1 /* 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 33 */ 34 35 /* 36 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 37 * All rights reserved. 38 * 39 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 40 * 41 * Permission to use, copy, modify and distribute this software and 42 * its documentation is hereby granted, provided that both the copyright 43 * notice and this permission notice appear in all copies of the 44 * software, derivative works or modified versions, and any portions 45 * thereof, and that both notices appear in supporting documentation. 46 * 47 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 48 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 49 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 50 * 51 * Carnegie Mellon requests users of this software to return to 52 * 53 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 54 * School of Computer Science 55 * Carnegie Mellon University 56 * Pittsburgh PA 15213-3890 57 * 58 * any improvements or extensions that they make and grant Carnegie the 59 * rights to redistribute these changes. 60 */ 61 62 /* 63 * GENERAL RULES ON VM_PAGE MANIPULATION 64 * 65 * - a pageq mutex is required when adding or removing a page from a 66 * page queue (vm_page_queue[]), regardless of other mutexes or the 67 * busy state of a page. 68 * 69 * - a hash chain mutex is required when associating or disassociating 70 * a page from the VM PAGE CACHE hash table (vm_page_buckets), 71 * regardless of other mutexes or the busy state of a page. 72 * 73 * - either a hash chain mutex OR a busied page is required in order 74 * to modify the page flags. A hash chain mutex must be obtained in 75 * order to busy a page. A page's flags cannot be modified by a 76 * hash chain mutex if the page is marked busy. 77 * 78 * - The object memq mutex is held when inserting or removing 79 * pages from an object (vm_page_insert() or vm_page_remove()). This 80 * is different from the object's main mutex. 81 * 82 * Generally speaking, you have to be aware of side effects when running 83 * vm_page ops. A vm_page_lookup() will return with the hash chain 84 * locked, whether it was able to lookup the page or not. vm_page_free(), 85 * vm_page_cache(), vm_page_activate(), and a number of other routines 86 * will release the hash chain mutex for you. Intermediate manipulation 87 * routines such as vm_page_flag_set() expect the hash chain to be held 88 * on entry and the hash chain will remain held on return. 89 * 90 * pageq scanning can only occur with the pageq in question locked. 91 * We have a known bottleneck with the active queue, but the cache 92 * and free queues are actually arrays already. 93 */ 94 95 /* 96 * Resident memory management module. 97 */ 98 99 #include <sys/cdefs.h> 100 __FBSDID("$FreeBSD$"); 101 102 #include <sys/param.h> 103 #include <sys/systm.h> 104 #include <sys/lock.h> 105 #include <sys/malloc.h> 106 #include <sys/mutex.h> 107 #include <sys/proc.h> 108 #include <sys/vmmeter.h> 109 #include <sys/vnode.h> 110 111 #include <vm/vm.h> 112 #include <vm/vm_param.h> 113 #include <vm/vm_kern.h> 114 #include <vm/vm_object.h> 115 #include <vm/vm_page.h> 116 #include <vm/vm_pageout.h> 117 #include <vm/vm_pager.h> 118 #include <vm/vm_extern.h> 119 #include <vm/uma.h> 120 #include <vm/uma_int.h> 121 122 /* 123 * Associated with page of user-allocatable memory is a 124 * page structure. 125 */ 126 127 struct mtx vm_page_queue_mtx; 128 struct mtx vm_page_queue_free_mtx; 129 130 vm_page_t vm_page_array = 0; 131 int vm_page_array_size = 0; 132 long first_page = 0; 133 int vm_page_zero_count = 0; 134 135 /* 136 * vm_set_page_size: 137 * 138 * Sets the page size, perhaps based upon the memory 139 * size. Must be called before any use of page-size 140 * dependent functions. 141 */ 142 void 143 vm_set_page_size(void) 144 { 145 if (cnt.v_page_size == 0) 146 cnt.v_page_size = PAGE_SIZE; 147 if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0) 148 panic("vm_set_page_size: page size not a power of two"); 149 } 150 151 /* 152 * vm_page_startup: 153 * 154 * Initializes the resident memory module. 155 * 156 * Allocates memory for the page cells, and 157 * for the object/offset-to-page hash table headers. 158 * Each page cell is initialized and placed on the free list. 159 */ 160 vm_offset_t 161 vm_page_startup(vm_offset_t vaddr) 162 { 163 vm_offset_t mapped; 164 vm_size_t npages; 165 vm_paddr_t page_range; 166 vm_paddr_t new_end; 167 int i; 168 vm_paddr_t pa; 169 int nblocks; 170 vm_paddr_t last_pa; 171 172 /* the biggest memory array is the second group of pages */ 173 vm_paddr_t end; 174 vm_paddr_t biggestsize; 175 int biggestone; 176 177 vm_paddr_t total; 178 vm_size_t bootpages; 179 180 total = 0; 181 biggestsize = 0; 182 biggestone = 0; 183 nblocks = 0; 184 vaddr = round_page(vaddr); 185 186 for (i = 0; phys_avail[i + 1]; i += 2) { 187 phys_avail[i] = round_page(phys_avail[i]); 188 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 189 } 190 191 for (i = 0; phys_avail[i + 1]; i += 2) { 192 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 193 194 if (size > biggestsize) { 195 biggestone = i; 196 biggestsize = size; 197 } 198 ++nblocks; 199 total += size; 200 } 201 202 end = phys_avail[biggestone+1]; 203 204 /* 205 * Initialize the locks. 206 */ 207 mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF | 208 MTX_RECURSE); 209 mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL, 210 MTX_SPIN); 211 212 /* 213 * Initialize the queue headers for the free queue, the active queue 214 * and the inactive queue. 215 */ 216 vm_pageq_init(); 217 218 /* 219 * Allocate memory for use when boot strapping the kernel memory 220 * allocator. 221 */ 222 bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE; 223 new_end = end - bootpages; 224 new_end = trunc_page(new_end); 225 mapped = pmap_map(&vaddr, new_end, end, 226 VM_PROT_READ | VM_PROT_WRITE); 227 bzero((caddr_t) mapped, end - new_end); 228 uma_startup((caddr_t)mapped); 229 230 /* 231 * Compute the number of pages of memory that will be available for 232 * use (taking into account the overhead of a page structure per 233 * page). 234 */ 235 first_page = phys_avail[0] / PAGE_SIZE; 236 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page; 237 npages = (total - (page_range * sizeof(struct vm_page)) - 238 (end - new_end)) / PAGE_SIZE; 239 end = new_end; 240 241 /* 242 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 243 */ 244 vaddr += PAGE_SIZE; 245 246 /* 247 * Initialize the mem entry structures now, and put them in the free 248 * queue. 249 */ 250 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 251 mapped = pmap_map(&vaddr, new_end, end, 252 VM_PROT_READ | VM_PROT_WRITE); 253 vm_page_array = (vm_page_t) mapped; 254 phys_avail[biggestone + 1] = new_end; 255 256 /* 257 * Clear all of the page structures 258 */ 259 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 260 vm_page_array_size = page_range; 261 262 /* 263 * Construct the free queue(s) in descending order (by physical 264 * address) so that the first 16MB of physical memory is allocated 265 * last rather than first. On large-memory machines, this avoids 266 * the exhaustion of low physical memory before isa_dmainit has run. 267 */ 268 cnt.v_page_count = 0; 269 cnt.v_free_count = 0; 270 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) { 271 pa = phys_avail[i]; 272 last_pa = phys_avail[i + 1]; 273 while (pa < last_pa && npages-- > 0) { 274 vm_pageq_add_new_page(pa); 275 pa += PAGE_SIZE; 276 } 277 } 278 return (vaddr); 279 } 280 281 void 282 vm_page_flag_set(vm_page_t m, unsigned short bits) 283 { 284 285 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 286 m->flags |= bits; 287 } 288 289 void 290 vm_page_flag_clear(vm_page_t m, unsigned short bits) 291 { 292 293 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 294 m->flags &= ~bits; 295 } 296 297 void 298 vm_page_busy(vm_page_t m) 299 { 300 KASSERT((m->flags & PG_BUSY) == 0, 301 ("vm_page_busy: page already busy!!!")); 302 vm_page_flag_set(m, PG_BUSY); 303 } 304 305 /* 306 * vm_page_flash: 307 * 308 * wakeup anyone waiting for the page. 309 */ 310 void 311 vm_page_flash(vm_page_t m) 312 { 313 if (m->flags & PG_WANTED) { 314 vm_page_flag_clear(m, PG_WANTED); 315 wakeup(m); 316 } 317 } 318 319 /* 320 * vm_page_wakeup: 321 * 322 * clear the PG_BUSY flag and wakeup anyone waiting for the 323 * page. 324 * 325 */ 326 void 327 vm_page_wakeup(vm_page_t m) 328 { 329 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!")); 330 vm_page_flag_clear(m, PG_BUSY); 331 vm_page_flash(m); 332 } 333 334 void 335 vm_page_io_start(vm_page_t m) 336 { 337 338 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 339 m->busy++; 340 } 341 342 void 343 vm_page_io_finish(vm_page_t m) 344 { 345 346 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 347 m->busy--; 348 if (m->busy == 0) 349 vm_page_flash(m); 350 } 351 352 /* 353 * Keep page from being freed by the page daemon 354 * much of the same effect as wiring, except much lower 355 * overhead and should be used only for *very* temporary 356 * holding ("wiring"). 357 */ 358 void 359 vm_page_hold(vm_page_t mem) 360 { 361 362 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 363 mem->hold_count++; 364 } 365 366 void 367 vm_page_unhold(vm_page_t mem) 368 { 369 370 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 371 --mem->hold_count; 372 KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!")); 373 if (mem->hold_count == 0 && mem->queue == PQ_HOLD) 374 vm_page_free_toq(mem); 375 } 376 377 /* 378 * vm_page_free: 379 * 380 * Free a page 381 * 382 * The clearing of PG_ZERO is a temporary safety until the code can be 383 * reviewed to determine that PG_ZERO is being properly cleared on 384 * write faults or maps. PG_ZERO was previously cleared in 385 * vm_page_alloc(). 386 */ 387 void 388 vm_page_free(vm_page_t m) 389 { 390 vm_page_flag_clear(m, PG_ZERO); 391 vm_page_free_toq(m); 392 vm_page_zero_idle_wakeup(); 393 } 394 395 /* 396 * vm_page_free_zero: 397 * 398 * Free a page to the zerod-pages queue 399 */ 400 void 401 vm_page_free_zero(vm_page_t m) 402 { 403 vm_page_flag_set(m, PG_ZERO); 404 vm_page_free_toq(m); 405 } 406 407 /* 408 * vm_page_sleep_if_busy: 409 * 410 * Sleep and release the page queues lock if PG_BUSY is set or, 411 * if also_m_busy is TRUE, busy is non-zero. Returns TRUE if the 412 * thread slept and the page queues lock was released. 413 * Otherwise, retains the page queues lock and returns FALSE. 414 */ 415 int 416 vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg) 417 { 418 vm_object_t object; 419 int is_object_locked; 420 421 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 422 if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) { 423 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 424 /* 425 * It's possible that while we sleep, the page will get 426 * unbusied and freed. If we are holding the object 427 * lock, we will assume we hold a reference to the object 428 * such that even if m->object changes, we can re-lock 429 * it. 430 * 431 * Remove mtx_owned() after vm_object locking is finished. 432 */ 433 object = m->object; 434 if ((is_object_locked = object != NULL && 435 mtx_owned(&object->mtx))) 436 mtx_unlock(&object->mtx); 437 msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0); 438 if (is_object_locked) 439 mtx_lock(&object->mtx); 440 return (TRUE); 441 } 442 return (FALSE); 443 } 444 445 /* 446 * vm_page_dirty: 447 * 448 * make page all dirty 449 */ 450 void 451 vm_page_dirty(vm_page_t m) 452 { 453 KASSERT(m->queue - m->pc != PQ_CACHE, 454 ("vm_page_dirty: page in cache!")); 455 KASSERT(m->queue - m->pc != PQ_FREE, 456 ("vm_page_dirty: page is free!")); 457 m->dirty = VM_PAGE_BITS_ALL; 458 } 459 460 /* 461 * vm_page_splay: 462 * 463 * Implements Sleator and Tarjan's top-down splay algorithm. Returns 464 * the vm_page containing the given pindex. If, however, that 465 * pindex is not found in the vm_object, returns a vm_page that is 466 * adjacent to the pindex, coming before or after it. 467 */ 468 vm_page_t 469 vm_page_splay(vm_pindex_t pindex, vm_page_t root) 470 { 471 struct vm_page dummy; 472 vm_page_t lefttreemax, righttreemin, y; 473 474 if (root == NULL) 475 return (root); 476 lefttreemax = righttreemin = &dummy; 477 for (;; root = y) { 478 if (pindex < root->pindex) { 479 if ((y = root->left) == NULL) 480 break; 481 if (pindex < y->pindex) { 482 /* Rotate right. */ 483 root->left = y->right; 484 y->right = root; 485 root = y; 486 if ((y = root->left) == NULL) 487 break; 488 } 489 /* Link into the new root's right tree. */ 490 righttreemin->left = root; 491 righttreemin = root; 492 } else if (pindex > root->pindex) { 493 if ((y = root->right) == NULL) 494 break; 495 if (pindex > y->pindex) { 496 /* Rotate left. */ 497 root->right = y->left; 498 y->left = root; 499 root = y; 500 if ((y = root->right) == NULL) 501 break; 502 } 503 /* Link into the new root's left tree. */ 504 lefttreemax->right = root; 505 lefttreemax = root; 506 } else 507 break; 508 } 509 /* Assemble the new root. */ 510 lefttreemax->right = root->left; 511 righttreemin->left = root->right; 512 root->left = dummy.right; 513 root->right = dummy.left; 514 return (root); 515 } 516 517 /* 518 * vm_page_insert: [ internal use only ] 519 * 520 * Inserts the given mem entry into the object and object list. 521 * 522 * The pagetables are not updated but will presumably fault the page 523 * in if necessary, or if a kernel page the caller will at some point 524 * enter the page into the kernel's pmap. We are not allowed to block 525 * here so we *can't* do this anyway. 526 * 527 * The object and page must be locked. 528 * This routine may not block. 529 */ 530 void 531 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 532 { 533 vm_page_t root; 534 535 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 536 if (m->object != NULL) 537 panic("vm_page_insert: page already inserted"); 538 539 /* 540 * Record the object/offset pair in this page 541 */ 542 m->object = object; 543 m->pindex = pindex; 544 545 /* 546 * Now link into the object's ordered list of backed pages. 547 */ 548 root = object->root; 549 if (root == NULL) { 550 m->left = NULL; 551 m->right = NULL; 552 TAILQ_INSERT_TAIL(&object->memq, m, listq); 553 } else { 554 root = vm_page_splay(pindex, root); 555 if (pindex < root->pindex) { 556 m->left = root->left; 557 m->right = root; 558 root->left = NULL; 559 TAILQ_INSERT_BEFORE(root, m, listq); 560 } else if (pindex == root->pindex) 561 panic("vm_page_insert: offset already allocated"); 562 else { 563 m->right = root->right; 564 m->left = root; 565 root->right = NULL; 566 TAILQ_INSERT_AFTER(&object->memq, root, m, listq); 567 } 568 } 569 object->root = m; 570 object->generation++; 571 572 /* 573 * show that the object has one more resident page. 574 */ 575 object->resident_page_count++; 576 577 /* 578 * Since we are inserting a new and possibly dirty page, 579 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags. 580 */ 581 if (m->flags & PG_WRITEABLE) 582 vm_object_set_writeable_dirty(object); 583 } 584 585 /* 586 * vm_page_remove: 587 * NOTE: used by device pager as well -wfj 588 * 589 * Removes the given mem entry from the object/offset-page 590 * table and the object page list, but do not invalidate/terminate 591 * the backing store. 592 * 593 * The object and page must be locked. 594 * The underlying pmap entry (if any) is NOT removed here. 595 * This routine may not block. 596 */ 597 void 598 vm_page_remove(vm_page_t m) 599 { 600 vm_object_t object; 601 vm_page_t root; 602 603 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 604 if (m->object == NULL) 605 return; 606 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 607 if ((m->flags & PG_BUSY) == 0) { 608 panic("vm_page_remove: page not busy"); 609 } 610 611 /* 612 * Basically destroy the page. 613 */ 614 vm_page_wakeup(m); 615 616 object = m->object; 617 618 /* 619 * Now remove from the object's list of backed pages. 620 */ 621 if (m != object->root) 622 vm_page_splay(m->pindex, object->root); 623 if (m->left == NULL) 624 root = m->right; 625 else { 626 root = vm_page_splay(m->pindex, m->left); 627 root->right = m->right; 628 } 629 object->root = root; 630 TAILQ_REMOVE(&object->memq, m, listq); 631 632 /* 633 * And show that the object has one fewer resident page. 634 */ 635 object->resident_page_count--; 636 object->generation++; 637 638 m->object = NULL; 639 } 640 641 /* 642 * vm_page_lookup: 643 * 644 * Returns the page associated with the object/offset 645 * pair specified; if none is found, NULL is returned. 646 * 647 * The object must be locked. 648 * This routine may not block. 649 * This is a critical path routine 650 */ 651 vm_page_t 652 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 653 { 654 vm_page_t m; 655 656 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 657 if ((m = object->root) != NULL && m->pindex != pindex) { 658 m = vm_page_splay(pindex, m); 659 if ((object->root = m)->pindex != pindex) 660 m = NULL; 661 } 662 return (m); 663 } 664 665 /* 666 * vm_page_rename: 667 * 668 * Move the given memory entry from its 669 * current object to the specified target object/offset. 670 * 671 * The object must be locked. 672 * This routine may not block. 673 * 674 * Note: swap associated with the page must be invalidated by the move. We 675 * have to do this for several reasons: (1) we aren't freeing the 676 * page, (2) we are dirtying the page, (3) the VM system is probably 677 * moving the page from object A to B, and will then later move 678 * the backing store from A to B and we can't have a conflict. 679 * 680 * Note: we *always* dirty the page. It is necessary both for the 681 * fact that we moved it, and because we may be invalidating 682 * swap. If the page is on the cache, we have to deactivate it 683 * or vm_page_dirty() will panic. Dirty pages are not allowed 684 * on the cache. 685 */ 686 void 687 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 688 { 689 690 vm_page_remove(m); 691 vm_page_insert(m, new_object, new_pindex); 692 if (m->queue - m->pc == PQ_CACHE) 693 vm_page_deactivate(m); 694 vm_page_dirty(m); 695 } 696 697 /* 698 * vm_page_select_cache: 699 * 700 * Find a page on the cache queue with color optimization. As pages 701 * might be found, but not applicable, they are deactivated. This 702 * keeps us from using potentially busy cached pages. 703 * 704 * This routine may not block. 705 */ 706 vm_page_t 707 vm_page_select_cache(int color) 708 { 709 vm_page_t m; 710 711 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 712 while ((m = vm_pageq_find(PQ_CACHE, color, FALSE)) != NULL) { 713 if ((m->flags & PG_BUSY) == 0 && m->busy == 0 && 714 m->hold_count == 0 && (VM_OBJECT_TRYLOCK(m->object) || 715 VM_OBJECT_LOCKED(m->object))) { 716 KASSERT(m->dirty == 0, 717 ("Found dirty cache page %p", m)); 718 KASSERT(!pmap_page_is_mapped(m), 719 ("Found mapped cache page %p", m)); 720 KASSERT((m->flags & PG_UNMANAGED) == 0, 721 ("Found unmanaged cache page %p", m)); 722 KASSERT(m->wire_count == 0, 723 ("Found wired cache page %p", m)); 724 break; 725 } 726 vm_page_deactivate(m); 727 } 728 return (m); 729 } 730 731 /* 732 * vm_page_alloc: 733 * 734 * Allocate and return a memory cell associated 735 * with this VM object/offset pair. 736 * 737 * page_req classes: 738 * VM_ALLOC_NORMAL normal process request 739 * VM_ALLOC_SYSTEM system *really* needs a page 740 * VM_ALLOC_INTERRUPT interrupt time request 741 * VM_ALLOC_ZERO zero page 742 * 743 * This routine may not block. 744 * 745 * Additional special handling is required when called from an 746 * interrupt (VM_ALLOC_INTERRUPT). We are not allowed to mess with 747 * the page cache in this case. 748 */ 749 vm_page_t 750 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 751 { 752 vm_object_t m_object; 753 vm_page_t m = NULL; 754 int color, flags, page_req; 755 756 page_req = req & VM_ALLOC_CLASS_MASK; 757 758 if ((req & VM_ALLOC_NOOBJ) == 0) { 759 KASSERT(object != NULL, 760 ("vm_page_alloc: NULL object.")); 761 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 762 color = (pindex + object->pg_color) & PQ_L2_MASK; 763 } else 764 color = pindex & PQ_L2_MASK; 765 766 /* 767 * The pager is allowed to eat deeper into the free page list. 768 */ 769 if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) { 770 page_req = VM_ALLOC_SYSTEM; 771 }; 772 773 loop: 774 mtx_lock_spin(&vm_page_queue_free_mtx); 775 if (cnt.v_free_count > cnt.v_free_reserved || 776 (page_req == VM_ALLOC_SYSTEM && 777 cnt.v_cache_count == 0 && 778 cnt.v_free_count > cnt.v_interrupt_free_min) || 779 (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) { 780 /* 781 * Allocate from the free queue if the number of free pages 782 * exceeds the minimum for the request class. 783 */ 784 m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0); 785 } else if (page_req != VM_ALLOC_INTERRUPT) { 786 mtx_unlock_spin(&vm_page_queue_free_mtx); 787 /* 788 * Allocatable from cache (non-interrupt only). On success, 789 * we must free the page and try again, thus ensuring that 790 * cnt.v_*_free_min counters are replenished. 791 */ 792 vm_page_lock_queues(); 793 if ((m = vm_page_select_cache(color)) == NULL) { 794 #if defined(DIAGNOSTIC) 795 if (cnt.v_cache_count > 0) 796 printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count); 797 #endif 798 vm_page_unlock_queues(); 799 atomic_add_int(&vm_pageout_deficit, 1); 800 pagedaemon_wakeup(); 801 return (NULL); 802 } 803 m_object = m->object; 804 VM_OBJECT_LOCK_ASSERT(m_object, MA_OWNED); 805 vm_page_busy(m); 806 vm_page_free(m); 807 vm_page_unlock_queues(); 808 if (m_object != object) 809 VM_OBJECT_UNLOCK(m_object); 810 goto loop; 811 } else { 812 /* 813 * Not allocatable from cache from interrupt, give up. 814 */ 815 mtx_unlock_spin(&vm_page_queue_free_mtx); 816 atomic_add_int(&vm_pageout_deficit, 1); 817 pagedaemon_wakeup(); 818 return (NULL); 819 } 820 821 /* 822 * At this point we had better have found a good page. 823 */ 824 825 KASSERT( 826 m != NULL, 827 ("vm_page_alloc(): missing page on free queue") 828 ); 829 830 /* 831 * Remove from free queue 832 */ 833 vm_pageq_remove_nowakeup(m); 834 835 /* 836 * Initialize structure. Only the PG_ZERO flag is inherited. 837 */ 838 flags = PG_BUSY; 839 if (m->flags & PG_ZERO) { 840 vm_page_zero_count--; 841 if (req & VM_ALLOC_ZERO) 842 flags = PG_ZERO | PG_BUSY; 843 } 844 if (req & VM_ALLOC_NOOBJ) 845 flags &= ~PG_BUSY; 846 m->flags = flags; 847 if (req & VM_ALLOC_WIRED) { 848 atomic_add_int(&cnt.v_wire_count, 1); 849 m->wire_count = 1; 850 } else 851 m->wire_count = 0; 852 m->hold_count = 0; 853 m->act_count = 0; 854 m->busy = 0; 855 m->valid = 0; 856 KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m)); 857 mtx_unlock_spin(&vm_page_queue_free_mtx); 858 859 if ((req & VM_ALLOC_NOOBJ) == 0) 860 vm_page_insert(m, object, pindex); 861 else 862 m->pindex = pindex; 863 864 /* 865 * Don't wakeup too often - wakeup the pageout daemon when 866 * we would be nearly out of memory. 867 */ 868 if (vm_paging_needed()) 869 pagedaemon_wakeup(); 870 871 return (m); 872 } 873 874 /* 875 * vm_wait: (also see VM_WAIT macro) 876 * 877 * Block until free pages are available for allocation 878 * - Called in various places before memory allocations. 879 */ 880 void 881 vm_wait(void) 882 { 883 884 vm_page_lock_queues(); 885 if (curproc == pageproc) { 886 vm_pageout_pages_needed = 1; 887 msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx, 888 PDROP | PSWP, "VMWait", 0); 889 } else { 890 if (!vm_pages_needed) { 891 vm_pages_needed = 1; 892 wakeup(&vm_pages_needed); 893 } 894 msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM, 895 "vmwait", 0); 896 } 897 } 898 899 /* 900 * vm_waitpfault: (also see VM_WAITPFAULT macro) 901 * 902 * Block until free pages are available for allocation 903 * - Called only in vm_fault so that processes page faulting 904 * can be easily tracked. 905 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 906 * processes will be able to grab memory first. Do not change 907 * this balance without careful testing first. 908 */ 909 void 910 vm_waitpfault(void) 911 { 912 913 vm_page_lock_queues(); 914 if (!vm_pages_needed) { 915 vm_pages_needed = 1; 916 wakeup(&vm_pages_needed); 917 } 918 msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER, 919 "pfault", 0); 920 } 921 922 /* 923 * vm_page_activate: 924 * 925 * Put the specified page on the active list (if appropriate). 926 * Ensure that act_count is at least ACT_INIT but do not otherwise 927 * mess with it. 928 * 929 * The page queues must be locked. 930 * This routine may not block. 931 */ 932 void 933 vm_page_activate(vm_page_t m) 934 { 935 936 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 937 if (m->queue != PQ_ACTIVE) { 938 if ((m->queue - m->pc) == PQ_CACHE) 939 cnt.v_reactivated++; 940 vm_pageq_remove(m); 941 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 942 if (m->act_count < ACT_INIT) 943 m->act_count = ACT_INIT; 944 vm_pageq_enqueue(PQ_ACTIVE, m); 945 } 946 } else { 947 if (m->act_count < ACT_INIT) 948 m->act_count = ACT_INIT; 949 } 950 } 951 952 /* 953 * vm_page_free_wakeup: 954 * 955 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 956 * routine is called when a page has been added to the cache or free 957 * queues. 958 * 959 * The page queues must be locked. 960 * This routine may not block. 961 */ 962 static __inline void 963 vm_page_free_wakeup(void) 964 { 965 966 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 967 /* 968 * if pageout daemon needs pages, then tell it that there are 969 * some free. 970 */ 971 if (vm_pageout_pages_needed && 972 cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) { 973 wakeup(&vm_pageout_pages_needed); 974 vm_pageout_pages_needed = 0; 975 } 976 /* 977 * wakeup processes that are waiting on memory if we hit a 978 * high water mark. And wakeup scheduler process if we have 979 * lots of memory. this process will swapin processes. 980 */ 981 if (vm_pages_needed && !vm_page_count_min()) { 982 vm_pages_needed = 0; 983 wakeup(&cnt.v_free_count); 984 } 985 } 986 987 /* 988 * vm_page_free_toq: 989 * 990 * Returns the given page to the PQ_FREE list, 991 * disassociating it with any VM object. 992 * 993 * Object and page must be locked prior to entry. 994 * This routine may not block. 995 */ 996 997 void 998 vm_page_free_toq(vm_page_t m) 999 { 1000 struct vpgqueues *pq; 1001 vm_object_t object = m->object; 1002 1003 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1004 cnt.v_tfree++; 1005 1006 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) { 1007 printf( 1008 "vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n", 1009 (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0, 1010 m->hold_count); 1011 if ((m->queue - m->pc) == PQ_FREE) 1012 panic("vm_page_free: freeing free page"); 1013 else 1014 panic("vm_page_free: freeing busy page"); 1015 } 1016 1017 /* 1018 * unqueue, then remove page. Note that we cannot destroy 1019 * the page here because we do not want to call the pager's 1020 * callback routine until after we've put the page on the 1021 * appropriate free queue. 1022 */ 1023 vm_pageq_remove_nowakeup(m); 1024 vm_page_remove(m); 1025 1026 /* 1027 * If fictitious remove object association and 1028 * return, otherwise delay object association removal. 1029 */ 1030 if ((m->flags & PG_FICTITIOUS) != 0) { 1031 return; 1032 } 1033 1034 m->valid = 0; 1035 vm_page_undirty(m); 1036 1037 if (m->wire_count != 0) { 1038 if (m->wire_count > 1) { 1039 panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx", 1040 m->wire_count, (long)m->pindex); 1041 } 1042 panic("vm_page_free: freeing wired page"); 1043 } 1044 1045 /* 1046 * If we've exhausted the object's resident pages we want to free 1047 * it up. 1048 */ 1049 if (object && 1050 (object->type == OBJT_VNODE) && 1051 ((object->flags & OBJ_DEAD) == 0) 1052 ) { 1053 struct vnode *vp = (struct vnode *)object->handle; 1054 1055 if (vp) { 1056 VI_LOCK(vp); 1057 if (VSHOULDFREE(vp)) 1058 vfree(vp); 1059 VI_UNLOCK(vp); 1060 } 1061 } 1062 1063 /* 1064 * Clear the UNMANAGED flag when freeing an unmanaged page. 1065 */ 1066 if (m->flags & PG_UNMANAGED) { 1067 m->flags &= ~PG_UNMANAGED; 1068 } 1069 1070 if (m->hold_count != 0) { 1071 m->flags &= ~PG_ZERO; 1072 m->queue = PQ_HOLD; 1073 } else 1074 m->queue = PQ_FREE + m->pc; 1075 pq = &vm_page_queues[m->queue]; 1076 mtx_lock_spin(&vm_page_queue_free_mtx); 1077 pq->lcnt++; 1078 ++(*pq->cnt); 1079 1080 /* 1081 * Put zero'd pages on the end ( where we look for zero'd pages 1082 * first ) and non-zerod pages at the head. 1083 */ 1084 if (m->flags & PG_ZERO) { 1085 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 1086 ++vm_page_zero_count; 1087 } else { 1088 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 1089 } 1090 mtx_unlock_spin(&vm_page_queue_free_mtx); 1091 vm_page_free_wakeup(); 1092 } 1093 1094 /* 1095 * vm_page_unmanage: 1096 * 1097 * Prevent PV management from being done on the page. The page is 1098 * removed from the paging queues as if it were wired, and as a 1099 * consequence of no longer being managed the pageout daemon will not 1100 * touch it (since there is no way to locate the pte mappings for the 1101 * page). madvise() calls that mess with the pmap will also no longer 1102 * operate on the page. 1103 * 1104 * Beyond that the page is still reasonably 'normal'. Freeing the page 1105 * will clear the flag. 1106 * 1107 * This routine is used by OBJT_PHYS objects - objects using unswappable 1108 * physical memory as backing store rather then swap-backed memory and 1109 * will eventually be extended to support 4MB unmanaged physical 1110 * mappings. 1111 */ 1112 void 1113 vm_page_unmanage(vm_page_t m) 1114 { 1115 1116 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1117 if ((m->flags & PG_UNMANAGED) == 0) { 1118 if (m->wire_count == 0) 1119 vm_pageq_remove(m); 1120 } 1121 vm_page_flag_set(m, PG_UNMANAGED); 1122 } 1123 1124 /* 1125 * vm_page_wire: 1126 * 1127 * Mark this page as wired down by yet 1128 * another map, removing it from paging queues 1129 * as necessary. 1130 * 1131 * The page queues must be locked. 1132 * This routine may not block. 1133 */ 1134 void 1135 vm_page_wire(vm_page_t m) 1136 { 1137 1138 /* 1139 * Only bump the wire statistics if the page is not already wired, 1140 * and only unqueue the page if it is on some queue (if it is unmanaged 1141 * it is already off the queues). 1142 */ 1143 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1144 if (m->flags & PG_FICTITIOUS) 1145 return; 1146 if (m->wire_count == 0) { 1147 if ((m->flags & PG_UNMANAGED) == 0) 1148 vm_pageq_remove(m); 1149 atomic_add_int(&cnt.v_wire_count, 1); 1150 } 1151 m->wire_count++; 1152 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 1153 } 1154 1155 /* 1156 * vm_page_unwire: 1157 * 1158 * Release one wiring of this page, potentially 1159 * enabling it to be paged again. 1160 * 1161 * Many pages placed on the inactive queue should actually go 1162 * into the cache, but it is difficult to figure out which. What 1163 * we do instead, if the inactive target is well met, is to put 1164 * clean pages at the head of the inactive queue instead of the tail. 1165 * This will cause them to be moved to the cache more quickly and 1166 * if not actively re-referenced, freed more quickly. If we just 1167 * stick these pages at the end of the inactive queue, heavy filesystem 1168 * meta-data accesses can cause an unnecessary paging load on memory bound 1169 * processes. This optimization causes one-time-use metadata to be 1170 * reused more quickly. 1171 * 1172 * BUT, if we are in a low-memory situation we have no choice but to 1173 * put clean pages on the cache queue. 1174 * 1175 * A number of routines use vm_page_unwire() to guarantee that the page 1176 * will go into either the inactive or active queues, and will NEVER 1177 * be placed in the cache - for example, just after dirtying a page. 1178 * dirty pages in the cache are not allowed. 1179 * 1180 * The page queues must be locked. 1181 * This routine may not block. 1182 */ 1183 void 1184 vm_page_unwire(vm_page_t m, int activate) 1185 { 1186 1187 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1188 if (m->flags & PG_FICTITIOUS) 1189 return; 1190 if (m->wire_count > 0) { 1191 m->wire_count--; 1192 if (m->wire_count == 0) { 1193 atomic_subtract_int(&cnt.v_wire_count, 1); 1194 if (m->flags & PG_UNMANAGED) { 1195 ; 1196 } else if (activate) 1197 vm_pageq_enqueue(PQ_ACTIVE, m); 1198 else { 1199 vm_page_flag_clear(m, PG_WINATCFLS); 1200 vm_pageq_enqueue(PQ_INACTIVE, m); 1201 } 1202 } 1203 } else { 1204 panic("vm_page_unwire: invalid wire count: %d", m->wire_count); 1205 } 1206 } 1207 1208 1209 /* 1210 * Move the specified page to the inactive queue. If the page has 1211 * any associated swap, the swap is deallocated. 1212 * 1213 * Normally athead is 0 resulting in LRU operation. athead is set 1214 * to 1 if we want this page to be 'as if it were placed in the cache', 1215 * except without unmapping it from the process address space. 1216 * 1217 * This routine may not block. 1218 */ 1219 static __inline void 1220 _vm_page_deactivate(vm_page_t m, int athead) 1221 { 1222 1223 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1224 1225 /* 1226 * Ignore if already inactive. 1227 */ 1228 if (m->queue == PQ_INACTIVE) 1229 return; 1230 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1231 if ((m->queue - m->pc) == PQ_CACHE) 1232 cnt.v_reactivated++; 1233 vm_page_flag_clear(m, PG_WINATCFLS); 1234 vm_pageq_remove(m); 1235 if (athead) 1236 TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1237 else 1238 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1239 m->queue = PQ_INACTIVE; 1240 vm_page_queues[PQ_INACTIVE].lcnt++; 1241 cnt.v_inactive_count++; 1242 } 1243 } 1244 1245 void 1246 vm_page_deactivate(vm_page_t m) 1247 { 1248 _vm_page_deactivate(m, 0); 1249 } 1250 1251 /* 1252 * vm_page_try_to_cache: 1253 * 1254 * Returns 0 on failure, 1 on success 1255 */ 1256 int 1257 vm_page_try_to_cache(vm_page_t m) 1258 { 1259 1260 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1261 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1262 (m->flags & (PG_BUSY|PG_UNMANAGED))) { 1263 return (0); 1264 } 1265 pmap_remove_all(m); 1266 if (m->dirty) 1267 return (0); 1268 vm_page_cache(m); 1269 return (1); 1270 } 1271 1272 /* 1273 * vm_page_try_to_free() 1274 * 1275 * Attempt to free the page. If we cannot free it, we do nothing. 1276 * 1 is returned on success, 0 on failure. 1277 */ 1278 int 1279 vm_page_try_to_free(vm_page_t m) 1280 { 1281 1282 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1283 if (m->object != NULL) 1284 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1285 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1286 (m->flags & (PG_BUSY|PG_UNMANAGED))) { 1287 return (0); 1288 } 1289 pmap_remove_all(m); 1290 if (m->dirty) 1291 return (0); 1292 vm_page_busy(m); 1293 vm_page_free(m); 1294 return (1); 1295 } 1296 1297 /* 1298 * vm_page_cache 1299 * 1300 * Put the specified page onto the page cache queue (if appropriate). 1301 * 1302 * This routine may not block. 1303 */ 1304 void 1305 vm_page_cache(vm_page_t m) 1306 { 1307 1308 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1309 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || 1310 m->hold_count || m->wire_count) { 1311 printf("vm_page_cache: attempting to cache busy page\n"); 1312 return; 1313 } 1314 if ((m->queue - m->pc) == PQ_CACHE) 1315 return; 1316 1317 /* 1318 * Remove all pmaps and indicate that the page is not 1319 * writeable or mapped. 1320 */ 1321 pmap_remove_all(m); 1322 if (m->dirty != 0) { 1323 panic("vm_page_cache: caching a dirty page, pindex: %ld", 1324 (long)m->pindex); 1325 } 1326 vm_pageq_remove_nowakeup(m); 1327 vm_pageq_enqueue(PQ_CACHE + m->pc, m); 1328 vm_page_free_wakeup(); 1329 } 1330 1331 /* 1332 * vm_page_dontneed 1333 * 1334 * Cache, deactivate, or do nothing as appropriate. This routine 1335 * is typically used by madvise() MADV_DONTNEED. 1336 * 1337 * Generally speaking we want to move the page into the cache so 1338 * it gets reused quickly. However, this can result in a silly syndrome 1339 * due to the page recycling too quickly. Small objects will not be 1340 * fully cached. On the otherhand, if we move the page to the inactive 1341 * queue we wind up with a problem whereby very large objects 1342 * unnecessarily blow away our inactive and cache queues. 1343 * 1344 * The solution is to move the pages based on a fixed weighting. We 1345 * either leave them alone, deactivate them, or move them to the cache, 1346 * where moving them to the cache has the highest weighting. 1347 * By forcing some pages into other queues we eventually force the 1348 * system to balance the queues, potentially recovering other unrelated 1349 * space from active. The idea is to not force this to happen too 1350 * often. 1351 */ 1352 void 1353 vm_page_dontneed(vm_page_t m) 1354 { 1355 static int dnweight; 1356 int dnw; 1357 int head; 1358 1359 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1360 dnw = ++dnweight; 1361 1362 /* 1363 * occassionally leave the page alone 1364 */ 1365 if ((dnw & 0x01F0) == 0 || 1366 m->queue == PQ_INACTIVE || 1367 m->queue - m->pc == PQ_CACHE 1368 ) { 1369 if (m->act_count >= ACT_INIT) 1370 --m->act_count; 1371 return; 1372 } 1373 1374 if (m->dirty == 0 && pmap_is_modified(m)) 1375 vm_page_dirty(m); 1376 1377 if (m->dirty || (dnw & 0x0070) == 0) { 1378 /* 1379 * Deactivate the page 3 times out of 32. 1380 */ 1381 head = 0; 1382 } else { 1383 /* 1384 * Cache the page 28 times out of every 32. Note that 1385 * the page is deactivated instead of cached, but placed 1386 * at the head of the queue instead of the tail. 1387 */ 1388 head = 1; 1389 } 1390 _vm_page_deactivate(m, head); 1391 } 1392 1393 /* 1394 * Grab a page, waiting until we are waken up due to the page 1395 * changing state. We keep on waiting, if the page continues 1396 * to be in the object. If the page doesn't exist, first allocate it 1397 * and then conditionally zero it. 1398 * 1399 * This routine may block. 1400 */ 1401 vm_page_t 1402 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 1403 { 1404 vm_page_t m; 1405 1406 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1407 retrylookup: 1408 if ((m = vm_page_lookup(object, pindex)) != NULL) { 1409 vm_page_lock_queues(); 1410 if (m->busy || (m->flags & PG_BUSY)) { 1411 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 1412 VM_OBJECT_UNLOCK(object); 1413 msleep(m, &vm_page_queue_mtx, PDROP | PVM, "pgrbwt", 0); 1414 VM_OBJECT_LOCK(object); 1415 if ((allocflags & VM_ALLOC_RETRY) == 0) 1416 return (NULL); 1417 goto retrylookup; 1418 } else { 1419 if (allocflags & VM_ALLOC_WIRED) 1420 vm_page_wire(m); 1421 vm_page_busy(m); 1422 vm_page_unlock_queues(); 1423 return (m); 1424 } 1425 } 1426 m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY); 1427 if (m == NULL) { 1428 VM_OBJECT_UNLOCK(object); 1429 VM_WAIT; 1430 VM_OBJECT_LOCK(object); 1431 if ((allocflags & VM_ALLOC_RETRY) == 0) 1432 return (NULL); 1433 goto retrylookup; 1434 } 1435 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 1436 pmap_zero_page(m); 1437 return (m); 1438 } 1439 1440 /* 1441 * Mapping function for valid bits or for dirty bits in 1442 * a page. May not block. 1443 * 1444 * Inputs are required to range within a page. 1445 */ 1446 __inline int 1447 vm_page_bits(int base, int size) 1448 { 1449 int first_bit; 1450 int last_bit; 1451 1452 KASSERT( 1453 base + size <= PAGE_SIZE, 1454 ("vm_page_bits: illegal base/size %d/%d", base, size) 1455 ); 1456 1457 if (size == 0) /* handle degenerate case */ 1458 return (0); 1459 1460 first_bit = base >> DEV_BSHIFT; 1461 last_bit = (base + size - 1) >> DEV_BSHIFT; 1462 1463 return ((2 << last_bit) - (1 << first_bit)); 1464 } 1465 1466 /* 1467 * vm_page_set_validclean: 1468 * 1469 * Sets portions of a page valid and clean. The arguments are expected 1470 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 1471 * of any partial chunks touched by the range. The invalid portion of 1472 * such chunks will be zero'd. 1473 * 1474 * This routine may not block. 1475 * 1476 * (base + size) must be less then or equal to PAGE_SIZE. 1477 */ 1478 void 1479 vm_page_set_validclean(vm_page_t m, int base, int size) 1480 { 1481 int pagebits; 1482 int frag; 1483 int endoff; 1484 1485 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1486 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1487 if (size == 0) /* handle degenerate case */ 1488 return; 1489 1490 /* 1491 * If the base is not DEV_BSIZE aligned and the valid 1492 * bit is clear, we have to zero out a portion of the 1493 * first block. 1494 */ 1495 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 1496 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 1497 pmap_zero_page_area(m, frag, base - frag); 1498 1499 /* 1500 * If the ending offset is not DEV_BSIZE aligned and the 1501 * valid bit is clear, we have to zero out a portion of 1502 * the last block. 1503 */ 1504 endoff = base + size; 1505 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 1506 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 1507 pmap_zero_page_area(m, endoff, 1508 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 1509 1510 /* 1511 * Set valid, clear dirty bits. If validating the entire 1512 * page we can safely clear the pmap modify bit. We also 1513 * use this opportunity to clear the PG_NOSYNC flag. If a process 1514 * takes a write fault on a MAP_NOSYNC memory area the flag will 1515 * be set again. 1516 * 1517 * We set valid bits inclusive of any overlap, but we can only 1518 * clear dirty bits for DEV_BSIZE chunks that are fully within 1519 * the range. 1520 */ 1521 pagebits = vm_page_bits(base, size); 1522 m->valid |= pagebits; 1523 #if 0 /* NOT YET */ 1524 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 1525 frag = DEV_BSIZE - frag; 1526 base += frag; 1527 size -= frag; 1528 if (size < 0) 1529 size = 0; 1530 } 1531 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 1532 #endif 1533 m->dirty &= ~pagebits; 1534 if (base == 0 && size == PAGE_SIZE) { 1535 pmap_clear_modify(m); 1536 vm_page_flag_clear(m, PG_NOSYNC); 1537 } 1538 } 1539 1540 void 1541 vm_page_clear_dirty(vm_page_t m, int base, int size) 1542 { 1543 1544 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1545 m->dirty &= ~vm_page_bits(base, size); 1546 } 1547 1548 /* 1549 * vm_page_set_invalid: 1550 * 1551 * Invalidates DEV_BSIZE'd chunks within a page. Both the 1552 * valid and dirty bits for the effected areas are cleared. 1553 * 1554 * May not block. 1555 */ 1556 void 1557 vm_page_set_invalid(vm_page_t m, int base, int size) 1558 { 1559 int bits; 1560 1561 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1562 bits = vm_page_bits(base, size); 1563 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1564 m->valid &= ~bits; 1565 m->dirty &= ~bits; 1566 m->object->generation++; 1567 } 1568 1569 /* 1570 * vm_page_zero_invalid() 1571 * 1572 * The kernel assumes that the invalid portions of a page contain 1573 * garbage, but such pages can be mapped into memory by user code. 1574 * When this occurs, we must zero out the non-valid portions of the 1575 * page so user code sees what it expects. 1576 * 1577 * Pages are most often semi-valid when the end of a file is mapped 1578 * into memory and the file's size is not page aligned. 1579 */ 1580 void 1581 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 1582 { 1583 int b; 1584 int i; 1585 1586 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1587 /* 1588 * Scan the valid bits looking for invalid sections that 1589 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 1590 * valid bit may be set ) have already been zerod by 1591 * vm_page_set_validclean(). 1592 */ 1593 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 1594 if (i == (PAGE_SIZE / DEV_BSIZE) || 1595 (m->valid & (1 << i)) 1596 ) { 1597 if (i > b) { 1598 pmap_zero_page_area(m, 1599 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 1600 } 1601 b = i + 1; 1602 } 1603 } 1604 1605 /* 1606 * setvalid is TRUE when we can safely set the zero'd areas 1607 * as being valid. We can do this if there are no cache consistancy 1608 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 1609 */ 1610 if (setvalid) 1611 m->valid = VM_PAGE_BITS_ALL; 1612 } 1613 1614 /* 1615 * vm_page_is_valid: 1616 * 1617 * Is (partial) page valid? Note that the case where size == 0 1618 * will return FALSE in the degenerate case where the page is 1619 * entirely invalid, and TRUE otherwise. 1620 * 1621 * May not block. 1622 */ 1623 int 1624 vm_page_is_valid(vm_page_t m, int base, int size) 1625 { 1626 int bits = vm_page_bits(base, size); 1627 1628 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1629 if (m->valid && ((m->valid & bits) == bits)) 1630 return 1; 1631 else 1632 return 0; 1633 } 1634 1635 /* 1636 * update dirty bits from pmap/mmu. May not block. 1637 */ 1638 void 1639 vm_page_test_dirty(vm_page_t m) 1640 { 1641 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) { 1642 vm_page_dirty(m); 1643 } 1644 } 1645 1646 int so_zerocp_fullpage = 0; 1647 1648 void 1649 vm_page_cowfault(vm_page_t m) 1650 { 1651 vm_page_t mnew; 1652 vm_object_t object; 1653 vm_pindex_t pindex; 1654 1655 object = m->object; 1656 pindex = m->pindex; 1657 vm_page_busy(m); 1658 1659 retry_alloc: 1660 vm_page_remove(m); 1661 mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL); 1662 if (mnew == NULL) { 1663 vm_page_insert(m, object, pindex); 1664 vm_page_unlock_queues(); 1665 VM_OBJECT_UNLOCK(object); 1666 VM_WAIT; 1667 VM_OBJECT_LOCK(object); 1668 vm_page_lock_queues(); 1669 goto retry_alloc; 1670 } 1671 1672 if (m->cow == 0) { 1673 /* 1674 * check to see if we raced with an xmit complete when 1675 * waiting to allocate a page. If so, put things back 1676 * the way they were 1677 */ 1678 vm_page_busy(mnew); 1679 vm_page_free(mnew); 1680 vm_page_insert(m, object, pindex); 1681 } else { /* clear COW & copy page */ 1682 if (!so_zerocp_fullpage) 1683 pmap_copy_page(m, mnew); 1684 mnew->valid = VM_PAGE_BITS_ALL; 1685 vm_page_dirty(mnew); 1686 vm_page_flag_clear(mnew, PG_BUSY); 1687 } 1688 } 1689 1690 void 1691 vm_page_cowclear(vm_page_t m) 1692 { 1693 1694 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1695 if (m->cow) { 1696 m->cow--; 1697 /* 1698 * let vm_fault add back write permission lazily 1699 */ 1700 } 1701 /* 1702 * sf_buf_free() will free the page, so we needn't do it here 1703 */ 1704 } 1705 1706 void 1707 vm_page_cowsetup(vm_page_t m) 1708 { 1709 1710 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1711 m->cow++; 1712 pmap_page_protect(m, VM_PROT_READ); 1713 } 1714 1715 #include "opt_ddb.h" 1716 #ifdef DDB 1717 #include <sys/kernel.h> 1718 1719 #include <ddb/ddb.h> 1720 1721 DB_SHOW_COMMAND(page, vm_page_print_page_info) 1722 { 1723 db_printf("cnt.v_free_count: %d\n", cnt.v_free_count); 1724 db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count); 1725 db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count); 1726 db_printf("cnt.v_active_count: %d\n", cnt.v_active_count); 1727 db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count); 1728 db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved); 1729 db_printf("cnt.v_free_min: %d\n", cnt.v_free_min); 1730 db_printf("cnt.v_free_target: %d\n", cnt.v_free_target); 1731 db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min); 1732 db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target); 1733 } 1734 1735 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 1736 { 1737 int i; 1738 db_printf("PQ_FREE:"); 1739 for (i = 0; i < PQ_L2_SIZE; i++) { 1740 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt); 1741 } 1742 db_printf("\n"); 1743 1744 db_printf("PQ_CACHE:"); 1745 for (i = 0; i < PQ_L2_SIZE; i++) { 1746 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt); 1747 } 1748 db_printf("\n"); 1749 1750 db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n", 1751 vm_page_queues[PQ_ACTIVE].lcnt, 1752 vm_page_queues[PQ_INACTIVE].lcnt); 1753 } 1754 #endif /* DDB */ 1755