1 /*- 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * The Mach Operating System project at Carnegie-Mellon University. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 34 */ 35 36 /*- 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * GENERAL RULES ON VM_PAGE MANIPULATION 65 * 66 * - A page queue lock is required when adding or removing a page from a 67 * page queue regardless of other locks or the busy state of a page. 68 * 69 * * In general, no thread besides the page daemon can acquire or 70 * hold more than one page queue lock at a time. 71 * 72 * * The page daemon can acquire and hold any pair of page queue 73 * locks in any order. 74 * 75 * - The object lock is required when inserting or removing 76 * pages from an object (vm_page_insert() or vm_page_remove()). 77 * 78 */ 79 80 /* 81 * Resident memory management module. 82 */ 83 84 #include <sys/cdefs.h> 85 __FBSDID("$FreeBSD$"); 86 87 #include "opt_vm.h" 88 89 #include <sys/param.h> 90 #include <sys/systm.h> 91 #include <sys/lock.h> 92 #include <sys/kernel.h> 93 #include <sys/limits.h> 94 #include <sys/linker.h> 95 #include <sys/malloc.h> 96 #include <sys/mman.h> 97 #include <sys/msgbuf.h> 98 #include <sys/mutex.h> 99 #include <sys/proc.h> 100 #include <sys/rwlock.h> 101 #include <sys/sbuf.h> 102 #include <sys/smp.h> 103 #include <sys/sysctl.h> 104 #include <sys/vmmeter.h> 105 #include <sys/vnode.h> 106 107 #include <vm/vm.h> 108 #include <vm/pmap.h> 109 #include <vm/vm_param.h> 110 #include <vm/vm_kern.h> 111 #include <vm/vm_object.h> 112 #include <vm/vm_page.h> 113 #include <vm/vm_pageout.h> 114 #include <vm/vm_pager.h> 115 #include <vm/vm_phys.h> 116 #include <vm/vm_radix.h> 117 #include <vm/vm_reserv.h> 118 #include <vm/vm_extern.h> 119 #include <vm/uma.h> 120 #include <vm/uma_int.h> 121 122 #include <machine/md_var.h> 123 124 /* 125 * Associated with page of user-allocatable memory is a 126 * page structure. 127 */ 128 129 struct vm_domain vm_dom[MAXMEMDOM]; 130 struct mtx_padalign vm_page_queue_free_mtx; 131 132 struct mtx_padalign pa_lock[PA_LOCK_COUNT]; 133 134 vm_page_t vm_page_array; 135 long vm_page_array_size; 136 long first_page; 137 138 static int boot_pages = UMA_BOOT_PAGES; 139 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 140 &boot_pages, 0, 141 "number of pages allocated for bootstrapping the VM system"); 142 143 static int pa_tryrelock_restart; 144 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD, 145 &pa_tryrelock_restart, 0, "Number of tryrelock restarts"); 146 147 static TAILQ_HEAD(, vm_page) blacklist_head; 148 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS); 149 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD | 150 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages"); 151 152 /* Is the page daemon waiting for free pages? */ 153 static int vm_pageout_pages_needed; 154 155 static uma_zone_t fakepg_zone; 156 157 static struct vnode *vm_page_alloc_init(vm_page_t m); 158 static void vm_page_cache_turn_free(vm_page_t m); 159 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits); 160 static void vm_page_enqueue(uint8_t queue, vm_page_t m); 161 static void vm_page_free_wakeup(void); 162 static void vm_page_init_fakepg(void *dummy); 163 static int vm_page_insert_after(vm_page_t m, vm_object_t object, 164 vm_pindex_t pindex, vm_page_t mpred); 165 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object, 166 vm_page_t mpred); 167 static int vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run, 168 vm_paddr_t high); 169 170 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL); 171 172 static void 173 vm_page_init_fakepg(void *dummy) 174 { 175 176 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL, 177 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 178 } 179 180 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */ 181 #if PAGE_SIZE == 32768 182 #ifdef CTASSERT 183 CTASSERT(sizeof(u_long) >= 8); 184 #endif 185 #endif 186 187 /* 188 * Try to acquire a physical address lock while a pmap is locked. If we 189 * fail to trylock we unlock and lock the pmap directly and cache the 190 * locked pa in *locked. The caller should then restart their loop in case 191 * the virtual to physical mapping has changed. 192 */ 193 int 194 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked) 195 { 196 vm_paddr_t lockpa; 197 198 lockpa = *locked; 199 *locked = pa; 200 if (lockpa) { 201 PA_LOCK_ASSERT(lockpa, MA_OWNED); 202 if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa)) 203 return (0); 204 PA_UNLOCK(lockpa); 205 } 206 if (PA_TRYLOCK(pa)) 207 return (0); 208 PMAP_UNLOCK(pmap); 209 atomic_add_int(&pa_tryrelock_restart, 1); 210 PA_LOCK(pa); 211 PMAP_LOCK(pmap); 212 return (EAGAIN); 213 } 214 215 /* 216 * vm_set_page_size: 217 * 218 * Sets the page size, perhaps based upon the memory 219 * size. Must be called before any use of page-size 220 * dependent functions. 221 */ 222 void 223 vm_set_page_size(void) 224 { 225 if (vm_cnt.v_page_size == 0) 226 vm_cnt.v_page_size = PAGE_SIZE; 227 if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0) 228 panic("vm_set_page_size: page size not a power of two"); 229 } 230 231 /* 232 * vm_page_blacklist_next: 233 * 234 * Find the next entry in the provided string of blacklist 235 * addresses. Entries are separated by space, comma, or newline. 236 * If an invalid integer is encountered then the rest of the 237 * string is skipped. Updates the list pointer to the next 238 * character, or NULL if the string is exhausted or invalid. 239 */ 240 static vm_paddr_t 241 vm_page_blacklist_next(char **list, char *end) 242 { 243 vm_paddr_t bad; 244 char *cp, *pos; 245 246 if (list == NULL || *list == NULL) 247 return (0); 248 if (**list =='\0') { 249 *list = NULL; 250 return (0); 251 } 252 253 /* 254 * If there's no end pointer then the buffer is coming from 255 * the kenv and we know it's null-terminated. 256 */ 257 if (end == NULL) 258 end = *list + strlen(*list); 259 260 /* Ensure that strtoq() won't walk off the end */ 261 if (*end != '\0') { 262 if (*end == '\n' || *end == ' ' || *end == ',') 263 *end = '\0'; 264 else { 265 printf("Blacklist not terminated, skipping\n"); 266 *list = NULL; 267 return (0); 268 } 269 } 270 271 for (pos = *list; *pos != '\0'; pos = cp) { 272 bad = strtoq(pos, &cp, 0); 273 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') { 274 if (bad == 0) { 275 if (++cp < end) 276 continue; 277 else 278 break; 279 } 280 } else 281 break; 282 if (*cp == '\0' || ++cp >= end) 283 *list = NULL; 284 else 285 *list = cp; 286 return (trunc_page(bad)); 287 } 288 printf("Garbage in RAM blacklist, skipping\n"); 289 *list = NULL; 290 return (0); 291 } 292 293 /* 294 * vm_page_blacklist_check: 295 * 296 * Iterate through the provided string of blacklist addresses, pulling 297 * each entry out of the physical allocator free list and putting it 298 * onto a list for reporting via the vm.page_blacklist sysctl. 299 */ 300 static void 301 vm_page_blacklist_check(char *list, char *end) 302 { 303 vm_paddr_t pa; 304 vm_page_t m; 305 char *next; 306 int ret; 307 308 next = list; 309 while (next != NULL) { 310 if ((pa = vm_page_blacklist_next(&next, end)) == 0) 311 continue; 312 m = vm_phys_paddr_to_vm_page(pa); 313 if (m == NULL) 314 continue; 315 mtx_lock(&vm_page_queue_free_mtx); 316 ret = vm_phys_unfree_page(m); 317 mtx_unlock(&vm_page_queue_free_mtx); 318 if (ret == TRUE) { 319 TAILQ_INSERT_TAIL(&blacklist_head, m, listq); 320 if (bootverbose) 321 printf("Skipping page with pa 0x%jx\n", 322 (uintmax_t)pa); 323 } 324 } 325 } 326 327 /* 328 * vm_page_blacklist_load: 329 * 330 * Search for a special module named "ram_blacklist". It'll be a 331 * plain text file provided by the user via the loader directive 332 * of the same name. 333 */ 334 static void 335 vm_page_blacklist_load(char **list, char **end) 336 { 337 void *mod; 338 u_char *ptr; 339 u_int len; 340 341 mod = NULL; 342 ptr = NULL; 343 344 mod = preload_search_by_type("ram_blacklist"); 345 if (mod != NULL) { 346 ptr = preload_fetch_addr(mod); 347 len = preload_fetch_size(mod); 348 } 349 *list = ptr; 350 if (ptr != NULL) 351 *end = ptr + len; 352 else 353 *end = NULL; 354 return; 355 } 356 357 static int 358 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS) 359 { 360 vm_page_t m; 361 struct sbuf sbuf; 362 int error, first; 363 364 first = 1; 365 error = sysctl_wire_old_buffer(req, 0); 366 if (error != 0) 367 return (error); 368 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 369 TAILQ_FOREACH(m, &blacklist_head, listq) { 370 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",", 371 (uintmax_t)m->phys_addr); 372 first = 0; 373 } 374 error = sbuf_finish(&sbuf); 375 sbuf_delete(&sbuf); 376 return (error); 377 } 378 379 static void 380 vm_page_domain_init(struct vm_domain *vmd) 381 { 382 struct vm_pagequeue *pq; 383 int i; 384 385 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) = 386 "vm inactive pagequeue"; 387 *__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) = 388 &vm_cnt.v_inactive_count; 389 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) = 390 "vm active pagequeue"; 391 *__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) = 392 &vm_cnt.v_active_count; 393 vmd->vmd_page_count = 0; 394 vmd->vmd_free_count = 0; 395 vmd->vmd_segs = 0; 396 vmd->vmd_oom = FALSE; 397 vmd->vmd_pass = 0; 398 for (i = 0; i < PQ_COUNT; i++) { 399 pq = &vmd->vmd_pagequeues[i]; 400 TAILQ_INIT(&pq->pq_pl); 401 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue", 402 MTX_DEF | MTX_DUPOK); 403 } 404 } 405 406 /* 407 * vm_page_startup: 408 * 409 * Initializes the resident memory module. 410 * 411 * Allocates memory for the page cells, and 412 * for the object/offset-to-page hash table headers. 413 * Each page cell is initialized and placed on the free list. 414 */ 415 vm_offset_t 416 vm_page_startup(vm_offset_t vaddr) 417 { 418 vm_offset_t mapped; 419 vm_paddr_t page_range; 420 vm_paddr_t new_end; 421 int i; 422 vm_paddr_t pa; 423 vm_paddr_t last_pa; 424 char *list, *listend; 425 vm_paddr_t end; 426 vm_paddr_t biggestsize; 427 vm_paddr_t low_water, high_water; 428 int biggestone; 429 int pages_per_zone; 430 431 biggestsize = 0; 432 biggestone = 0; 433 vaddr = round_page(vaddr); 434 435 for (i = 0; phys_avail[i + 1]; i += 2) { 436 phys_avail[i] = round_page(phys_avail[i]); 437 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 438 } 439 440 low_water = phys_avail[0]; 441 high_water = phys_avail[1]; 442 443 for (i = 0; i < vm_phys_nsegs; i++) { 444 if (vm_phys_segs[i].start < low_water) 445 low_water = vm_phys_segs[i].start; 446 if (vm_phys_segs[i].end > high_water) 447 high_water = vm_phys_segs[i].end; 448 } 449 for (i = 0; phys_avail[i + 1]; i += 2) { 450 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 451 452 if (size > biggestsize) { 453 biggestone = i; 454 biggestsize = size; 455 } 456 if (phys_avail[i] < low_water) 457 low_water = phys_avail[i]; 458 if (phys_avail[i + 1] > high_water) 459 high_water = phys_avail[i + 1]; 460 } 461 462 end = phys_avail[biggestone+1]; 463 464 /* 465 * Initialize the page and queue locks. 466 */ 467 mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF); 468 for (i = 0; i < PA_LOCK_COUNT; i++) 469 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF); 470 for (i = 0; i < vm_ndomains; i++) 471 vm_page_domain_init(&vm_dom[i]); 472 473 /* 474 * Almost all of the pages needed for boot strapping UMA are used 475 * for zone structures, so if the number of CPUs results in those 476 * structures taking more than one page each, we set aside more pages 477 * in proportion to the zone structure size. 478 */ 479 pages_per_zone = howmany(sizeof(struct uma_zone) + 480 sizeof(struct uma_cache) * (mp_maxid + 1), UMA_SLAB_SIZE); 481 if (pages_per_zone > 1) { 482 /* Reserve more pages so that we don't run out. */ 483 boot_pages = UMA_BOOT_PAGES_ZONES * pages_per_zone; 484 } 485 486 /* 487 * Allocate memory for use when boot strapping the kernel memory 488 * allocator. 489 * 490 * CTFLAG_RDTUN doesn't work during the early boot process, so we must 491 * manually fetch the value. 492 */ 493 TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages); 494 new_end = end - (boot_pages * UMA_SLAB_SIZE); 495 new_end = trunc_page(new_end); 496 mapped = pmap_map(&vaddr, new_end, end, 497 VM_PROT_READ | VM_PROT_WRITE); 498 bzero((void *)mapped, end - new_end); 499 uma_startup((void *)mapped, boot_pages); 500 501 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \ 502 defined(__i386__) || defined(__mips__) 503 /* 504 * Allocate a bitmap to indicate that a random physical page 505 * needs to be included in a minidump. 506 * 507 * The amd64 port needs this to indicate which direct map pages 508 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 509 * 510 * However, i386 still needs this workspace internally within the 511 * minidump code. In theory, they are not needed on i386, but are 512 * included should the sf_buf code decide to use them. 513 */ 514 last_pa = 0; 515 for (i = 0; dump_avail[i + 1] != 0; i += 2) 516 if (dump_avail[i + 1] > last_pa) 517 last_pa = dump_avail[i + 1]; 518 page_range = last_pa / PAGE_SIZE; 519 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 520 new_end -= vm_page_dump_size; 521 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, 522 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); 523 bzero((void *)vm_page_dump, vm_page_dump_size); 524 #endif 525 #ifdef __amd64__ 526 /* 527 * Request that the physical pages underlying the message buffer be 528 * included in a crash dump. Since the message buffer is accessed 529 * through the direct map, they are not automatically included. 530 */ 531 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr); 532 last_pa = pa + round_page(msgbufsize); 533 while (pa < last_pa) { 534 dump_add_page(pa); 535 pa += PAGE_SIZE; 536 } 537 #endif 538 /* 539 * Compute the number of pages of memory that will be available for 540 * use (taking into account the overhead of a page structure per 541 * page). 542 */ 543 first_page = low_water / PAGE_SIZE; 544 #ifdef VM_PHYSSEG_SPARSE 545 page_range = 0; 546 for (i = 0; i < vm_phys_nsegs; i++) { 547 page_range += atop(vm_phys_segs[i].end - 548 vm_phys_segs[i].start); 549 } 550 for (i = 0; phys_avail[i + 1] != 0; i += 2) 551 page_range += atop(phys_avail[i + 1] - phys_avail[i]); 552 #elif defined(VM_PHYSSEG_DENSE) 553 page_range = high_water / PAGE_SIZE - first_page; 554 #else 555 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 556 #endif 557 end = new_end; 558 559 /* 560 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 561 */ 562 vaddr += PAGE_SIZE; 563 564 /* 565 * Initialize the mem entry structures now, and put them in the free 566 * queue. 567 */ 568 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 569 mapped = pmap_map(&vaddr, new_end, end, 570 VM_PROT_READ | VM_PROT_WRITE); 571 vm_page_array = (vm_page_t) mapped; 572 #if VM_NRESERVLEVEL > 0 573 /* 574 * Allocate memory for the reservation management system's data 575 * structures. 576 */ 577 new_end = vm_reserv_startup(&vaddr, new_end, high_water); 578 #endif 579 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) 580 /* 581 * pmap_map on arm64, amd64, and mips can come out of the direct-map, 582 * not kvm like i386, so the pages must be tracked for a crashdump to 583 * include this data. This includes the vm_page_array and the early 584 * UMA bootstrap pages. 585 */ 586 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE) 587 dump_add_page(pa); 588 #endif 589 phys_avail[biggestone + 1] = new_end; 590 591 /* 592 * Add physical memory segments corresponding to the available 593 * physical pages. 594 */ 595 for (i = 0; phys_avail[i + 1] != 0; i += 2) 596 vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]); 597 598 /* 599 * Clear all of the page structures 600 */ 601 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 602 for (i = 0; i < page_range; i++) 603 vm_page_array[i].order = VM_NFREEORDER; 604 vm_page_array_size = page_range; 605 606 /* 607 * Initialize the physical memory allocator. 608 */ 609 vm_phys_init(); 610 611 /* 612 * Add every available physical page that is not blacklisted to 613 * the free lists. 614 */ 615 vm_cnt.v_page_count = 0; 616 vm_cnt.v_free_count = 0; 617 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 618 pa = phys_avail[i]; 619 last_pa = phys_avail[i + 1]; 620 while (pa < last_pa) { 621 vm_phys_add_page(pa); 622 pa += PAGE_SIZE; 623 } 624 } 625 626 TAILQ_INIT(&blacklist_head); 627 vm_page_blacklist_load(&list, &listend); 628 vm_page_blacklist_check(list, listend); 629 630 list = kern_getenv("vm.blacklist"); 631 vm_page_blacklist_check(list, NULL); 632 633 freeenv(list); 634 #if VM_NRESERVLEVEL > 0 635 /* 636 * Initialize the reservation management system. 637 */ 638 vm_reserv_init(); 639 #endif 640 return (vaddr); 641 } 642 643 void 644 vm_page_reference(vm_page_t m) 645 { 646 647 vm_page_aflag_set(m, PGA_REFERENCED); 648 } 649 650 /* 651 * vm_page_busy_downgrade: 652 * 653 * Downgrade an exclusive busy page into a single shared busy page. 654 */ 655 void 656 vm_page_busy_downgrade(vm_page_t m) 657 { 658 u_int x; 659 660 vm_page_assert_xbusied(m); 661 662 for (;;) { 663 x = m->busy_lock; 664 x &= VPB_BIT_WAITERS; 665 if (atomic_cmpset_rel_int(&m->busy_lock, 666 VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1) | x)) 667 break; 668 } 669 } 670 671 /* 672 * vm_page_sbusied: 673 * 674 * Return a positive value if the page is shared busied, 0 otherwise. 675 */ 676 int 677 vm_page_sbusied(vm_page_t m) 678 { 679 u_int x; 680 681 x = m->busy_lock; 682 return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED); 683 } 684 685 /* 686 * vm_page_sunbusy: 687 * 688 * Shared unbusy a page. 689 */ 690 void 691 vm_page_sunbusy(vm_page_t m) 692 { 693 u_int x; 694 695 vm_page_assert_sbusied(m); 696 697 for (;;) { 698 x = m->busy_lock; 699 if (VPB_SHARERS(x) > 1) { 700 if (atomic_cmpset_int(&m->busy_lock, x, 701 x - VPB_ONE_SHARER)) 702 break; 703 continue; 704 } 705 if ((x & VPB_BIT_WAITERS) == 0) { 706 KASSERT(x == VPB_SHARERS_WORD(1), 707 ("vm_page_sunbusy: invalid lock state")); 708 if (atomic_cmpset_int(&m->busy_lock, 709 VPB_SHARERS_WORD(1), VPB_UNBUSIED)) 710 break; 711 continue; 712 } 713 KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS), 714 ("vm_page_sunbusy: invalid lock state for waiters")); 715 716 vm_page_lock(m); 717 if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) { 718 vm_page_unlock(m); 719 continue; 720 } 721 wakeup(m); 722 vm_page_unlock(m); 723 break; 724 } 725 } 726 727 /* 728 * vm_page_busy_sleep: 729 * 730 * Sleep and release the page lock, using the page pointer as wchan. 731 * This is used to implement the hard-path of busying mechanism. 732 * 733 * The given page must be locked. 734 */ 735 void 736 vm_page_busy_sleep(vm_page_t m, const char *wmesg) 737 { 738 u_int x; 739 740 vm_page_lock_assert(m, MA_OWNED); 741 742 x = m->busy_lock; 743 if (x == VPB_UNBUSIED) { 744 vm_page_unlock(m); 745 return; 746 } 747 if ((x & VPB_BIT_WAITERS) == 0 && 748 !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS)) { 749 vm_page_unlock(m); 750 return; 751 } 752 msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0); 753 } 754 755 /* 756 * vm_page_trysbusy: 757 * 758 * Try to shared busy a page. 759 * If the operation succeeds 1 is returned otherwise 0. 760 * The operation never sleeps. 761 */ 762 int 763 vm_page_trysbusy(vm_page_t m) 764 { 765 u_int x; 766 767 for (;;) { 768 x = m->busy_lock; 769 if ((x & VPB_BIT_SHARED) == 0) 770 return (0); 771 if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER)) 772 return (1); 773 } 774 } 775 776 static void 777 vm_page_xunbusy_locked(vm_page_t m) 778 { 779 780 vm_page_assert_xbusied(m); 781 vm_page_assert_locked(m); 782 783 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED); 784 /* There is a waiter, do wakeup() instead of vm_page_flash(). */ 785 wakeup(m); 786 } 787 788 static void 789 vm_page_xunbusy_maybelocked(vm_page_t m) 790 { 791 bool lockacq; 792 793 vm_page_assert_xbusied(m); 794 795 /* 796 * Fast path for unbusy. If it succeeds, we know that there 797 * are no waiters, so we do not need a wakeup. 798 */ 799 if (atomic_cmpset_rel_int(&m->busy_lock, VPB_SINGLE_EXCLUSIVER, 800 VPB_UNBUSIED)) 801 return; 802 803 lockacq = !mtx_owned(vm_page_lockptr(m)); 804 if (lockacq) 805 vm_page_lock(m); 806 vm_page_xunbusy_locked(m); 807 if (lockacq) 808 vm_page_unlock(m); 809 } 810 811 /* 812 * vm_page_xunbusy_hard: 813 * 814 * Called after the first try the exclusive unbusy of a page failed. 815 * It is assumed that the waiters bit is on. 816 */ 817 void 818 vm_page_xunbusy_hard(vm_page_t m) 819 { 820 821 vm_page_assert_xbusied(m); 822 823 vm_page_lock(m); 824 vm_page_xunbusy_locked(m); 825 vm_page_unlock(m); 826 } 827 828 /* 829 * vm_page_flash: 830 * 831 * Wakeup anyone waiting for the page. 832 * The ownership bits do not change. 833 * 834 * The given page must be locked. 835 */ 836 void 837 vm_page_flash(vm_page_t m) 838 { 839 u_int x; 840 841 vm_page_lock_assert(m, MA_OWNED); 842 843 for (;;) { 844 x = m->busy_lock; 845 if ((x & VPB_BIT_WAITERS) == 0) 846 return; 847 if (atomic_cmpset_int(&m->busy_lock, x, 848 x & (~VPB_BIT_WAITERS))) 849 break; 850 } 851 wakeup(m); 852 } 853 854 /* 855 * Keep page from being freed by the page daemon 856 * much of the same effect as wiring, except much lower 857 * overhead and should be used only for *very* temporary 858 * holding ("wiring"). 859 */ 860 void 861 vm_page_hold(vm_page_t mem) 862 { 863 864 vm_page_lock_assert(mem, MA_OWNED); 865 mem->hold_count++; 866 } 867 868 void 869 vm_page_unhold(vm_page_t mem) 870 { 871 872 vm_page_lock_assert(mem, MA_OWNED); 873 KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!")); 874 --mem->hold_count; 875 if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0) 876 vm_page_free_toq(mem); 877 } 878 879 /* 880 * vm_page_unhold_pages: 881 * 882 * Unhold each of the pages that is referenced by the given array. 883 */ 884 void 885 vm_page_unhold_pages(vm_page_t *ma, int count) 886 { 887 struct mtx *mtx, *new_mtx; 888 889 mtx = NULL; 890 for (; count != 0; count--) { 891 /* 892 * Avoid releasing and reacquiring the same page lock. 893 */ 894 new_mtx = vm_page_lockptr(*ma); 895 if (mtx != new_mtx) { 896 if (mtx != NULL) 897 mtx_unlock(mtx); 898 mtx = new_mtx; 899 mtx_lock(mtx); 900 } 901 vm_page_unhold(*ma); 902 ma++; 903 } 904 if (mtx != NULL) 905 mtx_unlock(mtx); 906 } 907 908 vm_page_t 909 PHYS_TO_VM_PAGE(vm_paddr_t pa) 910 { 911 vm_page_t m; 912 913 #ifdef VM_PHYSSEG_SPARSE 914 m = vm_phys_paddr_to_vm_page(pa); 915 if (m == NULL) 916 m = vm_phys_fictitious_to_vm_page(pa); 917 return (m); 918 #elif defined(VM_PHYSSEG_DENSE) 919 long pi; 920 921 pi = atop(pa); 922 if (pi >= first_page && (pi - first_page) < vm_page_array_size) { 923 m = &vm_page_array[pi - first_page]; 924 return (m); 925 } 926 return (vm_phys_fictitious_to_vm_page(pa)); 927 #else 928 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 929 #endif 930 } 931 932 /* 933 * vm_page_getfake: 934 * 935 * Create a fictitious page with the specified physical address and 936 * memory attribute. The memory attribute is the only the machine- 937 * dependent aspect of a fictitious page that must be initialized. 938 */ 939 vm_page_t 940 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr) 941 { 942 vm_page_t m; 943 944 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO); 945 vm_page_initfake(m, paddr, memattr); 946 return (m); 947 } 948 949 void 950 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 951 { 952 953 if ((m->flags & PG_FICTITIOUS) != 0) { 954 /* 955 * The page's memattr might have changed since the 956 * previous initialization. Update the pmap to the 957 * new memattr. 958 */ 959 goto memattr; 960 } 961 m->phys_addr = paddr; 962 m->queue = PQ_NONE; 963 /* Fictitious pages don't use "segind". */ 964 m->flags = PG_FICTITIOUS; 965 /* Fictitious pages don't use "order" or "pool". */ 966 m->oflags = VPO_UNMANAGED; 967 m->busy_lock = VPB_SINGLE_EXCLUSIVER; 968 m->wire_count = 1; 969 pmap_page_init(m); 970 memattr: 971 pmap_page_set_memattr(m, memattr); 972 } 973 974 /* 975 * vm_page_putfake: 976 * 977 * Release a fictitious page. 978 */ 979 void 980 vm_page_putfake(vm_page_t m) 981 { 982 983 KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m)); 984 KASSERT((m->flags & PG_FICTITIOUS) != 0, 985 ("vm_page_putfake: bad page %p", m)); 986 uma_zfree(fakepg_zone, m); 987 } 988 989 /* 990 * vm_page_updatefake: 991 * 992 * Update the given fictitious page to the specified physical address and 993 * memory attribute. 994 */ 995 void 996 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 997 { 998 999 KASSERT((m->flags & PG_FICTITIOUS) != 0, 1000 ("vm_page_updatefake: bad page %p", m)); 1001 m->phys_addr = paddr; 1002 pmap_page_set_memattr(m, memattr); 1003 } 1004 1005 /* 1006 * vm_page_free: 1007 * 1008 * Free a page. 1009 */ 1010 void 1011 vm_page_free(vm_page_t m) 1012 { 1013 1014 m->flags &= ~PG_ZERO; 1015 vm_page_free_toq(m); 1016 } 1017 1018 /* 1019 * vm_page_free_zero: 1020 * 1021 * Free a page to the zerod-pages queue 1022 */ 1023 void 1024 vm_page_free_zero(vm_page_t m) 1025 { 1026 1027 m->flags |= PG_ZERO; 1028 vm_page_free_toq(m); 1029 } 1030 1031 /* 1032 * Unbusy and handle the page queueing for a page from a getpages request that 1033 * was optionally read ahead or behind. 1034 */ 1035 void 1036 vm_page_readahead_finish(vm_page_t m) 1037 { 1038 1039 /* We shouldn't put invalid pages on queues. */ 1040 KASSERT(m->valid != 0, ("%s: %p is invalid", __func__, m)); 1041 1042 /* 1043 * Since the page is not the actually needed one, whether it should 1044 * be activated or deactivated is not obvious. Empirical results 1045 * have shown that deactivating the page is usually the best choice, 1046 * unless the page is wanted by another thread. 1047 */ 1048 vm_page_lock(m); 1049 if ((m->busy_lock & VPB_BIT_WAITERS) != 0) 1050 vm_page_activate(m); 1051 else 1052 vm_page_deactivate(m); 1053 vm_page_unlock(m); 1054 vm_page_xunbusy(m); 1055 } 1056 1057 /* 1058 * vm_page_sleep_if_busy: 1059 * 1060 * Sleep and release the page queues lock if the page is busied. 1061 * Returns TRUE if the thread slept. 1062 * 1063 * The given page must be unlocked and object containing it must 1064 * be locked. 1065 */ 1066 int 1067 vm_page_sleep_if_busy(vm_page_t m, const char *msg) 1068 { 1069 vm_object_t obj; 1070 1071 vm_page_lock_assert(m, MA_NOTOWNED); 1072 VM_OBJECT_ASSERT_WLOCKED(m->object); 1073 1074 if (vm_page_busied(m)) { 1075 /* 1076 * The page-specific object must be cached because page 1077 * identity can change during the sleep, causing the 1078 * re-lock of a different object. 1079 * It is assumed that a reference to the object is already 1080 * held by the callers. 1081 */ 1082 obj = m->object; 1083 vm_page_lock(m); 1084 VM_OBJECT_WUNLOCK(obj); 1085 vm_page_busy_sleep(m, msg); 1086 VM_OBJECT_WLOCK(obj); 1087 return (TRUE); 1088 } 1089 return (FALSE); 1090 } 1091 1092 /* 1093 * vm_page_dirty_KBI: [ internal use only ] 1094 * 1095 * Set all bits in the page's dirty field. 1096 * 1097 * The object containing the specified page must be locked if the 1098 * call is made from the machine-independent layer. 1099 * 1100 * See vm_page_clear_dirty_mask(). 1101 * 1102 * This function should only be called by vm_page_dirty(). 1103 */ 1104 void 1105 vm_page_dirty_KBI(vm_page_t m) 1106 { 1107 1108 /* These assertions refer to this operation by its public name. */ 1109 KASSERT((m->flags & PG_CACHED) == 0, 1110 ("vm_page_dirty: page in cache!")); 1111 KASSERT(m->valid == VM_PAGE_BITS_ALL, 1112 ("vm_page_dirty: page is invalid!")); 1113 m->dirty = VM_PAGE_BITS_ALL; 1114 } 1115 1116 /* 1117 * vm_page_insert: [ internal use only ] 1118 * 1119 * Inserts the given mem entry into the object and object list. 1120 * 1121 * The object must be locked. 1122 */ 1123 int 1124 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 1125 { 1126 vm_page_t mpred; 1127 1128 VM_OBJECT_ASSERT_WLOCKED(object); 1129 mpred = vm_radix_lookup_le(&object->rtree, pindex); 1130 return (vm_page_insert_after(m, object, pindex, mpred)); 1131 } 1132 1133 /* 1134 * vm_page_insert_after: 1135 * 1136 * Inserts the page "m" into the specified object at offset "pindex". 1137 * 1138 * The page "mpred" must immediately precede the offset "pindex" within 1139 * the specified object. 1140 * 1141 * The object must be locked. 1142 */ 1143 static int 1144 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex, 1145 vm_page_t mpred) 1146 { 1147 vm_page_t msucc; 1148 1149 VM_OBJECT_ASSERT_WLOCKED(object); 1150 KASSERT(m->object == NULL, 1151 ("vm_page_insert_after: page already inserted")); 1152 if (mpred != NULL) { 1153 KASSERT(mpred->object == object, 1154 ("vm_page_insert_after: object doesn't contain mpred")); 1155 KASSERT(mpred->pindex < pindex, 1156 ("vm_page_insert_after: mpred doesn't precede pindex")); 1157 msucc = TAILQ_NEXT(mpred, listq); 1158 } else 1159 msucc = TAILQ_FIRST(&object->memq); 1160 if (msucc != NULL) 1161 KASSERT(msucc->pindex > pindex, 1162 ("vm_page_insert_after: msucc doesn't succeed pindex")); 1163 1164 /* 1165 * Record the object/offset pair in this page 1166 */ 1167 m->object = object; 1168 m->pindex = pindex; 1169 1170 /* 1171 * Now link into the object's ordered list of backed pages. 1172 */ 1173 if (vm_radix_insert(&object->rtree, m)) { 1174 m->object = NULL; 1175 m->pindex = 0; 1176 return (1); 1177 } 1178 vm_page_insert_radixdone(m, object, mpred); 1179 return (0); 1180 } 1181 1182 /* 1183 * vm_page_insert_radixdone: 1184 * 1185 * Complete page "m" insertion into the specified object after the 1186 * radix trie hooking. 1187 * 1188 * The page "mpred" must precede the offset "m->pindex" within the 1189 * specified object. 1190 * 1191 * The object must be locked. 1192 */ 1193 static void 1194 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred) 1195 { 1196 1197 VM_OBJECT_ASSERT_WLOCKED(object); 1198 KASSERT(object != NULL && m->object == object, 1199 ("vm_page_insert_radixdone: page %p has inconsistent object", m)); 1200 if (mpred != NULL) { 1201 KASSERT(mpred->object == object, 1202 ("vm_page_insert_after: object doesn't contain mpred")); 1203 KASSERT(mpred->pindex < m->pindex, 1204 ("vm_page_insert_after: mpred doesn't precede pindex")); 1205 } 1206 1207 if (mpred != NULL) 1208 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq); 1209 else 1210 TAILQ_INSERT_HEAD(&object->memq, m, listq); 1211 1212 /* 1213 * Show that the object has one more resident page. 1214 */ 1215 object->resident_page_count++; 1216 1217 /* 1218 * Hold the vnode until the last page is released. 1219 */ 1220 if (object->resident_page_count == 1 && object->type == OBJT_VNODE) 1221 vhold(object->handle); 1222 1223 /* 1224 * Since we are inserting a new and possibly dirty page, 1225 * update the object's OBJ_MIGHTBEDIRTY flag. 1226 */ 1227 if (pmap_page_is_write_mapped(m)) 1228 vm_object_set_writeable_dirty(object); 1229 } 1230 1231 /* 1232 * vm_page_remove: 1233 * 1234 * Removes the given mem entry from the object/offset-page 1235 * table and the object page list, but do not invalidate/terminate 1236 * the backing store. 1237 * 1238 * The object must be locked. The page must be locked if it is managed. 1239 */ 1240 void 1241 vm_page_remove(vm_page_t m) 1242 { 1243 vm_object_t object; 1244 1245 if ((m->oflags & VPO_UNMANAGED) == 0) 1246 vm_page_assert_locked(m); 1247 if ((object = m->object) == NULL) 1248 return; 1249 VM_OBJECT_ASSERT_WLOCKED(object); 1250 if (vm_page_xbusied(m)) 1251 vm_page_xunbusy_maybelocked(m); 1252 1253 /* 1254 * Now remove from the object's list of backed pages. 1255 */ 1256 vm_radix_remove(&object->rtree, m->pindex); 1257 TAILQ_REMOVE(&object->memq, m, listq); 1258 1259 /* 1260 * And show that the object has one fewer resident page. 1261 */ 1262 object->resident_page_count--; 1263 1264 /* 1265 * The vnode may now be recycled. 1266 */ 1267 if (object->resident_page_count == 0 && object->type == OBJT_VNODE) 1268 vdrop(object->handle); 1269 1270 m->object = NULL; 1271 } 1272 1273 /* 1274 * vm_page_lookup: 1275 * 1276 * Returns the page associated with the object/offset 1277 * pair specified; if none is found, NULL is returned. 1278 * 1279 * The object must be locked. 1280 */ 1281 vm_page_t 1282 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 1283 { 1284 1285 VM_OBJECT_ASSERT_LOCKED(object); 1286 return (vm_radix_lookup(&object->rtree, pindex)); 1287 } 1288 1289 /* 1290 * vm_page_find_least: 1291 * 1292 * Returns the page associated with the object with least pindex 1293 * greater than or equal to the parameter pindex, or NULL. 1294 * 1295 * The object must be locked. 1296 */ 1297 vm_page_t 1298 vm_page_find_least(vm_object_t object, vm_pindex_t pindex) 1299 { 1300 vm_page_t m; 1301 1302 VM_OBJECT_ASSERT_LOCKED(object); 1303 if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex) 1304 m = vm_radix_lookup_ge(&object->rtree, pindex); 1305 return (m); 1306 } 1307 1308 /* 1309 * Returns the given page's successor (by pindex) within the object if it is 1310 * resident; if none is found, NULL is returned. 1311 * 1312 * The object must be locked. 1313 */ 1314 vm_page_t 1315 vm_page_next(vm_page_t m) 1316 { 1317 vm_page_t next; 1318 1319 VM_OBJECT_ASSERT_LOCKED(m->object); 1320 if ((next = TAILQ_NEXT(m, listq)) != NULL && 1321 next->pindex != m->pindex + 1) 1322 next = NULL; 1323 return (next); 1324 } 1325 1326 /* 1327 * Returns the given page's predecessor (by pindex) within the object if it is 1328 * resident; if none is found, NULL is returned. 1329 * 1330 * The object must be locked. 1331 */ 1332 vm_page_t 1333 vm_page_prev(vm_page_t m) 1334 { 1335 vm_page_t prev; 1336 1337 VM_OBJECT_ASSERT_LOCKED(m->object); 1338 if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL && 1339 prev->pindex != m->pindex - 1) 1340 prev = NULL; 1341 return (prev); 1342 } 1343 1344 /* 1345 * Uses the page mnew as a replacement for an existing page at index 1346 * pindex which must be already present in the object. 1347 * 1348 * The existing page must not be on a paging queue. 1349 */ 1350 vm_page_t 1351 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex) 1352 { 1353 vm_page_t mold; 1354 1355 VM_OBJECT_ASSERT_WLOCKED(object); 1356 KASSERT(mnew->object == NULL, 1357 ("vm_page_replace: page already in object")); 1358 1359 /* 1360 * This function mostly follows vm_page_insert() and 1361 * vm_page_remove() without the radix, object count and vnode 1362 * dance. Double check such functions for more comments. 1363 */ 1364 1365 mnew->object = object; 1366 mnew->pindex = pindex; 1367 mold = vm_radix_replace(&object->rtree, mnew); 1368 KASSERT(mold->queue == PQ_NONE, 1369 ("vm_page_replace: mold is on a paging queue")); 1370 1371 /* Keep the resident page list in sorted order. */ 1372 TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq); 1373 TAILQ_REMOVE(&object->memq, mold, listq); 1374 1375 mold->object = NULL; 1376 vm_page_xunbusy_maybelocked(mold); 1377 1378 /* 1379 * The object's resident_page_count does not change because we have 1380 * swapped one page for another, but OBJ_MIGHTBEDIRTY. 1381 */ 1382 if (pmap_page_is_write_mapped(mnew)) 1383 vm_object_set_writeable_dirty(object); 1384 return (mold); 1385 } 1386 1387 /* 1388 * vm_page_rename: 1389 * 1390 * Move the given memory entry from its 1391 * current object to the specified target object/offset. 1392 * 1393 * Note: swap associated with the page must be invalidated by the move. We 1394 * have to do this for several reasons: (1) we aren't freeing the 1395 * page, (2) we are dirtying the page, (3) the VM system is probably 1396 * moving the page from object A to B, and will then later move 1397 * the backing store from A to B and we can't have a conflict. 1398 * 1399 * Note: we *always* dirty the page. It is necessary both for the 1400 * fact that we moved it, and because we may be invalidating 1401 * swap. If the page is on the cache, we have to deactivate it 1402 * or vm_page_dirty() will panic. Dirty pages are not allowed 1403 * on the cache. 1404 * 1405 * The objects must be locked. 1406 */ 1407 int 1408 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 1409 { 1410 vm_page_t mpred; 1411 vm_pindex_t opidx; 1412 1413 VM_OBJECT_ASSERT_WLOCKED(new_object); 1414 1415 mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex); 1416 KASSERT(mpred == NULL || mpred->pindex != new_pindex, 1417 ("vm_page_rename: pindex already renamed")); 1418 1419 /* 1420 * Create a custom version of vm_page_insert() which does not depend 1421 * by m_prev and can cheat on the implementation aspects of the 1422 * function. 1423 */ 1424 opidx = m->pindex; 1425 m->pindex = new_pindex; 1426 if (vm_radix_insert(&new_object->rtree, m)) { 1427 m->pindex = opidx; 1428 return (1); 1429 } 1430 1431 /* 1432 * The operation cannot fail anymore. The removal must happen before 1433 * the listq iterator is tainted. 1434 */ 1435 m->pindex = opidx; 1436 vm_page_lock(m); 1437 vm_page_remove(m); 1438 1439 /* Return back to the new pindex to complete vm_page_insert(). */ 1440 m->pindex = new_pindex; 1441 m->object = new_object; 1442 vm_page_unlock(m); 1443 vm_page_insert_radixdone(m, new_object, mpred); 1444 vm_page_dirty(m); 1445 return (0); 1446 } 1447 1448 /* 1449 * Convert all of the given object's cached pages that have a 1450 * pindex within the given range into free pages. If the value 1451 * zero is given for "end", then the range's upper bound is 1452 * infinity. If the given object is backed by a vnode and it 1453 * transitions from having one or more cached pages to none, the 1454 * vnode's hold count is reduced. 1455 */ 1456 void 1457 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1458 { 1459 vm_page_t m; 1460 boolean_t empty; 1461 1462 mtx_lock(&vm_page_queue_free_mtx); 1463 if (__predict_false(vm_radix_is_empty(&object->cache))) { 1464 mtx_unlock(&vm_page_queue_free_mtx); 1465 return; 1466 } 1467 while ((m = vm_radix_lookup_ge(&object->cache, start)) != NULL) { 1468 if (end != 0 && m->pindex >= end) 1469 break; 1470 vm_radix_remove(&object->cache, m->pindex); 1471 vm_page_cache_turn_free(m); 1472 } 1473 empty = vm_radix_is_empty(&object->cache); 1474 mtx_unlock(&vm_page_queue_free_mtx); 1475 if (object->type == OBJT_VNODE && empty) 1476 vdrop(object->handle); 1477 } 1478 1479 /* 1480 * Returns the cached page that is associated with the given 1481 * object and offset. If, however, none exists, returns NULL. 1482 * 1483 * The free page queue must be locked. 1484 */ 1485 static inline vm_page_t 1486 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex) 1487 { 1488 1489 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1490 return (vm_radix_lookup(&object->cache, pindex)); 1491 } 1492 1493 /* 1494 * Remove the given cached page from its containing object's 1495 * collection of cached pages. 1496 * 1497 * The free page queue must be locked. 1498 */ 1499 static void 1500 vm_page_cache_remove(vm_page_t m) 1501 { 1502 1503 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1504 KASSERT((m->flags & PG_CACHED) != 0, 1505 ("vm_page_cache_remove: page %p is not cached", m)); 1506 vm_radix_remove(&m->object->cache, m->pindex); 1507 m->object = NULL; 1508 vm_cnt.v_cache_count--; 1509 } 1510 1511 /* 1512 * Transfer all of the cached pages with offset greater than or 1513 * equal to 'offidxstart' from the original object's cache to the 1514 * new object's cache. However, any cached pages with offset 1515 * greater than or equal to the new object's size are kept in the 1516 * original object. Initially, the new object's cache must be 1517 * empty. Offset 'offidxstart' in the original object must 1518 * correspond to offset zero in the new object. 1519 * 1520 * The new object must be locked. 1521 */ 1522 void 1523 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart, 1524 vm_object_t new_object) 1525 { 1526 vm_page_t m; 1527 1528 /* 1529 * Insertion into an object's collection of cached pages 1530 * requires the object to be locked. In contrast, removal does 1531 * not. 1532 */ 1533 VM_OBJECT_ASSERT_WLOCKED(new_object); 1534 KASSERT(vm_radix_is_empty(&new_object->cache), 1535 ("vm_page_cache_transfer: object %p has cached pages", 1536 new_object)); 1537 mtx_lock(&vm_page_queue_free_mtx); 1538 while ((m = vm_radix_lookup_ge(&orig_object->cache, 1539 offidxstart)) != NULL) { 1540 /* 1541 * Transfer all of the pages with offset greater than or 1542 * equal to 'offidxstart' from the original object's 1543 * cache to the new object's cache. 1544 */ 1545 if ((m->pindex - offidxstart) >= new_object->size) 1546 break; 1547 vm_radix_remove(&orig_object->cache, m->pindex); 1548 /* Update the page's object and offset. */ 1549 m->object = new_object; 1550 m->pindex -= offidxstart; 1551 if (vm_radix_insert(&new_object->cache, m)) 1552 vm_page_cache_turn_free(m); 1553 } 1554 mtx_unlock(&vm_page_queue_free_mtx); 1555 } 1556 1557 /* 1558 * Returns TRUE if a cached page is associated with the given object and 1559 * offset, and FALSE otherwise. 1560 * 1561 * The object must be locked. 1562 */ 1563 boolean_t 1564 vm_page_is_cached(vm_object_t object, vm_pindex_t pindex) 1565 { 1566 vm_page_t m; 1567 1568 /* 1569 * Insertion into an object's collection of cached pages requires the 1570 * object to be locked. Therefore, if the object is locked and the 1571 * object's collection is empty, there is no need to acquire the free 1572 * page queues lock in order to prove that the specified page doesn't 1573 * exist. 1574 */ 1575 VM_OBJECT_ASSERT_WLOCKED(object); 1576 if (__predict_true(vm_object_cache_is_empty(object))) 1577 return (FALSE); 1578 mtx_lock(&vm_page_queue_free_mtx); 1579 m = vm_page_cache_lookup(object, pindex); 1580 mtx_unlock(&vm_page_queue_free_mtx); 1581 return (m != NULL); 1582 } 1583 1584 /* 1585 * vm_page_alloc: 1586 * 1587 * Allocate and return a page that is associated with the specified 1588 * object and offset pair. By default, this page is exclusive busied. 1589 * 1590 * The caller must always specify an allocation class. 1591 * 1592 * allocation classes: 1593 * VM_ALLOC_NORMAL normal process request 1594 * VM_ALLOC_SYSTEM system *really* needs a page 1595 * VM_ALLOC_INTERRUPT interrupt time request 1596 * 1597 * optional allocation flags: 1598 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 1599 * intends to allocate 1600 * VM_ALLOC_IFCACHED return page only if it is cached 1601 * VM_ALLOC_IFNOTCACHED return NULL, do not reactivate if the page 1602 * is cached 1603 * VM_ALLOC_NOBUSY do not exclusive busy the page 1604 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 1605 * VM_ALLOC_NOOBJ page is not associated with an object and 1606 * should not be exclusive busy 1607 * VM_ALLOC_SBUSY shared busy the allocated page 1608 * VM_ALLOC_WIRED wire the allocated page 1609 * VM_ALLOC_ZERO prefer a zeroed page 1610 * 1611 * This routine may not sleep. 1612 */ 1613 vm_page_t 1614 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 1615 { 1616 struct vnode *vp = NULL; 1617 vm_object_t m_object; 1618 vm_page_t m, mpred; 1619 int flags, req_class; 1620 1621 mpred = 0; /* XXX: pacify gcc */ 1622 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) && 1623 (object != NULL || (req & VM_ALLOC_SBUSY) == 0) && 1624 ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 1625 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 1626 ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object, 1627 req)); 1628 if (object != NULL) 1629 VM_OBJECT_ASSERT_WLOCKED(object); 1630 1631 req_class = req & VM_ALLOC_CLASS_MASK; 1632 1633 /* 1634 * The page daemon is allowed to dig deeper into the free page list. 1635 */ 1636 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 1637 req_class = VM_ALLOC_SYSTEM; 1638 1639 if (object != NULL) { 1640 mpred = vm_radix_lookup_le(&object->rtree, pindex); 1641 KASSERT(mpred == NULL || mpred->pindex != pindex, 1642 ("vm_page_alloc: pindex already allocated")); 1643 } 1644 1645 /* 1646 * The page allocation request can came from consumers which already 1647 * hold the free page queue mutex, like vm_page_insert() in 1648 * vm_page_cache(). 1649 */ 1650 mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE); 1651 if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved || 1652 (req_class == VM_ALLOC_SYSTEM && 1653 vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) || 1654 (req_class == VM_ALLOC_INTERRUPT && 1655 vm_cnt.v_free_count + vm_cnt.v_cache_count > 0)) { 1656 /* 1657 * Allocate from the free queue if the number of free pages 1658 * exceeds the minimum for the request class. 1659 */ 1660 if (object != NULL && 1661 (m = vm_page_cache_lookup(object, pindex)) != NULL) { 1662 if ((req & VM_ALLOC_IFNOTCACHED) != 0) { 1663 mtx_unlock(&vm_page_queue_free_mtx); 1664 return (NULL); 1665 } 1666 if (vm_phys_unfree_page(m)) 1667 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0); 1668 #if VM_NRESERVLEVEL > 0 1669 else if (!vm_reserv_reactivate_page(m)) 1670 #else 1671 else 1672 #endif 1673 panic("vm_page_alloc: cache page %p is missing" 1674 " from the free queue", m); 1675 } else if ((req & VM_ALLOC_IFCACHED) != 0) { 1676 mtx_unlock(&vm_page_queue_free_mtx); 1677 return (NULL); 1678 #if VM_NRESERVLEVEL > 0 1679 } else if (object == NULL || (object->flags & (OBJ_COLORED | 1680 OBJ_FICTITIOUS)) != OBJ_COLORED || (m = 1681 vm_reserv_alloc_page(object, pindex, mpred)) == NULL) { 1682 #else 1683 } else { 1684 #endif 1685 m = vm_phys_alloc_pages(object != NULL ? 1686 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0); 1687 #if VM_NRESERVLEVEL > 0 1688 if (m == NULL && vm_reserv_reclaim_inactive()) { 1689 m = vm_phys_alloc_pages(object != NULL ? 1690 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 1691 0); 1692 } 1693 #endif 1694 } 1695 } else { 1696 /* 1697 * Not allocatable, give up. 1698 */ 1699 mtx_unlock(&vm_page_queue_free_mtx); 1700 atomic_add_int(&vm_pageout_deficit, 1701 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); 1702 pagedaemon_wakeup(); 1703 return (NULL); 1704 } 1705 1706 /* 1707 * At this point we had better have found a good page. 1708 */ 1709 KASSERT(m != NULL, ("vm_page_alloc: missing page")); 1710 KASSERT(m->queue == PQ_NONE, 1711 ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue)); 1712 KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m)); 1713 KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m)); 1714 KASSERT(!vm_page_busied(m), ("vm_page_alloc: page %p is busy", m)); 1715 KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m)); 1716 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, 1717 ("vm_page_alloc: page %p has unexpected memattr %d", m, 1718 pmap_page_get_memattr(m))); 1719 if ((m->flags & PG_CACHED) != 0) { 1720 KASSERT((m->flags & PG_ZERO) == 0, 1721 ("vm_page_alloc: cached page %p is PG_ZERO", m)); 1722 KASSERT(m->valid != 0, 1723 ("vm_page_alloc: cached page %p is invalid", m)); 1724 if (m->object == object && m->pindex == pindex) 1725 vm_cnt.v_reactivated++; 1726 else 1727 m->valid = 0; 1728 m_object = m->object; 1729 vm_page_cache_remove(m); 1730 if (m_object->type == OBJT_VNODE && 1731 vm_object_cache_is_empty(m_object)) 1732 vp = m_object->handle; 1733 } else { 1734 KASSERT(m->valid == 0, 1735 ("vm_page_alloc: free page %p is valid", m)); 1736 vm_phys_freecnt_adj(m, -1); 1737 } 1738 mtx_unlock(&vm_page_queue_free_mtx); 1739 1740 /* 1741 * Initialize the page. Only the PG_ZERO flag is inherited. 1742 */ 1743 flags = 0; 1744 if ((req & VM_ALLOC_ZERO) != 0) 1745 flags = PG_ZERO; 1746 flags &= m->flags; 1747 if ((req & VM_ALLOC_NODUMP) != 0) 1748 flags |= PG_NODUMP; 1749 m->flags = flags; 1750 m->aflags = 0; 1751 m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ? 1752 VPO_UNMANAGED : 0; 1753 m->busy_lock = VPB_UNBUSIED; 1754 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0) 1755 m->busy_lock = VPB_SINGLE_EXCLUSIVER; 1756 if ((req & VM_ALLOC_SBUSY) != 0) 1757 m->busy_lock = VPB_SHARERS_WORD(1); 1758 if (req & VM_ALLOC_WIRED) { 1759 /* 1760 * The page lock is not required for wiring a page until that 1761 * page is inserted into the object. 1762 */ 1763 atomic_add_int(&vm_cnt.v_wire_count, 1); 1764 m->wire_count = 1; 1765 } 1766 m->act_count = 0; 1767 1768 if (object != NULL) { 1769 if (vm_page_insert_after(m, object, pindex, mpred)) { 1770 /* See the comment below about hold count. */ 1771 if (vp != NULL) 1772 vdrop(vp); 1773 pagedaemon_wakeup(); 1774 if (req & VM_ALLOC_WIRED) { 1775 atomic_subtract_int(&vm_cnt.v_wire_count, 1); 1776 m->wire_count = 0; 1777 } 1778 m->object = NULL; 1779 m->oflags = VPO_UNMANAGED; 1780 m->busy_lock = VPB_UNBUSIED; 1781 vm_page_free(m); 1782 return (NULL); 1783 } 1784 1785 /* Ignore device objects; the pager sets "memattr" for them. */ 1786 if (object->memattr != VM_MEMATTR_DEFAULT && 1787 (object->flags & OBJ_FICTITIOUS) == 0) 1788 pmap_page_set_memattr(m, object->memattr); 1789 } else 1790 m->pindex = pindex; 1791 1792 /* 1793 * The following call to vdrop() must come after the above call 1794 * to vm_page_insert() in case both affect the same object and 1795 * vnode. Otherwise, the affected vnode's hold count could 1796 * temporarily become zero. 1797 */ 1798 if (vp != NULL) 1799 vdrop(vp); 1800 1801 /* 1802 * Don't wakeup too often - wakeup the pageout daemon when 1803 * we would be nearly out of memory. 1804 */ 1805 if (vm_paging_needed()) 1806 pagedaemon_wakeup(); 1807 1808 return (m); 1809 } 1810 1811 static void 1812 vm_page_alloc_contig_vdrop(struct spglist *lst) 1813 { 1814 1815 while (!SLIST_EMPTY(lst)) { 1816 vdrop((struct vnode *)SLIST_FIRST(lst)-> plinks.s.pv); 1817 SLIST_REMOVE_HEAD(lst, plinks.s.ss); 1818 } 1819 } 1820 1821 /* 1822 * vm_page_alloc_contig: 1823 * 1824 * Allocate a contiguous set of physical pages of the given size "npages" 1825 * from the free lists. All of the physical pages must be at or above 1826 * the given physical address "low" and below the given physical address 1827 * "high". The given value "alignment" determines the alignment of the 1828 * first physical page in the set. If the given value "boundary" is 1829 * non-zero, then the set of physical pages cannot cross any physical 1830 * address boundary that is a multiple of that value. Both "alignment" 1831 * and "boundary" must be a power of two. 1832 * 1833 * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT, 1834 * then the memory attribute setting for the physical pages is configured 1835 * to the object's memory attribute setting. Otherwise, the memory 1836 * attribute setting for the physical pages is configured to "memattr", 1837 * overriding the object's memory attribute setting. However, if the 1838 * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the 1839 * memory attribute setting for the physical pages cannot be configured 1840 * to VM_MEMATTR_DEFAULT. 1841 * 1842 * The caller must always specify an allocation class. 1843 * 1844 * allocation classes: 1845 * VM_ALLOC_NORMAL normal process request 1846 * VM_ALLOC_SYSTEM system *really* needs a page 1847 * VM_ALLOC_INTERRUPT interrupt time request 1848 * 1849 * optional allocation flags: 1850 * VM_ALLOC_NOBUSY do not exclusive busy the page 1851 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 1852 * VM_ALLOC_NOOBJ page is not associated with an object and 1853 * should not be exclusive busy 1854 * VM_ALLOC_SBUSY shared busy the allocated page 1855 * VM_ALLOC_WIRED wire the allocated page 1856 * VM_ALLOC_ZERO prefer a zeroed page 1857 * 1858 * This routine may not sleep. 1859 */ 1860 vm_page_t 1861 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req, 1862 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 1863 vm_paddr_t boundary, vm_memattr_t memattr) 1864 { 1865 struct vnode *drop; 1866 struct spglist deferred_vdrop_list; 1867 vm_page_t m, m_tmp, m_ret; 1868 u_int flags; 1869 int req_class; 1870 1871 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) && 1872 (object != NULL || (req & VM_ALLOC_SBUSY) == 0) && 1873 ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 1874 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 1875 ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object, 1876 req)); 1877 if (object != NULL) { 1878 VM_OBJECT_ASSERT_WLOCKED(object); 1879 KASSERT(object->type == OBJT_PHYS, 1880 ("vm_page_alloc_contig: object %p isn't OBJT_PHYS", 1881 object)); 1882 } 1883 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero")); 1884 req_class = req & VM_ALLOC_CLASS_MASK; 1885 1886 /* 1887 * The page daemon is allowed to dig deeper into the free page list. 1888 */ 1889 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 1890 req_class = VM_ALLOC_SYSTEM; 1891 1892 SLIST_INIT(&deferred_vdrop_list); 1893 mtx_lock(&vm_page_queue_free_mtx); 1894 if (vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages + 1895 vm_cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM && 1896 vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages + 1897 vm_cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT && 1898 vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages)) { 1899 #if VM_NRESERVLEVEL > 0 1900 retry: 1901 if (object == NULL || (object->flags & OBJ_COLORED) == 0 || 1902 (m_ret = vm_reserv_alloc_contig(object, pindex, npages, 1903 low, high, alignment, boundary)) == NULL) 1904 #endif 1905 m_ret = vm_phys_alloc_contig(npages, low, high, 1906 alignment, boundary); 1907 } else { 1908 mtx_unlock(&vm_page_queue_free_mtx); 1909 atomic_add_int(&vm_pageout_deficit, npages); 1910 pagedaemon_wakeup(); 1911 return (NULL); 1912 } 1913 if (m_ret != NULL) 1914 for (m = m_ret; m < &m_ret[npages]; m++) { 1915 drop = vm_page_alloc_init(m); 1916 if (drop != NULL) { 1917 /* 1918 * Enqueue the vnode for deferred vdrop(). 1919 */ 1920 m->plinks.s.pv = drop; 1921 SLIST_INSERT_HEAD(&deferred_vdrop_list, m, 1922 plinks.s.ss); 1923 } 1924 } 1925 else { 1926 #if VM_NRESERVLEVEL > 0 1927 if (vm_reserv_reclaim_contig(npages, low, high, alignment, 1928 boundary)) 1929 goto retry; 1930 #endif 1931 } 1932 mtx_unlock(&vm_page_queue_free_mtx); 1933 if (m_ret == NULL) 1934 return (NULL); 1935 1936 /* 1937 * Initialize the pages. Only the PG_ZERO flag is inherited. 1938 */ 1939 flags = 0; 1940 if ((req & VM_ALLOC_ZERO) != 0) 1941 flags = PG_ZERO; 1942 if ((req & VM_ALLOC_NODUMP) != 0) 1943 flags |= PG_NODUMP; 1944 if ((req & VM_ALLOC_WIRED) != 0) 1945 atomic_add_int(&vm_cnt.v_wire_count, npages); 1946 if (object != NULL) { 1947 if (object->memattr != VM_MEMATTR_DEFAULT && 1948 memattr == VM_MEMATTR_DEFAULT) 1949 memattr = object->memattr; 1950 } 1951 for (m = m_ret; m < &m_ret[npages]; m++) { 1952 m->aflags = 0; 1953 m->flags = (m->flags | PG_NODUMP) & flags; 1954 m->busy_lock = VPB_UNBUSIED; 1955 if (object != NULL) { 1956 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0) 1957 m->busy_lock = VPB_SINGLE_EXCLUSIVER; 1958 if ((req & VM_ALLOC_SBUSY) != 0) 1959 m->busy_lock = VPB_SHARERS_WORD(1); 1960 } 1961 if ((req & VM_ALLOC_WIRED) != 0) 1962 m->wire_count = 1; 1963 /* Unmanaged pages don't use "act_count". */ 1964 m->oflags = VPO_UNMANAGED; 1965 if (object != NULL) { 1966 if (vm_page_insert(m, object, pindex)) { 1967 vm_page_alloc_contig_vdrop( 1968 &deferred_vdrop_list); 1969 if (vm_paging_needed()) 1970 pagedaemon_wakeup(); 1971 if ((req & VM_ALLOC_WIRED) != 0) 1972 atomic_subtract_int(&vm_cnt.v_wire_count, 1973 npages); 1974 for (m_tmp = m, m = m_ret; 1975 m < &m_ret[npages]; m++) { 1976 if ((req & VM_ALLOC_WIRED) != 0) 1977 m->wire_count = 0; 1978 if (m >= m_tmp) { 1979 m->object = NULL; 1980 m->oflags |= VPO_UNMANAGED; 1981 } 1982 m->busy_lock = VPB_UNBUSIED; 1983 vm_page_free(m); 1984 } 1985 return (NULL); 1986 } 1987 } else 1988 m->pindex = pindex; 1989 if (memattr != VM_MEMATTR_DEFAULT) 1990 pmap_page_set_memattr(m, memattr); 1991 pindex++; 1992 } 1993 vm_page_alloc_contig_vdrop(&deferred_vdrop_list); 1994 if (vm_paging_needed()) 1995 pagedaemon_wakeup(); 1996 return (m_ret); 1997 } 1998 1999 /* 2000 * Initialize a page that has been freshly dequeued from a freelist. 2001 * The caller has to drop the vnode returned, if it is not NULL. 2002 * 2003 * This function may only be used to initialize unmanaged pages. 2004 * 2005 * To be called with vm_page_queue_free_mtx held. 2006 */ 2007 static struct vnode * 2008 vm_page_alloc_init(vm_page_t m) 2009 { 2010 struct vnode *drop; 2011 vm_object_t m_object; 2012 2013 KASSERT(m->queue == PQ_NONE, 2014 ("vm_page_alloc_init: page %p has unexpected queue %d", 2015 m, m->queue)); 2016 KASSERT(m->wire_count == 0, 2017 ("vm_page_alloc_init: page %p is wired", m)); 2018 KASSERT(m->hold_count == 0, 2019 ("vm_page_alloc_init: page %p is held", m)); 2020 KASSERT(!vm_page_busied(m), 2021 ("vm_page_alloc_init: page %p is busy", m)); 2022 KASSERT(m->dirty == 0, 2023 ("vm_page_alloc_init: page %p is dirty", m)); 2024 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, 2025 ("vm_page_alloc_init: page %p has unexpected memattr %d", 2026 m, pmap_page_get_memattr(m))); 2027 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 2028 drop = NULL; 2029 if ((m->flags & PG_CACHED) != 0) { 2030 KASSERT((m->flags & PG_ZERO) == 0, 2031 ("vm_page_alloc_init: cached page %p is PG_ZERO", m)); 2032 m->valid = 0; 2033 m_object = m->object; 2034 vm_page_cache_remove(m); 2035 if (m_object->type == OBJT_VNODE && 2036 vm_object_cache_is_empty(m_object)) 2037 drop = m_object->handle; 2038 } else { 2039 KASSERT(m->valid == 0, 2040 ("vm_page_alloc_init: free page %p is valid", m)); 2041 vm_phys_freecnt_adj(m, -1); 2042 } 2043 return (drop); 2044 } 2045 2046 /* 2047 * vm_page_alloc_freelist: 2048 * 2049 * Allocate a physical page from the specified free page list. 2050 * 2051 * The caller must always specify an allocation class. 2052 * 2053 * allocation classes: 2054 * VM_ALLOC_NORMAL normal process request 2055 * VM_ALLOC_SYSTEM system *really* needs a page 2056 * VM_ALLOC_INTERRUPT interrupt time request 2057 * 2058 * optional allocation flags: 2059 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 2060 * intends to allocate 2061 * VM_ALLOC_WIRED wire the allocated page 2062 * VM_ALLOC_ZERO prefer a zeroed page 2063 * 2064 * This routine may not sleep. 2065 */ 2066 vm_page_t 2067 vm_page_alloc_freelist(int flind, int req) 2068 { 2069 struct vnode *drop; 2070 vm_page_t m; 2071 u_int flags; 2072 int req_class; 2073 2074 req_class = req & VM_ALLOC_CLASS_MASK; 2075 2076 /* 2077 * The page daemon is allowed to dig deeper into the free page list. 2078 */ 2079 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 2080 req_class = VM_ALLOC_SYSTEM; 2081 2082 /* 2083 * Do not allocate reserved pages unless the req has asked for it. 2084 */ 2085 mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE); 2086 if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved || 2087 (req_class == VM_ALLOC_SYSTEM && 2088 vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) || 2089 (req_class == VM_ALLOC_INTERRUPT && 2090 vm_cnt.v_free_count + vm_cnt.v_cache_count > 0)) 2091 m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0); 2092 else { 2093 mtx_unlock(&vm_page_queue_free_mtx); 2094 atomic_add_int(&vm_pageout_deficit, 2095 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); 2096 pagedaemon_wakeup(); 2097 return (NULL); 2098 } 2099 if (m == NULL) { 2100 mtx_unlock(&vm_page_queue_free_mtx); 2101 return (NULL); 2102 } 2103 drop = vm_page_alloc_init(m); 2104 mtx_unlock(&vm_page_queue_free_mtx); 2105 2106 /* 2107 * Initialize the page. Only the PG_ZERO flag is inherited. 2108 */ 2109 m->aflags = 0; 2110 flags = 0; 2111 if ((req & VM_ALLOC_ZERO) != 0) 2112 flags = PG_ZERO; 2113 m->flags &= flags; 2114 if ((req & VM_ALLOC_WIRED) != 0) { 2115 /* 2116 * The page lock is not required for wiring a page that does 2117 * not belong to an object. 2118 */ 2119 atomic_add_int(&vm_cnt.v_wire_count, 1); 2120 m->wire_count = 1; 2121 } 2122 /* Unmanaged pages don't use "act_count". */ 2123 m->oflags = VPO_UNMANAGED; 2124 if (drop != NULL) 2125 vdrop(drop); 2126 if (vm_paging_needed()) 2127 pagedaemon_wakeup(); 2128 return (m); 2129 } 2130 2131 #define VPSC_ANY 0 /* No restrictions. */ 2132 #define VPSC_NORESERV 1 /* Skip reservations; implies VPSC_NOSUPER. */ 2133 #define VPSC_NOSUPER 2 /* Skip superpages. */ 2134 2135 /* 2136 * vm_page_scan_contig: 2137 * 2138 * Scan vm_page_array[] between the specified entries "m_start" and 2139 * "m_end" for a run of contiguous physical pages that satisfy the 2140 * specified conditions, and return the lowest page in the run. The 2141 * specified "alignment" determines the alignment of the lowest physical 2142 * page in the run. If the specified "boundary" is non-zero, then the 2143 * run of physical pages cannot span a physical address that is a 2144 * multiple of "boundary". 2145 * 2146 * "m_end" is never dereferenced, so it need not point to a vm_page 2147 * structure within vm_page_array[]. 2148 * 2149 * "npages" must be greater than zero. "m_start" and "m_end" must not 2150 * span a hole (or discontiguity) in the physical address space. Both 2151 * "alignment" and "boundary" must be a power of two. 2152 */ 2153 vm_page_t 2154 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end, 2155 u_long alignment, vm_paddr_t boundary, int options) 2156 { 2157 struct mtx *m_mtx, *new_mtx; 2158 vm_object_t object; 2159 vm_paddr_t pa; 2160 vm_page_t m, m_run; 2161 #if VM_NRESERVLEVEL > 0 2162 int level; 2163 #endif 2164 int m_inc, order, run_ext, run_len; 2165 2166 KASSERT(npages > 0, ("npages is 0")); 2167 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 2168 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 2169 m_run = NULL; 2170 run_len = 0; 2171 m_mtx = NULL; 2172 for (m = m_start; m < m_end && run_len < npages; m += m_inc) { 2173 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0, 2174 ("page %p is PG_FICTITIOUS or PG_MARKER", m)); 2175 2176 /* 2177 * If the current page would be the start of a run, check its 2178 * physical address against the end, alignment, and boundary 2179 * conditions. If it doesn't satisfy these conditions, either 2180 * terminate the scan or advance to the next page that 2181 * satisfies the failed condition. 2182 */ 2183 if (run_len == 0) { 2184 KASSERT(m_run == NULL, ("m_run != NULL")); 2185 if (m + npages > m_end) 2186 break; 2187 pa = VM_PAGE_TO_PHYS(m); 2188 if ((pa & (alignment - 1)) != 0) { 2189 m_inc = atop(roundup2(pa, alignment) - pa); 2190 continue; 2191 } 2192 if (rounddown2(pa ^ (pa + ptoa(npages) - 1), 2193 boundary) != 0) { 2194 m_inc = atop(roundup2(pa, boundary) - pa); 2195 continue; 2196 } 2197 } else 2198 KASSERT(m_run != NULL, ("m_run == NULL")); 2199 2200 /* 2201 * Avoid releasing and reacquiring the same page lock. 2202 */ 2203 new_mtx = vm_page_lockptr(m); 2204 if (m_mtx != new_mtx) { 2205 if (m_mtx != NULL) 2206 mtx_unlock(m_mtx); 2207 m_mtx = new_mtx; 2208 mtx_lock(m_mtx); 2209 } 2210 m_inc = 1; 2211 retry: 2212 if (m->wire_count != 0 || m->hold_count != 0) 2213 run_ext = 0; 2214 #if VM_NRESERVLEVEL > 0 2215 else if ((level = vm_reserv_level(m)) >= 0 && 2216 (options & VPSC_NORESERV) != 0) { 2217 run_ext = 0; 2218 /* Advance to the end of the reservation. */ 2219 pa = VM_PAGE_TO_PHYS(m); 2220 m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) - 2221 pa); 2222 } 2223 #endif 2224 else if ((object = m->object) != NULL) { 2225 /* 2226 * The page is considered eligible for relocation if 2227 * and only if it could be laundered or reclaimed by 2228 * the page daemon. 2229 */ 2230 if (!VM_OBJECT_TRYRLOCK(object)) { 2231 mtx_unlock(m_mtx); 2232 VM_OBJECT_RLOCK(object); 2233 mtx_lock(m_mtx); 2234 if (m->object != object) { 2235 /* 2236 * The page may have been freed. 2237 */ 2238 VM_OBJECT_RUNLOCK(object); 2239 goto retry; 2240 } else if (m->wire_count != 0 || 2241 m->hold_count != 0) { 2242 run_ext = 0; 2243 goto unlock; 2244 } 2245 } 2246 KASSERT((m->flags & PG_UNHOLDFREE) == 0, 2247 ("page %p is PG_UNHOLDFREE", m)); 2248 /* Don't care: PG_NODUMP, PG_WINATCFLS, PG_ZERO. */ 2249 if (object->type != OBJT_DEFAULT && 2250 object->type != OBJT_SWAP && 2251 object->type != OBJT_VNODE) 2252 run_ext = 0; 2253 else if ((m->flags & PG_CACHED) != 0 || 2254 m != vm_page_lookup(object, m->pindex)) { 2255 /* 2256 * The page is cached or recently converted 2257 * from cached to free. 2258 */ 2259 #if VM_NRESERVLEVEL > 0 2260 if (level >= 0) { 2261 /* 2262 * The page is reserved. Extend the 2263 * current run by one page. 2264 */ 2265 run_ext = 1; 2266 } else 2267 #endif 2268 if ((order = m->order) < VM_NFREEORDER) { 2269 /* 2270 * The page is enqueued in the 2271 * physical memory allocator's cache/ 2272 * free page queues. Moreover, it is 2273 * the first page in a power-of-two- 2274 * sized run of contiguous cache/free 2275 * pages. Add these pages to the end 2276 * of the current run, and jump 2277 * ahead. 2278 */ 2279 run_ext = 1 << order; 2280 m_inc = 1 << order; 2281 } else 2282 run_ext = 0; 2283 #if VM_NRESERVLEVEL > 0 2284 } else if ((options & VPSC_NOSUPER) != 0 && 2285 (level = vm_reserv_level_iffullpop(m)) >= 0) { 2286 run_ext = 0; 2287 /* Advance to the end of the superpage. */ 2288 pa = VM_PAGE_TO_PHYS(m); 2289 m_inc = atop(roundup2(pa + 1, 2290 vm_reserv_size(level)) - pa); 2291 #endif 2292 } else if (object->memattr == VM_MEMATTR_DEFAULT && 2293 m->queue != PQ_NONE && !vm_page_busied(m)) { 2294 /* 2295 * The page is allocated but eligible for 2296 * relocation. Extend the current run by one 2297 * page. 2298 */ 2299 KASSERT(pmap_page_get_memattr(m) == 2300 VM_MEMATTR_DEFAULT, 2301 ("page %p has an unexpected memattr", m)); 2302 KASSERT((m->oflags & (VPO_SWAPINPROG | 2303 VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0, 2304 ("page %p has unexpected oflags", m)); 2305 /* Don't care: VPO_NOSYNC. */ 2306 run_ext = 1; 2307 } else 2308 run_ext = 0; 2309 unlock: 2310 VM_OBJECT_RUNLOCK(object); 2311 #if VM_NRESERVLEVEL > 0 2312 } else if (level >= 0) { 2313 /* 2314 * The page is reserved but not yet allocated. In 2315 * other words, it is still cached or free. Extend 2316 * the current run by one page. 2317 */ 2318 run_ext = 1; 2319 #endif 2320 } else if ((order = m->order) < VM_NFREEORDER) { 2321 /* 2322 * The page is enqueued in the physical memory 2323 * allocator's cache/free page queues. Moreover, it 2324 * is the first page in a power-of-two-sized run of 2325 * contiguous cache/free pages. Add these pages to 2326 * the end of the current run, and jump ahead. 2327 */ 2328 run_ext = 1 << order; 2329 m_inc = 1 << order; 2330 } else { 2331 /* 2332 * Skip the page for one of the following reasons: (1) 2333 * It is enqueued in the physical memory allocator's 2334 * cache/free page queues. However, it is not the 2335 * first page in a run of contiguous cache/free pages. 2336 * (This case rarely occurs because the scan is 2337 * performed in ascending order.) (2) It is not 2338 * reserved, and it is transitioning from free to 2339 * allocated. (Conversely, the transition from 2340 * allocated to free for managed pages is blocked by 2341 * the page lock.) (3) It is allocated but not 2342 * contained by an object and not wired, e.g., 2343 * allocated by Xen's balloon driver. 2344 */ 2345 run_ext = 0; 2346 } 2347 2348 /* 2349 * Extend or reset the current run of pages. 2350 */ 2351 if (run_ext > 0) { 2352 if (run_len == 0) 2353 m_run = m; 2354 run_len += run_ext; 2355 } else { 2356 if (run_len > 0) { 2357 m_run = NULL; 2358 run_len = 0; 2359 } 2360 } 2361 } 2362 if (m_mtx != NULL) 2363 mtx_unlock(m_mtx); 2364 if (run_len >= npages) 2365 return (m_run); 2366 return (NULL); 2367 } 2368 2369 /* 2370 * vm_page_reclaim_run: 2371 * 2372 * Try to relocate each of the allocated virtual pages within the 2373 * specified run of physical pages to a new physical address. Free the 2374 * physical pages underlying the relocated virtual pages. A virtual page 2375 * is relocatable if and only if it could be laundered or reclaimed by 2376 * the page daemon. Whenever possible, a virtual page is relocated to a 2377 * physical address above "high". 2378 * 2379 * Returns 0 if every physical page within the run was already free or 2380 * just freed by a successful relocation. Otherwise, returns a non-zero 2381 * value indicating why the last attempt to relocate a virtual page was 2382 * unsuccessful. 2383 * 2384 * "req_class" must be an allocation class. 2385 */ 2386 static int 2387 vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run, 2388 vm_paddr_t high) 2389 { 2390 struct mtx *m_mtx, *new_mtx; 2391 struct spglist free; 2392 vm_object_t object; 2393 vm_paddr_t pa; 2394 vm_page_t m, m_end, m_new; 2395 int error, order, req; 2396 2397 KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class, 2398 ("req_class is not an allocation class")); 2399 SLIST_INIT(&free); 2400 error = 0; 2401 m = m_run; 2402 m_end = m_run + npages; 2403 m_mtx = NULL; 2404 for (; error == 0 && m < m_end; m++) { 2405 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0, 2406 ("page %p is PG_FICTITIOUS or PG_MARKER", m)); 2407 2408 /* 2409 * Avoid releasing and reacquiring the same page lock. 2410 */ 2411 new_mtx = vm_page_lockptr(m); 2412 if (m_mtx != new_mtx) { 2413 if (m_mtx != NULL) 2414 mtx_unlock(m_mtx); 2415 m_mtx = new_mtx; 2416 mtx_lock(m_mtx); 2417 } 2418 retry: 2419 if (m->wire_count != 0 || m->hold_count != 0) 2420 error = EBUSY; 2421 else if ((object = m->object) != NULL) { 2422 /* 2423 * The page is relocated if and only if it could be 2424 * laundered or reclaimed by the page daemon. 2425 */ 2426 if (!VM_OBJECT_TRYWLOCK(object)) { 2427 mtx_unlock(m_mtx); 2428 VM_OBJECT_WLOCK(object); 2429 mtx_lock(m_mtx); 2430 if (m->object != object) { 2431 /* 2432 * The page may have been freed. 2433 */ 2434 VM_OBJECT_WUNLOCK(object); 2435 goto retry; 2436 } else if (m->wire_count != 0 || 2437 m->hold_count != 0) { 2438 error = EBUSY; 2439 goto unlock; 2440 } 2441 } 2442 KASSERT((m->flags & PG_UNHOLDFREE) == 0, 2443 ("page %p is PG_UNHOLDFREE", m)); 2444 /* Don't care: PG_NODUMP, PG_WINATCFLS, PG_ZERO. */ 2445 if (object->type != OBJT_DEFAULT && 2446 object->type != OBJT_SWAP && 2447 object->type != OBJT_VNODE) 2448 error = EINVAL; 2449 else if ((m->flags & PG_CACHED) != 0 || 2450 m != vm_page_lookup(object, m->pindex)) { 2451 /* 2452 * The page is cached or recently converted 2453 * from cached to free. 2454 */ 2455 VM_OBJECT_WUNLOCK(object); 2456 goto cached; 2457 } else if (object->memattr != VM_MEMATTR_DEFAULT) 2458 error = EINVAL; 2459 else if (m->queue != PQ_NONE && !vm_page_busied(m)) { 2460 KASSERT(pmap_page_get_memattr(m) == 2461 VM_MEMATTR_DEFAULT, 2462 ("page %p has an unexpected memattr", m)); 2463 KASSERT((m->oflags & (VPO_SWAPINPROG | 2464 VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0, 2465 ("page %p has unexpected oflags", m)); 2466 /* Don't care: VPO_NOSYNC. */ 2467 if (m->valid != 0) { 2468 /* 2469 * First, try to allocate a new page 2470 * that is above "high". Failing 2471 * that, try to allocate a new page 2472 * that is below "m_run". Allocate 2473 * the new page between the end of 2474 * "m_run" and "high" only as a last 2475 * resort. 2476 */ 2477 req = req_class | VM_ALLOC_NOOBJ; 2478 if ((m->flags & PG_NODUMP) != 0) 2479 req |= VM_ALLOC_NODUMP; 2480 if (trunc_page(high) != 2481 ~(vm_paddr_t)PAGE_MASK) { 2482 m_new = vm_page_alloc_contig( 2483 NULL, 0, req, 1, 2484 round_page(high), 2485 ~(vm_paddr_t)0, 2486 PAGE_SIZE, 0, 2487 VM_MEMATTR_DEFAULT); 2488 } else 2489 m_new = NULL; 2490 if (m_new == NULL) { 2491 pa = VM_PAGE_TO_PHYS(m_run); 2492 m_new = vm_page_alloc_contig( 2493 NULL, 0, req, 1, 2494 0, pa - 1, PAGE_SIZE, 0, 2495 VM_MEMATTR_DEFAULT); 2496 } 2497 if (m_new == NULL) { 2498 pa += ptoa(npages); 2499 m_new = vm_page_alloc_contig( 2500 NULL, 0, req, 1, 2501 pa, high, PAGE_SIZE, 0, 2502 VM_MEMATTR_DEFAULT); 2503 } 2504 if (m_new == NULL) { 2505 error = ENOMEM; 2506 goto unlock; 2507 } 2508 KASSERT(m_new->wire_count == 0, 2509 ("page %p is wired", m)); 2510 2511 /* 2512 * Replace "m" with the new page. For 2513 * vm_page_replace(), "m" must be busy 2514 * and dequeued. Finally, change "m" 2515 * as if vm_page_free() was called. 2516 */ 2517 if (object->ref_count != 0) 2518 pmap_remove_all(m); 2519 m_new->aflags = m->aflags; 2520 KASSERT(m_new->oflags == VPO_UNMANAGED, 2521 ("page %p is managed", m)); 2522 m_new->oflags = m->oflags & VPO_NOSYNC; 2523 pmap_copy_page(m, m_new); 2524 m_new->valid = m->valid; 2525 m_new->dirty = m->dirty; 2526 m->flags &= ~PG_ZERO; 2527 vm_page_xbusy(m); 2528 vm_page_remque(m); 2529 vm_page_replace_checked(m_new, object, 2530 m->pindex, m); 2531 m->valid = 0; 2532 vm_page_undirty(m); 2533 2534 /* 2535 * The new page must be deactivated 2536 * before the object is unlocked. 2537 */ 2538 new_mtx = vm_page_lockptr(m_new); 2539 if (m_mtx != new_mtx) { 2540 mtx_unlock(m_mtx); 2541 m_mtx = new_mtx; 2542 mtx_lock(m_mtx); 2543 } 2544 vm_page_deactivate(m_new); 2545 } else { 2546 m->flags &= ~PG_ZERO; 2547 vm_page_remque(m); 2548 vm_page_remove(m); 2549 KASSERT(m->dirty == 0, 2550 ("page %p is dirty", m)); 2551 } 2552 SLIST_INSERT_HEAD(&free, m, plinks.s.ss); 2553 } else 2554 error = EBUSY; 2555 unlock: 2556 VM_OBJECT_WUNLOCK(object); 2557 } else { 2558 cached: 2559 mtx_lock(&vm_page_queue_free_mtx); 2560 order = m->order; 2561 if (order < VM_NFREEORDER) { 2562 /* 2563 * The page is enqueued in the physical memory 2564 * allocator's cache/free page queues. 2565 * Moreover, it is the first page in a power- 2566 * of-two-sized run of contiguous cache/free 2567 * pages. Jump ahead to the last page within 2568 * that run, and continue from there. 2569 */ 2570 m += (1 << order) - 1; 2571 } 2572 #if VM_NRESERVLEVEL > 0 2573 else if (vm_reserv_is_page_free(m)) 2574 order = 0; 2575 #endif 2576 mtx_unlock(&vm_page_queue_free_mtx); 2577 if (order == VM_NFREEORDER) 2578 error = EINVAL; 2579 } 2580 } 2581 if (m_mtx != NULL) 2582 mtx_unlock(m_mtx); 2583 if ((m = SLIST_FIRST(&free)) != NULL) { 2584 mtx_lock(&vm_page_queue_free_mtx); 2585 do { 2586 SLIST_REMOVE_HEAD(&free, plinks.s.ss); 2587 vm_phys_freecnt_adj(m, 1); 2588 #if VM_NRESERVLEVEL > 0 2589 if (!vm_reserv_free_page(m)) 2590 #else 2591 if (true) 2592 #endif 2593 vm_phys_free_pages(m, 0); 2594 } while ((m = SLIST_FIRST(&free)) != NULL); 2595 vm_page_free_wakeup(); 2596 mtx_unlock(&vm_page_queue_free_mtx); 2597 } 2598 return (error); 2599 } 2600 2601 #define NRUNS 16 2602 2603 CTASSERT(powerof2(NRUNS)); 2604 2605 #define RUN_INDEX(count) ((count) & (NRUNS - 1)) 2606 2607 #define MIN_RECLAIM 8 2608 2609 /* 2610 * vm_page_reclaim_contig: 2611 * 2612 * Reclaim allocated, contiguous physical memory satisfying the specified 2613 * conditions by relocating the virtual pages using that physical memory. 2614 * Returns true if reclamation is successful and false otherwise. Since 2615 * relocation requires the allocation of physical pages, reclamation may 2616 * fail due to a shortage of cache/free pages. When reclamation fails, 2617 * callers are expected to perform VM_WAIT before retrying a failed 2618 * allocation operation, e.g., vm_page_alloc_contig(). 2619 * 2620 * The caller must always specify an allocation class through "req". 2621 * 2622 * allocation classes: 2623 * VM_ALLOC_NORMAL normal process request 2624 * VM_ALLOC_SYSTEM system *really* needs a page 2625 * VM_ALLOC_INTERRUPT interrupt time request 2626 * 2627 * The optional allocation flags are ignored. 2628 * 2629 * "npages" must be greater than zero. Both "alignment" and "boundary" 2630 * must be a power of two. 2631 */ 2632 bool 2633 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high, 2634 u_long alignment, vm_paddr_t boundary) 2635 { 2636 vm_paddr_t curr_low; 2637 vm_page_t m_run, m_runs[NRUNS]; 2638 u_long count, reclaimed; 2639 int error, i, options, req_class; 2640 2641 KASSERT(npages > 0, ("npages is 0")); 2642 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 2643 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 2644 req_class = req & VM_ALLOC_CLASS_MASK; 2645 2646 /* 2647 * The page daemon is allowed to dig deeper into the free page list. 2648 */ 2649 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 2650 req_class = VM_ALLOC_SYSTEM; 2651 2652 /* 2653 * Return if the number of cached and free pages cannot satisfy the 2654 * requested allocation. 2655 */ 2656 count = vm_cnt.v_free_count + vm_cnt.v_cache_count; 2657 if (count < npages + vm_cnt.v_free_reserved || (count < npages + 2658 vm_cnt.v_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) || 2659 (count < npages && req_class == VM_ALLOC_INTERRUPT)) 2660 return (false); 2661 2662 /* 2663 * Scan up to three times, relaxing the restrictions ("options") on 2664 * the reclamation of reservations and superpages each time. 2665 */ 2666 for (options = VPSC_NORESERV;;) { 2667 /* 2668 * Find the highest runs that satisfy the given constraints 2669 * and restrictions, and record them in "m_runs". 2670 */ 2671 curr_low = low; 2672 count = 0; 2673 for (;;) { 2674 m_run = vm_phys_scan_contig(npages, curr_low, high, 2675 alignment, boundary, options); 2676 if (m_run == NULL) 2677 break; 2678 curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages); 2679 m_runs[RUN_INDEX(count)] = m_run; 2680 count++; 2681 } 2682 2683 /* 2684 * Reclaim the highest runs in LIFO (descending) order until 2685 * the number of reclaimed pages, "reclaimed", is at least 2686 * MIN_RECLAIM. Reset "reclaimed" each time because each 2687 * reclamation is idempotent, and runs will (likely) recur 2688 * from one scan to the next as restrictions are relaxed. 2689 */ 2690 reclaimed = 0; 2691 for (i = 0; count > 0 && i < NRUNS; i++) { 2692 count--; 2693 m_run = m_runs[RUN_INDEX(count)]; 2694 error = vm_page_reclaim_run(req_class, npages, m_run, 2695 high); 2696 if (error == 0) { 2697 reclaimed += npages; 2698 if (reclaimed >= MIN_RECLAIM) 2699 return (true); 2700 } 2701 } 2702 2703 /* 2704 * Either relax the restrictions on the next scan or return if 2705 * the last scan had no restrictions. 2706 */ 2707 if (options == VPSC_NORESERV) 2708 options = VPSC_NOSUPER; 2709 else if (options == VPSC_NOSUPER) 2710 options = VPSC_ANY; 2711 else if (options == VPSC_ANY) 2712 return (reclaimed != 0); 2713 } 2714 } 2715 2716 /* 2717 * vm_wait: (also see VM_WAIT macro) 2718 * 2719 * Sleep until free pages are available for allocation. 2720 * - Called in various places before memory allocations. 2721 */ 2722 void 2723 vm_wait(void) 2724 { 2725 2726 mtx_lock(&vm_page_queue_free_mtx); 2727 if (curproc == pageproc) { 2728 vm_pageout_pages_needed = 1; 2729 msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx, 2730 PDROP | PSWP, "VMWait", 0); 2731 } else { 2732 if (!vm_pageout_wanted) { 2733 vm_pageout_wanted = true; 2734 wakeup(&vm_pageout_wanted); 2735 } 2736 vm_pages_needed = true; 2737 msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM, 2738 "vmwait", 0); 2739 } 2740 } 2741 2742 /* 2743 * vm_waitpfault: (also see VM_WAITPFAULT macro) 2744 * 2745 * Sleep until free pages are available for allocation. 2746 * - Called only in vm_fault so that processes page faulting 2747 * can be easily tracked. 2748 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 2749 * processes will be able to grab memory first. Do not change 2750 * this balance without careful testing first. 2751 */ 2752 void 2753 vm_waitpfault(void) 2754 { 2755 2756 mtx_lock(&vm_page_queue_free_mtx); 2757 if (!vm_pageout_wanted) { 2758 vm_pageout_wanted = true; 2759 wakeup(&vm_pageout_wanted); 2760 } 2761 vm_pages_needed = true; 2762 msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER, 2763 "pfault", 0); 2764 } 2765 2766 struct vm_pagequeue * 2767 vm_page_pagequeue(vm_page_t m) 2768 { 2769 2770 return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]); 2771 } 2772 2773 /* 2774 * vm_page_dequeue: 2775 * 2776 * Remove the given page from its current page queue. 2777 * 2778 * The page must be locked. 2779 */ 2780 void 2781 vm_page_dequeue(vm_page_t m) 2782 { 2783 struct vm_pagequeue *pq; 2784 2785 vm_page_assert_locked(m); 2786 KASSERT(m->queue < PQ_COUNT, ("vm_page_dequeue: page %p is not queued", 2787 m)); 2788 pq = vm_page_pagequeue(m); 2789 vm_pagequeue_lock(pq); 2790 m->queue = PQ_NONE; 2791 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 2792 vm_pagequeue_cnt_dec(pq); 2793 vm_pagequeue_unlock(pq); 2794 } 2795 2796 /* 2797 * vm_page_dequeue_locked: 2798 * 2799 * Remove the given page from its current page queue. 2800 * 2801 * The page and page queue must be locked. 2802 */ 2803 void 2804 vm_page_dequeue_locked(vm_page_t m) 2805 { 2806 struct vm_pagequeue *pq; 2807 2808 vm_page_lock_assert(m, MA_OWNED); 2809 pq = vm_page_pagequeue(m); 2810 vm_pagequeue_assert_locked(pq); 2811 m->queue = PQ_NONE; 2812 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 2813 vm_pagequeue_cnt_dec(pq); 2814 } 2815 2816 /* 2817 * vm_page_enqueue: 2818 * 2819 * Add the given page to the specified page queue. 2820 * 2821 * The page must be locked. 2822 */ 2823 static void 2824 vm_page_enqueue(uint8_t queue, vm_page_t m) 2825 { 2826 struct vm_pagequeue *pq; 2827 2828 vm_page_lock_assert(m, MA_OWNED); 2829 KASSERT(queue < PQ_COUNT, 2830 ("vm_page_enqueue: invalid queue %u request for page %p", 2831 queue, m)); 2832 pq = &vm_phys_domain(m)->vmd_pagequeues[queue]; 2833 vm_pagequeue_lock(pq); 2834 m->queue = queue; 2835 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 2836 vm_pagequeue_cnt_inc(pq); 2837 vm_pagequeue_unlock(pq); 2838 } 2839 2840 /* 2841 * vm_page_requeue: 2842 * 2843 * Move the given page to the tail of its current page queue. 2844 * 2845 * The page must be locked. 2846 */ 2847 void 2848 vm_page_requeue(vm_page_t m) 2849 { 2850 struct vm_pagequeue *pq; 2851 2852 vm_page_lock_assert(m, MA_OWNED); 2853 KASSERT(m->queue != PQ_NONE, 2854 ("vm_page_requeue: page %p is not queued", m)); 2855 pq = vm_page_pagequeue(m); 2856 vm_pagequeue_lock(pq); 2857 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 2858 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 2859 vm_pagequeue_unlock(pq); 2860 } 2861 2862 /* 2863 * vm_page_requeue_locked: 2864 * 2865 * Move the given page to the tail of its current page queue. 2866 * 2867 * The page queue must be locked. 2868 */ 2869 void 2870 vm_page_requeue_locked(vm_page_t m) 2871 { 2872 struct vm_pagequeue *pq; 2873 2874 KASSERT(m->queue != PQ_NONE, 2875 ("vm_page_requeue_locked: page %p is not queued", m)); 2876 pq = vm_page_pagequeue(m); 2877 vm_pagequeue_assert_locked(pq); 2878 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 2879 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 2880 } 2881 2882 /* 2883 * vm_page_activate: 2884 * 2885 * Put the specified page on the active list (if appropriate). 2886 * Ensure that act_count is at least ACT_INIT but do not otherwise 2887 * mess with it. 2888 * 2889 * The page must be locked. 2890 */ 2891 void 2892 vm_page_activate(vm_page_t m) 2893 { 2894 int queue; 2895 2896 vm_page_lock_assert(m, MA_OWNED); 2897 if ((queue = m->queue) != PQ_ACTIVE) { 2898 if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) { 2899 if (m->act_count < ACT_INIT) 2900 m->act_count = ACT_INIT; 2901 if (queue != PQ_NONE) 2902 vm_page_dequeue(m); 2903 vm_page_enqueue(PQ_ACTIVE, m); 2904 } else 2905 KASSERT(queue == PQ_NONE, 2906 ("vm_page_activate: wired page %p is queued", m)); 2907 } else { 2908 if (m->act_count < ACT_INIT) 2909 m->act_count = ACT_INIT; 2910 } 2911 } 2912 2913 /* 2914 * vm_page_free_wakeup: 2915 * 2916 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 2917 * routine is called when a page has been added to the cache or free 2918 * queues. 2919 * 2920 * The page queues must be locked. 2921 */ 2922 static inline void 2923 vm_page_free_wakeup(void) 2924 { 2925 2926 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 2927 /* 2928 * if pageout daemon needs pages, then tell it that there are 2929 * some free. 2930 */ 2931 if (vm_pageout_pages_needed && 2932 vm_cnt.v_cache_count + vm_cnt.v_free_count >= vm_cnt.v_pageout_free_min) { 2933 wakeup(&vm_pageout_pages_needed); 2934 vm_pageout_pages_needed = 0; 2935 } 2936 /* 2937 * wakeup processes that are waiting on memory if we hit a 2938 * high water mark. And wakeup scheduler process if we have 2939 * lots of memory. this process will swapin processes. 2940 */ 2941 if (vm_pages_needed && !vm_page_count_min()) { 2942 vm_pages_needed = false; 2943 wakeup(&vm_cnt.v_free_count); 2944 } 2945 } 2946 2947 /* 2948 * Turn a cached page into a free page, by changing its attributes. 2949 * Keep the statistics up-to-date. 2950 * 2951 * The free page queue must be locked. 2952 */ 2953 static void 2954 vm_page_cache_turn_free(vm_page_t m) 2955 { 2956 2957 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 2958 2959 m->object = NULL; 2960 m->valid = 0; 2961 KASSERT((m->flags & PG_CACHED) != 0, 2962 ("vm_page_cache_turn_free: page %p is not cached", m)); 2963 m->flags &= ~PG_CACHED; 2964 vm_cnt.v_cache_count--; 2965 vm_phys_freecnt_adj(m, 1); 2966 } 2967 2968 /* 2969 * vm_page_free_toq: 2970 * 2971 * Returns the given page to the free list, 2972 * disassociating it with any VM object. 2973 * 2974 * The object must be locked. The page must be locked if it is managed. 2975 */ 2976 void 2977 vm_page_free_toq(vm_page_t m) 2978 { 2979 2980 if ((m->oflags & VPO_UNMANAGED) == 0) { 2981 vm_page_lock_assert(m, MA_OWNED); 2982 KASSERT(!pmap_page_is_mapped(m), 2983 ("vm_page_free_toq: freeing mapped page %p", m)); 2984 } else 2985 KASSERT(m->queue == PQ_NONE, 2986 ("vm_page_free_toq: unmanaged page %p is queued", m)); 2987 PCPU_INC(cnt.v_tfree); 2988 2989 if (vm_page_sbusied(m)) 2990 panic("vm_page_free: freeing busy page %p", m); 2991 2992 /* 2993 * Unqueue, then remove page. Note that we cannot destroy 2994 * the page here because we do not want to call the pager's 2995 * callback routine until after we've put the page on the 2996 * appropriate free queue. 2997 */ 2998 vm_page_remque(m); 2999 vm_page_remove(m); 3000 3001 /* 3002 * If fictitious remove object association and 3003 * return, otherwise delay object association removal. 3004 */ 3005 if ((m->flags & PG_FICTITIOUS) != 0) { 3006 return; 3007 } 3008 3009 m->valid = 0; 3010 vm_page_undirty(m); 3011 3012 if (m->wire_count != 0) 3013 panic("vm_page_free: freeing wired page %p", m); 3014 if (m->hold_count != 0) { 3015 m->flags &= ~PG_ZERO; 3016 KASSERT((m->flags & PG_UNHOLDFREE) == 0, 3017 ("vm_page_free: freeing PG_UNHOLDFREE page %p", m)); 3018 m->flags |= PG_UNHOLDFREE; 3019 } else { 3020 /* 3021 * Restore the default memory attribute to the page. 3022 */ 3023 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) 3024 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); 3025 3026 /* 3027 * Insert the page into the physical memory allocator's 3028 * cache/free page queues. 3029 */ 3030 mtx_lock(&vm_page_queue_free_mtx); 3031 vm_phys_freecnt_adj(m, 1); 3032 #if VM_NRESERVLEVEL > 0 3033 if (!vm_reserv_free_page(m)) 3034 #else 3035 if (TRUE) 3036 #endif 3037 vm_phys_free_pages(m, 0); 3038 vm_page_free_wakeup(); 3039 mtx_unlock(&vm_page_queue_free_mtx); 3040 } 3041 } 3042 3043 /* 3044 * vm_page_wire: 3045 * 3046 * Mark this page as wired down by yet 3047 * another map, removing it from paging queues 3048 * as necessary. 3049 * 3050 * If the page is fictitious, then its wire count must remain one. 3051 * 3052 * The page must be locked. 3053 */ 3054 void 3055 vm_page_wire(vm_page_t m) 3056 { 3057 3058 /* 3059 * Only bump the wire statistics if the page is not already wired, 3060 * and only unqueue the page if it is on some queue (if it is unmanaged 3061 * it is already off the queues). 3062 */ 3063 vm_page_lock_assert(m, MA_OWNED); 3064 if ((m->flags & PG_FICTITIOUS) != 0) { 3065 KASSERT(m->wire_count == 1, 3066 ("vm_page_wire: fictitious page %p's wire count isn't one", 3067 m)); 3068 return; 3069 } 3070 if (m->wire_count == 0) { 3071 KASSERT((m->oflags & VPO_UNMANAGED) == 0 || 3072 m->queue == PQ_NONE, 3073 ("vm_page_wire: unmanaged page %p is queued", m)); 3074 vm_page_remque(m); 3075 atomic_add_int(&vm_cnt.v_wire_count, 1); 3076 } 3077 m->wire_count++; 3078 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 3079 } 3080 3081 /* 3082 * vm_page_unwire: 3083 * 3084 * Release one wiring of the specified page, potentially allowing it to be 3085 * paged out. Returns TRUE if the number of wirings transitions to zero and 3086 * FALSE otherwise. 3087 * 3088 * Only managed pages belonging to an object can be paged out. If the number 3089 * of wirings transitions to zero and the page is eligible for page out, then 3090 * the page is added to the specified paging queue (unless PQ_NONE is 3091 * specified). 3092 * 3093 * If a page is fictitious, then its wire count must always be one. 3094 * 3095 * A managed page must be locked. 3096 */ 3097 boolean_t 3098 vm_page_unwire(vm_page_t m, uint8_t queue) 3099 { 3100 3101 KASSERT(queue < PQ_COUNT || queue == PQ_NONE, 3102 ("vm_page_unwire: invalid queue %u request for page %p", 3103 queue, m)); 3104 if ((m->oflags & VPO_UNMANAGED) == 0) 3105 vm_page_assert_locked(m); 3106 if ((m->flags & PG_FICTITIOUS) != 0) { 3107 KASSERT(m->wire_count == 1, 3108 ("vm_page_unwire: fictitious page %p's wire count isn't one", m)); 3109 return (FALSE); 3110 } 3111 if (m->wire_count > 0) { 3112 m->wire_count--; 3113 if (m->wire_count == 0) { 3114 atomic_subtract_int(&vm_cnt.v_wire_count, 1); 3115 if ((m->oflags & VPO_UNMANAGED) == 0 && 3116 m->object != NULL && queue != PQ_NONE) { 3117 if (queue == PQ_INACTIVE) 3118 m->flags &= ~PG_WINATCFLS; 3119 vm_page_enqueue(queue, m); 3120 } 3121 return (TRUE); 3122 } else 3123 return (FALSE); 3124 } else 3125 panic("vm_page_unwire: page %p's wire count is zero", m); 3126 } 3127 3128 /* 3129 * Move the specified page to the inactive queue. 3130 * 3131 * Many pages placed on the inactive queue should actually go 3132 * into the cache, but it is difficult to figure out which. What 3133 * we do instead, if the inactive target is well met, is to put 3134 * clean pages at the head of the inactive queue instead of the tail. 3135 * This will cause them to be moved to the cache more quickly and 3136 * if not actively re-referenced, reclaimed more quickly. If we just 3137 * stick these pages at the end of the inactive queue, heavy filesystem 3138 * meta-data accesses can cause an unnecessary paging load on memory bound 3139 * processes. This optimization causes one-time-use metadata to be 3140 * reused more quickly. 3141 * 3142 * Normally noreuse is FALSE, resulting in LRU operation. noreuse is set 3143 * to TRUE if we want this page to be 'as if it were placed in the cache', 3144 * except without unmapping it from the process address space. In 3145 * practice this is implemented by inserting the page at the head of the 3146 * queue, using a marker page to guide FIFO insertion ordering. 3147 * 3148 * The page must be locked. 3149 */ 3150 static inline void 3151 _vm_page_deactivate(vm_page_t m, boolean_t noreuse) 3152 { 3153 struct vm_pagequeue *pq; 3154 int queue; 3155 3156 vm_page_assert_locked(m); 3157 3158 /* 3159 * Ignore if the page is already inactive, unless it is unlikely to be 3160 * reactivated. 3161 */ 3162 if ((queue = m->queue) == PQ_INACTIVE && !noreuse) 3163 return; 3164 if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) { 3165 pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE]; 3166 /* Avoid multiple acquisitions of the inactive queue lock. */ 3167 if (queue == PQ_INACTIVE) { 3168 vm_pagequeue_lock(pq); 3169 vm_page_dequeue_locked(m); 3170 } else { 3171 if (queue != PQ_NONE) 3172 vm_page_dequeue(m); 3173 m->flags &= ~PG_WINATCFLS; 3174 vm_pagequeue_lock(pq); 3175 } 3176 m->queue = PQ_INACTIVE; 3177 if (noreuse) 3178 TAILQ_INSERT_BEFORE(&vm_phys_domain(m)->vmd_inacthead, 3179 m, plinks.q); 3180 else 3181 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 3182 vm_pagequeue_cnt_inc(pq); 3183 vm_pagequeue_unlock(pq); 3184 } 3185 } 3186 3187 /* 3188 * Move the specified page to the inactive queue. 3189 * 3190 * The page must be locked. 3191 */ 3192 void 3193 vm_page_deactivate(vm_page_t m) 3194 { 3195 3196 _vm_page_deactivate(m, FALSE); 3197 } 3198 3199 /* 3200 * Move the specified page to the inactive queue with the expectation 3201 * that it is unlikely to be reused. 3202 * 3203 * The page must be locked. 3204 */ 3205 void 3206 vm_page_deactivate_noreuse(vm_page_t m) 3207 { 3208 3209 _vm_page_deactivate(m, TRUE); 3210 } 3211 3212 /* 3213 * vm_page_try_to_cache: 3214 * 3215 * Returns 0 on failure, 1 on success 3216 */ 3217 int 3218 vm_page_try_to_cache(vm_page_t m) 3219 { 3220 3221 vm_page_lock_assert(m, MA_OWNED); 3222 VM_OBJECT_ASSERT_WLOCKED(m->object); 3223 if (m->dirty || m->hold_count || m->wire_count || 3224 (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m)) 3225 return (0); 3226 pmap_remove_all(m); 3227 if (m->dirty) 3228 return (0); 3229 vm_page_cache(m); 3230 return (1); 3231 } 3232 3233 /* 3234 * vm_page_try_to_free() 3235 * 3236 * Attempt to free the page. If we cannot free it, we do nothing. 3237 * 1 is returned on success, 0 on failure. 3238 */ 3239 int 3240 vm_page_try_to_free(vm_page_t m) 3241 { 3242 3243 vm_page_lock_assert(m, MA_OWNED); 3244 if (m->object != NULL) 3245 VM_OBJECT_ASSERT_WLOCKED(m->object); 3246 if (m->dirty || m->hold_count || m->wire_count || 3247 (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m)) 3248 return (0); 3249 pmap_remove_all(m); 3250 if (m->dirty) 3251 return (0); 3252 vm_page_free(m); 3253 return (1); 3254 } 3255 3256 /* 3257 * vm_page_cache 3258 * 3259 * Put the specified page onto the page cache queue (if appropriate). 3260 * 3261 * The object and page must be locked. 3262 */ 3263 void 3264 vm_page_cache(vm_page_t m) 3265 { 3266 vm_object_t object; 3267 boolean_t cache_was_empty; 3268 3269 vm_page_lock_assert(m, MA_OWNED); 3270 object = m->object; 3271 VM_OBJECT_ASSERT_WLOCKED(object); 3272 if (vm_page_busied(m) || (m->oflags & VPO_UNMANAGED) || 3273 m->hold_count || m->wire_count) 3274 panic("vm_page_cache: attempting to cache busy page"); 3275 KASSERT(!pmap_page_is_mapped(m), 3276 ("vm_page_cache: page %p is mapped", m)); 3277 KASSERT(m->dirty == 0, ("vm_page_cache: page %p is dirty", m)); 3278 if (m->valid == 0 || object->type == OBJT_DEFAULT || 3279 (object->type == OBJT_SWAP && 3280 !vm_pager_has_page(object, m->pindex, NULL, NULL))) { 3281 /* 3282 * Hypothesis: A cache-eligible page belonging to a 3283 * default object or swap object but without a backing 3284 * store must be zero filled. 3285 */ 3286 vm_page_free(m); 3287 return; 3288 } 3289 KASSERT((m->flags & PG_CACHED) == 0, 3290 ("vm_page_cache: page %p is already cached", m)); 3291 3292 /* 3293 * Remove the page from the paging queues. 3294 */ 3295 vm_page_remque(m); 3296 3297 /* 3298 * Remove the page from the object's collection of resident 3299 * pages. 3300 */ 3301 vm_radix_remove(&object->rtree, m->pindex); 3302 TAILQ_REMOVE(&object->memq, m, listq); 3303 object->resident_page_count--; 3304 3305 /* 3306 * Restore the default memory attribute to the page. 3307 */ 3308 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) 3309 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); 3310 3311 /* 3312 * Insert the page into the object's collection of cached pages 3313 * and the physical memory allocator's cache/free page queues. 3314 */ 3315 m->flags &= ~PG_ZERO; 3316 mtx_lock(&vm_page_queue_free_mtx); 3317 cache_was_empty = vm_radix_is_empty(&object->cache); 3318 if (vm_radix_insert(&object->cache, m)) { 3319 mtx_unlock(&vm_page_queue_free_mtx); 3320 if (object->type == OBJT_VNODE && 3321 object->resident_page_count == 0) 3322 vdrop(object->handle); 3323 m->object = NULL; 3324 vm_page_free(m); 3325 return; 3326 } 3327 3328 /* 3329 * The above call to vm_radix_insert() could reclaim the one pre- 3330 * existing cached page from this object, resulting in a call to 3331 * vdrop(). 3332 */ 3333 if (!cache_was_empty) 3334 cache_was_empty = vm_radix_is_singleton(&object->cache); 3335 3336 m->flags |= PG_CACHED; 3337 vm_cnt.v_cache_count++; 3338 PCPU_INC(cnt.v_tcached); 3339 #if VM_NRESERVLEVEL > 0 3340 if (!vm_reserv_free_page(m)) { 3341 #else 3342 if (TRUE) { 3343 #endif 3344 vm_phys_free_pages(m, 0); 3345 } 3346 vm_page_free_wakeup(); 3347 mtx_unlock(&vm_page_queue_free_mtx); 3348 3349 /* 3350 * Increment the vnode's hold count if this is the object's only 3351 * cached page. Decrement the vnode's hold count if this was 3352 * the object's only resident page. 3353 */ 3354 if (object->type == OBJT_VNODE) { 3355 if (cache_was_empty && object->resident_page_count != 0) 3356 vhold(object->handle); 3357 else if (!cache_was_empty && object->resident_page_count == 0) 3358 vdrop(object->handle); 3359 } 3360 } 3361 3362 /* 3363 * vm_page_advise 3364 * 3365 * Deactivate or do nothing, as appropriate. 3366 * 3367 * The object and page must be locked. 3368 */ 3369 void 3370 vm_page_advise(vm_page_t m, int advice) 3371 { 3372 3373 vm_page_assert_locked(m); 3374 VM_OBJECT_ASSERT_WLOCKED(m->object); 3375 if (advice == MADV_FREE) 3376 /* 3377 * Mark the page clean. This will allow the page to be freed 3378 * up by the system. However, such pages are often reused 3379 * quickly by malloc() so we do not do anything that would 3380 * cause a page fault if we can help it. 3381 * 3382 * Specifically, we do not try to actually free the page now 3383 * nor do we try to put it in the cache (which would cause a 3384 * page fault on reuse). 3385 * 3386 * But we do make the page as freeable as we can without 3387 * actually taking the step of unmapping it. 3388 */ 3389 vm_page_undirty(m); 3390 else if (advice != MADV_DONTNEED) 3391 return; 3392 3393 /* 3394 * Clear any references to the page. Otherwise, the page daemon will 3395 * immediately reactivate the page. 3396 */ 3397 vm_page_aflag_clear(m, PGA_REFERENCED); 3398 3399 if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m)) 3400 vm_page_dirty(m); 3401 3402 /* 3403 * Place clean pages near the head of the inactive queue rather than 3404 * the tail, thus defeating the queue's LRU operation and ensuring that 3405 * the page will be reused quickly. Dirty pages are given a chance to 3406 * cycle once through the inactive queue before becoming eligible for 3407 * laundering. 3408 */ 3409 _vm_page_deactivate(m, m->dirty == 0); 3410 } 3411 3412 /* 3413 * Grab a page, waiting until we are waken up due to the page 3414 * changing state. We keep on waiting, if the page continues 3415 * to be in the object. If the page doesn't exist, first allocate it 3416 * and then conditionally zero it. 3417 * 3418 * This routine may sleep. 3419 * 3420 * The object must be locked on entry. The lock will, however, be released 3421 * and reacquired if the routine sleeps. 3422 */ 3423 vm_page_t 3424 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 3425 { 3426 vm_page_t m; 3427 int sleep; 3428 3429 VM_OBJECT_ASSERT_WLOCKED(object); 3430 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 3431 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 3432 ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch")); 3433 retrylookup: 3434 if ((m = vm_page_lookup(object, pindex)) != NULL) { 3435 sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ? 3436 vm_page_xbusied(m) : vm_page_busied(m); 3437 if (sleep) { 3438 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 3439 return (NULL); 3440 /* 3441 * Reference the page before unlocking and 3442 * sleeping so that the page daemon is less 3443 * likely to reclaim it. 3444 */ 3445 vm_page_aflag_set(m, PGA_REFERENCED); 3446 vm_page_lock(m); 3447 VM_OBJECT_WUNLOCK(object); 3448 vm_page_busy_sleep(m, "pgrbwt"); 3449 VM_OBJECT_WLOCK(object); 3450 goto retrylookup; 3451 } else { 3452 if ((allocflags & VM_ALLOC_WIRED) != 0) { 3453 vm_page_lock(m); 3454 vm_page_wire(m); 3455 vm_page_unlock(m); 3456 } 3457 if ((allocflags & 3458 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0) 3459 vm_page_xbusy(m); 3460 if ((allocflags & VM_ALLOC_SBUSY) != 0) 3461 vm_page_sbusy(m); 3462 return (m); 3463 } 3464 } 3465 m = vm_page_alloc(object, pindex, allocflags); 3466 if (m == NULL) { 3467 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 3468 return (NULL); 3469 VM_OBJECT_WUNLOCK(object); 3470 VM_WAIT; 3471 VM_OBJECT_WLOCK(object); 3472 goto retrylookup; 3473 } else if (m->valid != 0) 3474 return (m); 3475 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 3476 pmap_zero_page(m); 3477 return (m); 3478 } 3479 3480 /* 3481 * Mapping function for valid or dirty bits in a page. 3482 * 3483 * Inputs are required to range within a page. 3484 */ 3485 vm_page_bits_t 3486 vm_page_bits(int base, int size) 3487 { 3488 int first_bit; 3489 int last_bit; 3490 3491 KASSERT( 3492 base + size <= PAGE_SIZE, 3493 ("vm_page_bits: illegal base/size %d/%d", base, size) 3494 ); 3495 3496 if (size == 0) /* handle degenerate case */ 3497 return (0); 3498 3499 first_bit = base >> DEV_BSHIFT; 3500 last_bit = (base + size - 1) >> DEV_BSHIFT; 3501 3502 return (((vm_page_bits_t)2 << last_bit) - 3503 ((vm_page_bits_t)1 << first_bit)); 3504 } 3505 3506 /* 3507 * vm_page_set_valid_range: 3508 * 3509 * Sets portions of a page valid. The arguments are expected 3510 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 3511 * of any partial chunks touched by the range. The invalid portion of 3512 * such chunks will be zeroed. 3513 * 3514 * (base + size) must be less then or equal to PAGE_SIZE. 3515 */ 3516 void 3517 vm_page_set_valid_range(vm_page_t m, int base, int size) 3518 { 3519 int endoff, frag; 3520 3521 VM_OBJECT_ASSERT_WLOCKED(m->object); 3522 if (size == 0) /* handle degenerate case */ 3523 return; 3524 3525 /* 3526 * If the base is not DEV_BSIZE aligned and the valid 3527 * bit is clear, we have to zero out a portion of the 3528 * first block. 3529 */ 3530 if ((frag = rounddown2(base, DEV_BSIZE)) != base && 3531 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 3532 pmap_zero_page_area(m, frag, base - frag); 3533 3534 /* 3535 * If the ending offset is not DEV_BSIZE aligned and the 3536 * valid bit is clear, we have to zero out a portion of 3537 * the last block. 3538 */ 3539 endoff = base + size; 3540 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && 3541 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 3542 pmap_zero_page_area(m, endoff, 3543 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 3544 3545 /* 3546 * Assert that no previously invalid block that is now being validated 3547 * is already dirty. 3548 */ 3549 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0, 3550 ("vm_page_set_valid_range: page %p is dirty", m)); 3551 3552 /* 3553 * Set valid bits inclusive of any overlap. 3554 */ 3555 m->valid |= vm_page_bits(base, size); 3556 } 3557 3558 /* 3559 * Clear the given bits from the specified page's dirty field. 3560 */ 3561 static __inline void 3562 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits) 3563 { 3564 uintptr_t addr; 3565 #if PAGE_SIZE < 16384 3566 int shift; 3567 #endif 3568 3569 /* 3570 * If the object is locked and the page is neither exclusive busy nor 3571 * write mapped, then the page's dirty field cannot possibly be 3572 * set by a concurrent pmap operation. 3573 */ 3574 VM_OBJECT_ASSERT_WLOCKED(m->object); 3575 if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) 3576 m->dirty &= ~pagebits; 3577 else { 3578 /* 3579 * The pmap layer can call vm_page_dirty() without 3580 * holding a distinguished lock. The combination of 3581 * the object's lock and an atomic operation suffice 3582 * to guarantee consistency of the page dirty field. 3583 * 3584 * For PAGE_SIZE == 32768 case, compiler already 3585 * properly aligns the dirty field, so no forcible 3586 * alignment is needed. Only require existence of 3587 * atomic_clear_64 when page size is 32768. 3588 */ 3589 addr = (uintptr_t)&m->dirty; 3590 #if PAGE_SIZE == 32768 3591 atomic_clear_64((uint64_t *)addr, pagebits); 3592 #elif PAGE_SIZE == 16384 3593 atomic_clear_32((uint32_t *)addr, pagebits); 3594 #else /* PAGE_SIZE <= 8192 */ 3595 /* 3596 * Use a trick to perform a 32-bit atomic on the 3597 * containing aligned word, to not depend on the existence 3598 * of atomic_clear_{8, 16}. 3599 */ 3600 shift = addr & (sizeof(uint32_t) - 1); 3601 #if BYTE_ORDER == BIG_ENDIAN 3602 shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY; 3603 #else 3604 shift *= NBBY; 3605 #endif 3606 addr &= ~(sizeof(uint32_t) - 1); 3607 atomic_clear_32((uint32_t *)addr, pagebits << shift); 3608 #endif /* PAGE_SIZE */ 3609 } 3610 } 3611 3612 /* 3613 * vm_page_set_validclean: 3614 * 3615 * Sets portions of a page valid and clean. The arguments are expected 3616 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 3617 * of any partial chunks touched by the range. The invalid portion of 3618 * such chunks will be zero'd. 3619 * 3620 * (base + size) must be less then or equal to PAGE_SIZE. 3621 */ 3622 void 3623 vm_page_set_validclean(vm_page_t m, int base, int size) 3624 { 3625 vm_page_bits_t oldvalid, pagebits; 3626 int endoff, frag; 3627 3628 VM_OBJECT_ASSERT_WLOCKED(m->object); 3629 if (size == 0) /* handle degenerate case */ 3630 return; 3631 3632 /* 3633 * If the base is not DEV_BSIZE aligned and the valid 3634 * bit is clear, we have to zero out a portion of the 3635 * first block. 3636 */ 3637 if ((frag = rounddown2(base, DEV_BSIZE)) != base && 3638 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0) 3639 pmap_zero_page_area(m, frag, base - frag); 3640 3641 /* 3642 * If the ending offset is not DEV_BSIZE aligned and the 3643 * valid bit is clear, we have to zero out a portion of 3644 * the last block. 3645 */ 3646 endoff = base + size; 3647 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && 3648 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0) 3649 pmap_zero_page_area(m, endoff, 3650 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 3651 3652 /* 3653 * Set valid, clear dirty bits. If validating the entire 3654 * page we can safely clear the pmap modify bit. We also 3655 * use this opportunity to clear the VPO_NOSYNC flag. If a process 3656 * takes a write fault on a MAP_NOSYNC memory area the flag will 3657 * be set again. 3658 * 3659 * We set valid bits inclusive of any overlap, but we can only 3660 * clear dirty bits for DEV_BSIZE chunks that are fully within 3661 * the range. 3662 */ 3663 oldvalid = m->valid; 3664 pagebits = vm_page_bits(base, size); 3665 m->valid |= pagebits; 3666 #if 0 /* NOT YET */ 3667 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 3668 frag = DEV_BSIZE - frag; 3669 base += frag; 3670 size -= frag; 3671 if (size < 0) 3672 size = 0; 3673 } 3674 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 3675 #endif 3676 if (base == 0 && size == PAGE_SIZE) { 3677 /* 3678 * The page can only be modified within the pmap if it is 3679 * mapped, and it can only be mapped if it was previously 3680 * fully valid. 3681 */ 3682 if (oldvalid == VM_PAGE_BITS_ALL) 3683 /* 3684 * Perform the pmap_clear_modify() first. Otherwise, 3685 * a concurrent pmap operation, such as 3686 * pmap_protect(), could clear a modification in the 3687 * pmap and set the dirty field on the page before 3688 * pmap_clear_modify() had begun and after the dirty 3689 * field was cleared here. 3690 */ 3691 pmap_clear_modify(m); 3692 m->dirty = 0; 3693 m->oflags &= ~VPO_NOSYNC; 3694 } else if (oldvalid != VM_PAGE_BITS_ALL) 3695 m->dirty &= ~pagebits; 3696 else 3697 vm_page_clear_dirty_mask(m, pagebits); 3698 } 3699 3700 void 3701 vm_page_clear_dirty(vm_page_t m, int base, int size) 3702 { 3703 3704 vm_page_clear_dirty_mask(m, vm_page_bits(base, size)); 3705 } 3706 3707 /* 3708 * vm_page_set_invalid: 3709 * 3710 * Invalidates DEV_BSIZE'd chunks within a page. Both the 3711 * valid and dirty bits for the effected areas are cleared. 3712 */ 3713 void 3714 vm_page_set_invalid(vm_page_t m, int base, int size) 3715 { 3716 vm_page_bits_t bits; 3717 vm_object_t object; 3718 3719 object = m->object; 3720 VM_OBJECT_ASSERT_WLOCKED(object); 3721 if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) + 3722 size >= object->un_pager.vnp.vnp_size) 3723 bits = VM_PAGE_BITS_ALL; 3724 else 3725 bits = vm_page_bits(base, size); 3726 if (object->ref_count != 0 && m->valid == VM_PAGE_BITS_ALL && 3727 bits != 0) 3728 pmap_remove_all(m); 3729 KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) || 3730 !pmap_page_is_mapped(m), 3731 ("vm_page_set_invalid: page %p is mapped", m)); 3732 m->valid &= ~bits; 3733 m->dirty &= ~bits; 3734 } 3735 3736 /* 3737 * vm_page_zero_invalid() 3738 * 3739 * The kernel assumes that the invalid portions of a page contain 3740 * garbage, but such pages can be mapped into memory by user code. 3741 * When this occurs, we must zero out the non-valid portions of the 3742 * page so user code sees what it expects. 3743 * 3744 * Pages are most often semi-valid when the end of a file is mapped 3745 * into memory and the file's size is not page aligned. 3746 */ 3747 void 3748 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 3749 { 3750 int b; 3751 int i; 3752 3753 VM_OBJECT_ASSERT_WLOCKED(m->object); 3754 /* 3755 * Scan the valid bits looking for invalid sections that 3756 * must be zeroed. Invalid sub-DEV_BSIZE'd areas ( where the 3757 * valid bit may be set ) have already been zeroed by 3758 * vm_page_set_validclean(). 3759 */ 3760 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 3761 if (i == (PAGE_SIZE / DEV_BSIZE) || 3762 (m->valid & ((vm_page_bits_t)1 << i))) { 3763 if (i > b) { 3764 pmap_zero_page_area(m, 3765 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 3766 } 3767 b = i + 1; 3768 } 3769 } 3770 3771 /* 3772 * setvalid is TRUE when we can safely set the zero'd areas 3773 * as being valid. We can do this if there are no cache consistancy 3774 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 3775 */ 3776 if (setvalid) 3777 m->valid = VM_PAGE_BITS_ALL; 3778 } 3779 3780 /* 3781 * vm_page_is_valid: 3782 * 3783 * Is (partial) page valid? Note that the case where size == 0 3784 * will return FALSE in the degenerate case where the page is 3785 * entirely invalid, and TRUE otherwise. 3786 */ 3787 int 3788 vm_page_is_valid(vm_page_t m, int base, int size) 3789 { 3790 vm_page_bits_t bits; 3791 3792 VM_OBJECT_ASSERT_LOCKED(m->object); 3793 bits = vm_page_bits(base, size); 3794 return (m->valid != 0 && (m->valid & bits) == bits); 3795 } 3796 3797 /* 3798 * vm_page_ps_is_valid: 3799 * 3800 * Returns TRUE if the entire (super)page is valid and FALSE otherwise. 3801 */ 3802 boolean_t 3803 vm_page_ps_is_valid(vm_page_t m) 3804 { 3805 int i, npages; 3806 3807 VM_OBJECT_ASSERT_LOCKED(m->object); 3808 npages = atop(pagesizes[m->psind]); 3809 3810 /* 3811 * The physically contiguous pages that make up a superpage, i.e., a 3812 * page with a page size index ("psind") greater than zero, will 3813 * occupy adjacent entries in vm_page_array[]. 3814 */ 3815 for (i = 0; i < npages; i++) { 3816 if (m[i].valid != VM_PAGE_BITS_ALL) 3817 return (FALSE); 3818 } 3819 return (TRUE); 3820 } 3821 3822 /* 3823 * Set the page's dirty bits if the page is modified. 3824 */ 3825 void 3826 vm_page_test_dirty(vm_page_t m) 3827 { 3828 3829 VM_OBJECT_ASSERT_WLOCKED(m->object); 3830 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m)) 3831 vm_page_dirty(m); 3832 } 3833 3834 void 3835 vm_page_lock_KBI(vm_page_t m, const char *file, int line) 3836 { 3837 3838 mtx_lock_flags_(vm_page_lockptr(m), 0, file, line); 3839 } 3840 3841 void 3842 vm_page_unlock_KBI(vm_page_t m, const char *file, int line) 3843 { 3844 3845 mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line); 3846 } 3847 3848 int 3849 vm_page_trylock_KBI(vm_page_t m, const char *file, int line) 3850 { 3851 3852 return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line)); 3853 } 3854 3855 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT) 3856 void 3857 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line) 3858 { 3859 3860 vm_page_lock_assert_KBI(m, MA_OWNED, file, line); 3861 } 3862 3863 void 3864 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line) 3865 { 3866 3867 mtx_assert_(vm_page_lockptr(m), a, file, line); 3868 } 3869 #endif 3870 3871 #ifdef INVARIANTS 3872 void 3873 vm_page_object_lock_assert(vm_page_t m) 3874 { 3875 3876 /* 3877 * Certain of the page's fields may only be modified by the 3878 * holder of the containing object's lock or the exclusive busy. 3879 * holder. Unfortunately, the holder of the write busy is 3880 * not recorded, and thus cannot be checked here. 3881 */ 3882 if (m->object != NULL && !vm_page_xbusied(m)) 3883 VM_OBJECT_ASSERT_WLOCKED(m->object); 3884 } 3885 3886 void 3887 vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits) 3888 { 3889 3890 if ((bits & PGA_WRITEABLE) == 0) 3891 return; 3892 3893 /* 3894 * The PGA_WRITEABLE flag can only be set if the page is 3895 * managed, is exclusively busied or the object is locked. 3896 * Currently, this flag is only set by pmap_enter(). 3897 */ 3898 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 3899 ("PGA_WRITEABLE on unmanaged page")); 3900 if (!vm_page_xbusied(m)) 3901 VM_OBJECT_ASSERT_LOCKED(m->object); 3902 } 3903 #endif 3904 3905 #include "opt_ddb.h" 3906 #ifdef DDB 3907 #include <sys/kernel.h> 3908 3909 #include <ddb/ddb.h> 3910 3911 DB_SHOW_COMMAND(page, vm_page_print_page_info) 3912 { 3913 db_printf("vm_cnt.v_free_count: %d\n", vm_cnt.v_free_count); 3914 db_printf("vm_cnt.v_cache_count: %d\n", vm_cnt.v_cache_count); 3915 db_printf("vm_cnt.v_inactive_count: %d\n", vm_cnt.v_inactive_count); 3916 db_printf("vm_cnt.v_active_count: %d\n", vm_cnt.v_active_count); 3917 db_printf("vm_cnt.v_wire_count: %d\n", vm_cnt.v_wire_count); 3918 db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved); 3919 db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min); 3920 db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target); 3921 db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target); 3922 } 3923 3924 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 3925 { 3926 int dom; 3927 3928 db_printf("pq_free %d pq_cache %d\n", 3929 vm_cnt.v_free_count, vm_cnt.v_cache_count); 3930 for (dom = 0; dom < vm_ndomains; dom++) { 3931 db_printf( 3932 "dom %d page_cnt %d free %d pq_act %d pq_inact %d pass %d\n", 3933 dom, 3934 vm_dom[dom].vmd_page_count, 3935 vm_dom[dom].vmd_free_count, 3936 vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt, 3937 vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt, 3938 vm_dom[dom].vmd_pass); 3939 } 3940 } 3941 3942 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo) 3943 { 3944 vm_page_t m; 3945 boolean_t phys; 3946 3947 if (!have_addr) { 3948 db_printf("show pginfo addr\n"); 3949 return; 3950 } 3951 3952 phys = strchr(modif, 'p') != NULL; 3953 if (phys) 3954 m = PHYS_TO_VM_PAGE(addr); 3955 else 3956 m = (vm_page_t)addr; 3957 db_printf( 3958 "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n" 3959 " af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n", 3960 m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr, 3961 m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags, 3962 m->flags, m->act_count, m->busy_lock, m->valid, m->dirty); 3963 } 3964 #endif /* DDB */ 3965