xref: /freebsd/sys/vm/vm_page.c (revision 23f282aa31e9b6fceacd449020e936e98d6f2298)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37  * $FreeBSD$
38  */
39 
40 /*
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  */
66 
67 /*
68  *	Resident memory management module.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/malloc.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/vnode.h>
77 
78 #include <vm/vm.h>
79 #include <vm/vm_param.h>
80 #include <sys/lock.h>
81 #include <vm/vm_kern.h>
82 #include <vm/vm_object.h>
83 #include <vm/vm_page.h>
84 #include <vm/vm_pageout.h>
85 #include <vm/vm_pager.h>
86 #include <vm/vm_extern.h>
87 
88 static void	vm_page_queue_init __P((void));
89 static vm_page_t vm_page_select_cache __P((vm_object_t, vm_pindex_t));
90 
91 /*
92  *	Associated with page of user-allocatable memory is a
93  *	page structure.
94  */
95 
96 static struct vm_page **vm_page_buckets; /* Array of buckets */
97 static int vm_page_bucket_count;	/* How big is array? */
98 static int vm_page_hash_mask;		/* Mask for hash function */
99 static volatile int vm_page_bucket_generation;
100 
101 struct vpgqueues vm_page_queues[PQ_COUNT];
102 
103 static void
104 vm_page_queue_init(void) {
105 	int i;
106 
107 	for(i=0;i<PQ_L2_SIZE;i++) {
108 		vm_page_queues[PQ_FREE+i].cnt = &cnt.v_free_count;
109 	}
110 	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
111 
112 	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
113 	for(i=0;i<PQ_L2_SIZE;i++) {
114 		vm_page_queues[PQ_CACHE+i].cnt = &cnt.v_cache_count;
115 	}
116 	for(i=0;i<PQ_COUNT;i++) {
117 		TAILQ_INIT(&vm_page_queues[i].pl);
118 	}
119 }
120 
121 vm_page_t vm_page_array = 0;
122 static int vm_page_array_size = 0;
123 long first_page = 0;
124 int vm_page_zero_count = 0;
125 
126 static __inline int vm_page_hash __P((vm_object_t object, vm_pindex_t pindex));
127 static void vm_page_free_wakeup __P((void));
128 
129 /*
130  *	vm_set_page_size:
131  *
132  *	Sets the page size, perhaps based upon the memory
133  *	size.  Must be called before any use of page-size
134  *	dependent functions.
135  */
136 void
137 vm_set_page_size()
138 {
139 	if (cnt.v_page_size == 0)
140 		cnt.v_page_size = PAGE_SIZE;
141 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
142 		panic("vm_set_page_size: page size not a power of two");
143 }
144 
145 /*
146  *	vm_page_startup:
147  *
148  *	Initializes the resident memory module.
149  *
150  *	Allocates memory for the page cells, and
151  *	for the object/offset-to-page hash table headers.
152  *	Each page cell is initialized and placed on the free list.
153  */
154 
155 vm_offset_t
156 vm_page_startup(starta, enda, vaddr)
157 	register vm_offset_t starta;
158 	vm_offset_t enda;
159 	register vm_offset_t vaddr;
160 {
161 	register vm_offset_t mapped;
162 	register vm_page_t m;
163 	register struct vm_page **bucket;
164 	vm_size_t npages, page_range;
165 	register vm_offset_t new_start;
166 	int i;
167 	vm_offset_t pa;
168 	int nblocks;
169 	vm_offset_t first_managed_page;
170 
171 	/* the biggest memory array is the second group of pages */
172 	vm_offset_t start;
173 	vm_offset_t biggestone, biggestsize;
174 
175 	vm_offset_t total;
176 
177 	total = 0;
178 	biggestsize = 0;
179 	biggestone = 0;
180 	nblocks = 0;
181 	vaddr = round_page(vaddr);
182 
183 	for (i = 0; phys_avail[i + 1]; i += 2) {
184 		phys_avail[i] = round_page(phys_avail[i]);
185 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
186 	}
187 
188 	for (i = 0; phys_avail[i + 1]; i += 2) {
189 		int size = phys_avail[i + 1] - phys_avail[i];
190 
191 		if (size > biggestsize) {
192 			biggestone = i;
193 			biggestsize = size;
194 		}
195 		++nblocks;
196 		total += size;
197 	}
198 
199 	start = phys_avail[biggestone];
200 
201 	/*
202 	 * Initialize the queue headers for the free queue, the active queue
203 	 * and the inactive queue.
204 	 */
205 
206 	vm_page_queue_init();
207 
208 	/*
209 	 * Allocate (and initialize) the hash table buckets.
210 	 *
211 	 * The number of buckets MUST BE a power of 2, and the actual value is
212 	 * the next power of 2 greater than the number of physical pages in
213 	 * the system.
214 	 *
215 	 * We make the hash table approximately 2x the number of pages to
216 	 * reduce the chain length.  This is about the same size using the
217 	 * singly-linked list as the 1x hash table we were using before
218 	 * using TAILQ but the chain length will be smaller.
219 	 *
220 	 * Note: This computation can be tweaked if desired.
221 	 */
222 	vm_page_buckets = (struct vm_page **)vaddr;
223 	bucket = vm_page_buckets;
224 	if (vm_page_bucket_count == 0) {
225 		vm_page_bucket_count = 1;
226 		while (vm_page_bucket_count < atop(total))
227 			vm_page_bucket_count <<= 1;
228 	}
229 	vm_page_bucket_count <<= 1;
230 	vm_page_hash_mask = vm_page_bucket_count - 1;
231 
232 	/*
233 	 * Validate these addresses.
234 	 */
235 
236 	new_start = start + vm_page_bucket_count * sizeof(struct vm_page *);
237 	new_start = round_page(new_start);
238 	mapped = round_page(vaddr);
239 	vaddr = pmap_map(mapped, start, new_start,
240 	    VM_PROT_READ | VM_PROT_WRITE);
241 	start = new_start;
242 	vaddr = round_page(vaddr);
243 	bzero((caddr_t) mapped, vaddr - mapped);
244 
245 	for (i = 0; i < vm_page_bucket_count; i++) {
246 		*bucket = NULL;
247 		bucket++;
248 	}
249 
250 	/*
251 	 * Compute the number of pages of memory that will be available for
252 	 * use (taking into account the overhead of a page structure per
253 	 * page).
254 	 */
255 
256 	first_page = phys_avail[0] / PAGE_SIZE;
257 
258 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
259 	npages = (total - (page_range * sizeof(struct vm_page)) -
260 	    (start - phys_avail[biggestone])) / PAGE_SIZE;
261 
262 	/*
263 	 * Initialize the mem entry structures now, and put them in the free
264 	 * queue.
265 	 */
266 	vm_page_array = (vm_page_t) vaddr;
267 	mapped = vaddr;
268 
269 	/*
270 	 * Validate these addresses.
271 	 */
272 	new_start = round_page(start + page_range * sizeof(struct vm_page));
273 	mapped = pmap_map(mapped, start, new_start,
274 	    VM_PROT_READ | VM_PROT_WRITE);
275 	start = new_start;
276 
277 	first_managed_page = start / PAGE_SIZE;
278 
279 	/*
280 	 * Clear all of the page structures
281 	 */
282 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
283 	vm_page_array_size = page_range;
284 
285 	/*
286 	 * Construct the free queue(s) in descending order (by physical
287 	 * address) so that the first 16MB of physical memory is allocated
288 	 * last rather than first.  On large-memory machines, this avoids
289 	 * the exhaustion of low physical memory before isa_dmainit has run.
290 	 */
291 	cnt.v_page_count = 0;
292 	cnt.v_free_count = 0;
293 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
294 		if (i == biggestone)
295 			pa = ptoa(first_managed_page);
296 		else
297 			pa = phys_avail[i];
298 		while (pa < phys_avail[i + 1] && npages-- > 0) {
299 			++cnt.v_page_count;
300 			++cnt.v_free_count;
301 			m = PHYS_TO_VM_PAGE(pa);
302 			m->phys_addr = pa;
303 			m->flags = 0;
304 			m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
305 			m->queue = m->pc + PQ_FREE;
306 			TAILQ_INSERT_HEAD(&vm_page_queues[m->queue].pl, m, pageq);
307 			vm_page_queues[m->queue].lcnt++;
308 			pa += PAGE_SIZE;
309 		}
310 	}
311 	return (mapped);
312 }
313 
314 /*
315  *	vm_page_hash:
316  *
317  *	Distributes the object/offset key pair among hash buckets.
318  *
319  *	NOTE:  This macro depends on vm_page_bucket_count being a power of 2.
320  *	This routine may not block.
321  *
322  *	We try to randomize the hash based on the object to spread the pages
323  *	out in the hash table without it costing us too much.
324  */
325 static __inline int
326 vm_page_hash(object, pindex)
327 	vm_object_t object;
328 	vm_pindex_t pindex;
329 {
330 	int i = ((uintptr_t)object + pindex) ^ object->hash_rand;
331 
332 	return(i & vm_page_hash_mask);
333 }
334 
335 /*
336  *	vm_page_insert:		[ internal use only ]
337  *
338  *	Inserts the given mem entry into the object and object list.
339  *
340  *	The pagetables are not updated but will presumably fault the page
341  *	in if necessary, or if a kernel page the caller will at some point
342  *	enter the page into the kernel's pmap.  We are not allowed to block
343  *	here so we *can't* do this anyway.
344  *
345  *	The object and page must be locked, and must be splhigh.
346  *	This routine may not block.
347  */
348 
349 void
350 vm_page_insert(m, object, pindex)
351 	register vm_page_t m;
352 	register vm_object_t object;
353 	register vm_pindex_t pindex;
354 {
355 	register struct vm_page **bucket;
356 
357 	if (m->object != NULL)
358 		panic("vm_page_insert: already inserted");
359 
360 	/*
361 	 * Record the object/offset pair in this page
362 	 */
363 
364 	m->object = object;
365 	m->pindex = pindex;
366 
367 	/*
368 	 * Insert it into the object_object/offset hash table
369 	 */
370 
371 	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
372 	m->hnext = *bucket;
373 	*bucket = m;
374 	vm_page_bucket_generation++;
375 
376 	/*
377 	 * Now link into the object's list of backed pages.
378 	 */
379 
380 	TAILQ_INSERT_TAIL(&object->memq, m, listq);
381 	object->generation++;
382 
383 	/*
384 	 * show that the object has one more resident page.
385 	 */
386 
387 	object->resident_page_count++;
388 
389 	/*
390 	 * Since we are inserting a new and possibly dirty page,
391 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
392 	 */
393 	if (m->flags & PG_WRITEABLE)
394 	    vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
395 }
396 
397 /*
398  *	vm_page_remove:
399  *				NOTE: used by device pager as well -wfj
400  *
401  *	Removes the given mem entry from the object/offset-page
402  *	table and the object page list, but do not invalidate/terminate
403  *	the backing store.
404  *
405  *	The object and page must be locked, and at splhigh.
406  *	The underlying pmap entry (if any) is NOT removed here.
407  *	This routine may not block.
408  */
409 
410 void
411 vm_page_remove(m)
412 	vm_page_t m;
413 {
414 	vm_object_t object;
415 
416 	if (m->object == NULL)
417 		return;
418 
419 	if ((m->flags & PG_BUSY) == 0) {
420 		panic("vm_page_remove: page not busy");
421 	}
422 
423 	/*
424 	 * Basically destroy the page.
425 	 */
426 
427 	vm_page_wakeup(m);
428 
429 	object = m->object;
430 
431 	/*
432 	 * Remove from the object_object/offset hash table.  The object
433 	 * must be on the hash queue, we will panic if it isn't
434 	 *
435 	 * Note: we must NULL-out m->hnext to prevent loops in detached
436 	 * buffers with vm_page_lookup().
437 	 */
438 
439 	{
440 		struct vm_page **bucket;
441 
442 		bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)];
443 		while (*bucket != m) {
444 			if (*bucket == NULL)
445 				panic("vm_page_remove(): page not found in hash");
446 			bucket = &(*bucket)->hnext;
447 		}
448 		*bucket = m->hnext;
449 		m->hnext = NULL;
450 		vm_page_bucket_generation++;
451 	}
452 
453 	/*
454 	 * Now remove from the object's list of backed pages.
455 	 */
456 
457 	TAILQ_REMOVE(&object->memq, m, listq);
458 
459 	/*
460 	 * And show that the object has one fewer resident page.
461 	 */
462 
463 	object->resident_page_count--;
464 	object->generation++;
465 
466 	m->object = NULL;
467 }
468 
469 /*
470  *	vm_page_lookup:
471  *
472  *	Returns the page associated with the object/offset
473  *	pair specified; if none is found, NULL is returned.
474  *
475  *	NOTE: the code below does not lock.  It will operate properly if
476  *	an interrupt makes a change, but the generation algorithm will not
477  *	operate properly in an SMP environment where both cpu's are able to run
478  *	kernel code simultaneously.
479  *
480  *	The object must be locked.  No side effects.
481  *	This routine may not block.
482  *	This is a critical path routine
483  */
484 
485 vm_page_t
486 vm_page_lookup(object, pindex)
487 	register vm_object_t object;
488 	register vm_pindex_t pindex;
489 {
490 	register vm_page_t m;
491 	register struct vm_page **bucket;
492 	int generation;
493 
494 	/*
495 	 * Search the hash table for this object/offset pair
496 	 */
497 
498 retry:
499 	generation = vm_page_bucket_generation;
500 	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
501 	for (m = *bucket; m != NULL; m = m->hnext) {
502 		if ((m->object == object) && (m->pindex == pindex)) {
503 			if (vm_page_bucket_generation != generation)
504 				goto retry;
505 			return (m);
506 		}
507 	}
508 	if (vm_page_bucket_generation != generation)
509 		goto retry;
510 	return (NULL);
511 }
512 
513 /*
514  *	vm_page_rename:
515  *
516  *	Move the given memory entry from its
517  *	current object to the specified target object/offset.
518  *
519  *	The object must be locked.
520  *	This routine may not block.
521  *
522  *	Note: this routine will raise itself to splvm(), the caller need not.
523  *
524  *	Note: swap associated with the page must be invalidated by the move.  We
525  *	      have to do this for several reasons:  (1) we aren't freeing the
526  *	      page, (2) we are dirtying the page, (3) the VM system is probably
527  *	      moving the page from object A to B, and will then later move
528  *	      the backing store from A to B and we can't have a conflict.
529  *
530  *	Note: we *always* dirty the page.  It is necessary both for the
531  *	      fact that we moved it, and because we may be invalidating
532  *	      swap.  If the page is on the cache, we have to deactivate it
533  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
534  *	      on the cache.
535  */
536 
537 void
538 vm_page_rename(m, new_object, new_pindex)
539 	register vm_page_t m;
540 	register vm_object_t new_object;
541 	vm_pindex_t new_pindex;
542 {
543 	int s;
544 
545 	s = splvm();
546 	vm_page_remove(m);
547 	vm_page_insert(m, new_object, new_pindex);
548 	if (m->queue - m->pc == PQ_CACHE)
549 		vm_page_deactivate(m);
550 	vm_page_dirty(m);
551 	splx(s);
552 }
553 
554 /*
555  * vm_page_unqueue_nowakeup:
556  *
557  * 	vm_page_unqueue() without any wakeup
558  *
559  *	This routine must be called at splhigh().
560  *	This routine may not block.
561  */
562 
563 void
564 vm_page_unqueue_nowakeup(m)
565 	vm_page_t m;
566 {
567 	int queue = m->queue;
568 	struct vpgqueues *pq;
569 	if (queue != PQ_NONE) {
570 		pq = &vm_page_queues[queue];
571 		m->queue = PQ_NONE;
572 		TAILQ_REMOVE(&pq->pl, m, pageq);
573 		(*pq->cnt)--;
574 		pq->lcnt--;
575 	}
576 }
577 
578 /*
579  * vm_page_unqueue:
580  *
581  *	Remove a page from its queue.
582  *
583  *	This routine must be called at splhigh().
584  *	This routine may not block.
585  */
586 
587 void
588 vm_page_unqueue(m)
589 	vm_page_t m;
590 {
591 	int queue = m->queue;
592 	struct vpgqueues *pq;
593 	if (queue != PQ_NONE) {
594 		m->queue = PQ_NONE;
595 		pq = &vm_page_queues[queue];
596 		TAILQ_REMOVE(&pq->pl, m, pageq);
597 		(*pq->cnt)--;
598 		pq->lcnt--;
599 		if ((queue - m->pc) == PQ_CACHE) {
600 			if (vm_paging_needed())
601 				pagedaemon_wakeup();
602 		}
603 	}
604 }
605 
606 #if PQ_L2_SIZE > 1
607 
608 /*
609  *	vm_page_list_find:
610  *
611  *	Find a page on the specified queue with color optimization.
612  *
613  *	The page coloring optimization attempts to locate a page
614  *	that does not overload other nearby pages in the object in
615  *	the cpu's L1 or L2 caches.  We need this optimization because
616  *	cpu caches tend to be physical caches, while object spaces tend
617  *	to be virtual.
618  *
619  *	This routine must be called at splvm().
620  *	This routine may not block.
621  *
622  *	This routine may only be called from the vm_page_list_find() macro
623  *	in vm_page.h
624  */
625 vm_page_t
626 _vm_page_list_find(basequeue, index)
627 	int basequeue, index;
628 {
629 	int i;
630 	vm_page_t m = NULL;
631 	struct vpgqueues *pq;
632 
633 	pq = &vm_page_queues[basequeue];
634 
635 	/*
636 	 * Note that for the first loop, index+i and index-i wind up at the
637 	 * same place.  Even though this is not totally optimal, we've already
638 	 * blown it by missing the cache case so we do not care.
639 	 */
640 
641 	for(i = PQ_L2_SIZE / 2; i > 0; --i) {
642 		if ((m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl)) != NULL)
643 			break;
644 
645 		if ((m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl)) != NULL)
646 			break;
647 	}
648 	return(m);
649 }
650 
651 #endif
652 
653 /*
654  *	vm_page_select_cache:
655  *
656  *	Find a page on the cache queue with color optimization.  As pages
657  *	might be found, but not applicable, they are deactivated.  This
658  *	keeps us from using potentially busy cached pages.
659  *
660  *	This routine must be called at splvm().
661  *	This routine may not block.
662  */
663 vm_page_t
664 vm_page_select_cache(object, pindex)
665 	vm_object_t object;
666 	vm_pindex_t pindex;
667 {
668 	vm_page_t m;
669 
670 	while (TRUE) {
671 		m = vm_page_list_find(
672 		    PQ_CACHE,
673 		    (pindex + object->pg_color) & PQ_L2_MASK,
674 		    FALSE
675 		);
676 		if (m && ((m->flags & PG_BUSY) || m->busy ||
677 			       m->hold_count || m->wire_count)) {
678 			vm_page_deactivate(m);
679 			continue;
680 		}
681 		return m;
682 	}
683 }
684 
685 /*
686  *	vm_page_select_free:
687  *
688  *	Find a free or zero page, with specified preference.  We attempt to
689  *	inline the nominal case and fall back to _vm_page_select_free()
690  *	otherwise.
691  *
692  *	This routine must be called at splvm().
693  *	This routine may not block.
694  */
695 
696 static __inline vm_page_t
697 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
698 {
699 	vm_page_t m;
700 
701 	m = vm_page_list_find(
702 		PQ_FREE,
703 		(pindex + object->pg_color) & PQ_L2_MASK,
704 		prefer_zero
705 	);
706 	return(m);
707 }
708 
709 /*
710  *	vm_page_alloc:
711  *
712  *	Allocate and return a memory cell associated
713  *	with this VM object/offset pair.
714  *
715  *	page_req classes:
716  *	VM_ALLOC_NORMAL		normal process request
717  *	VM_ALLOC_SYSTEM		system *really* needs a page
718  *	VM_ALLOC_INTERRUPT	interrupt time request
719  *	VM_ALLOC_ZERO		zero page
720  *
721  *	Object must be locked.
722  *	This routine may not block.
723  *
724  *	Additional special handling is required when called from an
725  *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
726  *	the page cache in this case.
727  */
728 
729 vm_page_t
730 vm_page_alloc(object, pindex, page_req)
731 	vm_object_t object;
732 	vm_pindex_t pindex;
733 	int page_req;
734 {
735 	register vm_page_t m = NULL;
736 	int s;
737 
738 	KASSERT(!vm_page_lookup(object, pindex),
739 		("vm_page_alloc: page already allocated"));
740 
741 	/*
742 	 * The pager is allowed to eat deeper into the free page list.
743 	 */
744 
745 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
746 		page_req = VM_ALLOC_SYSTEM;
747 	};
748 
749 	s = splvm();
750 
751 loop:
752 	if (cnt.v_free_count > cnt.v_free_reserved) {
753 		/*
754 		 * Allocate from the free queue if there are plenty of pages
755 		 * in it.
756 		 */
757 		if (page_req == VM_ALLOC_ZERO)
758 			m = vm_page_select_free(object, pindex, TRUE);
759 		else
760 			m = vm_page_select_free(object, pindex, FALSE);
761 	} else if (
762 	    (page_req == VM_ALLOC_SYSTEM &&
763 	     cnt.v_cache_count == 0 &&
764 	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
765 	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)
766 	) {
767 		/*
768 		 * Interrupt or system, dig deeper into the free list.
769 		 */
770 		m = vm_page_select_free(object, pindex, FALSE);
771 	} else if (page_req != VM_ALLOC_INTERRUPT) {
772 		/*
773 		 * Allocatable from cache (non-interrupt only).  On success,
774 		 * we must free the page and try again, thus ensuring that
775 		 * cnt.v_*_free_min counters are replenished.
776 		 */
777 		m = vm_page_select_cache(object, pindex);
778 		if (m == NULL) {
779 			splx(s);
780 #if defined(DIAGNOSTIC)
781 			if (cnt.v_cache_count > 0)
782 				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
783 #endif
784 			vm_pageout_deficit++;
785 			pagedaemon_wakeup();
786 			return (NULL);
787 		}
788 		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
789 		vm_page_busy(m);
790 		vm_page_protect(m, VM_PROT_NONE);
791 		vm_page_free(m);
792 		goto loop;
793 	} else {
794 		/*
795 		 * Not allocatable from cache from interrupt, give up.
796 		 */
797 		splx(s);
798 		vm_pageout_deficit++;
799 		pagedaemon_wakeup();
800 		return (NULL);
801 	}
802 
803 	/*
804 	 *  At this point we had better have found a good page.
805 	 */
806 
807 	KASSERT(
808 	    m != NULL,
809 	    ("vm_page_alloc(): missing page on free queue\n")
810 	);
811 
812 	/*
813 	 * Remove from free queue
814 	 */
815 
816 	vm_page_unqueue_nowakeup(m);
817 
818 	/*
819 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
820 	 */
821 
822 	if (m->flags & PG_ZERO) {
823 		vm_page_zero_count--;
824 		m->flags = PG_ZERO | PG_BUSY;
825 	} else {
826 		m->flags = PG_BUSY;
827 	}
828 	m->wire_count = 0;
829 	m->hold_count = 0;
830 	m->act_count = 0;
831 	m->busy = 0;
832 	m->valid = 0;
833 	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
834 
835 	/*
836 	 * vm_page_insert() is safe prior to the splx().  Note also that
837 	 * inserting a page here does not insert it into the pmap (which
838 	 * could cause us to block allocating memory).  We cannot block
839 	 * anywhere.
840 	 */
841 
842 	vm_page_insert(m, object, pindex);
843 
844 	/*
845 	 * Don't wakeup too often - wakeup the pageout daemon when
846 	 * we would be nearly out of memory.
847 	 */
848 	if (vm_paging_needed() || cnt.v_free_count < cnt.v_pageout_free_min)
849 		pagedaemon_wakeup();
850 
851 	splx(s);
852 
853 	return (m);
854 }
855 
856 /*
857  *	vm_wait:	(also see VM_WAIT macro)
858  *
859  *	Block until free pages are available for allocation
860  */
861 
862 void
863 vm_wait()
864 {
865 	int s;
866 
867 	s = splvm();
868 	if (curproc == pageproc) {
869 		vm_pageout_pages_needed = 1;
870 		tsleep(&vm_pageout_pages_needed, PSWP, "vmwait", 0);
871 	} else {
872 		if (!vm_pages_needed) {
873 			vm_pages_needed++;
874 			wakeup(&vm_pages_needed);
875 		}
876 		tsleep(&cnt.v_free_count, PVM, "vmwait", 0);
877 	}
878 	splx(s);
879 }
880 
881 /*
882  *	vm_await:	(also see VM_AWAIT macro)
883  *
884  *	asleep on an event that will signal when free pages are available
885  *	for allocation.
886  */
887 
888 void
889 vm_await()
890 {
891 	int s;
892 
893 	s = splvm();
894 	if (curproc == pageproc) {
895 		vm_pageout_pages_needed = 1;
896 		asleep(&vm_pageout_pages_needed, PSWP, "vmwait", 0);
897 	} else {
898 		if (!vm_pages_needed) {
899 			vm_pages_needed++;
900 			wakeup(&vm_pages_needed);
901 		}
902 		asleep(&cnt.v_free_count, PVM, "vmwait", 0);
903 	}
904 	splx(s);
905 }
906 
907 #if 0
908 /*
909  *	vm_page_sleep:
910  *
911  *	Block until page is no longer busy.
912  */
913 
914 int
915 vm_page_sleep(vm_page_t m, char *msg, char *busy) {
916 	int slept = 0;
917 	if ((busy && *busy) || (m->flags & PG_BUSY)) {
918 		int s;
919 		s = splvm();
920 		if ((busy && *busy) || (m->flags & PG_BUSY)) {
921 			vm_page_flag_set(m, PG_WANTED);
922 			tsleep(m, PVM, msg, 0);
923 			slept = 1;
924 		}
925 		splx(s);
926 	}
927 	return slept;
928 }
929 
930 #endif
931 
932 #if 0
933 
934 /*
935  *	vm_page_asleep:
936  *
937  *	Similar to vm_page_sleep(), but does not block.  Returns 0 if
938  *	the page is not busy, or 1 if the page is busy.
939  *
940  *	This routine has the side effect of calling asleep() if the page
941  *	was busy (1 returned).
942  */
943 
944 int
945 vm_page_asleep(vm_page_t m, char *msg, char *busy) {
946 	int slept = 0;
947 	if ((busy && *busy) || (m->flags & PG_BUSY)) {
948 		int s;
949 		s = splvm();
950 		if ((busy && *busy) || (m->flags & PG_BUSY)) {
951 			vm_page_flag_set(m, PG_WANTED);
952 			asleep(m, PVM, msg, 0);
953 			slept = 1;
954 		}
955 		splx(s);
956 	}
957 	return slept;
958 }
959 
960 #endif
961 
962 /*
963  *	vm_page_activate:
964  *
965  *	Put the specified page on the active list (if appropriate).
966  *	Ensure that act_count is at least ACT_INIT but do not otherwise
967  *	mess with it.
968  *
969  *	The page queues must be locked.
970  *	This routine may not block.
971  */
972 void
973 vm_page_activate(m)
974 	register vm_page_t m;
975 {
976 	int s;
977 
978 	s = splvm();
979 	if (m->queue != PQ_ACTIVE) {
980 		if ((m->queue - m->pc) == PQ_CACHE)
981 			cnt.v_reactivated++;
982 
983 		vm_page_unqueue(m);
984 
985 		if (m->wire_count == 0) {
986 			m->queue = PQ_ACTIVE;
987 			vm_page_queues[PQ_ACTIVE].lcnt++;
988 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
989 			if (m->act_count < ACT_INIT)
990 				m->act_count = ACT_INIT;
991 			cnt.v_active_count++;
992 		}
993 	} else {
994 		if (m->act_count < ACT_INIT)
995 			m->act_count = ACT_INIT;
996 	}
997 
998 	splx(s);
999 }
1000 
1001 /*
1002  *	vm_page_free_wakeup:
1003  *
1004  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1005  *	routine is called when a page has been added to the cache or free
1006  *	queues.
1007  *
1008  *	This routine may not block.
1009  *	This routine must be called at splvm()
1010  */
1011 static __inline void
1012 vm_page_free_wakeup()
1013 {
1014 	/*
1015 	 * if pageout daemon needs pages, then tell it that there are
1016 	 * some free.
1017 	 */
1018 	if (vm_pageout_pages_needed) {
1019 		wakeup(&vm_pageout_pages_needed);
1020 		vm_pageout_pages_needed = 0;
1021 	}
1022 	/*
1023 	 * wakeup processes that are waiting on memory if we hit a
1024 	 * high water mark. And wakeup scheduler process if we have
1025 	 * lots of memory. this process will swapin processes.
1026 	 */
1027 	if (vm_pages_needed && vm_page_count_min()) {
1028 		wakeup(&cnt.v_free_count);
1029 		vm_pages_needed = 0;
1030 	}
1031 }
1032 
1033 /*
1034  *	vm_page_free_toq:
1035  *
1036  *	Returns the given page to the PQ_FREE list,
1037  *	disassociating it with any VM object.
1038  *
1039  *	Object and page must be locked prior to entry.
1040  *	This routine may not block.
1041  */
1042 
1043 void
1044 vm_page_free_toq(vm_page_t m)
1045 {
1046 	int s;
1047 	struct vpgqueues *pq;
1048 	vm_object_t object = m->object;
1049 
1050 	s = splvm();
1051 
1052 	cnt.v_tfree++;
1053 
1054 	if (m->busy || ((m->queue - m->pc) == PQ_FREE) ||
1055 		(m->hold_count != 0)) {
1056 		printf(
1057 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1058 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1059 		    m->hold_count);
1060 		if ((m->queue - m->pc) == PQ_FREE)
1061 			panic("vm_page_free: freeing free page");
1062 		else
1063 			panic("vm_page_free: freeing busy page");
1064 	}
1065 
1066 	/*
1067 	 * unqueue, then remove page.  Note that we cannot destroy
1068 	 * the page here because we do not want to call the pager's
1069 	 * callback routine until after we've put the page on the
1070 	 * appropriate free queue.
1071 	 */
1072 
1073 	vm_page_unqueue_nowakeup(m);
1074 	vm_page_remove(m);
1075 
1076 	/*
1077 	 * If fictitious remove object association and
1078 	 * return, otherwise delay object association removal.
1079 	 */
1080 
1081 	if ((m->flags & PG_FICTITIOUS) != 0) {
1082 		splx(s);
1083 		return;
1084 	}
1085 
1086 	m->valid = 0;
1087 	vm_page_undirty(m);
1088 
1089 	if (m->wire_count != 0) {
1090 		if (m->wire_count > 1) {
1091 			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1092 				m->wire_count, (long)m->pindex);
1093 		}
1094 		panic("vm_page_free: freeing wired page\n");
1095 	}
1096 
1097 	/*
1098 	 * If we've exhausted the object's resident pages we want to free
1099 	 * it up.
1100 	 */
1101 
1102 	if (object &&
1103 	    (object->type == OBJT_VNODE) &&
1104 	    ((object->flags & OBJ_DEAD) == 0)
1105 	) {
1106 		struct vnode *vp = (struct vnode *)object->handle;
1107 
1108 		if (vp && VSHOULDFREE(vp)) {
1109 			if ((vp->v_flag & (VTBFREE|VDOOMED|VFREE)) == 0) {
1110 				TAILQ_INSERT_TAIL(&vnode_tobefree_list, vp, v_freelist);
1111 				vp->v_flag |= VTBFREE;
1112 			}
1113 		}
1114 	}
1115 
1116 #ifdef __alpha__
1117 	pmap_page_is_free(m);
1118 #endif
1119 
1120 	m->queue = PQ_FREE + m->pc;
1121 	pq = &vm_page_queues[m->queue];
1122 	pq->lcnt++;
1123 	++(*pq->cnt);
1124 
1125 	/*
1126 	 * Put zero'd pages on the end ( where we look for zero'd pages
1127 	 * first ) and non-zerod pages at the head.
1128 	 */
1129 
1130 	if (m->flags & PG_ZERO) {
1131 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1132 		++vm_page_zero_count;
1133 	} else {
1134 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1135 	}
1136 
1137 	vm_page_free_wakeup();
1138 
1139 	splx(s);
1140 }
1141 
1142 /*
1143  *	vm_page_wire:
1144  *
1145  *	Mark this page as wired down by yet
1146  *	another map, removing it from paging queues
1147  *	as necessary.
1148  *
1149  *	The page queues must be locked.
1150  *	This routine may not block.
1151  */
1152 void
1153 vm_page_wire(m)
1154 	register vm_page_t m;
1155 {
1156 	int s;
1157 
1158 	s = splvm();
1159 	if (m->wire_count == 0) {
1160 		vm_page_unqueue(m);
1161 		cnt.v_wire_count++;
1162 	}
1163 	m->wire_count++;
1164 	splx(s);
1165 	vm_page_flag_set(m, PG_MAPPED);
1166 }
1167 
1168 /*
1169  *	vm_page_unwire:
1170  *
1171  *	Release one wiring of this page, potentially
1172  *	enabling it to be paged again.
1173  *
1174  *	Many pages placed on the inactive queue should actually go
1175  *	into the cache, but it is difficult to figure out which.  What
1176  *	we do instead, if the inactive target is well met, is to put
1177  *	clean pages at the head of the inactive queue instead of the tail.
1178  *	This will cause them to be moved to the cache more quickly and
1179  *	if not actively re-referenced, freed more quickly.  If we just
1180  *	stick these pages at the end of the inactive queue, heavy filesystem
1181  *	meta-data accesses can cause an unnecessary paging load on memory bound
1182  *	processes.  This optimization causes one-time-use metadata to be
1183  *	reused more quickly.
1184  *
1185  *	A number of routines use vm_page_unwire() to guarantee that the page
1186  *	will go into either the inactive or active queues, and will NEVER
1187  *	be placed in the cache - for example, just after dirtying a page.
1188  *	dirty pages in the cache are not allowed.
1189  *
1190  *	The page queues must be locked.
1191  *	This routine may not block.
1192  */
1193 void
1194 vm_page_unwire(m, activate)
1195 	register vm_page_t m;
1196 	int activate;
1197 {
1198 	int s;
1199 
1200 	s = splvm();
1201 
1202 	if (m->wire_count > 0) {
1203 		m->wire_count--;
1204 		if (m->wire_count == 0) {
1205 			cnt.v_wire_count--;
1206 			if (activate) {
1207 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1208 				m->queue = PQ_ACTIVE;
1209 				vm_page_queues[PQ_ACTIVE].lcnt++;
1210 				cnt.v_active_count++;
1211 			} else {
1212 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1213 				m->queue = PQ_INACTIVE;
1214 				vm_page_queues[PQ_INACTIVE].lcnt++;
1215 				cnt.v_inactive_count++;
1216 			}
1217 		}
1218 	} else {
1219 		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1220 	}
1221 	splx(s);
1222 }
1223 
1224 
1225 /*
1226  * Move the specified page to the inactive queue.  If the page has
1227  * any associated swap, the swap is deallocated.
1228  *
1229  * Normally athead is 0 resulting in LRU operation.  athead is set
1230  * to 1 if we want this page to be 'as if it were placed in the cache',
1231  * except without unmapping it from the process address space.
1232  *
1233  * This routine may not block.
1234  */
1235 static __inline void
1236 _vm_page_deactivate(vm_page_t m, int athead)
1237 {
1238 	int s;
1239 
1240 	/*
1241 	 * Ignore if already inactive.
1242 	 */
1243 	if (m->queue == PQ_INACTIVE)
1244 		return;
1245 
1246 	s = splvm();
1247 	if (m->wire_count == 0) {
1248 		if ((m->queue - m->pc) == PQ_CACHE)
1249 			cnt.v_reactivated++;
1250 		vm_page_unqueue(m);
1251 		if (athead)
1252 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1253 		else
1254 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1255 		m->queue = PQ_INACTIVE;
1256 		vm_page_queues[PQ_INACTIVE].lcnt++;
1257 		cnt.v_inactive_count++;
1258 	}
1259 	splx(s);
1260 }
1261 
1262 void
1263 vm_page_deactivate(vm_page_t m)
1264 {
1265     _vm_page_deactivate(m, 0);
1266 }
1267 
1268 /*
1269  * vm_page_cache
1270  *
1271  * Put the specified page onto the page cache queue (if appropriate).
1272  *
1273  * This routine may not block.
1274  */
1275 void
1276 vm_page_cache(m)
1277 	register vm_page_t m;
1278 {
1279 	int s;
1280 
1281 	if ((m->flags & PG_BUSY) || m->busy || m->wire_count) {
1282 		printf("vm_page_cache: attempting to cache busy page\n");
1283 		return;
1284 	}
1285 	if ((m->queue - m->pc) == PQ_CACHE)
1286 		return;
1287 
1288 	/*
1289 	 * Remove all pmaps and indicate that the page is not
1290 	 * writeable or mapped.
1291 	 */
1292 
1293 	vm_page_protect(m, VM_PROT_NONE);
1294 	if (m->dirty != 0) {
1295 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1296 			(long)m->pindex);
1297 	}
1298 	s = splvm();
1299 	vm_page_unqueue_nowakeup(m);
1300 	m->queue = PQ_CACHE + m->pc;
1301 	vm_page_queues[m->queue].lcnt++;
1302 	TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
1303 	cnt.v_cache_count++;
1304 	vm_page_free_wakeup();
1305 	splx(s);
1306 }
1307 
1308 /*
1309  * vm_page_dontneed
1310  *
1311  *	Cache, deactivate, or do nothing as appropriate.  This routine
1312  *	is typically used by madvise() MADV_DONTNEED.
1313  *
1314  *	Generally speaking we want to move the page into the cache so
1315  *	it gets reused quickly.  However, this can result in a silly syndrome
1316  *	due to the page recycling too quickly.  Small objects will not be
1317  *	fully cached.  On the otherhand, if we move the page to the inactive
1318  *	queue we wind up with a problem whereby very large objects
1319  *	unnecessarily blow away our inactive and cache queues.
1320  *
1321  *	The solution is to move the pages based on a fixed weighting.  We
1322  *	either leave them alone, deactivate them, or move them to the cache,
1323  *	where moving them to the cache has the highest weighting.
1324  *	By forcing some pages into other queues we eventually force the
1325  *	system to balance the queues, potentially recovering other unrelated
1326  *	space from active.  The idea is to not force this to happen too
1327  *	often.
1328  */
1329 
1330 void
1331 vm_page_dontneed(m)
1332 	vm_page_t m;
1333 {
1334 	static int dnweight;
1335 	int dnw;
1336 	int head;
1337 
1338 	dnw = ++dnweight;
1339 
1340 	/*
1341 	 * occassionally leave the page alone
1342 	 */
1343 
1344 	if ((dnw & 0x01F0) == 0 ||
1345 	    m->queue == PQ_INACTIVE ||
1346 	    m->queue - m->pc == PQ_CACHE
1347 	) {
1348 		if (m->act_count >= ACT_INIT)
1349 			--m->act_count;
1350 		return;
1351 	}
1352 
1353 	if (m->dirty == 0)
1354 		vm_page_test_dirty(m);
1355 
1356 	if (m->dirty || (dnw & 0x0070) == 0) {
1357 		/*
1358 		 * Deactivate the page 3 times out of 32.
1359 		 */
1360 		head = 0;
1361 	} else {
1362 		/*
1363 		 * Cache the page 28 times out of every 32.  Note that
1364 		 * the page is deactivated instead of cached, but placed
1365 		 * at the head of the queue instead of the tail.
1366 		 */
1367 		head = 1;
1368 	}
1369 	_vm_page_deactivate(m, head);
1370 }
1371 
1372 /*
1373  * Grab a page, waiting until we are waken up due to the page
1374  * changing state.  We keep on waiting, if the page continues
1375  * to be in the object.  If the page doesn't exist, allocate it.
1376  *
1377  * This routine may block.
1378  */
1379 vm_page_t
1380 vm_page_grab(object, pindex, allocflags)
1381 	vm_object_t object;
1382 	vm_pindex_t pindex;
1383 	int allocflags;
1384 {
1385 
1386 	vm_page_t m;
1387 	int s, generation;
1388 
1389 retrylookup:
1390 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1391 		if (m->busy || (m->flags & PG_BUSY)) {
1392 			generation = object->generation;
1393 
1394 			s = splvm();
1395 			while ((object->generation == generation) &&
1396 					(m->busy || (m->flags & PG_BUSY))) {
1397 				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1398 				tsleep(m, PVM, "pgrbwt", 0);
1399 				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1400 					splx(s);
1401 					return NULL;
1402 				}
1403 			}
1404 			splx(s);
1405 			goto retrylookup;
1406 		} else {
1407 			vm_page_busy(m);
1408 			return m;
1409 		}
1410 	}
1411 
1412 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1413 	if (m == NULL) {
1414 		VM_WAIT;
1415 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1416 			return NULL;
1417 		goto retrylookup;
1418 	}
1419 
1420 	return m;
1421 }
1422 
1423 /*
1424  * Mapping function for valid bits or for dirty bits in
1425  * a page.  May not block.
1426  *
1427  * Inputs are required to range within a page.
1428  */
1429 
1430 __inline int
1431 vm_page_bits(int base, int size)
1432 {
1433 	int first_bit;
1434 	int last_bit;
1435 
1436 	KASSERT(
1437 	    base + size <= PAGE_SIZE,
1438 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1439 	);
1440 
1441 	if (size == 0)		/* handle degenerate case */
1442 		return(0);
1443 
1444 	first_bit = base >> DEV_BSHIFT;
1445 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1446 
1447 	return ((2 << last_bit) - (1 << first_bit));
1448 }
1449 
1450 /*
1451  *	vm_page_set_validclean:
1452  *
1453  *	Sets portions of a page valid and clean.  The arguments are expected
1454  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1455  *	of any partial chunks touched by the range.  The invalid portion of
1456  *	such chunks will be zero'd.
1457  *
1458  *	This routine may not block.
1459  *
1460  *	(base + size) must be less then or equal to PAGE_SIZE.
1461  */
1462 void
1463 vm_page_set_validclean(m, base, size)
1464 	vm_page_t m;
1465 	int base;
1466 	int size;
1467 {
1468 	int pagebits;
1469 	int frag;
1470 	int endoff;
1471 
1472 	if (size == 0)	/* handle degenerate case */
1473 		return;
1474 
1475 	/*
1476 	 * If the base is not DEV_BSIZE aligned and the valid
1477 	 * bit is clear, we have to zero out a portion of the
1478 	 * first block.
1479 	 */
1480 
1481 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1482 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
1483 	) {
1484 		pmap_zero_page_area(
1485 		    VM_PAGE_TO_PHYS(m),
1486 		    frag,
1487 		    base - frag
1488 		);
1489 	}
1490 
1491 	/*
1492 	 * If the ending offset is not DEV_BSIZE aligned and the
1493 	 * valid bit is clear, we have to zero out a portion of
1494 	 * the last block.
1495 	 */
1496 
1497 	endoff = base + size;
1498 
1499 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1500 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
1501 	) {
1502 		pmap_zero_page_area(
1503 		    VM_PAGE_TO_PHYS(m),
1504 		    endoff,
1505 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
1506 		);
1507 	}
1508 
1509 	/*
1510 	 * Set valid, clear dirty bits.  If validating the entire
1511 	 * page we can safely clear the pmap modify bit.  We also
1512 	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1513 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1514 	 * be set again.
1515 	 */
1516 
1517 	pagebits = vm_page_bits(base, size);
1518 	m->valid |= pagebits;
1519 	m->dirty &= ~pagebits;
1520 	if (base == 0 && size == PAGE_SIZE) {
1521 		pmap_clear_modify(VM_PAGE_TO_PHYS(m));
1522 		vm_page_flag_clear(m, PG_NOSYNC);
1523 	}
1524 }
1525 
1526 #if 0
1527 
1528 void
1529 vm_page_set_dirty(m, base, size)
1530 	vm_page_t m;
1531 	int base;
1532 	int size;
1533 {
1534 	m->dirty |= vm_page_bits(base, size);
1535 }
1536 
1537 #endif
1538 
1539 void
1540 vm_page_clear_dirty(m, base, size)
1541 	vm_page_t m;
1542 	int base;
1543 	int size;
1544 {
1545 	m->dirty &= ~vm_page_bits(base, size);
1546 }
1547 
1548 /*
1549  *	vm_page_set_invalid:
1550  *
1551  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1552  *	valid and dirty bits for the effected areas are cleared.
1553  *
1554  *	May not block.
1555  */
1556 void
1557 vm_page_set_invalid(m, base, size)
1558 	vm_page_t m;
1559 	int base;
1560 	int size;
1561 {
1562 	int bits;
1563 
1564 	bits = vm_page_bits(base, size);
1565 	m->valid &= ~bits;
1566 	m->dirty &= ~bits;
1567 	m->object->generation++;
1568 }
1569 
1570 /*
1571  * vm_page_zero_invalid()
1572  *
1573  *	The kernel assumes that the invalid portions of a page contain
1574  *	garbage, but such pages can be mapped into memory by user code.
1575  *	When this occurs, we must zero out the non-valid portions of the
1576  *	page so user code sees what it expects.
1577  *
1578  *	Pages are most often semi-valid when the end of a file is mapped
1579  *	into memory and the file's size is not page aligned.
1580  */
1581 
1582 void
1583 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1584 {
1585 	int b;
1586 	int i;
1587 
1588 	/*
1589 	 * Scan the valid bits looking for invalid sections that
1590 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1591 	 * valid bit may be set ) have already been zerod by
1592 	 * vm_page_set_validclean().
1593 	 */
1594 
1595 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1596 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1597 		    (m->valid & (1 << i))
1598 		) {
1599 			if (i > b) {
1600 				pmap_zero_page_area(
1601 				    VM_PAGE_TO_PHYS(m),
1602 				    b << DEV_BSHIFT,
1603 				    (i - b) << DEV_BSHIFT
1604 				);
1605 			}
1606 			b = i + 1;
1607 		}
1608 	}
1609 
1610 	/*
1611 	 * setvalid is TRUE when we can safely set the zero'd areas
1612 	 * as being valid.  We can do this if there are no cache consistancy
1613 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1614 	 */
1615 
1616 	if (setvalid)
1617 		m->valid = VM_PAGE_BITS_ALL;
1618 }
1619 
1620 /*
1621  *	vm_page_is_valid:
1622  *
1623  *	Is (partial) page valid?  Note that the case where size == 0
1624  *	will return FALSE in the degenerate case where the page is
1625  *	entirely invalid, and TRUE otherwise.
1626  *
1627  *	May not block.
1628  */
1629 
1630 int
1631 vm_page_is_valid(m, base, size)
1632 	vm_page_t m;
1633 	int base;
1634 	int size;
1635 {
1636 	int bits = vm_page_bits(base, size);
1637 
1638 	if (m->valid && ((m->valid & bits) == bits))
1639 		return 1;
1640 	else
1641 		return 0;
1642 }
1643 
1644 /*
1645  * update dirty bits from pmap/mmu.  May not block.
1646  */
1647 
1648 void
1649 vm_page_test_dirty(m)
1650 	vm_page_t m;
1651 {
1652 	if ((m->dirty != VM_PAGE_BITS_ALL) &&
1653 	    pmap_is_modified(VM_PAGE_TO_PHYS(m))) {
1654 		vm_page_dirty(m);
1655 	}
1656 }
1657 
1658 /*
1659  * This interface is for merging with malloc() someday.
1660  * Even if we never implement compaction so that contiguous allocation
1661  * works after initialization time, malloc()'s data structures are good
1662  * for statistics and for allocations of less than a page.
1663  */
1664 void *
1665 contigmalloc1(size, type, flags, low, high, alignment, boundary, map)
1666 	unsigned long size;	/* should be size_t here and for malloc() */
1667 	struct malloc_type *type;
1668 	int flags;
1669 	unsigned long low;
1670 	unsigned long high;
1671 	unsigned long alignment;
1672 	unsigned long boundary;
1673 	vm_map_t map;
1674 {
1675 	int i, s, start;
1676 	vm_offset_t addr, phys, tmp_addr;
1677 	int pass;
1678 	vm_page_t pga = vm_page_array;
1679 
1680 	size = round_page(size);
1681 	if (size == 0)
1682 		panic("contigmalloc1: size must not be 0");
1683 	if ((alignment & (alignment - 1)) != 0)
1684 		panic("contigmalloc1: alignment must be a power of 2");
1685 	if ((boundary & (boundary - 1)) != 0)
1686 		panic("contigmalloc1: boundary must be a power of 2");
1687 
1688 	start = 0;
1689 	for (pass = 0; pass <= 1; pass++) {
1690 		s = splvm();
1691 again:
1692 		/*
1693 		 * Find first page in array that is free, within range, aligned, and
1694 		 * such that the boundary won't be crossed.
1695 		 */
1696 		for (i = start; i < cnt.v_page_count; i++) {
1697 			int pqtype;
1698 			phys = VM_PAGE_TO_PHYS(&pga[i]);
1699 			pqtype = pga[i].queue - pga[i].pc;
1700 			if (((pqtype == PQ_FREE) || (pqtype == PQ_CACHE)) &&
1701 			    (phys >= low) && (phys < high) &&
1702 			    ((phys & (alignment - 1)) == 0) &&
1703 			    (((phys ^ (phys + size - 1)) & ~(boundary - 1)) == 0))
1704 				break;
1705 		}
1706 
1707 		/*
1708 		 * If the above failed or we will exceed the upper bound, fail.
1709 		 */
1710 		if ((i == cnt.v_page_count) ||
1711 			((VM_PAGE_TO_PHYS(&pga[i]) + size) > high)) {
1712 			vm_page_t m, next;
1713 
1714 again1:
1715 			for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
1716 				m != NULL;
1717 				m = next) {
1718 
1719 				KASSERT(m->queue == PQ_INACTIVE,
1720 					("contigmalloc1: page %p is not PQ_INACTIVE", m));
1721 
1722 				next = TAILQ_NEXT(m, pageq);
1723 				if (vm_page_sleep_busy(m, TRUE, "vpctw0"))
1724 					goto again1;
1725 				vm_page_test_dirty(m);
1726 				if (m->dirty) {
1727 					if (m->object->type == OBJT_VNODE) {
1728 						vn_lock(m->object->handle, LK_EXCLUSIVE | LK_RETRY, curproc);
1729 						vm_object_page_clean(m->object, 0, 0, OBJPC_SYNC);
1730 						VOP_UNLOCK(m->object->handle, 0, curproc);
1731 						goto again1;
1732 					} else if (m->object->type == OBJT_SWAP ||
1733 								m->object->type == OBJT_DEFAULT) {
1734 						vm_pageout_flush(&m, 1, 0);
1735 						goto again1;
1736 					}
1737 				}
1738 				if ((m->dirty == 0) && (m->busy == 0) && (m->hold_count == 0))
1739 					vm_page_cache(m);
1740 			}
1741 
1742 			for (m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1743 				m != NULL;
1744 				m = next) {
1745 
1746 				KASSERT(m->queue == PQ_ACTIVE,
1747 					("contigmalloc1: page %p is not PQ_ACTIVE", m));
1748 
1749 				next = TAILQ_NEXT(m, pageq);
1750 				if (vm_page_sleep_busy(m, TRUE, "vpctw1"))
1751 					goto again1;
1752 				vm_page_test_dirty(m);
1753 				if (m->dirty) {
1754 					if (m->object->type == OBJT_VNODE) {
1755 						vn_lock(m->object->handle, LK_EXCLUSIVE | LK_RETRY, curproc);
1756 						vm_object_page_clean(m->object, 0, 0, OBJPC_SYNC);
1757 						VOP_UNLOCK(m->object->handle, 0, curproc);
1758 						goto again1;
1759 					} else if (m->object->type == OBJT_SWAP ||
1760 								m->object->type == OBJT_DEFAULT) {
1761 						vm_pageout_flush(&m, 1, 0);
1762 						goto again1;
1763 					}
1764 				}
1765 				if ((m->dirty == 0) && (m->busy == 0) && (m->hold_count == 0))
1766 					vm_page_cache(m);
1767 			}
1768 
1769 			splx(s);
1770 			continue;
1771 		}
1772 		start = i;
1773 
1774 		/*
1775 		 * Check successive pages for contiguous and free.
1776 		 */
1777 		for (i = start + 1; i < (start + size / PAGE_SIZE); i++) {
1778 			int pqtype;
1779 			pqtype = pga[i].queue - pga[i].pc;
1780 			if ((VM_PAGE_TO_PHYS(&pga[i]) !=
1781 			    (VM_PAGE_TO_PHYS(&pga[i - 1]) + PAGE_SIZE)) ||
1782 			    ((pqtype != PQ_FREE) && (pqtype != PQ_CACHE))) {
1783 				start++;
1784 				goto again;
1785 			}
1786 		}
1787 
1788 		for (i = start; i < (start + size / PAGE_SIZE); i++) {
1789 			int pqtype;
1790 			vm_page_t m = &pga[i];
1791 
1792 			pqtype = m->queue - m->pc;
1793 			if (pqtype == PQ_CACHE) {
1794 				vm_page_busy(m);
1795 				vm_page_free(m);
1796 			}
1797 
1798 			TAILQ_REMOVE(&vm_page_queues[m->queue].pl, m, pageq);
1799 			vm_page_queues[m->queue].lcnt--;
1800 			cnt.v_free_count--;
1801 			m->valid = VM_PAGE_BITS_ALL;
1802 			m->flags = 0;
1803 			KASSERT(m->dirty == 0, ("contigmalloc1: page %p was dirty", m));
1804 			m->wire_count = 0;
1805 			m->busy = 0;
1806 			m->queue = PQ_NONE;
1807 			m->object = NULL;
1808 			vm_page_wire(m);
1809 		}
1810 
1811 		/*
1812 		 * We've found a contiguous chunk that meets are requirements.
1813 		 * Allocate kernel VM, unfree and assign the physical pages to it and
1814 		 * return kernel VM pointer.
1815 		 */
1816 		tmp_addr = addr = kmem_alloc_pageable(map, size);
1817 		if (addr == 0) {
1818 			/*
1819 			 * XXX We almost never run out of kernel virtual
1820 			 * space, so we don't make the allocated memory
1821 			 * above available.
1822 			 */
1823 			splx(s);
1824 			return (NULL);
1825 		}
1826 
1827 		for (i = start; i < (start + size / PAGE_SIZE); i++) {
1828 			vm_page_t m = &pga[i];
1829 			vm_page_insert(m, kernel_object,
1830 				OFF_TO_IDX(tmp_addr - VM_MIN_KERNEL_ADDRESS));
1831 			pmap_kenter(tmp_addr, VM_PAGE_TO_PHYS(m));
1832 			tmp_addr += PAGE_SIZE;
1833 		}
1834 
1835 		splx(s);
1836 		return ((void *)addr);
1837 	}
1838 	return NULL;
1839 }
1840 
1841 void *
1842 contigmalloc(size, type, flags, low, high, alignment, boundary)
1843 	unsigned long size;	/* should be size_t here and for malloc() */
1844 	struct malloc_type *type;
1845 	int flags;
1846 	unsigned long low;
1847 	unsigned long high;
1848 	unsigned long alignment;
1849 	unsigned long boundary;
1850 {
1851 	return contigmalloc1(size, type, flags, low, high, alignment, boundary,
1852 			     kernel_map);
1853 }
1854 
1855 void
1856 contigfree(addr, size, type)
1857 	void *addr;
1858 	unsigned long size;
1859 	struct malloc_type *type;
1860 {
1861 	kmem_free(kernel_map, (vm_offset_t)addr, size);
1862 }
1863 
1864 vm_offset_t
1865 vm_page_alloc_contig(size, low, high, alignment)
1866 	vm_offset_t size;
1867 	vm_offset_t low;
1868 	vm_offset_t high;
1869 	vm_offset_t alignment;
1870 {
1871 	return ((vm_offset_t)contigmalloc1(size, M_DEVBUF, M_NOWAIT, low, high,
1872 					  alignment, 0ul, kernel_map));
1873 }
1874 
1875 #include "opt_ddb.h"
1876 #ifdef DDB
1877 #include <sys/kernel.h>
1878 
1879 #include <ddb/ddb.h>
1880 
1881 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1882 {
1883 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1884 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1885 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1886 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1887 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1888 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1889 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1890 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1891 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1892 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1893 }
1894 
1895 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1896 {
1897 	int i;
1898 	db_printf("PQ_FREE:");
1899 	for(i=0;i<PQ_L2_SIZE;i++) {
1900 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1901 	}
1902 	db_printf("\n");
1903 
1904 	db_printf("PQ_CACHE:");
1905 	for(i=0;i<PQ_L2_SIZE;i++) {
1906 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1907 	}
1908 	db_printf("\n");
1909 
1910 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1911 		vm_page_queues[PQ_ACTIVE].lcnt,
1912 		vm_page_queues[PQ_INACTIVE].lcnt);
1913 }
1914 #endif /* DDB */
1915