xref: /freebsd/sys/vm/vm_page.c (revision 2d0d168606f477d58d1a9aa72f94915da2f1733a)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * The Mach Operating System project at Carnegie-Mellon University.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34  */
35 
36 /*-
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *			GENERAL RULES ON VM_PAGE MANIPULATION
65  *
66  *	- A page queue lock is required when adding or removing a page from a
67  *	  page queue regardless of other locks or the busy state of a page.
68  *
69  *		* In general, no thread besides the page daemon can acquire or
70  *		  hold more than one page queue lock at a time.
71  *
72  *		* The page daemon can acquire and hold any pair of page queue
73  *		  locks in any order.
74  *
75  *	- The object lock is required when inserting or removing
76  *	  pages from an object (vm_page_insert() or vm_page_remove()).
77  *
78  */
79 
80 /*
81  *	Resident memory management module.
82  */
83 
84 #include <sys/cdefs.h>
85 __FBSDID("$FreeBSD$");
86 
87 #include "opt_vm.h"
88 
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/lock.h>
92 #include <sys/kernel.h>
93 #include <sys/limits.h>
94 #include <sys/malloc.h>
95 #include <sys/mman.h>
96 #include <sys/msgbuf.h>
97 #include <sys/mutex.h>
98 #include <sys/proc.h>
99 #include <sys/rwlock.h>
100 #include <sys/sysctl.h>
101 #include <sys/vmmeter.h>
102 #include <sys/vnode.h>
103 
104 #include <vm/vm.h>
105 #include <vm/pmap.h>
106 #include <vm/vm_param.h>
107 #include <vm/vm_kern.h>
108 #include <vm/vm_object.h>
109 #include <vm/vm_page.h>
110 #include <vm/vm_pageout.h>
111 #include <vm/vm_pager.h>
112 #include <vm/vm_phys.h>
113 #include <vm/vm_radix.h>
114 #include <vm/vm_reserv.h>
115 #include <vm/vm_extern.h>
116 #include <vm/uma.h>
117 #include <vm/uma_int.h>
118 
119 #include <machine/md_var.h>
120 
121 /*
122  *	Associated with page of user-allocatable memory is a
123  *	page structure.
124  */
125 
126 struct vm_domain vm_dom[MAXMEMDOM];
127 struct mtx_padalign vm_page_queue_free_mtx;
128 
129 struct mtx_padalign pa_lock[PA_LOCK_COUNT];
130 
131 vm_page_t vm_page_array;
132 long vm_page_array_size;
133 long first_page;
134 int vm_page_zero_count;
135 
136 static int boot_pages = UMA_BOOT_PAGES;
137 TUNABLE_INT("vm.boot_pages", &boot_pages);
138 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
139 	"number of pages allocated for bootstrapping the VM system");
140 
141 static int pa_tryrelock_restart;
142 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
143     &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
144 
145 static uma_zone_t fakepg_zone;
146 
147 static struct vnode *vm_page_alloc_init(vm_page_t m);
148 static void vm_page_cache_turn_free(vm_page_t m);
149 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
150 static void vm_page_enqueue(int queue, vm_page_t m);
151 static void vm_page_init_fakepg(void *dummy);
152 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
153     vm_pindex_t pindex, vm_page_t mpred);
154 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
155     vm_page_t mpred);
156 
157 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
158 
159 static void
160 vm_page_init_fakepg(void *dummy)
161 {
162 
163 	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
164 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
165 }
166 
167 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
168 #if PAGE_SIZE == 32768
169 #ifdef CTASSERT
170 CTASSERT(sizeof(u_long) >= 8);
171 #endif
172 #endif
173 
174 /*
175  * Try to acquire a physical address lock while a pmap is locked.  If we
176  * fail to trylock we unlock and lock the pmap directly and cache the
177  * locked pa in *locked.  The caller should then restart their loop in case
178  * the virtual to physical mapping has changed.
179  */
180 int
181 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
182 {
183 	vm_paddr_t lockpa;
184 
185 	lockpa = *locked;
186 	*locked = pa;
187 	if (lockpa) {
188 		PA_LOCK_ASSERT(lockpa, MA_OWNED);
189 		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
190 			return (0);
191 		PA_UNLOCK(lockpa);
192 	}
193 	if (PA_TRYLOCK(pa))
194 		return (0);
195 	PMAP_UNLOCK(pmap);
196 	atomic_add_int(&pa_tryrelock_restart, 1);
197 	PA_LOCK(pa);
198 	PMAP_LOCK(pmap);
199 	return (EAGAIN);
200 }
201 
202 /*
203  *	vm_set_page_size:
204  *
205  *	Sets the page size, perhaps based upon the memory
206  *	size.  Must be called before any use of page-size
207  *	dependent functions.
208  */
209 void
210 vm_set_page_size(void)
211 {
212 	if (cnt.v_page_size == 0)
213 		cnt.v_page_size = PAGE_SIZE;
214 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
215 		panic("vm_set_page_size: page size not a power of two");
216 }
217 
218 /*
219  *	vm_page_blacklist_lookup:
220  *
221  *	See if a physical address in this page has been listed
222  *	in the blacklist tunable.  Entries in the tunable are
223  *	separated by spaces or commas.  If an invalid integer is
224  *	encountered then the rest of the string is skipped.
225  */
226 static int
227 vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
228 {
229 	vm_paddr_t bad;
230 	char *cp, *pos;
231 
232 	for (pos = list; *pos != '\0'; pos = cp) {
233 		bad = strtoq(pos, &cp, 0);
234 		if (*cp != '\0') {
235 			if (*cp == ' ' || *cp == ',') {
236 				cp++;
237 				if (cp == pos)
238 					continue;
239 			} else
240 				break;
241 		}
242 		if (pa == trunc_page(bad))
243 			return (1);
244 	}
245 	return (0);
246 }
247 
248 static void
249 vm_page_domain_init(struct vm_domain *vmd)
250 {
251 	struct vm_pagequeue *pq;
252 	int i;
253 
254 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
255 	    "vm inactive pagequeue";
256 	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) =
257 	    &cnt.v_inactive_count;
258 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
259 	    "vm active pagequeue";
260 	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) =
261 	    &cnt.v_active_count;
262 	vmd->vmd_page_count = 0;
263 	vmd->vmd_free_count = 0;
264 	vmd->vmd_segs = 0;
265 	vmd->vmd_oom = FALSE;
266 	vmd->vmd_pass = 0;
267 	for (i = 0; i < PQ_COUNT; i++) {
268 		pq = &vmd->vmd_pagequeues[i];
269 		TAILQ_INIT(&pq->pq_pl);
270 		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
271 		    MTX_DEF | MTX_DUPOK);
272 	}
273 }
274 
275 /*
276  *	vm_page_startup:
277  *
278  *	Initializes the resident memory module.
279  *
280  *	Allocates memory for the page cells, and
281  *	for the object/offset-to-page hash table headers.
282  *	Each page cell is initialized and placed on the free list.
283  */
284 vm_offset_t
285 vm_page_startup(vm_offset_t vaddr)
286 {
287 	vm_offset_t mapped;
288 	vm_paddr_t page_range;
289 	vm_paddr_t new_end;
290 	int i;
291 	vm_paddr_t pa;
292 	vm_paddr_t last_pa;
293 	char *list;
294 
295 	/* the biggest memory array is the second group of pages */
296 	vm_paddr_t end;
297 	vm_paddr_t biggestsize;
298 	vm_paddr_t low_water, high_water;
299 	int biggestone;
300 
301 	biggestsize = 0;
302 	biggestone = 0;
303 	vaddr = round_page(vaddr);
304 
305 	for (i = 0; phys_avail[i + 1]; i += 2) {
306 		phys_avail[i] = round_page(phys_avail[i]);
307 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
308 	}
309 
310 	low_water = phys_avail[0];
311 	high_water = phys_avail[1];
312 
313 	for (i = 0; phys_avail[i + 1]; i += 2) {
314 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
315 
316 		if (size > biggestsize) {
317 			biggestone = i;
318 			biggestsize = size;
319 		}
320 		if (phys_avail[i] < low_water)
321 			low_water = phys_avail[i];
322 		if (phys_avail[i + 1] > high_water)
323 			high_water = phys_avail[i + 1];
324 	}
325 
326 #ifdef XEN
327 	low_water = 0;
328 #endif
329 
330 	end = phys_avail[biggestone+1];
331 
332 	/*
333 	 * Initialize the page and queue locks.
334 	 */
335 	mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
336 	for (i = 0; i < PA_LOCK_COUNT; i++)
337 		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
338 	for (i = 0; i < vm_ndomains; i++)
339 		vm_page_domain_init(&vm_dom[i]);
340 
341 	/*
342 	 * Allocate memory for use when boot strapping the kernel memory
343 	 * allocator.
344 	 */
345 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
346 	new_end = trunc_page(new_end);
347 	mapped = pmap_map(&vaddr, new_end, end,
348 	    VM_PROT_READ | VM_PROT_WRITE);
349 	bzero((void *)mapped, end - new_end);
350 	uma_startup((void *)mapped, boot_pages);
351 
352 #if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \
353     defined(__mips__)
354 	/*
355 	 * Allocate a bitmap to indicate that a random physical page
356 	 * needs to be included in a minidump.
357 	 *
358 	 * The amd64 port needs this to indicate which direct map pages
359 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
360 	 *
361 	 * However, i386 still needs this workspace internally within the
362 	 * minidump code.  In theory, they are not needed on i386, but are
363 	 * included should the sf_buf code decide to use them.
364 	 */
365 	last_pa = 0;
366 	for (i = 0; dump_avail[i + 1] != 0; i += 2)
367 		if (dump_avail[i + 1] > last_pa)
368 			last_pa = dump_avail[i + 1];
369 	page_range = last_pa / PAGE_SIZE;
370 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
371 	new_end -= vm_page_dump_size;
372 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
373 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
374 	bzero((void *)vm_page_dump, vm_page_dump_size);
375 #endif
376 #ifdef __amd64__
377 	/*
378 	 * Request that the physical pages underlying the message buffer be
379 	 * included in a crash dump.  Since the message buffer is accessed
380 	 * through the direct map, they are not automatically included.
381 	 */
382 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
383 	last_pa = pa + round_page(msgbufsize);
384 	while (pa < last_pa) {
385 		dump_add_page(pa);
386 		pa += PAGE_SIZE;
387 	}
388 #endif
389 	/*
390 	 * Compute the number of pages of memory that will be available for
391 	 * use (taking into account the overhead of a page structure per
392 	 * page).
393 	 */
394 	first_page = low_water / PAGE_SIZE;
395 #ifdef VM_PHYSSEG_SPARSE
396 	page_range = 0;
397 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
398 		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
399 #elif defined(VM_PHYSSEG_DENSE)
400 	page_range = high_water / PAGE_SIZE - first_page;
401 #else
402 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
403 #endif
404 	end = new_end;
405 
406 	/*
407 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
408 	 */
409 	vaddr += PAGE_SIZE;
410 
411 	/*
412 	 * Initialize the mem entry structures now, and put them in the free
413 	 * queue.
414 	 */
415 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
416 	mapped = pmap_map(&vaddr, new_end, end,
417 	    VM_PROT_READ | VM_PROT_WRITE);
418 	vm_page_array = (vm_page_t) mapped;
419 #if VM_NRESERVLEVEL > 0
420 	/*
421 	 * Allocate memory for the reservation management system's data
422 	 * structures.
423 	 */
424 	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
425 #endif
426 #if defined(__amd64__) || defined(__mips__)
427 	/*
428 	 * pmap_map on amd64 and mips can come out of the direct-map, not kvm
429 	 * like i386, so the pages must be tracked for a crashdump to include
430 	 * this data.  This includes the vm_page_array and the early UMA
431 	 * bootstrap pages.
432 	 */
433 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
434 		dump_add_page(pa);
435 #endif
436 	phys_avail[biggestone + 1] = new_end;
437 
438 	/*
439 	 * Clear all of the page structures
440 	 */
441 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
442 	for (i = 0; i < page_range; i++)
443 		vm_page_array[i].order = VM_NFREEORDER;
444 	vm_page_array_size = page_range;
445 
446 	/*
447 	 * Initialize the physical memory allocator.
448 	 */
449 	vm_phys_init();
450 
451 	/*
452 	 * Add every available physical page that is not blacklisted to
453 	 * the free lists.
454 	 */
455 	cnt.v_page_count = 0;
456 	cnt.v_free_count = 0;
457 	list = getenv("vm.blacklist");
458 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
459 		pa = phys_avail[i];
460 		last_pa = phys_avail[i + 1];
461 		while (pa < last_pa) {
462 			if (list != NULL &&
463 			    vm_page_blacklist_lookup(list, pa))
464 				printf("Skipping page with pa 0x%jx\n",
465 				    (uintmax_t)pa);
466 			else
467 				vm_phys_add_page(pa);
468 			pa += PAGE_SIZE;
469 		}
470 	}
471 	freeenv(list);
472 #if VM_NRESERVLEVEL > 0
473 	/*
474 	 * Initialize the reservation management system.
475 	 */
476 	vm_reserv_init();
477 #endif
478 	return (vaddr);
479 }
480 
481 void
482 vm_page_reference(vm_page_t m)
483 {
484 
485 	vm_page_aflag_set(m, PGA_REFERENCED);
486 }
487 
488 /*
489  *	vm_page_busy_downgrade:
490  *
491  *	Downgrade an exclusive busy page into a single shared busy page.
492  */
493 void
494 vm_page_busy_downgrade(vm_page_t m)
495 {
496 	u_int x;
497 
498 	vm_page_assert_xbusied(m);
499 
500 	for (;;) {
501 		x = m->busy_lock;
502 		x &= VPB_BIT_WAITERS;
503 		if (atomic_cmpset_rel_int(&m->busy_lock,
504 		    VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1) | x))
505 			break;
506 	}
507 }
508 
509 /*
510  *	vm_page_sbusied:
511  *
512  *	Return a positive value if the page is shared busied, 0 otherwise.
513  */
514 int
515 vm_page_sbusied(vm_page_t m)
516 {
517 	u_int x;
518 
519 	x = m->busy_lock;
520 	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
521 }
522 
523 /*
524  *	vm_page_sunbusy:
525  *
526  *	Shared unbusy a page.
527  */
528 void
529 vm_page_sunbusy(vm_page_t m)
530 {
531 	u_int x;
532 
533 	vm_page_assert_sbusied(m);
534 
535 	for (;;) {
536 		x = m->busy_lock;
537 		if (VPB_SHARERS(x) > 1) {
538 			if (atomic_cmpset_int(&m->busy_lock, x,
539 			    x - VPB_ONE_SHARER))
540 				break;
541 			continue;
542 		}
543 		if ((x & VPB_BIT_WAITERS) == 0) {
544 			KASSERT(x == VPB_SHARERS_WORD(1),
545 			    ("vm_page_sunbusy: invalid lock state"));
546 			if (atomic_cmpset_int(&m->busy_lock,
547 			    VPB_SHARERS_WORD(1), VPB_UNBUSIED))
548 				break;
549 			continue;
550 		}
551 		KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS),
552 		    ("vm_page_sunbusy: invalid lock state for waiters"));
553 
554 		vm_page_lock(m);
555 		if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) {
556 			vm_page_unlock(m);
557 			continue;
558 		}
559 		wakeup(m);
560 		vm_page_unlock(m);
561 		break;
562 	}
563 }
564 
565 /*
566  *	vm_page_busy_sleep:
567  *
568  *	Sleep and release the page lock, using the page pointer as wchan.
569  *	This is used to implement the hard-path of busying mechanism.
570  *
571  *	The given page must be locked.
572  */
573 void
574 vm_page_busy_sleep(vm_page_t m, const char *wmesg)
575 {
576 	u_int x;
577 
578 	vm_page_lock_assert(m, MA_OWNED);
579 
580 	x = m->busy_lock;
581 	if (x == VPB_UNBUSIED) {
582 		vm_page_unlock(m);
583 		return;
584 	}
585 	if ((x & VPB_BIT_WAITERS) == 0 &&
586 	    !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS)) {
587 		vm_page_unlock(m);
588 		return;
589 	}
590 	msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0);
591 }
592 
593 /*
594  *	vm_page_trysbusy:
595  *
596  *	Try to shared busy a page.
597  *	If the operation succeeds 1 is returned otherwise 0.
598  *	The operation never sleeps.
599  */
600 int
601 vm_page_trysbusy(vm_page_t m)
602 {
603 	u_int x;
604 
605 	for (;;) {
606 		x = m->busy_lock;
607 		if ((x & VPB_BIT_SHARED) == 0)
608 			return (0);
609 		if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER))
610 			return (1);
611 	}
612 }
613 
614 /*
615  *	vm_page_xunbusy_hard:
616  *
617  *	Called after the first try the exclusive unbusy of a page failed.
618  *	It is assumed that the waiters bit is on.
619  */
620 void
621 vm_page_xunbusy_hard(vm_page_t m)
622 {
623 
624 	vm_page_assert_xbusied(m);
625 
626 	vm_page_lock(m);
627 	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
628 	wakeup(m);
629 	vm_page_unlock(m);
630 }
631 
632 /*
633  *	vm_page_flash:
634  *
635  *	Wakeup anyone waiting for the page.
636  *	The ownership bits do not change.
637  *
638  *	The given page must be locked.
639  */
640 void
641 vm_page_flash(vm_page_t m)
642 {
643 	u_int x;
644 
645 	vm_page_lock_assert(m, MA_OWNED);
646 
647 	for (;;) {
648 		x = m->busy_lock;
649 		if ((x & VPB_BIT_WAITERS) == 0)
650 			return;
651 		if (atomic_cmpset_int(&m->busy_lock, x,
652 		    x & (~VPB_BIT_WAITERS)))
653 			break;
654 	}
655 	wakeup(m);
656 }
657 
658 /*
659  * Keep page from being freed by the page daemon
660  * much of the same effect as wiring, except much lower
661  * overhead and should be used only for *very* temporary
662  * holding ("wiring").
663  */
664 void
665 vm_page_hold(vm_page_t mem)
666 {
667 
668 	vm_page_lock_assert(mem, MA_OWNED);
669         mem->hold_count++;
670 }
671 
672 void
673 vm_page_unhold(vm_page_t mem)
674 {
675 
676 	vm_page_lock_assert(mem, MA_OWNED);
677 	KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!"));
678 	--mem->hold_count;
679 	if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
680 		vm_page_free_toq(mem);
681 }
682 
683 /*
684  *	vm_page_unhold_pages:
685  *
686  *	Unhold each of the pages that is referenced by the given array.
687  */
688 void
689 vm_page_unhold_pages(vm_page_t *ma, int count)
690 {
691 	struct mtx *mtx, *new_mtx;
692 
693 	mtx = NULL;
694 	for (; count != 0; count--) {
695 		/*
696 		 * Avoid releasing and reacquiring the same page lock.
697 		 */
698 		new_mtx = vm_page_lockptr(*ma);
699 		if (mtx != new_mtx) {
700 			if (mtx != NULL)
701 				mtx_unlock(mtx);
702 			mtx = new_mtx;
703 			mtx_lock(mtx);
704 		}
705 		vm_page_unhold(*ma);
706 		ma++;
707 	}
708 	if (mtx != NULL)
709 		mtx_unlock(mtx);
710 }
711 
712 vm_page_t
713 PHYS_TO_VM_PAGE(vm_paddr_t pa)
714 {
715 	vm_page_t m;
716 
717 #ifdef VM_PHYSSEG_SPARSE
718 	m = vm_phys_paddr_to_vm_page(pa);
719 	if (m == NULL)
720 		m = vm_phys_fictitious_to_vm_page(pa);
721 	return (m);
722 #elif defined(VM_PHYSSEG_DENSE)
723 	long pi;
724 
725 	pi = atop(pa);
726 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
727 		m = &vm_page_array[pi - first_page];
728 		return (m);
729 	}
730 	return (vm_phys_fictitious_to_vm_page(pa));
731 #else
732 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
733 #endif
734 }
735 
736 /*
737  *	vm_page_getfake:
738  *
739  *	Create a fictitious page with the specified physical address and
740  *	memory attribute.  The memory attribute is the only the machine-
741  *	dependent aspect of a fictitious page that must be initialized.
742  */
743 vm_page_t
744 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
745 {
746 	vm_page_t m;
747 
748 	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
749 	vm_page_initfake(m, paddr, memattr);
750 	return (m);
751 }
752 
753 void
754 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
755 {
756 
757 	if ((m->flags & PG_FICTITIOUS) != 0) {
758 		/*
759 		 * The page's memattr might have changed since the
760 		 * previous initialization.  Update the pmap to the
761 		 * new memattr.
762 		 */
763 		goto memattr;
764 	}
765 	m->phys_addr = paddr;
766 	m->queue = PQ_NONE;
767 	/* Fictitious pages don't use "segind". */
768 	m->flags = PG_FICTITIOUS;
769 	/* Fictitious pages don't use "order" or "pool". */
770 	m->oflags = VPO_UNMANAGED;
771 	m->busy_lock = VPB_SINGLE_EXCLUSIVER;
772 	m->wire_count = 1;
773 	pmap_page_init(m);
774 memattr:
775 	pmap_page_set_memattr(m, memattr);
776 }
777 
778 /*
779  *	vm_page_putfake:
780  *
781  *	Release a fictitious page.
782  */
783 void
784 vm_page_putfake(vm_page_t m)
785 {
786 
787 	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
788 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
789 	    ("vm_page_putfake: bad page %p", m));
790 	uma_zfree(fakepg_zone, m);
791 }
792 
793 /*
794  *	vm_page_updatefake:
795  *
796  *	Update the given fictitious page to the specified physical address and
797  *	memory attribute.
798  */
799 void
800 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
801 {
802 
803 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
804 	    ("vm_page_updatefake: bad page %p", m));
805 	m->phys_addr = paddr;
806 	pmap_page_set_memattr(m, memattr);
807 }
808 
809 /*
810  *	vm_page_free:
811  *
812  *	Free a page.
813  */
814 void
815 vm_page_free(vm_page_t m)
816 {
817 
818 	m->flags &= ~PG_ZERO;
819 	vm_page_free_toq(m);
820 }
821 
822 /*
823  *	vm_page_free_zero:
824  *
825  *	Free a page to the zerod-pages queue
826  */
827 void
828 vm_page_free_zero(vm_page_t m)
829 {
830 
831 	m->flags |= PG_ZERO;
832 	vm_page_free_toq(m);
833 }
834 
835 /*
836  * Unbusy and handle the page queueing for a page from the VOP_GETPAGES()
837  * array which is not the request page.
838  */
839 void
840 vm_page_readahead_finish(vm_page_t m)
841 {
842 
843 	if (m->valid != 0) {
844 		/*
845 		 * Since the page is not the requested page, whether
846 		 * it should be activated or deactivated is not
847 		 * obvious.  Empirical results have shown that
848 		 * deactivating the page is usually the best choice,
849 		 * unless the page is wanted by another thread.
850 		 */
851 		vm_page_lock(m);
852 		if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
853 			vm_page_activate(m);
854 		else
855 			vm_page_deactivate(m);
856 		vm_page_unlock(m);
857 		vm_page_xunbusy(m);
858 	} else {
859 		/*
860 		 * Free the completely invalid page.  Such page state
861 		 * occurs due to the short read operation which did
862 		 * not covered our page at all, or in case when a read
863 		 * error happens.
864 		 */
865 		vm_page_lock(m);
866 		vm_page_free(m);
867 		vm_page_unlock(m);
868 	}
869 }
870 
871 /*
872  *	vm_page_sleep_if_busy:
873  *
874  *	Sleep and release the page queues lock if the page is busied.
875  *	Returns TRUE if the thread slept.
876  *
877  *	The given page must be unlocked and object containing it must
878  *	be locked.
879  */
880 int
881 vm_page_sleep_if_busy(vm_page_t m, const char *msg)
882 {
883 	vm_object_t obj;
884 
885 	vm_page_lock_assert(m, MA_NOTOWNED);
886 	VM_OBJECT_ASSERT_WLOCKED(m->object);
887 
888 	if (vm_page_busied(m)) {
889 		/*
890 		 * The page-specific object must be cached because page
891 		 * identity can change during the sleep, causing the
892 		 * re-lock of a different object.
893 		 * It is assumed that a reference to the object is already
894 		 * held by the callers.
895 		 */
896 		obj = m->object;
897 		vm_page_lock(m);
898 		VM_OBJECT_WUNLOCK(obj);
899 		vm_page_busy_sleep(m, msg);
900 		VM_OBJECT_WLOCK(obj);
901 		return (TRUE);
902 	}
903 	return (FALSE);
904 }
905 
906 /*
907  *	vm_page_dirty_KBI:		[ internal use only ]
908  *
909  *	Set all bits in the page's dirty field.
910  *
911  *	The object containing the specified page must be locked if the
912  *	call is made from the machine-independent layer.
913  *
914  *	See vm_page_clear_dirty_mask().
915  *
916  *	This function should only be called by vm_page_dirty().
917  */
918 void
919 vm_page_dirty_KBI(vm_page_t m)
920 {
921 
922 	/* These assertions refer to this operation by its public name. */
923 	KASSERT((m->flags & PG_CACHED) == 0,
924 	    ("vm_page_dirty: page in cache!"));
925 	KASSERT(!VM_PAGE_IS_FREE(m),
926 	    ("vm_page_dirty: page is free!"));
927 	KASSERT(m->valid == VM_PAGE_BITS_ALL,
928 	    ("vm_page_dirty: page is invalid!"));
929 	m->dirty = VM_PAGE_BITS_ALL;
930 }
931 
932 /*
933  *	vm_page_insert:		[ internal use only ]
934  *
935  *	Inserts the given mem entry into the object and object list.
936  *
937  *	The object must be locked.
938  */
939 int
940 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
941 {
942 	vm_page_t mpred;
943 
944 	VM_OBJECT_ASSERT_WLOCKED(object);
945 	mpred = vm_radix_lookup_le(&object->rtree, pindex);
946 	return (vm_page_insert_after(m, object, pindex, mpred));
947 }
948 
949 /*
950  *	vm_page_insert_after:
951  *
952  *	Inserts the page "m" into the specified object at offset "pindex".
953  *
954  *	The page "mpred" must immediately precede the offset "pindex" within
955  *	the specified object.
956  *
957  *	The object must be locked.
958  */
959 static int
960 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
961     vm_page_t mpred)
962 {
963 	vm_pindex_t sidx;
964 	vm_object_t sobj;
965 	vm_page_t msucc;
966 
967 	VM_OBJECT_ASSERT_WLOCKED(object);
968 	KASSERT(m->object == NULL,
969 	    ("vm_page_insert_after: page already inserted"));
970 	if (mpred != NULL) {
971 		KASSERT(mpred->object == object,
972 		    ("vm_page_insert_after: object doesn't contain mpred"));
973 		KASSERT(mpred->pindex < pindex,
974 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
975 		msucc = TAILQ_NEXT(mpred, listq);
976 	} else
977 		msucc = TAILQ_FIRST(&object->memq);
978 	if (msucc != NULL)
979 		KASSERT(msucc->pindex > pindex,
980 		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
981 
982 	/*
983 	 * Record the object/offset pair in this page
984 	 */
985 	sobj = m->object;
986 	sidx = m->pindex;
987 	m->object = object;
988 	m->pindex = pindex;
989 
990 	/*
991 	 * Now link into the object's ordered list of backed pages.
992 	 */
993 	if (vm_radix_insert(&object->rtree, m)) {
994 		m->object = sobj;
995 		m->pindex = sidx;
996 		return (1);
997 	}
998 	vm_page_insert_radixdone(m, object, mpred);
999 	return (0);
1000 }
1001 
1002 /*
1003  *	vm_page_insert_radixdone:
1004  *
1005  *	Complete page "m" insertion into the specified object after the
1006  *	radix trie hooking.
1007  *
1008  *	The page "mpred" must precede the offset "m->pindex" within the
1009  *	specified object.
1010  *
1011  *	The object must be locked.
1012  */
1013 static void
1014 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1015 {
1016 
1017 	VM_OBJECT_ASSERT_WLOCKED(object);
1018 	KASSERT(object != NULL && m->object == object,
1019 	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1020 	if (mpred != NULL) {
1021 		KASSERT(mpred->object == object,
1022 		    ("vm_page_insert_after: object doesn't contain mpred"));
1023 		KASSERT(mpred->pindex < m->pindex,
1024 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1025 	}
1026 
1027 	if (mpred != NULL)
1028 		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1029 	else
1030 		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1031 
1032 	/*
1033 	 * Show that the object has one more resident page.
1034 	 */
1035 	object->resident_page_count++;
1036 
1037 	/*
1038 	 * Hold the vnode until the last page is released.
1039 	 */
1040 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1041 		vhold(object->handle);
1042 
1043 	/*
1044 	 * Since we are inserting a new and possibly dirty page,
1045 	 * update the object's OBJ_MIGHTBEDIRTY flag.
1046 	 */
1047 	if (pmap_page_is_write_mapped(m))
1048 		vm_object_set_writeable_dirty(object);
1049 }
1050 
1051 /*
1052  *	vm_page_remove:
1053  *
1054  *	Removes the given mem entry from the object/offset-page
1055  *	table and the object page list, but do not invalidate/terminate
1056  *	the backing store.
1057  *
1058  *	The object must be locked.  The page must be locked if it is managed.
1059  */
1060 void
1061 vm_page_remove(vm_page_t m)
1062 {
1063 	vm_object_t object;
1064 	boolean_t lockacq;
1065 
1066 	if ((m->oflags & VPO_UNMANAGED) == 0)
1067 		vm_page_lock_assert(m, MA_OWNED);
1068 	if ((object = m->object) == NULL)
1069 		return;
1070 	VM_OBJECT_ASSERT_WLOCKED(object);
1071 	if (vm_page_xbusied(m)) {
1072 		lockacq = FALSE;
1073 		if ((m->oflags & VPO_UNMANAGED) != 0 &&
1074 		    !mtx_owned(vm_page_lockptr(m))) {
1075 			lockacq = TRUE;
1076 			vm_page_lock(m);
1077 		}
1078 		vm_page_flash(m);
1079 		atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1080 		if (lockacq)
1081 			vm_page_unlock(m);
1082 	}
1083 
1084 	/*
1085 	 * Now remove from the object's list of backed pages.
1086 	 */
1087 	vm_radix_remove(&object->rtree, m->pindex);
1088 	TAILQ_REMOVE(&object->memq, m, listq);
1089 
1090 	/*
1091 	 * And show that the object has one fewer resident page.
1092 	 */
1093 	object->resident_page_count--;
1094 
1095 	/*
1096 	 * The vnode may now be recycled.
1097 	 */
1098 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1099 		vdrop(object->handle);
1100 
1101 	m->object = NULL;
1102 }
1103 
1104 /*
1105  *	vm_page_lookup:
1106  *
1107  *	Returns the page associated with the object/offset
1108  *	pair specified; if none is found, NULL is returned.
1109  *
1110  *	The object must be locked.
1111  */
1112 vm_page_t
1113 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1114 {
1115 
1116 	VM_OBJECT_ASSERT_LOCKED(object);
1117 	return (vm_radix_lookup(&object->rtree, pindex));
1118 }
1119 
1120 /*
1121  *	vm_page_find_least:
1122  *
1123  *	Returns the page associated with the object with least pindex
1124  *	greater than or equal to the parameter pindex, or NULL.
1125  *
1126  *	The object must be locked.
1127  */
1128 vm_page_t
1129 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1130 {
1131 	vm_page_t m;
1132 
1133 	VM_OBJECT_ASSERT_LOCKED(object);
1134 	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1135 		m = vm_radix_lookup_ge(&object->rtree, pindex);
1136 	return (m);
1137 }
1138 
1139 /*
1140  * Returns the given page's successor (by pindex) within the object if it is
1141  * resident; if none is found, NULL is returned.
1142  *
1143  * The object must be locked.
1144  */
1145 vm_page_t
1146 vm_page_next(vm_page_t m)
1147 {
1148 	vm_page_t next;
1149 
1150 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1151 	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
1152 	    next->pindex != m->pindex + 1)
1153 		next = NULL;
1154 	return (next);
1155 }
1156 
1157 /*
1158  * Returns the given page's predecessor (by pindex) within the object if it is
1159  * resident; if none is found, NULL is returned.
1160  *
1161  * The object must be locked.
1162  */
1163 vm_page_t
1164 vm_page_prev(vm_page_t m)
1165 {
1166 	vm_page_t prev;
1167 
1168 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1169 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
1170 	    prev->pindex != m->pindex - 1)
1171 		prev = NULL;
1172 	return (prev);
1173 }
1174 
1175 /*
1176  * Uses the page mnew as a replacement for an existing page at index
1177  * pindex which must be already present in the object.
1178  *
1179  * The existing page must not be on a paging queue.
1180  */
1181 vm_page_t
1182 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1183 {
1184 	vm_page_t mold, mpred;
1185 
1186 	VM_OBJECT_ASSERT_WLOCKED(object);
1187 
1188 	/*
1189 	 * This function mostly follows vm_page_insert() and
1190 	 * vm_page_remove() without the radix, object count and vnode
1191 	 * dance.  Double check such functions for more comments.
1192 	 */
1193 	mpred = vm_radix_lookup(&object->rtree, pindex);
1194 	KASSERT(mpred != NULL,
1195 	    ("vm_page_replace: replacing page not present with pindex"));
1196 	mpred = TAILQ_PREV(mpred, respgs, listq);
1197 	if (mpred != NULL)
1198 		KASSERT(mpred->pindex < pindex,
1199 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1200 
1201 	mnew->object = object;
1202 	mnew->pindex = pindex;
1203 	mold = vm_radix_replace(&object->rtree, mnew, pindex);
1204 	KASSERT(mold->queue == PQ_NONE,
1205 	    ("vm_page_replace: mold is on a paging queue"));
1206 
1207 	/* Detach the old page from the resident tailq. */
1208 	TAILQ_REMOVE(&object->memq, mold, listq);
1209 
1210 	mold->object = NULL;
1211 	vm_page_xunbusy(mold);
1212 
1213 	/* Insert the new page in the resident tailq. */
1214 	if (mpred != NULL)
1215 		TAILQ_INSERT_AFTER(&object->memq, mpred, mnew, listq);
1216 	else
1217 		TAILQ_INSERT_HEAD(&object->memq, mnew, listq);
1218 	if (pmap_page_is_write_mapped(mnew))
1219 		vm_object_set_writeable_dirty(object);
1220 	return (mold);
1221 }
1222 
1223 /*
1224  *	vm_page_rename:
1225  *
1226  *	Move the given memory entry from its
1227  *	current object to the specified target object/offset.
1228  *
1229  *	Note: swap associated with the page must be invalidated by the move.  We
1230  *	      have to do this for several reasons:  (1) we aren't freeing the
1231  *	      page, (2) we are dirtying the page, (3) the VM system is probably
1232  *	      moving the page from object A to B, and will then later move
1233  *	      the backing store from A to B and we can't have a conflict.
1234  *
1235  *	Note: we *always* dirty the page.  It is necessary both for the
1236  *	      fact that we moved it, and because we may be invalidating
1237  *	      swap.  If the page is on the cache, we have to deactivate it
1238  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
1239  *	      on the cache.
1240  *
1241  *	The objects must be locked.
1242  */
1243 int
1244 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1245 {
1246 	vm_page_t mpred;
1247 	vm_pindex_t opidx;
1248 
1249 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1250 
1251 	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1252 	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1253 	    ("vm_page_rename: pindex already renamed"));
1254 
1255 	/*
1256 	 * Create a custom version of vm_page_insert() which does not depend
1257 	 * by m_prev and can cheat on the implementation aspects of the
1258 	 * function.
1259 	 */
1260 	opidx = m->pindex;
1261 	m->pindex = new_pindex;
1262 	if (vm_radix_insert(&new_object->rtree, m)) {
1263 		m->pindex = opidx;
1264 		return (1);
1265 	}
1266 
1267 	/*
1268 	 * The operation cannot fail anymore.  The removal must happen before
1269 	 * the listq iterator is tainted.
1270 	 */
1271 	m->pindex = opidx;
1272 	vm_page_lock(m);
1273 	vm_page_remove(m);
1274 
1275 	/* Return back to the new pindex to complete vm_page_insert(). */
1276 	m->pindex = new_pindex;
1277 	m->object = new_object;
1278 	vm_page_unlock(m);
1279 	vm_page_insert_radixdone(m, new_object, mpred);
1280 	vm_page_dirty(m);
1281 	return (0);
1282 }
1283 
1284 /*
1285  *	Convert all of the given object's cached pages that have a
1286  *	pindex within the given range into free pages.  If the value
1287  *	zero is given for "end", then the range's upper bound is
1288  *	infinity.  If the given object is backed by a vnode and it
1289  *	transitions from having one or more cached pages to none, the
1290  *	vnode's hold count is reduced.
1291  */
1292 void
1293 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1294 {
1295 	vm_page_t m;
1296 	boolean_t empty;
1297 
1298 	mtx_lock(&vm_page_queue_free_mtx);
1299 	if (__predict_false(vm_radix_is_empty(&object->cache))) {
1300 		mtx_unlock(&vm_page_queue_free_mtx);
1301 		return;
1302 	}
1303 	while ((m = vm_radix_lookup_ge(&object->cache, start)) != NULL) {
1304 		if (end != 0 && m->pindex >= end)
1305 			break;
1306 		vm_radix_remove(&object->cache, m->pindex);
1307 		vm_page_cache_turn_free(m);
1308 	}
1309 	empty = vm_radix_is_empty(&object->cache);
1310 	mtx_unlock(&vm_page_queue_free_mtx);
1311 	if (object->type == OBJT_VNODE && empty)
1312 		vdrop(object->handle);
1313 }
1314 
1315 /*
1316  *	Returns the cached page that is associated with the given
1317  *	object and offset.  If, however, none exists, returns NULL.
1318  *
1319  *	The free page queue must be locked.
1320  */
1321 static inline vm_page_t
1322 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1323 {
1324 
1325 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1326 	return (vm_radix_lookup(&object->cache, pindex));
1327 }
1328 
1329 /*
1330  *	Remove the given cached page from its containing object's
1331  *	collection of cached pages.
1332  *
1333  *	The free page queue must be locked.
1334  */
1335 static void
1336 vm_page_cache_remove(vm_page_t m)
1337 {
1338 
1339 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1340 	KASSERT((m->flags & PG_CACHED) != 0,
1341 	    ("vm_page_cache_remove: page %p is not cached", m));
1342 	vm_radix_remove(&m->object->cache, m->pindex);
1343 	m->object = NULL;
1344 	cnt.v_cache_count--;
1345 }
1346 
1347 /*
1348  *	Transfer all of the cached pages with offset greater than or
1349  *	equal to 'offidxstart' from the original object's cache to the
1350  *	new object's cache.  However, any cached pages with offset
1351  *	greater than or equal to the new object's size are kept in the
1352  *	original object.  Initially, the new object's cache must be
1353  *	empty.  Offset 'offidxstart' in the original object must
1354  *	correspond to offset zero in the new object.
1355  *
1356  *	The new object must be locked.
1357  */
1358 void
1359 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1360     vm_object_t new_object)
1361 {
1362 	vm_page_t m;
1363 
1364 	/*
1365 	 * Insertion into an object's collection of cached pages
1366 	 * requires the object to be locked.  In contrast, removal does
1367 	 * not.
1368 	 */
1369 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1370 	KASSERT(vm_radix_is_empty(&new_object->cache),
1371 	    ("vm_page_cache_transfer: object %p has cached pages",
1372 	    new_object));
1373 	mtx_lock(&vm_page_queue_free_mtx);
1374 	while ((m = vm_radix_lookup_ge(&orig_object->cache,
1375 	    offidxstart)) != NULL) {
1376 		/*
1377 		 * Transfer all of the pages with offset greater than or
1378 		 * equal to 'offidxstart' from the original object's
1379 		 * cache to the new object's cache.
1380 		 */
1381 		if ((m->pindex - offidxstart) >= new_object->size)
1382 			break;
1383 		vm_radix_remove(&orig_object->cache, m->pindex);
1384 		/* Update the page's object and offset. */
1385 		m->object = new_object;
1386 		m->pindex -= offidxstart;
1387 		if (vm_radix_insert(&new_object->cache, m))
1388 			vm_page_cache_turn_free(m);
1389 	}
1390 	mtx_unlock(&vm_page_queue_free_mtx);
1391 }
1392 
1393 /*
1394  *	Returns TRUE if a cached page is associated with the given object and
1395  *	offset, and FALSE otherwise.
1396  *
1397  *	The object must be locked.
1398  */
1399 boolean_t
1400 vm_page_is_cached(vm_object_t object, vm_pindex_t pindex)
1401 {
1402 	vm_page_t m;
1403 
1404 	/*
1405 	 * Insertion into an object's collection of cached pages requires the
1406 	 * object to be locked.  Therefore, if the object is locked and the
1407 	 * object's collection is empty, there is no need to acquire the free
1408 	 * page queues lock in order to prove that the specified page doesn't
1409 	 * exist.
1410 	 */
1411 	VM_OBJECT_ASSERT_WLOCKED(object);
1412 	if (__predict_true(vm_object_cache_is_empty(object)))
1413 		return (FALSE);
1414 	mtx_lock(&vm_page_queue_free_mtx);
1415 	m = vm_page_cache_lookup(object, pindex);
1416 	mtx_unlock(&vm_page_queue_free_mtx);
1417 	return (m != NULL);
1418 }
1419 
1420 /*
1421  *	vm_page_alloc:
1422  *
1423  *	Allocate and return a page that is associated with the specified
1424  *	object and offset pair.  By default, this page is exclusive busied.
1425  *
1426  *	The caller must always specify an allocation class.
1427  *
1428  *	allocation classes:
1429  *	VM_ALLOC_NORMAL		normal process request
1430  *	VM_ALLOC_SYSTEM		system *really* needs a page
1431  *	VM_ALLOC_INTERRUPT	interrupt time request
1432  *
1433  *	optional allocation flags:
1434  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1435  *				intends to allocate
1436  *	VM_ALLOC_IFCACHED	return page only if it is cached
1437  *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1438  *				is cached
1439  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1440  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1441  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1442  *				should not be exclusive busy
1443  *	VM_ALLOC_SBUSY		shared busy the allocated page
1444  *	VM_ALLOC_WIRED		wire the allocated page
1445  *	VM_ALLOC_ZERO		prefer a zeroed page
1446  *
1447  *	This routine may not sleep.
1448  */
1449 vm_page_t
1450 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1451 {
1452 	struct vnode *vp = NULL;
1453 	vm_object_t m_object;
1454 	vm_page_t m, mpred;
1455 	int flags, req_class;
1456 
1457 	mpred = 0;	/* XXX: pacify gcc */
1458 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1459 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1460 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1461 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1462 	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1463 	    req));
1464 	if (object != NULL)
1465 		VM_OBJECT_ASSERT_WLOCKED(object);
1466 
1467 	req_class = req & VM_ALLOC_CLASS_MASK;
1468 
1469 	/*
1470 	 * The page daemon is allowed to dig deeper into the free page list.
1471 	 */
1472 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1473 		req_class = VM_ALLOC_SYSTEM;
1474 
1475 	if (object != NULL) {
1476 		mpred = vm_radix_lookup_le(&object->rtree, pindex);
1477 		KASSERT(mpred == NULL || mpred->pindex != pindex,
1478 		   ("vm_page_alloc: pindex already allocated"));
1479 	}
1480 
1481 	/*
1482 	 * The page allocation request can came from consumers which already
1483 	 * hold the free page queue mutex, like vm_page_insert() in
1484 	 * vm_page_cache().
1485 	 */
1486 	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
1487 	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1488 	    (req_class == VM_ALLOC_SYSTEM &&
1489 	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1490 	    (req_class == VM_ALLOC_INTERRUPT &&
1491 	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1492 		/*
1493 		 * Allocate from the free queue if the number of free pages
1494 		 * exceeds the minimum for the request class.
1495 		 */
1496 		if (object != NULL &&
1497 		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1498 			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1499 				mtx_unlock(&vm_page_queue_free_mtx);
1500 				return (NULL);
1501 			}
1502 			if (vm_phys_unfree_page(m))
1503 				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1504 #if VM_NRESERVLEVEL > 0
1505 			else if (!vm_reserv_reactivate_page(m))
1506 #else
1507 			else
1508 #endif
1509 				panic("vm_page_alloc: cache page %p is missing"
1510 				    " from the free queue", m);
1511 		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1512 			mtx_unlock(&vm_page_queue_free_mtx);
1513 			return (NULL);
1514 #if VM_NRESERVLEVEL > 0
1515 		} else if (object == NULL || (object->flags & (OBJ_COLORED |
1516 		    OBJ_FICTITIOUS)) != OBJ_COLORED || (m =
1517 		    vm_reserv_alloc_page(object, pindex, mpred)) == NULL) {
1518 #else
1519 		} else {
1520 #endif
1521 			m = vm_phys_alloc_pages(object != NULL ?
1522 			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1523 #if VM_NRESERVLEVEL > 0
1524 			if (m == NULL && vm_reserv_reclaim_inactive()) {
1525 				m = vm_phys_alloc_pages(object != NULL ?
1526 				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1527 				    0);
1528 			}
1529 #endif
1530 		}
1531 	} else {
1532 		/*
1533 		 * Not allocatable, give up.
1534 		 */
1535 		mtx_unlock(&vm_page_queue_free_mtx);
1536 		atomic_add_int(&vm_pageout_deficit,
1537 		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1538 		pagedaemon_wakeup();
1539 		return (NULL);
1540 	}
1541 
1542 	/*
1543 	 *  At this point we had better have found a good page.
1544 	 */
1545 	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1546 	KASSERT(m->queue == PQ_NONE,
1547 	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1548 	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1549 	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1550 	KASSERT(!vm_page_sbusied(m),
1551 	    ("vm_page_alloc: page %p is busy", m));
1552 	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1553 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1554 	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1555 	    pmap_page_get_memattr(m)));
1556 	if ((m->flags & PG_CACHED) != 0) {
1557 		KASSERT((m->flags & PG_ZERO) == 0,
1558 		    ("vm_page_alloc: cached page %p is PG_ZERO", m));
1559 		KASSERT(m->valid != 0,
1560 		    ("vm_page_alloc: cached page %p is invalid", m));
1561 		if (m->object == object && m->pindex == pindex)
1562 	  		cnt.v_reactivated++;
1563 		else
1564 			m->valid = 0;
1565 		m_object = m->object;
1566 		vm_page_cache_remove(m);
1567 		if (m_object->type == OBJT_VNODE &&
1568 		    vm_object_cache_is_empty(m_object))
1569 			vp = m_object->handle;
1570 	} else {
1571 		KASSERT(VM_PAGE_IS_FREE(m),
1572 		    ("vm_page_alloc: page %p is not free", m));
1573 		KASSERT(m->valid == 0,
1574 		    ("vm_page_alloc: free page %p is valid", m));
1575 		vm_phys_freecnt_adj(m, -1);
1576 	}
1577 
1578 	/*
1579 	 * Only the PG_ZERO flag is inherited.  The PG_CACHED or PG_FREE flag
1580 	 * must be cleared before the free page queues lock is released.
1581 	 */
1582 	flags = 0;
1583 	if (m->flags & PG_ZERO) {
1584 		vm_page_zero_count--;
1585 		if (req & VM_ALLOC_ZERO)
1586 			flags = PG_ZERO;
1587 	}
1588 	if (req & VM_ALLOC_NODUMP)
1589 		flags |= PG_NODUMP;
1590 	m->flags = flags;
1591 	mtx_unlock(&vm_page_queue_free_mtx);
1592 	m->aflags = 0;
1593 	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1594 	    VPO_UNMANAGED : 0;
1595 	m->busy_lock = VPB_UNBUSIED;
1596 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1597 		m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1598 	if ((req & VM_ALLOC_SBUSY) != 0)
1599 		m->busy_lock = VPB_SHARERS_WORD(1);
1600 	if (req & VM_ALLOC_WIRED) {
1601 		/*
1602 		 * The page lock is not required for wiring a page until that
1603 		 * page is inserted into the object.
1604 		 */
1605 		atomic_add_int(&cnt.v_wire_count, 1);
1606 		m->wire_count = 1;
1607 	}
1608 	m->act_count = 0;
1609 
1610 	if (object != NULL) {
1611 		if (vm_page_insert_after(m, object, pindex, mpred)) {
1612 			/* See the comment below about hold count. */
1613 			if (vp != NULL)
1614 				vdrop(vp);
1615 			pagedaemon_wakeup();
1616 			if (req & VM_ALLOC_WIRED) {
1617 				atomic_subtract_int(&cnt.v_wire_count, 1);
1618 				m->wire_count = 0;
1619 			}
1620 			m->object = NULL;
1621 			vm_page_free(m);
1622 			return (NULL);
1623 		}
1624 
1625 		/* Ignore device objects; the pager sets "memattr" for them. */
1626 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1627 		    (object->flags & OBJ_FICTITIOUS) == 0)
1628 			pmap_page_set_memattr(m, object->memattr);
1629 	} else
1630 		m->pindex = pindex;
1631 
1632 	/*
1633 	 * The following call to vdrop() must come after the above call
1634 	 * to vm_page_insert() in case both affect the same object and
1635 	 * vnode.  Otherwise, the affected vnode's hold count could
1636 	 * temporarily become zero.
1637 	 */
1638 	if (vp != NULL)
1639 		vdrop(vp);
1640 
1641 	/*
1642 	 * Don't wakeup too often - wakeup the pageout daemon when
1643 	 * we would be nearly out of memory.
1644 	 */
1645 	if (vm_paging_needed())
1646 		pagedaemon_wakeup();
1647 
1648 	return (m);
1649 }
1650 
1651 static void
1652 vm_page_alloc_contig_vdrop(struct spglist *lst)
1653 {
1654 
1655 	while (!SLIST_EMPTY(lst)) {
1656 		vdrop((struct vnode *)SLIST_FIRST(lst)-> plinks.s.pv);
1657 		SLIST_REMOVE_HEAD(lst, plinks.s.ss);
1658 	}
1659 }
1660 
1661 /*
1662  *	vm_page_alloc_contig:
1663  *
1664  *	Allocate a contiguous set of physical pages of the given size "npages"
1665  *	from the free lists.  All of the physical pages must be at or above
1666  *	the given physical address "low" and below the given physical address
1667  *	"high".  The given value "alignment" determines the alignment of the
1668  *	first physical page in the set.  If the given value "boundary" is
1669  *	non-zero, then the set of physical pages cannot cross any physical
1670  *	address boundary that is a multiple of that value.  Both "alignment"
1671  *	and "boundary" must be a power of two.
1672  *
1673  *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1674  *	then the memory attribute setting for the physical pages is configured
1675  *	to the object's memory attribute setting.  Otherwise, the memory
1676  *	attribute setting for the physical pages is configured to "memattr",
1677  *	overriding the object's memory attribute setting.  However, if the
1678  *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1679  *	memory attribute setting for the physical pages cannot be configured
1680  *	to VM_MEMATTR_DEFAULT.
1681  *
1682  *	The caller must always specify an allocation class.
1683  *
1684  *	allocation classes:
1685  *	VM_ALLOC_NORMAL		normal process request
1686  *	VM_ALLOC_SYSTEM		system *really* needs a page
1687  *	VM_ALLOC_INTERRUPT	interrupt time request
1688  *
1689  *	optional allocation flags:
1690  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1691  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1692  *				should not be exclusive busy
1693  *	VM_ALLOC_SBUSY		shared busy the allocated page
1694  *	VM_ALLOC_WIRED		wire the allocated page
1695  *	VM_ALLOC_ZERO		prefer a zeroed page
1696  *
1697  *	This routine may not sleep.
1698  */
1699 vm_page_t
1700 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1701     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1702     vm_paddr_t boundary, vm_memattr_t memattr)
1703 {
1704 	struct vnode *drop;
1705 	struct spglist deferred_vdrop_list;
1706 	vm_page_t m, m_tmp, m_ret;
1707 	u_int flags, oflags;
1708 	int req_class;
1709 
1710 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1711 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1712 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1713 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1714 	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1715 	    req));
1716 	if (object != NULL) {
1717 		VM_OBJECT_ASSERT_WLOCKED(object);
1718 		KASSERT(object->type == OBJT_PHYS,
1719 		    ("vm_page_alloc_contig: object %p isn't OBJT_PHYS",
1720 		    object));
1721 	}
1722 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1723 	req_class = req & VM_ALLOC_CLASS_MASK;
1724 
1725 	/*
1726 	 * The page daemon is allowed to dig deeper into the free page list.
1727 	 */
1728 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1729 		req_class = VM_ALLOC_SYSTEM;
1730 
1731 	SLIST_INIT(&deferred_vdrop_list);
1732 	mtx_lock(&vm_page_queue_free_mtx);
1733 	if (cnt.v_free_count + cnt.v_cache_count >= npages +
1734 	    cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM &&
1735 	    cnt.v_free_count + cnt.v_cache_count >= npages +
1736 	    cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT &&
1737 	    cnt.v_free_count + cnt.v_cache_count >= npages)) {
1738 #if VM_NRESERVLEVEL > 0
1739 retry:
1740 		if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
1741 		    (m_ret = vm_reserv_alloc_contig(object, pindex, npages,
1742 		    low, high, alignment, boundary)) == NULL)
1743 #endif
1744 			m_ret = vm_phys_alloc_contig(npages, low, high,
1745 			    alignment, boundary);
1746 	} else {
1747 		mtx_unlock(&vm_page_queue_free_mtx);
1748 		atomic_add_int(&vm_pageout_deficit, npages);
1749 		pagedaemon_wakeup();
1750 		return (NULL);
1751 	}
1752 	if (m_ret != NULL)
1753 		for (m = m_ret; m < &m_ret[npages]; m++) {
1754 			drop = vm_page_alloc_init(m);
1755 			if (drop != NULL) {
1756 				/*
1757 				 * Enqueue the vnode for deferred vdrop().
1758 				 */
1759 				m->plinks.s.pv = drop;
1760 				SLIST_INSERT_HEAD(&deferred_vdrop_list, m,
1761 				    plinks.s.ss);
1762 			}
1763 		}
1764 	else {
1765 #if VM_NRESERVLEVEL > 0
1766 		if (vm_reserv_reclaim_contig(npages, low, high, alignment,
1767 		    boundary))
1768 			goto retry;
1769 #endif
1770 	}
1771 	mtx_unlock(&vm_page_queue_free_mtx);
1772 	if (m_ret == NULL)
1773 		return (NULL);
1774 
1775 	/*
1776 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
1777 	 */
1778 	flags = 0;
1779 	if ((req & VM_ALLOC_ZERO) != 0)
1780 		flags = PG_ZERO;
1781 	if ((req & VM_ALLOC_NODUMP) != 0)
1782 		flags |= PG_NODUMP;
1783 	if ((req & VM_ALLOC_WIRED) != 0)
1784 		atomic_add_int(&cnt.v_wire_count, npages);
1785 	oflags = VPO_UNMANAGED;
1786 	if (object != NULL) {
1787 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1788 		    memattr == VM_MEMATTR_DEFAULT)
1789 			memattr = object->memattr;
1790 	}
1791 	for (m = m_ret; m < &m_ret[npages]; m++) {
1792 		m->aflags = 0;
1793 		m->flags = (m->flags | PG_NODUMP) & flags;
1794 		m->busy_lock = VPB_UNBUSIED;
1795 		if (object != NULL) {
1796 			if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
1797 				m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1798 			if ((req & VM_ALLOC_SBUSY) != 0)
1799 				m->busy_lock = VPB_SHARERS_WORD(1);
1800 		}
1801 		if ((req & VM_ALLOC_WIRED) != 0)
1802 			m->wire_count = 1;
1803 		/* Unmanaged pages don't use "act_count". */
1804 		m->oflags = oflags;
1805 		if (object != NULL) {
1806 			if (vm_page_insert(m, object, pindex)) {
1807 				vm_page_alloc_contig_vdrop(
1808 				    &deferred_vdrop_list);
1809 				if (vm_paging_needed())
1810 					pagedaemon_wakeup();
1811 				if ((req & VM_ALLOC_WIRED) != 0)
1812 					atomic_subtract_int(&cnt.v_wire_count,
1813 					    npages);
1814 				for (m_tmp = m, m = m_ret;
1815 				    m < &m_ret[npages]; m++) {
1816 					if ((req & VM_ALLOC_WIRED) != 0)
1817 						m->wire_count = 0;
1818 					if (m >= m_tmp)
1819 						m->object = NULL;
1820 					vm_page_free(m);
1821 				}
1822 				return (NULL);
1823 			}
1824 		} else
1825 			m->pindex = pindex;
1826 		if (memattr != VM_MEMATTR_DEFAULT)
1827 			pmap_page_set_memattr(m, memattr);
1828 		pindex++;
1829 	}
1830 	vm_page_alloc_contig_vdrop(&deferred_vdrop_list);
1831 	if (vm_paging_needed())
1832 		pagedaemon_wakeup();
1833 	return (m_ret);
1834 }
1835 
1836 /*
1837  * Initialize a page that has been freshly dequeued from a freelist.
1838  * The caller has to drop the vnode returned, if it is not NULL.
1839  *
1840  * This function may only be used to initialize unmanaged pages.
1841  *
1842  * To be called with vm_page_queue_free_mtx held.
1843  */
1844 static struct vnode *
1845 vm_page_alloc_init(vm_page_t m)
1846 {
1847 	struct vnode *drop;
1848 	vm_object_t m_object;
1849 
1850 	KASSERT(m->queue == PQ_NONE,
1851 	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1852 	    m, m->queue));
1853 	KASSERT(m->wire_count == 0,
1854 	    ("vm_page_alloc_init: page %p is wired", m));
1855 	KASSERT(m->hold_count == 0,
1856 	    ("vm_page_alloc_init: page %p is held", m));
1857 	KASSERT(!vm_page_sbusied(m),
1858 	    ("vm_page_alloc_init: page %p is busy", m));
1859 	KASSERT(m->dirty == 0,
1860 	    ("vm_page_alloc_init: page %p is dirty", m));
1861 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1862 	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
1863 	    m, pmap_page_get_memattr(m)));
1864 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1865 	drop = NULL;
1866 	if ((m->flags & PG_CACHED) != 0) {
1867 		KASSERT((m->flags & PG_ZERO) == 0,
1868 		    ("vm_page_alloc_init: cached page %p is PG_ZERO", m));
1869 		m->valid = 0;
1870 		m_object = m->object;
1871 		vm_page_cache_remove(m);
1872 		if (m_object->type == OBJT_VNODE &&
1873 		    vm_object_cache_is_empty(m_object))
1874 			drop = m_object->handle;
1875 	} else {
1876 		KASSERT(VM_PAGE_IS_FREE(m),
1877 		    ("vm_page_alloc_init: page %p is not free", m));
1878 		KASSERT(m->valid == 0,
1879 		    ("vm_page_alloc_init: free page %p is valid", m));
1880 		vm_phys_freecnt_adj(m, -1);
1881 		if ((m->flags & PG_ZERO) != 0)
1882 			vm_page_zero_count--;
1883 	}
1884 	/* Don't clear the PG_ZERO flag; we'll need it later. */
1885 	m->flags &= PG_ZERO;
1886 	return (drop);
1887 }
1888 
1889 /*
1890  * 	vm_page_alloc_freelist:
1891  *
1892  *	Allocate a physical page from the specified free page list.
1893  *
1894  *	The caller must always specify an allocation class.
1895  *
1896  *	allocation classes:
1897  *	VM_ALLOC_NORMAL		normal process request
1898  *	VM_ALLOC_SYSTEM		system *really* needs a page
1899  *	VM_ALLOC_INTERRUPT	interrupt time request
1900  *
1901  *	optional allocation flags:
1902  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1903  *				intends to allocate
1904  *	VM_ALLOC_WIRED		wire the allocated page
1905  *	VM_ALLOC_ZERO		prefer a zeroed page
1906  *
1907  *	This routine may not sleep.
1908  */
1909 vm_page_t
1910 vm_page_alloc_freelist(int flind, int req)
1911 {
1912 	struct vnode *drop;
1913 	vm_page_t m;
1914 	u_int flags;
1915 	int req_class;
1916 
1917 	req_class = req & VM_ALLOC_CLASS_MASK;
1918 
1919 	/*
1920 	 * The page daemon is allowed to dig deeper into the free page list.
1921 	 */
1922 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1923 		req_class = VM_ALLOC_SYSTEM;
1924 
1925 	/*
1926 	 * Do not allocate reserved pages unless the req has asked for it.
1927 	 */
1928 	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
1929 	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1930 	    (req_class == VM_ALLOC_SYSTEM &&
1931 	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1932 	    (req_class == VM_ALLOC_INTERRUPT &&
1933 	    cnt.v_free_count + cnt.v_cache_count > 0))
1934 		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
1935 	else {
1936 		mtx_unlock(&vm_page_queue_free_mtx);
1937 		atomic_add_int(&vm_pageout_deficit,
1938 		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1939 		pagedaemon_wakeup();
1940 		return (NULL);
1941 	}
1942 	if (m == NULL) {
1943 		mtx_unlock(&vm_page_queue_free_mtx);
1944 		return (NULL);
1945 	}
1946 	drop = vm_page_alloc_init(m);
1947 	mtx_unlock(&vm_page_queue_free_mtx);
1948 
1949 	/*
1950 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1951 	 */
1952 	m->aflags = 0;
1953 	flags = 0;
1954 	if ((req & VM_ALLOC_ZERO) != 0)
1955 		flags = PG_ZERO;
1956 	m->flags &= flags;
1957 	if ((req & VM_ALLOC_WIRED) != 0) {
1958 		/*
1959 		 * The page lock is not required for wiring a page that does
1960 		 * not belong to an object.
1961 		 */
1962 		atomic_add_int(&cnt.v_wire_count, 1);
1963 		m->wire_count = 1;
1964 	}
1965 	/* Unmanaged pages don't use "act_count". */
1966 	m->oflags = VPO_UNMANAGED;
1967 	if (drop != NULL)
1968 		vdrop(drop);
1969 	if (vm_paging_needed())
1970 		pagedaemon_wakeup();
1971 	return (m);
1972 }
1973 
1974 /*
1975  *	vm_wait:	(also see VM_WAIT macro)
1976  *
1977  *	Sleep until free pages are available for allocation.
1978  *	- Called in various places before memory allocations.
1979  */
1980 void
1981 vm_wait(void)
1982 {
1983 
1984 	mtx_lock(&vm_page_queue_free_mtx);
1985 	if (curproc == pageproc) {
1986 		vm_pageout_pages_needed = 1;
1987 		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1988 		    PDROP | PSWP, "VMWait", 0);
1989 	} else {
1990 		if (!vm_pages_needed) {
1991 			vm_pages_needed = 1;
1992 			wakeup(&vm_pages_needed);
1993 		}
1994 		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1995 		    "vmwait", 0);
1996 	}
1997 }
1998 
1999 /*
2000  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
2001  *
2002  *	Sleep until free pages are available for allocation.
2003  *	- Called only in vm_fault so that processes page faulting
2004  *	  can be easily tracked.
2005  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
2006  *	  processes will be able to grab memory first.  Do not change
2007  *	  this balance without careful testing first.
2008  */
2009 void
2010 vm_waitpfault(void)
2011 {
2012 
2013 	mtx_lock(&vm_page_queue_free_mtx);
2014 	if (!vm_pages_needed) {
2015 		vm_pages_needed = 1;
2016 		wakeup(&vm_pages_needed);
2017 	}
2018 	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
2019 	    "pfault", 0);
2020 }
2021 
2022 struct vm_pagequeue *
2023 vm_page_pagequeue(vm_page_t m)
2024 {
2025 
2026 	return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]);
2027 }
2028 
2029 /*
2030  *	vm_page_dequeue:
2031  *
2032  *	Remove the given page from its current page queue.
2033  *
2034  *	The page must be locked.
2035  */
2036 void
2037 vm_page_dequeue(vm_page_t m)
2038 {
2039 	struct vm_pagequeue *pq;
2040 
2041 	vm_page_lock_assert(m, MA_OWNED);
2042 	KASSERT(m->queue != PQ_NONE,
2043 	    ("vm_page_dequeue: page %p is not queued", m));
2044 	pq = vm_page_pagequeue(m);
2045 	vm_pagequeue_lock(pq);
2046 	m->queue = PQ_NONE;
2047 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2048 	vm_pagequeue_cnt_dec(pq);
2049 	vm_pagequeue_unlock(pq);
2050 }
2051 
2052 /*
2053  *	vm_page_dequeue_locked:
2054  *
2055  *	Remove the given page from its current page queue.
2056  *
2057  *	The page and page queue must be locked.
2058  */
2059 void
2060 vm_page_dequeue_locked(vm_page_t m)
2061 {
2062 	struct vm_pagequeue *pq;
2063 
2064 	vm_page_lock_assert(m, MA_OWNED);
2065 	pq = vm_page_pagequeue(m);
2066 	vm_pagequeue_assert_locked(pq);
2067 	m->queue = PQ_NONE;
2068 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2069 	vm_pagequeue_cnt_dec(pq);
2070 }
2071 
2072 /*
2073  *	vm_page_enqueue:
2074  *
2075  *	Add the given page to the specified page queue.
2076  *
2077  *	The page must be locked.
2078  */
2079 static void
2080 vm_page_enqueue(int queue, vm_page_t m)
2081 {
2082 	struct vm_pagequeue *pq;
2083 
2084 	vm_page_lock_assert(m, MA_OWNED);
2085 	pq = &vm_phys_domain(m)->vmd_pagequeues[queue];
2086 	vm_pagequeue_lock(pq);
2087 	m->queue = queue;
2088 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2089 	vm_pagequeue_cnt_inc(pq);
2090 	vm_pagequeue_unlock(pq);
2091 }
2092 
2093 /*
2094  *	vm_page_requeue:
2095  *
2096  *	Move the given page to the tail of its current page queue.
2097  *
2098  *	The page must be locked.
2099  */
2100 void
2101 vm_page_requeue(vm_page_t m)
2102 {
2103 	struct vm_pagequeue *pq;
2104 
2105 	vm_page_lock_assert(m, MA_OWNED);
2106 	KASSERT(m->queue != PQ_NONE,
2107 	    ("vm_page_requeue: page %p is not queued", m));
2108 	pq = vm_page_pagequeue(m);
2109 	vm_pagequeue_lock(pq);
2110 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2111 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2112 	vm_pagequeue_unlock(pq);
2113 }
2114 
2115 /*
2116  *	vm_page_requeue_locked:
2117  *
2118  *	Move the given page to the tail of its current page queue.
2119  *
2120  *	The page queue must be locked.
2121  */
2122 void
2123 vm_page_requeue_locked(vm_page_t m)
2124 {
2125 	struct vm_pagequeue *pq;
2126 
2127 	KASSERT(m->queue != PQ_NONE,
2128 	    ("vm_page_requeue_locked: page %p is not queued", m));
2129 	pq = vm_page_pagequeue(m);
2130 	vm_pagequeue_assert_locked(pq);
2131 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2132 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2133 }
2134 
2135 /*
2136  *	vm_page_activate:
2137  *
2138  *	Put the specified page on the active list (if appropriate).
2139  *	Ensure that act_count is at least ACT_INIT but do not otherwise
2140  *	mess with it.
2141  *
2142  *	The page must be locked.
2143  */
2144 void
2145 vm_page_activate(vm_page_t m)
2146 {
2147 	int queue;
2148 
2149 	vm_page_lock_assert(m, MA_OWNED);
2150 	if ((queue = m->queue) != PQ_ACTIVE) {
2151 		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2152 			if (m->act_count < ACT_INIT)
2153 				m->act_count = ACT_INIT;
2154 			if (queue != PQ_NONE)
2155 				vm_page_dequeue(m);
2156 			vm_page_enqueue(PQ_ACTIVE, m);
2157 		} else
2158 			KASSERT(queue == PQ_NONE,
2159 			    ("vm_page_activate: wired page %p is queued", m));
2160 	} else {
2161 		if (m->act_count < ACT_INIT)
2162 			m->act_count = ACT_INIT;
2163 	}
2164 }
2165 
2166 /*
2167  *	vm_page_free_wakeup:
2168  *
2169  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
2170  *	routine is called when a page has been added to the cache or free
2171  *	queues.
2172  *
2173  *	The page queues must be locked.
2174  */
2175 static inline void
2176 vm_page_free_wakeup(void)
2177 {
2178 
2179 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2180 	/*
2181 	 * if pageout daemon needs pages, then tell it that there are
2182 	 * some free.
2183 	 */
2184 	if (vm_pageout_pages_needed &&
2185 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
2186 		wakeup(&vm_pageout_pages_needed);
2187 		vm_pageout_pages_needed = 0;
2188 	}
2189 	/*
2190 	 * wakeup processes that are waiting on memory if we hit a
2191 	 * high water mark. And wakeup scheduler process if we have
2192 	 * lots of memory. this process will swapin processes.
2193 	 */
2194 	if (vm_pages_needed && !vm_page_count_min()) {
2195 		vm_pages_needed = 0;
2196 		wakeup(&cnt.v_free_count);
2197 	}
2198 }
2199 
2200 /*
2201  *	Turn a cached page into a free page, by changing its attributes.
2202  *	Keep the statistics up-to-date.
2203  *
2204  *	The free page queue must be locked.
2205  */
2206 static void
2207 vm_page_cache_turn_free(vm_page_t m)
2208 {
2209 
2210 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2211 
2212 	m->object = NULL;
2213 	m->valid = 0;
2214 	/* Clear PG_CACHED and set PG_FREE. */
2215 	m->flags ^= PG_CACHED | PG_FREE;
2216 	KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
2217 	    ("vm_page_cache_free: page %p has inconsistent flags", m));
2218 	cnt.v_cache_count--;
2219 	vm_phys_freecnt_adj(m, 1);
2220 }
2221 
2222 /*
2223  *	vm_page_free_toq:
2224  *
2225  *	Returns the given page to the free list,
2226  *	disassociating it with any VM object.
2227  *
2228  *	The object must be locked.  The page must be locked if it is managed.
2229  */
2230 void
2231 vm_page_free_toq(vm_page_t m)
2232 {
2233 
2234 	if ((m->oflags & VPO_UNMANAGED) == 0) {
2235 		vm_page_lock_assert(m, MA_OWNED);
2236 		KASSERT(!pmap_page_is_mapped(m),
2237 		    ("vm_page_free_toq: freeing mapped page %p", m));
2238 	} else
2239 		KASSERT(m->queue == PQ_NONE,
2240 		    ("vm_page_free_toq: unmanaged page %p is queued", m));
2241 	PCPU_INC(cnt.v_tfree);
2242 
2243 	if (VM_PAGE_IS_FREE(m))
2244 		panic("vm_page_free: freeing free page %p", m);
2245 	else if (vm_page_sbusied(m))
2246 		panic("vm_page_free: freeing busy page %p", m);
2247 
2248 	/*
2249 	 * Unqueue, then remove page.  Note that we cannot destroy
2250 	 * the page here because we do not want to call the pager's
2251 	 * callback routine until after we've put the page on the
2252 	 * appropriate free queue.
2253 	 */
2254 	vm_page_remque(m);
2255 	vm_page_remove(m);
2256 
2257 	/*
2258 	 * If fictitious remove object association and
2259 	 * return, otherwise delay object association removal.
2260 	 */
2261 	if ((m->flags & PG_FICTITIOUS) != 0) {
2262 		return;
2263 	}
2264 
2265 	m->valid = 0;
2266 	vm_page_undirty(m);
2267 
2268 	if (m->wire_count != 0)
2269 		panic("vm_page_free: freeing wired page %p", m);
2270 	if (m->hold_count != 0) {
2271 		m->flags &= ~PG_ZERO;
2272 		KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2273 		    ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
2274 		m->flags |= PG_UNHOLDFREE;
2275 	} else {
2276 		/*
2277 		 * Restore the default memory attribute to the page.
2278 		 */
2279 		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2280 			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2281 
2282 		/*
2283 		 * Insert the page into the physical memory allocator's
2284 		 * cache/free page queues.
2285 		 */
2286 		mtx_lock(&vm_page_queue_free_mtx);
2287 		m->flags |= PG_FREE;
2288 		vm_phys_freecnt_adj(m, 1);
2289 #if VM_NRESERVLEVEL > 0
2290 		if (!vm_reserv_free_page(m))
2291 #else
2292 		if (TRUE)
2293 #endif
2294 			vm_phys_free_pages(m, 0);
2295 		if ((m->flags & PG_ZERO) != 0)
2296 			++vm_page_zero_count;
2297 		else
2298 			vm_page_zero_idle_wakeup();
2299 		vm_page_free_wakeup();
2300 		mtx_unlock(&vm_page_queue_free_mtx);
2301 	}
2302 }
2303 
2304 /*
2305  *	vm_page_wire:
2306  *
2307  *	Mark this page as wired down by yet
2308  *	another map, removing it from paging queues
2309  *	as necessary.
2310  *
2311  *	If the page is fictitious, then its wire count must remain one.
2312  *
2313  *	The page must be locked.
2314  */
2315 void
2316 vm_page_wire(vm_page_t m)
2317 {
2318 
2319 	/*
2320 	 * Only bump the wire statistics if the page is not already wired,
2321 	 * and only unqueue the page if it is on some queue (if it is unmanaged
2322 	 * it is already off the queues).
2323 	 */
2324 	vm_page_lock_assert(m, MA_OWNED);
2325 	if ((m->flags & PG_FICTITIOUS) != 0) {
2326 		KASSERT(m->wire_count == 1,
2327 		    ("vm_page_wire: fictitious page %p's wire count isn't one",
2328 		    m));
2329 		return;
2330 	}
2331 	if (m->wire_count == 0) {
2332 		KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
2333 		    m->queue == PQ_NONE,
2334 		    ("vm_page_wire: unmanaged page %p is queued", m));
2335 		vm_page_remque(m);
2336 		atomic_add_int(&cnt.v_wire_count, 1);
2337 	}
2338 	m->wire_count++;
2339 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
2340 }
2341 
2342 /*
2343  * vm_page_unwire:
2344  *
2345  * Release one wiring of the specified page, potentially enabling it to be
2346  * paged again.  If paging is enabled, then the value of the parameter
2347  * "activate" determines to which queue the page is added.  If "activate" is
2348  * non-zero, then the page is added to the active queue.  Otherwise, it is
2349  * added to the inactive queue.
2350  *
2351  * However, unless the page belongs to an object, it is not enqueued because
2352  * it cannot be paged out.
2353  *
2354  * If a page is fictitious, then its wire count must always be one.
2355  *
2356  * A managed page must be locked.
2357  */
2358 void
2359 vm_page_unwire(vm_page_t m, int activate)
2360 {
2361 
2362 	if ((m->oflags & VPO_UNMANAGED) == 0)
2363 		vm_page_lock_assert(m, MA_OWNED);
2364 	if ((m->flags & PG_FICTITIOUS) != 0) {
2365 		KASSERT(m->wire_count == 1,
2366 	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
2367 		return;
2368 	}
2369 	if (m->wire_count > 0) {
2370 		m->wire_count--;
2371 		if (m->wire_count == 0) {
2372 			atomic_subtract_int(&cnt.v_wire_count, 1);
2373 			if ((m->oflags & VPO_UNMANAGED) != 0 ||
2374 			    m->object == NULL)
2375 				return;
2376 			if (!activate)
2377 				m->flags &= ~PG_WINATCFLS;
2378 			vm_page_enqueue(activate ? PQ_ACTIVE : PQ_INACTIVE, m);
2379 		}
2380 	} else
2381 		panic("vm_page_unwire: page %p's wire count is zero", m);
2382 }
2383 
2384 /*
2385  * Move the specified page to the inactive queue.
2386  *
2387  * Many pages placed on the inactive queue should actually go
2388  * into the cache, but it is difficult to figure out which.  What
2389  * we do instead, if the inactive target is well met, is to put
2390  * clean pages at the head of the inactive queue instead of the tail.
2391  * This will cause them to be moved to the cache more quickly and
2392  * if not actively re-referenced, reclaimed more quickly.  If we just
2393  * stick these pages at the end of the inactive queue, heavy filesystem
2394  * meta-data accesses can cause an unnecessary paging load on memory bound
2395  * processes.  This optimization causes one-time-use metadata to be
2396  * reused more quickly.
2397  *
2398  * Normally athead is 0 resulting in LRU operation.  athead is set
2399  * to 1 if we want this page to be 'as if it were placed in the cache',
2400  * except without unmapping it from the process address space.
2401  *
2402  * The page must be locked.
2403  */
2404 static inline void
2405 _vm_page_deactivate(vm_page_t m, int athead)
2406 {
2407 	struct vm_pagequeue *pq;
2408 	int queue;
2409 
2410 	vm_page_lock_assert(m, MA_OWNED);
2411 
2412 	/*
2413 	 * Ignore if already inactive.
2414 	 */
2415 	if ((queue = m->queue) == PQ_INACTIVE)
2416 		return;
2417 	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2418 		if (queue != PQ_NONE)
2419 			vm_page_dequeue(m);
2420 		m->flags &= ~PG_WINATCFLS;
2421 		pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE];
2422 		vm_pagequeue_lock(pq);
2423 		m->queue = PQ_INACTIVE;
2424 		if (athead)
2425 			TAILQ_INSERT_HEAD(&pq->pq_pl, m, plinks.q);
2426 		else
2427 			TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2428 		vm_pagequeue_cnt_inc(pq);
2429 		vm_pagequeue_unlock(pq);
2430 	}
2431 }
2432 
2433 /*
2434  * Move the specified page to the inactive queue.
2435  *
2436  * The page must be locked.
2437  */
2438 void
2439 vm_page_deactivate(vm_page_t m)
2440 {
2441 
2442 	_vm_page_deactivate(m, 0);
2443 }
2444 
2445 /*
2446  * vm_page_try_to_cache:
2447  *
2448  * Returns 0 on failure, 1 on success
2449  */
2450 int
2451 vm_page_try_to_cache(vm_page_t m)
2452 {
2453 
2454 	vm_page_lock_assert(m, MA_OWNED);
2455 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2456 	if (m->dirty || m->hold_count || m->wire_count ||
2457 	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
2458 		return (0);
2459 	pmap_remove_all(m);
2460 	if (m->dirty)
2461 		return (0);
2462 	vm_page_cache(m);
2463 	return (1);
2464 }
2465 
2466 /*
2467  * vm_page_try_to_free()
2468  *
2469  *	Attempt to free the page.  If we cannot free it, we do nothing.
2470  *	1 is returned on success, 0 on failure.
2471  */
2472 int
2473 vm_page_try_to_free(vm_page_t m)
2474 {
2475 
2476 	vm_page_lock_assert(m, MA_OWNED);
2477 	if (m->object != NULL)
2478 		VM_OBJECT_ASSERT_WLOCKED(m->object);
2479 	if (m->dirty || m->hold_count || m->wire_count ||
2480 	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
2481 		return (0);
2482 	pmap_remove_all(m);
2483 	if (m->dirty)
2484 		return (0);
2485 	vm_page_free(m);
2486 	return (1);
2487 }
2488 
2489 /*
2490  * vm_page_cache
2491  *
2492  * Put the specified page onto the page cache queue (if appropriate).
2493  *
2494  * The object and page must be locked.
2495  */
2496 void
2497 vm_page_cache(vm_page_t m)
2498 {
2499 	vm_object_t object;
2500 	boolean_t cache_was_empty;
2501 
2502 	vm_page_lock_assert(m, MA_OWNED);
2503 	object = m->object;
2504 	VM_OBJECT_ASSERT_WLOCKED(object);
2505 	if (vm_page_busied(m) || (m->oflags & VPO_UNMANAGED) ||
2506 	    m->hold_count || m->wire_count)
2507 		panic("vm_page_cache: attempting to cache busy page");
2508 	KASSERT(!pmap_page_is_mapped(m),
2509 	    ("vm_page_cache: page %p is mapped", m));
2510 	KASSERT(m->dirty == 0, ("vm_page_cache: page %p is dirty", m));
2511 	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
2512 	    (object->type == OBJT_SWAP &&
2513 	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
2514 		/*
2515 		 * Hypothesis: A cache-elgible page belonging to a
2516 		 * default object or swap object but without a backing
2517 		 * store must be zero filled.
2518 		 */
2519 		vm_page_free(m);
2520 		return;
2521 	}
2522 	KASSERT((m->flags & PG_CACHED) == 0,
2523 	    ("vm_page_cache: page %p is already cached", m));
2524 
2525 	/*
2526 	 * Remove the page from the paging queues.
2527 	 */
2528 	vm_page_remque(m);
2529 
2530 	/*
2531 	 * Remove the page from the object's collection of resident
2532 	 * pages.
2533 	 */
2534 	vm_radix_remove(&object->rtree, m->pindex);
2535 	TAILQ_REMOVE(&object->memq, m, listq);
2536 	object->resident_page_count--;
2537 
2538 	/*
2539 	 * Restore the default memory attribute to the page.
2540 	 */
2541 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2542 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2543 
2544 	/*
2545 	 * Insert the page into the object's collection of cached pages
2546 	 * and the physical memory allocator's cache/free page queues.
2547 	 */
2548 	m->flags &= ~PG_ZERO;
2549 	mtx_lock(&vm_page_queue_free_mtx);
2550 	cache_was_empty = vm_radix_is_empty(&object->cache);
2551 	if (vm_radix_insert(&object->cache, m)) {
2552 		mtx_unlock(&vm_page_queue_free_mtx);
2553 		if (object->resident_page_count == 0)
2554 			vdrop(object->handle);
2555 		m->object = NULL;
2556 		vm_page_free(m);
2557 		return;
2558 	}
2559 
2560 	/*
2561 	 * The above call to vm_radix_insert() could reclaim the one pre-
2562 	 * existing cached page from this object, resulting in a call to
2563 	 * vdrop().
2564 	 */
2565 	if (!cache_was_empty)
2566 		cache_was_empty = vm_radix_is_singleton(&object->cache);
2567 
2568 	m->flags |= PG_CACHED;
2569 	cnt.v_cache_count++;
2570 	PCPU_INC(cnt.v_tcached);
2571 #if VM_NRESERVLEVEL > 0
2572 	if (!vm_reserv_free_page(m)) {
2573 #else
2574 	if (TRUE) {
2575 #endif
2576 		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
2577 		vm_phys_free_pages(m, 0);
2578 	}
2579 	vm_page_free_wakeup();
2580 	mtx_unlock(&vm_page_queue_free_mtx);
2581 
2582 	/*
2583 	 * Increment the vnode's hold count if this is the object's only
2584 	 * cached page.  Decrement the vnode's hold count if this was
2585 	 * the object's only resident page.
2586 	 */
2587 	if (object->type == OBJT_VNODE) {
2588 		if (cache_was_empty && object->resident_page_count != 0)
2589 			vhold(object->handle);
2590 		else if (!cache_was_empty && object->resident_page_count == 0)
2591 			vdrop(object->handle);
2592 	}
2593 }
2594 
2595 /*
2596  * vm_page_advise
2597  *
2598  *	Cache, deactivate, or do nothing as appropriate.  This routine
2599  *	is used by madvise().
2600  *
2601  *	Generally speaking we want to move the page into the cache so
2602  *	it gets reused quickly.  However, this can result in a silly syndrome
2603  *	due to the page recycling too quickly.  Small objects will not be
2604  *	fully cached.  On the other hand, if we move the page to the inactive
2605  *	queue we wind up with a problem whereby very large objects
2606  *	unnecessarily blow away our inactive and cache queues.
2607  *
2608  *	The solution is to move the pages based on a fixed weighting.  We
2609  *	either leave them alone, deactivate them, or move them to the cache,
2610  *	where moving them to the cache has the highest weighting.
2611  *	By forcing some pages into other queues we eventually force the
2612  *	system to balance the queues, potentially recovering other unrelated
2613  *	space from active.  The idea is to not force this to happen too
2614  *	often.
2615  *
2616  *	The object and page must be locked.
2617  */
2618 void
2619 vm_page_advise(vm_page_t m, int advice)
2620 {
2621 	int dnw, head;
2622 
2623 	vm_page_assert_locked(m);
2624 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2625 	if (advice == MADV_FREE) {
2626 		/*
2627 		 * Mark the page clean.  This will allow the page to be freed
2628 		 * up by the system.  However, such pages are often reused
2629 		 * quickly by malloc() so we do not do anything that would
2630 		 * cause a page fault if we can help it.
2631 		 *
2632 		 * Specifically, we do not try to actually free the page now
2633 		 * nor do we try to put it in the cache (which would cause a
2634 		 * page fault on reuse).
2635 		 *
2636 		 * But we do make the page is freeable as we can without
2637 		 * actually taking the step of unmapping it.
2638 		 */
2639 		m->dirty = 0;
2640 		m->act_count = 0;
2641 	} else if (advice != MADV_DONTNEED)
2642 		return;
2643 	dnw = PCPU_GET(dnweight);
2644 	PCPU_INC(dnweight);
2645 
2646 	/*
2647 	 * Occasionally leave the page alone.
2648 	 */
2649 	if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) {
2650 		if (m->act_count >= ACT_INIT)
2651 			--m->act_count;
2652 		return;
2653 	}
2654 
2655 	/*
2656 	 * Clear any references to the page.  Otherwise, the page daemon will
2657 	 * immediately reactivate the page.
2658 	 */
2659 	vm_page_aflag_clear(m, PGA_REFERENCED);
2660 
2661 	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
2662 		vm_page_dirty(m);
2663 
2664 	if (m->dirty || (dnw & 0x0070) == 0) {
2665 		/*
2666 		 * Deactivate the page 3 times out of 32.
2667 		 */
2668 		head = 0;
2669 	} else {
2670 		/*
2671 		 * Cache the page 28 times out of every 32.  Note that
2672 		 * the page is deactivated instead of cached, but placed
2673 		 * at the head of the queue instead of the tail.
2674 		 */
2675 		head = 1;
2676 	}
2677 	_vm_page_deactivate(m, head);
2678 }
2679 
2680 /*
2681  * Grab a page, waiting until we are waken up due to the page
2682  * changing state.  We keep on waiting, if the page continues
2683  * to be in the object.  If the page doesn't exist, first allocate it
2684  * and then conditionally zero it.
2685  *
2686  * This routine may sleep.
2687  *
2688  * The object must be locked on entry.  The lock will, however, be released
2689  * and reacquired if the routine sleeps.
2690  */
2691 vm_page_t
2692 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2693 {
2694 	vm_page_t m;
2695 	int sleep;
2696 
2697 	VM_OBJECT_ASSERT_WLOCKED(object);
2698 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
2699 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
2700 	    ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
2701 retrylookup:
2702 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
2703 		sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
2704 		    vm_page_xbusied(m) : vm_page_busied(m);
2705 		if (sleep) {
2706 			/*
2707 			 * Reference the page before unlocking and
2708 			 * sleeping so that the page daemon is less
2709 			 * likely to reclaim it.
2710 			 */
2711 			vm_page_aflag_set(m, PGA_REFERENCED);
2712 			vm_page_lock(m);
2713 			VM_OBJECT_WUNLOCK(object);
2714 			vm_page_busy_sleep(m, "pgrbwt");
2715 			VM_OBJECT_WLOCK(object);
2716 			goto retrylookup;
2717 		} else {
2718 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
2719 				vm_page_lock(m);
2720 				vm_page_wire(m);
2721 				vm_page_unlock(m);
2722 			}
2723 			if ((allocflags &
2724 			    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2725 				vm_page_xbusy(m);
2726 			if ((allocflags & VM_ALLOC_SBUSY) != 0)
2727 				vm_page_sbusy(m);
2728 			return (m);
2729 		}
2730 	}
2731 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_IGN_SBUSY);
2732 	if (m == NULL) {
2733 		VM_OBJECT_WUNLOCK(object);
2734 		VM_WAIT;
2735 		VM_OBJECT_WLOCK(object);
2736 		goto retrylookup;
2737 	} else if (m->valid != 0)
2738 		return (m);
2739 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2740 		pmap_zero_page(m);
2741 	return (m);
2742 }
2743 
2744 /*
2745  * Mapping function for valid or dirty bits in a page.
2746  *
2747  * Inputs are required to range within a page.
2748  */
2749 vm_page_bits_t
2750 vm_page_bits(int base, int size)
2751 {
2752 	int first_bit;
2753 	int last_bit;
2754 
2755 	KASSERT(
2756 	    base + size <= PAGE_SIZE,
2757 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2758 	);
2759 
2760 	if (size == 0)		/* handle degenerate case */
2761 		return (0);
2762 
2763 	first_bit = base >> DEV_BSHIFT;
2764 	last_bit = (base + size - 1) >> DEV_BSHIFT;
2765 
2766 	return (((vm_page_bits_t)2 << last_bit) -
2767 	    ((vm_page_bits_t)1 << first_bit));
2768 }
2769 
2770 /*
2771  *	vm_page_set_valid_range:
2772  *
2773  *	Sets portions of a page valid.  The arguments are expected
2774  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2775  *	of any partial chunks touched by the range.  The invalid portion of
2776  *	such chunks will be zeroed.
2777  *
2778  *	(base + size) must be less then or equal to PAGE_SIZE.
2779  */
2780 void
2781 vm_page_set_valid_range(vm_page_t m, int base, int size)
2782 {
2783 	int endoff, frag;
2784 
2785 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2786 	if (size == 0)	/* handle degenerate case */
2787 		return;
2788 
2789 	/*
2790 	 * If the base is not DEV_BSIZE aligned and the valid
2791 	 * bit is clear, we have to zero out a portion of the
2792 	 * first block.
2793 	 */
2794 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2795 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2796 		pmap_zero_page_area(m, frag, base - frag);
2797 
2798 	/*
2799 	 * If the ending offset is not DEV_BSIZE aligned and the
2800 	 * valid bit is clear, we have to zero out a portion of
2801 	 * the last block.
2802 	 */
2803 	endoff = base + size;
2804 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2805 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2806 		pmap_zero_page_area(m, endoff,
2807 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2808 
2809 	/*
2810 	 * Assert that no previously invalid block that is now being validated
2811 	 * is already dirty.
2812 	 */
2813 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2814 	    ("vm_page_set_valid_range: page %p is dirty", m));
2815 
2816 	/*
2817 	 * Set valid bits inclusive of any overlap.
2818 	 */
2819 	m->valid |= vm_page_bits(base, size);
2820 }
2821 
2822 /*
2823  * Clear the given bits from the specified page's dirty field.
2824  */
2825 static __inline void
2826 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
2827 {
2828 	uintptr_t addr;
2829 #if PAGE_SIZE < 16384
2830 	int shift;
2831 #endif
2832 
2833 	/*
2834 	 * If the object is locked and the page is neither exclusive busy nor
2835 	 * write mapped, then the page's dirty field cannot possibly be
2836 	 * set by a concurrent pmap operation.
2837 	 */
2838 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2839 	if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
2840 		m->dirty &= ~pagebits;
2841 	else {
2842 		/*
2843 		 * The pmap layer can call vm_page_dirty() without
2844 		 * holding a distinguished lock.  The combination of
2845 		 * the object's lock and an atomic operation suffice
2846 		 * to guarantee consistency of the page dirty field.
2847 		 *
2848 		 * For PAGE_SIZE == 32768 case, compiler already
2849 		 * properly aligns the dirty field, so no forcible
2850 		 * alignment is needed. Only require existence of
2851 		 * atomic_clear_64 when page size is 32768.
2852 		 */
2853 		addr = (uintptr_t)&m->dirty;
2854 #if PAGE_SIZE == 32768
2855 		atomic_clear_64((uint64_t *)addr, pagebits);
2856 #elif PAGE_SIZE == 16384
2857 		atomic_clear_32((uint32_t *)addr, pagebits);
2858 #else		/* PAGE_SIZE <= 8192 */
2859 		/*
2860 		 * Use a trick to perform a 32-bit atomic on the
2861 		 * containing aligned word, to not depend on the existence
2862 		 * of atomic_clear_{8, 16}.
2863 		 */
2864 		shift = addr & (sizeof(uint32_t) - 1);
2865 #if BYTE_ORDER == BIG_ENDIAN
2866 		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
2867 #else
2868 		shift *= NBBY;
2869 #endif
2870 		addr &= ~(sizeof(uint32_t) - 1);
2871 		atomic_clear_32((uint32_t *)addr, pagebits << shift);
2872 #endif		/* PAGE_SIZE */
2873 	}
2874 }
2875 
2876 /*
2877  *	vm_page_set_validclean:
2878  *
2879  *	Sets portions of a page valid and clean.  The arguments are expected
2880  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2881  *	of any partial chunks touched by the range.  The invalid portion of
2882  *	such chunks will be zero'd.
2883  *
2884  *	(base + size) must be less then or equal to PAGE_SIZE.
2885  */
2886 void
2887 vm_page_set_validclean(vm_page_t m, int base, int size)
2888 {
2889 	vm_page_bits_t oldvalid, pagebits;
2890 	int endoff, frag;
2891 
2892 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2893 	if (size == 0)	/* handle degenerate case */
2894 		return;
2895 
2896 	/*
2897 	 * If the base is not DEV_BSIZE aligned and the valid
2898 	 * bit is clear, we have to zero out a portion of the
2899 	 * first block.
2900 	 */
2901 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2902 	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
2903 		pmap_zero_page_area(m, frag, base - frag);
2904 
2905 	/*
2906 	 * If the ending offset is not DEV_BSIZE aligned and the
2907 	 * valid bit is clear, we have to zero out a portion of
2908 	 * the last block.
2909 	 */
2910 	endoff = base + size;
2911 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2912 	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
2913 		pmap_zero_page_area(m, endoff,
2914 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2915 
2916 	/*
2917 	 * Set valid, clear dirty bits.  If validating the entire
2918 	 * page we can safely clear the pmap modify bit.  We also
2919 	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
2920 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
2921 	 * be set again.
2922 	 *
2923 	 * We set valid bits inclusive of any overlap, but we can only
2924 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
2925 	 * the range.
2926 	 */
2927 	oldvalid = m->valid;
2928 	pagebits = vm_page_bits(base, size);
2929 	m->valid |= pagebits;
2930 #if 0	/* NOT YET */
2931 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2932 		frag = DEV_BSIZE - frag;
2933 		base += frag;
2934 		size -= frag;
2935 		if (size < 0)
2936 			size = 0;
2937 	}
2938 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2939 #endif
2940 	if (base == 0 && size == PAGE_SIZE) {
2941 		/*
2942 		 * The page can only be modified within the pmap if it is
2943 		 * mapped, and it can only be mapped if it was previously
2944 		 * fully valid.
2945 		 */
2946 		if (oldvalid == VM_PAGE_BITS_ALL)
2947 			/*
2948 			 * Perform the pmap_clear_modify() first.  Otherwise,
2949 			 * a concurrent pmap operation, such as
2950 			 * pmap_protect(), could clear a modification in the
2951 			 * pmap and set the dirty field on the page before
2952 			 * pmap_clear_modify() had begun and after the dirty
2953 			 * field was cleared here.
2954 			 */
2955 			pmap_clear_modify(m);
2956 		m->dirty = 0;
2957 		m->oflags &= ~VPO_NOSYNC;
2958 	} else if (oldvalid != VM_PAGE_BITS_ALL)
2959 		m->dirty &= ~pagebits;
2960 	else
2961 		vm_page_clear_dirty_mask(m, pagebits);
2962 }
2963 
2964 void
2965 vm_page_clear_dirty(vm_page_t m, int base, int size)
2966 {
2967 
2968 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
2969 }
2970 
2971 /*
2972  *	vm_page_set_invalid:
2973  *
2974  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
2975  *	valid and dirty bits for the effected areas are cleared.
2976  */
2977 void
2978 vm_page_set_invalid(vm_page_t m, int base, int size)
2979 {
2980 	vm_page_bits_t bits;
2981 	vm_object_t object;
2982 
2983 	object = m->object;
2984 	VM_OBJECT_ASSERT_WLOCKED(object);
2985 	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
2986 	    size >= object->un_pager.vnp.vnp_size)
2987 		bits = VM_PAGE_BITS_ALL;
2988 	else
2989 		bits = vm_page_bits(base, size);
2990 	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
2991 		pmap_remove_all(m);
2992 	KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) ||
2993 	    !pmap_page_is_mapped(m),
2994 	    ("vm_page_set_invalid: page %p is mapped", m));
2995 	m->valid &= ~bits;
2996 	m->dirty &= ~bits;
2997 }
2998 
2999 /*
3000  * vm_page_zero_invalid()
3001  *
3002  *	The kernel assumes that the invalid portions of a page contain
3003  *	garbage, but such pages can be mapped into memory by user code.
3004  *	When this occurs, we must zero out the non-valid portions of the
3005  *	page so user code sees what it expects.
3006  *
3007  *	Pages are most often semi-valid when the end of a file is mapped
3008  *	into memory and the file's size is not page aligned.
3009  */
3010 void
3011 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3012 {
3013 	int b;
3014 	int i;
3015 
3016 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3017 	/*
3018 	 * Scan the valid bits looking for invalid sections that
3019 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
3020 	 * valid bit may be set ) have already been zerod by
3021 	 * vm_page_set_validclean().
3022 	 */
3023 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3024 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
3025 		    (m->valid & ((vm_page_bits_t)1 << i))) {
3026 			if (i > b) {
3027 				pmap_zero_page_area(m,
3028 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
3029 			}
3030 			b = i + 1;
3031 		}
3032 	}
3033 
3034 	/*
3035 	 * setvalid is TRUE when we can safely set the zero'd areas
3036 	 * as being valid.  We can do this if there are no cache consistancy
3037 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
3038 	 */
3039 	if (setvalid)
3040 		m->valid = VM_PAGE_BITS_ALL;
3041 }
3042 
3043 /*
3044  *	vm_page_is_valid:
3045  *
3046  *	Is (partial) page valid?  Note that the case where size == 0
3047  *	will return FALSE in the degenerate case where the page is
3048  *	entirely invalid, and TRUE otherwise.
3049  */
3050 int
3051 vm_page_is_valid(vm_page_t m, int base, int size)
3052 {
3053 	vm_page_bits_t bits;
3054 
3055 	VM_OBJECT_ASSERT_LOCKED(m->object);
3056 	bits = vm_page_bits(base, size);
3057 	return (m->valid != 0 && (m->valid & bits) == bits);
3058 }
3059 
3060 /*
3061  * Set the page's dirty bits if the page is modified.
3062  */
3063 void
3064 vm_page_test_dirty(vm_page_t m)
3065 {
3066 
3067 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3068 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
3069 		vm_page_dirty(m);
3070 }
3071 
3072 void
3073 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
3074 {
3075 
3076 	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
3077 }
3078 
3079 void
3080 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
3081 {
3082 
3083 	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
3084 }
3085 
3086 int
3087 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
3088 {
3089 
3090 	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
3091 }
3092 
3093 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
3094 void
3095 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
3096 {
3097 
3098 	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
3099 }
3100 
3101 void
3102 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
3103 {
3104 
3105 	mtx_assert_(vm_page_lockptr(m), a, file, line);
3106 }
3107 #endif
3108 
3109 #ifdef INVARIANTS
3110 void
3111 vm_page_object_lock_assert(vm_page_t m)
3112 {
3113 
3114 	/*
3115 	 * Certain of the page's fields may only be modified by the
3116 	 * holder of the containing object's lock or the exclusive busy.
3117 	 * holder.  Unfortunately, the holder of the write busy is
3118 	 * not recorded, and thus cannot be checked here.
3119 	 */
3120 	if (m->object != NULL && !vm_page_xbusied(m))
3121 		VM_OBJECT_ASSERT_WLOCKED(m->object);
3122 }
3123 #endif
3124 
3125 #include "opt_ddb.h"
3126 #ifdef DDB
3127 #include <sys/kernel.h>
3128 
3129 #include <ddb/ddb.h>
3130 
3131 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3132 {
3133 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
3134 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
3135 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
3136 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
3137 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
3138 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
3139 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
3140 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
3141 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
3142 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
3143 }
3144 
3145 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3146 {
3147 	int dom;
3148 
3149 	db_printf("pq_free %d pq_cache %d\n",
3150 	    cnt.v_free_count, cnt.v_cache_count);
3151 	for (dom = 0; dom < vm_ndomains; dom++) {
3152 		db_printf(
3153 	"dom %d page_cnt %d free %d pq_act %d pq_inact %d pass %d\n",
3154 		    dom,
3155 		    vm_dom[dom].vmd_page_count,
3156 		    vm_dom[dom].vmd_free_count,
3157 		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
3158 		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
3159 		    vm_dom[dom].vmd_pass);
3160 	}
3161 }
3162 
3163 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
3164 {
3165 	vm_page_t m;
3166 	boolean_t phys;
3167 
3168 	if (!have_addr) {
3169 		db_printf("show pginfo addr\n");
3170 		return;
3171 	}
3172 
3173 	phys = strchr(modif, 'p') != NULL;
3174 	if (phys)
3175 		m = PHYS_TO_VM_PAGE(addr);
3176 	else
3177 		m = (vm_page_t)addr;
3178 	db_printf(
3179     "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
3180     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
3181 	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
3182 	    m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
3183 	    m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
3184 }
3185 #endif /* DDB */
3186