xref: /freebsd/sys/vm/vm_page.c (revision 282a3889ebf826db9839be296ff1dd903f6d6d6e)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
33  */
34 
35 /*-
36  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
37  * All rights reserved.
38  *
39  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
40  *
41  * Permission to use, copy, modify and distribute this software and
42  * its documentation is hereby granted, provided that both the copyright
43  * notice and this permission notice appear in all copies of the
44  * software, derivative works or modified versions, and any portions
45  * thereof, and that both notices appear in supporting documentation.
46  *
47  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
48  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
49  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
50  *
51  * Carnegie Mellon requests users of this software to return to
52  *
53  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
54  *  School of Computer Science
55  *  Carnegie Mellon University
56  *  Pittsburgh PA 15213-3890
57  *
58  * any improvements or extensions that they make and grant Carnegie the
59  * rights to redistribute these changes.
60  */
61 
62 /*
63  *			GENERAL RULES ON VM_PAGE MANIPULATION
64  *
65  *	- a pageq mutex is required when adding or removing a page from a
66  *	  page queue (vm_page_queue[]), regardless of other mutexes or the
67  *	  busy state of a page.
68  *
69  *	- a hash chain mutex is required when associating or disassociating
70  *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
71  *	  regardless of other mutexes or the busy state of a page.
72  *
73  *	- either a hash chain mutex OR a busied page is required in order
74  *	  to modify the page flags.  A hash chain mutex must be obtained in
75  *	  order to busy a page.  A page's flags cannot be modified by a
76  *	  hash chain mutex if the page is marked busy.
77  *
78  *	- The object memq mutex is held when inserting or removing
79  *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
80  *	  is different from the object's main mutex.
81  *
82  *	Generally speaking, you have to be aware of side effects when running
83  *	vm_page ops.  A vm_page_lookup() will return with the hash chain
84  *	locked, whether it was able to lookup the page or not.  vm_page_free(),
85  *	vm_page_cache(), vm_page_activate(), and a number of other routines
86  *	will release the hash chain mutex for you.  Intermediate manipulation
87  *	routines such as vm_page_flag_set() expect the hash chain to be held
88  *	on entry and the hash chain will remain held on return.
89  *
90  *	pageq scanning can only occur with the pageq in question locked.
91  *	We have a known bottleneck with the active queue, but the cache
92  *	and free queues are actually arrays already.
93  */
94 
95 /*
96  *	Resident memory management module.
97  */
98 
99 #include <sys/cdefs.h>
100 __FBSDID("$FreeBSD$");
101 
102 #include <sys/param.h>
103 #include <sys/systm.h>
104 #include <sys/lock.h>
105 #include <sys/kernel.h>
106 #include <sys/malloc.h>
107 #include <sys/mutex.h>
108 #include <sys/proc.h>
109 #include <sys/sysctl.h>
110 #include <sys/vmmeter.h>
111 #include <sys/vnode.h>
112 
113 #include <vm/vm.h>
114 #include <vm/vm_param.h>
115 #include <vm/vm_kern.h>
116 #include <vm/vm_object.h>
117 #include <vm/vm_page.h>
118 #include <vm/vm_pageout.h>
119 #include <vm/vm_pager.h>
120 #include <vm/vm_phys.h>
121 #include <vm/vm_extern.h>
122 #include <vm/uma.h>
123 #include <vm/uma_int.h>
124 
125 #include <machine/md_var.h>
126 
127 /*
128  *	Associated with page of user-allocatable memory is a
129  *	page structure.
130  */
131 
132 struct mtx vm_page_queue_mtx;
133 struct mtx vm_page_queue_free_mtx;
134 
135 vm_page_t vm_page_array = 0;
136 int vm_page_array_size = 0;
137 long first_page = 0;
138 int vm_page_zero_count = 0;
139 
140 static int boot_pages = UMA_BOOT_PAGES;
141 TUNABLE_INT("vm.boot_pages", &boot_pages);
142 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
143 	"number of pages allocated for bootstrapping the VM system");
144 
145 /*
146  *	vm_set_page_size:
147  *
148  *	Sets the page size, perhaps based upon the memory
149  *	size.  Must be called before any use of page-size
150  *	dependent functions.
151  */
152 void
153 vm_set_page_size(void)
154 {
155 	if (cnt.v_page_size == 0)
156 		cnt.v_page_size = PAGE_SIZE;
157 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
158 		panic("vm_set_page_size: page size not a power of two");
159 }
160 
161 /*
162  *	vm_page_blacklist_lookup:
163  *
164  *	See if a physical address in this page has been listed
165  *	in the blacklist tunable.  Entries in the tunable are
166  *	separated by spaces or commas.  If an invalid integer is
167  *	encountered then the rest of the string is skipped.
168  */
169 static int
170 vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
171 {
172 	vm_paddr_t bad;
173 	char *cp, *pos;
174 
175 	for (pos = list; *pos != '\0'; pos = cp) {
176 		bad = strtoq(pos, &cp, 0);
177 		if (*cp != '\0') {
178 			if (*cp == ' ' || *cp == ',') {
179 				cp++;
180 				if (cp == pos)
181 					continue;
182 			} else
183 				break;
184 		}
185 		if (pa == trunc_page(bad))
186 			return (1);
187 	}
188 	return (0);
189 }
190 
191 /*
192  *	vm_page_startup:
193  *
194  *	Initializes the resident memory module.
195  *
196  *	Allocates memory for the page cells, and
197  *	for the object/offset-to-page hash table headers.
198  *	Each page cell is initialized and placed on the free list.
199  */
200 vm_offset_t
201 vm_page_startup(vm_offset_t vaddr)
202 {
203 	vm_offset_t mapped;
204 	vm_size_t npages;
205 	vm_paddr_t page_range;
206 	vm_paddr_t new_end;
207 	int i;
208 	vm_paddr_t pa;
209 	int nblocks;
210 	vm_paddr_t last_pa;
211 	char *list;
212 
213 	/* the biggest memory array is the second group of pages */
214 	vm_paddr_t end;
215 	vm_paddr_t biggestsize;
216 	vm_paddr_t low_water, high_water;
217 	int biggestone;
218 
219 	vm_paddr_t total;
220 
221 	total = 0;
222 	biggestsize = 0;
223 	biggestone = 0;
224 	nblocks = 0;
225 	vaddr = round_page(vaddr);
226 
227 	for (i = 0; phys_avail[i + 1]; i += 2) {
228 		phys_avail[i] = round_page(phys_avail[i]);
229 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
230 	}
231 
232 	low_water = phys_avail[0];
233 	high_water = phys_avail[1];
234 
235 	for (i = 0; phys_avail[i + 1]; i += 2) {
236 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
237 
238 		if (size > biggestsize) {
239 			biggestone = i;
240 			biggestsize = size;
241 		}
242 		if (phys_avail[i] < low_water)
243 			low_water = phys_avail[i];
244 		if (phys_avail[i + 1] > high_water)
245 			high_water = phys_avail[i + 1];
246 		++nblocks;
247 		total += size;
248 	}
249 
250 	end = phys_avail[biggestone+1];
251 
252 	/*
253 	 * Initialize the locks.
254 	 */
255 	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
256 	    MTX_RECURSE);
257 	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
258 	    MTX_DEF);
259 
260 	/*
261 	 * Initialize the queue headers for the free queue, the active queue
262 	 * and the inactive queue.
263 	 */
264 	vm_pageq_init();
265 
266 	/*
267 	 * Allocate memory for use when boot strapping the kernel memory
268 	 * allocator.
269 	 */
270 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
271 	new_end = trunc_page(new_end);
272 	mapped = pmap_map(&vaddr, new_end, end,
273 	    VM_PROT_READ | VM_PROT_WRITE);
274 	bzero((void *)mapped, end - new_end);
275 	uma_startup((void *)mapped, boot_pages);
276 
277 #if defined(__amd64__) || defined(__i386__)
278 	/*
279 	 * Allocate a bitmap to indicate that a random physical page
280 	 * needs to be included in a minidump.
281 	 *
282 	 * The amd64 port needs this to indicate which direct map pages
283 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
284 	 *
285 	 * However, i386 still needs this workspace internally within the
286 	 * minidump code.  In theory, they are not needed on i386, but are
287 	 * included should the sf_buf code decide to use them.
288 	 */
289 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
290 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
291 	new_end -= vm_page_dump_size;
292 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
293 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
294 	bzero((void *)vm_page_dump, vm_page_dump_size);
295 #endif
296 	/*
297 	 * Compute the number of pages of memory that will be available for
298 	 * use (taking into account the overhead of a page structure per
299 	 * page).
300 	 */
301 	first_page = low_water / PAGE_SIZE;
302 #ifdef VM_PHYSSEG_SPARSE
303 	page_range = 0;
304 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
305 		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
306 #elif defined(VM_PHYSSEG_DENSE)
307 	page_range = high_water / PAGE_SIZE - first_page;
308 #else
309 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
310 #endif
311 	npages = (total - (page_range * sizeof(struct vm_page)) -
312 	    (end - new_end)) / PAGE_SIZE;
313 	end = new_end;
314 
315 	/*
316 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
317 	 */
318 	vaddr += PAGE_SIZE;
319 
320 	/*
321 	 * Initialize the mem entry structures now, and put them in the free
322 	 * queue.
323 	 */
324 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
325 	mapped = pmap_map(&vaddr, new_end, end,
326 	    VM_PROT_READ | VM_PROT_WRITE);
327 	vm_page_array = (vm_page_t) mapped;
328 #ifdef __amd64__
329 	/*
330 	 * pmap_map on amd64 comes out of the direct-map, not kvm like i386,
331 	 * so the pages must be tracked for a crashdump to include this data.
332 	 * This includes the vm_page_array and the early UMA bootstrap pages.
333 	 */
334 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
335 		dump_add_page(pa);
336 #endif
337 	phys_avail[biggestone + 1] = new_end;
338 
339 	/*
340 	 * Clear all of the page structures
341 	 */
342 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
343 	for (i = 0; i < page_range; i++)
344 		vm_page_array[i].order = VM_NFREEORDER;
345 	vm_page_array_size = page_range;
346 
347 	/*
348 	 * This assertion tests the hypothesis that npages and total are
349 	 * redundant.  XXX
350 	 */
351 	page_range = 0;
352 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
353 		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
354 	KASSERT(page_range == npages,
355 	    ("vm_page_startup: inconsistent page counts"));
356 
357 	/*
358 	 * Initialize the physical memory allocator.
359 	 */
360 	vm_phys_init();
361 
362 	/*
363 	 * Add every available physical page that is not blacklisted to
364 	 * the free lists.
365 	 */
366 	cnt.v_page_count = 0;
367 	cnt.v_free_count = 0;
368 	list = getenv("vm.blacklist");
369 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
370 		pa = phys_avail[i];
371 		last_pa = phys_avail[i + 1];
372 		while (pa < last_pa) {
373 			if (list != NULL &&
374 			    vm_page_blacklist_lookup(list, pa))
375 				printf("Skipping page with pa 0x%jx\n",
376 				    (uintmax_t)pa);
377 			else
378 				vm_phys_add_page(pa);
379 			pa += PAGE_SIZE;
380 		}
381 	}
382 	freeenv(list);
383 	return (vaddr);
384 }
385 
386 void
387 vm_page_flag_set(vm_page_t m, unsigned short bits)
388 {
389 
390 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
391 	m->flags |= bits;
392 }
393 
394 void
395 vm_page_flag_clear(vm_page_t m, unsigned short bits)
396 {
397 
398 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
399 	m->flags &= ~bits;
400 }
401 
402 void
403 vm_page_busy(vm_page_t m)
404 {
405 
406 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
407 	KASSERT((m->oflags & VPO_BUSY) == 0,
408 	    ("vm_page_busy: page already busy!!!"));
409 	m->oflags |= VPO_BUSY;
410 }
411 
412 /*
413  *      vm_page_flash:
414  *
415  *      wakeup anyone waiting for the page.
416  */
417 void
418 vm_page_flash(vm_page_t m)
419 {
420 
421 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
422 	if (m->oflags & VPO_WANTED) {
423 		m->oflags &= ~VPO_WANTED;
424 		wakeup(m);
425 	}
426 }
427 
428 /*
429  *      vm_page_wakeup:
430  *
431  *      clear the VPO_BUSY flag and wakeup anyone waiting for the
432  *      page.
433  *
434  */
435 void
436 vm_page_wakeup(vm_page_t m)
437 {
438 
439 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
440 	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
441 	m->oflags &= ~VPO_BUSY;
442 	vm_page_flash(m);
443 }
444 
445 void
446 vm_page_io_start(vm_page_t m)
447 {
448 
449 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
450 	m->busy++;
451 }
452 
453 void
454 vm_page_io_finish(vm_page_t m)
455 {
456 
457 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
458 	m->busy--;
459 	if (m->busy == 0)
460 		vm_page_flash(m);
461 }
462 
463 /*
464  * Keep page from being freed by the page daemon
465  * much of the same effect as wiring, except much lower
466  * overhead and should be used only for *very* temporary
467  * holding ("wiring").
468  */
469 void
470 vm_page_hold(vm_page_t mem)
471 {
472 
473 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
474         mem->hold_count++;
475 }
476 
477 void
478 vm_page_unhold(vm_page_t mem)
479 {
480 
481 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
482 	--mem->hold_count;
483 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
484 	if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD))
485 		vm_page_free_toq(mem);
486 }
487 
488 /*
489  *	vm_page_free:
490  *
491  *	Free a page.
492  */
493 void
494 vm_page_free(vm_page_t m)
495 {
496 
497 	m->flags &= ~PG_ZERO;
498 	vm_page_free_toq(m);
499 }
500 
501 /*
502  *	vm_page_free_zero:
503  *
504  *	Free a page to the zerod-pages queue
505  */
506 void
507 vm_page_free_zero(vm_page_t m)
508 {
509 
510 	m->flags |= PG_ZERO;
511 	vm_page_free_toq(m);
512 }
513 
514 /*
515  *	vm_page_sleep:
516  *
517  *	Sleep and release the page queues lock.
518  *
519  *	The object containing the given page must be locked.
520  */
521 void
522 vm_page_sleep(vm_page_t m, const char *msg)
523 {
524 
525 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
526 	if (!mtx_owned(&vm_page_queue_mtx))
527 		vm_page_lock_queues();
528 	vm_page_flag_set(m, PG_REFERENCED);
529 	vm_page_unlock_queues();
530 
531 	/*
532 	 * It's possible that while we sleep, the page will get
533 	 * unbusied and freed.  If we are holding the object
534 	 * lock, we will assume we hold a reference to the object
535 	 * such that even if m->object changes, we can re-lock
536 	 * it.
537 	 */
538 	m->oflags |= VPO_WANTED;
539 	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
540 }
541 
542 /*
543  *	vm_page_dirty:
544  *
545  *	make page all dirty
546  */
547 void
548 vm_page_dirty(vm_page_t m)
549 {
550 	KASSERT(VM_PAGE_GETKNOWNQUEUE1(m) != PQ_CACHE,
551 	    ("vm_page_dirty: page in cache!"));
552 	KASSERT(!VM_PAGE_IS_FREE(m),
553 	    ("vm_page_dirty: page is free!"));
554 	m->dirty = VM_PAGE_BITS_ALL;
555 }
556 
557 /*
558  *	vm_page_splay:
559  *
560  *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
561  *	the vm_page containing the given pindex.  If, however, that
562  *	pindex is not found in the vm_object, returns a vm_page that is
563  *	adjacent to the pindex, coming before or after it.
564  */
565 vm_page_t
566 vm_page_splay(vm_pindex_t pindex, vm_page_t root)
567 {
568 	struct vm_page dummy;
569 	vm_page_t lefttreemax, righttreemin, y;
570 
571 	if (root == NULL)
572 		return (root);
573 	lefttreemax = righttreemin = &dummy;
574 	for (;; root = y) {
575 		if (pindex < root->pindex) {
576 			if ((y = root->left) == NULL)
577 				break;
578 			if (pindex < y->pindex) {
579 				/* Rotate right. */
580 				root->left = y->right;
581 				y->right = root;
582 				root = y;
583 				if ((y = root->left) == NULL)
584 					break;
585 			}
586 			/* Link into the new root's right tree. */
587 			righttreemin->left = root;
588 			righttreemin = root;
589 		} else if (pindex > root->pindex) {
590 			if ((y = root->right) == NULL)
591 				break;
592 			if (pindex > y->pindex) {
593 				/* Rotate left. */
594 				root->right = y->left;
595 				y->left = root;
596 				root = y;
597 				if ((y = root->right) == NULL)
598 					break;
599 			}
600 			/* Link into the new root's left tree. */
601 			lefttreemax->right = root;
602 			lefttreemax = root;
603 		} else
604 			break;
605 	}
606 	/* Assemble the new root. */
607 	lefttreemax->right = root->left;
608 	righttreemin->left = root->right;
609 	root->left = dummy.right;
610 	root->right = dummy.left;
611 	return (root);
612 }
613 
614 /*
615  *	vm_page_insert:		[ internal use only ]
616  *
617  *	Inserts the given mem entry into the object and object list.
618  *
619  *	The pagetables are not updated but will presumably fault the page
620  *	in if necessary, or if a kernel page the caller will at some point
621  *	enter the page into the kernel's pmap.  We are not allowed to block
622  *	here so we *can't* do this anyway.
623  *
624  *	The object and page must be locked.
625  *	This routine may not block.
626  */
627 void
628 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
629 {
630 	vm_page_t root;
631 
632 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
633 	if (m->object != NULL)
634 		panic("vm_page_insert: page already inserted");
635 
636 	/*
637 	 * Record the object/offset pair in this page
638 	 */
639 	m->object = object;
640 	m->pindex = pindex;
641 
642 	/*
643 	 * Now link into the object's ordered list of backed pages.
644 	 */
645 	root = object->root;
646 	if (root == NULL) {
647 		m->left = NULL;
648 		m->right = NULL;
649 		TAILQ_INSERT_TAIL(&object->memq, m, listq);
650 	} else {
651 		root = vm_page_splay(pindex, root);
652 		if (pindex < root->pindex) {
653 			m->left = root->left;
654 			m->right = root;
655 			root->left = NULL;
656 			TAILQ_INSERT_BEFORE(root, m, listq);
657 		} else if (pindex == root->pindex)
658 			panic("vm_page_insert: offset already allocated");
659 		else {
660 			m->right = root->right;
661 			m->left = root;
662 			root->right = NULL;
663 			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
664 		}
665 	}
666 	object->root = m;
667 	object->generation++;
668 
669 	/*
670 	 * show that the object has one more resident page.
671 	 */
672 	object->resident_page_count++;
673 	/*
674 	 * Hold the vnode until the last page is released.
675 	 */
676 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
677 		vhold((struct vnode *)object->handle);
678 
679 	/*
680 	 * Since we are inserting a new and possibly dirty page,
681 	 * update the object's OBJ_MIGHTBEDIRTY flag.
682 	 */
683 	if (m->flags & PG_WRITEABLE)
684 		vm_object_set_writeable_dirty(object);
685 }
686 
687 /*
688  *	vm_page_remove:
689  *				NOTE: used by device pager as well -wfj
690  *
691  *	Removes the given mem entry from the object/offset-page
692  *	table and the object page list, but do not invalidate/terminate
693  *	the backing store.
694  *
695  *	The object and page must be locked.
696  *	The underlying pmap entry (if any) is NOT removed here.
697  *	This routine may not block.
698  */
699 void
700 vm_page_remove(vm_page_t m)
701 {
702 	vm_object_t object;
703 	vm_page_t root;
704 
705 	if ((object = m->object) == NULL)
706 		return;
707 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
708 	if (m->oflags & VPO_BUSY) {
709 		m->oflags &= ~VPO_BUSY;
710 		vm_page_flash(m);
711 	}
712 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
713 
714 	/*
715 	 * Now remove from the object's list of backed pages.
716 	 */
717 	if (m != object->root)
718 		vm_page_splay(m->pindex, object->root);
719 	if (m->left == NULL)
720 		root = m->right;
721 	else {
722 		root = vm_page_splay(m->pindex, m->left);
723 		root->right = m->right;
724 	}
725 	object->root = root;
726 	TAILQ_REMOVE(&object->memq, m, listq);
727 
728 	/*
729 	 * And show that the object has one fewer resident page.
730 	 */
731 	object->resident_page_count--;
732 	object->generation++;
733 	/*
734 	 * The vnode may now be recycled.
735 	 */
736 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
737 		vdrop((struct vnode *)object->handle);
738 
739 	m->object = NULL;
740 }
741 
742 /*
743  *	vm_page_lookup:
744  *
745  *	Returns the page associated with the object/offset
746  *	pair specified; if none is found, NULL is returned.
747  *
748  *	The object must be locked.
749  *	This routine may not block.
750  *	This is a critical path routine
751  */
752 vm_page_t
753 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
754 {
755 	vm_page_t m;
756 
757 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
758 	if ((m = object->root) != NULL && m->pindex != pindex) {
759 		m = vm_page_splay(pindex, m);
760 		if ((object->root = m)->pindex != pindex)
761 			m = NULL;
762 	}
763 	return (m);
764 }
765 
766 /*
767  *	vm_page_rename:
768  *
769  *	Move the given memory entry from its
770  *	current object to the specified target object/offset.
771  *
772  *	The object must be locked.
773  *	This routine may not block.
774  *
775  *	Note: swap associated with the page must be invalidated by the move.  We
776  *	      have to do this for several reasons:  (1) we aren't freeing the
777  *	      page, (2) we are dirtying the page, (3) the VM system is probably
778  *	      moving the page from object A to B, and will then later move
779  *	      the backing store from A to B and we can't have a conflict.
780  *
781  *	Note: we *always* dirty the page.  It is necessary both for the
782  *	      fact that we moved it, and because we may be invalidating
783  *	      swap.  If the page is on the cache, we have to deactivate it
784  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
785  *	      on the cache.
786  */
787 void
788 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
789 {
790 
791 	vm_page_remove(m);
792 	vm_page_insert(m, new_object, new_pindex);
793 	if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
794 		vm_page_deactivate(m);
795 	vm_page_dirty(m);
796 }
797 
798 /*
799  *	vm_page_select_cache:
800  *
801  *	Move a page of the given color from the cache queue to the free
802  *	queue.  As pages might be found, but are not applicable, they are
803  *	deactivated.
804  *
805  *	This routine may not block.
806  */
807 vm_page_t
808 vm_page_select_cache(void)
809 {
810 	vm_object_t object;
811 	vm_page_t m;
812 	boolean_t was_trylocked;
813 
814 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
815 	while ((m = TAILQ_FIRST(&vm_page_queues[PQ_CACHE].pl)) != NULL) {
816 		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
817 		KASSERT(!pmap_page_is_mapped(m),
818 		    ("Found mapped cache page %p", m));
819 		KASSERT((m->flags & PG_UNMANAGED) == 0,
820 		    ("Found unmanaged cache page %p", m));
821 		KASSERT(m->wire_count == 0, ("Found wired cache page %p", m));
822 		if (m->hold_count == 0 && (object = m->object,
823 		    (was_trylocked = VM_OBJECT_TRYLOCK(object)) ||
824 		    VM_OBJECT_LOCKED(object))) {
825 			KASSERT((m->oflags & VPO_BUSY) == 0 && m->busy == 0,
826 			    ("Found busy cache page %p", m));
827 			vm_page_free(m);
828 			if (was_trylocked)
829 				VM_OBJECT_UNLOCK(object);
830 			break;
831 		}
832 		vm_page_deactivate(m);
833 	}
834 	return (m);
835 }
836 
837 /*
838  *	vm_page_alloc:
839  *
840  *	Allocate and return a memory cell associated
841  *	with this VM object/offset pair.
842  *
843  *	page_req classes:
844  *	VM_ALLOC_NORMAL		normal process request
845  *	VM_ALLOC_SYSTEM		system *really* needs a page
846  *	VM_ALLOC_INTERRUPT	interrupt time request
847  *	VM_ALLOC_ZERO		zero page
848  *
849  *	This routine may not block.
850  *
851  *	Additional special handling is required when called from an
852  *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
853  *	the page cache in this case.
854  */
855 vm_page_t
856 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
857 {
858 	vm_page_t m = NULL;
859 	int flags, page_req;
860 
861 	page_req = req & VM_ALLOC_CLASS_MASK;
862 	KASSERT(curthread->td_intr_nesting_level == 0 ||
863 	    page_req == VM_ALLOC_INTERRUPT,
864 	    ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
865 
866 	if ((req & VM_ALLOC_NOOBJ) == 0) {
867 		KASSERT(object != NULL,
868 		    ("vm_page_alloc: NULL object."));
869 		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
870 	}
871 
872 	/*
873 	 * The pager is allowed to eat deeper into the free page list.
874 	 */
875 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
876 		page_req = VM_ALLOC_SYSTEM;
877 	};
878 
879 loop:
880 	mtx_lock(&vm_page_queue_free_mtx);
881 	if (cnt.v_free_count > cnt.v_free_reserved ||
882 	    (page_req == VM_ALLOC_SYSTEM &&
883 	     cnt.v_cache_count == 0 &&
884 	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
885 	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
886 		/*
887 		 * Allocate from the free queue if the number of free pages
888 		 * exceeds the minimum for the request class.
889 		 */
890 		m = vm_phys_alloc_pages(object != NULL ?
891 		    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
892 	} else if (page_req != VM_ALLOC_INTERRUPT) {
893 		mtx_unlock(&vm_page_queue_free_mtx);
894 		/*
895 		 * Allocatable from cache (non-interrupt only).  On success,
896 		 * we must free the page and try again, thus ensuring that
897 		 * cnt.v_*_free_min counters are replenished.
898 		 */
899 		vm_page_lock_queues();
900 		if ((m = vm_page_select_cache()) == NULL) {
901 			KASSERT(cnt.v_cache_count == 0,
902 			    ("vm_page_alloc: cache queue is missing %d pages",
903 			    cnt.v_cache_count));
904 			vm_page_unlock_queues();
905 			atomic_add_int(&vm_pageout_deficit, 1);
906 			pagedaemon_wakeup();
907 
908 			if (page_req != VM_ALLOC_SYSTEM)
909 				return (NULL);
910 
911 			mtx_lock(&vm_page_queue_free_mtx);
912 			if (cnt.v_free_count <= cnt.v_interrupt_free_min) {
913 				mtx_unlock(&vm_page_queue_free_mtx);
914 				return (NULL);
915 			}
916 			m = vm_phys_alloc_pages(object != NULL ?
917 			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
918 		} else {
919 			vm_page_unlock_queues();
920 			goto loop;
921 		}
922 	} else {
923 		/*
924 		 * Not allocatable from cache from interrupt, give up.
925 		 */
926 		mtx_unlock(&vm_page_queue_free_mtx);
927 		atomic_add_int(&vm_pageout_deficit, 1);
928 		pagedaemon_wakeup();
929 		return (NULL);
930 	}
931 
932 	/*
933 	 *  At this point we had better have found a good page.
934 	 */
935 
936 	KASSERT(
937 	    m != NULL,
938 	    ("vm_page_alloc(): missing page on free queue")
939 	);
940 	KASSERT(VM_PAGE_IS_FREE(m),
941 	    ("vm_page_alloc: page %p is not free", m));
942 
943 	/*
944 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
945 	 */
946 	flags = 0;
947 	if (m->flags & PG_ZERO) {
948 		vm_page_zero_count--;
949 		if (req & VM_ALLOC_ZERO)
950 			flags = PG_ZERO;
951 	}
952 	if (object != NULL && object->type == OBJT_PHYS)
953 		flags |= PG_UNMANAGED;
954 	m->flags = flags;
955 	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
956 		m->oflags = 0;
957 	else
958 		m->oflags = VPO_BUSY;
959 	if (req & VM_ALLOC_WIRED) {
960 		atomic_add_int(&cnt.v_wire_count, 1);
961 		m->wire_count = 1;
962 	} else
963 		m->wire_count = 0;
964 	m->hold_count = 0;
965 	m->act_count = 0;
966 	m->busy = 0;
967 	m->valid = 0;
968 	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
969 	mtx_unlock(&vm_page_queue_free_mtx);
970 
971 	if ((req & VM_ALLOC_NOOBJ) == 0)
972 		vm_page_insert(m, object, pindex);
973 	else
974 		m->pindex = pindex;
975 
976 	/*
977 	 * Don't wakeup too often - wakeup the pageout daemon when
978 	 * we would be nearly out of memory.
979 	 */
980 	if (vm_paging_needed())
981 		pagedaemon_wakeup();
982 
983 	return (m);
984 }
985 
986 /*
987  *	vm_wait:	(also see VM_WAIT macro)
988  *
989  *	Block until free pages are available for allocation
990  *	- Called in various places before memory allocations.
991  */
992 void
993 vm_wait(void)
994 {
995 
996 	mtx_lock(&vm_page_queue_free_mtx);
997 	if (curproc == pageproc) {
998 		vm_pageout_pages_needed = 1;
999 		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1000 		    PDROP | PSWP, "VMWait", 0);
1001 	} else {
1002 		if (!vm_pages_needed) {
1003 			vm_pages_needed = 1;
1004 			wakeup(&vm_pages_needed);
1005 		}
1006 		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1007 		    "vmwait", 0);
1008 	}
1009 }
1010 
1011 /*
1012  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1013  *
1014  *	Block until free pages are available for allocation
1015  *	- Called only in vm_fault so that processes page faulting
1016  *	  can be easily tracked.
1017  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1018  *	  processes will be able to grab memory first.  Do not change
1019  *	  this balance without careful testing first.
1020  */
1021 void
1022 vm_waitpfault(void)
1023 {
1024 
1025 	mtx_lock(&vm_page_queue_free_mtx);
1026 	if (!vm_pages_needed) {
1027 		vm_pages_needed = 1;
1028 		wakeup(&vm_pages_needed);
1029 	}
1030 	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1031 	    "pfault", 0);
1032 }
1033 
1034 /*
1035  *	vm_page_activate:
1036  *
1037  *	Put the specified page on the active list (if appropriate).
1038  *	Ensure that act_count is at least ACT_INIT but do not otherwise
1039  *	mess with it.
1040  *
1041  *	The page queues must be locked.
1042  *	This routine may not block.
1043  */
1044 void
1045 vm_page_activate(vm_page_t m)
1046 {
1047 
1048 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1049 	if (VM_PAGE_GETKNOWNQUEUE2(m) != PQ_ACTIVE) {
1050 		if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1051 			cnt.v_reactivated++;
1052 		vm_pageq_remove(m);
1053 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1054 			if (m->act_count < ACT_INIT)
1055 				m->act_count = ACT_INIT;
1056 			vm_pageq_enqueue(PQ_ACTIVE, m);
1057 		}
1058 	} else {
1059 		if (m->act_count < ACT_INIT)
1060 			m->act_count = ACT_INIT;
1061 	}
1062 }
1063 
1064 /*
1065  *	vm_page_free_wakeup:
1066  *
1067  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1068  *	routine is called when a page has been added to the cache or free
1069  *	queues.
1070  *
1071  *	The page queues must be locked.
1072  *	This routine may not block.
1073  */
1074 static inline void
1075 vm_page_free_wakeup(void)
1076 {
1077 
1078 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1079 	/*
1080 	 * if pageout daemon needs pages, then tell it that there are
1081 	 * some free.
1082 	 */
1083 	if (vm_pageout_pages_needed &&
1084 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1085 		wakeup(&vm_pageout_pages_needed);
1086 		vm_pageout_pages_needed = 0;
1087 	}
1088 	/*
1089 	 * wakeup processes that are waiting on memory if we hit a
1090 	 * high water mark. And wakeup scheduler process if we have
1091 	 * lots of memory. this process will swapin processes.
1092 	 */
1093 	if (vm_pages_needed && !vm_page_count_min()) {
1094 		vm_pages_needed = 0;
1095 		wakeup(&cnt.v_free_count);
1096 	}
1097 }
1098 
1099 /*
1100  *	vm_page_free_toq:
1101  *
1102  *	Returns the given page to the free list,
1103  *	disassociating it with any VM object.
1104  *
1105  *	Object and page must be locked prior to entry.
1106  *	This routine may not block.
1107  */
1108 
1109 void
1110 vm_page_free_toq(vm_page_t m)
1111 {
1112 
1113 	if (VM_PAGE_GETQUEUE(m) != PQ_NONE)
1114 		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1115 	KASSERT(!pmap_page_is_mapped(m),
1116 	    ("vm_page_free_toq: freeing mapped page %p", m));
1117 	PCPU_INC(cnt.v_tfree);
1118 
1119 	if (m->busy || VM_PAGE_IS_FREE(m)) {
1120 		printf(
1121 		"vm_page_free: pindex(%lu), busy(%d), VPO_BUSY(%d), hold(%d)\n",
1122 		    (u_long)m->pindex, m->busy, (m->oflags & VPO_BUSY) ? 1 : 0,
1123 		    m->hold_count);
1124 		if (VM_PAGE_IS_FREE(m))
1125 			panic("vm_page_free: freeing free page");
1126 		else
1127 			panic("vm_page_free: freeing busy page");
1128 	}
1129 
1130 	/*
1131 	 * unqueue, then remove page.  Note that we cannot destroy
1132 	 * the page here because we do not want to call the pager's
1133 	 * callback routine until after we've put the page on the
1134 	 * appropriate free queue.
1135 	 */
1136 	vm_pageq_remove_nowakeup(m);
1137 	vm_page_remove(m);
1138 
1139 	/*
1140 	 * If fictitious remove object association and
1141 	 * return, otherwise delay object association removal.
1142 	 */
1143 	if ((m->flags & PG_FICTITIOUS) != 0) {
1144 		return;
1145 	}
1146 
1147 	m->valid = 0;
1148 	vm_page_undirty(m);
1149 
1150 	if (m->wire_count != 0) {
1151 		if (m->wire_count > 1) {
1152 			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1153 				m->wire_count, (long)m->pindex);
1154 		}
1155 		panic("vm_page_free: freeing wired page");
1156 	}
1157 	if (m->hold_count != 0) {
1158 		m->flags &= ~PG_ZERO;
1159 		vm_pageq_enqueue(PQ_HOLD, m);
1160 	} else {
1161 		m->flags |= PG_FREE;
1162 		mtx_lock(&vm_page_queue_free_mtx);
1163 		if ((m->flags & PG_ZERO) != 0) {
1164 			vm_phys_free_pages(m, 0);
1165 			++vm_page_zero_count;
1166 		} else {
1167 			vm_phys_free_pages(m, 0);
1168 			vm_page_zero_idle_wakeup();
1169 		}
1170 		vm_page_free_wakeup();
1171 		mtx_unlock(&vm_page_queue_free_mtx);
1172 	}
1173 }
1174 
1175 /*
1176  *	vm_page_wire:
1177  *
1178  *	Mark this page as wired down by yet
1179  *	another map, removing it from paging queues
1180  *	as necessary.
1181  *
1182  *	The page queues must be locked.
1183  *	This routine may not block.
1184  */
1185 void
1186 vm_page_wire(vm_page_t m)
1187 {
1188 
1189 	/*
1190 	 * Only bump the wire statistics if the page is not already wired,
1191 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1192 	 * it is already off the queues).
1193 	 */
1194 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1195 	if (m->flags & PG_FICTITIOUS)
1196 		return;
1197 	if (m->wire_count == 0) {
1198 		if ((m->flags & PG_UNMANAGED) == 0)
1199 			vm_pageq_remove(m);
1200 		atomic_add_int(&cnt.v_wire_count, 1);
1201 	}
1202 	m->wire_count++;
1203 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1204 }
1205 
1206 /*
1207  *	vm_page_unwire:
1208  *
1209  *	Release one wiring of this page, potentially
1210  *	enabling it to be paged again.
1211  *
1212  *	Many pages placed on the inactive queue should actually go
1213  *	into the cache, but it is difficult to figure out which.  What
1214  *	we do instead, if the inactive target is well met, is to put
1215  *	clean pages at the head of the inactive queue instead of the tail.
1216  *	This will cause them to be moved to the cache more quickly and
1217  *	if not actively re-referenced, freed more quickly.  If we just
1218  *	stick these pages at the end of the inactive queue, heavy filesystem
1219  *	meta-data accesses can cause an unnecessary paging load on memory bound
1220  *	processes.  This optimization causes one-time-use metadata to be
1221  *	reused more quickly.
1222  *
1223  *	BUT, if we are in a low-memory situation we have no choice but to
1224  *	put clean pages on the cache queue.
1225  *
1226  *	A number of routines use vm_page_unwire() to guarantee that the page
1227  *	will go into either the inactive or active queues, and will NEVER
1228  *	be placed in the cache - for example, just after dirtying a page.
1229  *	dirty pages in the cache are not allowed.
1230  *
1231  *	The page queues must be locked.
1232  *	This routine may not block.
1233  */
1234 void
1235 vm_page_unwire(vm_page_t m, int activate)
1236 {
1237 
1238 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1239 	if (m->flags & PG_FICTITIOUS)
1240 		return;
1241 	if (m->wire_count > 0) {
1242 		m->wire_count--;
1243 		if (m->wire_count == 0) {
1244 			atomic_subtract_int(&cnt.v_wire_count, 1);
1245 			if (m->flags & PG_UNMANAGED) {
1246 				;
1247 			} else if (activate)
1248 				vm_pageq_enqueue(PQ_ACTIVE, m);
1249 			else {
1250 				vm_page_flag_clear(m, PG_WINATCFLS);
1251 				vm_pageq_enqueue(PQ_INACTIVE, m);
1252 			}
1253 		}
1254 	} else {
1255 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1256 	}
1257 }
1258 
1259 
1260 /*
1261  * Move the specified page to the inactive queue.  If the page has
1262  * any associated swap, the swap is deallocated.
1263  *
1264  * Normally athead is 0 resulting in LRU operation.  athead is set
1265  * to 1 if we want this page to be 'as if it were placed in the cache',
1266  * except without unmapping it from the process address space.
1267  *
1268  * This routine may not block.
1269  */
1270 static inline void
1271 _vm_page_deactivate(vm_page_t m, int athead)
1272 {
1273 
1274 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1275 
1276 	/*
1277 	 * Ignore if already inactive.
1278 	 */
1279 	if (VM_PAGE_INQUEUE2(m, PQ_INACTIVE))
1280 		return;
1281 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1282 		if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1283 			cnt.v_reactivated++;
1284 		vm_page_flag_clear(m, PG_WINATCFLS);
1285 		vm_pageq_remove(m);
1286 		if (athead)
1287 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1288 		else
1289 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1290 		VM_PAGE_SETQUEUE2(m, PQ_INACTIVE);
1291 		cnt.v_inactive_count++;
1292 	}
1293 }
1294 
1295 void
1296 vm_page_deactivate(vm_page_t m)
1297 {
1298     _vm_page_deactivate(m, 0);
1299 }
1300 
1301 /*
1302  * vm_page_try_to_cache:
1303  *
1304  * Returns 0 on failure, 1 on success
1305  */
1306 int
1307 vm_page_try_to_cache(vm_page_t m)
1308 {
1309 
1310 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1311 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1312 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1313 	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
1314 		return (0);
1315 	}
1316 	pmap_remove_all(m);
1317 	if (m->dirty)
1318 		return (0);
1319 	vm_page_cache(m);
1320 	return (1);
1321 }
1322 
1323 /*
1324  * vm_page_try_to_free()
1325  *
1326  *	Attempt to free the page.  If we cannot free it, we do nothing.
1327  *	1 is returned on success, 0 on failure.
1328  */
1329 int
1330 vm_page_try_to_free(vm_page_t m)
1331 {
1332 
1333 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1334 	if (m->object != NULL)
1335 		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1336 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1337 	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
1338 		return (0);
1339 	}
1340 	pmap_remove_all(m);
1341 	if (m->dirty)
1342 		return (0);
1343 	vm_page_free(m);
1344 	return (1);
1345 }
1346 
1347 /*
1348  * vm_page_cache
1349  *
1350  * Put the specified page onto the page cache queue (if appropriate).
1351  *
1352  * This routine may not block.
1353  */
1354 void
1355 vm_page_cache(vm_page_t m)
1356 {
1357 
1358 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1359 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1360 	if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy ||
1361 	    m->hold_count || m->wire_count) {
1362 		panic("vm_page_cache: attempting to cache busy page");
1363 	}
1364 	if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1365 		return;
1366 
1367 	/*
1368 	 * Remove all pmaps and indicate that the page is not
1369 	 * writeable or mapped.
1370 	 */
1371 	pmap_remove_all(m);
1372 	if (m->dirty != 0) {
1373 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1374 			(long)m->pindex);
1375 	}
1376 	vm_pageq_remove_nowakeup(m);
1377 	vm_pageq_enqueue(PQ_CACHE, m);
1378 	mtx_lock(&vm_page_queue_free_mtx);
1379 	vm_page_free_wakeup();
1380 	mtx_unlock(&vm_page_queue_free_mtx);
1381 }
1382 
1383 /*
1384  * vm_page_dontneed
1385  *
1386  *	Cache, deactivate, or do nothing as appropriate.  This routine
1387  *	is typically used by madvise() MADV_DONTNEED.
1388  *
1389  *	Generally speaking we want to move the page into the cache so
1390  *	it gets reused quickly.  However, this can result in a silly syndrome
1391  *	due to the page recycling too quickly.  Small objects will not be
1392  *	fully cached.  On the otherhand, if we move the page to the inactive
1393  *	queue we wind up with a problem whereby very large objects
1394  *	unnecessarily blow away our inactive and cache queues.
1395  *
1396  *	The solution is to move the pages based on a fixed weighting.  We
1397  *	either leave them alone, deactivate them, or move them to the cache,
1398  *	where moving them to the cache has the highest weighting.
1399  *	By forcing some pages into other queues we eventually force the
1400  *	system to balance the queues, potentially recovering other unrelated
1401  *	space from active.  The idea is to not force this to happen too
1402  *	often.
1403  */
1404 void
1405 vm_page_dontneed(vm_page_t m)
1406 {
1407 	static int dnweight;
1408 	int dnw;
1409 	int head;
1410 
1411 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1412 	dnw = ++dnweight;
1413 
1414 	/*
1415 	 * occassionally leave the page alone
1416 	 */
1417 	if ((dnw & 0x01F0) == 0 ||
1418 	    VM_PAGE_INQUEUE2(m, PQ_INACTIVE) ||
1419 	    VM_PAGE_INQUEUE1(m, PQ_CACHE)
1420 	) {
1421 		if (m->act_count >= ACT_INIT)
1422 			--m->act_count;
1423 		return;
1424 	}
1425 
1426 	if (m->dirty == 0 && pmap_is_modified(m))
1427 		vm_page_dirty(m);
1428 
1429 	if (m->dirty || (dnw & 0x0070) == 0) {
1430 		/*
1431 		 * Deactivate the page 3 times out of 32.
1432 		 */
1433 		head = 0;
1434 	} else {
1435 		/*
1436 		 * Cache the page 28 times out of every 32.  Note that
1437 		 * the page is deactivated instead of cached, but placed
1438 		 * at the head of the queue instead of the tail.
1439 		 */
1440 		head = 1;
1441 	}
1442 	_vm_page_deactivate(m, head);
1443 }
1444 
1445 /*
1446  * Grab a page, waiting until we are waken up due to the page
1447  * changing state.  We keep on waiting, if the page continues
1448  * to be in the object.  If the page doesn't exist, first allocate it
1449  * and then conditionally zero it.
1450  *
1451  * This routine may block.
1452  */
1453 vm_page_t
1454 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1455 {
1456 	vm_page_t m;
1457 
1458 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1459 retrylookup:
1460 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1461 		if (vm_page_sleep_if_busy(m, TRUE, "pgrbwt")) {
1462 			if ((allocflags & VM_ALLOC_RETRY) == 0)
1463 				return (NULL);
1464 			goto retrylookup;
1465 		} else {
1466 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
1467 				vm_page_lock_queues();
1468 				vm_page_wire(m);
1469 				vm_page_unlock_queues();
1470 			}
1471 			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
1472 				vm_page_busy(m);
1473 			return (m);
1474 		}
1475 	}
1476 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1477 	if (m == NULL) {
1478 		VM_OBJECT_UNLOCK(object);
1479 		VM_WAIT;
1480 		VM_OBJECT_LOCK(object);
1481 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1482 			return (NULL);
1483 		goto retrylookup;
1484 	}
1485 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1486 		pmap_zero_page(m);
1487 	return (m);
1488 }
1489 
1490 /*
1491  * Mapping function for valid bits or for dirty bits in
1492  * a page.  May not block.
1493  *
1494  * Inputs are required to range within a page.
1495  */
1496 int
1497 vm_page_bits(int base, int size)
1498 {
1499 	int first_bit;
1500 	int last_bit;
1501 
1502 	KASSERT(
1503 	    base + size <= PAGE_SIZE,
1504 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1505 	);
1506 
1507 	if (size == 0)		/* handle degenerate case */
1508 		return (0);
1509 
1510 	first_bit = base >> DEV_BSHIFT;
1511 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1512 
1513 	return ((2 << last_bit) - (1 << first_bit));
1514 }
1515 
1516 /*
1517  *	vm_page_set_validclean:
1518  *
1519  *	Sets portions of a page valid and clean.  The arguments are expected
1520  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1521  *	of any partial chunks touched by the range.  The invalid portion of
1522  *	such chunks will be zero'd.
1523  *
1524  *	This routine may not block.
1525  *
1526  *	(base + size) must be less then or equal to PAGE_SIZE.
1527  */
1528 void
1529 vm_page_set_validclean(vm_page_t m, int base, int size)
1530 {
1531 	int pagebits;
1532 	int frag;
1533 	int endoff;
1534 
1535 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1536 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1537 	if (size == 0)	/* handle degenerate case */
1538 		return;
1539 
1540 	/*
1541 	 * If the base is not DEV_BSIZE aligned and the valid
1542 	 * bit is clear, we have to zero out a portion of the
1543 	 * first block.
1544 	 */
1545 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1546 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1547 		pmap_zero_page_area(m, frag, base - frag);
1548 
1549 	/*
1550 	 * If the ending offset is not DEV_BSIZE aligned and the
1551 	 * valid bit is clear, we have to zero out a portion of
1552 	 * the last block.
1553 	 */
1554 	endoff = base + size;
1555 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1556 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1557 		pmap_zero_page_area(m, endoff,
1558 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1559 
1560 	/*
1561 	 * Set valid, clear dirty bits.  If validating the entire
1562 	 * page we can safely clear the pmap modify bit.  We also
1563 	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
1564 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1565 	 * be set again.
1566 	 *
1567 	 * We set valid bits inclusive of any overlap, but we can only
1568 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1569 	 * the range.
1570 	 */
1571 	pagebits = vm_page_bits(base, size);
1572 	m->valid |= pagebits;
1573 #if 0	/* NOT YET */
1574 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1575 		frag = DEV_BSIZE - frag;
1576 		base += frag;
1577 		size -= frag;
1578 		if (size < 0)
1579 			size = 0;
1580 	}
1581 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1582 #endif
1583 	m->dirty &= ~pagebits;
1584 	if (base == 0 && size == PAGE_SIZE) {
1585 		pmap_clear_modify(m);
1586 		m->oflags &= ~VPO_NOSYNC;
1587 	}
1588 }
1589 
1590 void
1591 vm_page_clear_dirty(vm_page_t m, int base, int size)
1592 {
1593 
1594 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1595 	m->dirty &= ~vm_page_bits(base, size);
1596 }
1597 
1598 /*
1599  *	vm_page_set_invalid:
1600  *
1601  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1602  *	valid and dirty bits for the effected areas are cleared.
1603  *
1604  *	May not block.
1605  */
1606 void
1607 vm_page_set_invalid(vm_page_t m, int base, int size)
1608 {
1609 	int bits;
1610 
1611 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1612 	bits = vm_page_bits(base, size);
1613 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1614 	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
1615 		pmap_remove_all(m);
1616 	m->valid &= ~bits;
1617 	m->dirty &= ~bits;
1618 	m->object->generation++;
1619 }
1620 
1621 /*
1622  * vm_page_zero_invalid()
1623  *
1624  *	The kernel assumes that the invalid portions of a page contain
1625  *	garbage, but such pages can be mapped into memory by user code.
1626  *	When this occurs, we must zero out the non-valid portions of the
1627  *	page so user code sees what it expects.
1628  *
1629  *	Pages are most often semi-valid when the end of a file is mapped
1630  *	into memory and the file's size is not page aligned.
1631  */
1632 void
1633 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1634 {
1635 	int b;
1636 	int i;
1637 
1638 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1639 	/*
1640 	 * Scan the valid bits looking for invalid sections that
1641 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1642 	 * valid bit may be set ) have already been zerod by
1643 	 * vm_page_set_validclean().
1644 	 */
1645 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1646 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1647 		    (m->valid & (1 << i))
1648 		) {
1649 			if (i > b) {
1650 				pmap_zero_page_area(m,
1651 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1652 			}
1653 			b = i + 1;
1654 		}
1655 	}
1656 
1657 	/*
1658 	 * setvalid is TRUE when we can safely set the zero'd areas
1659 	 * as being valid.  We can do this if there are no cache consistancy
1660 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1661 	 */
1662 	if (setvalid)
1663 		m->valid = VM_PAGE_BITS_ALL;
1664 }
1665 
1666 /*
1667  *	vm_page_is_valid:
1668  *
1669  *	Is (partial) page valid?  Note that the case where size == 0
1670  *	will return FALSE in the degenerate case where the page is
1671  *	entirely invalid, and TRUE otherwise.
1672  *
1673  *	May not block.
1674  */
1675 int
1676 vm_page_is_valid(vm_page_t m, int base, int size)
1677 {
1678 	int bits = vm_page_bits(base, size);
1679 
1680 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1681 	if (m->valid && ((m->valid & bits) == bits))
1682 		return 1;
1683 	else
1684 		return 0;
1685 }
1686 
1687 /*
1688  * update dirty bits from pmap/mmu.  May not block.
1689  */
1690 void
1691 vm_page_test_dirty(vm_page_t m)
1692 {
1693 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1694 		vm_page_dirty(m);
1695 	}
1696 }
1697 
1698 int so_zerocp_fullpage = 0;
1699 
1700 /*
1701  *	Replace the given page with a copy.  The copied page assumes
1702  *	the portion of the given page's "wire_count" that is not the
1703  *	responsibility of this copy-on-write mechanism.
1704  *
1705  *	The object containing the given page must have a non-zero
1706  *	paging-in-progress count and be locked.
1707  */
1708 void
1709 vm_page_cowfault(vm_page_t m)
1710 {
1711 	vm_page_t mnew;
1712 	vm_object_t object;
1713 	vm_pindex_t pindex;
1714 
1715 	object = m->object;
1716 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1717 	KASSERT(object->paging_in_progress != 0,
1718 	    ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
1719 	    object));
1720 	pindex = m->pindex;
1721 
1722  retry_alloc:
1723 	pmap_remove_all(m);
1724 	vm_page_remove(m);
1725 	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
1726 	if (mnew == NULL) {
1727 		vm_page_insert(m, object, pindex);
1728 		vm_page_unlock_queues();
1729 		VM_OBJECT_UNLOCK(object);
1730 		VM_WAIT;
1731 		VM_OBJECT_LOCK(object);
1732 		if (m == vm_page_lookup(object, pindex)) {
1733 			vm_page_lock_queues();
1734 			goto retry_alloc;
1735 		} else {
1736 			/*
1737 			 * Page disappeared during the wait.
1738 			 */
1739 			vm_page_lock_queues();
1740 			return;
1741 		}
1742 	}
1743 
1744 	if (m->cow == 0) {
1745 		/*
1746 		 * check to see if we raced with an xmit complete when
1747 		 * waiting to allocate a page.  If so, put things back
1748 		 * the way they were
1749 		 */
1750 		vm_page_free(mnew);
1751 		vm_page_insert(m, object, pindex);
1752 	} else { /* clear COW & copy page */
1753 		if (!so_zerocp_fullpage)
1754 			pmap_copy_page(m, mnew);
1755 		mnew->valid = VM_PAGE_BITS_ALL;
1756 		vm_page_dirty(mnew);
1757 		mnew->wire_count = m->wire_count - m->cow;
1758 		m->wire_count = m->cow;
1759 	}
1760 }
1761 
1762 void
1763 vm_page_cowclear(vm_page_t m)
1764 {
1765 
1766 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1767 	if (m->cow) {
1768 		m->cow--;
1769 		/*
1770 		 * let vm_fault add back write permission  lazily
1771 		 */
1772 	}
1773 	/*
1774 	 *  sf_buf_free() will free the page, so we needn't do it here
1775 	 */
1776 }
1777 
1778 void
1779 vm_page_cowsetup(vm_page_t m)
1780 {
1781 
1782 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1783 	m->cow++;
1784 	pmap_remove_write(m);
1785 }
1786 
1787 #include "opt_ddb.h"
1788 #ifdef DDB
1789 #include <sys/kernel.h>
1790 
1791 #include <ddb/ddb.h>
1792 
1793 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1794 {
1795 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1796 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1797 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1798 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1799 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1800 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1801 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1802 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1803 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1804 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1805 }
1806 
1807 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1808 {
1809 
1810 	db_printf("PQ_FREE:");
1811 	db_printf(" %d", cnt.v_free_count);
1812 	db_printf("\n");
1813 
1814 	db_printf("PQ_CACHE:");
1815 	db_printf(" %d", *vm_page_queues[PQ_CACHE].cnt);
1816 	db_printf("\n");
1817 
1818 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1819 		*vm_page_queues[PQ_ACTIVE].cnt,
1820 		*vm_page_queues[PQ_INACTIVE].cnt);
1821 }
1822 #endif /* DDB */
1823