1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * The Mach Operating System project at Carnegie-Mellon University. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 36 */ 37 38 /*- 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 */ 64 65 /* 66 * GENERAL RULES ON VM_PAGE MANIPULATION 67 * 68 * - A page queue lock is required when adding or removing a page from a 69 * page queue regardless of other locks or the busy state of a page. 70 * 71 * * In general, no thread besides the page daemon can acquire or 72 * hold more than one page queue lock at a time. 73 * 74 * * The page daemon can acquire and hold any pair of page queue 75 * locks in any order. 76 * 77 * - The object lock is required when inserting or removing 78 * pages from an object (vm_page_insert() or vm_page_remove()). 79 * 80 */ 81 82 /* 83 * Resident memory management module. 84 */ 85 86 #include <sys/cdefs.h> 87 __FBSDID("$FreeBSD$"); 88 89 #include "opt_vm.h" 90 91 #include <sys/param.h> 92 #include <sys/systm.h> 93 #include <sys/lock.h> 94 #include <sys/domainset.h> 95 #include <sys/kernel.h> 96 #include <sys/limits.h> 97 #include <sys/linker.h> 98 #include <sys/malloc.h> 99 #include <sys/mman.h> 100 #include <sys/msgbuf.h> 101 #include <sys/mutex.h> 102 #include <sys/proc.h> 103 #include <sys/rwlock.h> 104 #include <sys/sbuf.h> 105 #include <sys/smp.h> 106 #include <sys/sysctl.h> 107 #include <sys/vmmeter.h> 108 #include <sys/vnode.h> 109 110 #include <vm/vm.h> 111 #include <vm/pmap.h> 112 #include <vm/vm_param.h> 113 #include <vm/vm_domainset.h> 114 #include <vm/vm_kern.h> 115 #include <vm/vm_map.h> 116 #include <vm/vm_object.h> 117 #include <vm/vm_page.h> 118 #include <vm/vm_pageout.h> 119 #include <vm/vm_phys.h> 120 #include <vm/vm_pagequeue.h> 121 #include <vm/vm_pager.h> 122 #include <vm/vm_radix.h> 123 #include <vm/vm_reserv.h> 124 #include <vm/vm_extern.h> 125 #include <vm/uma.h> 126 #include <vm/uma_int.h> 127 128 #include <machine/md_var.h> 129 130 extern int uma_startup_count(int); 131 extern void uma_startup(void *, int); 132 extern int vmem_startup_count(void); 133 134 /* 135 * Associated with page of user-allocatable memory is a 136 * page structure. 137 */ 138 139 struct vm_domain vm_dom[MAXMEMDOM]; 140 141 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT]; 142 143 struct mtx_padalign __exclusive_cache_line vm_domainset_lock; 144 /* The following fields are protected by the domainset lock. */ 145 domainset_t __exclusive_cache_line vm_min_domains; 146 domainset_t __exclusive_cache_line vm_severe_domains; 147 static int vm_min_waiters; 148 static int vm_severe_waiters; 149 static int vm_pageproc_waiters; 150 151 /* 152 * bogus page -- for I/O to/from partially complete buffers, 153 * or for paging into sparsely invalid regions. 154 */ 155 vm_page_t bogus_page; 156 157 vm_page_t vm_page_array; 158 long vm_page_array_size; 159 long first_page; 160 161 static int boot_pages; 162 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 163 &boot_pages, 0, 164 "number of pages allocated for bootstrapping the VM system"); 165 166 static int pa_tryrelock_restart; 167 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD, 168 &pa_tryrelock_restart, 0, "Number of tryrelock restarts"); 169 170 static TAILQ_HEAD(, vm_page) blacklist_head; 171 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS); 172 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD | 173 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages"); 174 175 static uma_zone_t fakepg_zone; 176 177 static void vm_page_alloc_check(vm_page_t m); 178 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits); 179 static void vm_page_enqueue(uint8_t queue, vm_page_t m); 180 static void vm_page_init(void *dummy); 181 static int vm_page_insert_after(vm_page_t m, vm_object_t object, 182 vm_pindex_t pindex, vm_page_t mpred); 183 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object, 184 vm_page_t mpred); 185 static int vm_page_reclaim_run(int req_class, int domain, u_long npages, 186 vm_page_t m_run, vm_paddr_t high); 187 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, 188 int req); 189 static int vm_page_import(void *arg, void **store, int cnt, int domain, 190 int flags); 191 static void vm_page_release(void *arg, void **store, int cnt); 192 193 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL); 194 195 static void 196 vm_page_init(void *dummy) 197 { 198 199 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL, 200 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 201 bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | 202 VM_ALLOC_NORMAL | VM_ALLOC_WIRED); 203 } 204 205 /* 206 * The cache page zone is initialized later since we need to be able to allocate 207 * pages before UMA is fully initialized. 208 */ 209 static void 210 vm_page_init_cache_zones(void *dummy __unused) 211 { 212 struct vm_domain *vmd; 213 int i; 214 215 for (i = 0; i < vm_ndomains; i++) { 216 vmd = VM_DOMAIN(i); 217 /* 218 * Don't allow the page cache to take up more than .25% of 219 * memory. 220 */ 221 if (vmd->vmd_page_count / 400 < 256 * mp_ncpus) 222 continue; 223 vmd->vmd_pgcache = uma_zcache_create("vm pgcache", 224 sizeof(struct vm_page), NULL, NULL, NULL, NULL, 225 vm_page_import, vm_page_release, vmd, 226 UMA_ZONE_NOBUCKETCACHE | UMA_ZONE_MAXBUCKET | UMA_ZONE_VM); 227 } 228 } 229 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL); 230 231 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */ 232 #if PAGE_SIZE == 32768 233 #ifdef CTASSERT 234 CTASSERT(sizeof(u_long) >= 8); 235 #endif 236 #endif 237 238 /* 239 * Try to acquire a physical address lock while a pmap is locked. If we 240 * fail to trylock we unlock and lock the pmap directly and cache the 241 * locked pa in *locked. The caller should then restart their loop in case 242 * the virtual to physical mapping has changed. 243 */ 244 int 245 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked) 246 { 247 vm_paddr_t lockpa; 248 249 lockpa = *locked; 250 *locked = pa; 251 if (lockpa) { 252 PA_LOCK_ASSERT(lockpa, MA_OWNED); 253 if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa)) 254 return (0); 255 PA_UNLOCK(lockpa); 256 } 257 if (PA_TRYLOCK(pa)) 258 return (0); 259 PMAP_UNLOCK(pmap); 260 atomic_add_int(&pa_tryrelock_restart, 1); 261 PA_LOCK(pa); 262 PMAP_LOCK(pmap); 263 return (EAGAIN); 264 } 265 266 /* 267 * vm_set_page_size: 268 * 269 * Sets the page size, perhaps based upon the memory 270 * size. Must be called before any use of page-size 271 * dependent functions. 272 */ 273 void 274 vm_set_page_size(void) 275 { 276 if (vm_cnt.v_page_size == 0) 277 vm_cnt.v_page_size = PAGE_SIZE; 278 if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0) 279 panic("vm_set_page_size: page size not a power of two"); 280 } 281 282 /* 283 * vm_page_blacklist_next: 284 * 285 * Find the next entry in the provided string of blacklist 286 * addresses. Entries are separated by space, comma, or newline. 287 * If an invalid integer is encountered then the rest of the 288 * string is skipped. Updates the list pointer to the next 289 * character, or NULL if the string is exhausted or invalid. 290 */ 291 static vm_paddr_t 292 vm_page_blacklist_next(char **list, char *end) 293 { 294 vm_paddr_t bad; 295 char *cp, *pos; 296 297 if (list == NULL || *list == NULL) 298 return (0); 299 if (**list =='\0') { 300 *list = NULL; 301 return (0); 302 } 303 304 /* 305 * If there's no end pointer then the buffer is coming from 306 * the kenv and we know it's null-terminated. 307 */ 308 if (end == NULL) 309 end = *list + strlen(*list); 310 311 /* Ensure that strtoq() won't walk off the end */ 312 if (*end != '\0') { 313 if (*end == '\n' || *end == ' ' || *end == ',') 314 *end = '\0'; 315 else { 316 printf("Blacklist not terminated, skipping\n"); 317 *list = NULL; 318 return (0); 319 } 320 } 321 322 for (pos = *list; *pos != '\0'; pos = cp) { 323 bad = strtoq(pos, &cp, 0); 324 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') { 325 if (bad == 0) { 326 if (++cp < end) 327 continue; 328 else 329 break; 330 } 331 } else 332 break; 333 if (*cp == '\0' || ++cp >= end) 334 *list = NULL; 335 else 336 *list = cp; 337 return (trunc_page(bad)); 338 } 339 printf("Garbage in RAM blacklist, skipping\n"); 340 *list = NULL; 341 return (0); 342 } 343 344 bool 345 vm_page_blacklist_add(vm_paddr_t pa, bool verbose) 346 { 347 struct vm_domain *vmd; 348 vm_page_t m; 349 int ret; 350 351 m = vm_phys_paddr_to_vm_page(pa); 352 if (m == NULL) 353 return (true); /* page does not exist, no failure */ 354 355 vmd = vm_pagequeue_domain(m); 356 vm_domain_free_lock(vmd); 357 ret = vm_phys_unfree_page(m); 358 vm_domain_free_unlock(vmd); 359 if (ret) { 360 TAILQ_INSERT_TAIL(&blacklist_head, m, listq); 361 if (verbose) 362 printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa); 363 } 364 return (ret); 365 } 366 367 /* 368 * vm_page_blacklist_check: 369 * 370 * Iterate through the provided string of blacklist addresses, pulling 371 * each entry out of the physical allocator free list and putting it 372 * onto a list for reporting via the vm.page_blacklist sysctl. 373 */ 374 static void 375 vm_page_blacklist_check(char *list, char *end) 376 { 377 vm_paddr_t pa; 378 char *next; 379 380 next = list; 381 while (next != NULL) { 382 if ((pa = vm_page_blacklist_next(&next, end)) == 0) 383 continue; 384 vm_page_blacklist_add(pa, bootverbose); 385 } 386 } 387 388 /* 389 * vm_page_blacklist_load: 390 * 391 * Search for a special module named "ram_blacklist". It'll be a 392 * plain text file provided by the user via the loader directive 393 * of the same name. 394 */ 395 static void 396 vm_page_blacklist_load(char **list, char **end) 397 { 398 void *mod; 399 u_char *ptr; 400 u_int len; 401 402 mod = NULL; 403 ptr = NULL; 404 405 mod = preload_search_by_type("ram_blacklist"); 406 if (mod != NULL) { 407 ptr = preload_fetch_addr(mod); 408 len = preload_fetch_size(mod); 409 } 410 *list = ptr; 411 if (ptr != NULL) 412 *end = ptr + len; 413 else 414 *end = NULL; 415 return; 416 } 417 418 static int 419 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS) 420 { 421 vm_page_t m; 422 struct sbuf sbuf; 423 int error, first; 424 425 first = 1; 426 error = sysctl_wire_old_buffer(req, 0); 427 if (error != 0) 428 return (error); 429 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 430 TAILQ_FOREACH(m, &blacklist_head, listq) { 431 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",", 432 (uintmax_t)m->phys_addr); 433 first = 0; 434 } 435 error = sbuf_finish(&sbuf); 436 sbuf_delete(&sbuf); 437 return (error); 438 } 439 440 /* 441 * Initialize a dummy page for use in scans of the specified paging queue. 442 * In principle, this function only needs to set the flag PG_MARKER. 443 * Nonetheless, it write busies and initializes the hold count to one as 444 * safety precautions. 445 */ 446 void 447 vm_page_init_marker(vm_page_t marker, int queue) 448 { 449 450 bzero(marker, sizeof(*marker)); 451 marker->flags = PG_MARKER; 452 marker->busy_lock = VPB_SINGLE_EXCLUSIVER; 453 marker->queue = queue; 454 marker->hold_count = 1; 455 } 456 457 static void 458 vm_page_domain_init(int domain) 459 { 460 struct vm_domain *vmd; 461 struct vm_pagequeue *pq; 462 int i; 463 464 vmd = VM_DOMAIN(domain); 465 bzero(vmd, sizeof(*vmd)); 466 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) = 467 "vm inactive pagequeue"; 468 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) = 469 "vm active pagequeue"; 470 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) = 471 "vm laundry pagequeue"; 472 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) = 473 "vm unswappable pagequeue"; 474 vmd->vmd_domain = domain; 475 vmd->vmd_page_count = 0; 476 vmd->vmd_free_count = 0; 477 vmd->vmd_segs = 0; 478 vmd->vmd_oom = FALSE; 479 for (i = 0; i < PQ_COUNT; i++) { 480 pq = &vmd->vmd_pagequeues[i]; 481 TAILQ_INIT(&pq->pq_pl); 482 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue", 483 MTX_DEF | MTX_DUPOK); 484 vm_page_init_marker(&vmd->vmd_markers[i], i); 485 } 486 mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF); 487 mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF); 488 vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE); 489 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl, 490 &vmd->vmd_inacthead, plinks.q); 491 snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain); 492 } 493 494 /* 495 * Initialize a physical page in preparation for adding it to the free 496 * lists. 497 */ 498 static void 499 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind) 500 { 501 502 m->object = NULL; 503 m->wire_count = 0; 504 m->busy_lock = VPB_UNBUSIED; 505 m->hold_count = 0; 506 m->flags = 0; 507 m->phys_addr = pa; 508 m->queue = PQ_NONE; 509 m->psind = 0; 510 m->segind = segind; 511 m->order = VM_NFREEORDER; 512 m->pool = VM_FREEPOOL_DEFAULT; 513 m->valid = m->dirty = 0; 514 pmap_page_init(m); 515 } 516 517 /* 518 * vm_page_startup: 519 * 520 * Initializes the resident memory module. Allocates physical memory for 521 * bootstrapping UMA and some data structures that are used to manage 522 * physical pages. Initializes these structures, and populates the free 523 * page queues. 524 */ 525 vm_offset_t 526 vm_page_startup(vm_offset_t vaddr) 527 { 528 struct vm_phys_seg *seg; 529 vm_page_t m; 530 char *list, *listend; 531 vm_offset_t mapped; 532 vm_paddr_t end, high_avail, low_avail, new_end, page_range, size; 533 vm_paddr_t biggestsize, last_pa, pa; 534 u_long pagecount; 535 int biggestone, i, segind; 536 537 biggestsize = 0; 538 biggestone = 0; 539 vaddr = round_page(vaddr); 540 541 for (i = 0; phys_avail[i + 1]; i += 2) { 542 phys_avail[i] = round_page(phys_avail[i]); 543 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 544 } 545 for (i = 0; phys_avail[i + 1]; i += 2) { 546 size = phys_avail[i + 1] - phys_avail[i]; 547 if (size > biggestsize) { 548 biggestone = i; 549 biggestsize = size; 550 } 551 } 552 553 end = phys_avail[biggestone+1]; 554 555 /* 556 * Initialize the page and queue locks. 557 */ 558 mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF); 559 for (i = 0; i < PA_LOCK_COUNT; i++) 560 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF); 561 for (i = 0; i < vm_ndomains; i++) 562 vm_page_domain_init(i); 563 564 /* 565 * Allocate memory for use when boot strapping the kernel memory 566 * allocator. Tell UMA how many zones we are going to create 567 * before going fully functional. UMA will add its zones. 568 * 569 * VM startup zones: vmem, vmem_btag, VM OBJECT, RADIX NODE, MAP, 570 * KMAP ENTRY, MAP ENTRY, VMSPACE. 571 */ 572 boot_pages = uma_startup_count(8); 573 574 #ifndef UMA_MD_SMALL_ALLOC 575 /* vmem_startup() calls uma_prealloc(). */ 576 boot_pages += vmem_startup_count(); 577 /* vm_map_startup() calls uma_prealloc(). */ 578 boot_pages += howmany(MAX_KMAP, 579 UMA_SLAB_SPACE / sizeof(struct vm_map)); 580 581 /* 582 * Before going fully functional kmem_init() does allocation 583 * from "KMAP ENTRY" and vmem_create() does allocation from "vmem". 584 */ 585 boot_pages += 2; 586 #endif 587 /* 588 * CTFLAG_RDTUN doesn't work during the early boot process, so we must 589 * manually fetch the value. 590 */ 591 TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages); 592 new_end = end - (boot_pages * UMA_SLAB_SIZE); 593 new_end = trunc_page(new_end); 594 mapped = pmap_map(&vaddr, new_end, end, 595 VM_PROT_READ | VM_PROT_WRITE); 596 bzero((void *)mapped, end - new_end); 597 uma_startup((void *)mapped, boot_pages); 598 599 #ifdef WITNESS 600 end = new_end; 601 new_end = end - round_page(witness_startup_count()); 602 mapped = pmap_map(&vaddr, new_end, end, 603 VM_PROT_READ | VM_PROT_WRITE); 604 bzero((void *)mapped, end - new_end); 605 witness_startup((void *)mapped); 606 #endif 607 608 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \ 609 defined(__i386__) || defined(__mips__) 610 /* 611 * Allocate a bitmap to indicate that a random physical page 612 * needs to be included in a minidump. 613 * 614 * The amd64 port needs this to indicate which direct map pages 615 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 616 * 617 * However, i386 still needs this workspace internally within the 618 * minidump code. In theory, they are not needed on i386, but are 619 * included should the sf_buf code decide to use them. 620 */ 621 last_pa = 0; 622 for (i = 0; dump_avail[i + 1] != 0; i += 2) 623 if (dump_avail[i + 1] > last_pa) 624 last_pa = dump_avail[i + 1]; 625 page_range = last_pa / PAGE_SIZE; 626 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 627 new_end -= vm_page_dump_size; 628 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, 629 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); 630 bzero((void *)vm_page_dump, vm_page_dump_size); 631 #else 632 (void)last_pa; 633 #endif 634 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) 635 /* 636 * Include the UMA bootstrap pages and vm_page_dump in a crash dump. 637 * When pmap_map() uses the direct map, they are not automatically 638 * included. 639 */ 640 for (pa = new_end; pa < end; pa += PAGE_SIZE) 641 dump_add_page(pa); 642 #endif 643 phys_avail[biggestone + 1] = new_end; 644 #ifdef __amd64__ 645 /* 646 * Request that the physical pages underlying the message buffer be 647 * included in a crash dump. Since the message buffer is accessed 648 * through the direct map, they are not automatically included. 649 */ 650 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr); 651 last_pa = pa + round_page(msgbufsize); 652 while (pa < last_pa) { 653 dump_add_page(pa); 654 pa += PAGE_SIZE; 655 } 656 #endif 657 /* 658 * Compute the number of pages of memory that will be available for 659 * use, taking into account the overhead of a page structure per page. 660 * In other words, solve 661 * "available physical memory" - round_page(page_range * 662 * sizeof(struct vm_page)) = page_range * PAGE_SIZE 663 * for page_range. 664 */ 665 low_avail = phys_avail[0]; 666 high_avail = phys_avail[1]; 667 for (i = 0; i < vm_phys_nsegs; i++) { 668 if (vm_phys_segs[i].start < low_avail) 669 low_avail = vm_phys_segs[i].start; 670 if (vm_phys_segs[i].end > high_avail) 671 high_avail = vm_phys_segs[i].end; 672 } 673 /* Skip the first chunk. It is already accounted for. */ 674 for (i = 2; phys_avail[i + 1] != 0; i += 2) { 675 if (phys_avail[i] < low_avail) 676 low_avail = phys_avail[i]; 677 if (phys_avail[i + 1] > high_avail) 678 high_avail = phys_avail[i + 1]; 679 } 680 first_page = low_avail / PAGE_SIZE; 681 #ifdef VM_PHYSSEG_SPARSE 682 size = 0; 683 for (i = 0; i < vm_phys_nsegs; i++) 684 size += vm_phys_segs[i].end - vm_phys_segs[i].start; 685 for (i = 0; phys_avail[i + 1] != 0; i += 2) 686 size += phys_avail[i + 1] - phys_avail[i]; 687 #elif defined(VM_PHYSSEG_DENSE) 688 size = high_avail - low_avail; 689 #else 690 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 691 #endif 692 693 #ifdef VM_PHYSSEG_DENSE 694 /* 695 * In the VM_PHYSSEG_DENSE case, the number of pages can account for 696 * the overhead of a page structure per page only if vm_page_array is 697 * allocated from the last physical memory chunk. Otherwise, we must 698 * allocate page structures representing the physical memory 699 * underlying vm_page_array, even though they will not be used. 700 */ 701 if (new_end != high_avail) 702 page_range = size / PAGE_SIZE; 703 else 704 #endif 705 { 706 page_range = size / (PAGE_SIZE + sizeof(struct vm_page)); 707 708 /* 709 * If the partial bytes remaining are large enough for 710 * a page (PAGE_SIZE) without a corresponding 711 * 'struct vm_page', then new_end will contain an 712 * extra page after subtracting the length of the VM 713 * page array. Compensate by subtracting an extra 714 * page from new_end. 715 */ 716 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) { 717 if (new_end == high_avail) 718 high_avail -= PAGE_SIZE; 719 new_end -= PAGE_SIZE; 720 } 721 } 722 end = new_end; 723 724 /* 725 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 726 * However, because this page is allocated from KVM, out-of-bounds 727 * accesses using the direct map will not be trapped. 728 */ 729 vaddr += PAGE_SIZE; 730 731 /* 732 * Allocate physical memory for the page structures, and map it. 733 */ 734 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 735 mapped = pmap_map(&vaddr, new_end, end, 736 VM_PROT_READ | VM_PROT_WRITE); 737 vm_page_array = (vm_page_t)mapped; 738 vm_page_array_size = page_range; 739 740 #if VM_NRESERVLEVEL > 0 741 /* 742 * Allocate physical memory for the reservation management system's 743 * data structures, and map it. 744 */ 745 if (high_avail == end) 746 high_avail = new_end; 747 new_end = vm_reserv_startup(&vaddr, new_end, high_avail); 748 #endif 749 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) 750 /* 751 * Include vm_page_array and vm_reserv_array in a crash dump. 752 */ 753 for (pa = new_end; pa < end; pa += PAGE_SIZE) 754 dump_add_page(pa); 755 #endif 756 phys_avail[biggestone + 1] = new_end; 757 758 /* 759 * Add physical memory segments corresponding to the available 760 * physical pages. 761 */ 762 for (i = 0; phys_avail[i + 1] != 0; i += 2) 763 vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]); 764 765 /* 766 * Initialize the physical memory allocator. 767 */ 768 vm_phys_init(); 769 770 /* 771 * Initialize the page structures and add every available page to the 772 * physical memory allocator's free lists. 773 */ 774 vm_cnt.v_page_count = 0; 775 for (segind = 0; segind < vm_phys_nsegs; segind++) { 776 seg = &vm_phys_segs[segind]; 777 for (m = seg->first_page, pa = seg->start; pa < seg->end; 778 m++, pa += PAGE_SIZE) 779 vm_page_init_page(m, pa, segind); 780 781 /* 782 * Add the segment to the free lists only if it is covered by 783 * one of the ranges in phys_avail. Because we've added the 784 * ranges to the vm_phys_segs array, we can assume that each 785 * segment is either entirely contained in one of the ranges, 786 * or doesn't overlap any of them. 787 */ 788 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 789 struct vm_domain *vmd; 790 791 if (seg->start < phys_avail[i] || 792 seg->end > phys_avail[i + 1]) 793 continue; 794 795 m = seg->first_page; 796 pagecount = (u_long)atop(seg->end - seg->start); 797 798 vmd = VM_DOMAIN(seg->domain); 799 vm_domain_free_lock(vmd); 800 vm_phys_free_contig(m, pagecount); 801 vm_domain_free_unlock(vmd); 802 vm_domain_freecnt_inc(vmd, pagecount); 803 vm_cnt.v_page_count += (u_int)pagecount; 804 805 vmd = VM_DOMAIN(seg->domain); 806 vmd->vmd_page_count += (u_int)pagecount; 807 vmd->vmd_segs |= 1UL << m->segind; 808 break; 809 } 810 } 811 812 /* 813 * Remove blacklisted pages from the physical memory allocator. 814 */ 815 TAILQ_INIT(&blacklist_head); 816 vm_page_blacklist_load(&list, &listend); 817 vm_page_blacklist_check(list, listend); 818 819 list = kern_getenv("vm.blacklist"); 820 vm_page_blacklist_check(list, NULL); 821 822 freeenv(list); 823 #if VM_NRESERVLEVEL > 0 824 /* 825 * Initialize the reservation management system. 826 */ 827 vm_reserv_init(); 828 #endif 829 /* 830 * Set an initial domain policy for thread0 so that allocations 831 * can work. 832 */ 833 domainset_zero(); 834 835 return (vaddr); 836 } 837 838 void 839 vm_page_reference(vm_page_t m) 840 { 841 842 vm_page_aflag_set(m, PGA_REFERENCED); 843 } 844 845 /* 846 * vm_page_busy_downgrade: 847 * 848 * Downgrade an exclusive busy page into a single shared busy page. 849 */ 850 void 851 vm_page_busy_downgrade(vm_page_t m) 852 { 853 u_int x; 854 bool locked; 855 856 vm_page_assert_xbusied(m); 857 locked = mtx_owned(vm_page_lockptr(m)); 858 859 for (;;) { 860 x = m->busy_lock; 861 x &= VPB_BIT_WAITERS; 862 if (x != 0 && !locked) 863 vm_page_lock(m); 864 if (atomic_cmpset_rel_int(&m->busy_lock, 865 VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1))) 866 break; 867 if (x != 0 && !locked) 868 vm_page_unlock(m); 869 } 870 if (x != 0) { 871 wakeup(m); 872 if (!locked) 873 vm_page_unlock(m); 874 } 875 } 876 877 /* 878 * vm_page_sbusied: 879 * 880 * Return a positive value if the page is shared busied, 0 otherwise. 881 */ 882 int 883 vm_page_sbusied(vm_page_t m) 884 { 885 u_int x; 886 887 x = m->busy_lock; 888 return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED); 889 } 890 891 /* 892 * vm_page_sunbusy: 893 * 894 * Shared unbusy a page. 895 */ 896 void 897 vm_page_sunbusy(vm_page_t m) 898 { 899 u_int x; 900 901 vm_page_lock_assert(m, MA_NOTOWNED); 902 vm_page_assert_sbusied(m); 903 904 for (;;) { 905 x = m->busy_lock; 906 if (VPB_SHARERS(x) > 1) { 907 if (atomic_cmpset_int(&m->busy_lock, x, 908 x - VPB_ONE_SHARER)) 909 break; 910 continue; 911 } 912 if ((x & VPB_BIT_WAITERS) == 0) { 913 KASSERT(x == VPB_SHARERS_WORD(1), 914 ("vm_page_sunbusy: invalid lock state")); 915 if (atomic_cmpset_int(&m->busy_lock, 916 VPB_SHARERS_WORD(1), VPB_UNBUSIED)) 917 break; 918 continue; 919 } 920 KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS), 921 ("vm_page_sunbusy: invalid lock state for waiters")); 922 923 vm_page_lock(m); 924 if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) { 925 vm_page_unlock(m); 926 continue; 927 } 928 wakeup(m); 929 vm_page_unlock(m); 930 break; 931 } 932 } 933 934 /* 935 * vm_page_busy_sleep: 936 * 937 * Sleep and release the page lock, using the page pointer as wchan. 938 * This is used to implement the hard-path of busying mechanism. 939 * 940 * The given page must be locked. 941 * 942 * If nonshared is true, sleep only if the page is xbusy. 943 */ 944 void 945 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared) 946 { 947 u_int x; 948 949 vm_page_assert_locked(m); 950 951 x = m->busy_lock; 952 if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) || 953 ((x & VPB_BIT_WAITERS) == 0 && 954 !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) { 955 vm_page_unlock(m); 956 return; 957 } 958 msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0); 959 } 960 961 /* 962 * vm_page_trysbusy: 963 * 964 * Try to shared busy a page. 965 * If the operation succeeds 1 is returned otherwise 0. 966 * The operation never sleeps. 967 */ 968 int 969 vm_page_trysbusy(vm_page_t m) 970 { 971 u_int x; 972 973 for (;;) { 974 x = m->busy_lock; 975 if ((x & VPB_BIT_SHARED) == 0) 976 return (0); 977 if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER)) 978 return (1); 979 } 980 } 981 982 static void 983 vm_page_xunbusy_locked(vm_page_t m) 984 { 985 986 vm_page_assert_xbusied(m); 987 vm_page_assert_locked(m); 988 989 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED); 990 /* There is a waiter, do wakeup() instead of vm_page_flash(). */ 991 wakeup(m); 992 } 993 994 void 995 vm_page_xunbusy_maybelocked(vm_page_t m) 996 { 997 bool lockacq; 998 999 vm_page_assert_xbusied(m); 1000 1001 /* 1002 * Fast path for unbusy. If it succeeds, we know that there 1003 * are no waiters, so we do not need a wakeup. 1004 */ 1005 if (atomic_cmpset_rel_int(&m->busy_lock, VPB_SINGLE_EXCLUSIVER, 1006 VPB_UNBUSIED)) 1007 return; 1008 1009 lockacq = !mtx_owned(vm_page_lockptr(m)); 1010 if (lockacq) 1011 vm_page_lock(m); 1012 vm_page_xunbusy_locked(m); 1013 if (lockacq) 1014 vm_page_unlock(m); 1015 } 1016 1017 /* 1018 * vm_page_xunbusy_hard: 1019 * 1020 * Called after the first try the exclusive unbusy of a page failed. 1021 * It is assumed that the waiters bit is on. 1022 */ 1023 void 1024 vm_page_xunbusy_hard(vm_page_t m) 1025 { 1026 1027 vm_page_assert_xbusied(m); 1028 1029 vm_page_lock(m); 1030 vm_page_xunbusy_locked(m); 1031 vm_page_unlock(m); 1032 } 1033 1034 /* 1035 * vm_page_flash: 1036 * 1037 * Wakeup anyone waiting for the page. 1038 * The ownership bits do not change. 1039 * 1040 * The given page must be locked. 1041 */ 1042 void 1043 vm_page_flash(vm_page_t m) 1044 { 1045 u_int x; 1046 1047 vm_page_lock_assert(m, MA_OWNED); 1048 1049 for (;;) { 1050 x = m->busy_lock; 1051 if ((x & VPB_BIT_WAITERS) == 0) 1052 return; 1053 if (atomic_cmpset_int(&m->busy_lock, x, 1054 x & (~VPB_BIT_WAITERS))) 1055 break; 1056 } 1057 wakeup(m); 1058 } 1059 1060 /* 1061 * Avoid releasing and reacquiring the same page lock. 1062 */ 1063 void 1064 vm_page_change_lock(vm_page_t m, struct mtx **mtx) 1065 { 1066 struct mtx *mtx1; 1067 1068 mtx1 = vm_page_lockptr(m); 1069 if (*mtx == mtx1) 1070 return; 1071 if (*mtx != NULL) 1072 mtx_unlock(*mtx); 1073 *mtx = mtx1; 1074 mtx_lock(mtx1); 1075 } 1076 1077 /* 1078 * Keep page from being freed by the page daemon 1079 * much of the same effect as wiring, except much lower 1080 * overhead and should be used only for *very* temporary 1081 * holding ("wiring"). 1082 */ 1083 void 1084 vm_page_hold(vm_page_t mem) 1085 { 1086 1087 vm_page_lock_assert(mem, MA_OWNED); 1088 mem->hold_count++; 1089 } 1090 1091 void 1092 vm_page_unhold(vm_page_t mem) 1093 { 1094 1095 vm_page_lock_assert(mem, MA_OWNED); 1096 KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!")); 1097 --mem->hold_count; 1098 if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0) 1099 vm_page_free_toq(mem); 1100 } 1101 1102 /* 1103 * vm_page_unhold_pages: 1104 * 1105 * Unhold each of the pages that is referenced by the given array. 1106 */ 1107 void 1108 vm_page_unhold_pages(vm_page_t *ma, int count) 1109 { 1110 struct mtx *mtx; 1111 1112 mtx = NULL; 1113 for (; count != 0; count--) { 1114 vm_page_change_lock(*ma, &mtx); 1115 vm_page_unhold(*ma); 1116 ma++; 1117 } 1118 if (mtx != NULL) 1119 mtx_unlock(mtx); 1120 } 1121 1122 vm_page_t 1123 PHYS_TO_VM_PAGE(vm_paddr_t pa) 1124 { 1125 vm_page_t m; 1126 1127 #ifdef VM_PHYSSEG_SPARSE 1128 m = vm_phys_paddr_to_vm_page(pa); 1129 if (m == NULL) 1130 m = vm_phys_fictitious_to_vm_page(pa); 1131 return (m); 1132 #elif defined(VM_PHYSSEG_DENSE) 1133 long pi; 1134 1135 pi = atop(pa); 1136 if (pi >= first_page && (pi - first_page) < vm_page_array_size) { 1137 m = &vm_page_array[pi - first_page]; 1138 return (m); 1139 } 1140 return (vm_phys_fictitious_to_vm_page(pa)); 1141 #else 1142 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 1143 #endif 1144 } 1145 1146 /* 1147 * vm_page_getfake: 1148 * 1149 * Create a fictitious page with the specified physical address and 1150 * memory attribute. The memory attribute is the only the machine- 1151 * dependent aspect of a fictitious page that must be initialized. 1152 */ 1153 vm_page_t 1154 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr) 1155 { 1156 vm_page_t m; 1157 1158 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO); 1159 vm_page_initfake(m, paddr, memattr); 1160 return (m); 1161 } 1162 1163 void 1164 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 1165 { 1166 1167 if ((m->flags & PG_FICTITIOUS) != 0) { 1168 /* 1169 * The page's memattr might have changed since the 1170 * previous initialization. Update the pmap to the 1171 * new memattr. 1172 */ 1173 goto memattr; 1174 } 1175 m->phys_addr = paddr; 1176 m->queue = PQ_NONE; 1177 /* Fictitious pages don't use "segind". */ 1178 m->flags = PG_FICTITIOUS; 1179 /* Fictitious pages don't use "order" or "pool". */ 1180 m->oflags = VPO_UNMANAGED; 1181 m->busy_lock = VPB_SINGLE_EXCLUSIVER; 1182 m->wire_count = 1; 1183 pmap_page_init(m); 1184 memattr: 1185 pmap_page_set_memattr(m, memattr); 1186 } 1187 1188 /* 1189 * vm_page_putfake: 1190 * 1191 * Release a fictitious page. 1192 */ 1193 void 1194 vm_page_putfake(vm_page_t m) 1195 { 1196 1197 KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m)); 1198 KASSERT((m->flags & PG_FICTITIOUS) != 0, 1199 ("vm_page_putfake: bad page %p", m)); 1200 uma_zfree(fakepg_zone, m); 1201 } 1202 1203 /* 1204 * vm_page_updatefake: 1205 * 1206 * Update the given fictitious page to the specified physical address and 1207 * memory attribute. 1208 */ 1209 void 1210 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 1211 { 1212 1213 KASSERT((m->flags & PG_FICTITIOUS) != 0, 1214 ("vm_page_updatefake: bad page %p", m)); 1215 m->phys_addr = paddr; 1216 pmap_page_set_memattr(m, memattr); 1217 } 1218 1219 /* 1220 * vm_page_free: 1221 * 1222 * Free a page. 1223 */ 1224 void 1225 vm_page_free(vm_page_t m) 1226 { 1227 1228 m->flags &= ~PG_ZERO; 1229 vm_page_free_toq(m); 1230 } 1231 1232 /* 1233 * vm_page_free_zero: 1234 * 1235 * Free a page to the zerod-pages queue 1236 */ 1237 void 1238 vm_page_free_zero(vm_page_t m) 1239 { 1240 1241 m->flags |= PG_ZERO; 1242 vm_page_free_toq(m); 1243 } 1244 1245 /* 1246 * Unbusy and handle the page queueing for a page from a getpages request that 1247 * was optionally read ahead or behind. 1248 */ 1249 void 1250 vm_page_readahead_finish(vm_page_t m) 1251 { 1252 1253 /* We shouldn't put invalid pages on queues. */ 1254 KASSERT(m->valid != 0, ("%s: %p is invalid", __func__, m)); 1255 1256 /* 1257 * Since the page is not the actually needed one, whether it should 1258 * be activated or deactivated is not obvious. Empirical results 1259 * have shown that deactivating the page is usually the best choice, 1260 * unless the page is wanted by another thread. 1261 */ 1262 vm_page_lock(m); 1263 if ((m->busy_lock & VPB_BIT_WAITERS) != 0) 1264 vm_page_activate(m); 1265 else 1266 vm_page_deactivate(m); 1267 vm_page_unlock(m); 1268 vm_page_xunbusy(m); 1269 } 1270 1271 /* 1272 * vm_page_sleep_if_busy: 1273 * 1274 * Sleep and release the page queues lock if the page is busied. 1275 * Returns TRUE if the thread slept. 1276 * 1277 * The given page must be unlocked and object containing it must 1278 * be locked. 1279 */ 1280 int 1281 vm_page_sleep_if_busy(vm_page_t m, const char *msg) 1282 { 1283 vm_object_t obj; 1284 1285 vm_page_lock_assert(m, MA_NOTOWNED); 1286 VM_OBJECT_ASSERT_WLOCKED(m->object); 1287 1288 if (vm_page_busied(m)) { 1289 /* 1290 * The page-specific object must be cached because page 1291 * identity can change during the sleep, causing the 1292 * re-lock of a different object. 1293 * It is assumed that a reference to the object is already 1294 * held by the callers. 1295 */ 1296 obj = m->object; 1297 vm_page_lock(m); 1298 VM_OBJECT_WUNLOCK(obj); 1299 vm_page_busy_sleep(m, msg, false); 1300 VM_OBJECT_WLOCK(obj); 1301 return (TRUE); 1302 } 1303 return (FALSE); 1304 } 1305 1306 /* 1307 * vm_page_dirty_KBI: [ internal use only ] 1308 * 1309 * Set all bits in the page's dirty field. 1310 * 1311 * The object containing the specified page must be locked if the 1312 * call is made from the machine-independent layer. 1313 * 1314 * See vm_page_clear_dirty_mask(). 1315 * 1316 * This function should only be called by vm_page_dirty(). 1317 */ 1318 void 1319 vm_page_dirty_KBI(vm_page_t m) 1320 { 1321 1322 /* Refer to this operation by its public name. */ 1323 KASSERT(m->valid == VM_PAGE_BITS_ALL, 1324 ("vm_page_dirty: page is invalid!")); 1325 m->dirty = VM_PAGE_BITS_ALL; 1326 } 1327 1328 /* 1329 * vm_page_insert: [ internal use only ] 1330 * 1331 * Inserts the given mem entry into the object and object list. 1332 * 1333 * The object must be locked. 1334 */ 1335 int 1336 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 1337 { 1338 vm_page_t mpred; 1339 1340 VM_OBJECT_ASSERT_WLOCKED(object); 1341 mpred = vm_radix_lookup_le(&object->rtree, pindex); 1342 return (vm_page_insert_after(m, object, pindex, mpred)); 1343 } 1344 1345 /* 1346 * vm_page_insert_after: 1347 * 1348 * Inserts the page "m" into the specified object at offset "pindex". 1349 * 1350 * The page "mpred" must immediately precede the offset "pindex" within 1351 * the specified object. 1352 * 1353 * The object must be locked. 1354 */ 1355 static int 1356 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex, 1357 vm_page_t mpred) 1358 { 1359 vm_page_t msucc; 1360 1361 VM_OBJECT_ASSERT_WLOCKED(object); 1362 KASSERT(m->object == NULL, 1363 ("vm_page_insert_after: page already inserted")); 1364 if (mpred != NULL) { 1365 KASSERT(mpred->object == object, 1366 ("vm_page_insert_after: object doesn't contain mpred")); 1367 KASSERT(mpred->pindex < pindex, 1368 ("vm_page_insert_after: mpred doesn't precede pindex")); 1369 msucc = TAILQ_NEXT(mpred, listq); 1370 } else 1371 msucc = TAILQ_FIRST(&object->memq); 1372 if (msucc != NULL) 1373 KASSERT(msucc->pindex > pindex, 1374 ("vm_page_insert_after: msucc doesn't succeed pindex")); 1375 1376 /* 1377 * Record the object/offset pair in this page 1378 */ 1379 m->object = object; 1380 m->pindex = pindex; 1381 1382 /* 1383 * Now link into the object's ordered list of backed pages. 1384 */ 1385 if (vm_radix_insert(&object->rtree, m)) { 1386 m->object = NULL; 1387 m->pindex = 0; 1388 return (1); 1389 } 1390 vm_page_insert_radixdone(m, object, mpred); 1391 return (0); 1392 } 1393 1394 /* 1395 * vm_page_insert_radixdone: 1396 * 1397 * Complete page "m" insertion into the specified object after the 1398 * radix trie hooking. 1399 * 1400 * The page "mpred" must precede the offset "m->pindex" within the 1401 * specified object. 1402 * 1403 * The object must be locked. 1404 */ 1405 static void 1406 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred) 1407 { 1408 1409 VM_OBJECT_ASSERT_WLOCKED(object); 1410 KASSERT(object != NULL && m->object == object, 1411 ("vm_page_insert_radixdone: page %p has inconsistent object", m)); 1412 if (mpred != NULL) { 1413 KASSERT(mpred->object == object, 1414 ("vm_page_insert_after: object doesn't contain mpred")); 1415 KASSERT(mpred->pindex < m->pindex, 1416 ("vm_page_insert_after: mpred doesn't precede pindex")); 1417 } 1418 1419 if (mpred != NULL) 1420 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq); 1421 else 1422 TAILQ_INSERT_HEAD(&object->memq, m, listq); 1423 1424 /* 1425 * Show that the object has one more resident page. 1426 */ 1427 object->resident_page_count++; 1428 1429 /* 1430 * Hold the vnode until the last page is released. 1431 */ 1432 if (object->resident_page_count == 1 && object->type == OBJT_VNODE) 1433 vhold(object->handle); 1434 1435 /* 1436 * Since we are inserting a new and possibly dirty page, 1437 * update the object's OBJ_MIGHTBEDIRTY flag. 1438 */ 1439 if (pmap_page_is_write_mapped(m)) 1440 vm_object_set_writeable_dirty(object); 1441 } 1442 1443 /* 1444 * vm_page_remove: 1445 * 1446 * Removes the specified page from its containing object, but does not 1447 * invalidate any backing storage. 1448 * 1449 * The object must be locked. The page must be locked if it is managed. 1450 */ 1451 void 1452 vm_page_remove(vm_page_t m) 1453 { 1454 vm_object_t object; 1455 vm_page_t mrem; 1456 1457 if ((m->oflags & VPO_UNMANAGED) == 0) 1458 vm_page_assert_locked(m); 1459 if ((object = m->object) == NULL) 1460 return; 1461 VM_OBJECT_ASSERT_WLOCKED(object); 1462 if (vm_page_xbusied(m)) 1463 vm_page_xunbusy_maybelocked(m); 1464 mrem = vm_radix_remove(&object->rtree, m->pindex); 1465 KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m)); 1466 1467 /* 1468 * Now remove from the object's list of backed pages. 1469 */ 1470 TAILQ_REMOVE(&object->memq, m, listq); 1471 1472 /* 1473 * And show that the object has one fewer resident page. 1474 */ 1475 object->resident_page_count--; 1476 1477 /* 1478 * The vnode may now be recycled. 1479 */ 1480 if (object->resident_page_count == 0 && object->type == OBJT_VNODE) 1481 vdrop(object->handle); 1482 1483 m->object = NULL; 1484 } 1485 1486 /* 1487 * vm_page_lookup: 1488 * 1489 * Returns the page associated with the object/offset 1490 * pair specified; if none is found, NULL is returned. 1491 * 1492 * The object must be locked. 1493 */ 1494 vm_page_t 1495 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 1496 { 1497 1498 VM_OBJECT_ASSERT_LOCKED(object); 1499 return (vm_radix_lookup(&object->rtree, pindex)); 1500 } 1501 1502 /* 1503 * vm_page_find_least: 1504 * 1505 * Returns the page associated with the object with least pindex 1506 * greater than or equal to the parameter pindex, or NULL. 1507 * 1508 * The object must be locked. 1509 */ 1510 vm_page_t 1511 vm_page_find_least(vm_object_t object, vm_pindex_t pindex) 1512 { 1513 vm_page_t m; 1514 1515 VM_OBJECT_ASSERT_LOCKED(object); 1516 if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex) 1517 m = vm_radix_lookup_ge(&object->rtree, pindex); 1518 return (m); 1519 } 1520 1521 /* 1522 * Returns the given page's successor (by pindex) within the object if it is 1523 * resident; if none is found, NULL is returned. 1524 * 1525 * The object must be locked. 1526 */ 1527 vm_page_t 1528 vm_page_next(vm_page_t m) 1529 { 1530 vm_page_t next; 1531 1532 VM_OBJECT_ASSERT_LOCKED(m->object); 1533 if ((next = TAILQ_NEXT(m, listq)) != NULL) { 1534 MPASS(next->object == m->object); 1535 if (next->pindex != m->pindex + 1) 1536 next = NULL; 1537 } 1538 return (next); 1539 } 1540 1541 /* 1542 * Returns the given page's predecessor (by pindex) within the object if it is 1543 * resident; if none is found, NULL is returned. 1544 * 1545 * The object must be locked. 1546 */ 1547 vm_page_t 1548 vm_page_prev(vm_page_t m) 1549 { 1550 vm_page_t prev; 1551 1552 VM_OBJECT_ASSERT_LOCKED(m->object); 1553 if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) { 1554 MPASS(prev->object == m->object); 1555 if (prev->pindex != m->pindex - 1) 1556 prev = NULL; 1557 } 1558 return (prev); 1559 } 1560 1561 /* 1562 * Uses the page mnew as a replacement for an existing page at index 1563 * pindex which must be already present in the object. 1564 * 1565 * The existing page must not be on a paging queue. 1566 */ 1567 vm_page_t 1568 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex) 1569 { 1570 vm_page_t mold; 1571 1572 VM_OBJECT_ASSERT_WLOCKED(object); 1573 KASSERT(mnew->object == NULL, 1574 ("vm_page_replace: page %p already in object", mnew)); 1575 KASSERT(mnew->queue == PQ_NONE, 1576 ("vm_page_replace: new page %p is on a paging queue", mnew)); 1577 1578 /* 1579 * This function mostly follows vm_page_insert() and 1580 * vm_page_remove() without the radix, object count and vnode 1581 * dance. Double check such functions for more comments. 1582 */ 1583 1584 mnew->object = object; 1585 mnew->pindex = pindex; 1586 mold = vm_radix_replace(&object->rtree, mnew); 1587 KASSERT(mold->queue == PQ_NONE, 1588 ("vm_page_replace: old page %p is on a paging queue", mold)); 1589 1590 /* Keep the resident page list in sorted order. */ 1591 TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq); 1592 TAILQ_REMOVE(&object->memq, mold, listq); 1593 1594 mold->object = NULL; 1595 vm_page_xunbusy_maybelocked(mold); 1596 1597 /* 1598 * The object's resident_page_count does not change because we have 1599 * swapped one page for another, but OBJ_MIGHTBEDIRTY. 1600 */ 1601 if (pmap_page_is_write_mapped(mnew)) 1602 vm_object_set_writeable_dirty(object); 1603 return (mold); 1604 } 1605 1606 /* 1607 * vm_page_rename: 1608 * 1609 * Move the given memory entry from its 1610 * current object to the specified target object/offset. 1611 * 1612 * Note: swap associated with the page must be invalidated by the move. We 1613 * have to do this for several reasons: (1) we aren't freeing the 1614 * page, (2) we are dirtying the page, (3) the VM system is probably 1615 * moving the page from object A to B, and will then later move 1616 * the backing store from A to B and we can't have a conflict. 1617 * 1618 * Note: we *always* dirty the page. It is necessary both for the 1619 * fact that we moved it, and because we may be invalidating 1620 * swap. 1621 * 1622 * The objects must be locked. 1623 */ 1624 int 1625 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 1626 { 1627 vm_page_t mpred; 1628 vm_pindex_t opidx; 1629 1630 VM_OBJECT_ASSERT_WLOCKED(new_object); 1631 1632 mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex); 1633 KASSERT(mpred == NULL || mpred->pindex != new_pindex, 1634 ("vm_page_rename: pindex already renamed")); 1635 1636 /* 1637 * Create a custom version of vm_page_insert() which does not depend 1638 * by m_prev and can cheat on the implementation aspects of the 1639 * function. 1640 */ 1641 opidx = m->pindex; 1642 m->pindex = new_pindex; 1643 if (vm_radix_insert(&new_object->rtree, m)) { 1644 m->pindex = opidx; 1645 return (1); 1646 } 1647 1648 /* 1649 * The operation cannot fail anymore. The removal must happen before 1650 * the listq iterator is tainted. 1651 */ 1652 m->pindex = opidx; 1653 vm_page_lock(m); 1654 vm_page_remove(m); 1655 1656 /* Return back to the new pindex to complete vm_page_insert(). */ 1657 m->pindex = new_pindex; 1658 m->object = new_object; 1659 vm_page_unlock(m); 1660 vm_page_insert_radixdone(m, new_object, mpred); 1661 vm_page_dirty(m); 1662 return (0); 1663 } 1664 1665 /* 1666 * vm_page_alloc: 1667 * 1668 * Allocate and return a page that is associated with the specified 1669 * object and offset pair. By default, this page is exclusive busied. 1670 * 1671 * The caller must always specify an allocation class. 1672 * 1673 * allocation classes: 1674 * VM_ALLOC_NORMAL normal process request 1675 * VM_ALLOC_SYSTEM system *really* needs a page 1676 * VM_ALLOC_INTERRUPT interrupt time request 1677 * 1678 * optional allocation flags: 1679 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 1680 * intends to allocate 1681 * VM_ALLOC_NOBUSY do not exclusive busy the page 1682 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 1683 * VM_ALLOC_NOOBJ page is not associated with an object and 1684 * should not be exclusive busy 1685 * VM_ALLOC_SBUSY shared busy the allocated page 1686 * VM_ALLOC_WIRED wire the allocated page 1687 * VM_ALLOC_ZERO prefer a zeroed page 1688 */ 1689 vm_page_t 1690 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 1691 { 1692 1693 return (vm_page_alloc_after(object, pindex, req, object != NULL ? 1694 vm_radix_lookup_le(&object->rtree, pindex) : NULL)); 1695 } 1696 1697 vm_page_t 1698 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain, 1699 int req) 1700 { 1701 1702 return (vm_page_alloc_domain_after(object, pindex, domain, req, 1703 object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) : 1704 NULL)); 1705 } 1706 1707 /* 1708 * Allocate a page in the specified object with the given page index. To 1709 * optimize insertion of the page into the object, the caller must also specifiy 1710 * the resident page in the object with largest index smaller than the given 1711 * page index, or NULL if no such page exists. 1712 */ 1713 vm_page_t 1714 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex, 1715 int req, vm_page_t mpred) 1716 { 1717 struct vm_domainset_iter di; 1718 vm_page_t m; 1719 int domain; 1720 1721 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req); 1722 do { 1723 m = vm_page_alloc_domain_after(object, pindex, domain, req, 1724 mpred); 1725 if (m != NULL) 1726 break; 1727 } while (vm_domainset_iter_page(&di, &domain, &req) == 0); 1728 1729 return (m); 1730 } 1731 1732 /* 1733 * Returns true if the number of free pages exceeds the minimum 1734 * for the request class and false otherwise. 1735 */ 1736 int 1737 vm_domain_allocate(struct vm_domain *vmd, int req, int npages) 1738 { 1739 u_int limit, old, new; 1740 1741 req = req & VM_ALLOC_CLASS_MASK; 1742 1743 /* 1744 * The page daemon is allowed to dig deeper into the free page list. 1745 */ 1746 if (curproc == pageproc && req != VM_ALLOC_INTERRUPT) 1747 req = VM_ALLOC_SYSTEM; 1748 if (req == VM_ALLOC_INTERRUPT) 1749 limit = 0; 1750 else if (req == VM_ALLOC_SYSTEM) 1751 limit = vmd->vmd_interrupt_free_min; 1752 else 1753 limit = vmd->vmd_free_reserved; 1754 1755 /* 1756 * Attempt to reserve the pages. Fail if we're below the limit. 1757 */ 1758 limit += npages; 1759 old = vmd->vmd_free_count; 1760 do { 1761 if (old < limit) 1762 return (0); 1763 new = old - npages; 1764 } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0); 1765 1766 /* Wake the page daemon if we've crossed the threshold. */ 1767 if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old)) 1768 pagedaemon_wakeup(vmd->vmd_domain); 1769 1770 /* Only update bitsets on transitions. */ 1771 if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) || 1772 (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe)) 1773 vm_domain_set(vmd); 1774 1775 return (1); 1776 } 1777 1778 vm_page_t 1779 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain, 1780 int req, vm_page_t mpred) 1781 { 1782 struct vm_domain *vmd; 1783 vm_page_t m; 1784 int flags; 1785 1786 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) && 1787 (object != NULL || (req & VM_ALLOC_SBUSY) == 0) && 1788 ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 1789 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 1790 ("inconsistent object(%p)/req(%x)", object, req)); 1791 KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0, 1792 ("Can't sleep and retry object insertion.")); 1793 KASSERT(mpred == NULL || mpred->pindex < pindex, 1794 ("mpred %p doesn't precede pindex 0x%jx", mpred, 1795 (uintmax_t)pindex)); 1796 if (object != NULL) 1797 VM_OBJECT_ASSERT_WLOCKED(object); 1798 1799 again: 1800 m = NULL; 1801 #if VM_NRESERVLEVEL > 0 1802 /* 1803 * Can we allocate the page from a reservation? 1804 */ 1805 if (vm_object_reserv(object) && 1806 ((m = vm_reserv_extend(req, object, pindex, domain, mpred)) != NULL || 1807 (m = vm_reserv_alloc_page(req, object, pindex, domain, mpred)) != NULL)) { 1808 domain = vm_phys_domain(m); 1809 vmd = VM_DOMAIN(domain); 1810 goto found; 1811 } 1812 #endif 1813 vmd = VM_DOMAIN(domain); 1814 if (object != NULL && vmd->vmd_pgcache != NULL) { 1815 m = uma_zalloc(vmd->vmd_pgcache, M_NOWAIT); 1816 if (m != NULL) 1817 goto found; 1818 } 1819 if (vm_domain_allocate(vmd, req, 1)) { 1820 /* 1821 * If not, allocate it from the free page queues. 1822 */ 1823 vm_domain_free_lock(vmd); 1824 m = vm_phys_alloc_pages(domain, object != NULL ? 1825 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0); 1826 vm_domain_free_unlock(vmd); 1827 if (m == NULL) { 1828 vm_domain_freecnt_inc(vmd, 1); 1829 #if VM_NRESERVLEVEL > 0 1830 if (vm_reserv_reclaim_inactive(domain)) 1831 goto again; 1832 #endif 1833 } 1834 } 1835 if (m == NULL) { 1836 /* 1837 * Not allocatable, give up. 1838 */ 1839 if (vm_domain_alloc_fail(vmd, object, req)) 1840 goto again; 1841 return (NULL); 1842 } 1843 1844 /* 1845 * At this point we had better have found a good page. 1846 */ 1847 KASSERT(m != NULL, ("missing page")); 1848 1849 found: 1850 vm_page_alloc_check(m); 1851 1852 /* 1853 * Initialize the page. Only the PG_ZERO flag is inherited. 1854 */ 1855 flags = 0; 1856 if ((req & VM_ALLOC_ZERO) != 0) 1857 flags = PG_ZERO; 1858 flags &= m->flags; 1859 if ((req & VM_ALLOC_NODUMP) != 0) 1860 flags |= PG_NODUMP; 1861 m->flags = flags; 1862 m->aflags = 0; 1863 m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ? 1864 VPO_UNMANAGED : 0; 1865 m->busy_lock = VPB_UNBUSIED; 1866 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0) 1867 m->busy_lock = VPB_SINGLE_EXCLUSIVER; 1868 if ((req & VM_ALLOC_SBUSY) != 0) 1869 m->busy_lock = VPB_SHARERS_WORD(1); 1870 if (req & VM_ALLOC_WIRED) { 1871 /* 1872 * The page lock is not required for wiring a page until that 1873 * page is inserted into the object. 1874 */ 1875 vm_wire_add(1); 1876 m->wire_count = 1; 1877 } 1878 m->act_count = 0; 1879 1880 if (object != NULL) { 1881 if (vm_page_insert_after(m, object, pindex, mpred)) { 1882 if (req & VM_ALLOC_WIRED) { 1883 vm_wire_sub(1); 1884 m->wire_count = 0; 1885 } 1886 KASSERT(m->object == NULL, ("page %p has object", m)); 1887 m->oflags = VPO_UNMANAGED; 1888 m->busy_lock = VPB_UNBUSIED; 1889 /* Don't change PG_ZERO. */ 1890 vm_page_free_toq(m); 1891 if (req & VM_ALLOC_WAITFAIL) { 1892 VM_OBJECT_WUNLOCK(object); 1893 vm_radix_wait(); 1894 VM_OBJECT_WLOCK(object); 1895 } 1896 return (NULL); 1897 } 1898 1899 /* Ignore device objects; the pager sets "memattr" for them. */ 1900 if (object->memattr != VM_MEMATTR_DEFAULT && 1901 (object->flags & OBJ_FICTITIOUS) == 0) 1902 pmap_page_set_memattr(m, object->memattr); 1903 } else 1904 m->pindex = pindex; 1905 1906 return (m); 1907 } 1908 1909 /* 1910 * vm_page_alloc_contig: 1911 * 1912 * Allocate a contiguous set of physical pages of the given size "npages" 1913 * from the free lists. All of the physical pages must be at or above 1914 * the given physical address "low" and below the given physical address 1915 * "high". The given value "alignment" determines the alignment of the 1916 * first physical page in the set. If the given value "boundary" is 1917 * non-zero, then the set of physical pages cannot cross any physical 1918 * address boundary that is a multiple of that value. Both "alignment" 1919 * and "boundary" must be a power of two. 1920 * 1921 * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT, 1922 * then the memory attribute setting for the physical pages is configured 1923 * to the object's memory attribute setting. Otherwise, the memory 1924 * attribute setting for the physical pages is configured to "memattr", 1925 * overriding the object's memory attribute setting. However, if the 1926 * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the 1927 * memory attribute setting for the physical pages cannot be configured 1928 * to VM_MEMATTR_DEFAULT. 1929 * 1930 * The specified object may not contain fictitious pages. 1931 * 1932 * The caller must always specify an allocation class. 1933 * 1934 * allocation classes: 1935 * VM_ALLOC_NORMAL normal process request 1936 * VM_ALLOC_SYSTEM system *really* needs a page 1937 * VM_ALLOC_INTERRUPT interrupt time request 1938 * 1939 * optional allocation flags: 1940 * VM_ALLOC_NOBUSY do not exclusive busy the page 1941 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 1942 * VM_ALLOC_NOOBJ page is not associated with an object and 1943 * should not be exclusive busy 1944 * VM_ALLOC_SBUSY shared busy the allocated page 1945 * VM_ALLOC_WIRED wire the allocated page 1946 * VM_ALLOC_ZERO prefer a zeroed page 1947 */ 1948 vm_page_t 1949 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req, 1950 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 1951 vm_paddr_t boundary, vm_memattr_t memattr) 1952 { 1953 struct vm_domainset_iter di; 1954 vm_page_t m; 1955 int domain; 1956 1957 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req); 1958 do { 1959 m = vm_page_alloc_contig_domain(object, pindex, domain, req, 1960 npages, low, high, alignment, boundary, memattr); 1961 if (m != NULL) 1962 break; 1963 } while (vm_domainset_iter_page(&di, &domain, &req) == 0); 1964 1965 return (m); 1966 } 1967 1968 vm_page_t 1969 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain, 1970 int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 1971 vm_paddr_t boundary, vm_memattr_t memattr) 1972 { 1973 struct vm_domain *vmd; 1974 vm_page_t m, m_ret, mpred; 1975 u_int busy_lock, flags, oflags; 1976 1977 mpred = NULL; /* XXX: pacify gcc */ 1978 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) && 1979 (object != NULL || (req & VM_ALLOC_SBUSY) == 0) && 1980 ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 1981 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 1982 ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object, 1983 req)); 1984 KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0, 1985 ("Can't sleep and retry object insertion.")); 1986 if (object != NULL) { 1987 VM_OBJECT_ASSERT_WLOCKED(object); 1988 KASSERT((object->flags & OBJ_FICTITIOUS) == 0, 1989 ("vm_page_alloc_contig: object %p has fictitious pages", 1990 object)); 1991 } 1992 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero")); 1993 1994 if (object != NULL) { 1995 mpred = vm_radix_lookup_le(&object->rtree, pindex); 1996 KASSERT(mpred == NULL || mpred->pindex != pindex, 1997 ("vm_page_alloc_contig: pindex already allocated")); 1998 } 1999 2000 /* 2001 * Can we allocate the pages without the number of free pages falling 2002 * below the lower bound for the allocation class? 2003 */ 2004 again: 2005 #if VM_NRESERVLEVEL > 0 2006 /* 2007 * Can we allocate the pages from a reservation? 2008 */ 2009 if (vm_object_reserv(object) && 2010 ((m_ret = vm_reserv_extend_contig(req, object, pindex, domain, 2011 npages, low, high, alignment, boundary, mpred)) != NULL || 2012 (m_ret = vm_reserv_alloc_contig(req, object, pindex, domain, 2013 npages, low, high, alignment, boundary, mpred)) != NULL)) { 2014 domain = vm_phys_domain(m_ret); 2015 vmd = VM_DOMAIN(domain); 2016 goto found; 2017 } 2018 #endif 2019 m_ret = NULL; 2020 vmd = VM_DOMAIN(domain); 2021 if (vm_domain_allocate(vmd, req, npages)) { 2022 /* 2023 * allocate them from the free page queues. 2024 */ 2025 vm_domain_free_lock(vmd); 2026 m_ret = vm_phys_alloc_contig(domain, npages, low, high, 2027 alignment, boundary); 2028 vm_domain_free_unlock(vmd); 2029 if (m_ret == NULL) { 2030 vm_domain_freecnt_inc(vmd, npages); 2031 #if VM_NRESERVLEVEL > 0 2032 if (vm_reserv_reclaim_contig(domain, npages, low, 2033 high, alignment, boundary)) 2034 goto again; 2035 #endif 2036 } 2037 } 2038 if (m_ret == NULL) { 2039 if (vm_domain_alloc_fail(vmd, object, req)) 2040 goto again; 2041 return (NULL); 2042 } 2043 #if VM_NRESERVLEVEL > 0 2044 found: 2045 #endif 2046 for (m = m_ret; m < &m_ret[npages]; m++) 2047 vm_page_alloc_check(m); 2048 2049 /* 2050 * Initialize the pages. Only the PG_ZERO flag is inherited. 2051 */ 2052 flags = 0; 2053 if ((req & VM_ALLOC_ZERO) != 0) 2054 flags = PG_ZERO; 2055 if ((req & VM_ALLOC_NODUMP) != 0) 2056 flags |= PG_NODUMP; 2057 oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ? 2058 VPO_UNMANAGED : 0; 2059 busy_lock = VPB_UNBUSIED; 2060 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0) 2061 busy_lock = VPB_SINGLE_EXCLUSIVER; 2062 if ((req & VM_ALLOC_SBUSY) != 0) 2063 busy_lock = VPB_SHARERS_WORD(1); 2064 if ((req & VM_ALLOC_WIRED) != 0) 2065 vm_wire_add(npages); 2066 if (object != NULL) { 2067 if (object->memattr != VM_MEMATTR_DEFAULT && 2068 memattr == VM_MEMATTR_DEFAULT) 2069 memattr = object->memattr; 2070 } 2071 for (m = m_ret; m < &m_ret[npages]; m++) { 2072 m->aflags = 0; 2073 m->flags = (m->flags | PG_NODUMP) & flags; 2074 m->busy_lock = busy_lock; 2075 if ((req & VM_ALLOC_WIRED) != 0) 2076 m->wire_count = 1; 2077 m->act_count = 0; 2078 m->oflags = oflags; 2079 if (object != NULL) { 2080 if (vm_page_insert_after(m, object, pindex, mpred)) { 2081 if ((req & VM_ALLOC_WIRED) != 0) 2082 vm_wire_sub(npages); 2083 KASSERT(m->object == NULL, 2084 ("page %p has object", m)); 2085 mpred = m; 2086 for (m = m_ret; m < &m_ret[npages]; m++) { 2087 if (m <= mpred && 2088 (req & VM_ALLOC_WIRED) != 0) 2089 m->wire_count = 0; 2090 m->oflags = VPO_UNMANAGED; 2091 m->busy_lock = VPB_UNBUSIED; 2092 /* Don't change PG_ZERO. */ 2093 vm_page_free_toq(m); 2094 } 2095 if (req & VM_ALLOC_WAITFAIL) { 2096 VM_OBJECT_WUNLOCK(object); 2097 vm_radix_wait(); 2098 VM_OBJECT_WLOCK(object); 2099 } 2100 return (NULL); 2101 } 2102 mpred = m; 2103 } else 2104 m->pindex = pindex; 2105 if (memattr != VM_MEMATTR_DEFAULT) 2106 pmap_page_set_memattr(m, memattr); 2107 pindex++; 2108 } 2109 return (m_ret); 2110 } 2111 2112 /* 2113 * Check a page that has been freshly dequeued from a freelist. 2114 */ 2115 static void 2116 vm_page_alloc_check(vm_page_t m) 2117 { 2118 2119 KASSERT(m->object == NULL, ("page %p has object", m)); 2120 KASSERT(m->queue == PQ_NONE, 2121 ("page %p has unexpected queue %d", m, m->queue)); 2122 KASSERT(!vm_page_held(m), ("page %p is held", m)); 2123 KASSERT(!vm_page_busied(m), ("page %p is busy", m)); 2124 KASSERT(m->dirty == 0, ("page %p is dirty", m)); 2125 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, 2126 ("page %p has unexpected memattr %d", 2127 m, pmap_page_get_memattr(m))); 2128 KASSERT(m->valid == 0, ("free page %p is valid", m)); 2129 } 2130 2131 /* 2132 * vm_page_alloc_freelist: 2133 * 2134 * Allocate a physical page from the specified free page list. 2135 * 2136 * The caller must always specify an allocation class. 2137 * 2138 * allocation classes: 2139 * VM_ALLOC_NORMAL normal process request 2140 * VM_ALLOC_SYSTEM system *really* needs a page 2141 * VM_ALLOC_INTERRUPT interrupt time request 2142 * 2143 * optional allocation flags: 2144 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 2145 * intends to allocate 2146 * VM_ALLOC_WIRED wire the allocated page 2147 * VM_ALLOC_ZERO prefer a zeroed page 2148 */ 2149 vm_page_t 2150 vm_page_alloc_freelist(int freelist, int req) 2151 { 2152 struct vm_domainset_iter di; 2153 vm_page_t m; 2154 int domain; 2155 2156 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req); 2157 do { 2158 m = vm_page_alloc_freelist_domain(domain, freelist, req); 2159 if (m != NULL) 2160 break; 2161 } while (vm_domainset_iter_page(&di, &domain, &req) == 0); 2162 2163 return (m); 2164 } 2165 2166 vm_page_t 2167 vm_page_alloc_freelist_domain(int domain, int freelist, int req) 2168 { 2169 struct vm_domain *vmd; 2170 vm_page_t m; 2171 u_int flags; 2172 2173 /* 2174 * Do not allocate reserved pages unless the req has asked for it. 2175 */ 2176 vmd = VM_DOMAIN(domain); 2177 again: 2178 if (vm_domain_allocate(vmd, req, 1)) { 2179 vm_domain_free_lock(vmd); 2180 m = vm_phys_alloc_freelist_pages(domain, freelist, 2181 VM_FREEPOOL_DIRECT, 0); 2182 vm_domain_free_unlock(vmd); 2183 if (m == NULL) 2184 vm_domain_freecnt_inc(vmd, 1); 2185 } 2186 if (m == NULL) { 2187 if (vm_domain_alloc_fail(vmd, NULL, req)) 2188 goto again; 2189 return (NULL); 2190 } 2191 vm_page_alloc_check(m); 2192 2193 /* 2194 * Initialize the page. Only the PG_ZERO flag is inherited. 2195 */ 2196 m->aflags = 0; 2197 flags = 0; 2198 if ((req & VM_ALLOC_ZERO) != 0) 2199 flags = PG_ZERO; 2200 m->flags &= flags; 2201 if ((req & VM_ALLOC_WIRED) != 0) { 2202 /* 2203 * The page lock is not required for wiring a page that does 2204 * not belong to an object. 2205 */ 2206 vm_wire_add(1); 2207 m->wire_count = 1; 2208 } 2209 /* Unmanaged pages don't use "act_count". */ 2210 m->oflags = VPO_UNMANAGED; 2211 return (m); 2212 } 2213 2214 static int 2215 vm_page_import(void *arg, void **store, int cnt, int domain, int flags) 2216 { 2217 struct vm_domain *vmd; 2218 vm_page_t m; 2219 int i, j, n; 2220 2221 vmd = arg; 2222 /* Only import if we can bring in a full bucket. */ 2223 if (cnt == 1 || !vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt)) 2224 return (0); 2225 domain = vmd->vmd_domain; 2226 n = 64; /* Starting stride, arbitrary. */ 2227 vm_domain_free_lock(vmd); 2228 for (i = 0; i < cnt; i+=n) { 2229 n = vm_phys_alloc_npages(domain, VM_FREELIST_DEFAULT, &m, 2230 MIN(n, cnt-i)); 2231 if (n == 0) 2232 break; 2233 for (j = 0; j < n; j++) 2234 store[i+j] = m++; 2235 } 2236 vm_domain_free_unlock(vmd); 2237 if (cnt != i) 2238 vm_domain_freecnt_inc(vmd, cnt - i); 2239 2240 return (i); 2241 } 2242 2243 static void 2244 vm_page_release(void *arg, void **store, int cnt) 2245 { 2246 struct vm_domain *vmd; 2247 vm_page_t m; 2248 int i; 2249 2250 vmd = arg; 2251 vm_domain_free_lock(vmd); 2252 for (i = 0; i < cnt; i++) { 2253 m = (vm_page_t)store[i]; 2254 vm_phys_free_pages(m, 0); 2255 } 2256 vm_domain_free_unlock(vmd); 2257 vm_domain_freecnt_inc(vmd, cnt); 2258 } 2259 2260 #define VPSC_ANY 0 /* No restrictions. */ 2261 #define VPSC_NORESERV 1 /* Skip reservations; implies VPSC_NOSUPER. */ 2262 #define VPSC_NOSUPER 2 /* Skip superpages. */ 2263 2264 /* 2265 * vm_page_scan_contig: 2266 * 2267 * Scan vm_page_array[] between the specified entries "m_start" and 2268 * "m_end" for a run of contiguous physical pages that satisfy the 2269 * specified conditions, and return the lowest page in the run. The 2270 * specified "alignment" determines the alignment of the lowest physical 2271 * page in the run. If the specified "boundary" is non-zero, then the 2272 * run of physical pages cannot span a physical address that is a 2273 * multiple of "boundary". 2274 * 2275 * "m_end" is never dereferenced, so it need not point to a vm_page 2276 * structure within vm_page_array[]. 2277 * 2278 * "npages" must be greater than zero. "m_start" and "m_end" must not 2279 * span a hole (or discontiguity) in the physical address space. Both 2280 * "alignment" and "boundary" must be a power of two. 2281 */ 2282 vm_page_t 2283 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end, 2284 u_long alignment, vm_paddr_t boundary, int options) 2285 { 2286 struct mtx *m_mtx; 2287 vm_object_t object; 2288 vm_paddr_t pa; 2289 vm_page_t m, m_run; 2290 #if VM_NRESERVLEVEL > 0 2291 int level; 2292 #endif 2293 int m_inc, order, run_ext, run_len; 2294 2295 KASSERT(npages > 0, ("npages is 0")); 2296 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 2297 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 2298 m_run = NULL; 2299 run_len = 0; 2300 m_mtx = NULL; 2301 for (m = m_start; m < m_end && run_len < npages; m += m_inc) { 2302 KASSERT((m->flags & PG_MARKER) == 0, 2303 ("page %p is PG_MARKER", m)); 2304 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->wire_count == 1, 2305 ("fictitious page %p has invalid wire count", m)); 2306 2307 /* 2308 * If the current page would be the start of a run, check its 2309 * physical address against the end, alignment, and boundary 2310 * conditions. If it doesn't satisfy these conditions, either 2311 * terminate the scan or advance to the next page that 2312 * satisfies the failed condition. 2313 */ 2314 if (run_len == 0) { 2315 KASSERT(m_run == NULL, ("m_run != NULL")); 2316 if (m + npages > m_end) 2317 break; 2318 pa = VM_PAGE_TO_PHYS(m); 2319 if ((pa & (alignment - 1)) != 0) { 2320 m_inc = atop(roundup2(pa, alignment) - pa); 2321 continue; 2322 } 2323 if (rounddown2(pa ^ (pa + ptoa(npages) - 1), 2324 boundary) != 0) { 2325 m_inc = atop(roundup2(pa, boundary) - pa); 2326 continue; 2327 } 2328 } else 2329 KASSERT(m_run != NULL, ("m_run == NULL")); 2330 2331 vm_page_change_lock(m, &m_mtx); 2332 m_inc = 1; 2333 retry: 2334 if (vm_page_held(m)) 2335 run_ext = 0; 2336 #if VM_NRESERVLEVEL > 0 2337 else if ((level = vm_reserv_level(m)) >= 0 && 2338 (options & VPSC_NORESERV) != 0) { 2339 run_ext = 0; 2340 /* Advance to the end of the reservation. */ 2341 pa = VM_PAGE_TO_PHYS(m); 2342 m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) - 2343 pa); 2344 } 2345 #endif 2346 else if ((object = m->object) != NULL) { 2347 /* 2348 * The page is considered eligible for relocation if 2349 * and only if it could be laundered or reclaimed by 2350 * the page daemon. 2351 */ 2352 if (!VM_OBJECT_TRYRLOCK(object)) { 2353 mtx_unlock(m_mtx); 2354 VM_OBJECT_RLOCK(object); 2355 mtx_lock(m_mtx); 2356 if (m->object != object) { 2357 /* 2358 * The page may have been freed. 2359 */ 2360 VM_OBJECT_RUNLOCK(object); 2361 goto retry; 2362 } else if (vm_page_held(m)) { 2363 run_ext = 0; 2364 goto unlock; 2365 } 2366 } 2367 KASSERT((m->flags & PG_UNHOLDFREE) == 0, 2368 ("page %p is PG_UNHOLDFREE", m)); 2369 /* Don't care: PG_NODUMP, PG_ZERO. */ 2370 if (object->type != OBJT_DEFAULT && 2371 object->type != OBJT_SWAP && 2372 object->type != OBJT_VNODE) { 2373 run_ext = 0; 2374 #if VM_NRESERVLEVEL > 0 2375 } else if ((options & VPSC_NOSUPER) != 0 && 2376 (level = vm_reserv_level_iffullpop(m)) >= 0) { 2377 run_ext = 0; 2378 /* Advance to the end of the superpage. */ 2379 pa = VM_PAGE_TO_PHYS(m); 2380 m_inc = atop(roundup2(pa + 1, 2381 vm_reserv_size(level)) - pa); 2382 #endif 2383 } else if (object->memattr == VM_MEMATTR_DEFAULT && 2384 m->queue != PQ_NONE && !vm_page_busied(m)) { 2385 /* 2386 * The page is allocated but eligible for 2387 * relocation. Extend the current run by one 2388 * page. 2389 */ 2390 KASSERT(pmap_page_get_memattr(m) == 2391 VM_MEMATTR_DEFAULT, 2392 ("page %p has an unexpected memattr", m)); 2393 KASSERT((m->oflags & (VPO_SWAPINPROG | 2394 VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0, 2395 ("page %p has unexpected oflags", m)); 2396 /* Don't care: VPO_NOSYNC. */ 2397 run_ext = 1; 2398 } else 2399 run_ext = 0; 2400 unlock: 2401 VM_OBJECT_RUNLOCK(object); 2402 #if VM_NRESERVLEVEL > 0 2403 } else if (level >= 0) { 2404 /* 2405 * The page is reserved but not yet allocated. In 2406 * other words, it is still free. Extend the current 2407 * run by one page. 2408 */ 2409 run_ext = 1; 2410 #endif 2411 } else if ((order = m->order) < VM_NFREEORDER) { 2412 /* 2413 * The page is enqueued in the physical memory 2414 * allocator's free page queues. Moreover, it is the 2415 * first page in a power-of-two-sized run of 2416 * contiguous free pages. Add these pages to the end 2417 * of the current run, and jump ahead. 2418 */ 2419 run_ext = 1 << order; 2420 m_inc = 1 << order; 2421 } else { 2422 /* 2423 * Skip the page for one of the following reasons: (1) 2424 * It is enqueued in the physical memory allocator's 2425 * free page queues. However, it is not the first 2426 * page in a run of contiguous free pages. (This case 2427 * rarely occurs because the scan is performed in 2428 * ascending order.) (2) It is not reserved, and it is 2429 * transitioning from free to allocated. (Conversely, 2430 * the transition from allocated to free for managed 2431 * pages is blocked by the page lock.) (3) It is 2432 * allocated but not contained by an object and not 2433 * wired, e.g., allocated by Xen's balloon driver. 2434 */ 2435 run_ext = 0; 2436 } 2437 2438 /* 2439 * Extend or reset the current run of pages. 2440 */ 2441 if (run_ext > 0) { 2442 if (run_len == 0) 2443 m_run = m; 2444 run_len += run_ext; 2445 } else { 2446 if (run_len > 0) { 2447 m_run = NULL; 2448 run_len = 0; 2449 } 2450 } 2451 } 2452 if (m_mtx != NULL) 2453 mtx_unlock(m_mtx); 2454 if (run_len >= npages) 2455 return (m_run); 2456 return (NULL); 2457 } 2458 2459 /* 2460 * vm_page_reclaim_run: 2461 * 2462 * Try to relocate each of the allocated virtual pages within the 2463 * specified run of physical pages to a new physical address. Free the 2464 * physical pages underlying the relocated virtual pages. A virtual page 2465 * is relocatable if and only if it could be laundered or reclaimed by 2466 * the page daemon. Whenever possible, a virtual page is relocated to a 2467 * physical address above "high". 2468 * 2469 * Returns 0 if every physical page within the run was already free or 2470 * just freed by a successful relocation. Otherwise, returns a non-zero 2471 * value indicating why the last attempt to relocate a virtual page was 2472 * unsuccessful. 2473 * 2474 * "req_class" must be an allocation class. 2475 */ 2476 static int 2477 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run, 2478 vm_paddr_t high) 2479 { 2480 struct vm_domain *vmd; 2481 struct mtx *m_mtx; 2482 struct spglist free; 2483 vm_object_t object; 2484 vm_paddr_t pa; 2485 vm_page_t m, m_end, m_new; 2486 int error, order, req; 2487 2488 KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class, 2489 ("req_class is not an allocation class")); 2490 SLIST_INIT(&free); 2491 error = 0; 2492 m = m_run; 2493 m_end = m_run + npages; 2494 m_mtx = NULL; 2495 for (; error == 0 && m < m_end; m++) { 2496 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0, 2497 ("page %p is PG_FICTITIOUS or PG_MARKER", m)); 2498 2499 /* 2500 * Avoid releasing and reacquiring the same page lock. 2501 */ 2502 vm_page_change_lock(m, &m_mtx); 2503 retry: 2504 if (vm_page_held(m)) 2505 error = EBUSY; 2506 else if ((object = m->object) != NULL) { 2507 /* 2508 * The page is relocated if and only if it could be 2509 * laundered or reclaimed by the page daemon. 2510 */ 2511 if (!VM_OBJECT_TRYWLOCK(object)) { 2512 mtx_unlock(m_mtx); 2513 VM_OBJECT_WLOCK(object); 2514 mtx_lock(m_mtx); 2515 if (m->object != object) { 2516 /* 2517 * The page may have been freed. 2518 */ 2519 VM_OBJECT_WUNLOCK(object); 2520 goto retry; 2521 } else if (vm_page_held(m)) { 2522 error = EBUSY; 2523 goto unlock; 2524 } 2525 } 2526 KASSERT((m->flags & PG_UNHOLDFREE) == 0, 2527 ("page %p is PG_UNHOLDFREE", m)); 2528 /* Don't care: PG_NODUMP, PG_ZERO. */ 2529 if (object->type != OBJT_DEFAULT && 2530 object->type != OBJT_SWAP && 2531 object->type != OBJT_VNODE) 2532 error = EINVAL; 2533 else if (object->memattr != VM_MEMATTR_DEFAULT) 2534 error = EINVAL; 2535 else if (m->queue != PQ_NONE && !vm_page_busied(m)) { 2536 KASSERT(pmap_page_get_memattr(m) == 2537 VM_MEMATTR_DEFAULT, 2538 ("page %p has an unexpected memattr", m)); 2539 KASSERT((m->oflags & (VPO_SWAPINPROG | 2540 VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0, 2541 ("page %p has unexpected oflags", m)); 2542 /* Don't care: VPO_NOSYNC. */ 2543 if (m->valid != 0) { 2544 /* 2545 * First, try to allocate a new page 2546 * that is above "high". Failing 2547 * that, try to allocate a new page 2548 * that is below "m_run". Allocate 2549 * the new page between the end of 2550 * "m_run" and "high" only as a last 2551 * resort. 2552 */ 2553 req = req_class | VM_ALLOC_NOOBJ; 2554 if ((m->flags & PG_NODUMP) != 0) 2555 req |= VM_ALLOC_NODUMP; 2556 if (trunc_page(high) != 2557 ~(vm_paddr_t)PAGE_MASK) { 2558 m_new = vm_page_alloc_contig( 2559 NULL, 0, req, 1, 2560 round_page(high), 2561 ~(vm_paddr_t)0, 2562 PAGE_SIZE, 0, 2563 VM_MEMATTR_DEFAULT); 2564 } else 2565 m_new = NULL; 2566 if (m_new == NULL) { 2567 pa = VM_PAGE_TO_PHYS(m_run); 2568 m_new = vm_page_alloc_contig( 2569 NULL, 0, req, 1, 2570 0, pa - 1, PAGE_SIZE, 0, 2571 VM_MEMATTR_DEFAULT); 2572 } 2573 if (m_new == NULL) { 2574 pa += ptoa(npages); 2575 m_new = vm_page_alloc_contig( 2576 NULL, 0, req, 1, 2577 pa, high, PAGE_SIZE, 0, 2578 VM_MEMATTR_DEFAULT); 2579 } 2580 if (m_new == NULL) { 2581 error = ENOMEM; 2582 goto unlock; 2583 } 2584 KASSERT(m_new->wire_count == 0, 2585 ("page %p is wired", m_new)); 2586 2587 /* 2588 * Replace "m" with the new page. For 2589 * vm_page_replace(), "m" must be busy 2590 * and dequeued. Finally, change "m" 2591 * as if vm_page_free() was called. 2592 */ 2593 if (object->ref_count != 0) 2594 pmap_remove_all(m); 2595 m_new->aflags = m->aflags; 2596 KASSERT(m_new->oflags == VPO_UNMANAGED, 2597 ("page %p is managed", m_new)); 2598 m_new->oflags = m->oflags & VPO_NOSYNC; 2599 pmap_copy_page(m, m_new); 2600 m_new->valid = m->valid; 2601 m_new->dirty = m->dirty; 2602 m->flags &= ~PG_ZERO; 2603 vm_page_xbusy(m); 2604 vm_page_remque(m); 2605 vm_page_replace_checked(m_new, object, 2606 m->pindex, m); 2607 if (vm_page_free_prep(m, false)) 2608 SLIST_INSERT_HEAD(&free, m, 2609 plinks.s.ss); 2610 2611 /* 2612 * The new page must be deactivated 2613 * before the object is unlocked. 2614 */ 2615 vm_page_change_lock(m_new, &m_mtx); 2616 vm_page_deactivate(m_new); 2617 } else { 2618 m->flags &= ~PG_ZERO; 2619 vm_page_remque(m); 2620 vm_page_remove(m); 2621 if (vm_page_free_prep(m, false)) 2622 SLIST_INSERT_HEAD(&free, m, 2623 plinks.s.ss); 2624 KASSERT(m->dirty == 0, 2625 ("page %p is dirty", m)); 2626 } 2627 } else 2628 error = EBUSY; 2629 unlock: 2630 VM_OBJECT_WUNLOCK(object); 2631 } else { 2632 MPASS(vm_phys_domain(m) == domain); 2633 vmd = VM_DOMAIN(domain); 2634 vm_domain_free_lock(vmd); 2635 order = m->order; 2636 if (order < VM_NFREEORDER) { 2637 /* 2638 * The page is enqueued in the physical memory 2639 * allocator's free page queues. Moreover, it 2640 * is the first page in a power-of-two-sized 2641 * run of contiguous free pages. Jump ahead 2642 * to the last page within that run, and 2643 * continue from there. 2644 */ 2645 m += (1 << order) - 1; 2646 } 2647 #if VM_NRESERVLEVEL > 0 2648 else if (vm_reserv_is_page_free(m)) 2649 order = 0; 2650 #endif 2651 vm_domain_free_unlock(vmd); 2652 if (order == VM_NFREEORDER) 2653 error = EINVAL; 2654 } 2655 } 2656 if (m_mtx != NULL) 2657 mtx_unlock(m_mtx); 2658 if ((m = SLIST_FIRST(&free)) != NULL) { 2659 int cnt; 2660 2661 vmd = VM_DOMAIN(domain); 2662 cnt = 0; 2663 vm_domain_free_lock(vmd); 2664 do { 2665 MPASS(vm_phys_domain(m) == domain); 2666 SLIST_REMOVE_HEAD(&free, plinks.s.ss); 2667 vm_phys_free_pages(m, 0); 2668 cnt++; 2669 } while ((m = SLIST_FIRST(&free)) != NULL); 2670 vm_domain_free_unlock(vmd); 2671 vm_domain_freecnt_inc(vmd, cnt); 2672 } 2673 return (error); 2674 } 2675 2676 #define NRUNS 16 2677 2678 CTASSERT(powerof2(NRUNS)); 2679 2680 #define RUN_INDEX(count) ((count) & (NRUNS - 1)) 2681 2682 #define MIN_RECLAIM 8 2683 2684 /* 2685 * vm_page_reclaim_contig: 2686 * 2687 * Reclaim allocated, contiguous physical memory satisfying the specified 2688 * conditions by relocating the virtual pages using that physical memory. 2689 * Returns true if reclamation is successful and false otherwise. Since 2690 * relocation requires the allocation of physical pages, reclamation may 2691 * fail due to a shortage of free pages. When reclamation fails, callers 2692 * are expected to perform vm_wait() before retrying a failed allocation 2693 * operation, e.g., vm_page_alloc_contig(). 2694 * 2695 * The caller must always specify an allocation class through "req". 2696 * 2697 * allocation classes: 2698 * VM_ALLOC_NORMAL normal process request 2699 * VM_ALLOC_SYSTEM system *really* needs a page 2700 * VM_ALLOC_INTERRUPT interrupt time request 2701 * 2702 * The optional allocation flags are ignored. 2703 * 2704 * "npages" must be greater than zero. Both "alignment" and "boundary" 2705 * must be a power of two. 2706 */ 2707 bool 2708 vm_page_reclaim_contig_domain(int domain, int req, u_long npages, 2709 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary) 2710 { 2711 struct vm_domain *vmd; 2712 vm_paddr_t curr_low; 2713 vm_page_t m_run, m_runs[NRUNS]; 2714 u_long count, reclaimed; 2715 int error, i, options, req_class; 2716 2717 KASSERT(npages > 0, ("npages is 0")); 2718 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 2719 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 2720 req_class = req & VM_ALLOC_CLASS_MASK; 2721 2722 /* 2723 * The page daemon is allowed to dig deeper into the free page list. 2724 */ 2725 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 2726 req_class = VM_ALLOC_SYSTEM; 2727 2728 /* 2729 * Return if the number of free pages cannot satisfy the requested 2730 * allocation. 2731 */ 2732 vmd = VM_DOMAIN(domain); 2733 count = vmd->vmd_free_count; 2734 if (count < npages + vmd->vmd_free_reserved || (count < npages + 2735 vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) || 2736 (count < npages && req_class == VM_ALLOC_INTERRUPT)) 2737 return (false); 2738 2739 /* 2740 * Scan up to three times, relaxing the restrictions ("options") on 2741 * the reclamation of reservations and superpages each time. 2742 */ 2743 for (options = VPSC_NORESERV;;) { 2744 /* 2745 * Find the highest runs that satisfy the given constraints 2746 * and restrictions, and record them in "m_runs". 2747 */ 2748 curr_low = low; 2749 count = 0; 2750 for (;;) { 2751 m_run = vm_phys_scan_contig(domain, npages, curr_low, 2752 high, alignment, boundary, options); 2753 if (m_run == NULL) 2754 break; 2755 curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages); 2756 m_runs[RUN_INDEX(count)] = m_run; 2757 count++; 2758 } 2759 2760 /* 2761 * Reclaim the highest runs in LIFO (descending) order until 2762 * the number of reclaimed pages, "reclaimed", is at least 2763 * MIN_RECLAIM. Reset "reclaimed" each time because each 2764 * reclamation is idempotent, and runs will (likely) recur 2765 * from one scan to the next as restrictions are relaxed. 2766 */ 2767 reclaimed = 0; 2768 for (i = 0; count > 0 && i < NRUNS; i++) { 2769 count--; 2770 m_run = m_runs[RUN_INDEX(count)]; 2771 error = vm_page_reclaim_run(req_class, domain, npages, 2772 m_run, high); 2773 if (error == 0) { 2774 reclaimed += npages; 2775 if (reclaimed >= MIN_RECLAIM) 2776 return (true); 2777 } 2778 } 2779 2780 /* 2781 * Either relax the restrictions on the next scan or return if 2782 * the last scan had no restrictions. 2783 */ 2784 if (options == VPSC_NORESERV) 2785 options = VPSC_NOSUPER; 2786 else if (options == VPSC_NOSUPER) 2787 options = VPSC_ANY; 2788 else if (options == VPSC_ANY) 2789 return (reclaimed != 0); 2790 } 2791 } 2792 2793 bool 2794 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high, 2795 u_long alignment, vm_paddr_t boundary) 2796 { 2797 struct vm_domainset_iter di; 2798 int domain; 2799 bool ret; 2800 2801 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req); 2802 do { 2803 ret = vm_page_reclaim_contig_domain(domain, req, npages, low, 2804 high, alignment, boundary); 2805 if (ret) 2806 break; 2807 } while (vm_domainset_iter_page(&di, &domain, &req) == 0); 2808 2809 return (ret); 2810 } 2811 2812 /* 2813 * Set the domain in the appropriate page level domainset. 2814 */ 2815 void 2816 vm_domain_set(struct vm_domain *vmd) 2817 { 2818 2819 mtx_lock(&vm_domainset_lock); 2820 if (!vmd->vmd_minset && vm_paging_min(vmd)) { 2821 vmd->vmd_minset = 1; 2822 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains); 2823 } 2824 if (!vmd->vmd_severeset && vm_paging_severe(vmd)) { 2825 vmd->vmd_severeset = 1; 2826 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains); 2827 } 2828 mtx_unlock(&vm_domainset_lock); 2829 } 2830 2831 /* 2832 * Clear the domain from the appropriate page level domainset. 2833 */ 2834 void 2835 vm_domain_clear(struct vm_domain *vmd) 2836 { 2837 2838 mtx_lock(&vm_domainset_lock); 2839 if (vmd->vmd_minset && !vm_paging_min(vmd)) { 2840 vmd->vmd_minset = 0; 2841 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains); 2842 if (vm_min_waiters != 0) { 2843 vm_min_waiters = 0; 2844 wakeup(&vm_min_domains); 2845 } 2846 } 2847 if (vmd->vmd_severeset && !vm_paging_severe(vmd)) { 2848 vmd->vmd_severeset = 0; 2849 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains); 2850 if (vm_severe_waiters != 0) { 2851 vm_severe_waiters = 0; 2852 wakeup(&vm_severe_domains); 2853 } 2854 } 2855 2856 /* 2857 * If pageout daemon needs pages, then tell it that there are 2858 * some free. 2859 */ 2860 if (vmd->vmd_pageout_pages_needed && 2861 vmd->vmd_free_count >= vmd->vmd_pageout_free_min) { 2862 wakeup(&vmd->vmd_pageout_pages_needed); 2863 vmd->vmd_pageout_pages_needed = 0; 2864 } 2865 2866 /* See comments in vm_wait_doms(). */ 2867 if (vm_pageproc_waiters) { 2868 vm_pageproc_waiters = 0; 2869 wakeup(&vm_pageproc_waiters); 2870 } 2871 mtx_unlock(&vm_domainset_lock); 2872 } 2873 2874 /* 2875 * Wait for free pages to exceed the min threshold globally. 2876 */ 2877 void 2878 vm_wait_min(void) 2879 { 2880 2881 mtx_lock(&vm_domainset_lock); 2882 while (vm_page_count_min()) { 2883 vm_min_waiters++; 2884 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0); 2885 } 2886 mtx_unlock(&vm_domainset_lock); 2887 } 2888 2889 /* 2890 * Wait for free pages to exceed the severe threshold globally. 2891 */ 2892 void 2893 vm_wait_severe(void) 2894 { 2895 2896 mtx_lock(&vm_domainset_lock); 2897 while (vm_page_count_severe()) { 2898 vm_severe_waiters++; 2899 msleep(&vm_severe_domains, &vm_domainset_lock, PVM, 2900 "vmwait", 0); 2901 } 2902 mtx_unlock(&vm_domainset_lock); 2903 } 2904 2905 u_int 2906 vm_wait_count(void) 2907 { 2908 2909 return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters); 2910 } 2911 2912 static void 2913 vm_wait_doms(const domainset_t *wdoms) 2914 { 2915 2916 /* 2917 * We use racey wakeup synchronization to avoid expensive global 2918 * locking for the pageproc when sleeping with a non-specific vm_wait. 2919 * To handle this, we only sleep for one tick in this instance. It 2920 * is expected that most allocations for the pageproc will come from 2921 * kmem or vm_page_grab* which will use the more specific and 2922 * race-free vm_wait_domain(). 2923 */ 2924 if (curproc == pageproc) { 2925 mtx_lock(&vm_domainset_lock); 2926 vm_pageproc_waiters++; 2927 msleep(&vm_pageproc_waiters, &vm_domainset_lock, PVM | PDROP, 2928 "pageprocwait", 1); 2929 } else { 2930 /* 2931 * XXX Ideally we would wait only until the allocation could 2932 * be satisfied. This condition can cause new allocators to 2933 * consume all freed pages while old allocators wait. 2934 */ 2935 mtx_lock(&vm_domainset_lock); 2936 if (DOMAINSET_SUBSET(&vm_min_domains, wdoms)) { 2937 vm_min_waiters++; 2938 msleep(&vm_min_domains, &vm_domainset_lock, PVM, 2939 "vmwait", 0); 2940 } 2941 mtx_unlock(&vm_domainset_lock); 2942 } 2943 } 2944 2945 /* 2946 * vm_wait_domain: 2947 * 2948 * Sleep until free pages are available for allocation. 2949 * - Called in various places after failed memory allocations. 2950 */ 2951 void 2952 vm_wait_domain(int domain) 2953 { 2954 struct vm_domain *vmd; 2955 domainset_t wdom; 2956 2957 vmd = VM_DOMAIN(domain); 2958 vm_domain_free_assert_unlocked(vmd); 2959 2960 if (curproc == pageproc) { 2961 mtx_lock(&vm_domainset_lock); 2962 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) { 2963 vmd->vmd_pageout_pages_needed = 1; 2964 msleep(&vmd->vmd_pageout_pages_needed, 2965 &vm_domainset_lock, PDROP | PSWP, "VMWait", 0); 2966 } else 2967 mtx_unlock(&vm_domainset_lock); 2968 } else { 2969 if (pageproc == NULL) 2970 panic("vm_wait in early boot"); 2971 DOMAINSET_ZERO(&wdom); 2972 DOMAINSET_SET(vmd->vmd_domain, &wdom); 2973 vm_wait_doms(&wdom); 2974 } 2975 } 2976 2977 /* 2978 * vm_wait: 2979 * 2980 * Sleep until free pages are available for allocation in the 2981 * affinity domains of the obj. If obj is NULL, the domain set 2982 * for the calling thread is used. 2983 * Called in various places after failed memory allocations. 2984 */ 2985 void 2986 vm_wait(vm_object_t obj) 2987 { 2988 struct domainset *d; 2989 2990 d = NULL; 2991 2992 /* 2993 * Carefully fetch pointers only once: the struct domainset 2994 * itself is ummutable but the pointer might change. 2995 */ 2996 if (obj != NULL) 2997 d = obj->domain.dr_policy; 2998 if (d == NULL) 2999 d = curthread->td_domain.dr_policy; 3000 3001 vm_wait_doms(&d->ds_mask); 3002 } 3003 3004 /* 3005 * vm_domain_alloc_fail: 3006 * 3007 * Called when a page allocation function fails. Informs the 3008 * pagedaemon and performs the requested wait. Requires the 3009 * domain_free and object lock on entry. Returns with the 3010 * object lock held and free lock released. Returns an error when 3011 * retry is necessary. 3012 * 3013 */ 3014 static int 3015 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req) 3016 { 3017 3018 vm_domain_free_assert_unlocked(vmd); 3019 3020 atomic_add_int(&vmd->vmd_pageout_deficit, 3021 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); 3022 if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) { 3023 if (object != NULL) 3024 VM_OBJECT_WUNLOCK(object); 3025 vm_wait_domain(vmd->vmd_domain); 3026 if (object != NULL) 3027 VM_OBJECT_WLOCK(object); 3028 if (req & VM_ALLOC_WAITOK) 3029 return (EAGAIN); 3030 } 3031 3032 return (0); 3033 } 3034 3035 /* 3036 * vm_waitpfault: 3037 * 3038 * Sleep until free pages are available for allocation. 3039 * - Called only in vm_fault so that processes page faulting 3040 * can be easily tracked. 3041 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 3042 * processes will be able to grab memory first. Do not change 3043 * this balance without careful testing first. 3044 */ 3045 void 3046 vm_waitpfault(void) 3047 { 3048 3049 mtx_lock(&vm_domainset_lock); 3050 if (vm_page_count_min()) { 3051 vm_min_waiters++; 3052 msleep(&vm_min_domains, &vm_domainset_lock, PUSER, "pfault", 0); 3053 } 3054 mtx_unlock(&vm_domainset_lock); 3055 } 3056 3057 struct vm_pagequeue * 3058 vm_page_pagequeue(vm_page_t m) 3059 { 3060 3061 return (&vm_pagequeue_domain(m)->vmd_pagequeues[m->queue]); 3062 } 3063 3064 /* 3065 * vm_page_dequeue: 3066 * 3067 * Remove the given page from its current page queue. 3068 * 3069 * The page must be locked. 3070 */ 3071 void 3072 vm_page_dequeue(vm_page_t m) 3073 { 3074 struct vm_pagequeue *pq; 3075 3076 vm_page_assert_locked(m); 3077 KASSERT(m->queue < PQ_COUNT, ("vm_page_dequeue: page %p is not queued", 3078 m)); 3079 pq = vm_page_pagequeue(m); 3080 vm_pagequeue_lock(pq); 3081 m->queue = PQ_NONE; 3082 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 3083 vm_pagequeue_cnt_dec(pq); 3084 vm_pagequeue_unlock(pq); 3085 } 3086 3087 /* 3088 * vm_page_dequeue_locked: 3089 * 3090 * Remove the given page from its current page queue. 3091 * 3092 * The page and page queue must be locked. 3093 */ 3094 void 3095 vm_page_dequeue_locked(vm_page_t m) 3096 { 3097 struct vm_pagequeue *pq; 3098 3099 vm_page_lock_assert(m, MA_OWNED); 3100 pq = vm_page_pagequeue(m); 3101 vm_pagequeue_assert_locked(pq); 3102 m->queue = PQ_NONE; 3103 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 3104 vm_pagequeue_cnt_dec(pq); 3105 } 3106 3107 /* 3108 * vm_page_enqueue: 3109 * 3110 * Add the given page to the specified page queue. 3111 * 3112 * The page must be locked. 3113 */ 3114 static void 3115 vm_page_enqueue(uint8_t queue, vm_page_t m) 3116 { 3117 struct vm_pagequeue *pq; 3118 3119 vm_page_lock_assert(m, MA_OWNED); 3120 KASSERT(queue < PQ_COUNT, 3121 ("vm_page_enqueue: invalid queue %u request for page %p", 3122 queue, m)); 3123 pq = &vm_pagequeue_domain(m)->vmd_pagequeues[queue]; 3124 vm_pagequeue_lock(pq); 3125 m->queue = queue; 3126 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 3127 vm_pagequeue_cnt_inc(pq); 3128 vm_pagequeue_unlock(pq); 3129 } 3130 3131 /* 3132 * vm_page_requeue: 3133 * 3134 * Move the given page to the tail of its current page queue. 3135 * 3136 * The page must be locked. 3137 */ 3138 void 3139 vm_page_requeue(vm_page_t m) 3140 { 3141 struct vm_pagequeue *pq; 3142 3143 vm_page_lock_assert(m, MA_OWNED); 3144 KASSERT(m->queue != PQ_NONE, 3145 ("vm_page_requeue: page %p is not queued", m)); 3146 pq = vm_page_pagequeue(m); 3147 vm_pagequeue_lock(pq); 3148 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 3149 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 3150 vm_pagequeue_unlock(pq); 3151 } 3152 3153 /* 3154 * vm_page_requeue_locked: 3155 * 3156 * Move the given page to the tail of its current page queue. 3157 * 3158 * The page queue must be locked. 3159 */ 3160 void 3161 vm_page_requeue_locked(vm_page_t m) 3162 { 3163 struct vm_pagequeue *pq; 3164 3165 KASSERT(m->queue != PQ_NONE, 3166 ("vm_page_requeue_locked: page %p is not queued", m)); 3167 pq = vm_page_pagequeue(m); 3168 vm_pagequeue_assert_locked(pq); 3169 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 3170 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 3171 } 3172 3173 /* 3174 * vm_page_activate: 3175 * 3176 * Put the specified page on the active list (if appropriate). 3177 * Ensure that act_count is at least ACT_INIT but do not otherwise 3178 * mess with it. 3179 * 3180 * The page must be locked. 3181 */ 3182 void 3183 vm_page_activate(vm_page_t m) 3184 { 3185 int queue; 3186 3187 vm_page_lock_assert(m, MA_OWNED); 3188 if ((queue = m->queue) != PQ_ACTIVE) { 3189 if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) { 3190 if (m->act_count < ACT_INIT) 3191 m->act_count = ACT_INIT; 3192 if (queue != PQ_NONE) 3193 vm_page_dequeue(m); 3194 vm_page_enqueue(PQ_ACTIVE, m); 3195 } 3196 } else { 3197 if (m->act_count < ACT_INIT) 3198 m->act_count = ACT_INIT; 3199 } 3200 } 3201 3202 /* 3203 * vm_page_free_prep: 3204 * 3205 * Prepares the given page to be put on the free list, 3206 * disassociating it from any VM object. The caller may return 3207 * the page to the free list only if this function returns true. 3208 * 3209 * The object must be locked. The page must be locked if it is 3210 * managed. For a queued managed page, the pagequeue_locked 3211 * argument specifies whether the page queue is already locked. 3212 */ 3213 bool 3214 vm_page_free_prep(vm_page_t m, bool pagequeue_locked) 3215 { 3216 3217 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP) 3218 if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) { 3219 uint64_t *p; 3220 int i; 3221 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 3222 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++) 3223 KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx", 3224 m, i, (uintmax_t)*p)); 3225 } 3226 #endif 3227 if ((m->oflags & VPO_UNMANAGED) == 0) { 3228 vm_page_lock_assert(m, MA_OWNED); 3229 KASSERT(!pmap_page_is_mapped(m), 3230 ("vm_page_free_toq: freeing mapped page %p", m)); 3231 } else 3232 KASSERT(m->queue == PQ_NONE, 3233 ("vm_page_free_toq: unmanaged page %p is queued", m)); 3234 VM_CNT_INC(v_tfree); 3235 3236 if (vm_page_sbusied(m)) 3237 panic("vm_page_free: freeing busy page %p", m); 3238 3239 vm_page_remove(m); 3240 3241 /* 3242 * If fictitious remove object association and 3243 * return. 3244 */ 3245 if ((m->flags & PG_FICTITIOUS) != 0) { 3246 KASSERT(m->wire_count == 1, 3247 ("fictitious page %p is not wired", m)); 3248 KASSERT(m->queue == PQ_NONE, 3249 ("fictitious page %p is queued", m)); 3250 return (false); 3251 } 3252 3253 if (m->queue != PQ_NONE) { 3254 if (pagequeue_locked) 3255 vm_page_dequeue_locked(m); 3256 else 3257 vm_page_dequeue(m); 3258 } 3259 m->valid = 0; 3260 vm_page_undirty(m); 3261 3262 if (m->wire_count != 0) 3263 panic("vm_page_free: freeing wired page %p", m); 3264 if (m->hold_count != 0) { 3265 m->flags &= ~PG_ZERO; 3266 KASSERT((m->flags & PG_UNHOLDFREE) == 0, 3267 ("vm_page_free: freeing PG_UNHOLDFREE page %p", m)); 3268 m->flags |= PG_UNHOLDFREE; 3269 return (false); 3270 } 3271 3272 /* 3273 * Restore the default memory attribute to the page. 3274 */ 3275 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) 3276 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); 3277 3278 #if VM_NRESERVLEVEL > 0 3279 if (vm_reserv_free_page(m)) 3280 return (false); 3281 #endif 3282 3283 return (true); 3284 } 3285 3286 void 3287 vm_page_free_phys_pglist(struct pglist *tq) 3288 { 3289 struct vm_domain *vmd; 3290 vm_page_t m; 3291 int cnt; 3292 3293 if (TAILQ_EMPTY(tq)) 3294 return; 3295 vmd = NULL; 3296 cnt = 0; 3297 TAILQ_FOREACH(m, tq, listq) { 3298 if (vmd != vm_pagequeue_domain(m)) { 3299 if (vmd != NULL) { 3300 vm_domain_free_unlock(vmd); 3301 vm_domain_freecnt_inc(vmd, cnt); 3302 cnt = 0; 3303 } 3304 vmd = vm_pagequeue_domain(m); 3305 vm_domain_free_lock(vmd); 3306 } 3307 vm_phys_free_pages(m, 0); 3308 cnt++; 3309 } 3310 if (vmd != NULL) { 3311 vm_domain_free_unlock(vmd); 3312 vm_domain_freecnt_inc(vmd, cnt); 3313 } 3314 } 3315 3316 /* 3317 * vm_page_free_toq: 3318 * 3319 * Returns the given page to the free list, disassociating it 3320 * from any VM object. 3321 * 3322 * The object must be locked. The page must be locked if it is 3323 * managed. 3324 */ 3325 void 3326 vm_page_free_toq(vm_page_t m) 3327 { 3328 struct vm_domain *vmd; 3329 3330 if (!vm_page_free_prep(m, false)) 3331 return; 3332 3333 vmd = vm_pagequeue_domain(m); 3334 if (m->pool == VM_FREEPOOL_DEFAULT && vmd->vmd_pgcache != NULL) { 3335 uma_zfree(vmd->vmd_pgcache, m); 3336 return; 3337 } 3338 vm_domain_free_lock(vmd); 3339 vm_phys_free_pages(m, 0); 3340 vm_domain_free_unlock(vmd); 3341 vm_domain_freecnt_inc(vmd, 1); 3342 } 3343 3344 /* 3345 * vm_page_free_pages_toq: 3346 * 3347 * Returns a list of pages to the free list, disassociating it 3348 * from any VM object. In other words, this is equivalent to 3349 * calling vm_page_free_toq() for each page of a list of VM objects. 3350 * 3351 * The objects must be locked. The pages must be locked if it is 3352 * managed. 3353 */ 3354 void 3355 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count) 3356 { 3357 vm_page_t m; 3358 int count; 3359 3360 if (SLIST_EMPTY(free)) 3361 return; 3362 3363 count = 0; 3364 while ((m = SLIST_FIRST(free)) != NULL) { 3365 count++; 3366 SLIST_REMOVE_HEAD(free, plinks.s.ss); 3367 vm_page_free_toq(m); 3368 } 3369 3370 if (update_wire_count) 3371 vm_wire_sub(count); 3372 } 3373 3374 /* 3375 * vm_page_wire: 3376 * 3377 * Mark this page as wired down. If the page is fictitious, then 3378 * its wire count must remain one. 3379 * 3380 * The page must be locked. 3381 */ 3382 void 3383 vm_page_wire(vm_page_t m) 3384 { 3385 3386 vm_page_assert_locked(m); 3387 if ((m->flags & PG_FICTITIOUS) != 0) { 3388 KASSERT(m->wire_count == 1, 3389 ("vm_page_wire: fictitious page %p's wire count isn't one", 3390 m)); 3391 return; 3392 } 3393 if (m->wire_count == 0) { 3394 KASSERT((m->oflags & VPO_UNMANAGED) == 0 || 3395 m->queue == PQ_NONE, 3396 ("vm_page_wire: unmanaged page %p is queued", m)); 3397 vm_wire_add(1); 3398 } 3399 m->wire_count++; 3400 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 3401 } 3402 3403 /* 3404 * vm_page_unwire: 3405 * 3406 * Release one wiring of the specified page, potentially allowing it to be 3407 * paged out. Returns TRUE if the number of wirings transitions to zero and 3408 * FALSE otherwise. 3409 * 3410 * Only managed pages belonging to an object can be paged out. If the number 3411 * of wirings transitions to zero and the page is eligible for page out, then 3412 * the page is added to the specified paging queue (unless PQ_NONE is 3413 * specified, in which case the page is dequeued if it belongs to a paging 3414 * queue). 3415 * 3416 * If a page is fictitious, then its wire count must always be one. 3417 * 3418 * A managed page must be locked. 3419 */ 3420 bool 3421 vm_page_unwire(vm_page_t m, uint8_t queue) 3422 { 3423 bool unwired; 3424 3425 KASSERT(queue < PQ_COUNT || queue == PQ_NONE, 3426 ("vm_page_unwire: invalid queue %u request for page %p", 3427 queue, m)); 3428 3429 unwired = vm_page_unwire_noq(m); 3430 if (unwired && (m->oflags & VPO_UNMANAGED) == 0 && m->object != NULL) { 3431 if (m->queue == queue) { 3432 if (queue == PQ_ACTIVE) 3433 vm_page_reference(m); 3434 else if (queue != PQ_NONE) 3435 vm_page_requeue(m); 3436 } else { 3437 vm_page_remque(m); 3438 if (queue != PQ_NONE) { 3439 vm_page_enqueue(queue, m); 3440 if (queue == PQ_ACTIVE) 3441 /* Initialize act_count. */ 3442 vm_page_activate(m); 3443 } 3444 } 3445 } 3446 return (unwired); 3447 } 3448 3449 /* 3450 * 3451 * vm_page_unwire_noq: 3452 * 3453 * Unwire a page without (re-)inserting it into a page queue. It is up 3454 * to the caller to enqueue, requeue, or free the page as appropriate. 3455 * In most cases, vm_page_unwire() should be used instead. 3456 */ 3457 bool 3458 vm_page_unwire_noq(vm_page_t m) 3459 { 3460 3461 if ((m->oflags & VPO_UNMANAGED) == 0) 3462 vm_page_assert_locked(m); 3463 if ((m->flags & PG_FICTITIOUS) != 0) { 3464 KASSERT(m->wire_count == 1, 3465 ("vm_page_unwire: fictitious page %p's wire count isn't one", m)); 3466 return (false); 3467 } 3468 if (m->wire_count == 0) 3469 panic("vm_page_unwire: page %p's wire count is zero", m); 3470 m->wire_count--; 3471 if (m->wire_count == 0) { 3472 vm_wire_sub(1); 3473 return (true); 3474 } else 3475 return (false); 3476 } 3477 3478 /* 3479 * Move the specified page to the inactive queue, or requeue the page if it is 3480 * already in the inactive queue. 3481 * 3482 * Normally, "noreuse" is FALSE, resulting in LRU ordering of the inactive 3483 * queue. However, setting "noreuse" to TRUE will accelerate the specified 3484 * page's reclamation, but it will not unmap the page from any address space. 3485 * This is implemented by inserting the page near the head of the inactive 3486 * queue, using a marker page to guide FIFO insertion ordering. 3487 * 3488 * The page must be locked. 3489 */ 3490 static inline void 3491 _vm_page_deactivate(vm_page_t m, boolean_t noreuse) 3492 { 3493 struct vm_pagequeue *pq; 3494 int queue; 3495 3496 vm_page_assert_locked(m); 3497 3498 if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) { 3499 pq = &vm_pagequeue_domain(m)->vmd_pagequeues[PQ_INACTIVE]; 3500 /* Avoid multiple acquisitions of the inactive queue lock. */ 3501 queue = m->queue; 3502 if (queue == PQ_INACTIVE) { 3503 vm_pagequeue_lock(pq); 3504 vm_page_dequeue_locked(m); 3505 } else { 3506 if (queue != PQ_NONE) 3507 vm_page_dequeue(m); 3508 vm_pagequeue_lock(pq); 3509 } 3510 m->queue = PQ_INACTIVE; 3511 if (noreuse) 3512 TAILQ_INSERT_BEFORE( 3513 &vm_pagequeue_domain(m)->vmd_inacthead, m, 3514 plinks.q); 3515 else 3516 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 3517 vm_pagequeue_cnt_inc(pq); 3518 vm_pagequeue_unlock(pq); 3519 } 3520 } 3521 3522 /* 3523 * Move the specified page to the inactive queue, or requeue the page if it is 3524 * already in the inactive queue. 3525 * 3526 * The page must be locked. 3527 */ 3528 void 3529 vm_page_deactivate(vm_page_t m) 3530 { 3531 3532 _vm_page_deactivate(m, FALSE); 3533 } 3534 3535 /* 3536 * Move the specified page to the inactive queue with the expectation 3537 * that it is unlikely to be reused. 3538 * 3539 * The page must be locked. 3540 */ 3541 void 3542 vm_page_deactivate_noreuse(vm_page_t m) 3543 { 3544 3545 _vm_page_deactivate(m, TRUE); 3546 } 3547 3548 /* 3549 * vm_page_launder 3550 * 3551 * Put a page in the laundry, or requeue it if it is already there. 3552 */ 3553 void 3554 vm_page_launder(vm_page_t m) 3555 { 3556 3557 vm_page_assert_locked(m); 3558 if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) { 3559 if (m->queue == PQ_LAUNDRY) 3560 vm_page_requeue(m); 3561 else { 3562 vm_page_remque(m); 3563 vm_page_enqueue(PQ_LAUNDRY, m); 3564 } 3565 } 3566 } 3567 3568 /* 3569 * vm_page_unswappable 3570 * 3571 * Put a page in the PQ_UNSWAPPABLE holding queue. 3572 */ 3573 void 3574 vm_page_unswappable(vm_page_t m) 3575 { 3576 3577 vm_page_assert_locked(m); 3578 KASSERT(m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0, 3579 ("page %p already unswappable", m)); 3580 if (m->queue != PQ_NONE) 3581 vm_page_dequeue(m); 3582 vm_page_enqueue(PQ_UNSWAPPABLE, m); 3583 } 3584 3585 /* 3586 * Attempt to free the page. If it cannot be freed, do nothing. Returns true 3587 * if the page is freed and false otherwise. 3588 * 3589 * The page must be managed. The page and its containing object must be 3590 * locked. 3591 */ 3592 bool 3593 vm_page_try_to_free(vm_page_t m) 3594 { 3595 3596 vm_page_assert_locked(m); 3597 VM_OBJECT_ASSERT_WLOCKED(m->object); 3598 KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("page %p is unmanaged", m)); 3599 if (m->dirty != 0 || vm_page_held(m) || vm_page_busied(m)) 3600 return (false); 3601 if (m->object->ref_count != 0) { 3602 pmap_remove_all(m); 3603 if (m->dirty != 0) 3604 return (false); 3605 } 3606 vm_page_free(m); 3607 return (true); 3608 } 3609 3610 /* 3611 * vm_page_advise 3612 * 3613 * Apply the specified advice to the given page. 3614 * 3615 * The object and page must be locked. 3616 */ 3617 void 3618 vm_page_advise(vm_page_t m, int advice) 3619 { 3620 3621 vm_page_assert_locked(m); 3622 VM_OBJECT_ASSERT_WLOCKED(m->object); 3623 if (advice == MADV_FREE) 3624 /* 3625 * Mark the page clean. This will allow the page to be freed 3626 * without first paging it out. MADV_FREE pages are often 3627 * quickly reused by malloc(3), so we do not do anything that 3628 * would result in a page fault on a later access. 3629 */ 3630 vm_page_undirty(m); 3631 else if (advice != MADV_DONTNEED) { 3632 if (advice == MADV_WILLNEED) 3633 vm_page_activate(m); 3634 return; 3635 } 3636 3637 /* 3638 * Clear any references to the page. Otherwise, the page daemon will 3639 * immediately reactivate the page. 3640 */ 3641 vm_page_aflag_clear(m, PGA_REFERENCED); 3642 3643 if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m)) 3644 vm_page_dirty(m); 3645 3646 /* 3647 * Place clean pages near the head of the inactive queue rather than 3648 * the tail, thus defeating the queue's LRU operation and ensuring that 3649 * the page will be reused quickly. Dirty pages not already in the 3650 * laundry are moved there. 3651 */ 3652 if (m->dirty == 0) 3653 vm_page_deactivate_noreuse(m); 3654 else if (!vm_page_in_laundry(m)) 3655 vm_page_launder(m); 3656 } 3657 3658 /* 3659 * Grab a page, waiting until we are waken up due to the page 3660 * changing state. We keep on waiting, if the page continues 3661 * to be in the object. If the page doesn't exist, first allocate it 3662 * and then conditionally zero it. 3663 * 3664 * This routine may sleep. 3665 * 3666 * The object must be locked on entry. The lock will, however, be released 3667 * and reacquired if the routine sleeps. 3668 */ 3669 vm_page_t 3670 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 3671 { 3672 vm_page_t m; 3673 int sleep; 3674 int pflags; 3675 3676 VM_OBJECT_ASSERT_WLOCKED(object); 3677 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 3678 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 3679 ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch")); 3680 pflags = allocflags & 3681 ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL); 3682 if ((allocflags & VM_ALLOC_NOWAIT) == 0) 3683 pflags |= VM_ALLOC_WAITFAIL; 3684 retrylookup: 3685 if ((m = vm_page_lookup(object, pindex)) != NULL) { 3686 sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ? 3687 vm_page_xbusied(m) : vm_page_busied(m); 3688 if (sleep) { 3689 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 3690 return (NULL); 3691 /* 3692 * Reference the page before unlocking and 3693 * sleeping so that the page daemon is less 3694 * likely to reclaim it. 3695 */ 3696 vm_page_aflag_set(m, PGA_REFERENCED); 3697 vm_page_lock(m); 3698 VM_OBJECT_WUNLOCK(object); 3699 vm_page_busy_sleep(m, "pgrbwt", (allocflags & 3700 VM_ALLOC_IGN_SBUSY) != 0); 3701 VM_OBJECT_WLOCK(object); 3702 goto retrylookup; 3703 } else { 3704 if ((allocflags & VM_ALLOC_WIRED) != 0) { 3705 vm_page_lock(m); 3706 vm_page_wire(m); 3707 vm_page_unlock(m); 3708 } 3709 if ((allocflags & 3710 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0) 3711 vm_page_xbusy(m); 3712 if ((allocflags & VM_ALLOC_SBUSY) != 0) 3713 vm_page_sbusy(m); 3714 return (m); 3715 } 3716 } 3717 m = vm_page_alloc(object, pindex, pflags); 3718 if (m == NULL) { 3719 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 3720 return (NULL); 3721 goto retrylookup; 3722 } 3723 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 3724 pmap_zero_page(m); 3725 return (m); 3726 } 3727 3728 /* 3729 * Return the specified range of pages from the given object. For each 3730 * page offset within the range, if a page already exists within the object 3731 * at that offset and it is busy, then wait for it to change state. If, 3732 * instead, the page doesn't exist, then allocate it. 3733 * 3734 * The caller must always specify an allocation class. 3735 * 3736 * allocation classes: 3737 * VM_ALLOC_NORMAL normal process request 3738 * VM_ALLOC_SYSTEM system *really* needs the pages 3739 * 3740 * The caller must always specify that the pages are to be busied and/or 3741 * wired. 3742 * 3743 * optional allocation flags: 3744 * VM_ALLOC_IGN_SBUSY do not sleep on soft busy pages 3745 * VM_ALLOC_NOBUSY do not exclusive busy the page 3746 * VM_ALLOC_NOWAIT do not sleep 3747 * VM_ALLOC_SBUSY set page to sbusy state 3748 * VM_ALLOC_WIRED wire the pages 3749 * VM_ALLOC_ZERO zero and validate any invalid pages 3750 * 3751 * If VM_ALLOC_NOWAIT is not specified, this routine may sleep. Otherwise, it 3752 * may return a partial prefix of the requested range. 3753 */ 3754 int 3755 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags, 3756 vm_page_t *ma, int count) 3757 { 3758 vm_page_t m, mpred; 3759 int pflags; 3760 int i; 3761 bool sleep; 3762 3763 VM_OBJECT_ASSERT_WLOCKED(object); 3764 KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0, 3765 ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed")); 3766 KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 || 3767 (allocflags & VM_ALLOC_WIRED) != 0, 3768 ("vm_page_grab_pages: the pages must be busied or wired")); 3769 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 3770 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 3771 ("vm_page_grab_pages: VM_ALLOC_SBUSY/IGN_SBUSY mismatch")); 3772 if (count == 0) 3773 return (0); 3774 pflags = allocflags & ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | 3775 VM_ALLOC_WAITFAIL | VM_ALLOC_IGN_SBUSY); 3776 if ((allocflags & VM_ALLOC_NOWAIT) == 0) 3777 pflags |= VM_ALLOC_WAITFAIL; 3778 i = 0; 3779 retrylookup: 3780 m = vm_radix_lookup_le(&object->rtree, pindex + i); 3781 if (m == NULL || m->pindex != pindex + i) { 3782 mpred = m; 3783 m = NULL; 3784 } else 3785 mpred = TAILQ_PREV(m, pglist, listq); 3786 for (; i < count; i++) { 3787 if (m != NULL) { 3788 sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ? 3789 vm_page_xbusied(m) : vm_page_busied(m); 3790 if (sleep) { 3791 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 3792 break; 3793 /* 3794 * Reference the page before unlocking and 3795 * sleeping so that the page daemon is less 3796 * likely to reclaim it. 3797 */ 3798 vm_page_aflag_set(m, PGA_REFERENCED); 3799 vm_page_lock(m); 3800 VM_OBJECT_WUNLOCK(object); 3801 vm_page_busy_sleep(m, "grbmaw", (allocflags & 3802 VM_ALLOC_IGN_SBUSY) != 0); 3803 VM_OBJECT_WLOCK(object); 3804 goto retrylookup; 3805 } 3806 if ((allocflags & VM_ALLOC_WIRED) != 0) { 3807 vm_page_lock(m); 3808 vm_page_wire(m); 3809 vm_page_unlock(m); 3810 } 3811 if ((allocflags & (VM_ALLOC_NOBUSY | 3812 VM_ALLOC_SBUSY)) == 0) 3813 vm_page_xbusy(m); 3814 if ((allocflags & VM_ALLOC_SBUSY) != 0) 3815 vm_page_sbusy(m); 3816 } else { 3817 m = vm_page_alloc_after(object, pindex + i, 3818 pflags | VM_ALLOC_COUNT(count - i), mpred); 3819 if (m == NULL) { 3820 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 3821 break; 3822 goto retrylookup; 3823 } 3824 } 3825 if (m->valid == 0 && (allocflags & VM_ALLOC_ZERO) != 0) { 3826 if ((m->flags & PG_ZERO) == 0) 3827 pmap_zero_page(m); 3828 m->valid = VM_PAGE_BITS_ALL; 3829 } 3830 ma[i] = mpred = m; 3831 m = vm_page_next(m); 3832 } 3833 return (i); 3834 } 3835 3836 /* 3837 * Mapping function for valid or dirty bits in a page. 3838 * 3839 * Inputs are required to range within a page. 3840 */ 3841 vm_page_bits_t 3842 vm_page_bits(int base, int size) 3843 { 3844 int first_bit; 3845 int last_bit; 3846 3847 KASSERT( 3848 base + size <= PAGE_SIZE, 3849 ("vm_page_bits: illegal base/size %d/%d", base, size) 3850 ); 3851 3852 if (size == 0) /* handle degenerate case */ 3853 return (0); 3854 3855 first_bit = base >> DEV_BSHIFT; 3856 last_bit = (base + size - 1) >> DEV_BSHIFT; 3857 3858 return (((vm_page_bits_t)2 << last_bit) - 3859 ((vm_page_bits_t)1 << first_bit)); 3860 } 3861 3862 /* 3863 * vm_page_set_valid_range: 3864 * 3865 * Sets portions of a page valid. The arguments are expected 3866 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 3867 * of any partial chunks touched by the range. The invalid portion of 3868 * such chunks will be zeroed. 3869 * 3870 * (base + size) must be less then or equal to PAGE_SIZE. 3871 */ 3872 void 3873 vm_page_set_valid_range(vm_page_t m, int base, int size) 3874 { 3875 int endoff, frag; 3876 3877 VM_OBJECT_ASSERT_WLOCKED(m->object); 3878 if (size == 0) /* handle degenerate case */ 3879 return; 3880 3881 /* 3882 * If the base is not DEV_BSIZE aligned and the valid 3883 * bit is clear, we have to zero out a portion of the 3884 * first block. 3885 */ 3886 if ((frag = rounddown2(base, DEV_BSIZE)) != base && 3887 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 3888 pmap_zero_page_area(m, frag, base - frag); 3889 3890 /* 3891 * If the ending offset is not DEV_BSIZE aligned and the 3892 * valid bit is clear, we have to zero out a portion of 3893 * the last block. 3894 */ 3895 endoff = base + size; 3896 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && 3897 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 3898 pmap_zero_page_area(m, endoff, 3899 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 3900 3901 /* 3902 * Assert that no previously invalid block that is now being validated 3903 * is already dirty. 3904 */ 3905 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0, 3906 ("vm_page_set_valid_range: page %p is dirty", m)); 3907 3908 /* 3909 * Set valid bits inclusive of any overlap. 3910 */ 3911 m->valid |= vm_page_bits(base, size); 3912 } 3913 3914 /* 3915 * Clear the given bits from the specified page's dirty field. 3916 */ 3917 static __inline void 3918 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits) 3919 { 3920 uintptr_t addr; 3921 #if PAGE_SIZE < 16384 3922 int shift; 3923 #endif 3924 3925 /* 3926 * If the object is locked and the page is neither exclusive busy nor 3927 * write mapped, then the page's dirty field cannot possibly be 3928 * set by a concurrent pmap operation. 3929 */ 3930 VM_OBJECT_ASSERT_WLOCKED(m->object); 3931 if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) 3932 m->dirty &= ~pagebits; 3933 else { 3934 /* 3935 * The pmap layer can call vm_page_dirty() without 3936 * holding a distinguished lock. The combination of 3937 * the object's lock and an atomic operation suffice 3938 * to guarantee consistency of the page dirty field. 3939 * 3940 * For PAGE_SIZE == 32768 case, compiler already 3941 * properly aligns the dirty field, so no forcible 3942 * alignment is needed. Only require existence of 3943 * atomic_clear_64 when page size is 32768. 3944 */ 3945 addr = (uintptr_t)&m->dirty; 3946 #if PAGE_SIZE == 32768 3947 atomic_clear_64((uint64_t *)addr, pagebits); 3948 #elif PAGE_SIZE == 16384 3949 atomic_clear_32((uint32_t *)addr, pagebits); 3950 #else /* PAGE_SIZE <= 8192 */ 3951 /* 3952 * Use a trick to perform a 32-bit atomic on the 3953 * containing aligned word, to not depend on the existence 3954 * of atomic_clear_{8, 16}. 3955 */ 3956 shift = addr & (sizeof(uint32_t) - 1); 3957 #if BYTE_ORDER == BIG_ENDIAN 3958 shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY; 3959 #else 3960 shift *= NBBY; 3961 #endif 3962 addr &= ~(sizeof(uint32_t) - 1); 3963 atomic_clear_32((uint32_t *)addr, pagebits << shift); 3964 #endif /* PAGE_SIZE */ 3965 } 3966 } 3967 3968 /* 3969 * vm_page_set_validclean: 3970 * 3971 * Sets portions of a page valid and clean. The arguments are expected 3972 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 3973 * of any partial chunks touched by the range. The invalid portion of 3974 * such chunks will be zero'd. 3975 * 3976 * (base + size) must be less then or equal to PAGE_SIZE. 3977 */ 3978 void 3979 vm_page_set_validclean(vm_page_t m, int base, int size) 3980 { 3981 vm_page_bits_t oldvalid, pagebits; 3982 int endoff, frag; 3983 3984 VM_OBJECT_ASSERT_WLOCKED(m->object); 3985 if (size == 0) /* handle degenerate case */ 3986 return; 3987 3988 /* 3989 * If the base is not DEV_BSIZE aligned and the valid 3990 * bit is clear, we have to zero out a portion of the 3991 * first block. 3992 */ 3993 if ((frag = rounddown2(base, DEV_BSIZE)) != base && 3994 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0) 3995 pmap_zero_page_area(m, frag, base - frag); 3996 3997 /* 3998 * If the ending offset is not DEV_BSIZE aligned and the 3999 * valid bit is clear, we have to zero out a portion of 4000 * the last block. 4001 */ 4002 endoff = base + size; 4003 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && 4004 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0) 4005 pmap_zero_page_area(m, endoff, 4006 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 4007 4008 /* 4009 * Set valid, clear dirty bits. If validating the entire 4010 * page we can safely clear the pmap modify bit. We also 4011 * use this opportunity to clear the VPO_NOSYNC flag. If a process 4012 * takes a write fault on a MAP_NOSYNC memory area the flag will 4013 * be set again. 4014 * 4015 * We set valid bits inclusive of any overlap, but we can only 4016 * clear dirty bits for DEV_BSIZE chunks that are fully within 4017 * the range. 4018 */ 4019 oldvalid = m->valid; 4020 pagebits = vm_page_bits(base, size); 4021 m->valid |= pagebits; 4022 #if 0 /* NOT YET */ 4023 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 4024 frag = DEV_BSIZE - frag; 4025 base += frag; 4026 size -= frag; 4027 if (size < 0) 4028 size = 0; 4029 } 4030 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 4031 #endif 4032 if (base == 0 && size == PAGE_SIZE) { 4033 /* 4034 * The page can only be modified within the pmap if it is 4035 * mapped, and it can only be mapped if it was previously 4036 * fully valid. 4037 */ 4038 if (oldvalid == VM_PAGE_BITS_ALL) 4039 /* 4040 * Perform the pmap_clear_modify() first. Otherwise, 4041 * a concurrent pmap operation, such as 4042 * pmap_protect(), could clear a modification in the 4043 * pmap and set the dirty field on the page before 4044 * pmap_clear_modify() had begun and after the dirty 4045 * field was cleared here. 4046 */ 4047 pmap_clear_modify(m); 4048 m->dirty = 0; 4049 m->oflags &= ~VPO_NOSYNC; 4050 } else if (oldvalid != VM_PAGE_BITS_ALL) 4051 m->dirty &= ~pagebits; 4052 else 4053 vm_page_clear_dirty_mask(m, pagebits); 4054 } 4055 4056 void 4057 vm_page_clear_dirty(vm_page_t m, int base, int size) 4058 { 4059 4060 vm_page_clear_dirty_mask(m, vm_page_bits(base, size)); 4061 } 4062 4063 /* 4064 * vm_page_set_invalid: 4065 * 4066 * Invalidates DEV_BSIZE'd chunks within a page. Both the 4067 * valid and dirty bits for the effected areas are cleared. 4068 */ 4069 void 4070 vm_page_set_invalid(vm_page_t m, int base, int size) 4071 { 4072 vm_page_bits_t bits; 4073 vm_object_t object; 4074 4075 object = m->object; 4076 VM_OBJECT_ASSERT_WLOCKED(object); 4077 if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) + 4078 size >= object->un_pager.vnp.vnp_size) 4079 bits = VM_PAGE_BITS_ALL; 4080 else 4081 bits = vm_page_bits(base, size); 4082 if (object->ref_count != 0 && m->valid == VM_PAGE_BITS_ALL && 4083 bits != 0) 4084 pmap_remove_all(m); 4085 KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) || 4086 !pmap_page_is_mapped(m), 4087 ("vm_page_set_invalid: page %p is mapped", m)); 4088 m->valid &= ~bits; 4089 m->dirty &= ~bits; 4090 } 4091 4092 /* 4093 * vm_page_zero_invalid() 4094 * 4095 * The kernel assumes that the invalid portions of a page contain 4096 * garbage, but such pages can be mapped into memory by user code. 4097 * When this occurs, we must zero out the non-valid portions of the 4098 * page so user code sees what it expects. 4099 * 4100 * Pages are most often semi-valid when the end of a file is mapped 4101 * into memory and the file's size is not page aligned. 4102 */ 4103 void 4104 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 4105 { 4106 int b; 4107 int i; 4108 4109 VM_OBJECT_ASSERT_WLOCKED(m->object); 4110 /* 4111 * Scan the valid bits looking for invalid sections that 4112 * must be zeroed. Invalid sub-DEV_BSIZE'd areas ( where the 4113 * valid bit may be set ) have already been zeroed by 4114 * vm_page_set_validclean(). 4115 */ 4116 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 4117 if (i == (PAGE_SIZE / DEV_BSIZE) || 4118 (m->valid & ((vm_page_bits_t)1 << i))) { 4119 if (i > b) { 4120 pmap_zero_page_area(m, 4121 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 4122 } 4123 b = i + 1; 4124 } 4125 } 4126 4127 /* 4128 * setvalid is TRUE when we can safely set the zero'd areas 4129 * as being valid. We can do this if there are no cache consistancy 4130 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 4131 */ 4132 if (setvalid) 4133 m->valid = VM_PAGE_BITS_ALL; 4134 } 4135 4136 /* 4137 * vm_page_is_valid: 4138 * 4139 * Is (partial) page valid? Note that the case where size == 0 4140 * will return FALSE in the degenerate case where the page is 4141 * entirely invalid, and TRUE otherwise. 4142 */ 4143 int 4144 vm_page_is_valid(vm_page_t m, int base, int size) 4145 { 4146 vm_page_bits_t bits; 4147 4148 VM_OBJECT_ASSERT_LOCKED(m->object); 4149 bits = vm_page_bits(base, size); 4150 return (m->valid != 0 && (m->valid & bits) == bits); 4151 } 4152 4153 /* 4154 * Returns true if all of the specified predicates are true for the entire 4155 * (super)page and false otherwise. 4156 */ 4157 bool 4158 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m) 4159 { 4160 vm_object_t object; 4161 int i, npages; 4162 4163 object = m->object; 4164 if (skip_m != NULL && skip_m->object != object) 4165 return (false); 4166 VM_OBJECT_ASSERT_LOCKED(object); 4167 npages = atop(pagesizes[m->psind]); 4168 4169 /* 4170 * The physically contiguous pages that make up a superpage, i.e., a 4171 * page with a page size index ("psind") greater than zero, will 4172 * occupy adjacent entries in vm_page_array[]. 4173 */ 4174 for (i = 0; i < npages; i++) { 4175 /* Always test object consistency, including "skip_m". */ 4176 if (m[i].object != object) 4177 return (false); 4178 if (&m[i] == skip_m) 4179 continue; 4180 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i])) 4181 return (false); 4182 if ((flags & PS_ALL_DIRTY) != 0) { 4183 /* 4184 * Calling vm_page_test_dirty() or pmap_is_modified() 4185 * might stop this case from spuriously returning 4186 * "false". However, that would require a write lock 4187 * on the object containing "m[i]". 4188 */ 4189 if (m[i].dirty != VM_PAGE_BITS_ALL) 4190 return (false); 4191 } 4192 if ((flags & PS_ALL_VALID) != 0 && 4193 m[i].valid != VM_PAGE_BITS_ALL) 4194 return (false); 4195 } 4196 return (true); 4197 } 4198 4199 /* 4200 * Set the page's dirty bits if the page is modified. 4201 */ 4202 void 4203 vm_page_test_dirty(vm_page_t m) 4204 { 4205 4206 VM_OBJECT_ASSERT_WLOCKED(m->object); 4207 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m)) 4208 vm_page_dirty(m); 4209 } 4210 4211 void 4212 vm_page_lock_KBI(vm_page_t m, const char *file, int line) 4213 { 4214 4215 mtx_lock_flags_(vm_page_lockptr(m), 0, file, line); 4216 } 4217 4218 void 4219 vm_page_unlock_KBI(vm_page_t m, const char *file, int line) 4220 { 4221 4222 mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line); 4223 } 4224 4225 int 4226 vm_page_trylock_KBI(vm_page_t m, const char *file, int line) 4227 { 4228 4229 return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line)); 4230 } 4231 4232 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT) 4233 void 4234 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line) 4235 { 4236 4237 vm_page_lock_assert_KBI(m, MA_OWNED, file, line); 4238 } 4239 4240 void 4241 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line) 4242 { 4243 4244 mtx_assert_(vm_page_lockptr(m), a, file, line); 4245 } 4246 #endif 4247 4248 #ifdef INVARIANTS 4249 void 4250 vm_page_object_lock_assert(vm_page_t m) 4251 { 4252 4253 /* 4254 * Certain of the page's fields may only be modified by the 4255 * holder of the containing object's lock or the exclusive busy. 4256 * holder. Unfortunately, the holder of the write busy is 4257 * not recorded, and thus cannot be checked here. 4258 */ 4259 if (m->object != NULL && !vm_page_xbusied(m)) 4260 VM_OBJECT_ASSERT_WLOCKED(m->object); 4261 } 4262 4263 void 4264 vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits) 4265 { 4266 4267 if ((bits & PGA_WRITEABLE) == 0) 4268 return; 4269 4270 /* 4271 * The PGA_WRITEABLE flag can only be set if the page is 4272 * managed, is exclusively busied or the object is locked. 4273 * Currently, this flag is only set by pmap_enter(). 4274 */ 4275 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4276 ("PGA_WRITEABLE on unmanaged page")); 4277 if (!vm_page_xbusied(m)) 4278 VM_OBJECT_ASSERT_LOCKED(m->object); 4279 } 4280 #endif 4281 4282 #include "opt_ddb.h" 4283 #ifdef DDB 4284 #include <sys/kernel.h> 4285 4286 #include <ddb/ddb.h> 4287 4288 DB_SHOW_COMMAND(page, vm_page_print_page_info) 4289 { 4290 4291 db_printf("vm_cnt.v_free_count: %d\n", vm_free_count()); 4292 db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count()); 4293 db_printf("vm_cnt.v_active_count: %d\n", vm_active_count()); 4294 db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count()); 4295 db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count()); 4296 db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved); 4297 db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min); 4298 db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target); 4299 db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target); 4300 } 4301 4302 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 4303 { 4304 int dom; 4305 4306 db_printf("pq_free %d\n", vm_free_count()); 4307 for (dom = 0; dom < vm_ndomains; dom++) { 4308 db_printf( 4309 "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n", 4310 dom, 4311 vm_dom[dom].vmd_page_count, 4312 vm_dom[dom].vmd_free_count, 4313 vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt, 4314 vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt, 4315 vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt, 4316 vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt); 4317 } 4318 } 4319 4320 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo) 4321 { 4322 vm_page_t m; 4323 boolean_t phys; 4324 4325 if (!have_addr) { 4326 db_printf("show pginfo addr\n"); 4327 return; 4328 } 4329 4330 phys = strchr(modif, 'p') != NULL; 4331 if (phys) 4332 m = PHYS_TO_VM_PAGE(addr); 4333 else 4334 m = (vm_page_t)addr; 4335 db_printf( 4336 "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n" 4337 " af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n", 4338 m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr, 4339 m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags, 4340 m->flags, m->act_count, m->busy_lock, m->valid, m->dirty); 4341 } 4342 #endif /* DDB */ 4343