xref: /freebsd/sys/vm/vm_page.c (revision 2546665afcaf0d53dc2c7058fee96354b3680f5a)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
33  */
34 
35 /*
36  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
37  * All rights reserved.
38  *
39  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
40  *
41  * Permission to use, copy, modify and distribute this software and
42  * its documentation is hereby granted, provided that both the copyright
43  * notice and this permission notice appear in all copies of the
44  * software, derivative works or modified versions, and any portions
45  * thereof, and that both notices appear in supporting documentation.
46  *
47  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
48  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
49  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
50  *
51  * Carnegie Mellon requests users of this software to return to
52  *
53  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
54  *  School of Computer Science
55  *  Carnegie Mellon University
56  *  Pittsburgh PA 15213-3890
57  *
58  * any improvements or extensions that they make and grant Carnegie the
59  * rights to redistribute these changes.
60  */
61 
62 /*
63  *			GENERAL RULES ON VM_PAGE MANIPULATION
64  *
65  *	- a pageq mutex is required when adding or removing a page from a
66  *	  page queue (vm_page_queue[]), regardless of other mutexes or the
67  *	  busy state of a page.
68  *
69  *	- a hash chain mutex is required when associating or disassociating
70  *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
71  *	  regardless of other mutexes or the busy state of a page.
72  *
73  *	- either a hash chain mutex OR a busied page is required in order
74  *	  to modify the page flags.  A hash chain mutex must be obtained in
75  *	  order to busy a page.  A page's flags cannot be modified by a
76  *	  hash chain mutex if the page is marked busy.
77  *
78  *	- The object memq mutex is held when inserting or removing
79  *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
80  *	  is different from the object's main mutex.
81  *
82  *	Generally speaking, you have to be aware of side effects when running
83  *	vm_page ops.  A vm_page_lookup() will return with the hash chain
84  *	locked, whether it was able to lookup the page or not.  vm_page_free(),
85  *	vm_page_cache(), vm_page_activate(), and a number of other routines
86  *	will release the hash chain mutex for you.  Intermediate manipulation
87  *	routines such as vm_page_flag_set() expect the hash chain to be held
88  *	on entry and the hash chain will remain held on return.
89  *
90  *	pageq scanning can only occur with the pageq in question locked.
91  *	We have a known bottleneck with the active queue, but the cache
92  *	and free queues are actually arrays already.
93  */
94 
95 /*
96  *	Resident memory management module.
97  */
98 
99 #include <sys/cdefs.h>
100 __FBSDID("$FreeBSD$");
101 
102 #include <sys/param.h>
103 #include <sys/systm.h>
104 #include <sys/lock.h>
105 #include <sys/malloc.h>
106 #include <sys/mutex.h>
107 #include <sys/proc.h>
108 #include <sys/vmmeter.h>
109 #include <sys/vnode.h>
110 
111 #include <vm/vm.h>
112 #include <vm/vm_param.h>
113 #include <vm/vm_kern.h>
114 #include <vm/vm_object.h>
115 #include <vm/vm_page.h>
116 #include <vm/vm_pageout.h>
117 #include <vm/vm_pager.h>
118 #include <vm/vm_extern.h>
119 #include <vm/uma.h>
120 #include <vm/uma_int.h>
121 
122 /*
123  *	Associated with page of user-allocatable memory is a
124  *	page structure.
125  */
126 
127 struct mtx vm_page_queue_mtx;
128 struct mtx vm_page_queue_free_mtx;
129 
130 vm_page_t vm_page_array = 0;
131 int vm_page_array_size = 0;
132 long first_page = 0;
133 int vm_page_zero_count = 0;
134 
135 /*
136  *	vm_set_page_size:
137  *
138  *	Sets the page size, perhaps based upon the memory
139  *	size.  Must be called before any use of page-size
140  *	dependent functions.
141  */
142 void
143 vm_set_page_size(void)
144 {
145 	if (cnt.v_page_size == 0)
146 		cnt.v_page_size = PAGE_SIZE;
147 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
148 		panic("vm_set_page_size: page size not a power of two");
149 }
150 
151 /*
152  *	vm_page_startup:
153  *
154  *	Initializes the resident memory module.
155  *
156  *	Allocates memory for the page cells, and
157  *	for the object/offset-to-page hash table headers.
158  *	Each page cell is initialized and placed on the free list.
159  */
160 vm_offset_t
161 vm_page_startup(vm_offset_t vaddr)
162 {
163 	vm_offset_t mapped;
164 	vm_size_t npages;
165 	vm_paddr_t page_range;
166 	vm_paddr_t new_end;
167 	int i;
168 	vm_paddr_t pa;
169 	int nblocks;
170 	vm_paddr_t last_pa;
171 
172 	/* the biggest memory array is the second group of pages */
173 	vm_paddr_t end;
174 	vm_paddr_t biggestsize;
175 	int biggestone;
176 
177 	vm_paddr_t total;
178 	vm_size_t bootpages;
179 
180 	total = 0;
181 	biggestsize = 0;
182 	biggestone = 0;
183 	nblocks = 0;
184 	vaddr = round_page(vaddr);
185 
186 	for (i = 0; phys_avail[i + 1]; i += 2) {
187 		phys_avail[i] = round_page(phys_avail[i]);
188 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
189 	}
190 
191 	for (i = 0; phys_avail[i + 1]; i += 2) {
192 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
193 
194 		if (size > biggestsize) {
195 			biggestone = i;
196 			biggestsize = size;
197 		}
198 		++nblocks;
199 		total += size;
200 	}
201 
202 	end = phys_avail[biggestone+1];
203 
204 	/*
205 	 * Initialize the locks.
206 	 */
207 	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
208 	    MTX_RECURSE);
209 	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
210 	    MTX_SPIN);
211 
212 	/*
213 	 * Initialize the queue headers for the free queue, the active queue
214 	 * and the inactive queue.
215 	 */
216 	vm_pageq_init();
217 
218 	/*
219 	 * Allocate memory for use when boot strapping the kernel memory
220 	 * allocator.
221 	 */
222 	bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
223 	new_end = end - bootpages;
224 	new_end = trunc_page(new_end);
225 	mapped = pmap_map(&vaddr, new_end, end,
226 	    VM_PROT_READ | VM_PROT_WRITE);
227 	bzero((caddr_t) mapped, end - new_end);
228 	uma_startup((caddr_t)mapped);
229 
230 	/*
231 	 * Compute the number of pages of memory that will be available for
232 	 * use (taking into account the overhead of a page structure per
233 	 * page).
234 	 */
235 	first_page = phys_avail[0] / PAGE_SIZE;
236 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
237 	npages = (total - (page_range * sizeof(struct vm_page)) -
238 	    (end - new_end)) / PAGE_SIZE;
239 	end = new_end;
240 
241 	/*
242 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
243 	 */
244 	vaddr += PAGE_SIZE;
245 
246 	/*
247 	 * Initialize the mem entry structures now, and put them in the free
248 	 * queue.
249 	 */
250 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
251 	mapped = pmap_map(&vaddr, new_end, end,
252 	    VM_PROT_READ | VM_PROT_WRITE);
253 	vm_page_array = (vm_page_t) mapped;
254 	phys_avail[biggestone + 1] = new_end;
255 
256 	/*
257 	 * Clear all of the page structures
258 	 */
259 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
260 	vm_page_array_size = page_range;
261 
262 	/*
263 	 * Construct the free queue(s) in descending order (by physical
264 	 * address) so that the first 16MB of physical memory is allocated
265 	 * last rather than first.  On large-memory machines, this avoids
266 	 * the exhaustion of low physical memory before isa_dmainit has run.
267 	 */
268 	cnt.v_page_count = 0;
269 	cnt.v_free_count = 0;
270 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
271 		pa = phys_avail[i];
272 		last_pa = phys_avail[i + 1];
273 		while (pa < last_pa && npages-- > 0) {
274 			vm_pageq_add_new_page(pa);
275 			pa += PAGE_SIZE;
276 		}
277 	}
278 	return (vaddr);
279 }
280 
281 void
282 vm_page_flag_set(vm_page_t m, unsigned short bits)
283 {
284 
285 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
286 	m->flags |= bits;
287 }
288 
289 void
290 vm_page_flag_clear(vm_page_t m, unsigned short bits)
291 {
292 
293 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
294 	m->flags &= ~bits;
295 }
296 
297 void
298 vm_page_busy(vm_page_t m)
299 {
300 	KASSERT((m->flags & PG_BUSY) == 0,
301 	    ("vm_page_busy: page already busy!!!"));
302 	vm_page_flag_set(m, PG_BUSY);
303 }
304 
305 /*
306  *      vm_page_flash:
307  *
308  *      wakeup anyone waiting for the page.
309  */
310 void
311 vm_page_flash(vm_page_t m)
312 {
313 	if (m->flags & PG_WANTED) {
314 		vm_page_flag_clear(m, PG_WANTED);
315 		wakeup(m);
316 	}
317 }
318 
319 /*
320  *      vm_page_wakeup:
321  *
322  *      clear the PG_BUSY flag and wakeup anyone waiting for the
323  *      page.
324  *
325  */
326 void
327 vm_page_wakeup(vm_page_t m)
328 {
329 	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
330 	vm_page_flag_clear(m, PG_BUSY);
331 	vm_page_flash(m);
332 }
333 
334 void
335 vm_page_io_start(vm_page_t m)
336 {
337 
338 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
339 	m->busy++;
340 }
341 
342 void
343 vm_page_io_finish(vm_page_t m)
344 {
345 
346 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
347 	m->busy--;
348 	if (m->busy == 0)
349 		vm_page_flash(m);
350 }
351 
352 /*
353  * Keep page from being freed by the page daemon
354  * much of the same effect as wiring, except much lower
355  * overhead and should be used only for *very* temporary
356  * holding ("wiring").
357  */
358 void
359 vm_page_hold(vm_page_t mem)
360 {
361 
362 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
363         mem->hold_count++;
364 }
365 
366 void
367 vm_page_unhold(vm_page_t mem)
368 {
369 
370 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
371 	--mem->hold_count;
372 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
373 	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
374 		vm_page_free_toq(mem);
375 }
376 
377 /*
378  *	vm_page_free:
379  *
380  *	Free a page
381  *
382  *	The clearing of PG_ZERO is a temporary safety until the code can be
383  *	reviewed to determine that PG_ZERO is being properly cleared on
384  *	write faults or maps.  PG_ZERO was previously cleared in
385  *	vm_page_alloc().
386  */
387 void
388 vm_page_free(vm_page_t m)
389 {
390 	vm_page_flag_clear(m, PG_ZERO);
391 	vm_page_free_toq(m);
392 	vm_page_zero_idle_wakeup();
393 }
394 
395 /*
396  *	vm_page_free_zero:
397  *
398  *	Free a page to the zerod-pages queue
399  */
400 void
401 vm_page_free_zero(vm_page_t m)
402 {
403 	vm_page_flag_set(m, PG_ZERO);
404 	vm_page_free_toq(m);
405 }
406 
407 /*
408  *	vm_page_sleep_if_busy:
409  *
410  *	Sleep and release the page queues lock if PG_BUSY is set or,
411  *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
412  *	thread slept and the page queues lock was released.
413  *	Otherwise, retains the page queues lock and returns FALSE.
414  */
415 int
416 vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
417 {
418 	vm_object_t object;
419 	int is_object_locked;
420 
421 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
422 	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
423 		vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
424 		/*
425 		 * It's possible that while we sleep, the page will get
426 		 * unbusied and freed.  If we are holding the object
427 		 * lock, we will assume we hold a reference to the object
428 		 * such that even if m->object changes, we can re-lock
429 		 * it.
430 		 *
431 		 * Remove mtx_owned() after vm_object locking is finished.
432 		 */
433 		object = m->object;
434 		if ((is_object_locked = object != NULL &&
435 		     mtx_owned(&object->mtx)))
436 			mtx_unlock(&object->mtx);
437 		msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
438 		if (is_object_locked)
439 			mtx_lock(&object->mtx);
440 		return (TRUE);
441 	}
442 	return (FALSE);
443 }
444 
445 /*
446  *	vm_page_dirty:
447  *
448  *	make page all dirty
449  */
450 void
451 vm_page_dirty(vm_page_t m)
452 {
453 	KASSERT(m->queue - m->pc != PQ_CACHE,
454 	    ("vm_page_dirty: page in cache!"));
455 	KASSERT(m->queue - m->pc != PQ_FREE,
456 	    ("vm_page_dirty: page is free!"));
457 	m->dirty = VM_PAGE_BITS_ALL;
458 }
459 
460 /*
461  *	vm_page_splay:
462  *
463  *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
464  *	the vm_page containing the given pindex.  If, however, that
465  *	pindex is not found in the vm_object, returns a vm_page that is
466  *	adjacent to the pindex, coming before or after it.
467  */
468 vm_page_t
469 vm_page_splay(vm_pindex_t pindex, vm_page_t root)
470 {
471 	struct vm_page dummy;
472 	vm_page_t lefttreemax, righttreemin, y;
473 
474 	if (root == NULL)
475 		return (root);
476 	lefttreemax = righttreemin = &dummy;
477 	for (;; root = y) {
478 		if (pindex < root->pindex) {
479 			if ((y = root->left) == NULL)
480 				break;
481 			if (pindex < y->pindex) {
482 				/* Rotate right. */
483 				root->left = y->right;
484 				y->right = root;
485 				root = y;
486 				if ((y = root->left) == NULL)
487 					break;
488 			}
489 			/* Link into the new root's right tree. */
490 			righttreemin->left = root;
491 			righttreemin = root;
492 		} else if (pindex > root->pindex) {
493 			if ((y = root->right) == NULL)
494 				break;
495 			if (pindex > y->pindex) {
496 				/* Rotate left. */
497 				root->right = y->left;
498 				y->left = root;
499 				root = y;
500 				if ((y = root->right) == NULL)
501 					break;
502 			}
503 			/* Link into the new root's left tree. */
504 			lefttreemax->right = root;
505 			lefttreemax = root;
506 		} else
507 			break;
508 	}
509 	/* Assemble the new root. */
510 	lefttreemax->right = root->left;
511 	righttreemin->left = root->right;
512 	root->left = dummy.right;
513 	root->right = dummy.left;
514 	return (root);
515 }
516 
517 /*
518  *	vm_page_insert:		[ internal use only ]
519  *
520  *	Inserts the given mem entry into the object and object list.
521  *
522  *	The pagetables are not updated but will presumably fault the page
523  *	in if necessary, or if a kernel page the caller will at some point
524  *	enter the page into the kernel's pmap.  We are not allowed to block
525  *	here so we *can't* do this anyway.
526  *
527  *	The object and page must be locked.
528  *	This routine may not block.
529  */
530 void
531 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
532 {
533 	vm_page_t root;
534 
535 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
536 	if (m->object != NULL)
537 		panic("vm_page_insert: page already inserted");
538 
539 	/*
540 	 * Record the object/offset pair in this page
541 	 */
542 	m->object = object;
543 	m->pindex = pindex;
544 
545 	/*
546 	 * Now link into the object's ordered list of backed pages.
547 	 */
548 	root = object->root;
549 	if (root == NULL) {
550 		m->left = NULL;
551 		m->right = NULL;
552 		TAILQ_INSERT_TAIL(&object->memq, m, listq);
553 	} else {
554 		root = vm_page_splay(pindex, root);
555 		if (pindex < root->pindex) {
556 			m->left = root->left;
557 			m->right = root;
558 			root->left = NULL;
559 			TAILQ_INSERT_BEFORE(root, m, listq);
560 		} else if (pindex == root->pindex)
561 			panic("vm_page_insert: offset already allocated");
562 		else {
563 			m->right = root->right;
564 			m->left = root;
565 			root->right = NULL;
566 			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
567 		}
568 	}
569 	object->root = m;
570 	object->generation++;
571 
572 	/*
573 	 * show that the object has one more resident page.
574 	 */
575 	object->resident_page_count++;
576 
577 	/*
578 	 * Since we are inserting a new and possibly dirty page,
579 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
580 	 */
581 	if (m->flags & PG_WRITEABLE)
582 		vm_object_set_writeable_dirty(object);
583 }
584 
585 /*
586  *	vm_page_remove:
587  *				NOTE: used by device pager as well -wfj
588  *
589  *	Removes the given mem entry from the object/offset-page
590  *	table and the object page list, but do not invalidate/terminate
591  *	the backing store.
592  *
593  *	The object and page must be locked.
594  *	The underlying pmap entry (if any) is NOT removed here.
595  *	This routine may not block.
596  */
597 void
598 vm_page_remove(vm_page_t m)
599 {
600 	vm_object_t object;
601 	vm_page_t root;
602 
603 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
604 	if (m->object == NULL)
605 		return;
606 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
607 	if ((m->flags & PG_BUSY) == 0) {
608 		panic("vm_page_remove: page not busy");
609 	}
610 
611 	/*
612 	 * Basically destroy the page.
613 	 */
614 	vm_page_wakeup(m);
615 
616 	object = m->object;
617 
618 	/*
619 	 * Now remove from the object's list of backed pages.
620 	 */
621 	if (m != object->root)
622 		vm_page_splay(m->pindex, object->root);
623 	if (m->left == NULL)
624 		root = m->right;
625 	else {
626 		root = vm_page_splay(m->pindex, m->left);
627 		root->right = m->right;
628 	}
629 	object->root = root;
630 	TAILQ_REMOVE(&object->memq, m, listq);
631 
632 	/*
633 	 * And show that the object has one fewer resident page.
634 	 */
635 	object->resident_page_count--;
636 	object->generation++;
637 
638 	m->object = NULL;
639 }
640 
641 /*
642  *	vm_page_lookup:
643  *
644  *	Returns the page associated with the object/offset
645  *	pair specified; if none is found, NULL is returned.
646  *
647  *	The object must be locked.
648  *	This routine may not block.
649  *	This is a critical path routine
650  */
651 vm_page_t
652 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
653 {
654 	vm_page_t m;
655 
656 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
657 	if ((m = object->root) != NULL && m->pindex != pindex) {
658 		m = vm_page_splay(pindex, m);
659 		if ((object->root = m)->pindex != pindex)
660 			m = NULL;
661 	}
662 	return (m);
663 }
664 
665 /*
666  *	vm_page_rename:
667  *
668  *	Move the given memory entry from its
669  *	current object to the specified target object/offset.
670  *
671  *	The object must be locked.
672  *	This routine may not block.
673  *
674  *	Note: swap associated with the page must be invalidated by the move.  We
675  *	      have to do this for several reasons:  (1) we aren't freeing the
676  *	      page, (2) we are dirtying the page, (3) the VM system is probably
677  *	      moving the page from object A to B, and will then later move
678  *	      the backing store from A to B and we can't have a conflict.
679  *
680  *	Note: we *always* dirty the page.  It is necessary both for the
681  *	      fact that we moved it, and because we may be invalidating
682  *	      swap.  If the page is on the cache, we have to deactivate it
683  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
684  *	      on the cache.
685  */
686 void
687 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
688 {
689 
690 	vm_page_remove(m);
691 	vm_page_insert(m, new_object, new_pindex);
692 	if (m->queue - m->pc == PQ_CACHE)
693 		vm_page_deactivate(m);
694 	vm_page_dirty(m);
695 }
696 
697 /*
698  *	vm_page_select_cache:
699  *
700  *	Find a page on the cache queue with color optimization.  As pages
701  *	might be found, but not applicable, they are deactivated.  This
702  *	keeps us from using potentially busy cached pages.
703  *
704  *	This routine may not block.
705  */
706 vm_page_t
707 vm_page_select_cache(int color)
708 {
709 	vm_page_t m;
710 
711 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
712 	while ((m = vm_pageq_find(PQ_CACHE, color, FALSE)) != NULL) {
713 		if ((m->flags & PG_BUSY) == 0 && m->busy == 0 &&
714 		    m->hold_count == 0 && (VM_OBJECT_TRYLOCK(m->object) ||
715 		    VM_OBJECT_LOCKED(m->object))) {
716 			KASSERT(m->dirty == 0,
717 			    ("Found dirty cache page %p", m));
718 			KASSERT(!pmap_page_is_mapped(m),
719 			    ("Found mapped cache page %p", m));
720 			KASSERT((m->flags & PG_UNMANAGED) == 0,
721 			    ("Found unmanaged cache page %p", m));
722 			KASSERT(m->wire_count == 0,
723 			    ("Found wired cache page %p", m));
724 			break;
725 		}
726 		vm_page_deactivate(m);
727 	}
728 	return (m);
729 }
730 
731 /*
732  *	vm_page_alloc:
733  *
734  *	Allocate and return a memory cell associated
735  *	with this VM object/offset pair.
736  *
737  *	page_req classes:
738  *	VM_ALLOC_NORMAL		normal process request
739  *	VM_ALLOC_SYSTEM		system *really* needs a page
740  *	VM_ALLOC_INTERRUPT	interrupt time request
741  *	VM_ALLOC_ZERO		zero page
742  *
743  *	This routine may not block.
744  *
745  *	Additional special handling is required when called from an
746  *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
747  *	the page cache in this case.
748  */
749 vm_page_t
750 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
751 {
752 	vm_object_t m_object;
753 	vm_page_t m = NULL;
754 	int color, flags, page_req;
755 
756 	page_req = req & VM_ALLOC_CLASS_MASK;
757 
758 	if ((req & VM_ALLOC_NOOBJ) == 0) {
759 		KASSERT(object != NULL,
760 		    ("vm_page_alloc: NULL object."));
761 		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
762 		color = (pindex + object->pg_color) & PQ_L2_MASK;
763 	} else
764 		color = pindex & PQ_L2_MASK;
765 
766 	/*
767 	 * The pager is allowed to eat deeper into the free page list.
768 	 */
769 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
770 		page_req = VM_ALLOC_SYSTEM;
771 	};
772 
773 loop:
774 	mtx_lock_spin(&vm_page_queue_free_mtx);
775 	if (cnt.v_free_count > cnt.v_free_reserved ||
776 	    (page_req == VM_ALLOC_SYSTEM &&
777 	     cnt.v_cache_count == 0 &&
778 	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
779 	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
780 		/*
781 		 * Allocate from the free queue if the number of free pages
782 		 * exceeds the minimum for the request class.
783 		 */
784 		m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
785 	} else if (page_req != VM_ALLOC_INTERRUPT) {
786 		mtx_unlock_spin(&vm_page_queue_free_mtx);
787 		/*
788 		 * Allocatable from cache (non-interrupt only).  On success,
789 		 * we must free the page and try again, thus ensuring that
790 		 * cnt.v_*_free_min counters are replenished.
791 		 */
792 		vm_page_lock_queues();
793 		if ((m = vm_page_select_cache(color)) == NULL) {
794 #if defined(DIAGNOSTIC)
795 			if (cnt.v_cache_count > 0)
796 				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
797 #endif
798 			vm_page_unlock_queues();
799 			atomic_add_int(&vm_pageout_deficit, 1);
800 			pagedaemon_wakeup();
801 			return (NULL);
802 		}
803 		m_object = m->object;
804 		VM_OBJECT_LOCK_ASSERT(m_object, MA_OWNED);
805 		vm_page_busy(m);
806 		vm_page_free(m);
807 		vm_page_unlock_queues();
808 		if (m_object != object)
809 			VM_OBJECT_UNLOCK(m_object);
810 		goto loop;
811 	} else {
812 		/*
813 		 * Not allocatable from cache from interrupt, give up.
814 		 */
815 		mtx_unlock_spin(&vm_page_queue_free_mtx);
816 		atomic_add_int(&vm_pageout_deficit, 1);
817 		pagedaemon_wakeup();
818 		return (NULL);
819 	}
820 
821 	/*
822 	 *  At this point we had better have found a good page.
823 	 */
824 
825 	KASSERT(
826 	    m != NULL,
827 	    ("vm_page_alloc(): missing page on free queue")
828 	);
829 
830 	/*
831 	 * Remove from free queue
832 	 */
833 	vm_pageq_remove_nowakeup(m);
834 
835 	/*
836 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
837 	 */
838 	flags = PG_BUSY;
839 	if (m->flags & PG_ZERO) {
840 		vm_page_zero_count--;
841 		if (req & VM_ALLOC_ZERO)
842 			flags = PG_ZERO | PG_BUSY;
843 	}
844 	if (req & VM_ALLOC_NOOBJ)
845 		flags &= ~PG_BUSY;
846 	m->flags = flags;
847 	if (req & VM_ALLOC_WIRED) {
848 		atomic_add_int(&cnt.v_wire_count, 1);
849 		m->wire_count = 1;
850 	} else
851 		m->wire_count = 0;
852 	m->hold_count = 0;
853 	m->act_count = 0;
854 	m->busy = 0;
855 	m->valid = 0;
856 	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
857 	mtx_unlock_spin(&vm_page_queue_free_mtx);
858 
859 	if ((req & VM_ALLOC_NOOBJ) == 0)
860 		vm_page_insert(m, object, pindex);
861 	else
862 		m->pindex = pindex;
863 
864 	/*
865 	 * Don't wakeup too often - wakeup the pageout daemon when
866 	 * we would be nearly out of memory.
867 	 */
868 	if (vm_paging_needed())
869 		pagedaemon_wakeup();
870 
871 	return (m);
872 }
873 
874 /*
875  *	vm_wait:	(also see VM_WAIT macro)
876  *
877  *	Block until free pages are available for allocation
878  *	- Called in various places before memory allocations.
879  */
880 void
881 vm_wait(void)
882 {
883 
884 	vm_page_lock_queues();
885 	if (curproc == pageproc) {
886 		vm_pageout_pages_needed = 1;
887 		msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx,
888 		    PDROP | PSWP, "VMWait", 0);
889 	} else {
890 		if (!vm_pages_needed) {
891 			vm_pages_needed = 1;
892 			wakeup(&vm_pages_needed);
893 		}
894 		msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM,
895 		    "vmwait", 0);
896 	}
897 }
898 
899 /*
900  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
901  *
902  *	Block until free pages are available for allocation
903  *	- Called only in vm_fault so that processes page faulting
904  *	  can be easily tracked.
905  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
906  *	  processes will be able to grab memory first.  Do not change
907  *	  this balance without careful testing first.
908  */
909 void
910 vm_waitpfault(void)
911 {
912 
913 	vm_page_lock_queues();
914 	if (!vm_pages_needed) {
915 		vm_pages_needed = 1;
916 		wakeup(&vm_pages_needed);
917 	}
918 	msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER,
919 	    "pfault", 0);
920 }
921 
922 /*
923  *	vm_page_activate:
924  *
925  *	Put the specified page on the active list (if appropriate).
926  *	Ensure that act_count is at least ACT_INIT but do not otherwise
927  *	mess with it.
928  *
929  *	The page queues must be locked.
930  *	This routine may not block.
931  */
932 void
933 vm_page_activate(vm_page_t m)
934 {
935 
936 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
937 	if (m->queue != PQ_ACTIVE) {
938 		if ((m->queue - m->pc) == PQ_CACHE)
939 			cnt.v_reactivated++;
940 		vm_pageq_remove(m);
941 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
942 			if (m->act_count < ACT_INIT)
943 				m->act_count = ACT_INIT;
944 			vm_pageq_enqueue(PQ_ACTIVE, m);
945 		}
946 	} else {
947 		if (m->act_count < ACT_INIT)
948 			m->act_count = ACT_INIT;
949 	}
950 }
951 
952 /*
953  *	vm_page_free_wakeup:
954  *
955  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
956  *	routine is called when a page has been added to the cache or free
957  *	queues.
958  *
959  *	The page queues must be locked.
960  *	This routine may not block.
961  */
962 static __inline void
963 vm_page_free_wakeup(void)
964 {
965 
966 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
967 	/*
968 	 * if pageout daemon needs pages, then tell it that there are
969 	 * some free.
970 	 */
971 	if (vm_pageout_pages_needed &&
972 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
973 		wakeup(&vm_pageout_pages_needed);
974 		vm_pageout_pages_needed = 0;
975 	}
976 	/*
977 	 * wakeup processes that are waiting on memory if we hit a
978 	 * high water mark. And wakeup scheduler process if we have
979 	 * lots of memory. this process will swapin processes.
980 	 */
981 	if (vm_pages_needed && !vm_page_count_min()) {
982 		vm_pages_needed = 0;
983 		wakeup(&cnt.v_free_count);
984 	}
985 }
986 
987 /*
988  *	vm_page_free_toq:
989  *
990  *	Returns the given page to the PQ_FREE list,
991  *	disassociating it with any VM object.
992  *
993  *	Object and page must be locked prior to entry.
994  *	This routine may not block.
995  */
996 
997 void
998 vm_page_free_toq(vm_page_t m)
999 {
1000 	struct vpgqueues *pq;
1001 	vm_object_t object = m->object;
1002 
1003 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1004 	cnt.v_tfree++;
1005 
1006 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1007 		printf(
1008 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1009 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1010 		    m->hold_count);
1011 		if ((m->queue - m->pc) == PQ_FREE)
1012 			panic("vm_page_free: freeing free page");
1013 		else
1014 			panic("vm_page_free: freeing busy page");
1015 	}
1016 
1017 	/*
1018 	 * unqueue, then remove page.  Note that we cannot destroy
1019 	 * the page here because we do not want to call the pager's
1020 	 * callback routine until after we've put the page on the
1021 	 * appropriate free queue.
1022 	 */
1023 	vm_pageq_remove_nowakeup(m);
1024 	vm_page_remove(m);
1025 
1026 	/*
1027 	 * If fictitious remove object association and
1028 	 * return, otherwise delay object association removal.
1029 	 */
1030 	if ((m->flags & PG_FICTITIOUS) != 0) {
1031 		return;
1032 	}
1033 
1034 	m->valid = 0;
1035 	vm_page_undirty(m);
1036 
1037 	if (m->wire_count != 0) {
1038 		if (m->wire_count > 1) {
1039 			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1040 				m->wire_count, (long)m->pindex);
1041 		}
1042 		panic("vm_page_free: freeing wired page");
1043 	}
1044 
1045 	/*
1046 	 * If we've exhausted the object's resident pages we want to free
1047 	 * it up.
1048 	 */
1049 	if (object &&
1050 	    (object->type == OBJT_VNODE) &&
1051 	    ((object->flags & OBJ_DEAD) == 0)
1052 	) {
1053 		struct vnode *vp = (struct vnode *)object->handle;
1054 
1055 		if (vp) {
1056 			VI_LOCK(vp);
1057 			if (VSHOULDFREE(vp))
1058 				vfree(vp);
1059 			VI_UNLOCK(vp);
1060 		}
1061 	}
1062 
1063 	/*
1064 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1065 	 */
1066 	if (m->flags & PG_UNMANAGED) {
1067 		m->flags &= ~PG_UNMANAGED;
1068 	}
1069 
1070 	if (m->hold_count != 0) {
1071 		m->flags &= ~PG_ZERO;
1072 		m->queue = PQ_HOLD;
1073 	} else
1074 		m->queue = PQ_FREE + m->pc;
1075 	pq = &vm_page_queues[m->queue];
1076 	mtx_lock_spin(&vm_page_queue_free_mtx);
1077 	pq->lcnt++;
1078 	++(*pq->cnt);
1079 
1080 	/*
1081 	 * Put zero'd pages on the end ( where we look for zero'd pages
1082 	 * first ) and non-zerod pages at the head.
1083 	 */
1084 	if (m->flags & PG_ZERO) {
1085 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1086 		++vm_page_zero_count;
1087 	} else {
1088 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1089 	}
1090 	mtx_unlock_spin(&vm_page_queue_free_mtx);
1091 	vm_page_free_wakeup();
1092 }
1093 
1094 /*
1095  *	vm_page_unmanage:
1096  *
1097  * 	Prevent PV management from being done on the page.  The page is
1098  *	removed from the paging queues as if it were wired, and as a
1099  *	consequence of no longer being managed the pageout daemon will not
1100  *	touch it (since there is no way to locate the pte mappings for the
1101  *	page).  madvise() calls that mess with the pmap will also no longer
1102  *	operate on the page.
1103  *
1104  *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1105  *	will clear the flag.
1106  *
1107  *	This routine is used by OBJT_PHYS objects - objects using unswappable
1108  *	physical memory as backing store rather then swap-backed memory and
1109  *	will eventually be extended to support 4MB unmanaged physical
1110  *	mappings.
1111  */
1112 void
1113 vm_page_unmanage(vm_page_t m)
1114 {
1115 
1116 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1117 	if ((m->flags & PG_UNMANAGED) == 0) {
1118 		if (m->wire_count == 0)
1119 			vm_pageq_remove(m);
1120 	}
1121 	vm_page_flag_set(m, PG_UNMANAGED);
1122 }
1123 
1124 /*
1125  *	vm_page_wire:
1126  *
1127  *	Mark this page as wired down by yet
1128  *	another map, removing it from paging queues
1129  *	as necessary.
1130  *
1131  *	The page queues must be locked.
1132  *	This routine may not block.
1133  */
1134 void
1135 vm_page_wire(vm_page_t m)
1136 {
1137 
1138 	/*
1139 	 * Only bump the wire statistics if the page is not already wired,
1140 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1141 	 * it is already off the queues).
1142 	 */
1143 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1144 	if (m->flags & PG_FICTITIOUS)
1145 		return;
1146 	if (m->wire_count == 0) {
1147 		if ((m->flags & PG_UNMANAGED) == 0)
1148 			vm_pageq_remove(m);
1149 		atomic_add_int(&cnt.v_wire_count, 1);
1150 	}
1151 	m->wire_count++;
1152 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1153 }
1154 
1155 /*
1156  *	vm_page_unwire:
1157  *
1158  *	Release one wiring of this page, potentially
1159  *	enabling it to be paged again.
1160  *
1161  *	Many pages placed on the inactive queue should actually go
1162  *	into the cache, but it is difficult to figure out which.  What
1163  *	we do instead, if the inactive target is well met, is to put
1164  *	clean pages at the head of the inactive queue instead of the tail.
1165  *	This will cause them to be moved to the cache more quickly and
1166  *	if not actively re-referenced, freed more quickly.  If we just
1167  *	stick these pages at the end of the inactive queue, heavy filesystem
1168  *	meta-data accesses can cause an unnecessary paging load on memory bound
1169  *	processes.  This optimization causes one-time-use metadata to be
1170  *	reused more quickly.
1171  *
1172  *	BUT, if we are in a low-memory situation we have no choice but to
1173  *	put clean pages on the cache queue.
1174  *
1175  *	A number of routines use vm_page_unwire() to guarantee that the page
1176  *	will go into either the inactive or active queues, and will NEVER
1177  *	be placed in the cache - for example, just after dirtying a page.
1178  *	dirty pages in the cache are not allowed.
1179  *
1180  *	The page queues must be locked.
1181  *	This routine may not block.
1182  */
1183 void
1184 vm_page_unwire(vm_page_t m, int activate)
1185 {
1186 
1187 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1188 	if (m->flags & PG_FICTITIOUS)
1189 		return;
1190 	if (m->wire_count > 0) {
1191 		m->wire_count--;
1192 		if (m->wire_count == 0) {
1193 			atomic_subtract_int(&cnt.v_wire_count, 1);
1194 			if (m->flags & PG_UNMANAGED) {
1195 				;
1196 			} else if (activate)
1197 				vm_pageq_enqueue(PQ_ACTIVE, m);
1198 			else {
1199 				vm_page_flag_clear(m, PG_WINATCFLS);
1200 				vm_pageq_enqueue(PQ_INACTIVE, m);
1201 			}
1202 		}
1203 	} else {
1204 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1205 	}
1206 }
1207 
1208 
1209 /*
1210  * Move the specified page to the inactive queue.  If the page has
1211  * any associated swap, the swap is deallocated.
1212  *
1213  * Normally athead is 0 resulting in LRU operation.  athead is set
1214  * to 1 if we want this page to be 'as if it were placed in the cache',
1215  * except without unmapping it from the process address space.
1216  *
1217  * This routine may not block.
1218  */
1219 static __inline void
1220 _vm_page_deactivate(vm_page_t m, int athead)
1221 {
1222 
1223 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1224 
1225 	/*
1226 	 * Ignore if already inactive.
1227 	 */
1228 	if (m->queue == PQ_INACTIVE)
1229 		return;
1230 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1231 		if ((m->queue - m->pc) == PQ_CACHE)
1232 			cnt.v_reactivated++;
1233 		vm_page_flag_clear(m, PG_WINATCFLS);
1234 		vm_pageq_remove(m);
1235 		if (athead)
1236 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1237 		else
1238 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1239 		m->queue = PQ_INACTIVE;
1240 		vm_page_queues[PQ_INACTIVE].lcnt++;
1241 		cnt.v_inactive_count++;
1242 	}
1243 }
1244 
1245 void
1246 vm_page_deactivate(vm_page_t m)
1247 {
1248     _vm_page_deactivate(m, 0);
1249 }
1250 
1251 /*
1252  * vm_page_try_to_cache:
1253  *
1254  * Returns 0 on failure, 1 on success
1255  */
1256 int
1257 vm_page_try_to_cache(vm_page_t m)
1258 {
1259 
1260 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1261 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1262 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1263 		return (0);
1264 	}
1265 	pmap_remove_all(m);
1266 	if (m->dirty)
1267 		return (0);
1268 	vm_page_cache(m);
1269 	return (1);
1270 }
1271 
1272 /*
1273  * vm_page_try_to_free()
1274  *
1275  *	Attempt to free the page.  If we cannot free it, we do nothing.
1276  *	1 is returned on success, 0 on failure.
1277  */
1278 int
1279 vm_page_try_to_free(vm_page_t m)
1280 {
1281 
1282 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1283 	if (m->object != NULL)
1284 		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1285 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1286 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1287 		return (0);
1288 	}
1289 	pmap_remove_all(m);
1290 	if (m->dirty)
1291 		return (0);
1292 	vm_page_busy(m);
1293 	vm_page_free(m);
1294 	return (1);
1295 }
1296 
1297 /*
1298  * vm_page_cache
1299  *
1300  * Put the specified page onto the page cache queue (if appropriate).
1301  *
1302  * This routine may not block.
1303  */
1304 void
1305 vm_page_cache(vm_page_t m)
1306 {
1307 
1308 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1309 	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1310 	    m->hold_count || m->wire_count) {
1311 		printf("vm_page_cache: attempting to cache busy page\n");
1312 		return;
1313 	}
1314 	if ((m->queue - m->pc) == PQ_CACHE)
1315 		return;
1316 
1317 	/*
1318 	 * Remove all pmaps and indicate that the page is not
1319 	 * writeable or mapped.
1320 	 */
1321 	pmap_remove_all(m);
1322 	if (m->dirty != 0) {
1323 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1324 			(long)m->pindex);
1325 	}
1326 	vm_pageq_remove_nowakeup(m);
1327 	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1328 	vm_page_free_wakeup();
1329 }
1330 
1331 /*
1332  * vm_page_dontneed
1333  *
1334  *	Cache, deactivate, or do nothing as appropriate.  This routine
1335  *	is typically used by madvise() MADV_DONTNEED.
1336  *
1337  *	Generally speaking we want to move the page into the cache so
1338  *	it gets reused quickly.  However, this can result in a silly syndrome
1339  *	due to the page recycling too quickly.  Small objects will not be
1340  *	fully cached.  On the otherhand, if we move the page to the inactive
1341  *	queue we wind up with a problem whereby very large objects
1342  *	unnecessarily blow away our inactive and cache queues.
1343  *
1344  *	The solution is to move the pages based on a fixed weighting.  We
1345  *	either leave them alone, deactivate them, or move them to the cache,
1346  *	where moving them to the cache has the highest weighting.
1347  *	By forcing some pages into other queues we eventually force the
1348  *	system to balance the queues, potentially recovering other unrelated
1349  *	space from active.  The idea is to not force this to happen too
1350  *	often.
1351  */
1352 void
1353 vm_page_dontneed(vm_page_t m)
1354 {
1355 	static int dnweight;
1356 	int dnw;
1357 	int head;
1358 
1359 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1360 	dnw = ++dnweight;
1361 
1362 	/*
1363 	 * occassionally leave the page alone
1364 	 */
1365 	if ((dnw & 0x01F0) == 0 ||
1366 	    m->queue == PQ_INACTIVE ||
1367 	    m->queue - m->pc == PQ_CACHE
1368 	) {
1369 		if (m->act_count >= ACT_INIT)
1370 			--m->act_count;
1371 		return;
1372 	}
1373 
1374 	if (m->dirty == 0 && pmap_is_modified(m))
1375 		vm_page_dirty(m);
1376 
1377 	if (m->dirty || (dnw & 0x0070) == 0) {
1378 		/*
1379 		 * Deactivate the page 3 times out of 32.
1380 		 */
1381 		head = 0;
1382 	} else {
1383 		/*
1384 		 * Cache the page 28 times out of every 32.  Note that
1385 		 * the page is deactivated instead of cached, but placed
1386 		 * at the head of the queue instead of the tail.
1387 		 */
1388 		head = 1;
1389 	}
1390 	_vm_page_deactivate(m, head);
1391 }
1392 
1393 /*
1394  * Grab a page, waiting until we are waken up due to the page
1395  * changing state.  We keep on waiting, if the page continues
1396  * to be in the object.  If the page doesn't exist, first allocate it
1397  * and then conditionally zero it.
1398  *
1399  * This routine may block.
1400  */
1401 vm_page_t
1402 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1403 {
1404 	vm_page_t m;
1405 
1406 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1407 retrylookup:
1408 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1409 		vm_page_lock_queues();
1410 		if (m->busy || (m->flags & PG_BUSY)) {
1411 			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1412 			VM_OBJECT_UNLOCK(object);
1413 			msleep(m, &vm_page_queue_mtx, PDROP | PVM, "pgrbwt", 0);
1414 			VM_OBJECT_LOCK(object);
1415 			if ((allocflags & VM_ALLOC_RETRY) == 0)
1416 				return (NULL);
1417 			goto retrylookup;
1418 		} else {
1419 			if (allocflags & VM_ALLOC_WIRED)
1420 				vm_page_wire(m);
1421 			vm_page_busy(m);
1422 			vm_page_unlock_queues();
1423 			return (m);
1424 		}
1425 	}
1426 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1427 	if (m == NULL) {
1428 		VM_OBJECT_UNLOCK(object);
1429 		VM_WAIT;
1430 		VM_OBJECT_LOCK(object);
1431 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1432 			return (NULL);
1433 		goto retrylookup;
1434 	}
1435 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1436 		pmap_zero_page(m);
1437 	return (m);
1438 }
1439 
1440 /*
1441  * Mapping function for valid bits or for dirty bits in
1442  * a page.  May not block.
1443  *
1444  * Inputs are required to range within a page.
1445  */
1446 __inline int
1447 vm_page_bits(int base, int size)
1448 {
1449 	int first_bit;
1450 	int last_bit;
1451 
1452 	KASSERT(
1453 	    base + size <= PAGE_SIZE,
1454 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1455 	);
1456 
1457 	if (size == 0)		/* handle degenerate case */
1458 		return (0);
1459 
1460 	first_bit = base >> DEV_BSHIFT;
1461 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1462 
1463 	return ((2 << last_bit) - (1 << first_bit));
1464 }
1465 
1466 /*
1467  *	vm_page_set_validclean:
1468  *
1469  *	Sets portions of a page valid and clean.  The arguments are expected
1470  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1471  *	of any partial chunks touched by the range.  The invalid portion of
1472  *	such chunks will be zero'd.
1473  *
1474  *	This routine may not block.
1475  *
1476  *	(base + size) must be less then or equal to PAGE_SIZE.
1477  */
1478 void
1479 vm_page_set_validclean(vm_page_t m, int base, int size)
1480 {
1481 	int pagebits;
1482 	int frag;
1483 	int endoff;
1484 
1485 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1486 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1487 	if (size == 0)	/* handle degenerate case */
1488 		return;
1489 
1490 	/*
1491 	 * If the base is not DEV_BSIZE aligned and the valid
1492 	 * bit is clear, we have to zero out a portion of the
1493 	 * first block.
1494 	 */
1495 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1496 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1497 		pmap_zero_page_area(m, frag, base - frag);
1498 
1499 	/*
1500 	 * If the ending offset is not DEV_BSIZE aligned and the
1501 	 * valid bit is clear, we have to zero out a portion of
1502 	 * the last block.
1503 	 */
1504 	endoff = base + size;
1505 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1506 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1507 		pmap_zero_page_area(m, endoff,
1508 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1509 
1510 	/*
1511 	 * Set valid, clear dirty bits.  If validating the entire
1512 	 * page we can safely clear the pmap modify bit.  We also
1513 	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1514 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1515 	 * be set again.
1516 	 *
1517 	 * We set valid bits inclusive of any overlap, but we can only
1518 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1519 	 * the range.
1520 	 */
1521 	pagebits = vm_page_bits(base, size);
1522 	m->valid |= pagebits;
1523 #if 0	/* NOT YET */
1524 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1525 		frag = DEV_BSIZE - frag;
1526 		base += frag;
1527 		size -= frag;
1528 		if (size < 0)
1529 			size = 0;
1530 	}
1531 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1532 #endif
1533 	m->dirty &= ~pagebits;
1534 	if (base == 0 && size == PAGE_SIZE) {
1535 		pmap_clear_modify(m);
1536 		vm_page_flag_clear(m, PG_NOSYNC);
1537 	}
1538 }
1539 
1540 void
1541 vm_page_clear_dirty(vm_page_t m, int base, int size)
1542 {
1543 
1544 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1545 	m->dirty &= ~vm_page_bits(base, size);
1546 }
1547 
1548 /*
1549  *	vm_page_set_invalid:
1550  *
1551  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1552  *	valid and dirty bits for the effected areas are cleared.
1553  *
1554  *	May not block.
1555  */
1556 void
1557 vm_page_set_invalid(vm_page_t m, int base, int size)
1558 {
1559 	int bits;
1560 
1561 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1562 	bits = vm_page_bits(base, size);
1563 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1564 	m->valid &= ~bits;
1565 	m->dirty &= ~bits;
1566 	m->object->generation++;
1567 }
1568 
1569 /*
1570  * vm_page_zero_invalid()
1571  *
1572  *	The kernel assumes that the invalid portions of a page contain
1573  *	garbage, but such pages can be mapped into memory by user code.
1574  *	When this occurs, we must zero out the non-valid portions of the
1575  *	page so user code sees what it expects.
1576  *
1577  *	Pages are most often semi-valid when the end of a file is mapped
1578  *	into memory and the file's size is not page aligned.
1579  */
1580 void
1581 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1582 {
1583 	int b;
1584 	int i;
1585 
1586 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1587 	/*
1588 	 * Scan the valid bits looking for invalid sections that
1589 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1590 	 * valid bit may be set ) have already been zerod by
1591 	 * vm_page_set_validclean().
1592 	 */
1593 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1594 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1595 		    (m->valid & (1 << i))
1596 		) {
1597 			if (i > b) {
1598 				pmap_zero_page_area(m,
1599 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1600 			}
1601 			b = i + 1;
1602 		}
1603 	}
1604 
1605 	/*
1606 	 * setvalid is TRUE when we can safely set the zero'd areas
1607 	 * as being valid.  We can do this if there are no cache consistancy
1608 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1609 	 */
1610 	if (setvalid)
1611 		m->valid = VM_PAGE_BITS_ALL;
1612 }
1613 
1614 /*
1615  *	vm_page_is_valid:
1616  *
1617  *	Is (partial) page valid?  Note that the case where size == 0
1618  *	will return FALSE in the degenerate case where the page is
1619  *	entirely invalid, and TRUE otherwise.
1620  *
1621  *	May not block.
1622  */
1623 int
1624 vm_page_is_valid(vm_page_t m, int base, int size)
1625 {
1626 	int bits = vm_page_bits(base, size);
1627 
1628 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1629 	if (m->valid && ((m->valid & bits) == bits))
1630 		return 1;
1631 	else
1632 		return 0;
1633 }
1634 
1635 /*
1636  * update dirty bits from pmap/mmu.  May not block.
1637  */
1638 void
1639 vm_page_test_dirty(vm_page_t m)
1640 {
1641 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1642 		vm_page_dirty(m);
1643 	}
1644 }
1645 
1646 int so_zerocp_fullpage = 0;
1647 
1648 void
1649 vm_page_cowfault(vm_page_t m)
1650 {
1651 	vm_page_t mnew;
1652 	vm_object_t object;
1653 	vm_pindex_t pindex;
1654 
1655 	object = m->object;
1656 	pindex = m->pindex;
1657 	vm_page_busy(m);
1658 
1659  retry_alloc:
1660 	vm_page_remove(m);
1661 	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
1662 	if (mnew == NULL) {
1663 		vm_page_insert(m, object, pindex);
1664 		vm_page_unlock_queues();
1665 		VM_OBJECT_UNLOCK(object);
1666 		VM_WAIT;
1667 		VM_OBJECT_LOCK(object);
1668 		vm_page_lock_queues();
1669 		goto retry_alloc;
1670 	}
1671 
1672 	if (m->cow == 0) {
1673 		/*
1674 		 * check to see if we raced with an xmit complete when
1675 		 * waiting to allocate a page.  If so, put things back
1676 		 * the way they were
1677 		 */
1678 		vm_page_busy(mnew);
1679 		vm_page_free(mnew);
1680 		vm_page_insert(m, object, pindex);
1681 	} else { /* clear COW & copy page */
1682 		if (!so_zerocp_fullpage)
1683 			pmap_copy_page(m, mnew);
1684 		mnew->valid = VM_PAGE_BITS_ALL;
1685 		vm_page_dirty(mnew);
1686 		vm_page_flag_clear(mnew, PG_BUSY);
1687 	}
1688 }
1689 
1690 void
1691 vm_page_cowclear(vm_page_t m)
1692 {
1693 
1694 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1695 	if (m->cow) {
1696 		m->cow--;
1697 		/*
1698 		 * let vm_fault add back write permission  lazily
1699 		 */
1700 	}
1701 	/*
1702 	 *  sf_buf_free() will free the page, so we needn't do it here
1703 	 */
1704 }
1705 
1706 void
1707 vm_page_cowsetup(vm_page_t m)
1708 {
1709 
1710 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1711 	m->cow++;
1712 	pmap_page_protect(m, VM_PROT_READ);
1713 }
1714 
1715 #include "opt_ddb.h"
1716 #ifdef DDB
1717 #include <sys/kernel.h>
1718 
1719 #include <ddb/ddb.h>
1720 
1721 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1722 {
1723 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1724 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1725 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1726 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1727 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1728 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1729 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1730 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1731 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1732 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1733 }
1734 
1735 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1736 {
1737 	int i;
1738 	db_printf("PQ_FREE:");
1739 	for (i = 0; i < PQ_L2_SIZE; i++) {
1740 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1741 	}
1742 	db_printf("\n");
1743 
1744 	db_printf("PQ_CACHE:");
1745 	for (i = 0; i < PQ_L2_SIZE; i++) {
1746 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1747 	}
1748 	db_printf("\n");
1749 
1750 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1751 		vm_page_queues[PQ_ACTIVE].lcnt,
1752 		vm_page_queues[PQ_INACTIVE].lcnt);
1753 }
1754 #endif /* DDB */
1755