1 /*- 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 33 */ 34 35 /*- 36 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 37 * All rights reserved. 38 * 39 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 40 * 41 * Permission to use, copy, modify and distribute this software and 42 * its documentation is hereby granted, provided that both the copyright 43 * notice and this permission notice appear in all copies of the 44 * software, derivative works or modified versions, and any portions 45 * thereof, and that both notices appear in supporting documentation. 46 * 47 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 48 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 49 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 50 * 51 * Carnegie Mellon requests users of this software to return to 52 * 53 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 54 * School of Computer Science 55 * Carnegie Mellon University 56 * Pittsburgh PA 15213-3890 57 * 58 * any improvements or extensions that they make and grant Carnegie the 59 * rights to redistribute these changes. 60 */ 61 62 /* 63 * GENERAL RULES ON VM_PAGE MANIPULATION 64 * 65 * - a pageq mutex is required when adding or removing a page from a 66 * page queue (vm_page_queue[]), regardless of other mutexes or the 67 * busy state of a page. 68 * 69 * - a hash chain mutex is required when associating or disassociating 70 * a page from the VM PAGE CACHE hash table (vm_page_buckets), 71 * regardless of other mutexes or the busy state of a page. 72 * 73 * - either a hash chain mutex OR a busied page is required in order 74 * to modify the page flags. A hash chain mutex must be obtained in 75 * order to busy a page. A page's flags cannot be modified by a 76 * hash chain mutex if the page is marked busy. 77 * 78 * - The object memq mutex is held when inserting or removing 79 * pages from an object (vm_page_insert() or vm_page_remove()). This 80 * is different from the object's main mutex. 81 * 82 * Generally speaking, you have to be aware of side effects when running 83 * vm_page ops. A vm_page_lookup() will return with the hash chain 84 * locked, whether it was able to lookup the page or not. vm_page_free(), 85 * vm_page_cache(), vm_page_activate(), and a number of other routines 86 * will release the hash chain mutex for you. Intermediate manipulation 87 * routines such as vm_page_flag_set() expect the hash chain to be held 88 * on entry and the hash chain will remain held on return. 89 * 90 * pageq scanning can only occur with the pageq in question locked. 91 * We have a known bottleneck with the active queue, but the cache 92 * and free queues are actually arrays already. 93 */ 94 95 /* 96 * Resident memory management module. 97 */ 98 99 #include <sys/cdefs.h> 100 __FBSDID("$FreeBSD$"); 101 102 #include <sys/param.h> 103 #include <sys/systm.h> 104 #include <sys/lock.h> 105 #include <sys/kernel.h> 106 #include <sys/malloc.h> 107 #include <sys/mutex.h> 108 #include <sys/proc.h> 109 #include <sys/sysctl.h> 110 #include <sys/vmmeter.h> 111 #include <sys/vnode.h> 112 113 #include <vm/vm.h> 114 #include <vm/vm_param.h> 115 #include <vm/vm_kern.h> 116 #include <vm/vm_object.h> 117 #include <vm/vm_page.h> 118 #include <vm/vm_pageout.h> 119 #include <vm/vm_pager.h> 120 #include <vm/vm_phys.h> 121 #include <vm/vm_extern.h> 122 #include <vm/uma.h> 123 #include <vm/uma_int.h> 124 125 #include <machine/md_var.h> 126 127 /* 128 * Associated with page of user-allocatable memory is a 129 * page structure. 130 */ 131 132 struct mtx vm_page_queue_mtx; 133 struct mtx vm_page_queue_free_mtx; 134 135 vm_page_t vm_page_array = 0; 136 int vm_page_array_size = 0; 137 long first_page = 0; 138 int vm_page_zero_count = 0; 139 140 static int boot_pages = UMA_BOOT_PAGES; 141 TUNABLE_INT("vm.boot_pages", &boot_pages); 142 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0, 143 "number of pages allocated for bootstrapping the VM system"); 144 145 /* 146 * vm_set_page_size: 147 * 148 * Sets the page size, perhaps based upon the memory 149 * size. Must be called before any use of page-size 150 * dependent functions. 151 */ 152 void 153 vm_set_page_size(void) 154 { 155 if (cnt.v_page_size == 0) 156 cnt.v_page_size = PAGE_SIZE; 157 if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0) 158 panic("vm_set_page_size: page size not a power of two"); 159 } 160 161 /* 162 * vm_page_blacklist_lookup: 163 * 164 * See if a physical address in this page has been listed 165 * in the blacklist tunable. Entries in the tunable are 166 * separated by spaces or commas. If an invalid integer is 167 * encountered then the rest of the string is skipped. 168 */ 169 static int 170 vm_page_blacklist_lookup(char *list, vm_paddr_t pa) 171 { 172 vm_paddr_t bad; 173 char *cp, *pos; 174 175 for (pos = list; *pos != '\0'; pos = cp) { 176 bad = strtoq(pos, &cp, 0); 177 if (*cp != '\0') { 178 if (*cp == ' ' || *cp == ',') { 179 cp++; 180 if (cp == pos) 181 continue; 182 } else 183 break; 184 } 185 if (pa == trunc_page(bad)) 186 return (1); 187 } 188 return (0); 189 } 190 191 /* 192 * vm_page_startup: 193 * 194 * Initializes the resident memory module. 195 * 196 * Allocates memory for the page cells, and 197 * for the object/offset-to-page hash table headers. 198 * Each page cell is initialized and placed on the free list. 199 */ 200 vm_offset_t 201 vm_page_startup(vm_offset_t vaddr) 202 { 203 vm_offset_t mapped; 204 vm_size_t npages; 205 vm_paddr_t page_range; 206 vm_paddr_t new_end; 207 int i; 208 vm_paddr_t pa; 209 int nblocks; 210 vm_paddr_t last_pa; 211 char *list; 212 213 /* the biggest memory array is the second group of pages */ 214 vm_paddr_t end; 215 vm_paddr_t biggestsize; 216 vm_paddr_t low_water, high_water; 217 int biggestone; 218 219 vm_paddr_t total; 220 221 total = 0; 222 biggestsize = 0; 223 biggestone = 0; 224 nblocks = 0; 225 vaddr = round_page(vaddr); 226 227 for (i = 0; phys_avail[i + 1]; i += 2) { 228 phys_avail[i] = round_page(phys_avail[i]); 229 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 230 } 231 232 low_water = phys_avail[0]; 233 high_water = phys_avail[1]; 234 235 for (i = 0; phys_avail[i + 1]; i += 2) { 236 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 237 238 if (size > biggestsize) { 239 biggestone = i; 240 biggestsize = size; 241 } 242 if (phys_avail[i] < low_water) 243 low_water = phys_avail[i]; 244 if (phys_avail[i + 1] > high_water) 245 high_water = phys_avail[i + 1]; 246 ++nblocks; 247 total += size; 248 } 249 250 end = phys_avail[biggestone+1]; 251 252 /* 253 * Initialize the locks. 254 */ 255 mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF | 256 MTX_RECURSE); 257 mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL, 258 MTX_DEF); 259 260 /* 261 * Initialize the queue headers for the free queue, the active queue 262 * and the inactive queue. 263 */ 264 vm_pageq_init(); 265 266 /* 267 * Allocate memory for use when boot strapping the kernel memory 268 * allocator. 269 */ 270 new_end = end - (boot_pages * UMA_SLAB_SIZE); 271 new_end = trunc_page(new_end); 272 mapped = pmap_map(&vaddr, new_end, end, 273 VM_PROT_READ | VM_PROT_WRITE); 274 bzero((void *)mapped, end - new_end); 275 uma_startup((void *)mapped, boot_pages); 276 277 #if defined(__amd64__) || defined(__i386__) 278 /* 279 * Allocate a bitmap to indicate that a random physical page 280 * needs to be included in a minidump. 281 * 282 * The amd64 port needs this to indicate which direct map pages 283 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 284 * 285 * However, i386 still needs this workspace internally within the 286 * minidump code. In theory, they are not needed on i386, but are 287 * included should the sf_buf code decide to use them. 288 */ 289 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE; 290 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 291 new_end -= vm_page_dump_size; 292 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, 293 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); 294 bzero((void *)vm_page_dump, vm_page_dump_size); 295 #endif 296 /* 297 * Compute the number of pages of memory that will be available for 298 * use (taking into account the overhead of a page structure per 299 * page). 300 */ 301 first_page = low_water / PAGE_SIZE; 302 #ifdef VM_PHYSSEG_SPARSE 303 page_range = 0; 304 for (i = 0; phys_avail[i + 1] != 0; i += 2) 305 page_range += atop(phys_avail[i + 1] - phys_avail[i]); 306 #elif defined(VM_PHYSSEG_DENSE) 307 page_range = high_water / PAGE_SIZE - first_page; 308 #else 309 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 310 #endif 311 npages = (total - (page_range * sizeof(struct vm_page)) - 312 (end - new_end)) / PAGE_SIZE; 313 end = new_end; 314 315 /* 316 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 317 */ 318 vaddr += PAGE_SIZE; 319 320 /* 321 * Initialize the mem entry structures now, and put them in the free 322 * queue. 323 */ 324 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 325 mapped = pmap_map(&vaddr, new_end, end, 326 VM_PROT_READ | VM_PROT_WRITE); 327 vm_page_array = (vm_page_t) mapped; 328 #ifdef __amd64__ 329 /* 330 * pmap_map on amd64 comes out of the direct-map, not kvm like i386, 331 * so the pages must be tracked for a crashdump to include this data. 332 * This includes the vm_page_array and the early UMA bootstrap pages. 333 */ 334 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE) 335 dump_add_page(pa); 336 #endif 337 phys_avail[biggestone + 1] = new_end; 338 339 /* 340 * Clear all of the page structures 341 */ 342 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 343 for (i = 0; i < page_range; i++) 344 vm_page_array[i].order = VM_NFREEORDER; 345 vm_page_array_size = page_range; 346 347 /* 348 * This assertion tests the hypothesis that npages and total are 349 * redundant. XXX 350 */ 351 page_range = 0; 352 for (i = 0; phys_avail[i + 1] != 0; i += 2) 353 page_range += atop(phys_avail[i + 1] - phys_avail[i]); 354 KASSERT(page_range == npages, 355 ("vm_page_startup: inconsistent page counts")); 356 357 /* 358 * Initialize the physical memory allocator. 359 */ 360 vm_phys_init(); 361 362 /* 363 * Add every available physical page that is not blacklisted to 364 * the free lists. 365 */ 366 cnt.v_page_count = 0; 367 cnt.v_free_count = 0; 368 list = getenv("vm.blacklist"); 369 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 370 pa = phys_avail[i]; 371 last_pa = phys_avail[i + 1]; 372 while (pa < last_pa) { 373 if (list != NULL && 374 vm_page_blacklist_lookup(list, pa)) 375 printf("Skipping page with pa 0x%jx\n", 376 (uintmax_t)pa); 377 else 378 vm_phys_add_page(pa); 379 pa += PAGE_SIZE; 380 } 381 } 382 freeenv(list); 383 return (vaddr); 384 } 385 386 void 387 vm_page_flag_set(vm_page_t m, unsigned short bits) 388 { 389 390 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 391 m->flags |= bits; 392 } 393 394 void 395 vm_page_flag_clear(vm_page_t m, unsigned short bits) 396 { 397 398 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 399 m->flags &= ~bits; 400 } 401 402 void 403 vm_page_busy(vm_page_t m) 404 { 405 406 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 407 KASSERT((m->oflags & VPO_BUSY) == 0, 408 ("vm_page_busy: page already busy!!!")); 409 m->oflags |= VPO_BUSY; 410 } 411 412 /* 413 * vm_page_flash: 414 * 415 * wakeup anyone waiting for the page. 416 */ 417 void 418 vm_page_flash(vm_page_t m) 419 { 420 421 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 422 if (m->oflags & VPO_WANTED) { 423 m->oflags &= ~VPO_WANTED; 424 wakeup(m); 425 } 426 } 427 428 /* 429 * vm_page_wakeup: 430 * 431 * clear the VPO_BUSY flag and wakeup anyone waiting for the 432 * page. 433 * 434 */ 435 void 436 vm_page_wakeup(vm_page_t m) 437 { 438 439 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 440 KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!")); 441 m->oflags &= ~VPO_BUSY; 442 vm_page_flash(m); 443 } 444 445 void 446 vm_page_io_start(vm_page_t m) 447 { 448 449 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 450 m->busy++; 451 } 452 453 void 454 vm_page_io_finish(vm_page_t m) 455 { 456 457 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 458 m->busy--; 459 if (m->busy == 0) 460 vm_page_flash(m); 461 } 462 463 /* 464 * Keep page from being freed by the page daemon 465 * much of the same effect as wiring, except much lower 466 * overhead and should be used only for *very* temporary 467 * holding ("wiring"). 468 */ 469 void 470 vm_page_hold(vm_page_t mem) 471 { 472 473 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 474 mem->hold_count++; 475 } 476 477 void 478 vm_page_unhold(vm_page_t mem) 479 { 480 481 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 482 --mem->hold_count; 483 KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!")); 484 if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD)) 485 vm_page_free_toq(mem); 486 } 487 488 /* 489 * vm_page_free: 490 * 491 * Free a page. 492 */ 493 void 494 vm_page_free(vm_page_t m) 495 { 496 497 m->flags &= ~PG_ZERO; 498 vm_page_free_toq(m); 499 } 500 501 /* 502 * vm_page_free_zero: 503 * 504 * Free a page to the zerod-pages queue 505 */ 506 void 507 vm_page_free_zero(vm_page_t m) 508 { 509 510 m->flags |= PG_ZERO; 511 vm_page_free_toq(m); 512 } 513 514 /* 515 * vm_page_sleep: 516 * 517 * Sleep and release the page queues lock. 518 * 519 * The object containing the given page must be locked. 520 */ 521 void 522 vm_page_sleep(vm_page_t m, const char *msg) 523 { 524 525 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 526 if (!mtx_owned(&vm_page_queue_mtx)) 527 vm_page_lock_queues(); 528 vm_page_flag_set(m, PG_REFERENCED); 529 vm_page_unlock_queues(); 530 531 /* 532 * It's possible that while we sleep, the page will get 533 * unbusied and freed. If we are holding the object 534 * lock, we will assume we hold a reference to the object 535 * such that even if m->object changes, we can re-lock 536 * it. 537 */ 538 m->oflags |= VPO_WANTED; 539 msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0); 540 } 541 542 /* 543 * vm_page_dirty: 544 * 545 * make page all dirty 546 */ 547 void 548 vm_page_dirty(vm_page_t m) 549 { 550 KASSERT(VM_PAGE_GETKNOWNQUEUE1(m) != PQ_CACHE, 551 ("vm_page_dirty: page in cache!")); 552 KASSERT(!VM_PAGE_IS_FREE(m), 553 ("vm_page_dirty: page is free!")); 554 m->dirty = VM_PAGE_BITS_ALL; 555 } 556 557 /* 558 * vm_page_splay: 559 * 560 * Implements Sleator and Tarjan's top-down splay algorithm. Returns 561 * the vm_page containing the given pindex. If, however, that 562 * pindex is not found in the vm_object, returns a vm_page that is 563 * adjacent to the pindex, coming before or after it. 564 */ 565 vm_page_t 566 vm_page_splay(vm_pindex_t pindex, vm_page_t root) 567 { 568 struct vm_page dummy; 569 vm_page_t lefttreemax, righttreemin, y; 570 571 if (root == NULL) 572 return (root); 573 lefttreemax = righttreemin = &dummy; 574 for (;; root = y) { 575 if (pindex < root->pindex) { 576 if ((y = root->left) == NULL) 577 break; 578 if (pindex < y->pindex) { 579 /* Rotate right. */ 580 root->left = y->right; 581 y->right = root; 582 root = y; 583 if ((y = root->left) == NULL) 584 break; 585 } 586 /* Link into the new root's right tree. */ 587 righttreemin->left = root; 588 righttreemin = root; 589 } else if (pindex > root->pindex) { 590 if ((y = root->right) == NULL) 591 break; 592 if (pindex > y->pindex) { 593 /* Rotate left. */ 594 root->right = y->left; 595 y->left = root; 596 root = y; 597 if ((y = root->right) == NULL) 598 break; 599 } 600 /* Link into the new root's left tree. */ 601 lefttreemax->right = root; 602 lefttreemax = root; 603 } else 604 break; 605 } 606 /* Assemble the new root. */ 607 lefttreemax->right = root->left; 608 righttreemin->left = root->right; 609 root->left = dummy.right; 610 root->right = dummy.left; 611 return (root); 612 } 613 614 /* 615 * vm_page_insert: [ internal use only ] 616 * 617 * Inserts the given mem entry into the object and object list. 618 * 619 * The pagetables are not updated but will presumably fault the page 620 * in if necessary, or if a kernel page the caller will at some point 621 * enter the page into the kernel's pmap. We are not allowed to block 622 * here so we *can't* do this anyway. 623 * 624 * The object and page must be locked. 625 * This routine may not block. 626 */ 627 void 628 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 629 { 630 vm_page_t root; 631 632 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 633 if (m->object != NULL) 634 panic("vm_page_insert: page already inserted"); 635 636 /* 637 * Record the object/offset pair in this page 638 */ 639 m->object = object; 640 m->pindex = pindex; 641 642 /* 643 * Now link into the object's ordered list of backed pages. 644 */ 645 root = object->root; 646 if (root == NULL) { 647 m->left = NULL; 648 m->right = NULL; 649 TAILQ_INSERT_TAIL(&object->memq, m, listq); 650 } else { 651 root = vm_page_splay(pindex, root); 652 if (pindex < root->pindex) { 653 m->left = root->left; 654 m->right = root; 655 root->left = NULL; 656 TAILQ_INSERT_BEFORE(root, m, listq); 657 } else if (pindex == root->pindex) 658 panic("vm_page_insert: offset already allocated"); 659 else { 660 m->right = root->right; 661 m->left = root; 662 root->right = NULL; 663 TAILQ_INSERT_AFTER(&object->memq, root, m, listq); 664 } 665 } 666 object->root = m; 667 object->generation++; 668 669 /* 670 * show that the object has one more resident page. 671 */ 672 object->resident_page_count++; 673 /* 674 * Hold the vnode until the last page is released. 675 */ 676 if (object->resident_page_count == 1 && object->type == OBJT_VNODE) 677 vhold((struct vnode *)object->handle); 678 679 /* 680 * Since we are inserting a new and possibly dirty page, 681 * update the object's OBJ_MIGHTBEDIRTY flag. 682 */ 683 if (m->flags & PG_WRITEABLE) 684 vm_object_set_writeable_dirty(object); 685 } 686 687 /* 688 * vm_page_remove: 689 * NOTE: used by device pager as well -wfj 690 * 691 * Removes the given mem entry from the object/offset-page 692 * table and the object page list, but do not invalidate/terminate 693 * the backing store. 694 * 695 * The object and page must be locked. 696 * The underlying pmap entry (if any) is NOT removed here. 697 * This routine may not block. 698 */ 699 void 700 vm_page_remove(vm_page_t m) 701 { 702 vm_object_t object; 703 vm_page_t root; 704 705 if ((object = m->object) == NULL) 706 return; 707 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 708 if (m->oflags & VPO_BUSY) { 709 m->oflags &= ~VPO_BUSY; 710 vm_page_flash(m); 711 } 712 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 713 714 /* 715 * Now remove from the object's list of backed pages. 716 */ 717 if (m != object->root) 718 vm_page_splay(m->pindex, object->root); 719 if (m->left == NULL) 720 root = m->right; 721 else { 722 root = vm_page_splay(m->pindex, m->left); 723 root->right = m->right; 724 } 725 object->root = root; 726 TAILQ_REMOVE(&object->memq, m, listq); 727 728 /* 729 * And show that the object has one fewer resident page. 730 */ 731 object->resident_page_count--; 732 object->generation++; 733 /* 734 * The vnode may now be recycled. 735 */ 736 if (object->resident_page_count == 0 && object->type == OBJT_VNODE) 737 vdrop((struct vnode *)object->handle); 738 739 m->object = NULL; 740 } 741 742 /* 743 * vm_page_lookup: 744 * 745 * Returns the page associated with the object/offset 746 * pair specified; if none is found, NULL is returned. 747 * 748 * The object must be locked. 749 * This routine may not block. 750 * This is a critical path routine 751 */ 752 vm_page_t 753 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 754 { 755 vm_page_t m; 756 757 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 758 if ((m = object->root) != NULL && m->pindex != pindex) { 759 m = vm_page_splay(pindex, m); 760 if ((object->root = m)->pindex != pindex) 761 m = NULL; 762 } 763 return (m); 764 } 765 766 /* 767 * vm_page_rename: 768 * 769 * Move the given memory entry from its 770 * current object to the specified target object/offset. 771 * 772 * The object must be locked. 773 * This routine may not block. 774 * 775 * Note: swap associated with the page must be invalidated by the move. We 776 * have to do this for several reasons: (1) we aren't freeing the 777 * page, (2) we are dirtying the page, (3) the VM system is probably 778 * moving the page from object A to B, and will then later move 779 * the backing store from A to B and we can't have a conflict. 780 * 781 * Note: we *always* dirty the page. It is necessary both for the 782 * fact that we moved it, and because we may be invalidating 783 * swap. If the page is on the cache, we have to deactivate it 784 * or vm_page_dirty() will panic. Dirty pages are not allowed 785 * on the cache. 786 */ 787 void 788 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 789 { 790 791 vm_page_remove(m); 792 vm_page_insert(m, new_object, new_pindex); 793 if (VM_PAGE_INQUEUE1(m, PQ_CACHE)) 794 vm_page_deactivate(m); 795 vm_page_dirty(m); 796 } 797 798 /* 799 * vm_page_select_cache: 800 * 801 * Move a page of the given color from the cache queue to the free 802 * queue. As pages might be found, but are not applicable, they are 803 * deactivated. 804 * 805 * This routine may not block. 806 */ 807 vm_page_t 808 vm_page_select_cache(void) 809 { 810 vm_object_t object; 811 vm_page_t m; 812 boolean_t was_trylocked; 813 814 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 815 while ((m = TAILQ_FIRST(&vm_page_queues[PQ_CACHE].pl)) != NULL) { 816 KASSERT(m->dirty == 0, ("Found dirty cache page %p", m)); 817 KASSERT(!pmap_page_is_mapped(m), 818 ("Found mapped cache page %p", m)); 819 KASSERT((m->flags & PG_UNMANAGED) == 0, 820 ("Found unmanaged cache page %p", m)); 821 KASSERT(m->wire_count == 0, ("Found wired cache page %p", m)); 822 if (m->hold_count == 0 && (object = m->object, 823 (was_trylocked = VM_OBJECT_TRYLOCK(object)) || 824 VM_OBJECT_LOCKED(object))) { 825 KASSERT((m->oflags & VPO_BUSY) == 0 && m->busy == 0, 826 ("Found busy cache page %p", m)); 827 vm_page_free(m); 828 if (was_trylocked) 829 VM_OBJECT_UNLOCK(object); 830 break; 831 } 832 vm_page_deactivate(m); 833 } 834 return (m); 835 } 836 837 /* 838 * vm_page_alloc: 839 * 840 * Allocate and return a memory cell associated 841 * with this VM object/offset pair. 842 * 843 * page_req classes: 844 * VM_ALLOC_NORMAL normal process request 845 * VM_ALLOC_SYSTEM system *really* needs a page 846 * VM_ALLOC_INTERRUPT interrupt time request 847 * VM_ALLOC_ZERO zero page 848 * 849 * This routine may not block. 850 * 851 * Additional special handling is required when called from an 852 * interrupt (VM_ALLOC_INTERRUPT). We are not allowed to mess with 853 * the page cache in this case. 854 */ 855 vm_page_t 856 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 857 { 858 vm_page_t m = NULL; 859 int flags, page_req; 860 861 page_req = req & VM_ALLOC_CLASS_MASK; 862 KASSERT(curthread->td_intr_nesting_level == 0 || 863 page_req == VM_ALLOC_INTERRUPT, 864 ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context")); 865 866 if ((req & VM_ALLOC_NOOBJ) == 0) { 867 KASSERT(object != NULL, 868 ("vm_page_alloc: NULL object.")); 869 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 870 } 871 872 /* 873 * The pager is allowed to eat deeper into the free page list. 874 */ 875 if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) { 876 page_req = VM_ALLOC_SYSTEM; 877 }; 878 879 loop: 880 mtx_lock(&vm_page_queue_free_mtx); 881 if (cnt.v_free_count > cnt.v_free_reserved || 882 (page_req == VM_ALLOC_SYSTEM && 883 cnt.v_cache_count == 0 && 884 cnt.v_free_count > cnt.v_interrupt_free_min) || 885 (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) { 886 /* 887 * Allocate from the free queue if the number of free pages 888 * exceeds the minimum for the request class. 889 */ 890 m = vm_phys_alloc_pages(object != NULL ? 891 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0); 892 } else if (page_req != VM_ALLOC_INTERRUPT) { 893 mtx_unlock(&vm_page_queue_free_mtx); 894 /* 895 * Allocatable from cache (non-interrupt only). On success, 896 * we must free the page and try again, thus ensuring that 897 * cnt.v_*_free_min counters are replenished. 898 */ 899 vm_page_lock_queues(); 900 if ((m = vm_page_select_cache()) == NULL) { 901 KASSERT(cnt.v_cache_count == 0, 902 ("vm_page_alloc: cache queue is missing %d pages", 903 cnt.v_cache_count)); 904 vm_page_unlock_queues(); 905 atomic_add_int(&vm_pageout_deficit, 1); 906 pagedaemon_wakeup(); 907 908 if (page_req != VM_ALLOC_SYSTEM) 909 return (NULL); 910 911 mtx_lock(&vm_page_queue_free_mtx); 912 if (cnt.v_free_count <= cnt.v_interrupt_free_min) { 913 mtx_unlock(&vm_page_queue_free_mtx); 914 return (NULL); 915 } 916 m = vm_phys_alloc_pages(object != NULL ? 917 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0); 918 } else { 919 vm_page_unlock_queues(); 920 goto loop; 921 } 922 } else { 923 /* 924 * Not allocatable from cache from interrupt, give up. 925 */ 926 mtx_unlock(&vm_page_queue_free_mtx); 927 atomic_add_int(&vm_pageout_deficit, 1); 928 pagedaemon_wakeup(); 929 return (NULL); 930 } 931 932 /* 933 * At this point we had better have found a good page. 934 */ 935 936 KASSERT( 937 m != NULL, 938 ("vm_page_alloc(): missing page on free queue") 939 ); 940 KASSERT(VM_PAGE_IS_FREE(m), 941 ("vm_page_alloc: page %p is not free", m)); 942 943 /* 944 * Initialize structure. Only the PG_ZERO flag is inherited. 945 */ 946 flags = 0; 947 if (m->flags & PG_ZERO) { 948 vm_page_zero_count--; 949 if (req & VM_ALLOC_ZERO) 950 flags = PG_ZERO; 951 } 952 if (object != NULL && object->type == OBJT_PHYS) 953 flags |= PG_UNMANAGED; 954 m->flags = flags; 955 if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ)) 956 m->oflags = 0; 957 else 958 m->oflags = VPO_BUSY; 959 if (req & VM_ALLOC_WIRED) { 960 atomic_add_int(&cnt.v_wire_count, 1); 961 m->wire_count = 1; 962 } else 963 m->wire_count = 0; 964 m->hold_count = 0; 965 m->act_count = 0; 966 m->busy = 0; 967 m->valid = 0; 968 KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m)); 969 mtx_unlock(&vm_page_queue_free_mtx); 970 971 if ((req & VM_ALLOC_NOOBJ) == 0) 972 vm_page_insert(m, object, pindex); 973 else 974 m->pindex = pindex; 975 976 /* 977 * Don't wakeup too often - wakeup the pageout daemon when 978 * we would be nearly out of memory. 979 */ 980 if (vm_paging_needed()) 981 pagedaemon_wakeup(); 982 983 return (m); 984 } 985 986 /* 987 * vm_wait: (also see VM_WAIT macro) 988 * 989 * Block until free pages are available for allocation 990 * - Called in various places before memory allocations. 991 */ 992 void 993 vm_wait(void) 994 { 995 996 mtx_lock(&vm_page_queue_free_mtx); 997 if (curproc == pageproc) { 998 vm_pageout_pages_needed = 1; 999 msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx, 1000 PDROP | PSWP, "VMWait", 0); 1001 } else { 1002 if (!vm_pages_needed) { 1003 vm_pages_needed = 1; 1004 wakeup(&vm_pages_needed); 1005 } 1006 msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM, 1007 "vmwait", 0); 1008 } 1009 } 1010 1011 /* 1012 * vm_waitpfault: (also see VM_WAITPFAULT macro) 1013 * 1014 * Block until free pages are available for allocation 1015 * - Called only in vm_fault so that processes page faulting 1016 * can be easily tracked. 1017 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 1018 * processes will be able to grab memory first. Do not change 1019 * this balance without careful testing first. 1020 */ 1021 void 1022 vm_waitpfault(void) 1023 { 1024 1025 mtx_lock(&vm_page_queue_free_mtx); 1026 if (!vm_pages_needed) { 1027 vm_pages_needed = 1; 1028 wakeup(&vm_pages_needed); 1029 } 1030 msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER, 1031 "pfault", 0); 1032 } 1033 1034 /* 1035 * vm_page_activate: 1036 * 1037 * Put the specified page on the active list (if appropriate). 1038 * Ensure that act_count is at least ACT_INIT but do not otherwise 1039 * mess with it. 1040 * 1041 * The page queues must be locked. 1042 * This routine may not block. 1043 */ 1044 void 1045 vm_page_activate(vm_page_t m) 1046 { 1047 1048 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1049 if (VM_PAGE_GETKNOWNQUEUE2(m) != PQ_ACTIVE) { 1050 if (VM_PAGE_INQUEUE1(m, PQ_CACHE)) 1051 cnt.v_reactivated++; 1052 vm_pageq_remove(m); 1053 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1054 if (m->act_count < ACT_INIT) 1055 m->act_count = ACT_INIT; 1056 vm_pageq_enqueue(PQ_ACTIVE, m); 1057 } 1058 } else { 1059 if (m->act_count < ACT_INIT) 1060 m->act_count = ACT_INIT; 1061 } 1062 } 1063 1064 /* 1065 * vm_page_free_wakeup: 1066 * 1067 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 1068 * routine is called when a page has been added to the cache or free 1069 * queues. 1070 * 1071 * The page queues must be locked. 1072 * This routine may not block. 1073 */ 1074 static inline void 1075 vm_page_free_wakeup(void) 1076 { 1077 1078 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1079 /* 1080 * if pageout daemon needs pages, then tell it that there are 1081 * some free. 1082 */ 1083 if (vm_pageout_pages_needed && 1084 cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) { 1085 wakeup(&vm_pageout_pages_needed); 1086 vm_pageout_pages_needed = 0; 1087 } 1088 /* 1089 * wakeup processes that are waiting on memory if we hit a 1090 * high water mark. And wakeup scheduler process if we have 1091 * lots of memory. this process will swapin processes. 1092 */ 1093 if (vm_pages_needed && !vm_page_count_min()) { 1094 vm_pages_needed = 0; 1095 wakeup(&cnt.v_free_count); 1096 } 1097 } 1098 1099 /* 1100 * vm_page_free_toq: 1101 * 1102 * Returns the given page to the free list, 1103 * disassociating it with any VM object. 1104 * 1105 * Object and page must be locked prior to entry. 1106 * This routine may not block. 1107 */ 1108 1109 void 1110 vm_page_free_toq(vm_page_t m) 1111 { 1112 1113 if (VM_PAGE_GETQUEUE(m) != PQ_NONE) 1114 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1115 KASSERT(!pmap_page_is_mapped(m), 1116 ("vm_page_free_toq: freeing mapped page %p", m)); 1117 PCPU_INC(cnt.v_tfree); 1118 1119 if (m->busy || VM_PAGE_IS_FREE(m)) { 1120 printf( 1121 "vm_page_free: pindex(%lu), busy(%d), VPO_BUSY(%d), hold(%d)\n", 1122 (u_long)m->pindex, m->busy, (m->oflags & VPO_BUSY) ? 1 : 0, 1123 m->hold_count); 1124 if (VM_PAGE_IS_FREE(m)) 1125 panic("vm_page_free: freeing free page"); 1126 else 1127 panic("vm_page_free: freeing busy page"); 1128 } 1129 1130 /* 1131 * unqueue, then remove page. Note that we cannot destroy 1132 * the page here because we do not want to call the pager's 1133 * callback routine until after we've put the page on the 1134 * appropriate free queue. 1135 */ 1136 vm_pageq_remove_nowakeup(m); 1137 vm_page_remove(m); 1138 1139 /* 1140 * If fictitious remove object association and 1141 * return, otherwise delay object association removal. 1142 */ 1143 if ((m->flags & PG_FICTITIOUS) != 0) { 1144 return; 1145 } 1146 1147 m->valid = 0; 1148 vm_page_undirty(m); 1149 1150 if (m->wire_count != 0) { 1151 if (m->wire_count > 1) { 1152 panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx", 1153 m->wire_count, (long)m->pindex); 1154 } 1155 panic("vm_page_free: freeing wired page"); 1156 } 1157 if (m->hold_count != 0) { 1158 m->flags &= ~PG_ZERO; 1159 vm_pageq_enqueue(PQ_HOLD, m); 1160 } else { 1161 m->flags |= PG_FREE; 1162 mtx_lock(&vm_page_queue_free_mtx); 1163 if ((m->flags & PG_ZERO) != 0) { 1164 vm_phys_free_pages(m, 0); 1165 ++vm_page_zero_count; 1166 } else { 1167 vm_phys_free_pages(m, 0); 1168 vm_page_zero_idle_wakeup(); 1169 } 1170 vm_page_free_wakeup(); 1171 mtx_unlock(&vm_page_queue_free_mtx); 1172 } 1173 } 1174 1175 /* 1176 * vm_page_wire: 1177 * 1178 * Mark this page as wired down by yet 1179 * another map, removing it from paging queues 1180 * as necessary. 1181 * 1182 * The page queues must be locked. 1183 * This routine may not block. 1184 */ 1185 void 1186 vm_page_wire(vm_page_t m) 1187 { 1188 1189 /* 1190 * Only bump the wire statistics if the page is not already wired, 1191 * and only unqueue the page if it is on some queue (if it is unmanaged 1192 * it is already off the queues). 1193 */ 1194 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1195 if (m->flags & PG_FICTITIOUS) 1196 return; 1197 if (m->wire_count == 0) { 1198 if ((m->flags & PG_UNMANAGED) == 0) 1199 vm_pageq_remove(m); 1200 atomic_add_int(&cnt.v_wire_count, 1); 1201 } 1202 m->wire_count++; 1203 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 1204 } 1205 1206 /* 1207 * vm_page_unwire: 1208 * 1209 * Release one wiring of this page, potentially 1210 * enabling it to be paged again. 1211 * 1212 * Many pages placed on the inactive queue should actually go 1213 * into the cache, but it is difficult to figure out which. What 1214 * we do instead, if the inactive target is well met, is to put 1215 * clean pages at the head of the inactive queue instead of the tail. 1216 * This will cause them to be moved to the cache more quickly and 1217 * if not actively re-referenced, freed more quickly. If we just 1218 * stick these pages at the end of the inactive queue, heavy filesystem 1219 * meta-data accesses can cause an unnecessary paging load on memory bound 1220 * processes. This optimization causes one-time-use metadata to be 1221 * reused more quickly. 1222 * 1223 * BUT, if we are in a low-memory situation we have no choice but to 1224 * put clean pages on the cache queue. 1225 * 1226 * A number of routines use vm_page_unwire() to guarantee that the page 1227 * will go into either the inactive or active queues, and will NEVER 1228 * be placed in the cache - for example, just after dirtying a page. 1229 * dirty pages in the cache are not allowed. 1230 * 1231 * The page queues must be locked. 1232 * This routine may not block. 1233 */ 1234 void 1235 vm_page_unwire(vm_page_t m, int activate) 1236 { 1237 1238 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1239 if (m->flags & PG_FICTITIOUS) 1240 return; 1241 if (m->wire_count > 0) { 1242 m->wire_count--; 1243 if (m->wire_count == 0) { 1244 atomic_subtract_int(&cnt.v_wire_count, 1); 1245 if (m->flags & PG_UNMANAGED) { 1246 ; 1247 } else if (activate) 1248 vm_pageq_enqueue(PQ_ACTIVE, m); 1249 else { 1250 vm_page_flag_clear(m, PG_WINATCFLS); 1251 vm_pageq_enqueue(PQ_INACTIVE, m); 1252 } 1253 } 1254 } else { 1255 panic("vm_page_unwire: invalid wire count: %d", m->wire_count); 1256 } 1257 } 1258 1259 1260 /* 1261 * Move the specified page to the inactive queue. If the page has 1262 * any associated swap, the swap is deallocated. 1263 * 1264 * Normally athead is 0 resulting in LRU operation. athead is set 1265 * to 1 if we want this page to be 'as if it were placed in the cache', 1266 * except without unmapping it from the process address space. 1267 * 1268 * This routine may not block. 1269 */ 1270 static inline void 1271 _vm_page_deactivate(vm_page_t m, int athead) 1272 { 1273 1274 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1275 1276 /* 1277 * Ignore if already inactive. 1278 */ 1279 if (VM_PAGE_INQUEUE2(m, PQ_INACTIVE)) 1280 return; 1281 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1282 if (VM_PAGE_INQUEUE1(m, PQ_CACHE)) 1283 cnt.v_reactivated++; 1284 vm_page_flag_clear(m, PG_WINATCFLS); 1285 vm_pageq_remove(m); 1286 if (athead) 1287 TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1288 else 1289 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1290 VM_PAGE_SETQUEUE2(m, PQ_INACTIVE); 1291 cnt.v_inactive_count++; 1292 } 1293 } 1294 1295 void 1296 vm_page_deactivate(vm_page_t m) 1297 { 1298 _vm_page_deactivate(m, 0); 1299 } 1300 1301 /* 1302 * vm_page_try_to_cache: 1303 * 1304 * Returns 0 on failure, 1 on success 1305 */ 1306 int 1307 vm_page_try_to_cache(vm_page_t m) 1308 { 1309 1310 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1311 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1312 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1313 (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) { 1314 return (0); 1315 } 1316 pmap_remove_all(m); 1317 if (m->dirty) 1318 return (0); 1319 vm_page_cache(m); 1320 return (1); 1321 } 1322 1323 /* 1324 * vm_page_try_to_free() 1325 * 1326 * Attempt to free the page. If we cannot free it, we do nothing. 1327 * 1 is returned on success, 0 on failure. 1328 */ 1329 int 1330 vm_page_try_to_free(vm_page_t m) 1331 { 1332 1333 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1334 if (m->object != NULL) 1335 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1336 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1337 (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) { 1338 return (0); 1339 } 1340 pmap_remove_all(m); 1341 if (m->dirty) 1342 return (0); 1343 vm_page_free(m); 1344 return (1); 1345 } 1346 1347 /* 1348 * vm_page_cache 1349 * 1350 * Put the specified page onto the page cache queue (if appropriate). 1351 * 1352 * This routine may not block. 1353 */ 1354 void 1355 vm_page_cache(vm_page_t m) 1356 { 1357 1358 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1359 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1360 if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy || 1361 m->hold_count || m->wire_count) { 1362 panic("vm_page_cache: attempting to cache busy page"); 1363 } 1364 if (VM_PAGE_INQUEUE1(m, PQ_CACHE)) 1365 return; 1366 1367 /* 1368 * Remove all pmaps and indicate that the page is not 1369 * writeable or mapped. 1370 */ 1371 pmap_remove_all(m); 1372 if (m->dirty != 0) { 1373 panic("vm_page_cache: caching a dirty page, pindex: %ld", 1374 (long)m->pindex); 1375 } 1376 vm_pageq_remove_nowakeup(m); 1377 vm_pageq_enqueue(PQ_CACHE, m); 1378 mtx_lock(&vm_page_queue_free_mtx); 1379 vm_page_free_wakeup(); 1380 mtx_unlock(&vm_page_queue_free_mtx); 1381 } 1382 1383 /* 1384 * vm_page_dontneed 1385 * 1386 * Cache, deactivate, or do nothing as appropriate. This routine 1387 * is typically used by madvise() MADV_DONTNEED. 1388 * 1389 * Generally speaking we want to move the page into the cache so 1390 * it gets reused quickly. However, this can result in a silly syndrome 1391 * due to the page recycling too quickly. Small objects will not be 1392 * fully cached. On the otherhand, if we move the page to the inactive 1393 * queue we wind up with a problem whereby very large objects 1394 * unnecessarily blow away our inactive and cache queues. 1395 * 1396 * The solution is to move the pages based on a fixed weighting. We 1397 * either leave them alone, deactivate them, or move them to the cache, 1398 * where moving them to the cache has the highest weighting. 1399 * By forcing some pages into other queues we eventually force the 1400 * system to balance the queues, potentially recovering other unrelated 1401 * space from active. The idea is to not force this to happen too 1402 * often. 1403 */ 1404 void 1405 vm_page_dontneed(vm_page_t m) 1406 { 1407 static int dnweight; 1408 int dnw; 1409 int head; 1410 1411 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1412 dnw = ++dnweight; 1413 1414 /* 1415 * occassionally leave the page alone 1416 */ 1417 if ((dnw & 0x01F0) == 0 || 1418 VM_PAGE_INQUEUE2(m, PQ_INACTIVE) || 1419 VM_PAGE_INQUEUE1(m, PQ_CACHE) 1420 ) { 1421 if (m->act_count >= ACT_INIT) 1422 --m->act_count; 1423 return; 1424 } 1425 1426 if (m->dirty == 0 && pmap_is_modified(m)) 1427 vm_page_dirty(m); 1428 1429 if (m->dirty || (dnw & 0x0070) == 0) { 1430 /* 1431 * Deactivate the page 3 times out of 32. 1432 */ 1433 head = 0; 1434 } else { 1435 /* 1436 * Cache the page 28 times out of every 32. Note that 1437 * the page is deactivated instead of cached, but placed 1438 * at the head of the queue instead of the tail. 1439 */ 1440 head = 1; 1441 } 1442 _vm_page_deactivate(m, head); 1443 } 1444 1445 /* 1446 * Grab a page, waiting until we are waken up due to the page 1447 * changing state. We keep on waiting, if the page continues 1448 * to be in the object. If the page doesn't exist, first allocate it 1449 * and then conditionally zero it. 1450 * 1451 * This routine may block. 1452 */ 1453 vm_page_t 1454 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 1455 { 1456 vm_page_t m; 1457 1458 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1459 retrylookup: 1460 if ((m = vm_page_lookup(object, pindex)) != NULL) { 1461 if (vm_page_sleep_if_busy(m, TRUE, "pgrbwt")) { 1462 if ((allocflags & VM_ALLOC_RETRY) == 0) 1463 return (NULL); 1464 goto retrylookup; 1465 } else { 1466 if ((allocflags & VM_ALLOC_WIRED) != 0) { 1467 vm_page_lock_queues(); 1468 vm_page_wire(m); 1469 vm_page_unlock_queues(); 1470 } 1471 if ((allocflags & VM_ALLOC_NOBUSY) == 0) 1472 vm_page_busy(m); 1473 return (m); 1474 } 1475 } 1476 m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY); 1477 if (m == NULL) { 1478 VM_OBJECT_UNLOCK(object); 1479 VM_WAIT; 1480 VM_OBJECT_LOCK(object); 1481 if ((allocflags & VM_ALLOC_RETRY) == 0) 1482 return (NULL); 1483 goto retrylookup; 1484 } 1485 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 1486 pmap_zero_page(m); 1487 return (m); 1488 } 1489 1490 /* 1491 * Mapping function for valid bits or for dirty bits in 1492 * a page. May not block. 1493 * 1494 * Inputs are required to range within a page. 1495 */ 1496 int 1497 vm_page_bits(int base, int size) 1498 { 1499 int first_bit; 1500 int last_bit; 1501 1502 KASSERT( 1503 base + size <= PAGE_SIZE, 1504 ("vm_page_bits: illegal base/size %d/%d", base, size) 1505 ); 1506 1507 if (size == 0) /* handle degenerate case */ 1508 return (0); 1509 1510 first_bit = base >> DEV_BSHIFT; 1511 last_bit = (base + size - 1) >> DEV_BSHIFT; 1512 1513 return ((2 << last_bit) - (1 << first_bit)); 1514 } 1515 1516 /* 1517 * vm_page_set_validclean: 1518 * 1519 * Sets portions of a page valid and clean. The arguments are expected 1520 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 1521 * of any partial chunks touched by the range. The invalid portion of 1522 * such chunks will be zero'd. 1523 * 1524 * This routine may not block. 1525 * 1526 * (base + size) must be less then or equal to PAGE_SIZE. 1527 */ 1528 void 1529 vm_page_set_validclean(vm_page_t m, int base, int size) 1530 { 1531 int pagebits; 1532 int frag; 1533 int endoff; 1534 1535 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1536 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1537 if (size == 0) /* handle degenerate case */ 1538 return; 1539 1540 /* 1541 * If the base is not DEV_BSIZE aligned and the valid 1542 * bit is clear, we have to zero out a portion of the 1543 * first block. 1544 */ 1545 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 1546 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 1547 pmap_zero_page_area(m, frag, base - frag); 1548 1549 /* 1550 * If the ending offset is not DEV_BSIZE aligned and the 1551 * valid bit is clear, we have to zero out a portion of 1552 * the last block. 1553 */ 1554 endoff = base + size; 1555 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 1556 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 1557 pmap_zero_page_area(m, endoff, 1558 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 1559 1560 /* 1561 * Set valid, clear dirty bits. If validating the entire 1562 * page we can safely clear the pmap modify bit. We also 1563 * use this opportunity to clear the VPO_NOSYNC flag. If a process 1564 * takes a write fault on a MAP_NOSYNC memory area the flag will 1565 * be set again. 1566 * 1567 * We set valid bits inclusive of any overlap, but we can only 1568 * clear dirty bits for DEV_BSIZE chunks that are fully within 1569 * the range. 1570 */ 1571 pagebits = vm_page_bits(base, size); 1572 m->valid |= pagebits; 1573 #if 0 /* NOT YET */ 1574 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 1575 frag = DEV_BSIZE - frag; 1576 base += frag; 1577 size -= frag; 1578 if (size < 0) 1579 size = 0; 1580 } 1581 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 1582 #endif 1583 m->dirty &= ~pagebits; 1584 if (base == 0 && size == PAGE_SIZE) { 1585 pmap_clear_modify(m); 1586 m->oflags &= ~VPO_NOSYNC; 1587 } 1588 } 1589 1590 void 1591 vm_page_clear_dirty(vm_page_t m, int base, int size) 1592 { 1593 1594 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1595 m->dirty &= ~vm_page_bits(base, size); 1596 } 1597 1598 /* 1599 * vm_page_set_invalid: 1600 * 1601 * Invalidates DEV_BSIZE'd chunks within a page. Both the 1602 * valid and dirty bits for the effected areas are cleared. 1603 * 1604 * May not block. 1605 */ 1606 void 1607 vm_page_set_invalid(vm_page_t m, int base, int size) 1608 { 1609 int bits; 1610 1611 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1612 bits = vm_page_bits(base, size); 1613 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1614 if (m->valid == VM_PAGE_BITS_ALL && bits != 0) 1615 pmap_remove_all(m); 1616 m->valid &= ~bits; 1617 m->dirty &= ~bits; 1618 m->object->generation++; 1619 } 1620 1621 /* 1622 * vm_page_zero_invalid() 1623 * 1624 * The kernel assumes that the invalid portions of a page contain 1625 * garbage, but such pages can be mapped into memory by user code. 1626 * When this occurs, we must zero out the non-valid portions of the 1627 * page so user code sees what it expects. 1628 * 1629 * Pages are most often semi-valid when the end of a file is mapped 1630 * into memory and the file's size is not page aligned. 1631 */ 1632 void 1633 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 1634 { 1635 int b; 1636 int i; 1637 1638 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1639 /* 1640 * Scan the valid bits looking for invalid sections that 1641 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 1642 * valid bit may be set ) have already been zerod by 1643 * vm_page_set_validclean(). 1644 */ 1645 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 1646 if (i == (PAGE_SIZE / DEV_BSIZE) || 1647 (m->valid & (1 << i)) 1648 ) { 1649 if (i > b) { 1650 pmap_zero_page_area(m, 1651 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 1652 } 1653 b = i + 1; 1654 } 1655 } 1656 1657 /* 1658 * setvalid is TRUE when we can safely set the zero'd areas 1659 * as being valid. We can do this if there are no cache consistancy 1660 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 1661 */ 1662 if (setvalid) 1663 m->valid = VM_PAGE_BITS_ALL; 1664 } 1665 1666 /* 1667 * vm_page_is_valid: 1668 * 1669 * Is (partial) page valid? Note that the case where size == 0 1670 * will return FALSE in the degenerate case where the page is 1671 * entirely invalid, and TRUE otherwise. 1672 * 1673 * May not block. 1674 */ 1675 int 1676 vm_page_is_valid(vm_page_t m, int base, int size) 1677 { 1678 int bits = vm_page_bits(base, size); 1679 1680 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1681 if (m->valid && ((m->valid & bits) == bits)) 1682 return 1; 1683 else 1684 return 0; 1685 } 1686 1687 /* 1688 * update dirty bits from pmap/mmu. May not block. 1689 */ 1690 void 1691 vm_page_test_dirty(vm_page_t m) 1692 { 1693 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) { 1694 vm_page_dirty(m); 1695 } 1696 } 1697 1698 int so_zerocp_fullpage = 0; 1699 1700 /* 1701 * Replace the given page with a copy. The copied page assumes 1702 * the portion of the given page's "wire_count" that is not the 1703 * responsibility of this copy-on-write mechanism. 1704 * 1705 * The object containing the given page must have a non-zero 1706 * paging-in-progress count and be locked. 1707 */ 1708 void 1709 vm_page_cowfault(vm_page_t m) 1710 { 1711 vm_page_t mnew; 1712 vm_object_t object; 1713 vm_pindex_t pindex; 1714 1715 object = m->object; 1716 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1717 KASSERT(object->paging_in_progress != 0, 1718 ("vm_page_cowfault: object %p's paging-in-progress count is zero.", 1719 object)); 1720 pindex = m->pindex; 1721 1722 retry_alloc: 1723 pmap_remove_all(m); 1724 vm_page_remove(m); 1725 mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY); 1726 if (mnew == NULL) { 1727 vm_page_insert(m, object, pindex); 1728 vm_page_unlock_queues(); 1729 VM_OBJECT_UNLOCK(object); 1730 VM_WAIT; 1731 VM_OBJECT_LOCK(object); 1732 if (m == vm_page_lookup(object, pindex)) { 1733 vm_page_lock_queues(); 1734 goto retry_alloc; 1735 } else { 1736 /* 1737 * Page disappeared during the wait. 1738 */ 1739 vm_page_lock_queues(); 1740 return; 1741 } 1742 } 1743 1744 if (m->cow == 0) { 1745 /* 1746 * check to see if we raced with an xmit complete when 1747 * waiting to allocate a page. If so, put things back 1748 * the way they were 1749 */ 1750 vm_page_free(mnew); 1751 vm_page_insert(m, object, pindex); 1752 } else { /* clear COW & copy page */ 1753 if (!so_zerocp_fullpage) 1754 pmap_copy_page(m, mnew); 1755 mnew->valid = VM_PAGE_BITS_ALL; 1756 vm_page_dirty(mnew); 1757 mnew->wire_count = m->wire_count - m->cow; 1758 m->wire_count = m->cow; 1759 } 1760 } 1761 1762 void 1763 vm_page_cowclear(vm_page_t m) 1764 { 1765 1766 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1767 if (m->cow) { 1768 m->cow--; 1769 /* 1770 * let vm_fault add back write permission lazily 1771 */ 1772 } 1773 /* 1774 * sf_buf_free() will free the page, so we needn't do it here 1775 */ 1776 } 1777 1778 void 1779 vm_page_cowsetup(vm_page_t m) 1780 { 1781 1782 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1783 m->cow++; 1784 pmap_remove_write(m); 1785 } 1786 1787 #include "opt_ddb.h" 1788 #ifdef DDB 1789 #include <sys/kernel.h> 1790 1791 #include <ddb/ddb.h> 1792 1793 DB_SHOW_COMMAND(page, vm_page_print_page_info) 1794 { 1795 db_printf("cnt.v_free_count: %d\n", cnt.v_free_count); 1796 db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count); 1797 db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count); 1798 db_printf("cnt.v_active_count: %d\n", cnt.v_active_count); 1799 db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count); 1800 db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved); 1801 db_printf("cnt.v_free_min: %d\n", cnt.v_free_min); 1802 db_printf("cnt.v_free_target: %d\n", cnt.v_free_target); 1803 db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min); 1804 db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target); 1805 } 1806 1807 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 1808 { 1809 1810 db_printf("PQ_FREE:"); 1811 db_printf(" %d", cnt.v_free_count); 1812 db_printf("\n"); 1813 1814 db_printf("PQ_CACHE:"); 1815 db_printf(" %d", *vm_page_queues[PQ_CACHE].cnt); 1816 db_printf("\n"); 1817 1818 db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n", 1819 *vm_page_queues[PQ_ACTIVE].cnt, 1820 *vm_page_queues[PQ_INACTIVE].cnt); 1821 } 1822 #endif /* DDB */ 1823