	}
666 	object->root = m;
667 	object->generation++;
668 
669 	/*
670 	 * show that the object has one more resident page.
671 	 */
672 	object->resident_page_count++;
673 	/*
674 	 * Hold the vnode until the last page is released.
675 	 */
676 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
677 		vhold((struct vnode *)object->handle);
678 
679 	/*
680 	 * Since we are inserting a new and possibly dirty page,
681 	 * update the object's OBJ_MIGHTBEDIRTY flag.
682 	 */
683 	if (m->flags & PG_WRITEABLE)
684 		vm_object_set_writeable_dirty(object);
685 }
686 
687 /*
688  *	vm_page_remove:
689  *				NOTE: used by device pager as well -wfj
690  *
691  *	Removes the given mem entry from the object/offset-page
692  *	table and the object page list, but do not invalidate/terminate
693  *	the backing store.
694  *
695  *	The object and page must be locked.
696  *	The underlying pmap entry (if any) is NOT removed here.
697  *	This routine may not block.
698  */
699 void
700 vm_page_remove(vm_page_t m)
701 {
702 	vm_object_t object;
703 	vm_page_t root;
704 
705 	if ((object = m->object) == NULL)
706 		return;
707 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
708 	if (m->oflags & VPO_BUSY) {
709 		m->oflags &= ~VPO_BUSY;
710 		vm_page_flash(m);
711 	}
712 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
713 
714 	/*
715 	 * Now remove from the object's list of backed pages.
716 	 */
717 	if (m != object->root)
718 		vm_page_splay(m->pindex, object->root);
719 	if (m->left == NULL)
720 		root = m->right;
721 	else {
722 		root = vm_page_splay(m->pindex, m->left);
723 		root->right = m->right;
724 	}
725 	object->root = root;
726 	TAILQ_REMOVE(&object->memq, m, listq);
727 
728 	/*
729 	 * And show that the object has one fewer resident page.
730 	 */
731 	object->resident_page_count--;
732 	object->generation++;
733 	/*
734 	 * The vnode may now be recycled.
735 	 */
736 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
737 		vdrop((struct vnode *)object->handle);
738 
739 	m->object = NULL;
740 }
741 
742 /*
743  *	vm_page_lookup:
744  *
745  *	Returns the page associated with the object/offset
746  *	pair specified; if none is found, NULL is returned.
747  *
748  *	The object must be locked.
749  *	This routine may not block.
750  *	This is a critical path routine
751  */
752 vm_page_t
753 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
754 {
755 	vm_page_t m;
756 
757 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
758 	if ((m = object->root) != NULL && m->pindex != pindex) {
759 		m = vm_page_splay(pindex, m);
760 		if ((object->root = m)->pindex != pindex)
761 			m = NULL;
762 	}
763 	return (m);
764 }
765 
766 /*
767  *	vm_page_rename:
768  *
769  *	Move the given memory entry from its
770  *	current object to the specified target object/offset.
771  *
772  *	The object must be locked.
773  *	This routine may not block.
774  *
775  *	Note: swap associated with the page must be invalidated by the move.  We
776  *	      have to do this for several reasons:  (1) we aren't freeing the
777  *	      page, (2) we are dirtying the page, (3) the VM system is probably
778  *	      moving the page from object A to B, and will then later move
779  *	      the backing store from A to B and we can't have a conflict.
780  *
781  *	Note: we *always* dirty the page.  It is necessary both for the
782  *	      fact that we moved it, and because we may be invalidating
783  *	      swap.  If the page is on the cache, we have to deactivate it
784  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
785  *	      on the cache.
786  */
787 void
788 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
789 {
790 
791 	vm_page_remove(m);
792 	vm_page_insert(m, new_object, new_pindex);
793 	vm_page_dirty(m);
794 }
795 
796 /*
797  *	Convert all of the given object's cached pages that have a
798  *	pindex within the given range into free pages.  If the value
799  *	zero is given for "end", then the range's upper bound is
800  *	infinity.  If the given object is backed by a vnode and it
801  *	transitions from having one or more cached pages to none, the
802  *	vnode's hold count is reduced.
803  */
804 void
805 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
806 {
807 	vm_page_t m, m_next;
808 	boolean_t empty;
809 
810 	mtx_lock(&vm_page_queue_free_mtx);
811 	if (__predict_false(object->cache == NULL)) {
812 		mtx_unlock(&vm_page_queue_free_mtx);
813 		return;
814 	}
815 	m = object->cache = vm_page_splay(start, object->cache);
816 	if (m->pindex < start) {
817 		if (m->right == NULL)
818 			m = NULL;
819 		else {
820 			m_next = vm_page_splay(start, m->right);
821 			m_next->left = m;
822 			m->right = NULL;
823 			m = object->cache = m_next;
824 		}
825 	}
826 
827 	/*
828 	 * At this point, "m" is either (1) a reference to the page
829 	 * with the least pindex that is greater than or equal to
830 	 * "start" or (2) NULL.
831 	 */
832 	for (; m != NULL && (m->pindex < end || end == 0); m = m_next) {
833 		/*
834 		 * Find "m"'s successor and remove "m" from the
835 		 * object's cache.
836 		 */
837 		if (m->right == NULL) {
838 			object->cache = m->left;
839 			m_next = NULL;
840 		} else {
841 			m_next = vm_page_splay(start, m->right);
842 			m_next->left = m->left;
843 			object->cache = m_next;
844 		}
845 		/* Convert "m" to a free page. */
846 		m->object = NULL;
847 		m->valid = 0;
848 		/* Clear PG_CACHED and set PG_FREE. */
849 		m->flags ^= PG_CACHED | PG_FREE;
850 		KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
851 		    ("vm_page_cache_free: page %p has inconsistent flags", m));
852 		cnt.v_cache_count--;
853 		cnt.v_free_count++;
854 	}
855 	empty = object->cache == NULL;
856 	mtx_unlock(&vm_page_queue_free_mtx);
857 	if (object->type == OBJT_VNODE && empty)
858 		vdrop(object->handle);
859 }
860 
861 /*
862  *	Returns the cached page that is associated with the given
863  *	object and offset.  If, however, none exists, returns NULL.
864  *
865  *	The free page queue must be locked.
866  */
867 static inline vm_page_t
868 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
869 {
870 	vm_page_t m;
871 
872 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
873 	if ((m = object->cache) != NULL && m->pindex != pindex) {
874 		m = vm_page_splay(pindex, m);
875 		if ((object->cache = m)->pindex != pindex)
876 			m = NULL;
877 	}
878 	return (m);
879 }
880 
881 /*
882  *	Remove the given cached page from its containing object's
883  *	collection of cached pages.
884  *
885  *	The free page queue must be locked.
886  */
887 void
888 vm_page_cache_remove(vm_page_t m)
889 {
890 	vm_object_t object;
891 	vm_page_t root;
892 
893 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
894 	KASSERT((m->flags & PG_CACHED) != 0,
895 	    ("vm_page_cache_remove: page %p is not cached", m));
896 	object = m->object;
897 	if (m != object->cache) {
898 		root = vm_page_splay(m->pindex, object->cache);
899 		KASSERT(root == m,
900 		    ("vm_page_cache_remove: page %p is not cached in object %p",
901 		    m, object));
902 	}
903 	if (m->left == NULL)
904 		root = m->right;
905 	else if (m->right == NULL)
906 		root = m->left;
907 	else {
908 		root = vm_page_splay(m->pindex, m->left);
909 		root->right = m->right;
910 	}
911 	object->cache = root;
912 	m->object = NULL;
913 	cnt.v_cache_count--;
914 }
915 
916 /*
917  *	Transfer all of the cached pages with offset greater than or
918  *	equal to 'offidxstart' from the original object's cache to the
919  *	new object's cache.  Initially, the new object's cache must be
920  *	empty.  Offset 'offidxstart' in the original object must
921  *	correspond to offset zero in the new object.
922  *
923  *	The new object must be locked.
924  */
925 void
926 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
927     vm_object_t new_object)
928 {
929 	vm_page_t m, m_next;
930 
931 	/*
932 	 * Insertion into an object's collection of cached pages
933 	 * requires the object to be locked.  In contrast, removal does
934 	 * not.
935 	 */
936 	VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
937 	KASSERT(new_object->cache == NULL,
938 	    ("vm_page_cache_transfer: object %p has cached pages",
939 	    new_object));
940 	mtx_lock(&vm_page_queue_free_mtx);
941 	if ((m = orig_object->cache) != NULL) {
942 		/*
943 		 * Transfer all of the pages with offset greater than or
944 		 * equal to 'offidxstart' from the original object's
945 		 * cache to the new object's cache.
946 		 */
947 		m = vm_page_splay(offidxstart, m);
948 		if (m->pindex < offidxstart) {
949 			orig_object->cache = m;
950 			new_object->cache = m->right;
951 			m->right = NULL;
952 		} else {
953 			orig_object->cache = m->left;
954 			new_object->cache = m;
955 			m->left = NULL;
956 		}
957 		KASSERT(new_object->cache == NULL ||
958 		    new_object->type == OBJT_SWAP,
959 		    ("vm_page_cache_transfer: object %p's type is incompatible"
960 		    " with cached pages", new_object));
961 
962 		/*
963 		 * Update the object and offset of each page that was
964 		 * transferred to the new object's cache.
965 		 */
966 		while ((m = new_object->cache) != NULL) {
967 			m_next = vm_page_splay(m->pindex, m->right);
968 			m->object = new_object;
969 			m->pindex -= offidxstart;
970 			if (m_next == NULL)
971 				break;
972 			m->right = NULL;
973 			m_next->left = m;
974 			new_object->cache = m_next;
975 		}
976 	}
977 	mtx_unlock(&vm_page_queue_free_mtx);
978 }
979 
980 /*
981  *	vm_page_alloc:
982  *
983  *	Allocate and return a memory cell associated
984  *	with this VM object/offset pair.
985  *
986  *	page_req classes:
987  *	VM_ALLOC_NORMAL		normal process request
988  *	VM_ALLOC_SYSTEM		system *really* needs a page
989  *	VM_ALLOC_INTERRUPT	interrupt time request
990  *	VM_ALLOC_ZERO		zero page
991  *
992  *	This routine may not block.
993  */
994 vm_page_t
995 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
996 {
997 	struct vnode *vp = NULL;
998 	vm_object_t m_object;
999 	vm_page_t m;
1000 	int flags, page_req;
1001 
1002 	page_req = req & VM_ALLOC_CLASS_MASK;
1003 	KASSERT(curthread->td_intr_nesting_level == 0 ||
1004 	    page_req == VM_ALLOC_INTERRUPT,
1005 	    ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
1006 
1007 	if ((req & VM_ALLOC_NOOBJ) == 0) {
1008 		KASSERT(object != NULL,
1009 		    ("vm_page_alloc: NULL object."));
1010 		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1011 	}
1012 
1013 	/*
1014 	 * The pager is allowed to eat deeper into the free page list.
1015 	 */
1016 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
1017 		page_req = VM_ALLOC_SYSTEM;
1018 	};
1019 
1020 	mtx_lock(&vm_page_queue_free_mtx);
1021 	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1022 	    (page_req == VM_ALLOC_SYSTEM &&
1023 	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1024 	    (page_req == VM_ALLOC_INTERRUPT &&
1025 	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1026 		/*
1027 		 * Allocate from the free queue if the number of free pages
1028 		 * exceeds the minimum for the request class.
1029 		 */
1030 		if (object != NULL &&
1031 		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1032 			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1033 				mtx_unlock(&vm_page_queue_free_mtx);
1034 				return (NULL);
1035 			}
1036 			vm_phys_unfree_page(m);
1037 		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1038 			mtx_unlock(&vm_page_queue_free_mtx);
1039 			return (NULL);
1040 		} else
1041 			m = vm_phys_alloc_pages(object != NULL ?
1042 			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1043 	} else {
1044 		/*
1045 		 * Not allocatable, give up.
1046 		 */
1047 		mtx_unlock(&vm_page_queue_free_mtx);
1048 		atomic_add_int(&vm_pageout_deficit, 1);
1049 		pagedaemon_wakeup();
1050 		return (NULL);
1051 	}
1052 
1053 	/*
1054 	 *  At this point we had better have found a good page.
1055 	 */
1056 
1057 	KASSERT(
1058 	    m != NULL,
1059 	    ("vm_page_alloc(): missing page on free queue")
1060 	);
1061 	if ((m->flags & PG_CACHED) != 0) {
1062 		KASSERT(m->valid != 0,
1063 		    ("vm_page_alloc: cached page %p is invalid", m));
1064 		if (m->object == object && m->pindex == pindex)
1065 	  		cnt.v_reactivated++;
1066 		else
1067 			m->valid = 0;
1068 		m_object = m->object;
1069 		vm_page_cache_remove(m);
1070 		if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
1071 			vp = m_object->handle;
1072 	} else {
1073 		KASSERT(VM_PAGE_IS_FREE(m),
1074 		    ("vm_page_alloc: page %p is not free", m));
1075 		KASSERT(m->valid == 0,
1076 		    ("vm_page_alloc: free page %p is valid", m));
1077 		cnt.v_free_count--;
1078 	}
1079 
1080 	/*
1081 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
1082 	 */
1083 	flags = 0;
1084 	if (m->flags & PG_ZERO) {
1085 		vm_page_zero_count--;
1086 		if (req & VM_ALLOC_ZERO)
1087 			flags = PG_ZERO;
1088 	}
1089 	if (object == NULL || object->type == OBJT_PHYS)
1090 		flags |= PG_UNMANAGED;
1091 	m->flags = flags;
1092 	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
1093 		m->oflags = 0;
1094 	else
1095 		m->oflags = VPO_BUSY;
1096 	if (req & VM_ALLOC_WIRED) {
1097 		atomic_add_int(&cnt.v_wire_count, 1);
1098 		m->wire_count = 1;
1099 	} else
1100 		m->wire_count = 0;
1101 	m->hold_count = 0;
1102 	m->act_count = 0;
1103 	m->busy = 0;
1104 	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
1105 	mtx_unlock(&vm_page_queue_free_mtx);
1106 
1107 	if ((req & VM_ALLOC_NOOBJ) == 0)
1108 		vm_page_insert(m, object, pindex);
1109 	else
1110 		m->pindex = pindex;
1111 
1112 	/*
1113 	 * The following call to vdrop() must come after the above call
1114 	 * to vm_page_insert() in case both affect the same object and
1115 	 * vnode.  Otherwise, the affected vnode's hold count could
1116 	 * temporarily become zero.
1117 	 */
1118 	if (vp != NULL)
1119 		vdrop(vp);
1120 
1121 	/*
1122 	 * Don't wakeup too often - wakeup the pageout daemon when
1123 	 * we would be nearly out of memory.
1124 	 */
1125 	if (vm_paging_needed())
1126 		pagedaemon_wakeup();
1127 
1128 	return (m);
1129 }
1130 
1131 /*
1132  *	vm_wait:	(also see VM_WAIT macro)
1133  *
1134  *	Block until free pages are available for allocation
1135  *	- Called in various places before memory allocations.
1136  */
1137 void
1138 vm_wait(void)
1139 {
1140 
1141 	mtx_lock(&vm_page_queue_free_mtx);
1142 	if (curproc == pageproc) {
1143 		vm_pageout_pages_needed = 1;
1144 		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1145 		    PDROP | PSWP, "VMWait", 0);
1146 	} else {
1147 		if (!vm_pages_needed) {
1148 			vm_pages_needed = 1;
1149 			wakeup(&vm_pages_needed);
1150 		}
1151 		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1152 		    "vmwait", 0);
1153 	}
1154 }
1155 
1156 /*
1157  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1158  *
1159  *	Block until free pages are available for allocation
1160  *	- Called only in vm_fault so that processes page faulting
1161  *	  can be easily tracked.
1162  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1163  *	  processes will be able to grab memory first.  Do not change
1164  *	  this balance without careful testing first.
1165  */
1166 void
1167 vm_waitpfault(void)
1168 {
1169 
1170 	mtx_lock(&vm_page_queue_free_mtx);
1171 	if (!vm_pages_needed) {
1172 		vm_pages_needed = 1;
1173 		wakeup(&vm_pages_needed);
1174 	}
1175 	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1176 	    "pfault", 0);
1177 }
1178 
1179 /*
1180  *	vm_page_activate:
1181  *
1182  *	Put the specified page on the active list (if appropriate).
1183  *	Ensure that act_count is at least ACT_INIT but do not otherwise
1184  *	mess with it.
1185  *
1186  *	The page queues must be locked.
1187  *	This routine may not block.
1188  */
1189 void
1190 vm_page_activate(vm_page_t m)
1191 {
1192 
1193 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1194 	if (VM_PAGE_GETKNOWNQUEUE2(m) != PQ_ACTIVE) {
1195 		vm_pageq_remove(m);
1196 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1197 			if (m->act_count < ACT_INIT)
1198 				m->act_count = ACT_INIT;
1199 			vm_pageq_enqueue(PQ_ACTIVE, m);
1200 		}
1201 	} else {
1202 		if (m->act_count < ACT_INIT)
1203 			m->act_count = ACT_INIT;
1204 	}
1205 }
1206 
1207 /*
1208  *	vm_page_free_wakeup:
1209  *
1210  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1211  *	routine is called when a page has been added to the cache or free
1212  *	queues.
1213  *
1214  *	The page queues must be locked.
1215  *	This routine may not block.
1216  */
1217 static inline void
1218 vm_page_free_wakeup(void)
1219 {
1220 
1221 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1222 	/*
1223 	 * if pageout daemon needs pages, then tell it that there are
1224 	 * some free.
1225 	 */
1226 	if (vm_pageout_pages_needed &&
1227 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1228 		wakeup(&vm_pageout_pages_needed);
1229 		vm_pageout_pages_needed = 0;
1230 	}
1231 	/*
1232 	 * wakeup processes that are waiting on memory if we hit a
1233 	 * high water mark. And wakeup scheduler process if we have
1234 	 * lots of memory. this process will swapin processes.
1235 	 */
1236 	if (vm_pages_needed && !vm_page_count_min()) {
1237 		vm_pages_needed = 0;
1238 		wakeup(&cnt.v_free_count);
1239 	}
1240 }
1241 
1242 /*
1243  *	vm_page_free_toq:
1244  *
1245  *	Returns the given page to the free list,
1246  *	disassociating it with any VM object.
1247  *
1248  *	Object and page must be locked prior to entry.
1249  *	This routine may not block.
1250  */
1251 
1252 void
1253 vm_page_free_toq(vm_page_t m)
1254 {
1255 
1256 	if (VM_PAGE_GETQUEUE(m) != PQ_NONE)
1257 		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1258 	KASSERT(!pmap_page_is_mapped(m),
1259 	    ("vm_page_free_toq: freeing mapped page %p", m));
1260 	PCPU_INC(cnt.v_tfree);
1261 
1262 	if (m->busy || VM_PAGE_IS_FREE(m)) {
1263 		printf(
1264 		"vm_page_free: pindex(%lu), busy(%d), VPO_BUSY(%d), hold(%d)\n",
1265 		    (u_long)m->pindex, m->busy, (m->oflags & VPO_BUSY) ? 1 : 0,
1266 		    m->hold_count);
1267 		if (VM_PAGE_IS_FREE(m))
1268 			panic("vm_page_free: freeing free page");
1269 		else
1270 			panic("vm_page_free: freeing busy page");
1271 	}
1272 
1273 	/*
1274 	 * unqueue, then remove page.  Note that we cannot destroy
1275 	 * the page here because we do not want to call the pager's
1276 	 * callback routine until after we've put the page on the
1277 	 * appropriate free queue.
1278 	 */
1279 	vm_pageq_remove(m);
1280 	vm_page_remove(m);
1281 
1282 	/*
1283 	 * If fictitious remove object association and
1284 	 * return, otherwise delay object association removal.
1285 	 */
1286 	if ((m->flags & PG_FICTITIOUS) != 0) {
1287 		return;
1288 	}
1289 
1290 	m->valid = 0;
1291 	vm_page_undirty(m);
1292 
1293 	if (m->wire_count != 0) {
1294 		if (m->wire_count > 1) {
1295 			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1296 				m->wire_count, (long)m->pindex);
1297 		}
1298 		panic("vm_page_free: freeing wired page");
1299 	}
1300 	if (m->hold_count != 0) {
1301 		m->flags &= ~PG_ZERO;
1302 		vm_pageq_enqueue(PQ_HOLD, m);
1303 	} else {
1304 		m->flags |= PG_FREE;
1305 		mtx_lock(&vm_page_queue_free_mtx);
1306 		cnt.v_free_count++;
1307 		if ((m->flags & PG_ZERO) != 0) {
1308 			vm_phys_free_pages(m, 0);
1309 			++vm_page_zero_count;
1310 		} else {
1311 			vm_phys_free_pages(m, 0);
1312 			vm_page_zero_idle_wakeup();
1313 		}
1314 		vm_page_free_wakeup();
1315 		mtx_unlock(&vm_page_queue_free_mtx);
1316 	}
1317 }
1318 
1319 /*
1320  *	vm_page_wire:
1321  *
1322  *	Mark this page as wired down by yet
1323  *	another map, removing it from paging queues
1324  *	as necessary.
1325  *
1326  *	The page queues must be locked.
1327  *	This routine may not block.
1328  */
1329 void
1330 vm_page_wire(vm_page_t m)
1331 {
1332 
1333 	/*
1334 	 * Only bump the wire statistics if the page is not already wired,
1335 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1336 	 * it is already off the queues).
1337 	 */
1338 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1339 	if (m->flags & PG_FICTITIOUS)
1340 		return;
1341 	if (m->wire_count == 0) {
1342 		if ((m->flags & PG_UNMANAGED) == 0)
1343 			vm_pageq_remove(m);
1344 		atomic_add_int(&cnt.v_wire_count, 1);
1345 	}
1346 	m->wire_count++;
1347 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1348 }
1349 
1350 /*
1351  *	vm_page_unwire:
1352  *
1353  *	Release one wiring of this page, potentially
1354  *	enabling it to be paged again.
1355  *
1356  *	Many pages placed on the inactive queue should actually go
1357  *	into the cache, but it is difficult to figure out which.  What
1358  *	we do instead, if the inactive target is well met, is to put
1359  *	clean pages at the head of the inactive queue instead of the tail.
1360  *	This will cause them to be moved to the cache more quickly and
1361  *	if not actively re-referenced, freed more quickly.  If we just
1362  *	stick these pages at the end of the inactive queue, heavy filesystem
1363  *	meta-data accesses can cause an unnecessary paging load on memory bound
1364  *	processes.  This optimization causes one-time-use metadata to be
1365  *	reused more quickly.
1366  *
1367  *	BUT, if we are in a low-memory situation we have no choice but to
1368  *	put clean pages on the cache queue.
1369  *
1370  *	A number of routines use vm_page_unwire() to guarantee that the page
1371  *	will go into either the inactive or active queues, and will NEVER
1372  *	be placed in the cache - for example, just after dirtying a page.
1373  *	dirty pages in the cache are not allowed.
1374  *
1375  *	The page queues must be locked.
1376  *	This routine may not block.
1377  */
1378 void
1379 vm_page_unwire(vm_page_t m, int activate)
1380 {
1381 
1382 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1383 	if (m->flags & PG_FICTITIOUS)
1384 		return;
1385 	if (m->wire_count > 0) {
1386 		m->wire_count--;
1387 		if (m->wire_count == 0) {
1388 			atomic_subtract_int(&cnt.v_wire_count, 1);
1389 			if (m->flags & PG_UNMANAGED) {
1390 				;
1391 			} else if (activate)
1392 				vm_pageq_enqueue(PQ_ACTIVE, m);
1393 			else {
1394 				vm_page_flag_clear(m, PG_WINATCFLS);
1395 				vm_pageq_enqueue(PQ_INACTIVE, m);
1396 			}
1397 		}
1398 	} else {
1399 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1400 	}
1401 }
1402 
1403 
1404 /*
1405  * Move the specified page to the inactive queue.  If the page has
1406  * any associated swap, the swap is deallocated.
1407  *
1408  * Normally athead is 0 resulting in LRU operation.  athead is set
1409  * to 1 if we want this page to be 'as if it were placed in the cache',
1410  * except without unmapping it from the process address space.
1411  *
1412  * This routine may not block.
1413  */
1414 static inline void
1415 _vm_page_deactivate(vm_page_t m, int athead)
1416 {
1417 
1418 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1419 
1420 	/*
1421 	 * Ignore if already inactive.
1422 	 */
1423 	if (VM_PAGE_INQUEUE2(m, PQ_INACTIVE))
1424 		return;
1425 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1426 		vm_page_flag_clear(m, PG_WINATCFLS);
1427 		vm_pageq_remove(m);
1428 		if (athead)
1429 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1430 		else
1431 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1432 		VM_PAGE_SETQUEUE2(m, PQ_INACTIVE);
1433 		cnt.v_inactive_count++;
1434 	}
1435 }
1436 
1437 void
1438 vm_page_deactivate(vm_page_t m)
1439 {
1440     _vm_page_deactivate(m, 0);
1441 }
1442 
1443 /*
1444  * vm_page_try_to_cache:
1445  *
1446  * Returns 0 on failure, 1 on success
1447  */
1448 int
1449 vm_page_try_to_cache(vm_page_t m)
1450 {
1451 
1452 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1453 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1454 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1455 	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
1456 		return (0);
1457 	}
1458 	pmap_remove_all(m);
1459 	if (m->dirty)
1460 		return (0);
1461 	vm_page_cache(m);
1462 	return (1);
1463 }
1464 
1465 /*
1466  * vm_page_try_to_free()
1467  *
1468  *	Attempt to free the page.  If we cannot free it, we do nothing.
1469  *	1 is returned on success, 0 on failure.
1470  */
1471 int
1472 vm_page_try_to_free(vm_page_t m)
1473 {
1474 
1475 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1476 	if (m->object != NULL)
1477 		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1478 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1479 	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
1480 		return (0);
1481 	}
1482 	pmap_remove_all(m);
1483 	if (m->dirty)
1484 		return (0);
1485 	vm_page_free(m);
1486 	return (1);
1487 }
1488 
1489 /*
1490  * vm_page_cache
1491  *
1492  * Put the specified page onto the page cache queue (if appropriate).
1493  *
1494  * This routine may not block.
1495  */
1496 void
1497 vm_page_cache(vm_page_t m)
1498 {
1499 	vm_object_t object;
1500 	vm_page_t root;
1501 
1502 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1503 	object = m->object;
1504 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1505 	if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy ||
1506 	    m->hold_count || m->wire_count) {
1507 		panic("vm_page_cache: attempting to cache busy page");
1508 	}
1509 	pmap_remove_all(m);
1510 	if (m->dirty != 0)
1511 		panic("vm_page_cache: page %p is dirty", m);
1512 	if (m->valid == 0 || object->type == OBJT_DEFAULT) {
1513 		/*
1514 		 * Hypothesis: A cache-elgible page belonging to a
1515 		 * default object must be zero filled.
1516 		 */
1517 		vm_page_free(m);
1518 		return;
1519 	}
1520 	KASSERT((m->flags & PG_CACHED) == 0,
1521 	    ("vm_page_cache: page %p is already cached", m));
1522 	cnt.v_tcached++;
1523 
1524 	/*
1525 	 * Remove the page from the paging queues.
1526 	 */
1527 	vm_pageq_remove(m);
1528 
1529 	/*
1530 	 * Remove the page from the object's collection of resident
1531 	 * pages.
1532 	 */
1533 	if (m != object->root)
1534 		vm_page_splay(m->pindex, object->root);
1535 	if (m->left == NULL)
1536 		root = m->right;
1537 	else {
1538 		root = vm_page_splay(m->pindex, m->left);
1539 		root->right = m->right;
1540 	}
1541 	object->root = root;
1542 	TAILQ_REMOVE(&object->memq, m, listq);
1543 	object->resident_page_count--;
1544 	object->generation++;
1545 
1546 	/*
1547 	 * Insert the page into the object's collection of cached pages
1548 	 * and the physical memory allocator's cache/free page queues.
1549 	 */
1550 	vm_page_flag_set(m, PG_CACHED);
1551 	vm_page_flag_clear(m, PG_ZERO);
1552 	mtx_lock(&vm_page_queue_free_mtx);
1553 	vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
1554 	cnt.v_cache_count++;
1555 	root = object->cache;
1556 	if (root == NULL) {
1557 		m->left = NULL;
1558 		m->right = NULL;
1559 	} else {
1560 		root = vm_page_splay(m->pindex, root);
1561 		if (m->pindex < root->pindex) {
1562 			m->left = root->left;
1563 			m->right = root;
1564 			root->left = NULL;
1565 		} else if (__predict_false(m->pindex == root->pindex))
1566 			panic("vm_page_cache: offset already cached");
1567 		else {
1568 			m->right = root->right;
1569 			m->left = root;
1570 			root->right = NULL;
1571 		}
1572 	}
1573 	object->cache = m;
1574 	vm_phys_free_pages(m, 0);
1575 	vm_page_free_wakeup();
1576 	mtx_unlock(&vm_page_queue_free_mtx);
1577 
1578 	/*
1579 	 * Increment the vnode's hold count if this is the object's only
1580 	 * cached page.  Decrement the vnode's hold count if this was
1581 	 * the object's only resident page.
1582 	 */
1583 	if (object->type == OBJT_VNODE) {
1584 		if (root == NULL && object->resident_page_count != 0)
1585 			vhold(object->handle);
1586 		else if (root != NULL && object->resident_page_count == 0)
1587 			vdrop(object->handle);
1588 	}
1589 }
1590 
1591 /*
1592  * vm_page_dontneed
1593  *
1594  *	Cache, deactivate, or do nothing as appropriate.  This routine
1595  *	is typically used by madvise() MADV_DONTNEED.
1596  *
1597  *	Generally speaking we want to move the page into the cache so
1598  *	it gets reused quickly.  However, this can result in a silly syndrome
1599  *	due to the page recycling too quickly.  Small objects will not be
1600  *	fully cached.  On the otherhand, if we move the page to the inactive
1601  *	queue we wind up with a problem whereby very large objects
1602  *	unnecessarily blow away our inactive and cache queues.
1603  *
1604  *	The solution is to move the pages based on a fixed weighting.  We
1605  *	either leave them alone, deactivate them, or move them to the cache,
1606  *	where moving them to the cache has the highest weighting.
1607  *	By forcing some pages into other queues we eventually force the
1608  *	system to balance the queues, potentially recovering other unrelated
1609  *	space from active.  The idea is to not force this to happen too
1610  *	often.
1611  */
1612 void
1613 vm_page_dontneed(vm_page_t m)
1614 {
1615 	static int dnweight;
1616 	int dnw;
1617 	int head;
1618 
1619 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1620 	dnw = ++dnweight;
1621 
1622 	/*
1623 	 * occassionally leave the page alone
1624 	 */
1625 	if ((dnw & 0x01F0) == 0 ||
1626 	    VM_PAGE_INQUEUE2(m, PQ_INACTIVE)) {
1627 		if (m->act_count >= ACT_INIT)
1628 			--m->act_count;
1629 		return;
1630 	}
1631 
1632 	if (m->dirty == 0 && pmap_is_modified(m))
1633 		vm_page_dirty(m);
1634 
1635 	if (m->dirty || (dnw & 0x0070) == 0) {
1636 		/*
1637 		 * Deactivate the page 3 times out of 32.
1638 		 */
1639 		head = 0;
1640 	} else {
1641 		/*
1642 		 * Cache the page 28 times out of every 32.  Note that
1643 		 * the page is deactivated instead of cached, but placed
1644 		 * at the head of the queue instead of the tail.
1645 		 */
1646 		head = 1;
1647 	}
1648 	_vm_page_deactivate(m, head);
1649 }
1650 
1651 /*
1652  * Grab a page, waiting until we are waken up due to the page
1653  * changing state.  We keep on waiting, if the page continues
1654  * to be in the object.  If the page doesn't exist, first allocate it
1655  * and then conditionally zero it.
1656  *
1657  * This routine may block.
1658  */
1659 vm_page_t
1660 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1661 {
1662 	vm_page_t m;
1663 
1664 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1665 retrylookup:
1666 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1667 		if (vm_page_sleep_if_busy(m, TRUE, "pgrbwt")) {
1668 			if ((allocflags & VM_ALLOC_RETRY) == 0)
1669 				return (NULL);
1670 			goto retrylookup;
1671 		} else {
1672 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
1673 				vm_page_lock_queues();
1674 				vm_page_wire(m);
1675 				vm_page_unlock_queues();
1676 			}
1677 			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
1678 				vm_page_busy(m);
1679 			return (m);
1680 		}
1681 	}
1682 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1683 	if (m == NULL) {
1684 		VM_OBJECT_UNLOCK(object);
1685 		VM_WAIT;
1686 		VM_OBJECT_LOCK(object);
1687 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1688 			return (NULL);
1689 		goto retrylookup;
1690 	} else if (m->valid != 0)
1691 		return (m);
1692 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1693 		pmap_zero_page(m);
1694 	return (m);
1695 }
1696 
1697 /*
1698  * Mapping function for valid bits or for dirty bits in
1699  * a page.  May not block.
1700  *
1701  * Inputs are required to range within a page.
1702  */
1703 int
1704 vm_page_bits(int base, int size)
1705 {
1706 	int first_bit;
1707 	int last_bit;
1708 
1709 	KASSERT(
1710 	    base + size <= PAGE_SIZE,
1711 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1712 	);
1713 
1714 	if (size == 0)		/* handle degenerate case */
1715 		return (0);
1716 
1717 	first_bit = base >> DEV_BSHIFT;
1718 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1719 
1720 	return ((2 << last_bit) - (1 << first_bit));
1721 }
1722 
1723 /*
1724  *	vm_page_set_validclean:
1725  *
1726  *	Sets portions of a page valid and clean.  The arguments are expected
1727  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1728  *	of any partial chunks touched by the range.  The invalid portion of
1729  *	such chunks will be zero'd.
1730  *
1731  *	This routine may not block.
1732  *
1733  *	(base + size) must be less then or equal to PAGE_SIZE.
1734  */
1735 void
1736 vm_page_set_validclean(vm_page_t m, int base, int size)
1737 {
1738 	int pagebits;
1739 	int frag;
1740 	int endoff;
1741 
1742 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1743 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1744 	if (size == 0)	/* handle degenerate case */
1745 		return;
1746 
1747 	/*
1748 	 * If the base is not DEV_BSIZE aligned and the valid
1749 	 * bit is clear, we have to zero out a portion of the
1750 	 * first block.
1751 	 */
1752 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1753 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1754 		pmap_zero_page_area(m, frag, base - frag);
1755 
1756 	/*
1757 	 * If the ending offset is not DEV_BSIZE aligned and the
1758 	 * valid bit is clear, we have to zero out a portion of
1759 	 * the last block.
1760 	 */
1761 	endoff = base + size;
1762 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1763 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1764 		pmap_zero_page_area(m, endoff,
1765 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1766 
1767 	/*
1768 	 * Set valid, clear dirty bits.  If validating the entire
1769 	 * page we can safely clear the pmap modify bit.  We also
1770 	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
1771 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1772 	 * be set again.
1773 	 *
1774 	 * We set valid bits inclusive of any overlap, but we can only
1775 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1776 	 * the range.
1777 	 */
1778 	pagebits = vm_page_bits(base, size);
1779 	m->valid |= pagebits;
1780 #if 0	/* NOT YET */
1781 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1782 		frag = DEV_BSIZE - frag;
1783 		base += frag;
1784 		size -= frag;
1785 		if (size < 0)
1786 			size = 0;
1787 	}
1788 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1789 #endif
1790 	m->dirty &= ~pagebits;
1791 	if (base == 0 && size == PAGE_SIZE) {
1792 		pmap_clear_modify(m);
1793 		m->oflags &= ~VPO_NOSYNC;
1794 	}
1795 }
1796 
1797 void
1798 vm_page_clear_dirty(vm_page_t m, int base, int size)
1799 {
1800 
1801 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1802 	m->dirty &= ~vm_page_bits(base, size);
1803 }
1804 
1805 /*
1806  *	vm_page_set_invalid:
1807  *
1808  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1809  *	valid and dirty bits for the effected areas are cleared.
1810  *
1811  *	May not block.
1812  */
1813 void
1814 vm_page_set_invalid(vm_page_t m, int base, int size)
1815 {
1816 	int bits;
1817 
1818 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1819 	bits = vm_page_bits(base, size);
1820 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1821 	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
1822 		pmap_remove_all(m);
1823 	m->valid &= ~bits;
1824 	m->dirty &= ~bits;
1825 	m->object->generation++;
1826 }
1827 
1828 /*
1829  * vm_page_zero_invalid()
1830  *
1831  *	The kernel assumes that the invalid portions of a page contain
1832  *	garbage, but such pages can be mapped into memory by user code.
1833  *	When this occurs, we must zero out the non-valid portions of the
1834  *	page so user code sees what it expects.
1835  *
1836  *	Pages are most often semi-valid when the end of a file is mapped
1837  *	into memory and the file's size is not page aligned.
1838  */
1839 void
1840 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1841 {
1842 	int b;
1843 	int i;
1844 
1845 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1846 	/*
1847 	 * Scan the valid bits looking for invalid sections that
1848 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1849 	 * valid bit may be set ) have already been zerod by
1850 	 * vm_page_set_validclean().
1851 	 */
1852 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1853 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1854 		    (m->valid & (1 << i))
1855 		) {
1856 			if (i > b) {
1857 				pmap_zero_page_area(m,
1858 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1859 			}
1860 			b = i + 1;
1861 		}
1862 	}
1863 
1864 	/*
1865 	 * setvalid is TRUE when we can safely set the zero'd areas
1866 	 * as being valid.  We can do this if there are no cache consistancy
1867 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1868 	 */
1869 	if (setvalid)
1870 		m->valid = VM_PAGE_BITS_ALL;
1871 }
1872 
1873 /*
1874  *	vm_page_is_valid:
1875  *
1876  *	Is (partial) page valid?  Note that the case where size == 0
1877  *	will return FALSE in the degenerate case where the page is
1878  *	entirely invalid, and TRUE otherwise.
1879  *
1880  *	May not block.
1881  */
1882 int
1883 vm_page_is_valid(vm_page_t m, int base, int size)
1884 {
1885 	int bits = vm_page_bits(base, size);
1886 
1887 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1888 	if (m->valid && ((m->valid & bits) == bits))
1889 		return 1;
1890 	else
1891 		return 0;
1892 }
1893 
1894 /*
1895  * update dirty bits from pmap/mmu.  May not block.
1896  */
1897 void
1898 vm_page_test_dirty(vm_page_t m)
1899 {
1900 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1901 		vm_page_dirty(m);
1902 	}
1903 }
1904 
1905 int so_zerocp_fullpage = 0;
1906 
1907 /*
1908  *	Replace the given page with a copy.  The copied page assumes
1909  *	the portion of the given page's "wire_count" that is not the
1910  *	responsibility of this copy-on-write mechanism.
1911  *
1912  *	The object containing the given page must have a non-zero
1913  *	paging-in-progress count and be locked.
1914  */
1915 void
1916 vm_page_cowfault(vm_page_t m)
1917 {
1918 	vm_page_t mnew;
1919 	vm_object_t object;
1920 	vm_pindex_t pindex;
1921 
1922 	object = m->object;
1923 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1924 	KASSERT(object->paging_in_progress != 0,
1925 	    ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
1926 	    object));
1927 	pindex = m->pindex;
1928 
1929  retry_alloc:
1930 	pmap_remove_all(m);
1931 	vm_page_remove(m);
1932 	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
1933 	if (mnew == NULL) {
1934 		vm_page_insert(m, object, pindex);
1935 		vm_page_unlock_queues();
1936 		VM_OBJECT_UNLOCK(object);
1937 		VM_WAIT;
1938 		VM_OBJECT_LOCK(object);
1939 		if (m == vm_page_lookup(object, pindex)) {
1940 			vm_page_lock_queues();
1941 			goto retry_alloc;
1942 		} else {
1943 			/*
1944 			 * Page disappeared during the wait.
1945 			 */
1946 			vm_page_lock_queues();
1947 			return;
1948 		}
1949 	}
1950 
1951 	if (m->cow == 0) {
1952 		/*
1953 		 * check to see if we raced with an xmit complete when
1954 		 * waiting to allocate a page.  If so, put things back
1955 		 * the way they were
1956 		 */
1957 		vm_page_free(mnew);
1958 		vm_page_insert(m, object, pindex);
1959 	} else { /* clear COW & copy page */
1960 		if (!so_zerocp_fullpage)
1961 			pmap_copy_page(m, mnew);
1962 		mnew->valid = VM_PAGE_BITS_ALL;
1963 		vm_page_dirty(mnew);
1964 		mnew->wire_count = m->wire_count - m->cow;
1965 		m->wire_count = m->cow;
1966 	}
1967 }
1968 
1969 void
1970 vm_page_cowclear(vm_page_t m)
1971 {
1972 
1973 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1974 	if (m->cow) {
1975 		m->cow--;
1976 		/*
1977 		 * let vm_fault add back write permission  lazily
1978 		 */
1979 	}
1980 	/*
1981 	 *  sf_buf_free() will free the page, so we needn't do it here
1982 	 */
1983 }
1984 
1985 void
1986 vm_page_cowsetup(vm_page_t m)
1987 {
1988 
1989 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1990 	m->cow++;
1991 	pmap_remove_write(m);
1992 }
1993 
1994 #include "opt_ddb.h"
1995 #ifdef DDB
1996 #include <sys/kernel.h>
1997 
1998 #include <ddb/ddb.h>
1999 
2000 DB_SHOW_COMMAND(page, vm_page_print_page_info)
2001 {
2002 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
2003 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
2004 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
2005 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
2006 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
2007 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
2008 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
2009 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
2010 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
2011 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
2012 }
2013 
2014 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2015 {
2016 
2017 	db_printf("PQ_FREE:");
2018 	db_printf(" %d", cnt.v_free_count);
2019 	db_printf("\n");
2020 
2021 	db_printf("PQ_CACHE:");
2022 	db_printf(" %d", cnt.v_cache_count);
2023 	db_printf("\n");
2024 
2025 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
2026 		*vm_page_queues[PQ_ACTIVE].cnt,
2027 		*vm_page_queues[PQ_INACTIVE].cnt);
2028 }
2029 #endif /* DDB */
2030