xref: /freebsd/sys/vm/vm_page.c (revision 2a243b9539a45b392a515569cab2091844cf2bdf)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * The Mach Operating System project at Carnegie-Mellon University.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34  */
35 
36 /*-
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *			GENERAL RULES ON VM_PAGE MANIPULATION
65  *
66  *	- A page queue lock is required when adding or removing a page from a
67  *	  page queue regardless of other locks or the busy state of a page.
68  *
69  *		* In general, no thread besides the page daemon can acquire or
70  *		  hold more than one page queue lock at a time.
71  *
72  *		* The page daemon can acquire and hold any pair of page queue
73  *		  locks in any order.
74  *
75  *	- The object lock is required when inserting or removing
76  *	  pages from an object (vm_page_insert() or vm_page_remove()).
77  *
78  */
79 
80 /*
81  *	Resident memory management module.
82  */
83 
84 #include <sys/cdefs.h>
85 __FBSDID("$FreeBSD$");
86 
87 #include "opt_vm.h"
88 
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/lock.h>
92 #include <sys/kernel.h>
93 #include <sys/limits.h>
94 #include <sys/linker.h>
95 #include <sys/malloc.h>
96 #include <sys/mman.h>
97 #include <sys/msgbuf.h>
98 #include <sys/mutex.h>
99 #include <sys/proc.h>
100 #include <sys/rwlock.h>
101 #include <sys/sbuf.h>
102 #include <sys/smp.h>
103 #include <sys/sysctl.h>
104 #include <sys/vmmeter.h>
105 #include <sys/vnode.h>
106 
107 #include <vm/vm.h>
108 #include <vm/pmap.h>
109 #include <vm/vm_param.h>
110 #include <vm/vm_kern.h>
111 #include <vm/vm_object.h>
112 #include <vm/vm_page.h>
113 #include <vm/vm_pageout.h>
114 #include <vm/vm_pager.h>
115 #include <vm/vm_phys.h>
116 #include <vm/vm_radix.h>
117 #include <vm/vm_reserv.h>
118 #include <vm/vm_extern.h>
119 #include <vm/uma.h>
120 #include <vm/uma_int.h>
121 
122 #include <machine/md_var.h>
123 
124 /*
125  *	Associated with page of user-allocatable memory is a
126  *	page structure.
127  */
128 
129 struct vm_domain vm_dom[MAXMEMDOM];
130 struct mtx_padalign __exclusive_cache_line vm_page_queue_free_mtx;
131 
132 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
133 
134 /*
135  * bogus page -- for I/O to/from partially complete buffers,
136  * or for paging into sparsely invalid regions.
137  */
138 vm_page_t bogus_page;
139 
140 vm_page_t vm_page_array;
141 long vm_page_array_size;
142 long first_page;
143 
144 static int boot_pages = UMA_BOOT_PAGES;
145 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
146     &boot_pages, 0,
147     "number of pages allocated for bootstrapping the VM system");
148 
149 static int pa_tryrelock_restart;
150 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
151     &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
152 
153 static TAILQ_HEAD(, vm_page) blacklist_head;
154 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
155 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
156     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
157 
158 /* Is the page daemon waiting for free pages? */
159 static int vm_pageout_pages_needed;
160 
161 static uma_zone_t fakepg_zone;
162 
163 static void vm_page_alloc_check(vm_page_t m);
164 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
165 static void vm_page_enqueue(uint8_t queue, vm_page_t m);
166 static void vm_page_free_phys(vm_page_t m);
167 static void vm_page_free_wakeup(void);
168 static void vm_page_init(void *dummy);
169 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
170     vm_pindex_t pindex, vm_page_t mpred);
171 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
172     vm_page_t mpred);
173 static int vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run,
174     vm_paddr_t high);
175 
176 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
177 
178 static void
179 vm_page_init(void *dummy)
180 {
181 
182 	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
183 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
184 	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
185 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
186 }
187 
188 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
189 #if PAGE_SIZE == 32768
190 #ifdef CTASSERT
191 CTASSERT(sizeof(u_long) >= 8);
192 #endif
193 #endif
194 
195 /*
196  * Try to acquire a physical address lock while a pmap is locked.  If we
197  * fail to trylock we unlock and lock the pmap directly and cache the
198  * locked pa in *locked.  The caller should then restart their loop in case
199  * the virtual to physical mapping has changed.
200  */
201 int
202 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
203 {
204 	vm_paddr_t lockpa;
205 
206 	lockpa = *locked;
207 	*locked = pa;
208 	if (lockpa) {
209 		PA_LOCK_ASSERT(lockpa, MA_OWNED);
210 		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
211 			return (0);
212 		PA_UNLOCK(lockpa);
213 	}
214 	if (PA_TRYLOCK(pa))
215 		return (0);
216 	PMAP_UNLOCK(pmap);
217 	atomic_add_int(&pa_tryrelock_restart, 1);
218 	PA_LOCK(pa);
219 	PMAP_LOCK(pmap);
220 	return (EAGAIN);
221 }
222 
223 /*
224  *	vm_set_page_size:
225  *
226  *	Sets the page size, perhaps based upon the memory
227  *	size.  Must be called before any use of page-size
228  *	dependent functions.
229  */
230 void
231 vm_set_page_size(void)
232 {
233 	if (vm_cnt.v_page_size == 0)
234 		vm_cnt.v_page_size = PAGE_SIZE;
235 	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
236 		panic("vm_set_page_size: page size not a power of two");
237 }
238 
239 /*
240  *	vm_page_blacklist_next:
241  *
242  *	Find the next entry in the provided string of blacklist
243  *	addresses.  Entries are separated by space, comma, or newline.
244  *	If an invalid integer is encountered then the rest of the
245  *	string is skipped.  Updates the list pointer to the next
246  *	character, or NULL if the string is exhausted or invalid.
247  */
248 static vm_paddr_t
249 vm_page_blacklist_next(char **list, char *end)
250 {
251 	vm_paddr_t bad;
252 	char *cp, *pos;
253 
254 	if (list == NULL || *list == NULL)
255 		return (0);
256 	if (**list =='\0') {
257 		*list = NULL;
258 		return (0);
259 	}
260 
261 	/*
262 	 * If there's no end pointer then the buffer is coming from
263 	 * the kenv and we know it's null-terminated.
264 	 */
265 	if (end == NULL)
266 		end = *list + strlen(*list);
267 
268 	/* Ensure that strtoq() won't walk off the end */
269 	if (*end != '\0') {
270 		if (*end == '\n' || *end == ' ' || *end  == ',')
271 			*end = '\0';
272 		else {
273 			printf("Blacklist not terminated, skipping\n");
274 			*list = NULL;
275 			return (0);
276 		}
277 	}
278 
279 	for (pos = *list; *pos != '\0'; pos = cp) {
280 		bad = strtoq(pos, &cp, 0);
281 		if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
282 			if (bad == 0) {
283 				if (++cp < end)
284 					continue;
285 				else
286 					break;
287 			}
288 		} else
289 			break;
290 		if (*cp == '\0' || ++cp >= end)
291 			*list = NULL;
292 		else
293 			*list = cp;
294 		return (trunc_page(bad));
295 	}
296 	printf("Garbage in RAM blacklist, skipping\n");
297 	*list = NULL;
298 	return (0);
299 }
300 
301 /*
302  *	vm_page_blacklist_check:
303  *
304  *	Iterate through the provided string of blacklist addresses, pulling
305  *	each entry out of the physical allocator free list and putting it
306  *	onto a list for reporting via the vm.page_blacklist sysctl.
307  */
308 static void
309 vm_page_blacklist_check(char *list, char *end)
310 {
311 	vm_paddr_t pa;
312 	vm_page_t m;
313 	char *next;
314 	int ret;
315 
316 	next = list;
317 	while (next != NULL) {
318 		if ((pa = vm_page_blacklist_next(&next, end)) == 0)
319 			continue;
320 		m = vm_phys_paddr_to_vm_page(pa);
321 		if (m == NULL)
322 			continue;
323 		mtx_lock(&vm_page_queue_free_mtx);
324 		ret = vm_phys_unfree_page(m);
325 		mtx_unlock(&vm_page_queue_free_mtx);
326 		if (ret == TRUE) {
327 			TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
328 			if (bootverbose)
329 				printf("Skipping page with pa 0x%jx\n",
330 				    (uintmax_t)pa);
331 		}
332 	}
333 }
334 
335 /*
336  *	vm_page_blacklist_load:
337  *
338  *	Search for a special module named "ram_blacklist".  It'll be a
339  *	plain text file provided by the user via the loader directive
340  *	of the same name.
341  */
342 static void
343 vm_page_blacklist_load(char **list, char **end)
344 {
345 	void *mod;
346 	u_char *ptr;
347 	u_int len;
348 
349 	mod = NULL;
350 	ptr = NULL;
351 
352 	mod = preload_search_by_type("ram_blacklist");
353 	if (mod != NULL) {
354 		ptr = preload_fetch_addr(mod);
355 		len = preload_fetch_size(mod);
356         }
357 	*list = ptr;
358 	if (ptr != NULL)
359 		*end = ptr + len;
360 	else
361 		*end = NULL;
362 	return;
363 }
364 
365 static int
366 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
367 {
368 	vm_page_t m;
369 	struct sbuf sbuf;
370 	int error, first;
371 
372 	first = 1;
373 	error = sysctl_wire_old_buffer(req, 0);
374 	if (error != 0)
375 		return (error);
376 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
377 	TAILQ_FOREACH(m, &blacklist_head, listq) {
378 		sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
379 		    (uintmax_t)m->phys_addr);
380 		first = 0;
381 	}
382 	error = sbuf_finish(&sbuf);
383 	sbuf_delete(&sbuf);
384 	return (error);
385 }
386 
387 static void
388 vm_page_domain_init(struct vm_domain *vmd)
389 {
390 	struct vm_pagequeue *pq;
391 	int i;
392 
393 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
394 	    "vm inactive pagequeue";
395 	*__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) =
396 	    &vm_cnt.v_inactive_count;
397 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
398 	    "vm active pagequeue";
399 	*__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) =
400 	    &vm_cnt.v_active_count;
401 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
402 	    "vm laundry pagequeue";
403 	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_vcnt) =
404 	    &vm_cnt.v_laundry_count;
405 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
406 	    "vm unswappable pagequeue";
407 	/* Unswappable dirty pages are counted as being in the laundry. */
408 	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_vcnt) =
409 	    &vm_cnt.v_laundry_count;
410 	vmd->vmd_page_count = 0;
411 	vmd->vmd_free_count = 0;
412 	vmd->vmd_segs = 0;
413 	vmd->vmd_oom = FALSE;
414 	for (i = 0; i < PQ_COUNT; i++) {
415 		pq = &vmd->vmd_pagequeues[i];
416 		TAILQ_INIT(&pq->pq_pl);
417 		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
418 		    MTX_DEF | MTX_DUPOK);
419 	}
420 }
421 
422 /*
423  *	vm_page_startup:
424  *
425  *	Initializes the resident memory module.  Allocates physical memory for
426  *	bootstrapping UMA and some data structures that are used to manage
427  *	physical pages.  Initializes these structures, and populates the free
428  *	page queues.
429  */
430 vm_offset_t
431 vm_page_startup(vm_offset_t vaddr)
432 {
433 	struct vm_domain *vmd;
434 	struct vm_phys_seg *seg;
435 	vm_page_t m;
436 	char *list, *listend;
437 	vm_offset_t mapped;
438 	vm_paddr_t end, high_avail, low_avail, new_end, page_range, size;
439 	vm_paddr_t biggestsize, last_pa, pa;
440 	u_long pagecount;
441 	int biggestone, i, pages_per_zone, segind;
442 
443 	biggestsize = 0;
444 	biggestone = 0;
445 	vaddr = round_page(vaddr);
446 
447 	for (i = 0; phys_avail[i + 1]; i += 2) {
448 		phys_avail[i] = round_page(phys_avail[i]);
449 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
450 	}
451 	for (i = 0; phys_avail[i + 1]; i += 2) {
452 		size = phys_avail[i + 1] - phys_avail[i];
453 		if (size > biggestsize) {
454 			biggestone = i;
455 			biggestsize = size;
456 		}
457 	}
458 
459 	end = phys_avail[biggestone+1];
460 
461 	/*
462 	 * Initialize the page and queue locks.
463 	 */
464 	mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
465 	for (i = 0; i < PA_LOCK_COUNT; i++)
466 		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
467 	for (i = 0; i < vm_ndomains; i++)
468 		vm_page_domain_init(&vm_dom[i]);
469 
470 	/*
471 	 * Almost all of the pages needed for bootstrapping UMA are used
472 	 * for zone structures, so if the number of CPUs results in those
473 	 * structures taking more than one page each, we set aside more pages
474 	 * in proportion to the zone structure size.
475 	 */
476 	pages_per_zone = howmany(sizeof(struct uma_zone) +
477 	    sizeof(struct uma_cache) * (mp_maxid + 1) +
478 	    roundup2(sizeof(struct uma_slab), sizeof(void *)), UMA_SLAB_SIZE);
479 	if (pages_per_zone > 1) {
480 		/* Reserve more pages so that we don't run out. */
481 		boot_pages = UMA_BOOT_PAGES_ZONES * pages_per_zone;
482 	}
483 
484 	/*
485 	 * Allocate memory for use when boot strapping the kernel memory
486 	 * allocator.
487 	 *
488 	 * CTFLAG_RDTUN doesn't work during the early boot process, so we must
489 	 * manually fetch the value.
490 	 */
491 	TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages);
492 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
493 	new_end = trunc_page(new_end);
494 	mapped = pmap_map(&vaddr, new_end, end,
495 	    VM_PROT_READ | VM_PROT_WRITE);
496 	bzero((void *)mapped, end - new_end);
497 	uma_startup((void *)mapped, boot_pages);
498 
499 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
500     defined(__i386__) || defined(__mips__)
501 	/*
502 	 * Allocate a bitmap to indicate that a random physical page
503 	 * needs to be included in a minidump.
504 	 *
505 	 * The amd64 port needs this to indicate which direct map pages
506 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
507 	 *
508 	 * However, i386 still needs this workspace internally within the
509 	 * minidump code.  In theory, they are not needed on i386, but are
510 	 * included should the sf_buf code decide to use them.
511 	 */
512 	last_pa = 0;
513 	for (i = 0; dump_avail[i + 1] != 0; i += 2)
514 		if (dump_avail[i + 1] > last_pa)
515 			last_pa = dump_avail[i + 1];
516 	page_range = last_pa / PAGE_SIZE;
517 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
518 	new_end -= vm_page_dump_size;
519 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
520 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
521 	bzero((void *)vm_page_dump, vm_page_dump_size);
522 #else
523 	(void)last_pa;
524 #endif
525 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__)
526 	/*
527 	 * Include the UMA bootstrap pages and vm_page_dump in a crash dump.
528 	 * When pmap_map() uses the direct map, they are not automatically
529 	 * included.
530 	 */
531 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
532 		dump_add_page(pa);
533 #endif
534 	phys_avail[biggestone + 1] = new_end;
535 #ifdef __amd64__
536 	/*
537 	 * Request that the physical pages underlying the message buffer be
538 	 * included in a crash dump.  Since the message buffer is accessed
539 	 * through the direct map, they are not automatically included.
540 	 */
541 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
542 	last_pa = pa + round_page(msgbufsize);
543 	while (pa < last_pa) {
544 		dump_add_page(pa);
545 		pa += PAGE_SIZE;
546 	}
547 #endif
548 	/*
549 	 * Compute the number of pages of memory that will be available for
550 	 * use, taking into account the overhead of a page structure per page.
551 	 * In other words, solve
552 	 *	"available physical memory" - round_page(page_range *
553 	 *	    sizeof(struct vm_page)) = page_range * PAGE_SIZE
554 	 * for page_range.
555 	 */
556 	low_avail = phys_avail[0];
557 	high_avail = phys_avail[1];
558 	for (i = 0; i < vm_phys_nsegs; i++) {
559 		if (vm_phys_segs[i].start < low_avail)
560 			low_avail = vm_phys_segs[i].start;
561 		if (vm_phys_segs[i].end > high_avail)
562 			high_avail = vm_phys_segs[i].end;
563 	}
564 	/* Skip the first chunk.  It is already accounted for. */
565 	for (i = 2; phys_avail[i + 1] != 0; i += 2) {
566 		if (phys_avail[i] < low_avail)
567 			low_avail = phys_avail[i];
568 		if (phys_avail[i + 1] > high_avail)
569 			high_avail = phys_avail[i + 1];
570 	}
571 	first_page = low_avail / PAGE_SIZE;
572 #ifdef VM_PHYSSEG_SPARSE
573 	size = 0;
574 	for (i = 0; i < vm_phys_nsegs; i++)
575 		size += vm_phys_segs[i].end - vm_phys_segs[i].start;
576 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
577 		size += phys_avail[i + 1] - phys_avail[i];
578 #elif defined(VM_PHYSSEG_DENSE)
579 	size = high_avail - low_avail;
580 #else
581 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
582 #endif
583 
584 #ifdef VM_PHYSSEG_DENSE
585 	/*
586 	 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
587 	 * the overhead of a page structure per page only if vm_page_array is
588 	 * allocated from the last physical memory chunk.  Otherwise, we must
589 	 * allocate page structures representing the physical memory
590 	 * underlying vm_page_array, even though they will not be used.
591 	 */
592 	if (new_end != high_avail)
593 		page_range = size / PAGE_SIZE;
594 	else
595 #endif
596 	{
597 		page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
598 
599 		/*
600 		 * If the partial bytes remaining are large enough for
601 		 * a page (PAGE_SIZE) without a corresponding
602 		 * 'struct vm_page', then new_end will contain an
603 		 * extra page after subtracting the length of the VM
604 		 * page array.  Compensate by subtracting an extra
605 		 * page from new_end.
606 		 */
607 		if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
608 			if (new_end == high_avail)
609 				high_avail -= PAGE_SIZE;
610 			new_end -= PAGE_SIZE;
611 		}
612 	}
613 	end = new_end;
614 
615 	/*
616 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
617 	 * However, because this page is allocated from KVM, out-of-bounds
618 	 * accesses using the direct map will not be trapped.
619 	 */
620 	vaddr += PAGE_SIZE;
621 
622 	/*
623 	 * Allocate physical memory for the page structures, and map it.
624 	 */
625 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
626 	mapped = pmap_map(&vaddr, new_end, end,
627 	    VM_PROT_READ | VM_PROT_WRITE);
628 	vm_page_array = (vm_page_t)mapped;
629 	vm_page_array_size = page_range;
630 
631 #if VM_NRESERVLEVEL > 0
632 	/*
633 	 * Allocate physical memory for the reservation management system's
634 	 * data structures, and map it.
635 	 */
636 	if (high_avail == end)
637 		high_avail = new_end;
638 	new_end = vm_reserv_startup(&vaddr, new_end, high_avail);
639 #endif
640 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__)
641 	/*
642 	 * Include vm_page_array and vm_reserv_array in a crash dump.
643 	 */
644 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
645 		dump_add_page(pa);
646 #endif
647 	phys_avail[biggestone + 1] = new_end;
648 
649 	/*
650 	 * Add physical memory segments corresponding to the available
651 	 * physical pages.
652 	 */
653 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
654 		vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
655 
656 	/*
657 	 * Initialize the physical memory allocator.
658 	 */
659 	vm_phys_init();
660 
661 	/*
662 	 * Initialize the page structures and add every available page to the
663 	 * physical memory allocator's free lists.
664 	 */
665 	vm_cnt.v_page_count = 0;
666 	vm_cnt.v_free_count = 0;
667 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
668 		seg = &vm_phys_segs[segind];
669 		for (pa = seg->start; pa < seg->end; pa += PAGE_SIZE)
670 			vm_phys_init_page(pa);
671 
672 		/*
673 		 * Add the segment to the free lists only if it is covered by
674 		 * one of the ranges in phys_avail.  Because we've added the
675 		 * ranges to the vm_phys_segs array, we can assume that each
676 		 * segment is either entirely contained in one of the ranges,
677 		 * or doesn't overlap any of them.
678 		 */
679 		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
680 			if (seg->start < phys_avail[i] ||
681 			    seg->end > phys_avail[i + 1])
682 				continue;
683 
684 			m = seg->first_page;
685 			pagecount = (u_long)atop(seg->end - seg->start);
686 
687 			mtx_lock(&vm_page_queue_free_mtx);
688 			vm_phys_free_contig(m, pagecount);
689 			vm_phys_freecnt_adj(m, (int)pagecount);
690 			mtx_unlock(&vm_page_queue_free_mtx);
691 			vm_cnt.v_page_count += (u_int)pagecount;
692 
693 			vmd = &vm_dom[seg->domain];
694 			vmd->vmd_page_count += (u_int)pagecount;
695 			vmd->vmd_segs |= 1UL << m->segind;
696 			break;
697 		}
698 	}
699 
700 	/*
701 	 * Remove blacklisted pages from the physical memory allocator.
702 	 */
703 	TAILQ_INIT(&blacklist_head);
704 	vm_page_blacklist_load(&list, &listend);
705 	vm_page_blacklist_check(list, listend);
706 
707 	list = kern_getenv("vm.blacklist");
708 	vm_page_blacklist_check(list, NULL);
709 
710 	freeenv(list);
711 #if VM_NRESERVLEVEL > 0
712 	/*
713 	 * Initialize the reservation management system.
714 	 */
715 	vm_reserv_init();
716 #endif
717 	return (vaddr);
718 }
719 
720 void
721 vm_page_reference(vm_page_t m)
722 {
723 
724 	vm_page_aflag_set(m, PGA_REFERENCED);
725 }
726 
727 /*
728  *	vm_page_busy_downgrade:
729  *
730  *	Downgrade an exclusive busy page into a single shared busy page.
731  */
732 void
733 vm_page_busy_downgrade(vm_page_t m)
734 {
735 	u_int x;
736 	bool locked;
737 
738 	vm_page_assert_xbusied(m);
739 	locked = mtx_owned(vm_page_lockptr(m));
740 
741 	for (;;) {
742 		x = m->busy_lock;
743 		x &= VPB_BIT_WAITERS;
744 		if (x != 0 && !locked)
745 			vm_page_lock(m);
746 		if (atomic_cmpset_rel_int(&m->busy_lock,
747 		    VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1)))
748 			break;
749 		if (x != 0 && !locked)
750 			vm_page_unlock(m);
751 	}
752 	if (x != 0) {
753 		wakeup(m);
754 		if (!locked)
755 			vm_page_unlock(m);
756 	}
757 }
758 
759 /*
760  *	vm_page_sbusied:
761  *
762  *	Return a positive value if the page is shared busied, 0 otherwise.
763  */
764 int
765 vm_page_sbusied(vm_page_t m)
766 {
767 	u_int x;
768 
769 	x = m->busy_lock;
770 	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
771 }
772 
773 /*
774  *	vm_page_sunbusy:
775  *
776  *	Shared unbusy a page.
777  */
778 void
779 vm_page_sunbusy(vm_page_t m)
780 {
781 	u_int x;
782 
783 	vm_page_lock_assert(m, MA_NOTOWNED);
784 	vm_page_assert_sbusied(m);
785 
786 	for (;;) {
787 		x = m->busy_lock;
788 		if (VPB_SHARERS(x) > 1) {
789 			if (atomic_cmpset_int(&m->busy_lock, x,
790 			    x - VPB_ONE_SHARER))
791 				break;
792 			continue;
793 		}
794 		if ((x & VPB_BIT_WAITERS) == 0) {
795 			KASSERT(x == VPB_SHARERS_WORD(1),
796 			    ("vm_page_sunbusy: invalid lock state"));
797 			if (atomic_cmpset_int(&m->busy_lock,
798 			    VPB_SHARERS_WORD(1), VPB_UNBUSIED))
799 				break;
800 			continue;
801 		}
802 		KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS),
803 		    ("vm_page_sunbusy: invalid lock state for waiters"));
804 
805 		vm_page_lock(m);
806 		if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) {
807 			vm_page_unlock(m);
808 			continue;
809 		}
810 		wakeup(m);
811 		vm_page_unlock(m);
812 		break;
813 	}
814 }
815 
816 /*
817  *	vm_page_busy_sleep:
818  *
819  *	Sleep and release the page lock, using the page pointer as wchan.
820  *	This is used to implement the hard-path of busying mechanism.
821  *
822  *	The given page must be locked.
823  *
824  *	If nonshared is true, sleep only if the page is xbusy.
825  */
826 void
827 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared)
828 {
829 	u_int x;
830 
831 	vm_page_assert_locked(m);
832 
833 	x = m->busy_lock;
834 	if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) ||
835 	    ((x & VPB_BIT_WAITERS) == 0 &&
836 	    !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) {
837 		vm_page_unlock(m);
838 		return;
839 	}
840 	msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0);
841 }
842 
843 /*
844  *	vm_page_trysbusy:
845  *
846  *	Try to shared busy a page.
847  *	If the operation succeeds 1 is returned otherwise 0.
848  *	The operation never sleeps.
849  */
850 int
851 vm_page_trysbusy(vm_page_t m)
852 {
853 	u_int x;
854 
855 	for (;;) {
856 		x = m->busy_lock;
857 		if ((x & VPB_BIT_SHARED) == 0)
858 			return (0);
859 		if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER))
860 			return (1);
861 	}
862 }
863 
864 static void
865 vm_page_xunbusy_locked(vm_page_t m)
866 {
867 
868 	vm_page_assert_xbusied(m);
869 	vm_page_assert_locked(m);
870 
871 	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
872 	/* There is a waiter, do wakeup() instead of vm_page_flash(). */
873 	wakeup(m);
874 }
875 
876 void
877 vm_page_xunbusy_maybelocked(vm_page_t m)
878 {
879 	bool lockacq;
880 
881 	vm_page_assert_xbusied(m);
882 
883 	/*
884 	 * Fast path for unbusy.  If it succeeds, we know that there
885 	 * are no waiters, so we do not need a wakeup.
886 	 */
887 	if (atomic_cmpset_rel_int(&m->busy_lock, VPB_SINGLE_EXCLUSIVER,
888 	    VPB_UNBUSIED))
889 		return;
890 
891 	lockacq = !mtx_owned(vm_page_lockptr(m));
892 	if (lockacq)
893 		vm_page_lock(m);
894 	vm_page_xunbusy_locked(m);
895 	if (lockacq)
896 		vm_page_unlock(m);
897 }
898 
899 /*
900  *	vm_page_xunbusy_hard:
901  *
902  *	Called after the first try the exclusive unbusy of a page failed.
903  *	It is assumed that the waiters bit is on.
904  */
905 void
906 vm_page_xunbusy_hard(vm_page_t m)
907 {
908 
909 	vm_page_assert_xbusied(m);
910 
911 	vm_page_lock(m);
912 	vm_page_xunbusy_locked(m);
913 	vm_page_unlock(m);
914 }
915 
916 /*
917  *	vm_page_flash:
918  *
919  *	Wakeup anyone waiting for the page.
920  *	The ownership bits do not change.
921  *
922  *	The given page must be locked.
923  */
924 void
925 vm_page_flash(vm_page_t m)
926 {
927 	u_int x;
928 
929 	vm_page_lock_assert(m, MA_OWNED);
930 
931 	for (;;) {
932 		x = m->busy_lock;
933 		if ((x & VPB_BIT_WAITERS) == 0)
934 			return;
935 		if (atomic_cmpset_int(&m->busy_lock, x,
936 		    x & (~VPB_BIT_WAITERS)))
937 			break;
938 	}
939 	wakeup(m);
940 }
941 
942 /*
943  * Avoid releasing and reacquiring the same page lock.
944  */
945 void
946 vm_page_change_lock(vm_page_t m, struct mtx **mtx)
947 {
948 	struct mtx *mtx1;
949 
950 	mtx1 = vm_page_lockptr(m);
951 	if (*mtx == mtx1)
952 		return;
953 	if (*mtx != NULL)
954 		mtx_unlock(*mtx);
955 	*mtx = mtx1;
956 	mtx_lock(mtx1);
957 }
958 
959 /*
960  * Keep page from being freed by the page daemon
961  * much of the same effect as wiring, except much lower
962  * overhead and should be used only for *very* temporary
963  * holding ("wiring").
964  */
965 void
966 vm_page_hold(vm_page_t mem)
967 {
968 
969 	vm_page_lock_assert(mem, MA_OWNED);
970         mem->hold_count++;
971 }
972 
973 void
974 vm_page_unhold(vm_page_t mem)
975 {
976 
977 	vm_page_lock_assert(mem, MA_OWNED);
978 	KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!"));
979 	--mem->hold_count;
980 	if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
981 		vm_page_free_toq(mem);
982 }
983 
984 /*
985  *	vm_page_unhold_pages:
986  *
987  *	Unhold each of the pages that is referenced by the given array.
988  */
989 void
990 vm_page_unhold_pages(vm_page_t *ma, int count)
991 {
992 	struct mtx *mtx;
993 
994 	mtx = NULL;
995 	for (; count != 0; count--) {
996 		vm_page_change_lock(*ma, &mtx);
997 		vm_page_unhold(*ma);
998 		ma++;
999 	}
1000 	if (mtx != NULL)
1001 		mtx_unlock(mtx);
1002 }
1003 
1004 vm_page_t
1005 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1006 {
1007 	vm_page_t m;
1008 
1009 #ifdef VM_PHYSSEG_SPARSE
1010 	m = vm_phys_paddr_to_vm_page(pa);
1011 	if (m == NULL)
1012 		m = vm_phys_fictitious_to_vm_page(pa);
1013 	return (m);
1014 #elif defined(VM_PHYSSEG_DENSE)
1015 	long pi;
1016 
1017 	pi = atop(pa);
1018 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1019 		m = &vm_page_array[pi - first_page];
1020 		return (m);
1021 	}
1022 	return (vm_phys_fictitious_to_vm_page(pa));
1023 #else
1024 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1025 #endif
1026 }
1027 
1028 /*
1029  *	vm_page_getfake:
1030  *
1031  *	Create a fictitious page with the specified physical address and
1032  *	memory attribute.  The memory attribute is the only the machine-
1033  *	dependent aspect of a fictitious page that must be initialized.
1034  */
1035 vm_page_t
1036 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1037 {
1038 	vm_page_t m;
1039 
1040 	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1041 	vm_page_initfake(m, paddr, memattr);
1042 	return (m);
1043 }
1044 
1045 void
1046 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1047 {
1048 
1049 	if ((m->flags & PG_FICTITIOUS) != 0) {
1050 		/*
1051 		 * The page's memattr might have changed since the
1052 		 * previous initialization.  Update the pmap to the
1053 		 * new memattr.
1054 		 */
1055 		goto memattr;
1056 	}
1057 	m->phys_addr = paddr;
1058 	m->queue = PQ_NONE;
1059 	/* Fictitious pages don't use "segind". */
1060 	m->flags = PG_FICTITIOUS;
1061 	/* Fictitious pages don't use "order" or "pool". */
1062 	m->oflags = VPO_UNMANAGED;
1063 	m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1064 	m->wire_count = 1;
1065 	pmap_page_init(m);
1066 memattr:
1067 	pmap_page_set_memattr(m, memattr);
1068 }
1069 
1070 /*
1071  *	vm_page_putfake:
1072  *
1073  *	Release a fictitious page.
1074  */
1075 void
1076 vm_page_putfake(vm_page_t m)
1077 {
1078 
1079 	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1080 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1081 	    ("vm_page_putfake: bad page %p", m));
1082 	uma_zfree(fakepg_zone, m);
1083 }
1084 
1085 /*
1086  *	vm_page_updatefake:
1087  *
1088  *	Update the given fictitious page to the specified physical address and
1089  *	memory attribute.
1090  */
1091 void
1092 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1093 {
1094 
1095 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1096 	    ("vm_page_updatefake: bad page %p", m));
1097 	m->phys_addr = paddr;
1098 	pmap_page_set_memattr(m, memattr);
1099 }
1100 
1101 /*
1102  *	vm_page_free:
1103  *
1104  *	Free a page.
1105  */
1106 void
1107 vm_page_free(vm_page_t m)
1108 {
1109 
1110 	m->flags &= ~PG_ZERO;
1111 	vm_page_free_toq(m);
1112 }
1113 
1114 /*
1115  *	vm_page_free_zero:
1116  *
1117  *	Free a page to the zerod-pages queue
1118  */
1119 void
1120 vm_page_free_zero(vm_page_t m)
1121 {
1122 
1123 	m->flags |= PG_ZERO;
1124 	vm_page_free_toq(m);
1125 }
1126 
1127 /*
1128  * Unbusy and handle the page queueing for a page from a getpages request that
1129  * was optionally read ahead or behind.
1130  */
1131 void
1132 vm_page_readahead_finish(vm_page_t m)
1133 {
1134 
1135 	/* We shouldn't put invalid pages on queues. */
1136 	KASSERT(m->valid != 0, ("%s: %p is invalid", __func__, m));
1137 
1138 	/*
1139 	 * Since the page is not the actually needed one, whether it should
1140 	 * be activated or deactivated is not obvious.  Empirical results
1141 	 * have shown that deactivating the page is usually the best choice,
1142 	 * unless the page is wanted by another thread.
1143 	 */
1144 	vm_page_lock(m);
1145 	if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
1146 		vm_page_activate(m);
1147 	else
1148 		vm_page_deactivate(m);
1149 	vm_page_unlock(m);
1150 	vm_page_xunbusy(m);
1151 }
1152 
1153 /*
1154  *	vm_page_sleep_if_busy:
1155  *
1156  *	Sleep and release the page queues lock if the page is busied.
1157  *	Returns TRUE if the thread slept.
1158  *
1159  *	The given page must be unlocked and object containing it must
1160  *	be locked.
1161  */
1162 int
1163 vm_page_sleep_if_busy(vm_page_t m, const char *msg)
1164 {
1165 	vm_object_t obj;
1166 
1167 	vm_page_lock_assert(m, MA_NOTOWNED);
1168 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1169 
1170 	if (vm_page_busied(m)) {
1171 		/*
1172 		 * The page-specific object must be cached because page
1173 		 * identity can change during the sleep, causing the
1174 		 * re-lock of a different object.
1175 		 * It is assumed that a reference to the object is already
1176 		 * held by the callers.
1177 		 */
1178 		obj = m->object;
1179 		vm_page_lock(m);
1180 		VM_OBJECT_WUNLOCK(obj);
1181 		vm_page_busy_sleep(m, msg, false);
1182 		VM_OBJECT_WLOCK(obj);
1183 		return (TRUE);
1184 	}
1185 	return (FALSE);
1186 }
1187 
1188 /*
1189  *	vm_page_dirty_KBI:		[ internal use only ]
1190  *
1191  *	Set all bits in the page's dirty field.
1192  *
1193  *	The object containing the specified page must be locked if the
1194  *	call is made from the machine-independent layer.
1195  *
1196  *	See vm_page_clear_dirty_mask().
1197  *
1198  *	This function should only be called by vm_page_dirty().
1199  */
1200 void
1201 vm_page_dirty_KBI(vm_page_t m)
1202 {
1203 
1204 	/* Refer to this operation by its public name. */
1205 	KASSERT(m->valid == VM_PAGE_BITS_ALL,
1206 	    ("vm_page_dirty: page is invalid!"));
1207 	m->dirty = VM_PAGE_BITS_ALL;
1208 }
1209 
1210 /*
1211  *	vm_page_insert:		[ internal use only ]
1212  *
1213  *	Inserts the given mem entry into the object and object list.
1214  *
1215  *	The object must be locked.
1216  */
1217 int
1218 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1219 {
1220 	vm_page_t mpred;
1221 
1222 	VM_OBJECT_ASSERT_WLOCKED(object);
1223 	mpred = vm_radix_lookup_le(&object->rtree, pindex);
1224 	return (vm_page_insert_after(m, object, pindex, mpred));
1225 }
1226 
1227 /*
1228  *	vm_page_insert_after:
1229  *
1230  *	Inserts the page "m" into the specified object at offset "pindex".
1231  *
1232  *	The page "mpred" must immediately precede the offset "pindex" within
1233  *	the specified object.
1234  *
1235  *	The object must be locked.
1236  */
1237 static int
1238 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1239     vm_page_t mpred)
1240 {
1241 	vm_page_t msucc;
1242 
1243 	VM_OBJECT_ASSERT_WLOCKED(object);
1244 	KASSERT(m->object == NULL,
1245 	    ("vm_page_insert_after: page already inserted"));
1246 	if (mpred != NULL) {
1247 		KASSERT(mpred->object == object,
1248 		    ("vm_page_insert_after: object doesn't contain mpred"));
1249 		KASSERT(mpred->pindex < pindex,
1250 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1251 		msucc = TAILQ_NEXT(mpred, listq);
1252 	} else
1253 		msucc = TAILQ_FIRST(&object->memq);
1254 	if (msucc != NULL)
1255 		KASSERT(msucc->pindex > pindex,
1256 		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
1257 
1258 	/*
1259 	 * Record the object/offset pair in this page
1260 	 */
1261 	m->object = object;
1262 	m->pindex = pindex;
1263 
1264 	/*
1265 	 * Now link into the object's ordered list of backed pages.
1266 	 */
1267 	if (vm_radix_insert(&object->rtree, m)) {
1268 		m->object = NULL;
1269 		m->pindex = 0;
1270 		return (1);
1271 	}
1272 	vm_page_insert_radixdone(m, object, mpred);
1273 	return (0);
1274 }
1275 
1276 /*
1277  *	vm_page_insert_radixdone:
1278  *
1279  *	Complete page "m" insertion into the specified object after the
1280  *	radix trie hooking.
1281  *
1282  *	The page "mpred" must precede the offset "m->pindex" within the
1283  *	specified object.
1284  *
1285  *	The object must be locked.
1286  */
1287 static void
1288 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1289 {
1290 
1291 	VM_OBJECT_ASSERT_WLOCKED(object);
1292 	KASSERT(object != NULL && m->object == object,
1293 	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1294 	if (mpred != NULL) {
1295 		KASSERT(mpred->object == object,
1296 		    ("vm_page_insert_after: object doesn't contain mpred"));
1297 		KASSERT(mpred->pindex < m->pindex,
1298 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1299 	}
1300 
1301 	if (mpred != NULL)
1302 		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1303 	else
1304 		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1305 
1306 	/*
1307 	 * Show that the object has one more resident page.
1308 	 */
1309 	object->resident_page_count++;
1310 
1311 	/*
1312 	 * Hold the vnode until the last page is released.
1313 	 */
1314 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1315 		vhold(object->handle);
1316 
1317 	/*
1318 	 * Since we are inserting a new and possibly dirty page,
1319 	 * update the object's OBJ_MIGHTBEDIRTY flag.
1320 	 */
1321 	if (pmap_page_is_write_mapped(m))
1322 		vm_object_set_writeable_dirty(object);
1323 }
1324 
1325 /*
1326  *	vm_page_remove:
1327  *
1328  *	Removes the specified page from its containing object, but does not
1329  *	invalidate any backing storage.
1330  *
1331  *	The object must be locked.  The page must be locked if it is managed.
1332  */
1333 void
1334 vm_page_remove(vm_page_t m)
1335 {
1336 	vm_object_t object;
1337 	vm_page_t mrem;
1338 
1339 	if ((m->oflags & VPO_UNMANAGED) == 0)
1340 		vm_page_assert_locked(m);
1341 	if ((object = m->object) == NULL)
1342 		return;
1343 	VM_OBJECT_ASSERT_WLOCKED(object);
1344 	if (vm_page_xbusied(m))
1345 		vm_page_xunbusy_maybelocked(m);
1346 	mrem = vm_radix_remove(&object->rtree, m->pindex);
1347 	KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1348 
1349 	/*
1350 	 * Now remove from the object's list of backed pages.
1351 	 */
1352 	TAILQ_REMOVE(&object->memq, m, listq);
1353 
1354 	/*
1355 	 * And show that the object has one fewer resident page.
1356 	 */
1357 	object->resident_page_count--;
1358 
1359 	/*
1360 	 * The vnode may now be recycled.
1361 	 */
1362 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1363 		vdrop(object->handle);
1364 
1365 	m->object = NULL;
1366 }
1367 
1368 /*
1369  *	vm_page_lookup:
1370  *
1371  *	Returns the page associated with the object/offset
1372  *	pair specified; if none is found, NULL is returned.
1373  *
1374  *	The object must be locked.
1375  */
1376 vm_page_t
1377 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1378 {
1379 
1380 	VM_OBJECT_ASSERT_LOCKED(object);
1381 	return (vm_radix_lookup(&object->rtree, pindex));
1382 }
1383 
1384 /*
1385  *	vm_page_find_least:
1386  *
1387  *	Returns the page associated with the object with least pindex
1388  *	greater than or equal to the parameter pindex, or NULL.
1389  *
1390  *	The object must be locked.
1391  */
1392 vm_page_t
1393 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1394 {
1395 	vm_page_t m;
1396 
1397 	VM_OBJECT_ASSERT_LOCKED(object);
1398 	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1399 		m = vm_radix_lookup_ge(&object->rtree, pindex);
1400 	return (m);
1401 }
1402 
1403 /*
1404  * Returns the given page's successor (by pindex) within the object if it is
1405  * resident; if none is found, NULL is returned.
1406  *
1407  * The object must be locked.
1408  */
1409 vm_page_t
1410 vm_page_next(vm_page_t m)
1411 {
1412 	vm_page_t next;
1413 
1414 	VM_OBJECT_ASSERT_LOCKED(m->object);
1415 	if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1416 		MPASS(next->object == m->object);
1417 		if (next->pindex != m->pindex + 1)
1418 			next = NULL;
1419 	}
1420 	return (next);
1421 }
1422 
1423 /*
1424  * Returns the given page's predecessor (by pindex) within the object if it is
1425  * resident; if none is found, NULL is returned.
1426  *
1427  * The object must be locked.
1428  */
1429 vm_page_t
1430 vm_page_prev(vm_page_t m)
1431 {
1432 	vm_page_t prev;
1433 
1434 	VM_OBJECT_ASSERT_LOCKED(m->object);
1435 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1436 		MPASS(prev->object == m->object);
1437 		if (prev->pindex != m->pindex - 1)
1438 			prev = NULL;
1439 	}
1440 	return (prev);
1441 }
1442 
1443 /*
1444  * Uses the page mnew as a replacement for an existing page at index
1445  * pindex which must be already present in the object.
1446  *
1447  * The existing page must not be on a paging queue.
1448  */
1449 vm_page_t
1450 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1451 {
1452 	vm_page_t mold;
1453 
1454 	VM_OBJECT_ASSERT_WLOCKED(object);
1455 	KASSERT(mnew->object == NULL,
1456 	    ("vm_page_replace: page already in object"));
1457 
1458 	/*
1459 	 * This function mostly follows vm_page_insert() and
1460 	 * vm_page_remove() without the radix, object count and vnode
1461 	 * dance.  Double check such functions for more comments.
1462 	 */
1463 
1464 	mnew->object = object;
1465 	mnew->pindex = pindex;
1466 	mold = vm_radix_replace(&object->rtree, mnew);
1467 	KASSERT(mold->queue == PQ_NONE,
1468 	    ("vm_page_replace: mold is on a paging queue"));
1469 
1470 	/* Keep the resident page list in sorted order. */
1471 	TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1472 	TAILQ_REMOVE(&object->memq, mold, listq);
1473 
1474 	mold->object = NULL;
1475 	vm_page_xunbusy_maybelocked(mold);
1476 
1477 	/*
1478 	 * The object's resident_page_count does not change because we have
1479 	 * swapped one page for another, but OBJ_MIGHTBEDIRTY.
1480 	 */
1481 	if (pmap_page_is_write_mapped(mnew))
1482 		vm_object_set_writeable_dirty(object);
1483 	return (mold);
1484 }
1485 
1486 /*
1487  *	vm_page_rename:
1488  *
1489  *	Move the given memory entry from its
1490  *	current object to the specified target object/offset.
1491  *
1492  *	Note: swap associated with the page must be invalidated by the move.  We
1493  *	      have to do this for several reasons:  (1) we aren't freeing the
1494  *	      page, (2) we are dirtying the page, (3) the VM system is probably
1495  *	      moving the page from object A to B, and will then later move
1496  *	      the backing store from A to B and we can't have a conflict.
1497  *
1498  *	Note: we *always* dirty the page.  It is necessary both for the
1499  *	      fact that we moved it, and because we may be invalidating
1500  *	      swap.
1501  *
1502  *	The objects must be locked.
1503  */
1504 int
1505 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1506 {
1507 	vm_page_t mpred;
1508 	vm_pindex_t opidx;
1509 
1510 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1511 
1512 	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1513 	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1514 	    ("vm_page_rename: pindex already renamed"));
1515 
1516 	/*
1517 	 * Create a custom version of vm_page_insert() which does not depend
1518 	 * by m_prev and can cheat on the implementation aspects of the
1519 	 * function.
1520 	 */
1521 	opidx = m->pindex;
1522 	m->pindex = new_pindex;
1523 	if (vm_radix_insert(&new_object->rtree, m)) {
1524 		m->pindex = opidx;
1525 		return (1);
1526 	}
1527 
1528 	/*
1529 	 * The operation cannot fail anymore.  The removal must happen before
1530 	 * the listq iterator is tainted.
1531 	 */
1532 	m->pindex = opidx;
1533 	vm_page_lock(m);
1534 	vm_page_remove(m);
1535 
1536 	/* Return back to the new pindex to complete vm_page_insert(). */
1537 	m->pindex = new_pindex;
1538 	m->object = new_object;
1539 	vm_page_unlock(m);
1540 	vm_page_insert_radixdone(m, new_object, mpred);
1541 	vm_page_dirty(m);
1542 	return (0);
1543 }
1544 
1545 /*
1546  *	vm_page_alloc:
1547  *
1548  *	Allocate and return a page that is associated with the specified
1549  *	object and offset pair.  By default, this page is exclusive busied.
1550  *
1551  *	The caller must always specify an allocation class.
1552  *
1553  *	allocation classes:
1554  *	VM_ALLOC_NORMAL		normal process request
1555  *	VM_ALLOC_SYSTEM		system *really* needs a page
1556  *	VM_ALLOC_INTERRUPT	interrupt time request
1557  *
1558  *	optional allocation flags:
1559  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1560  *				intends to allocate
1561  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1562  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1563  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1564  *				should not be exclusive busy
1565  *	VM_ALLOC_SBUSY		shared busy the allocated page
1566  *	VM_ALLOC_WIRED		wire the allocated page
1567  *	VM_ALLOC_ZERO		prefer a zeroed page
1568  *
1569  *	This routine may not sleep.
1570  */
1571 vm_page_t
1572 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1573 {
1574 
1575 	return (vm_page_alloc_after(object, pindex, req, object != NULL ?
1576 	    vm_radix_lookup_le(&object->rtree, pindex) : NULL));
1577 }
1578 
1579 /*
1580  * Allocate a page in the specified object with the given page index.  To
1581  * optimize insertion of the page into the object, the caller must also specifiy
1582  * the resident page in the object with largest index smaller than the given
1583  * page index, or NULL if no such page exists.
1584  */
1585 vm_page_t
1586 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex, int req,
1587     vm_page_t mpred)
1588 {
1589 	vm_page_t m;
1590 	int flags, req_class;
1591 	u_int free_count;
1592 
1593 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1594 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1595 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1596 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1597 	    ("inconsistent object(%p)/req(%x)", object, req));
1598 	KASSERT(mpred == NULL || mpred->pindex < pindex,
1599 	    ("mpred %p doesn't precede pindex 0x%jx", mpred,
1600 	    (uintmax_t)pindex));
1601 	if (object != NULL)
1602 		VM_OBJECT_ASSERT_WLOCKED(object);
1603 
1604 	req_class = req & VM_ALLOC_CLASS_MASK;
1605 
1606 	/*
1607 	 * The page daemon is allowed to dig deeper into the free page list.
1608 	 */
1609 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1610 		req_class = VM_ALLOC_SYSTEM;
1611 
1612 	/*
1613 	 * Allocate a page if the number of free pages exceeds the minimum
1614 	 * for the request class.
1615 	 */
1616 	mtx_lock(&vm_page_queue_free_mtx);
1617 	if (vm_cnt.v_free_count > vm_cnt.v_free_reserved ||
1618 	    (req_class == VM_ALLOC_SYSTEM &&
1619 	    vm_cnt.v_free_count > vm_cnt.v_interrupt_free_min) ||
1620 	    (req_class == VM_ALLOC_INTERRUPT &&
1621 	    vm_cnt.v_free_count > 0)) {
1622 		/*
1623 		 * Can we allocate the page from a reservation?
1624 		 */
1625 #if VM_NRESERVLEVEL > 0
1626 		if (object == NULL || (object->flags & (OBJ_COLORED |
1627 		    OBJ_FICTITIOUS)) != OBJ_COLORED || (m =
1628 		    vm_reserv_alloc_page(object, pindex, mpred)) == NULL)
1629 #endif
1630 		{
1631 			/*
1632 			 * If not, allocate it from the free page queues.
1633 			 */
1634 			m = vm_phys_alloc_pages(object != NULL ?
1635 			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1636 #if VM_NRESERVLEVEL > 0
1637 			if (m == NULL && vm_reserv_reclaim_inactive()) {
1638 				m = vm_phys_alloc_pages(object != NULL ?
1639 				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1640 				    0);
1641 			}
1642 #endif
1643 		}
1644 	} else {
1645 		/*
1646 		 * Not allocatable, give up.
1647 		 */
1648 		mtx_unlock(&vm_page_queue_free_mtx);
1649 		atomic_add_int(&vm_pageout_deficit,
1650 		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1651 		pagedaemon_wakeup();
1652 		return (NULL);
1653 	}
1654 
1655 	/*
1656 	 *  At this point we had better have found a good page.
1657 	 */
1658 	KASSERT(m != NULL, ("missing page"));
1659 	free_count = vm_phys_freecnt_adj(m, -1);
1660 	mtx_unlock(&vm_page_queue_free_mtx);
1661 	vm_page_alloc_check(m);
1662 
1663 	/*
1664 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1665 	 */
1666 	flags = 0;
1667 	if ((req & VM_ALLOC_ZERO) != 0)
1668 		flags = PG_ZERO;
1669 	flags &= m->flags;
1670 	if ((req & VM_ALLOC_NODUMP) != 0)
1671 		flags |= PG_NODUMP;
1672 	m->flags = flags;
1673 	m->aflags = 0;
1674 	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1675 	    VPO_UNMANAGED : 0;
1676 	m->busy_lock = VPB_UNBUSIED;
1677 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1678 		m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1679 	if ((req & VM_ALLOC_SBUSY) != 0)
1680 		m->busy_lock = VPB_SHARERS_WORD(1);
1681 	if (req & VM_ALLOC_WIRED) {
1682 		/*
1683 		 * The page lock is not required for wiring a page until that
1684 		 * page is inserted into the object.
1685 		 */
1686 		atomic_add_int(&vm_cnt.v_wire_count, 1);
1687 		m->wire_count = 1;
1688 	}
1689 	m->act_count = 0;
1690 
1691 	if (object != NULL) {
1692 		if (vm_page_insert_after(m, object, pindex, mpred)) {
1693 			pagedaemon_wakeup();
1694 			if (req & VM_ALLOC_WIRED) {
1695 				atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1696 				m->wire_count = 0;
1697 			}
1698 			KASSERT(m->object == NULL, ("page %p has object", m));
1699 			m->oflags = VPO_UNMANAGED;
1700 			m->busy_lock = VPB_UNBUSIED;
1701 			/* Don't change PG_ZERO. */
1702 			vm_page_free_toq(m);
1703 			return (NULL);
1704 		}
1705 
1706 		/* Ignore device objects; the pager sets "memattr" for them. */
1707 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1708 		    (object->flags & OBJ_FICTITIOUS) == 0)
1709 			pmap_page_set_memattr(m, object->memattr);
1710 	} else
1711 		m->pindex = pindex;
1712 
1713 	/*
1714 	 * Don't wakeup too often - wakeup the pageout daemon when
1715 	 * we would be nearly out of memory.
1716 	 */
1717 	if (vm_paging_needed(free_count))
1718 		pagedaemon_wakeup();
1719 
1720 	return (m);
1721 }
1722 
1723 /*
1724  *	vm_page_alloc_contig:
1725  *
1726  *	Allocate a contiguous set of physical pages of the given size "npages"
1727  *	from the free lists.  All of the physical pages must be at or above
1728  *	the given physical address "low" and below the given physical address
1729  *	"high".  The given value "alignment" determines the alignment of the
1730  *	first physical page in the set.  If the given value "boundary" is
1731  *	non-zero, then the set of physical pages cannot cross any physical
1732  *	address boundary that is a multiple of that value.  Both "alignment"
1733  *	and "boundary" must be a power of two.
1734  *
1735  *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1736  *	then the memory attribute setting for the physical pages is configured
1737  *	to the object's memory attribute setting.  Otherwise, the memory
1738  *	attribute setting for the physical pages is configured to "memattr",
1739  *	overriding the object's memory attribute setting.  However, if the
1740  *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1741  *	memory attribute setting for the physical pages cannot be configured
1742  *	to VM_MEMATTR_DEFAULT.
1743  *
1744  *	The specified object may not contain fictitious pages.
1745  *
1746  *	The caller must always specify an allocation class.
1747  *
1748  *	allocation classes:
1749  *	VM_ALLOC_NORMAL		normal process request
1750  *	VM_ALLOC_SYSTEM		system *really* needs a page
1751  *	VM_ALLOC_INTERRUPT	interrupt time request
1752  *
1753  *	optional allocation flags:
1754  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1755  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1756  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1757  *				should not be exclusive busy
1758  *	VM_ALLOC_SBUSY		shared busy the allocated page
1759  *	VM_ALLOC_WIRED		wire the allocated page
1760  *	VM_ALLOC_ZERO		prefer a zeroed page
1761  *
1762  *	This routine may not sleep.
1763  */
1764 vm_page_t
1765 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1766     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1767     vm_paddr_t boundary, vm_memattr_t memattr)
1768 {
1769 	vm_page_t m, m_ret, mpred;
1770 	u_int busy_lock, flags, oflags;
1771 	int req_class;
1772 
1773 	mpred = NULL;	/* XXX: pacify gcc */
1774 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1775 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1776 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1777 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1778 	    ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object,
1779 	    req));
1780 	if (object != NULL) {
1781 		VM_OBJECT_ASSERT_WLOCKED(object);
1782 		KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
1783 		    ("vm_page_alloc_contig: object %p has fictitious pages",
1784 		    object));
1785 	}
1786 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1787 	req_class = req & VM_ALLOC_CLASS_MASK;
1788 
1789 	/*
1790 	 * The page daemon is allowed to dig deeper into the free page list.
1791 	 */
1792 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1793 		req_class = VM_ALLOC_SYSTEM;
1794 
1795 	if (object != NULL) {
1796 		mpred = vm_radix_lookup_le(&object->rtree, pindex);
1797 		KASSERT(mpred == NULL || mpred->pindex != pindex,
1798 		    ("vm_page_alloc_contig: pindex already allocated"));
1799 	}
1800 
1801 	/*
1802 	 * Can we allocate the pages without the number of free pages falling
1803 	 * below the lower bound for the allocation class?
1804 	 */
1805 	mtx_lock(&vm_page_queue_free_mtx);
1806 	if (vm_cnt.v_free_count >= npages + vm_cnt.v_free_reserved ||
1807 	    (req_class == VM_ALLOC_SYSTEM &&
1808 	    vm_cnt.v_free_count >= npages + vm_cnt.v_interrupt_free_min) ||
1809 	    (req_class == VM_ALLOC_INTERRUPT &&
1810 	    vm_cnt.v_free_count >= npages)) {
1811 		/*
1812 		 * Can we allocate the pages from a reservation?
1813 		 */
1814 #if VM_NRESERVLEVEL > 0
1815 retry:
1816 		if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
1817 		    (m_ret = vm_reserv_alloc_contig(object, pindex, npages,
1818 		    low, high, alignment, boundary, mpred)) == NULL)
1819 #endif
1820 			/*
1821 			 * If not, allocate them from the free page queues.
1822 			 */
1823 			m_ret = vm_phys_alloc_contig(npages, low, high,
1824 			    alignment, boundary);
1825 	} else {
1826 		mtx_unlock(&vm_page_queue_free_mtx);
1827 		atomic_add_int(&vm_pageout_deficit, npages);
1828 		pagedaemon_wakeup();
1829 		return (NULL);
1830 	}
1831 	if (m_ret != NULL)
1832 		vm_phys_freecnt_adj(m_ret, -npages);
1833 	else {
1834 #if VM_NRESERVLEVEL > 0
1835 		if (vm_reserv_reclaim_contig(npages, low, high, alignment,
1836 		    boundary))
1837 			goto retry;
1838 #endif
1839 	}
1840 	mtx_unlock(&vm_page_queue_free_mtx);
1841 	if (m_ret == NULL)
1842 		return (NULL);
1843 	for (m = m_ret; m < &m_ret[npages]; m++)
1844 		vm_page_alloc_check(m);
1845 
1846 	/*
1847 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
1848 	 */
1849 	flags = 0;
1850 	if ((req & VM_ALLOC_ZERO) != 0)
1851 		flags = PG_ZERO;
1852 	if ((req & VM_ALLOC_NODUMP) != 0)
1853 		flags |= PG_NODUMP;
1854 	oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1855 	    VPO_UNMANAGED : 0;
1856 	busy_lock = VPB_UNBUSIED;
1857 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1858 		busy_lock = VPB_SINGLE_EXCLUSIVER;
1859 	if ((req & VM_ALLOC_SBUSY) != 0)
1860 		busy_lock = VPB_SHARERS_WORD(1);
1861 	if ((req & VM_ALLOC_WIRED) != 0)
1862 		atomic_add_int(&vm_cnt.v_wire_count, npages);
1863 	if (object != NULL) {
1864 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1865 		    memattr == VM_MEMATTR_DEFAULT)
1866 			memattr = object->memattr;
1867 	}
1868 	for (m = m_ret; m < &m_ret[npages]; m++) {
1869 		m->aflags = 0;
1870 		m->flags = (m->flags | PG_NODUMP) & flags;
1871 		m->busy_lock = busy_lock;
1872 		if ((req & VM_ALLOC_WIRED) != 0)
1873 			m->wire_count = 1;
1874 		m->act_count = 0;
1875 		m->oflags = oflags;
1876 		if (object != NULL) {
1877 			if (vm_page_insert_after(m, object, pindex, mpred)) {
1878 				pagedaemon_wakeup();
1879 				if ((req & VM_ALLOC_WIRED) != 0)
1880 					atomic_subtract_int(
1881 					    &vm_cnt.v_wire_count, npages);
1882 				KASSERT(m->object == NULL,
1883 				    ("page %p has object", m));
1884 				mpred = m;
1885 				for (m = m_ret; m < &m_ret[npages]; m++) {
1886 					if (m <= mpred &&
1887 					    (req & VM_ALLOC_WIRED) != 0)
1888 						m->wire_count = 0;
1889 					m->oflags = VPO_UNMANAGED;
1890 					m->busy_lock = VPB_UNBUSIED;
1891 					/* Don't change PG_ZERO. */
1892 					vm_page_free_toq(m);
1893 				}
1894 				return (NULL);
1895 			}
1896 			mpred = m;
1897 		} else
1898 			m->pindex = pindex;
1899 		if (memattr != VM_MEMATTR_DEFAULT)
1900 			pmap_page_set_memattr(m, memattr);
1901 		pindex++;
1902 	}
1903 	if (vm_paging_needed(vm_cnt.v_free_count))
1904 		pagedaemon_wakeup();
1905 	return (m_ret);
1906 }
1907 
1908 /*
1909  * Check a page that has been freshly dequeued from a freelist.
1910  */
1911 static void
1912 vm_page_alloc_check(vm_page_t m)
1913 {
1914 
1915 	KASSERT(m->object == NULL, ("page %p has object", m));
1916 	KASSERT(m->queue == PQ_NONE,
1917 	    ("page %p has unexpected queue %d", m, m->queue));
1918 	KASSERT(m->wire_count == 0, ("page %p is wired", m));
1919 	KASSERT(m->hold_count == 0, ("page %p is held", m));
1920 	KASSERT(!vm_page_busied(m), ("page %p is busy", m));
1921 	KASSERT(m->dirty == 0, ("page %p is dirty", m));
1922 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1923 	    ("page %p has unexpected memattr %d",
1924 	    m, pmap_page_get_memattr(m)));
1925 	KASSERT(m->valid == 0, ("free page %p is valid", m));
1926 }
1927 
1928 /*
1929  * 	vm_page_alloc_freelist:
1930  *
1931  *	Allocate a physical page from the specified free page list.
1932  *
1933  *	The caller must always specify an allocation class.
1934  *
1935  *	allocation classes:
1936  *	VM_ALLOC_NORMAL		normal process request
1937  *	VM_ALLOC_SYSTEM		system *really* needs a page
1938  *	VM_ALLOC_INTERRUPT	interrupt time request
1939  *
1940  *	optional allocation flags:
1941  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1942  *				intends to allocate
1943  *	VM_ALLOC_WIRED		wire the allocated page
1944  *	VM_ALLOC_ZERO		prefer a zeroed page
1945  *
1946  *	This routine may not sleep.
1947  */
1948 vm_page_t
1949 vm_page_alloc_freelist(int flind, int req)
1950 {
1951 	vm_page_t m;
1952 	u_int flags, free_count;
1953 	int req_class;
1954 
1955 	req_class = req & VM_ALLOC_CLASS_MASK;
1956 
1957 	/*
1958 	 * The page daemon is allowed to dig deeper into the free page list.
1959 	 */
1960 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1961 		req_class = VM_ALLOC_SYSTEM;
1962 
1963 	/*
1964 	 * Do not allocate reserved pages unless the req has asked for it.
1965 	 */
1966 	mtx_lock(&vm_page_queue_free_mtx);
1967 	if (vm_cnt.v_free_count > vm_cnt.v_free_reserved ||
1968 	    (req_class == VM_ALLOC_SYSTEM &&
1969 	    vm_cnt.v_free_count > vm_cnt.v_interrupt_free_min) ||
1970 	    (req_class == VM_ALLOC_INTERRUPT &&
1971 	    vm_cnt.v_free_count > 0))
1972 		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
1973 	else {
1974 		mtx_unlock(&vm_page_queue_free_mtx);
1975 		atomic_add_int(&vm_pageout_deficit,
1976 		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1977 		pagedaemon_wakeup();
1978 		return (NULL);
1979 	}
1980 	if (m == NULL) {
1981 		mtx_unlock(&vm_page_queue_free_mtx);
1982 		return (NULL);
1983 	}
1984 	free_count = vm_phys_freecnt_adj(m, -1);
1985 	mtx_unlock(&vm_page_queue_free_mtx);
1986 	vm_page_alloc_check(m);
1987 
1988 	/*
1989 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1990 	 */
1991 	m->aflags = 0;
1992 	flags = 0;
1993 	if ((req & VM_ALLOC_ZERO) != 0)
1994 		flags = PG_ZERO;
1995 	m->flags &= flags;
1996 	if ((req & VM_ALLOC_WIRED) != 0) {
1997 		/*
1998 		 * The page lock is not required for wiring a page that does
1999 		 * not belong to an object.
2000 		 */
2001 		atomic_add_int(&vm_cnt.v_wire_count, 1);
2002 		m->wire_count = 1;
2003 	}
2004 	/* Unmanaged pages don't use "act_count". */
2005 	m->oflags = VPO_UNMANAGED;
2006 	if (vm_paging_needed(free_count))
2007 		pagedaemon_wakeup();
2008 	return (m);
2009 }
2010 
2011 #define	VPSC_ANY	0	/* No restrictions. */
2012 #define	VPSC_NORESERV	1	/* Skip reservations; implies VPSC_NOSUPER. */
2013 #define	VPSC_NOSUPER	2	/* Skip superpages. */
2014 
2015 /*
2016  *	vm_page_scan_contig:
2017  *
2018  *	Scan vm_page_array[] between the specified entries "m_start" and
2019  *	"m_end" for a run of contiguous physical pages that satisfy the
2020  *	specified conditions, and return the lowest page in the run.  The
2021  *	specified "alignment" determines the alignment of the lowest physical
2022  *	page in the run.  If the specified "boundary" is non-zero, then the
2023  *	run of physical pages cannot span a physical address that is a
2024  *	multiple of "boundary".
2025  *
2026  *	"m_end" is never dereferenced, so it need not point to a vm_page
2027  *	structure within vm_page_array[].
2028  *
2029  *	"npages" must be greater than zero.  "m_start" and "m_end" must not
2030  *	span a hole (or discontiguity) in the physical address space.  Both
2031  *	"alignment" and "boundary" must be a power of two.
2032  */
2033 vm_page_t
2034 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2035     u_long alignment, vm_paddr_t boundary, int options)
2036 {
2037 	struct mtx *m_mtx;
2038 	vm_object_t object;
2039 	vm_paddr_t pa;
2040 	vm_page_t m, m_run;
2041 #if VM_NRESERVLEVEL > 0
2042 	int level;
2043 #endif
2044 	int m_inc, order, run_ext, run_len;
2045 
2046 	KASSERT(npages > 0, ("npages is 0"));
2047 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2048 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2049 	m_run = NULL;
2050 	run_len = 0;
2051 	m_mtx = NULL;
2052 	for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2053 		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2054 		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2055 
2056 		/*
2057 		 * If the current page would be the start of a run, check its
2058 		 * physical address against the end, alignment, and boundary
2059 		 * conditions.  If it doesn't satisfy these conditions, either
2060 		 * terminate the scan or advance to the next page that
2061 		 * satisfies the failed condition.
2062 		 */
2063 		if (run_len == 0) {
2064 			KASSERT(m_run == NULL, ("m_run != NULL"));
2065 			if (m + npages > m_end)
2066 				break;
2067 			pa = VM_PAGE_TO_PHYS(m);
2068 			if ((pa & (alignment - 1)) != 0) {
2069 				m_inc = atop(roundup2(pa, alignment) - pa);
2070 				continue;
2071 			}
2072 			if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2073 			    boundary) != 0) {
2074 				m_inc = atop(roundup2(pa, boundary) - pa);
2075 				continue;
2076 			}
2077 		} else
2078 			KASSERT(m_run != NULL, ("m_run == NULL"));
2079 
2080 		vm_page_change_lock(m, &m_mtx);
2081 		m_inc = 1;
2082 retry:
2083 		if (m->wire_count != 0 || m->hold_count != 0)
2084 			run_ext = 0;
2085 #if VM_NRESERVLEVEL > 0
2086 		else if ((level = vm_reserv_level(m)) >= 0 &&
2087 		    (options & VPSC_NORESERV) != 0) {
2088 			run_ext = 0;
2089 			/* Advance to the end of the reservation. */
2090 			pa = VM_PAGE_TO_PHYS(m);
2091 			m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2092 			    pa);
2093 		}
2094 #endif
2095 		else if ((object = m->object) != NULL) {
2096 			/*
2097 			 * The page is considered eligible for relocation if
2098 			 * and only if it could be laundered or reclaimed by
2099 			 * the page daemon.
2100 			 */
2101 			if (!VM_OBJECT_TRYRLOCK(object)) {
2102 				mtx_unlock(m_mtx);
2103 				VM_OBJECT_RLOCK(object);
2104 				mtx_lock(m_mtx);
2105 				if (m->object != object) {
2106 					/*
2107 					 * The page may have been freed.
2108 					 */
2109 					VM_OBJECT_RUNLOCK(object);
2110 					goto retry;
2111 				} else if (m->wire_count != 0 ||
2112 				    m->hold_count != 0) {
2113 					run_ext = 0;
2114 					goto unlock;
2115 				}
2116 			}
2117 			KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2118 			    ("page %p is PG_UNHOLDFREE", m));
2119 			/* Don't care: PG_NODUMP, PG_ZERO. */
2120 			if (object->type != OBJT_DEFAULT &&
2121 			    object->type != OBJT_SWAP &&
2122 			    object->type != OBJT_VNODE) {
2123 				run_ext = 0;
2124 #if VM_NRESERVLEVEL > 0
2125 			} else if ((options & VPSC_NOSUPER) != 0 &&
2126 			    (level = vm_reserv_level_iffullpop(m)) >= 0) {
2127 				run_ext = 0;
2128 				/* Advance to the end of the superpage. */
2129 				pa = VM_PAGE_TO_PHYS(m);
2130 				m_inc = atop(roundup2(pa + 1,
2131 				    vm_reserv_size(level)) - pa);
2132 #endif
2133 			} else if (object->memattr == VM_MEMATTR_DEFAULT &&
2134 			    m->queue != PQ_NONE && !vm_page_busied(m)) {
2135 				/*
2136 				 * The page is allocated but eligible for
2137 				 * relocation.  Extend the current run by one
2138 				 * page.
2139 				 */
2140 				KASSERT(pmap_page_get_memattr(m) ==
2141 				    VM_MEMATTR_DEFAULT,
2142 				    ("page %p has an unexpected memattr", m));
2143 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2144 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2145 				    ("page %p has unexpected oflags", m));
2146 				/* Don't care: VPO_NOSYNC. */
2147 				run_ext = 1;
2148 			} else
2149 				run_ext = 0;
2150 unlock:
2151 			VM_OBJECT_RUNLOCK(object);
2152 #if VM_NRESERVLEVEL > 0
2153 		} else if (level >= 0) {
2154 			/*
2155 			 * The page is reserved but not yet allocated.  In
2156 			 * other words, it is still free.  Extend the current
2157 			 * run by one page.
2158 			 */
2159 			run_ext = 1;
2160 #endif
2161 		} else if ((order = m->order) < VM_NFREEORDER) {
2162 			/*
2163 			 * The page is enqueued in the physical memory
2164 			 * allocator's free page queues.  Moreover, it is the
2165 			 * first page in a power-of-two-sized run of
2166 			 * contiguous free pages.  Add these pages to the end
2167 			 * of the current run, and jump ahead.
2168 			 */
2169 			run_ext = 1 << order;
2170 			m_inc = 1 << order;
2171 		} else {
2172 			/*
2173 			 * Skip the page for one of the following reasons: (1)
2174 			 * It is enqueued in the physical memory allocator's
2175 			 * free page queues.  However, it is not the first
2176 			 * page in a run of contiguous free pages.  (This case
2177 			 * rarely occurs because the scan is performed in
2178 			 * ascending order.) (2) It is not reserved, and it is
2179 			 * transitioning from free to allocated.  (Conversely,
2180 			 * the transition from allocated to free for managed
2181 			 * pages is blocked by the page lock.) (3) It is
2182 			 * allocated but not contained by an object and not
2183 			 * wired, e.g., allocated by Xen's balloon driver.
2184 			 */
2185 			run_ext = 0;
2186 		}
2187 
2188 		/*
2189 		 * Extend or reset the current run of pages.
2190 		 */
2191 		if (run_ext > 0) {
2192 			if (run_len == 0)
2193 				m_run = m;
2194 			run_len += run_ext;
2195 		} else {
2196 			if (run_len > 0) {
2197 				m_run = NULL;
2198 				run_len = 0;
2199 			}
2200 		}
2201 	}
2202 	if (m_mtx != NULL)
2203 		mtx_unlock(m_mtx);
2204 	if (run_len >= npages)
2205 		return (m_run);
2206 	return (NULL);
2207 }
2208 
2209 /*
2210  *	vm_page_reclaim_run:
2211  *
2212  *	Try to relocate each of the allocated virtual pages within the
2213  *	specified run of physical pages to a new physical address.  Free the
2214  *	physical pages underlying the relocated virtual pages.  A virtual page
2215  *	is relocatable if and only if it could be laundered or reclaimed by
2216  *	the page daemon.  Whenever possible, a virtual page is relocated to a
2217  *	physical address above "high".
2218  *
2219  *	Returns 0 if every physical page within the run was already free or
2220  *	just freed by a successful relocation.  Otherwise, returns a non-zero
2221  *	value indicating why the last attempt to relocate a virtual page was
2222  *	unsuccessful.
2223  *
2224  *	"req_class" must be an allocation class.
2225  */
2226 static int
2227 vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run,
2228     vm_paddr_t high)
2229 {
2230 	struct mtx *m_mtx;
2231 	struct spglist free;
2232 	vm_object_t object;
2233 	vm_paddr_t pa;
2234 	vm_page_t m, m_end, m_new;
2235 	int error, order, req;
2236 
2237 	KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2238 	    ("req_class is not an allocation class"));
2239 	SLIST_INIT(&free);
2240 	error = 0;
2241 	m = m_run;
2242 	m_end = m_run + npages;
2243 	m_mtx = NULL;
2244 	for (; error == 0 && m < m_end; m++) {
2245 		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2246 		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2247 
2248 		/*
2249 		 * Avoid releasing and reacquiring the same page lock.
2250 		 */
2251 		vm_page_change_lock(m, &m_mtx);
2252 retry:
2253 		if (m->wire_count != 0 || m->hold_count != 0)
2254 			error = EBUSY;
2255 		else if ((object = m->object) != NULL) {
2256 			/*
2257 			 * The page is relocated if and only if it could be
2258 			 * laundered or reclaimed by the page daemon.
2259 			 */
2260 			if (!VM_OBJECT_TRYWLOCK(object)) {
2261 				mtx_unlock(m_mtx);
2262 				VM_OBJECT_WLOCK(object);
2263 				mtx_lock(m_mtx);
2264 				if (m->object != object) {
2265 					/*
2266 					 * The page may have been freed.
2267 					 */
2268 					VM_OBJECT_WUNLOCK(object);
2269 					goto retry;
2270 				} else if (m->wire_count != 0 ||
2271 				    m->hold_count != 0) {
2272 					error = EBUSY;
2273 					goto unlock;
2274 				}
2275 			}
2276 			KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2277 			    ("page %p is PG_UNHOLDFREE", m));
2278 			/* Don't care: PG_NODUMP, PG_ZERO. */
2279 			if (object->type != OBJT_DEFAULT &&
2280 			    object->type != OBJT_SWAP &&
2281 			    object->type != OBJT_VNODE)
2282 				error = EINVAL;
2283 			else if (object->memattr != VM_MEMATTR_DEFAULT)
2284 				error = EINVAL;
2285 			else if (m->queue != PQ_NONE && !vm_page_busied(m)) {
2286 				KASSERT(pmap_page_get_memattr(m) ==
2287 				    VM_MEMATTR_DEFAULT,
2288 				    ("page %p has an unexpected memattr", m));
2289 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2290 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2291 				    ("page %p has unexpected oflags", m));
2292 				/* Don't care: VPO_NOSYNC. */
2293 				if (m->valid != 0) {
2294 					/*
2295 					 * First, try to allocate a new page
2296 					 * that is above "high".  Failing
2297 					 * that, try to allocate a new page
2298 					 * that is below "m_run".  Allocate
2299 					 * the new page between the end of
2300 					 * "m_run" and "high" only as a last
2301 					 * resort.
2302 					 */
2303 					req = req_class | VM_ALLOC_NOOBJ;
2304 					if ((m->flags & PG_NODUMP) != 0)
2305 						req |= VM_ALLOC_NODUMP;
2306 					if (trunc_page(high) !=
2307 					    ~(vm_paddr_t)PAGE_MASK) {
2308 						m_new = vm_page_alloc_contig(
2309 						    NULL, 0, req, 1,
2310 						    round_page(high),
2311 						    ~(vm_paddr_t)0,
2312 						    PAGE_SIZE, 0,
2313 						    VM_MEMATTR_DEFAULT);
2314 					} else
2315 						m_new = NULL;
2316 					if (m_new == NULL) {
2317 						pa = VM_PAGE_TO_PHYS(m_run);
2318 						m_new = vm_page_alloc_contig(
2319 						    NULL, 0, req, 1,
2320 						    0, pa - 1, PAGE_SIZE, 0,
2321 						    VM_MEMATTR_DEFAULT);
2322 					}
2323 					if (m_new == NULL) {
2324 						pa += ptoa(npages);
2325 						m_new = vm_page_alloc_contig(
2326 						    NULL, 0, req, 1,
2327 						    pa, high, PAGE_SIZE, 0,
2328 						    VM_MEMATTR_DEFAULT);
2329 					}
2330 					if (m_new == NULL) {
2331 						error = ENOMEM;
2332 						goto unlock;
2333 					}
2334 					KASSERT(m_new->wire_count == 0,
2335 					    ("page %p is wired", m));
2336 
2337 					/*
2338 					 * Replace "m" with the new page.  For
2339 					 * vm_page_replace(), "m" must be busy
2340 					 * and dequeued.  Finally, change "m"
2341 					 * as if vm_page_free() was called.
2342 					 */
2343 					if (object->ref_count != 0)
2344 						pmap_remove_all(m);
2345 					m_new->aflags = m->aflags;
2346 					KASSERT(m_new->oflags == VPO_UNMANAGED,
2347 					    ("page %p is managed", m));
2348 					m_new->oflags = m->oflags & VPO_NOSYNC;
2349 					pmap_copy_page(m, m_new);
2350 					m_new->valid = m->valid;
2351 					m_new->dirty = m->dirty;
2352 					m->flags &= ~PG_ZERO;
2353 					vm_page_xbusy(m);
2354 					vm_page_remque(m);
2355 					vm_page_replace_checked(m_new, object,
2356 					    m->pindex, m);
2357 					m->valid = 0;
2358 					vm_page_undirty(m);
2359 
2360 					/*
2361 					 * The new page must be deactivated
2362 					 * before the object is unlocked.
2363 					 */
2364 					vm_page_change_lock(m_new, &m_mtx);
2365 					vm_page_deactivate(m_new);
2366 				} else {
2367 					m->flags &= ~PG_ZERO;
2368 					vm_page_remque(m);
2369 					vm_page_remove(m);
2370 					KASSERT(m->dirty == 0,
2371 					    ("page %p is dirty", m));
2372 				}
2373 				SLIST_INSERT_HEAD(&free, m, plinks.s.ss);
2374 			} else
2375 				error = EBUSY;
2376 unlock:
2377 			VM_OBJECT_WUNLOCK(object);
2378 		} else {
2379 			mtx_lock(&vm_page_queue_free_mtx);
2380 			order = m->order;
2381 			if (order < VM_NFREEORDER) {
2382 				/*
2383 				 * The page is enqueued in the physical memory
2384 				 * allocator's free page queues.  Moreover, it
2385 				 * is the first page in a power-of-two-sized
2386 				 * run of contiguous free pages.  Jump ahead
2387 				 * to the last page within that run, and
2388 				 * continue from there.
2389 				 */
2390 				m += (1 << order) - 1;
2391 			}
2392 #if VM_NRESERVLEVEL > 0
2393 			else if (vm_reserv_is_page_free(m))
2394 				order = 0;
2395 #endif
2396 			mtx_unlock(&vm_page_queue_free_mtx);
2397 			if (order == VM_NFREEORDER)
2398 				error = EINVAL;
2399 		}
2400 	}
2401 	if (m_mtx != NULL)
2402 		mtx_unlock(m_mtx);
2403 	if ((m = SLIST_FIRST(&free)) != NULL) {
2404 		mtx_lock(&vm_page_queue_free_mtx);
2405 		do {
2406 			SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2407 			vm_page_free_phys(m);
2408 		} while ((m = SLIST_FIRST(&free)) != NULL);
2409 		vm_page_free_wakeup();
2410 		mtx_unlock(&vm_page_queue_free_mtx);
2411 	}
2412 	return (error);
2413 }
2414 
2415 #define	NRUNS	16
2416 
2417 CTASSERT(powerof2(NRUNS));
2418 
2419 #define	RUN_INDEX(count)	((count) & (NRUNS - 1))
2420 
2421 #define	MIN_RECLAIM	8
2422 
2423 /*
2424  *	vm_page_reclaim_contig:
2425  *
2426  *	Reclaim allocated, contiguous physical memory satisfying the specified
2427  *	conditions by relocating the virtual pages using that physical memory.
2428  *	Returns true if reclamation is successful and false otherwise.  Since
2429  *	relocation requires the allocation of physical pages, reclamation may
2430  *	fail due to a shortage of free pages.  When reclamation fails, callers
2431  *	are expected to perform VM_WAIT before retrying a failed allocation
2432  *	operation, e.g., vm_page_alloc_contig().
2433  *
2434  *	The caller must always specify an allocation class through "req".
2435  *
2436  *	allocation classes:
2437  *	VM_ALLOC_NORMAL		normal process request
2438  *	VM_ALLOC_SYSTEM		system *really* needs a page
2439  *	VM_ALLOC_INTERRUPT	interrupt time request
2440  *
2441  *	The optional allocation flags are ignored.
2442  *
2443  *	"npages" must be greater than zero.  Both "alignment" and "boundary"
2444  *	must be a power of two.
2445  */
2446 bool
2447 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
2448     u_long alignment, vm_paddr_t boundary)
2449 {
2450 	vm_paddr_t curr_low;
2451 	vm_page_t m_run, m_runs[NRUNS];
2452 	u_long count, reclaimed;
2453 	int error, i, options, req_class;
2454 
2455 	KASSERT(npages > 0, ("npages is 0"));
2456 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2457 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2458 	req_class = req & VM_ALLOC_CLASS_MASK;
2459 
2460 	/*
2461 	 * The page daemon is allowed to dig deeper into the free page list.
2462 	 */
2463 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2464 		req_class = VM_ALLOC_SYSTEM;
2465 
2466 	/*
2467 	 * Return if the number of free pages cannot satisfy the requested
2468 	 * allocation.
2469 	 */
2470 	count = vm_cnt.v_free_count;
2471 	if (count < npages + vm_cnt.v_free_reserved || (count < npages +
2472 	    vm_cnt.v_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2473 	    (count < npages && req_class == VM_ALLOC_INTERRUPT))
2474 		return (false);
2475 
2476 	/*
2477 	 * Scan up to three times, relaxing the restrictions ("options") on
2478 	 * the reclamation of reservations and superpages each time.
2479 	 */
2480 	for (options = VPSC_NORESERV;;) {
2481 		/*
2482 		 * Find the highest runs that satisfy the given constraints
2483 		 * and restrictions, and record them in "m_runs".
2484 		 */
2485 		curr_low = low;
2486 		count = 0;
2487 		for (;;) {
2488 			m_run = vm_phys_scan_contig(npages, curr_low, high,
2489 			    alignment, boundary, options);
2490 			if (m_run == NULL)
2491 				break;
2492 			curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
2493 			m_runs[RUN_INDEX(count)] = m_run;
2494 			count++;
2495 		}
2496 
2497 		/*
2498 		 * Reclaim the highest runs in LIFO (descending) order until
2499 		 * the number of reclaimed pages, "reclaimed", is at least
2500 		 * MIN_RECLAIM.  Reset "reclaimed" each time because each
2501 		 * reclamation is idempotent, and runs will (likely) recur
2502 		 * from one scan to the next as restrictions are relaxed.
2503 		 */
2504 		reclaimed = 0;
2505 		for (i = 0; count > 0 && i < NRUNS; i++) {
2506 			count--;
2507 			m_run = m_runs[RUN_INDEX(count)];
2508 			error = vm_page_reclaim_run(req_class, npages, m_run,
2509 			    high);
2510 			if (error == 0) {
2511 				reclaimed += npages;
2512 				if (reclaimed >= MIN_RECLAIM)
2513 					return (true);
2514 			}
2515 		}
2516 
2517 		/*
2518 		 * Either relax the restrictions on the next scan or return if
2519 		 * the last scan had no restrictions.
2520 		 */
2521 		if (options == VPSC_NORESERV)
2522 			options = VPSC_NOSUPER;
2523 		else if (options == VPSC_NOSUPER)
2524 			options = VPSC_ANY;
2525 		else if (options == VPSC_ANY)
2526 			return (reclaimed != 0);
2527 	}
2528 }
2529 
2530 /*
2531  *	vm_wait:	(also see VM_WAIT macro)
2532  *
2533  *	Sleep until free pages are available for allocation.
2534  *	- Called in various places before memory allocations.
2535  */
2536 void
2537 vm_wait(void)
2538 {
2539 
2540 	mtx_lock(&vm_page_queue_free_mtx);
2541 	if (curproc == pageproc) {
2542 		vm_pageout_pages_needed = 1;
2543 		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
2544 		    PDROP | PSWP, "VMWait", 0);
2545 	} else {
2546 		if (__predict_false(pageproc == NULL))
2547 			panic("vm_wait in early boot");
2548 		if (!vm_pageout_wanted) {
2549 			vm_pageout_wanted = true;
2550 			wakeup(&vm_pageout_wanted);
2551 		}
2552 		vm_pages_needed = true;
2553 		msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
2554 		    "vmwait", 0);
2555 	}
2556 }
2557 
2558 /*
2559  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
2560  *
2561  *	Sleep until free pages are available for allocation.
2562  *	- Called only in vm_fault so that processes page faulting
2563  *	  can be easily tracked.
2564  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
2565  *	  processes will be able to grab memory first.  Do not change
2566  *	  this balance without careful testing first.
2567  */
2568 void
2569 vm_waitpfault(void)
2570 {
2571 
2572 	mtx_lock(&vm_page_queue_free_mtx);
2573 	if (!vm_pageout_wanted) {
2574 		vm_pageout_wanted = true;
2575 		wakeup(&vm_pageout_wanted);
2576 	}
2577 	vm_pages_needed = true;
2578 	msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
2579 	    "pfault", 0);
2580 }
2581 
2582 struct vm_pagequeue *
2583 vm_page_pagequeue(vm_page_t m)
2584 {
2585 
2586 	if (vm_page_in_laundry(m))
2587 		return (&vm_dom[0].vmd_pagequeues[m->queue]);
2588 	else
2589 		return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]);
2590 }
2591 
2592 /*
2593  *	vm_page_dequeue:
2594  *
2595  *	Remove the given page from its current page queue.
2596  *
2597  *	The page must be locked.
2598  */
2599 void
2600 vm_page_dequeue(vm_page_t m)
2601 {
2602 	struct vm_pagequeue *pq;
2603 
2604 	vm_page_assert_locked(m);
2605 	KASSERT(m->queue < PQ_COUNT, ("vm_page_dequeue: page %p is not queued",
2606 	    m));
2607 	pq = vm_page_pagequeue(m);
2608 	vm_pagequeue_lock(pq);
2609 	m->queue = PQ_NONE;
2610 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2611 	vm_pagequeue_cnt_dec(pq);
2612 	vm_pagequeue_unlock(pq);
2613 }
2614 
2615 /*
2616  *	vm_page_dequeue_locked:
2617  *
2618  *	Remove the given page from its current page queue.
2619  *
2620  *	The page and page queue must be locked.
2621  */
2622 void
2623 vm_page_dequeue_locked(vm_page_t m)
2624 {
2625 	struct vm_pagequeue *pq;
2626 
2627 	vm_page_lock_assert(m, MA_OWNED);
2628 	pq = vm_page_pagequeue(m);
2629 	vm_pagequeue_assert_locked(pq);
2630 	m->queue = PQ_NONE;
2631 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2632 	vm_pagequeue_cnt_dec(pq);
2633 }
2634 
2635 /*
2636  *	vm_page_enqueue:
2637  *
2638  *	Add the given page to the specified page queue.
2639  *
2640  *	The page must be locked.
2641  */
2642 static void
2643 vm_page_enqueue(uint8_t queue, vm_page_t m)
2644 {
2645 	struct vm_pagequeue *pq;
2646 
2647 	vm_page_lock_assert(m, MA_OWNED);
2648 	KASSERT(queue < PQ_COUNT,
2649 	    ("vm_page_enqueue: invalid queue %u request for page %p",
2650 	    queue, m));
2651 	if (queue == PQ_LAUNDRY || queue == PQ_UNSWAPPABLE)
2652 		pq = &vm_dom[0].vmd_pagequeues[queue];
2653 	else
2654 		pq = &vm_phys_domain(m)->vmd_pagequeues[queue];
2655 	vm_pagequeue_lock(pq);
2656 	m->queue = queue;
2657 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2658 	vm_pagequeue_cnt_inc(pq);
2659 	vm_pagequeue_unlock(pq);
2660 }
2661 
2662 /*
2663  *	vm_page_requeue:
2664  *
2665  *	Move the given page to the tail of its current page queue.
2666  *
2667  *	The page must be locked.
2668  */
2669 void
2670 vm_page_requeue(vm_page_t m)
2671 {
2672 	struct vm_pagequeue *pq;
2673 
2674 	vm_page_lock_assert(m, MA_OWNED);
2675 	KASSERT(m->queue != PQ_NONE,
2676 	    ("vm_page_requeue: page %p is not queued", m));
2677 	pq = vm_page_pagequeue(m);
2678 	vm_pagequeue_lock(pq);
2679 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2680 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2681 	vm_pagequeue_unlock(pq);
2682 }
2683 
2684 /*
2685  *	vm_page_requeue_locked:
2686  *
2687  *	Move the given page to the tail of its current page queue.
2688  *
2689  *	The page queue must be locked.
2690  */
2691 void
2692 vm_page_requeue_locked(vm_page_t m)
2693 {
2694 	struct vm_pagequeue *pq;
2695 
2696 	KASSERT(m->queue != PQ_NONE,
2697 	    ("vm_page_requeue_locked: page %p is not queued", m));
2698 	pq = vm_page_pagequeue(m);
2699 	vm_pagequeue_assert_locked(pq);
2700 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2701 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2702 }
2703 
2704 /*
2705  *	vm_page_activate:
2706  *
2707  *	Put the specified page on the active list (if appropriate).
2708  *	Ensure that act_count is at least ACT_INIT but do not otherwise
2709  *	mess with it.
2710  *
2711  *	The page must be locked.
2712  */
2713 void
2714 vm_page_activate(vm_page_t m)
2715 {
2716 	int queue;
2717 
2718 	vm_page_lock_assert(m, MA_OWNED);
2719 	if ((queue = m->queue) != PQ_ACTIVE) {
2720 		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2721 			if (m->act_count < ACT_INIT)
2722 				m->act_count = ACT_INIT;
2723 			if (queue != PQ_NONE)
2724 				vm_page_dequeue(m);
2725 			vm_page_enqueue(PQ_ACTIVE, m);
2726 		} else
2727 			KASSERT(queue == PQ_NONE,
2728 			    ("vm_page_activate: wired page %p is queued", m));
2729 	} else {
2730 		if (m->act_count < ACT_INIT)
2731 			m->act_count = ACT_INIT;
2732 	}
2733 }
2734 
2735 /*
2736  *	vm_page_free_wakeup:
2737  *
2738  *	Helper routine for vm_page_free_toq().  This routine is called
2739  *	when a page is added to the free queues.
2740  *
2741  *	The page queues must be locked.
2742  */
2743 static void
2744 vm_page_free_wakeup(void)
2745 {
2746 
2747 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2748 	/*
2749 	 * if pageout daemon needs pages, then tell it that there are
2750 	 * some free.
2751 	 */
2752 	if (vm_pageout_pages_needed &&
2753 	    vm_cnt.v_free_count >= vm_cnt.v_pageout_free_min) {
2754 		wakeup(&vm_pageout_pages_needed);
2755 		vm_pageout_pages_needed = 0;
2756 	}
2757 	/*
2758 	 * wakeup processes that are waiting on memory if we hit a
2759 	 * high water mark. And wakeup scheduler process if we have
2760 	 * lots of memory. this process will swapin processes.
2761 	 */
2762 	if (vm_pages_needed && !vm_page_count_min()) {
2763 		vm_pages_needed = false;
2764 		wakeup(&vm_cnt.v_free_count);
2765 	}
2766 }
2767 
2768 /*
2769  *	vm_page_free_prep:
2770  *
2771  *	Prepares the given page to be put on the free list,
2772  *	disassociating it from any VM object. The caller may return
2773  *	the page to the free list only if this function returns true.
2774  *
2775  *	The object must be locked.  The page must be locked if it is
2776  *	managed.  For a queued managed page, the pagequeue_locked
2777  *	argument specifies whether the page queue is already locked.
2778  */
2779 bool
2780 vm_page_free_prep(vm_page_t m, bool pagequeue_locked)
2781 {
2782 
2783 	if ((m->oflags & VPO_UNMANAGED) == 0) {
2784 		vm_page_lock_assert(m, MA_OWNED);
2785 		KASSERT(!pmap_page_is_mapped(m),
2786 		    ("vm_page_free_toq: freeing mapped page %p", m));
2787 	} else
2788 		KASSERT(m->queue == PQ_NONE,
2789 		    ("vm_page_free_toq: unmanaged page %p is queued", m));
2790 	VM_CNT_INC(v_tfree);
2791 
2792 	if (vm_page_sbusied(m))
2793 		panic("vm_page_free: freeing busy page %p", m);
2794 
2795 	/*
2796 	 * Unqueue, then remove page.  Note that we cannot destroy
2797 	 * the page here because we do not want to call the pager's
2798 	 * callback routine until after we've put the page on the
2799 	 * appropriate free queue.
2800 	 */
2801 	if (m->queue != PQ_NONE) {
2802 		if (pagequeue_locked)
2803 			vm_page_dequeue_locked(m);
2804 		else
2805 			vm_page_dequeue(m);
2806 	}
2807 	vm_page_remove(m);
2808 
2809 	/*
2810 	 * If fictitious remove object association and
2811 	 * return, otherwise delay object association removal.
2812 	 */
2813 	if ((m->flags & PG_FICTITIOUS) != 0)
2814 		return (false);
2815 
2816 	m->valid = 0;
2817 	vm_page_undirty(m);
2818 
2819 	if (m->wire_count != 0)
2820 		panic("vm_page_free: freeing wired page %p", m);
2821 	if (m->hold_count != 0) {
2822 		m->flags &= ~PG_ZERO;
2823 		KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2824 		    ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
2825 		m->flags |= PG_UNHOLDFREE;
2826 		return (false);
2827 	}
2828 
2829 	/*
2830 	 * Restore the default memory attribute to the page.
2831 	 */
2832 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2833 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2834 
2835 	return (true);
2836 }
2837 
2838 /*
2839  * Insert the page into the physical memory allocator's free page
2840  * queues.  This is the last step to free a page.
2841  */
2842 static void
2843 vm_page_free_phys(vm_page_t m)
2844 {
2845 
2846 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2847 
2848 	vm_phys_freecnt_adj(m, 1);
2849 #if VM_NRESERVLEVEL > 0
2850 	if (!vm_reserv_free_page(m))
2851 #endif
2852 		vm_phys_free_pages(m, 0);
2853 }
2854 
2855 void
2856 vm_page_free_phys_pglist(struct pglist *tq)
2857 {
2858 	vm_page_t m;
2859 
2860 	mtx_lock(&vm_page_queue_free_mtx);
2861 	TAILQ_FOREACH(m, tq, listq)
2862 		vm_page_free_phys(m);
2863 	vm_page_free_wakeup();
2864 	mtx_unlock(&vm_page_queue_free_mtx);
2865 }
2866 
2867 /*
2868  *	vm_page_free_toq:
2869  *
2870  *	Returns the given page to the free list, disassociating it
2871  *	from any VM object.
2872  *
2873  *	The object must be locked.  The page must be locked if it is
2874  *	managed.
2875  */
2876 void
2877 vm_page_free_toq(vm_page_t m)
2878 {
2879 
2880 	if (!vm_page_free_prep(m, false))
2881 		return;
2882 	mtx_lock(&vm_page_queue_free_mtx);
2883 	vm_page_free_phys(m);
2884 	vm_page_free_wakeup();
2885 	mtx_unlock(&vm_page_queue_free_mtx);
2886 }
2887 
2888 /*
2889  *	vm_page_wire:
2890  *
2891  *	Mark this page as wired down by yet
2892  *	another map, removing it from paging queues
2893  *	as necessary.
2894  *
2895  *	If the page is fictitious, then its wire count must remain one.
2896  *
2897  *	The page must be locked.
2898  */
2899 void
2900 vm_page_wire(vm_page_t m)
2901 {
2902 
2903 	/*
2904 	 * Only bump the wire statistics if the page is not already wired,
2905 	 * and only unqueue the page if it is on some queue (if it is unmanaged
2906 	 * it is already off the queues).
2907 	 */
2908 	vm_page_lock_assert(m, MA_OWNED);
2909 	if ((m->flags & PG_FICTITIOUS) != 0) {
2910 		KASSERT(m->wire_count == 1,
2911 		    ("vm_page_wire: fictitious page %p's wire count isn't one",
2912 		    m));
2913 		return;
2914 	}
2915 	if (m->wire_count == 0) {
2916 		KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
2917 		    m->queue == PQ_NONE,
2918 		    ("vm_page_wire: unmanaged page %p is queued", m));
2919 		vm_page_remque(m);
2920 		atomic_add_int(&vm_cnt.v_wire_count, 1);
2921 	}
2922 	m->wire_count++;
2923 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
2924 }
2925 
2926 /*
2927  * vm_page_unwire:
2928  *
2929  * Release one wiring of the specified page, potentially allowing it to be
2930  * paged out.  Returns TRUE if the number of wirings transitions to zero and
2931  * FALSE otherwise.
2932  *
2933  * Only managed pages belonging to an object can be paged out.  If the number
2934  * of wirings transitions to zero and the page is eligible for page out, then
2935  * the page is added to the specified paging queue (unless PQ_NONE is
2936  * specified).
2937  *
2938  * If a page is fictitious, then its wire count must always be one.
2939  *
2940  * A managed page must be locked.
2941  */
2942 boolean_t
2943 vm_page_unwire(vm_page_t m, uint8_t queue)
2944 {
2945 
2946 	KASSERT(queue < PQ_COUNT || queue == PQ_NONE,
2947 	    ("vm_page_unwire: invalid queue %u request for page %p",
2948 	    queue, m));
2949 	if ((m->oflags & VPO_UNMANAGED) == 0)
2950 		vm_page_assert_locked(m);
2951 	if ((m->flags & PG_FICTITIOUS) != 0) {
2952 		KASSERT(m->wire_count == 1,
2953 	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
2954 		return (FALSE);
2955 	}
2956 	if (m->wire_count > 0) {
2957 		m->wire_count--;
2958 		if (m->wire_count == 0) {
2959 			atomic_subtract_int(&vm_cnt.v_wire_count, 1);
2960 			if ((m->oflags & VPO_UNMANAGED) == 0 &&
2961 			    m->object != NULL && queue != PQ_NONE)
2962 				vm_page_enqueue(queue, m);
2963 			return (TRUE);
2964 		} else
2965 			return (FALSE);
2966 	} else
2967 		panic("vm_page_unwire: page %p's wire count is zero", m);
2968 }
2969 
2970 /*
2971  * Move the specified page to the inactive queue.
2972  *
2973  * Normally, "noreuse" is FALSE, resulting in LRU ordering of the inactive
2974  * queue.  However, setting "noreuse" to TRUE will accelerate the specified
2975  * page's reclamation, but it will not unmap the page from any address space.
2976  * This is implemented by inserting the page near the head of the inactive
2977  * queue, using a marker page to guide FIFO insertion ordering.
2978  *
2979  * The page must be locked.
2980  */
2981 static inline void
2982 _vm_page_deactivate(vm_page_t m, boolean_t noreuse)
2983 {
2984 	struct vm_pagequeue *pq;
2985 	int queue;
2986 
2987 	vm_page_assert_locked(m);
2988 
2989 	/*
2990 	 * Ignore if the page is already inactive, unless it is unlikely to be
2991 	 * reactivated.
2992 	 */
2993 	if ((queue = m->queue) == PQ_INACTIVE && !noreuse)
2994 		return;
2995 	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2996 		pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE];
2997 		/* Avoid multiple acquisitions of the inactive queue lock. */
2998 		if (queue == PQ_INACTIVE) {
2999 			vm_pagequeue_lock(pq);
3000 			vm_page_dequeue_locked(m);
3001 		} else {
3002 			if (queue != PQ_NONE)
3003 				vm_page_dequeue(m);
3004 			vm_pagequeue_lock(pq);
3005 		}
3006 		m->queue = PQ_INACTIVE;
3007 		if (noreuse)
3008 			TAILQ_INSERT_BEFORE(&vm_phys_domain(m)->vmd_inacthead,
3009 			    m, plinks.q);
3010 		else
3011 			TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3012 		vm_pagequeue_cnt_inc(pq);
3013 		vm_pagequeue_unlock(pq);
3014 	}
3015 }
3016 
3017 /*
3018  * Move the specified page to the inactive queue.
3019  *
3020  * The page must be locked.
3021  */
3022 void
3023 vm_page_deactivate(vm_page_t m)
3024 {
3025 
3026 	_vm_page_deactivate(m, FALSE);
3027 }
3028 
3029 /*
3030  * Move the specified page to the inactive queue with the expectation
3031  * that it is unlikely to be reused.
3032  *
3033  * The page must be locked.
3034  */
3035 void
3036 vm_page_deactivate_noreuse(vm_page_t m)
3037 {
3038 
3039 	_vm_page_deactivate(m, TRUE);
3040 }
3041 
3042 /*
3043  * vm_page_launder
3044  *
3045  * 	Put a page in the laundry.
3046  */
3047 void
3048 vm_page_launder(vm_page_t m)
3049 {
3050 	int queue;
3051 
3052 	vm_page_assert_locked(m);
3053 	if ((queue = m->queue) != PQ_LAUNDRY) {
3054 		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
3055 			if (queue != PQ_NONE)
3056 				vm_page_dequeue(m);
3057 			vm_page_enqueue(PQ_LAUNDRY, m);
3058 		} else
3059 			KASSERT(queue == PQ_NONE,
3060 			    ("wired page %p is queued", m));
3061 	}
3062 }
3063 
3064 /*
3065  * vm_page_unswappable
3066  *
3067  *	Put a page in the PQ_UNSWAPPABLE holding queue.
3068  */
3069 void
3070 vm_page_unswappable(vm_page_t m)
3071 {
3072 
3073 	vm_page_assert_locked(m);
3074 	KASSERT(m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0,
3075 	    ("page %p already unswappable", m));
3076 	if (m->queue != PQ_NONE)
3077 		vm_page_dequeue(m);
3078 	vm_page_enqueue(PQ_UNSWAPPABLE, m);
3079 }
3080 
3081 /*
3082  * Attempt to free the page.  If it cannot be freed, do nothing.  Returns true
3083  * if the page is freed and false otherwise.
3084  *
3085  * The page must be managed.  The page and its containing object must be
3086  * locked.
3087  */
3088 bool
3089 vm_page_try_to_free(vm_page_t m)
3090 {
3091 
3092 	vm_page_assert_locked(m);
3093 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3094 	KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("page %p is unmanaged", m));
3095 	if (m->dirty != 0 || m->hold_count != 0 || m->wire_count != 0 ||
3096 	    vm_page_busied(m))
3097 		return (false);
3098 	if (m->object->ref_count != 0) {
3099 		pmap_remove_all(m);
3100 		if (m->dirty != 0)
3101 			return (false);
3102 	}
3103 	vm_page_free(m);
3104 	return (true);
3105 }
3106 
3107 /*
3108  * vm_page_advise
3109  *
3110  * 	Apply the specified advice to the given page.
3111  *
3112  *	The object and page must be locked.
3113  */
3114 void
3115 vm_page_advise(vm_page_t m, int advice)
3116 {
3117 
3118 	vm_page_assert_locked(m);
3119 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3120 	if (advice == MADV_FREE)
3121 		/*
3122 		 * Mark the page clean.  This will allow the page to be freed
3123 		 * without first paging it out.  MADV_FREE pages are often
3124 		 * quickly reused by malloc(3), so we do not do anything that
3125 		 * would result in a page fault on a later access.
3126 		 */
3127 		vm_page_undirty(m);
3128 	else if (advice != MADV_DONTNEED) {
3129 		if (advice == MADV_WILLNEED)
3130 			vm_page_activate(m);
3131 		return;
3132 	}
3133 
3134 	/*
3135 	 * Clear any references to the page.  Otherwise, the page daemon will
3136 	 * immediately reactivate the page.
3137 	 */
3138 	vm_page_aflag_clear(m, PGA_REFERENCED);
3139 
3140 	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
3141 		vm_page_dirty(m);
3142 
3143 	/*
3144 	 * Place clean pages near the head of the inactive queue rather than
3145 	 * the tail, thus defeating the queue's LRU operation and ensuring that
3146 	 * the page will be reused quickly.  Dirty pages not already in the
3147 	 * laundry are moved there.
3148 	 */
3149 	if (m->dirty == 0)
3150 		vm_page_deactivate_noreuse(m);
3151 	else
3152 		vm_page_launder(m);
3153 }
3154 
3155 /*
3156  * Grab a page, waiting until we are waken up due to the page
3157  * changing state.  We keep on waiting, if the page continues
3158  * to be in the object.  If the page doesn't exist, first allocate it
3159  * and then conditionally zero it.
3160  *
3161  * This routine may sleep.
3162  *
3163  * The object must be locked on entry.  The lock will, however, be released
3164  * and reacquired if the routine sleeps.
3165  */
3166 vm_page_t
3167 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
3168 {
3169 	vm_page_t m;
3170 	int sleep;
3171 
3172 	VM_OBJECT_ASSERT_WLOCKED(object);
3173 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
3174 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
3175 	    ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
3176 retrylookup:
3177 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
3178 		sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
3179 		    vm_page_xbusied(m) : vm_page_busied(m);
3180 		if (sleep) {
3181 			if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3182 				return (NULL);
3183 			/*
3184 			 * Reference the page before unlocking and
3185 			 * sleeping so that the page daemon is less
3186 			 * likely to reclaim it.
3187 			 */
3188 			vm_page_aflag_set(m, PGA_REFERENCED);
3189 			vm_page_lock(m);
3190 			VM_OBJECT_WUNLOCK(object);
3191 			vm_page_busy_sleep(m, "pgrbwt", (allocflags &
3192 			    VM_ALLOC_IGN_SBUSY) != 0);
3193 			VM_OBJECT_WLOCK(object);
3194 			goto retrylookup;
3195 		} else {
3196 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
3197 				vm_page_lock(m);
3198 				vm_page_wire(m);
3199 				vm_page_unlock(m);
3200 			}
3201 			if ((allocflags &
3202 			    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
3203 				vm_page_xbusy(m);
3204 			if ((allocflags & VM_ALLOC_SBUSY) != 0)
3205 				vm_page_sbusy(m);
3206 			return (m);
3207 		}
3208 	}
3209 	m = vm_page_alloc(object, pindex, allocflags);
3210 	if (m == NULL) {
3211 		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3212 			return (NULL);
3213 		VM_OBJECT_WUNLOCK(object);
3214 		VM_WAIT;
3215 		VM_OBJECT_WLOCK(object);
3216 		goto retrylookup;
3217 	}
3218 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
3219 		pmap_zero_page(m);
3220 	return (m);
3221 }
3222 
3223 /*
3224  * Return the specified range of pages from the given object.  For each
3225  * page offset within the range, if a page already exists within the object
3226  * at that offset and it is busy, then wait for it to change state.  If,
3227  * instead, the page doesn't exist, then allocate it.
3228  *
3229  * The caller must always specify an allocation class.
3230  *
3231  * allocation classes:
3232  *	VM_ALLOC_NORMAL		normal process request
3233  *	VM_ALLOC_SYSTEM		system *really* needs the pages
3234  *
3235  * The caller must always specify that the pages are to be busied and/or
3236  * wired.
3237  *
3238  * optional allocation flags:
3239  *	VM_ALLOC_IGN_SBUSY	do not sleep on soft busy pages
3240  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
3241  *	VM_ALLOC_NOWAIT		do not sleep
3242  *	VM_ALLOC_SBUSY		set page to sbusy state
3243  *	VM_ALLOC_WIRED		wire the pages
3244  *	VM_ALLOC_ZERO		zero and validate any invalid pages
3245  *
3246  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
3247  * may return a partial prefix of the requested range.
3248  */
3249 int
3250 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
3251     vm_page_t *ma, int count)
3252 {
3253 	vm_page_t m, mpred;
3254 	int i;
3255 	bool sleep;
3256 
3257 	VM_OBJECT_ASSERT_WLOCKED(object);
3258 	KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
3259 	    ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
3260 	KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
3261 	    (allocflags & VM_ALLOC_WIRED) != 0,
3262 	    ("vm_page_grab_pages: the pages must be busied or wired"));
3263 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
3264 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
3265 	    ("vm_page_grab_pages: VM_ALLOC_SBUSY/IGN_SBUSY mismatch"));
3266 	if (count == 0)
3267 		return (0);
3268 	i = 0;
3269 retrylookup:
3270 	m = vm_radix_lookup_le(&object->rtree, pindex + i);
3271 	if (m == NULL || m->pindex != pindex + i) {
3272 		mpred = m;
3273 		m = NULL;
3274 	} else
3275 		mpred = TAILQ_PREV(m, pglist, listq);
3276 	for (; i < count; i++) {
3277 		if (m != NULL) {
3278 			sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
3279 			    vm_page_xbusied(m) : vm_page_busied(m);
3280 			if (sleep) {
3281 				if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3282 					break;
3283 				/*
3284 				 * Reference the page before unlocking and
3285 				 * sleeping so that the page daemon is less
3286 				 * likely to reclaim it.
3287 				 */
3288 				vm_page_aflag_set(m, PGA_REFERENCED);
3289 				vm_page_lock(m);
3290 				VM_OBJECT_WUNLOCK(object);
3291 				vm_page_busy_sleep(m, "grbmaw", (allocflags &
3292 				    VM_ALLOC_IGN_SBUSY) != 0);
3293 				VM_OBJECT_WLOCK(object);
3294 				goto retrylookup;
3295 			}
3296 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
3297 				vm_page_lock(m);
3298 				vm_page_wire(m);
3299 				vm_page_unlock(m);
3300 			}
3301 			if ((allocflags & (VM_ALLOC_NOBUSY |
3302 			    VM_ALLOC_SBUSY)) == 0)
3303 				vm_page_xbusy(m);
3304 			if ((allocflags & VM_ALLOC_SBUSY) != 0)
3305 				vm_page_sbusy(m);
3306 		} else {
3307 			m = vm_page_alloc_after(object, pindex + i,
3308 			    (allocflags & ~VM_ALLOC_IGN_SBUSY) |
3309 			    VM_ALLOC_COUNT(count - i), mpred);
3310 			if (m == NULL) {
3311 				if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3312 					break;
3313 				VM_OBJECT_WUNLOCK(object);
3314 				VM_WAIT;
3315 				VM_OBJECT_WLOCK(object);
3316 				goto retrylookup;
3317 			}
3318 		}
3319 		if (m->valid == 0 && (allocflags & VM_ALLOC_ZERO) != 0) {
3320 			if ((m->flags & PG_ZERO) == 0)
3321 				pmap_zero_page(m);
3322 			m->valid = VM_PAGE_BITS_ALL;
3323 		}
3324 		ma[i] = mpred = m;
3325 		m = vm_page_next(m);
3326 	}
3327 	return (i);
3328 }
3329 
3330 /*
3331  * Mapping function for valid or dirty bits in a page.
3332  *
3333  * Inputs are required to range within a page.
3334  */
3335 vm_page_bits_t
3336 vm_page_bits(int base, int size)
3337 {
3338 	int first_bit;
3339 	int last_bit;
3340 
3341 	KASSERT(
3342 	    base + size <= PAGE_SIZE,
3343 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
3344 	);
3345 
3346 	if (size == 0)		/* handle degenerate case */
3347 		return (0);
3348 
3349 	first_bit = base >> DEV_BSHIFT;
3350 	last_bit = (base + size - 1) >> DEV_BSHIFT;
3351 
3352 	return (((vm_page_bits_t)2 << last_bit) -
3353 	    ((vm_page_bits_t)1 << first_bit));
3354 }
3355 
3356 /*
3357  *	vm_page_set_valid_range:
3358  *
3359  *	Sets portions of a page valid.  The arguments are expected
3360  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3361  *	of any partial chunks touched by the range.  The invalid portion of
3362  *	such chunks will be zeroed.
3363  *
3364  *	(base + size) must be less then or equal to PAGE_SIZE.
3365  */
3366 void
3367 vm_page_set_valid_range(vm_page_t m, int base, int size)
3368 {
3369 	int endoff, frag;
3370 
3371 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3372 	if (size == 0)	/* handle degenerate case */
3373 		return;
3374 
3375 	/*
3376 	 * If the base is not DEV_BSIZE aligned and the valid
3377 	 * bit is clear, we have to zero out a portion of the
3378 	 * first block.
3379 	 */
3380 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
3381 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
3382 		pmap_zero_page_area(m, frag, base - frag);
3383 
3384 	/*
3385 	 * If the ending offset is not DEV_BSIZE aligned and the
3386 	 * valid bit is clear, we have to zero out a portion of
3387 	 * the last block.
3388 	 */
3389 	endoff = base + size;
3390 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
3391 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
3392 		pmap_zero_page_area(m, endoff,
3393 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
3394 
3395 	/*
3396 	 * Assert that no previously invalid block that is now being validated
3397 	 * is already dirty.
3398 	 */
3399 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
3400 	    ("vm_page_set_valid_range: page %p is dirty", m));
3401 
3402 	/*
3403 	 * Set valid bits inclusive of any overlap.
3404 	 */
3405 	m->valid |= vm_page_bits(base, size);
3406 }
3407 
3408 /*
3409  * Clear the given bits from the specified page's dirty field.
3410  */
3411 static __inline void
3412 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
3413 {
3414 	uintptr_t addr;
3415 #if PAGE_SIZE < 16384
3416 	int shift;
3417 #endif
3418 
3419 	/*
3420 	 * If the object is locked and the page is neither exclusive busy nor
3421 	 * write mapped, then the page's dirty field cannot possibly be
3422 	 * set by a concurrent pmap operation.
3423 	 */
3424 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3425 	if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
3426 		m->dirty &= ~pagebits;
3427 	else {
3428 		/*
3429 		 * The pmap layer can call vm_page_dirty() without
3430 		 * holding a distinguished lock.  The combination of
3431 		 * the object's lock and an atomic operation suffice
3432 		 * to guarantee consistency of the page dirty field.
3433 		 *
3434 		 * For PAGE_SIZE == 32768 case, compiler already
3435 		 * properly aligns the dirty field, so no forcible
3436 		 * alignment is needed. Only require existence of
3437 		 * atomic_clear_64 when page size is 32768.
3438 		 */
3439 		addr = (uintptr_t)&m->dirty;
3440 #if PAGE_SIZE == 32768
3441 		atomic_clear_64((uint64_t *)addr, pagebits);
3442 #elif PAGE_SIZE == 16384
3443 		atomic_clear_32((uint32_t *)addr, pagebits);
3444 #else		/* PAGE_SIZE <= 8192 */
3445 		/*
3446 		 * Use a trick to perform a 32-bit atomic on the
3447 		 * containing aligned word, to not depend on the existence
3448 		 * of atomic_clear_{8, 16}.
3449 		 */
3450 		shift = addr & (sizeof(uint32_t) - 1);
3451 #if BYTE_ORDER == BIG_ENDIAN
3452 		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
3453 #else
3454 		shift *= NBBY;
3455 #endif
3456 		addr &= ~(sizeof(uint32_t) - 1);
3457 		atomic_clear_32((uint32_t *)addr, pagebits << shift);
3458 #endif		/* PAGE_SIZE */
3459 	}
3460 }
3461 
3462 /*
3463  *	vm_page_set_validclean:
3464  *
3465  *	Sets portions of a page valid and clean.  The arguments are expected
3466  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3467  *	of any partial chunks touched by the range.  The invalid portion of
3468  *	such chunks will be zero'd.
3469  *
3470  *	(base + size) must be less then or equal to PAGE_SIZE.
3471  */
3472 void
3473 vm_page_set_validclean(vm_page_t m, int base, int size)
3474 {
3475 	vm_page_bits_t oldvalid, pagebits;
3476 	int endoff, frag;
3477 
3478 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3479 	if (size == 0)	/* handle degenerate case */
3480 		return;
3481 
3482 	/*
3483 	 * If the base is not DEV_BSIZE aligned and the valid
3484 	 * bit is clear, we have to zero out a portion of the
3485 	 * first block.
3486 	 */
3487 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
3488 	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
3489 		pmap_zero_page_area(m, frag, base - frag);
3490 
3491 	/*
3492 	 * If the ending offset is not DEV_BSIZE aligned and the
3493 	 * valid bit is clear, we have to zero out a portion of
3494 	 * the last block.
3495 	 */
3496 	endoff = base + size;
3497 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
3498 	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
3499 		pmap_zero_page_area(m, endoff,
3500 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
3501 
3502 	/*
3503 	 * Set valid, clear dirty bits.  If validating the entire
3504 	 * page we can safely clear the pmap modify bit.  We also
3505 	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
3506 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
3507 	 * be set again.
3508 	 *
3509 	 * We set valid bits inclusive of any overlap, but we can only
3510 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
3511 	 * the range.
3512 	 */
3513 	oldvalid = m->valid;
3514 	pagebits = vm_page_bits(base, size);
3515 	m->valid |= pagebits;
3516 #if 0	/* NOT YET */
3517 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
3518 		frag = DEV_BSIZE - frag;
3519 		base += frag;
3520 		size -= frag;
3521 		if (size < 0)
3522 			size = 0;
3523 	}
3524 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
3525 #endif
3526 	if (base == 0 && size == PAGE_SIZE) {
3527 		/*
3528 		 * The page can only be modified within the pmap if it is
3529 		 * mapped, and it can only be mapped if it was previously
3530 		 * fully valid.
3531 		 */
3532 		if (oldvalid == VM_PAGE_BITS_ALL)
3533 			/*
3534 			 * Perform the pmap_clear_modify() first.  Otherwise,
3535 			 * a concurrent pmap operation, such as
3536 			 * pmap_protect(), could clear a modification in the
3537 			 * pmap and set the dirty field on the page before
3538 			 * pmap_clear_modify() had begun and after the dirty
3539 			 * field was cleared here.
3540 			 */
3541 			pmap_clear_modify(m);
3542 		m->dirty = 0;
3543 		m->oflags &= ~VPO_NOSYNC;
3544 	} else if (oldvalid != VM_PAGE_BITS_ALL)
3545 		m->dirty &= ~pagebits;
3546 	else
3547 		vm_page_clear_dirty_mask(m, pagebits);
3548 }
3549 
3550 void
3551 vm_page_clear_dirty(vm_page_t m, int base, int size)
3552 {
3553 
3554 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
3555 }
3556 
3557 /*
3558  *	vm_page_set_invalid:
3559  *
3560  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
3561  *	valid and dirty bits for the effected areas are cleared.
3562  */
3563 void
3564 vm_page_set_invalid(vm_page_t m, int base, int size)
3565 {
3566 	vm_page_bits_t bits;
3567 	vm_object_t object;
3568 
3569 	object = m->object;
3570 	VM_OBJECT_ASSERT_WLOCKED(object);
3571 	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
3572 	    size >= object->un_pager.vnp.vnp_size)
3573 		bits = VM_PAGE_BITS_ALL;
3574 	else
3575 		bits = vm_page_bits(base, size);
3576 	if (object->ref_count != 0 && m->valid == VM_PAGE_BITS_ALL &&
3577 	    bits != 0)
3578 		pmap_remove_all(m);
3579 	KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) ||
3580 	    !pmap_page_is_mapped(m),
3581 	    ("vm_page_set_invalid: page %p is mapped", m));
3582 	m->valid &= ~bits;
3583 	m->dirty &= ~bits;
3584 }
3585 
3586 /*
3587  * vm_page_zero_invalid()
3588  *
3589  *	The kernel assumes that the invalid portions of a page contain
3590  *	garbage, but such pages can be mapped into memory by user code.
3591  *	When this occurs, we must zero out the non-valid portions of the
3592  *	page so user code sees what it expects.
3593  *
3594  *	Pages are most often semi-valid when the end of a file is mapped
3595  *	into memory and the file's size is not page aligned.
3596  */
3597 void
3598 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3599 {
3600 	int b;
3601 	int i;
3602 
3603 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3604 	/*
3605 	 * Scan the valid bits looking for invalid sections that
3606 	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
3607 	 * valid bit may be set ) have already been zeroed by
3608 	 * vm_page_set_validclean().
3609 	 */
3610 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3611 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
3612 		    (m->valid & ((vm_page_bits_t)1 << i))) {
3613 			if (i > b) {
3614 				pmap_zero_page_area(m,
3615 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
3616 			}
3617 			b = i + 1;
3618 		}
3619 	}
3620 
3621 	/*
3622 	 * setvalid is TRUE when we can safely set the zero'd areas
3623 	 * as being valid.  We can do this if there are no cache consistancy
3624 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
3625 	 */
3626 	if (setvalid)
3627 		m->valid = VM_PAGE_BITS_ALL;
3628 }
3629 
3630 /*
3631  *	vm_page_is_valid:
3632  *
3633  *	Is (partial) page valid?  Note that the case where size == 0
3634  *	will return FALSE in the degenerate case where the page is
3635  *	entirely invalid, and TRUE otherwise.
3636  */
3637 int
3638 vm_page_is_valid(vm_page_t m, int base, int size)
3639 {
3640 	vm_page_bits_t bits;
3641 
3642 	VM_OBJECT_ASSERT_LOCKED(m->object);
3643 	bits = vm_page_bits(base, size);
3644 	return (m->valid != 0 && (m->valid & bits) == bits);
3645 }
3646 
3647 /*
3648  * Returns true if all of the specified predicates are true for the entire
3649  * (super)page and false otherwise.
3650  */
3651 bool
3652 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
3653 {
3654 	vm_object_t object;
3655 	int i, npages;
3656 
3657 	object = m->object;
3658 	VM_OBJECT_ASSERT_LOCKED(object);
3659 	npages = atop(pagesizes[m->psind]);
3660 
3661 	/*
3662 	 * The physically contiguous pages that make up a superpage, i.e., a
3663 	 * page with a page size index ("psind") greater than zero, will
3664 	 * occupy adjacent entries in vm_page_array[].
3665 	 */
3666 	for (i = 0; i < npages; i++) {
3667 		/* Always test object consistency, including "skip_m". */
3668 		if (m[i].object != object)
3669 			return (false);
3670 		if (&m[i] == skip_m)
3671 			continue;
3672 		if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
3673 			return (false);
3674 		if ((flags & PS_ALL_DIRTY) != 0) {
3675 			/*
3676 			 * Calling vm_page_test_dirty() or pmap_is_modified()
3677 			 * might stop this case from spuriously returning
3678 			 * "false".  However, that would require a write lock
3679 			 * on the object containing "m[i]".
3680 			 */
3681 			if (m[i].dirty != VM_PAGE_BITS_ALL)
3682 				return (false);
3683 		}
3684 		if ((flags & PS_ALL_VALID) != 0 &&
3685 		    m[i].valid != VM_PAGE_BITS_ALL)
3686 			return (false);
3687 	}
3688 	return (true);
3689 }
3690 
3691 /*
3692  * Set the page's dirty bits if the page is modified.
3693  */
3694 void
3695 vm_page_test_dirty(vm_page_t m)
3696 {
3697 
3698 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3699 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
3700 		vm_page_dirty(m);
3701 }
3702 
3703 void
3704 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
3705 {
3706 
3707 	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
3708 }
3709 
3710 void
3711 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
3712 {
3713 
3714 	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
3715 }
3716 
3717 int
3718 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
3719 {
3720 
3721 	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
3722 }
3723 
3724 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
3725 void
3726 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
3727 {
3728 
3729 	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
3730 }
3731 
3732 void
3733 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
3734 {
3735 
3736 	mtx_assert_(vm_page_lockptr(m), a, file, line);
3737 }
3738 #endif
3739 
3740 #ifdef INVARIANTS
3741 void
3742 vm_page_object_lock_assert(vm_page_t m)
3743 {
3744 
3745 	/*
3746 	 * Certain of the page's fields may only be modified by the
3747 	 * holder of the containing object's lock or the exclusive busy.
3748 	 * holder.  Unfortunately, the holder of the write busy is
3749 	 * not recorded, and thus cannot be checked here.
3750 	 */
3751 	if (m->object != NULL && !vm_page_xbusied(m))
3752 		VM_OBJECT_ASSERT_WLOCKED(m->object);
3753 }
3754 
3755 void
3756 vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
3757 {
3758 
3759 	if ((bits & PGA_WRITEABLE) == 0)
3760 		return;
3761 
3762 	/*
3763 	 * The PGA_WRITEABLE flag can only be set if the page is
3764 	 * managed, is exclusively busied or the object is locked.
3765 	 * Currently, this flag is only set by pmap_enter().
3766 	 */
3767 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3768 	    ("PGA_WRITEABLE on unmanaged page"));
3769 	if (!vm_page_xbusied(m))
3770 		VM_OBJECT_ASSERT_LOCKED(m->object);
3771 }
3772 #endif
3773 
3774 #include "opt_ddb.h"
3775 #ifdef DDB
3776 #include <sys/kernel.h>
3777 
3778 #include <ddb/ddb.h>
3779 
3780 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3781 {
3782 
3783 	db_printf("vm_cnt.v_free_count: %d\n", vm_cnt.v_free_count);
3784 	db_printf("vm_cnt.v_inactive_count: %d\n", vm_cnt.v_inactive_count);
3785 	db_printf("vm_cnt.v_active_count: %d\n", vm_cnt.v_active_count);
3786 	db_printf("vm_cnt.v_laundry_count: %d\n", vm_cnt.v_laundry_count);
3787 	db_printf("vm_cnt.v_wire_count: %d\n", vm_cnt.v_wire_count);
3788 	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
3789 	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
3790 	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
3791 	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
3792 }
3793 
3794 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3795 {
3796 	int dom;
3797 
3798 	db_printf("pq_free %d\n", vm_cnt.v_free_count);
3799 	for (dom = 0; dom < vm_ndomains; dom++) {
3800 		db_printf(
3801     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
3802 		    dom,
3803 		    vm_dom[dom].vmd_page_count,
3804 		    vm_dom[dom].vmd_free_count,
3805 		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
3806 		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
3807 		    vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
3808 		    vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
3809 	}
3810 }
3811 
3812 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
3813 {
3814 	vm_page_t m;
3815 	boolean_t phys;
3816 
3817 	if (!have_addr) {
3818 		db_printf("show pginfo addr\n");
3819 		return;
3820 	}
3821 
3822 	phys = strchr(modif, 'p') != NULL;
3823 	if (phys)
3824 		m = PHYS_TO_VM_PAGE(addr);
3825 	else
3826 		m = (vm_page_t)addr;
3827 	db_printf(
3828     "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
3829     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
3830 	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
3831 	    m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
3832 	    m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
3833 }
3834 #endif /* DDB */
3835