1 /* 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 33 */ 34 35 /* 36 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 37 * All rights reserved. 38 * 39 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 40 * 41 * Permission to use, copy, modify and distribute this software and 42 * its documentation is hereby granted, provided that both the copyright 43 * notice and this permission notice appear in all copies of the 44 * software, derivative works or modified versions, and any portions 45 * thereof, and that both notices appear in supporting documentation. 46 * 47 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 48 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 49 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 50 * 51 * Carnegie Mellon requests users of this software to return to 52 * 53 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 54 * School of Computer Science 55 * Carnegie Mellon University 56 * Pittsburgh PA 15213-3890 57 * 58 * any improvements or extensions that they make and grant Carnegie the 59 * rights to redistribute these changes. 60 */ 61 62 /* 63 * GENERAL RULES ON VM_PAGE MANIPULATION 64 * 65 * - a pageq mutex is required when adding or removing a page from a 66 * page queue (vm_page_queue[]), regardless of other mutexes or the 67 * busy state of a page. 68 * 69 * - a hash chain mutex is required when associating or disassociating 70 * a page from the VM PAGE CACHE hash table (vm_page_buckets), 71 * regardless of other mutexes or the busy state of a page. 72 * 73 * - either a hash chain mutex OR a busied page is required in order 74 * to modify the page flags. A hash chain mutex must be obtained in 75 * order to busy a page. A page's flags cannot be modified by a 76 * hash chain mutex if the page is marked busy. 77 * 78 * - The object memq mutex is held when inserting or removing 79 * pages from an object (vm_page_insert() or vm_page_remove()). This 80 * is different from the object's main mutex. 81 * 82 * Generally speaking, you have to be aware of side effects when running 83 * vm_page ops. A vm_page_lookup() will return with the hash chain 84 * locked, whether it was able to lookup the page or not. vm_page_free(), 85 * vm_page_cache(), vm_page_activate(), and a number of other routines 86 * will release the hash chain mutex for you. Intermediate manipulation 87 * routines such as vm_page_flag_set() expect the hash chain to be held 88 * on entry and the hash chain will remain held on return. 89 * 90 * pageq scanning can only occur with the pageq in question locked. 91 * We have a known bottleneck with the active queue, but the cache 92 * and free queues are actually arrays already. 93 */ 94 95 /* 96 * Resident memory management module. 97 */ 98 99 #include <sys/cdefs.h> 100 __FBSDID("$FreeBSD$"); 101 102 #include <sys/param.h> 103 #include <sys/systm.h> 104 #include <sys/lock.h> 105 #include <sys/malloc.h> 106 #include <sys/mutex.h> 107 #include <sys/proc.h> 108 #include <sys/vmmeter.h> 109 #include <sys/vnode.h> 110 111 #include <vm/vm.h> 112 #include <vm/vm_param.h> 113 #include <vm/vm_kern.h> 114 #include <vm/vm_object.h> 115 #include <vm/vm_page.h> 116 #include <vm/vm_pageout.h> 117 #include <vm/vm_pager.h> 118 #include <vm/vm_extern.h> 119 #include <vm/uma.h> 120 #include <vm/uma_int.h> 121 122 /* 123 * Associated with page of user-allocatable memory is a 124 * page structure. 125 */ 126 127 struct mtx vm_page_queue_mtx; 128 struct mtx vm_page_queue_free_mtx; 129 130 vm_page_t vm_page_array = 0; 131 int vm_page_array_size = 0; 132 long first_page = 0; 133 int vm_page_zero_count = 0; 134 135 /* 136 * vm_set_page_size: 137 * 138 * Sets the page size, perhaps based upon the memory 139 * size. Must be called before any use of page-size 140 * dependent functions. 141 */ 142 void 143 vm_set_page_size(void) 144 { 145 if (cnt.v_page_size == 0) 146 cnt.v_page_size = PAGE_SIZE; 147 if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0) 148 panic("vm_set_page_size: page size not a power of two"); 149 } 150 151 /* 152 * vm_page_startup: 153 * 154 * Initializes the resident memory module. 155 * 156 * Allocates memory for the page cells, and 157 * for the object/offset-to-page hash table headers. 158 * Each page cell is initialized and placed on the free list. 159 */ 160 vm_offset_t 161 vm_page_startup(vm_offset_t vaddr) 162 { 163 vm_offset_t mapped; 164 vm_size_t npages; 165 vm_paddr_t page_range; 166 vm_paddr_t new_end; 167 int i; 168 vm_paddr_t pa; 169 int nblocks; 170 vm_paddr_t last_pa; 171 172 /* the biggest memory array is the second group of pages */ 173 vm_paddr_t end; 174 vm_paddr_t biggestsize; 175 int biggestone; 176 177 vm_paddr_t total; 178 vm_size_t bootpages; 179 180 total = 0; 181 biggestsize = 0; 182 biggestone = 0; 183 nblocks = 0; 184 vaddr = round_page(vaddr); 185 186 for (i = 0; phys_avail[i + 1]; i += 2) { 187 phys_avail[i] = round_page(phys_avail[i]); 188 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 189 } 190 191 for (i = 0; phys_avail[i + 1]; i += 2) { 192 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 193 194 if (size > biggestsize) { 195 biggestone = i; 196 biggestsize = size; 197 } 198 ++nblocks; 199 total += size; 200 } 201 202 end = phys_avail[biggestone+1]; 203 204 /* 205 * Initialize the locks. 206 */ 207 mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF); 208 mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL, 209 MTX_SPIN); 210 211 /* 212 * Initialize the queue headers for the free queue, the active queue 213 * and the inactive queue. 214 */ 215 vm_pageq_init(); 216 217 /* 218 * Allocate memory for use when boot strapping the kernel memory 219 * allocator. 220 */ 221 bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE; 222 new_end = end - bootpages; 223 new_end = trunc_page(new_end); 224 mapped = pmap_map(&vaddr, new_end, end, 225 VM_PROT_READ | VM_PROT_WRITE); 226 bzero((caddr_t) mapped, end - new_end); 227 uma_startup((caddr_t)mapped); 228 229 /* 230 * Compute the number of pages of memory that will be available for 231 * use (taking into account the overhead of a page structure per 232 * page). 233 */ 234 first_page = phys_avail[0] / PAGE_SIZE; 235 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page; 236 npages = (total - (page_range * sizeof(struct vm_page)) - 237 (end - new_end)) / PAGE_SIZE; 238 end = new_end; 239 240 /* 241 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 242 */ 243 vaddr += PAGE_SIZE; 244 245 /* 246 * Initialize the mem entry structures now, and put them in the free 247 * queue. 248 */ 249 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 250 mapped = pmap_map(&vaddr, new_end, end, 251 VM_PROT_READ | VM_PROT_WRITE); 252 vm_page_array = (vm_page_t) mapped; 253 phys_avail[biggestone + 1] = new_end; 254 255 /* 256 * Clear all of the page structures 257 */ 258 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 259 vm_page_array_size = page_range; 260 261 /* 262 * Construct the free queue(s) in descending order (by physical 263 * address) so that the first 16MB of physical memory is allocated 264 * last rather than first. On large-memory machines, this avoids 265 * the exhaustion of low physical memory before isa_dmainit has run. 266 */ 267 cnt.v_page_count = 0; 268 cnt.v_free_count = 0; 269 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) { 270 pa = phys_avail[i]; 271 last_pa = phys_avail[i + 1]; 272 while (pa < last_pa && npages-- > 0) { 273 vm_pageq_add_new_page(pa); 274 pa += PAGE_SIZE; 275 } 276 } 277 return (vaddr); 278 } 279 280 void 281 vm_page_flag_set(vm_page_t m, unsigned short bits) 282 { 283 284 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 285 m->flags |= bits; 286 } 287 288 void 289 vm_page_flag_clear(vm_page_t m, unsigned short bits) 290 { 291 292 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 293 m->flags &= ~bits; 294 } 295 296 void 297 vm_page_busy(vm_page_t m) 298 { 299 KASSERT((m->flags & PG_BUSY) == 0, 300 ("vm_page_busy: page already busy!!!")); 301 vm_page_flag_set(m, PG_BUSY); 302 } 303 304 /* 305 * vm_page_flash: 306 * 307 * wakeup anyone waiting for the page. 308 */ 309 void 310 vm_page_flash(vm_page_t m) 311 { 312 if (m->flags & PG_WANTED) { 313 vm_page_flag_clear(m, PG_WANTED); 314 wakeup(m); 315 } 316 } 317 318 /* 319 * vm_page_wakeup: 320 * 321 * clear the PG_BUSY flag and wakeup anyone waiting for the 322 * page. 323 * 324 */ 325 void 326 vm_page_wakeup(vm_page_t m) 327 { 328 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!")); 329 vm_page_flag_clear(m, PG_BUSY); 330 vm_page_flash(m); 331 } 332 333 void 334 vm_page_io_start(vm_page_t m) 335 { 336 337 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 338 m->busy++; 339 } 340 341 void 342 vm_page_io_finish(vm_page_t m) 343 { 344 345 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 346 m->busy--; 347 if (m->busy == 0) 348 vm_page_flash(m); 349 } 350 351 /* 352 * Keep page from being freed by the page daemon 353 * much of the same effect as wiring, except much lower 354 * overhead and should be used only for *very* temporary 355 * holding ("wiring"). 356 */ 357 void 358 vm_page_hold(vm_page_t mem) 359 { 360 361 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 362 mem->hold_count++; 363 } 364 365 void 366 vm_page_unhold(vm_page_t mem) 367 { 368 369 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 370 --mem->hold_count; 371 KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!")); 372 if (mem->hold_count == 0 && mem->queue == PQ_HOLD) 373 vm_page_free_toq(mem); 374 } 375 376 /* 377 * vm_page_free: 378 * 379 * Free a page 380 * 381 * The clearing of PG_ZERO is a temporary safety until the code can be 382 * reviewed to determine that PG_ZERO is being properly cleared on 383 * write faults or maps. PG_ZERO was previously cleared in 384 * vm_page_alloc(). 385 */ 386 void 387 vm_page_free(vm_page_t m) 388 { 389 vm_page_flag_clear(m, PG_ZERO); 390 vm_page_free_toq(m); 391 vm_page_zero_idle_wakeup(); 392 } 393 394 /* 395 * vm_page_free_zero: 396 * 397 * Free a page to the zerod-pages queue 398 */ 399 void 400 vm_page_free_zero(vm_page_t m) 401 { 402 vm_page_flag_set(m, PG_ZERO); 403 vm_page_free_toq(m); 404 } 405 406 /* 407 * vm_page_sleep_if_busy: 408 * 409 * Sleep and release the page queues lock if PG_BUSY is set or, 410 * if also_m_busy is TRUE, busy is non-zero. Returns TRUE if the 411 * thread slept and the page queues lock was released. 412 * Otherwise, retains the page queues lock and returns FALSE. 413 */ 414 int 415 vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg) 416 { 417 int is_object_locked; 418 419 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 420 if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) { 421 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 422 /* 423 * Remove mtx_owned() after vm_object locking is finished. 424 */ 425 if ((is_object_locked = m->object != NULL && 426 mtx_owned(&m->object->mtx))) 427 mtx_unlock(&m->object->mtx); 428 msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0); 429 if (is_object_locked) 430 mtx_lock(&m->object->mtx); 431 return (TRUE); 432 } 433 return (FALSE); 434 } 435 436 /* 437 * vm_page_dirty: 438 * 439 * make page all dirty 440 */ 441 void 442 vm_page_dirty(vm_page_t m) 443 { 444 KASSERT(m->queue - m->pc != PQ_CACHE, 445 ("vm_page_dirty: page in cache!")); 446 KASSERT(m->queue - m->pc != PQ_FREE, 447 ("vm_page_dirty: page is free!")); 448 m->dirty = VM_PAGE_BITS_ALL; 449 } 450 451 /* 452 * vm_page_splay: 453 * 454 * Implements Sleator and Tarjan's top-down splay algorithm. Returns 455 * the vm_page containing the given pindex. If, however, that 456 * pindex is not found in the vm_object, returns a vm_page that is 457 * adjacent to the pindex, coming before or after it. 458 */ 459 vm_page_t 460 vm_page_splay(vm_pindex_t pindex, vm_page_t root) 461 { 462 struct vm_page dummy; 463 vm_page_t lefttreemax, righttreemin, y; 464 465 if (root == NULL) 466 return (root); 467 lefttreemax = righttreemin = &dummy; 468 for (;; root = y) { 469 if (pindex < root->pindex) { 470 if ((y = root->left) == NULL) 471 break; 472 if (pindex < y->pindex) { 473 /* Rotate right. */ 474 root->left = y->right; 475 y->right = root; 476 root = y; 477 if ((y = root->left) == NULL) 478 break; 479 } 480 /* Link into the new root's right tree. */ 481 righttreemin->left = root; 482 righttreemin = root; 483 } else if (pindex > root->pindex) { 484 if ((y = root->right) == NULL) 485 break; 486 if (pindex > y->pindex) { 487 /* Rotate left. */ 488 root->right = y->left; 489 y->left = root; 490 root = y; 491 if ((y = root->right) == NULL) 492 break; 493 } 494 /* Link into the new root's left tree. */ 495 lefttreemax->right = root; 496 lefttreemax = root; 497 } else 498 break; 499 } 500 /* Assemble the new root. */ 501 lefttreemax->right = root->left; 502 righttreemin->left = root->right; 503 root->left = dummy.right; 504 root->right = dummy.left; 505 return (root); 506 } 507 508 /* 509 * vm_page_insert: [ internal use only ] 510 * 511 * Inserts the given mem entry into the object and object list. 512 * 513 * The pagetables are not updated but will presumably fault the page 514 * in if necessary, or if a kernel page the caller will at some point 515 * enter the page into the kernel's pmap. We are not allowed to block 516 * here so we *can't* do this anyway. 517 * 518 * The object and page must be locked, and must be splhigh. 519 * This routine may not block. 520 */ 521 void 522 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 523 { 524 vm_page_t root; 525 526 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 527 if (m->object != NULL) 528 panic("vm_page_insert: page already inserted"); 529 530 /* 531 * Record the object/offset pair in this page 532 */ 533 m->object = object; 534 m->pindex = pindex; 535 536 /* 537 * Now link into the object's ordered list of backed pages. 538 */ 539 root = object->root; 540 if (root == NULL) { 541 m->left = NULL; 542 m->right = NULL; 543 TAILQ_INSERT_TAIL(&object->memq, m, listq); 544 } else { 545 root = vm_page_splay(pindex, root); 546 if (pindex < root->pindex) { 547 m->left = root->left; 548 m->right = root; 549 root->left = NULL; 550 TAILQ_INSERT_BEFORE(root, m, listq); 551 } else if (pindex == root->pindex) 552 panic("vm_page_insert: offset already allocated"); 553 else { 554 m->right = root->right; 555 m->left = root; 556 root->right = NULL; 557 TAILQ_INSERT_AFTER(&object->memq, root, m, listq); 558 } 559 } 560 object->root = m; 561 object->generation++; 562 563 /* 564 * show that the object has one more resident page. 565 */ 566 object->resident_page_count++; 567 568 /* 569 * Since we are inserting a new and possibly dirty page, 570 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags. 571 */ 572 if (m->flags & PG_WRITEABLE) 573 vm_object_set_writeable_dirty(object); 574 } 575 576 /* 577 * vm_page_remove: 578 * NOTE: used by device pager as well -wfj 579 * 580 * Removes the given mem entry from the object/offset-page 581 * table and the object page list, but do not invalidate/terminate 582 * the backing store. 583 * 584 * The object and page must be locked, and at splhigh. 585 * The underlying pmap entry (if any) is NOT removed here. 586 * This routine may not block. 587 */ 588 void 589 vm_page_remove(vm_page_t m) 590 { 591 vm_object_t object; 592 vm_page_t root; 593 594 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 595 if (m->object == NULL) 596 return; 597 #ifndef __alpha__ 598 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 599 #endif 600 if ((m->flags & PG_BUSY) == 0) { 601 panic("vm_page_remove: page not busy"); 602 } 603 604 /* 605 * Basically destroy the page. 606 */ 607 vm_page_wakeup(m); 608 609 object = m->object; 610 611 /* 612 * Now remove from the object's list of backed pages. 613 */ 614 if (m != object->root) 615 vm_page_splay(m->pindex, object->root); 616 if (m->left == NULL) 617 root = m->right; 618 else { 619 root = vm_page_splay(m->pindex, m->left); 620 root->right = m->right; 621 } 622 object->root = root; 623 TAILQ_REMOVE(&object->memq, m, listq); 624 625 /* 626 * And show that the object has one fewer resident page. 627 */ 628 object->resident_page_count--; 629 object->generation++; 630 631 m->object = NULL; 632 } 633 634 /* 635 * vm_page_lookup: 636 * 637 * Returns the page associated with the object/offset 638 * pair specified; if none is found, NULL is returned. 639 * 640 * The object must be locked. 641 * This routine may not block. 642 * This is a critical path routine 643 */ 644 vm_page_t 645 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 646 { 647 vm_page_t m; 648 649 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 650 if ((m = object->root) != NULL && m->pindex != pindex) { 651 m = vm_page_splay(pindex, m); 652 if ((object->root = m)->pindex != pindex) 653 m = NULL; 654 } 655 return (m); 656 } 657 658 /* 659 * vm_page_rename: 660 * 661 * Move the given memory entry from its 662 * current object to the specified target object/offset. 663 * 664 * The object must be locked. 665 * This routine may not block. 666 * 667 * Note: this routine will raise itself to splvm(), the caller need not. 668 * 669 * Note: swap associated with the page must be invalidated by the move. We 670 * have to do this for several reasons: (1) we aren't freeing the 671 * page, (2) we are dirtying the page, (3) the VM system is probably 672 * moving the page from object A to B, and will then later move 673 * the backing store from A to B and we can't have a conflict. 674 * 675 * Note: we *always* dirty the page. It is necessary both for the 676 * fact that we moved it, and because we may be invalidating 677 * swap. If the page is on the cache, we have to deactivate it 678 * or vm_page_dirty() will panic. Dirty pages are not allowed 679 * on the cache. 680 */ 681 void 682 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 683 { 684 int s; 685 686 s = splvm(); 687 vm_page_remove(m); 688 vm_page_insert(m, new_object, new_pindex); 689 if (m->queue - m->pc == PQ_CACHE) 690 vm_page_deactivate(m); 691 vm_page_dirty(m); 692 splx(s); 693 } 694 695 /* 696 * vm_page_select_cache: 697 * 698 * Find a page on the cache queue with color optimization. As pages 699 * might be found, but not applicable, they are deactivated. This 700 * keeps us from using potentially busy cached pages. 701 * 702 * This routine must be called at splvm(). 703 * This routine may not block. 704 */ 705 vm_page_t 706 vm_page_select_cache(int color) 707 { 708 vm_page_t m; 709 710 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 711 while ((m = vm_pageq_find(PQ_CACHE, color, FALSE)) != NULL) { 712 if ((m->flags & PG_BUSY) == 0 && m->busy == 0 && 713 m->hold_count == 0 && (VM_OBJECT_TRYLOCK(m->object) || 714 VM_OBJECT_LOCKED(m->object))) { 715 KASSERT(m->dirty == 0, 716 ("Found dirty cache page %p", m)); 717 KASSERT(!pmap_page_is_mapped(m), 718 ("Found mapped cache page %p", m)); 719 KASSERT((m->flags & PG_UNMANAGED) == 0, 720 ("Found unmanaged cache page %p", m)); 721 KASSERT(m->wire_count == 0, 722 ("Found wired cache page %p", m)); 723 break; 724 } 725 vm_page_deactivate(m); 726 } 727 return (m); 728 } 729 730 /* 731 * vm_page_alloc: 732 * 733 * Allocate and return a memory cell associated 734 * with this VM object/offset pair. 735 * 736 * page_req classes: 737 * VM_ALLOC_NORMAL normal process request 738 * VM_ALLOC_SYSTEM system *really* needs a page 739 * VM_ALLOC_INTERRUPT interrupt time request 740 * VM_ALLOC_ZERO zero page 741 * 742 * This routine may not block. 743 * 744 * Additional special handling is required when called from an 745 * interrupt (VM_ALLOC_INTERRUPT). We are not allowed to mess with 746 * the page cache in this case. 747 */ 748 vm_page_t 749 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 750 { 751 vm_object_t m_object; 752 vm_page_t m = NULL; 753 int color, flags, page_req, s; 754 755 page_req = req & VM_ALLOC_CLASS_MASK; 756 757 if ((req & VM_ALLOC_NOOBJ) == 0) { 758 KASSERT(object != NULL, 759 ("vm_page_alloc: NULL object.")); 760 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 761 color = (pindex + object->pg_color) & PQ_L2_MASK; 762 } else 763 color = pindex & PQ_L2_MASK; 764 765 /* 766 * The pager is allowed to eat deeper into the free page list. 767 */ 768 if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) { 769 page_req = VM_ALLOC_SYSTEM; 770 }; 771 772 s = splvm(); 773 loop: 774 mtx_lock_spin(&vm_page_queue_free_mtx); 775 if (cnt.v_free_count > cnt.v_free_reserved || 776 (page_req == VM_ALLOC_SYSTEM && 777 cnt.v_cache_count == 0 && 778 cnt.v_free_count > cnt.v_interrupt_free_min) || 779 (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) { 780 /* 781 * Allocate from the free queue if the number of free pages 782 * exceeds the minimum for the request class. 783 */ 784 m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0); 785 } else if (page_req != VM_ALLOC_INTERRUPT) { 786 mtx_unlock_spin(&vm_page_queue_free_mtx); 787 /* 788 * Allocatable from cache (non-interrupt only). On success, 789 * we must free the page and try again, thus ensuring that 790 * cnt.v_*_free_min counters are replenished. 791 */ 792 vm_page_lock_queues(); 793 if ((m = vm_page_select_cache(color)) == NULL) { 794 vm_page_unlock_queues(); 795 splx(s); 796 #if defined(DIAGNOSTIC) 797 if (cnt.v_cache_count > 0) 798 printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count); 799 #endif 800 atomic_add_int(&vm_pageout_deficit, 1); 801 pagedaemon_wakeup(); 802 return (NULL); 803 } 804 m_object = m->object; 805 VM_OBJECT_LOCK_ASSERT(m_object, MA_OWNED); 806 vm_page_busy(m); 807 vm_page_free(m); 808 vm_page_unlock_queues(); 809 if (m_object != object) 810 VM_OBJECT_UNLOCK(m_object); 811 goto loop; 812 } else { 813 /* 814 * Not allocatable from cache from interrupt, give up. 815 */ 816 mtx_unlock_spin(&vm_page_queue_free_mtx); 817 splx(s); 818 atomic_add_int(&vm_pageout_deficit, 1); 819 pagedaemon_wakeup(); 820 return (NULL); 821 } 822 823 /* 824 * At this point we had better have found a good page. 825 */ 826 827 KASSERT( 828 m != NULL, 829 ("vm_page_alloc(): missing page on free queue\n") 830 ); 831 832 /* 833 * Remove from free queue 834 */ 835 836 vm_pageq_remove_nowakeup(m); 837 838 /* 839 * Initialize structure. Only the PG_ZERO flag is inherited. 840 */ 841 flags = PG_BUSY; 842 if (m->flags & PG_ZERO) { 843 vm_page_zero_count--; 844 if (req & VM_ALLOC_ZERO) 845 flags = PG_ZERO | PG_BUSY; 846 } 847 m->flags = flags; 848 if (req & VM_ALLOC_WIRED) { 849 atomic_add_int(&cnt.v_wire_count, 1); 850 m->wire_count = 1; 851 } else 852 m->wire_count = 0; 853 m->hold_count = 0; 854 m->act_count = 0; 855 m->busy = 0; 856 m->valid = 0; 857 KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m)); 858 mtx_unlock_spin(&vm_page_queue_free_mtx); 859 860 /* 861 * vm_page_insert() is safe prior to the splx(). Note also that 862 * inserting a page here does not insert it into the pmap (which 863 * could cause us to block allocating memory). We cannot block 864 * anywhere. 865 */ 866 if ((req & VM_ALLOC_NOOBJ) == 0) 867 vm_page_insert(m, object, pindex); 868 else 869 m->pindex = pindex; 870 871 /* 872 * Don't wakeup too often - wakeup the pageout daemon when 873 * we would be nearly out of memory. 874 */ 875 if (vm_paging_needed()) 876 pagedaemon_wakeup(); 877 878 splx(s); 879 return (m); 880 } 881 882 /* 883 * vm_wait: (also see VM_WAIT macro) 884 * 885 * Block until free pages are available for allocation 886 * - Called in various places before memory allocations. 887 */ 888 void 889 vm_wait(void) 890 { 891 int s; 892 893 s = splvm(); 894 vm_page_lock_queues(); 895 if (curproc == pageproc) { 896 vm_pageout_pages_needed = 1; 897 msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx, 898 PDROP | PSWP, "VMWait", 0); 899 } else { 900 if (!vm_pages_needed) { 901 vm_pages_needed = 1; 902 wakeup(&vm_pages_needed); 903 } 904 msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM, 905 "vmwait", 0); 906 } 907 splx(s); 908 } 909 910 /* 911 * vm_waitpfault: (also see VM_WAITPFAULT macro) 912 * 913 * Block until free pages are available for allocation 914 * - Called only in vm_fault so that processes page faulting 915 * can be easily tracked. 916 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 917 * processes will be able to grab memory first. Do not change 918 * this balance without careful testing first. 919 */ 920 void 921 vm_waitpfault(void) 922 { 923 int s; 924 925 s = splvm(); 926 vm_page_lock_queues(); 927 if (!vm_pages_needed) { 928 vm_pages_needed = 1; 929 wakeup(&vm_pages_needed); 930 } 931 msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER, 932 "pfault", 0); 933 splx(s); 934 } 935 936 /* 937 * vm_page_activate: 938 * 939 * Put the specified page on the active list (if appropriate). 940 * Ensure that act_count is at least ACT_INIT but do not otherwise 941 * mess with it. 942 * 943 * The page queues must be locked. 944 * This routine may not block. 945 */ 946 void 947 vm_page_activate(vm_page_t m) 948 { 949 int s; 950 951 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 952 s = splvm(); 953 if (m->queue != PQ_ACTIVE) { 954 if ((m->queue - m->pc) == PQ_CACHE) 955 cnt.v_reactivated++; 956 vm_pageq_remove(m); 957 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 958 if (m->act_count < ACT_INIT) 959 m->act_count = ACT_INIT; 960 vm_pageq_enqueue(PQ_ACTIVE, m); 961 } 962 } else { 963 if (m->act_count < ACT_INIT) 964 m->act_count = ACT_INIT; 965 } 966 splx(s); 967 } 968 969 /* 970 * vm_page_free_wakeup: 971 * 972 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 973 * routine is called when a page has been added to the cache or free 974 * queues. 975 * 976 * This routine may not block. 977 * This routine must be called at splvm() 978 */ 979 static __inline void 980 vm_page_free_wakeup(void) 981 { 982 983 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 984 /* 985 * if pageout daemon needs pages, then tell it that there are 986 * some free. 987 */ 988 if (vm_pageout_pages_needed && 989 cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) { 990 wakeup(&vm_pageout_pages_needed); 991 vm_pageout_pages_needed = 0; 992 } 993 /* 994 * wakeup processes that are waiting on memory if we hit a 995 * high water mark. And wakeup scheduler process if we have 996 * lots of memory. this process will swapin processes. 997 */ 998 if (vm_pages_needed && !vm_page_count_min()) { 999 vm_pages_needed = 0; 1000 wakeup(&cnt.v_free_count); 1001 } 1002 } 1003 1004 /* 1005 * vm_page_free_toq: 1006 * 1007 * Returns the given page to the PQ_FREE list, 1008 * disassociating it with any VM object. 1009 * 1010 * Object and page must be locked prior to entry. 1011 * This routine may not block. 1012 */ 1013 1014 void 1015 vm_page_free_toq(vm_page_t m) 1016 { 1017 int s; 1018 struct vpgqueues *pq; 1019 vm_object_t object = m->object; 1020 1021 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1022 s = splvm(); 1023 cnt.v_tfree++; 1024 1025 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) { 1026 printf( 1027 "vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n", 1028 (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0, 1029 m->hold_count); 1030 if ((m->queue - m->pc) == PQ_FREE) 1031 panic("vm_page_free: freeing free page"); 1032 else 1033 panic("vm_page_free: freeing busy page"); 1034 } 1035 1036 /* 1037 * unqueue, then remove page. Note that we cannot destroy 1038 * the page here because we do not want to call the pager's 1039 * callback routine until after we've put the page on the 1040 * appropriate free queue. 1041 */ 1042 vm_pageq_remove_nowakeup(m); 1043 vm_page_remove(m); 1044 1045 /* 1046 * If fictitious remove object association and 1047 * return, otherwise delay object association removal. 1048 */ 1049 if ((m->flags & PG_FICTITIOUS) != 0) { 1050 splx(s); 1051 return; 1052 } 1053 1054 m->valid = 0; 1055 vm_page_undirty(m); 1056 1057 if (m->wire_count != 0) { 1058 if (m->wire_count > 1) { 1059 panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx", 1060 m->wire_count, (long)m->pindex); 1061 } 1062 panic("vm_page_free: freeing wired page\n"); 1063 } 1064 1065 /* 1066 * If we've exhausted the object's resident pages we want to free 1067 * it up. 1068 */ 1069 if (object && 1070 (object->type == OBJT_VNODE) && 1071 ((object->flags & OBJ_DEAD) == 0) 1072 ) { 1073 struct vnode *vp = (struct vnode *)object->handle; 1074 1075 if (vp) { 1076 VI_LOCK(vp); 1077 if (VSHOULDFREE(vp)) 1078 vfree(vp); 1079 VI_UNLOCK(vp); 1080 } 1081 } 1082 1083 /* 1084 * Clear the UNMANAGED flag when freeing an unmanaged page. 1085 */ 1086 if (m->flags & PG_UNMANAGED) { 1087 m->flags &= ~PG_UNMANAGED; 1088 } 1089 1090 if (m->hold_count != 0) { 1091 m->flags &= ~PG_ZERO; 1092 m->queue = PQ_HOLD; 1093 } else 1094 m->queue = PQ_FREE + m->pc; 1095 pq = &vm_page_queues[m->queue]; 1096 mtx_lock_spin(&vm_page_queue_free_mtx); 1097 pq->lcnt++; 1098 ++(*pq->cnt); 1099 1100 /* 1101 * Put zero'd pages on the end ( where we look for zero'd pages 1102 * first ) and non-zerod pages at the head. 1103 */ 1104 if (m->flags & PG_ZERO) { 1105 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 1106 ++vm_page_zero_count; 1107 } else { 1108 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 1109 } 1110 mtx_unlock_spin(&vm_page_queue_free_mtx); 1111 vm_page_free_wakeup(); 1112 splx(s); 1113 } 1114 1115 /* 1116 * vm_page_unmanage: 1117 * 1118 * Prevent PV management from being done on the page. The page is 1119 * removed from the paging queues as if it were wired, and as a 1120 * consequence of no longer being managed the pageout daemon will not 1121 * touch it (since there is no way to locate the pte mappings for the 1122 * page). madvise() calls that mess with the pmap will also no longer 1123 * operate on the page. 1124 * 1125 * Beyond that the page is still reasonably 'normal'. Freeing the page 1126 * will clear the flag. 1127 * 1128 * This routine is used by OBJT_PHYS objects - objects using unswappable 1129 * physical memory as backing store rather then swap-backed memory and 1130 * will eventually be extended to support 4MB unmanaged physical 1131 * mappings. 1132 */ 1133 void 1134 vm_page_unmanage(vm_page_t m) 1135 { 1136 int s; 1137 1138 s = splvm(); 1139 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1140 if ((m->flags & PG_UNMANAGED) == 0) { 1141 if (m->wire_count == 0) 1142 vm_pageq_remove(m); 1143 } 1144 vm_page_flag_set(m, PG_UNMANAGED); 1145 splx(s); 1146 } 1147 1148 /* 1149 * vm_page_wire: 1150 * 1151 * Mark this page as wired down by yet 1152 * another map, removing it from paging queues 1153 * as necessary. 1154 * 1155 * The page queues must be locked. 1156 * This routine may not block. 1157 */ 1158 void 1159 vm_page_wire(vm_page_t m) 1160 { 1161 int s; 1162 1163 /* 1164 * Only bump the wire statistics if the page is not already wired, 1165 * and only unqueue the page if it is on some queue (if it is unmanaged 1166 * it is already off the queues). 1167 */ 1168 s = splvm(); 1169 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1170 if (m->wire_count == 0) { 1171 if ((m->flags & PG_UNMANAGED) == 0) 1172 vm_pageq_remove(m); 1173 atomic_add_int(&cnt.v_wire_count, 1); 1174 } 1175 m->wire_count++; 1176 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 1177 splx(s); 1178 } 1179 1180 /* 1181 * vm_page_unwire: 1182 * 1183 * Release one wiring of this page, potentially 1184 * enabling it to be paged again. 1185 * 1186 * Many pages placed on the inactive queue should actually go 1187 * into the cache, but it is difficult to figure out which. What 1188 * we do instead, if the inactive target is well met, is to put 1189 * clean pages at the head of the inactive queue instead of the tail. 1190 * This will cause them to be moved to the cache more quickly and 1191 * if not actively re-referenced, freed more quickly. If we just 1192 * stick these pages at the end of the inactive queue, heavy filesystem 1193 * meta-data accesses can cause an unnecessary paging load on memory bound 1194 * processes. This optimization causes one-time-use metadata to be 1195 * reused more quickly. 1196 * 1197 * BUT, if we are in a low-memory situation we have no choice but to 1198 * put clean pages on the cache queue. 1199 * 1200 * A number of routines use vm_page_unwire() to guarantee that the page 1201 * will go into either the inactive or active queues, and will NEVER 1202 * be placed in the cache - for example, just after dirtying a page. 1203 * dirty pages in the cache are not allowed. 1204 * 1205 * The page queues must be locked. 1206 * This routine may not block. 1207 */ 1208 void 1209 vm_page_unwire(vm_page_t m, int activate) 1210 { 1211 int s; 1212 1213 s = splvm(); 1214 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1215 if (m->wire_count > 0) { 1216 m->wire_count--; 1217 if (m->wire_count == 0) { 1218 atomic_subtract_int(&cnt.v_wire_count, 1); 1219 if (m->flags & PG_UNMANAGED) { 1220 ; 1221 } else if (activate) 1222 vm_pageq_enqueue(PQ_ACTIVE, m); 1223 else { 1224 vm_page_flag_clear(m, PG_WINATCFLS); 1225 vm_pageq_enqueue(PQ_INACTIVE, m); 1226 } 1227 } 1228 } else { 1229 panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count); 1230 } 1231 splx(s); 1232 } 1233 1234 1235 /* 1236 * Move the specified page to the inactive queue. If the page has 1237 * any associated swap, the swap is deallocated. 1238 * 1239 * Normally athead is 0 resulting in LRU operation. athead is set 1240 * to 1 if we want this page to be 'as if it were placed in the cache', 1241 * except without unmapping it from the process address space. 1242 * 1243 * This routine may not block. 1244 */ 1245 static __inline void 1246 _vm_page_deactivate(vm_page_t m, int athead) 1247 { 1248 int s; 1249 1250 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1251 /* 1252 * Ignore if already inactive. 1253 */ 1254 if (m->queue == PQ_INACTIVE) 1255 return; 1256 1257 s = splvm(); 1258 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1259 if ((m->queue - m->pc) == PQ_CACHE) 1260 cnt.v_reactivated++; 1261 vm_page_flag_clear(m, PG_WINATCFLS); 1262 vm_pageq_remove(m); 1263 if (athead) 1264 TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1265 else 1266 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1267 m->queue = PQ_INACTIVE; 1268 vm_page_queues[PQ_INACTIVE].lcnt++; 1269 cnt.v_inactive_count++; 1270 } 1271 splx(s); 1272 } 1273 1274 void 1275 vm_page_deactivate(vm_page_t m) 1276 { 1277 _vm_page_deactivate(m, 0); 1278 } 1279 1280 /* 1281 * vm_page_try_to_cache: 1282 * 1283 * Returns 0 on failure, 1 on success 1284 */ 1285 int 1286 vm_page_try_to_cache(vm_page_t m) 1287 { 1288 1289 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1290 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1291 (m->flags & (PG_BUSY|PG_UNMANAGED))) { 1292 return (0); 1293 } 1294 pmap_remove_all(m); 1295 if (m->dirty) 1296 return (0); 1297 vm_page_cache(m); 1298 return (1); 1299 } 1300 1301 /* 1302 * vm_page_try_to_free() 1303 * 1304 * Attempt to free the page. If we cannot free it, we do nothing. 1305 * 1 is returned on success, 0 on failure. 1306 */ 1307 int 1308 vm_page_try_to_free(vm_page_t m) 1309 { 1310 1311 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1312 if (m->object != NULL) 1313 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1314 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1315 (m->flags & (PG_BUSY|PG_UNMANAGED))) { 1316 return (0); 1317 } 1318 pmap_remove_all(m); 1319 if (m->dirty) 1320 return (0); 1321 vm_page_busy(m); 1322 vm_page_free(m); 1323 return (1); 1324 } 1325 1326 /* 1327 * vm_page_cache 1328 * 1329 * Put the specified page onto the page cache queue (if appropriate). 1330 * 1331 * This routine may not block. 1332 */ 1333 void 1334 vm_page_cache(vm_page_t m) 1335 { 1336 int s; 1337 1338 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1339 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || 1340 m->hold_count || m->wire_count) { 1341 printf("vm_page_cache: attempting to cache busy page\n"); 1342 return; 1343 } 1344 if ((m->queue - m->pc) == PQ_CACHE) 1345 return; 1346 1347 /* 1348 * Remove all pmaps and indicate that the page is not 1349 * writeable or mapped. 1350 */ 1351 pmap_remove_all(m); 1352 if (m->dirty != 0) { 1353 panic("vm_page_cache: caching a dirty page, pindex: %ld", 1354 (long)m->pindex); 1355 } 1356 s = splvm(); 1357 vm_pageq_remove_nowakeup(m); 1358 vm_pageq_enqueue(PQ_CACHE + m->pc, m); 1359 vm_page_free_wakeup(); 1360 splx(s); 1361 } 1362 1363 /* 1364 * vm_page_dontneed 1365 * 1366 * Cache, deactivate, or do nothing as appropriate. This routine 1367 * is typically used by madvise() MADV_DONTNEED. 1368 * 1369 * Generally speaking we want to move the page into the cache so 1370 * it gets reused quickly. However, this can result in a silly syndrome 1371 * due to the page recycling too quickly. Small objects will not be 1372 * fully cached. On the otherhand, if we move the page to the inactive 1373 * queue we wind up with a problem whereby very large objects 1374 * unnecessarily blow away our inactive and cache queues. 1375 * 1376 * The solution is to move the pages based on a fixed weighting. We 1377 * either leave them alone, deactivate them, or move them to the cache, 1378 * where moving them to the cache has the highest weighting. 1379 * By forcing some pages into other queues we eventually force the 1380 * system to balance the queues, potentially recovering other unrelated 1381 * space from active. The idea is to not force this to happen too 1382 * often. 1383 */ 1384 void 1385 vm_page_dontneed(vm_page_t m) 1386 { 1387 static int dnweight; 1388 int dnw; 1389 int head; 1390 1391 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1392 dnw = ++dnweight; 1393 1394 /* 1395 * occassionally leave the page alone 1396 */ 1397 if ((dnw & 0x01F0) == 0 || 1398 m->queue == PQ_INACTIVE || 1399 m->queue - m->pc == PQ_CACHE 1400 ) { 1401 if (m->act_count >= ACT_INIT) 1402 --m->act_count; 1403 return; 1404 } 1405 1406 if (m->dirty == 0 && pmap_is_modified(m)) 1407 vm_page_dirty(m); 1408 1409 if (m->dirty || (dnw & 0x0070) == 0) { 1410 /* 1411 * Deactivate the page 3 times out of 32. 1412 */ 1413 head = 0; 1414 } else { 1415 /* 1416 * Cache the page 28 times out of every 32. Note that 1417 * the page is deactivated instead of cached, but placed 1418 * at the head of the queue instead of the tail. 1419 */ 1420 head = 1; 1421 } 1422 _vm_page_deactivate(m, head); 1423 } 1424 1425 /* 1426 * Grab a page, waiting until we are waken up due to the page 1427 * changing state. We keep on waiting, if the page continues 1428 * to be in the object. If the page doesn't exist, first allocate it 1429 * and then conditionally zero it. 1430 * 1431 * This routine may block. 1432 */ 1433 vm_page_t 1434 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 1435 { 1436 vm_page_t m; 1437 1438 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1439 retrylookup: 1440 if ((m = vm_page_lookup(object, pindex)) != NULL) { 1441 vm_page_lock_queues(); 1442 if (m->busy || (m->flags & PG_BUSY)) { 1443 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 1444 VM_OBJECT_UNLOCK(object); 1445 msleep(m, &vm_page_queue_mtx, PDROP | PVM, "pgrbwt", 0); 1446 VM_OBJECT_LOCK(object); 1447 if ((allocflags & VM_ALLOC_RETRY) == 0) 1448 return (NULL); 1449 goto retrylookup; 1450 } else { 1451 if (allocflags & VM_ALLOC_WIRED) 1452 vm_page_wire(m); 1453 vm_page_busy(m); 1454 vm_page_unlock_queues(); 1455 return (m); 1456 } 1457 } 1458 m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY); 1459 if (m == NULL) { 1460 VM_OBJECT_UNLOCK(object); 1461 VM_WAIT; 1462 VM_OBJECT_LOCK(object); 1463 if ((allocflags & VM_ALLOC_RETRY) == 0) 1464 return (NULL); 1465 goto retrylookup; 1466 } 1467 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 1468 pmap_zero_page(m); 1469 return (m); 1470 } 1471 1472 /* 1473 * Mapping function for valid bits or for dirty bits in 1474 * a page. May not block. 1475 * 1476 * Inputs are required to range within a page. 1477 */ 1478 __inline int 1479 vm_page_bits(int base, int size) 1480 { 1481 int first_bit; 1482 int last_bit; 1483 1484 KASSERT( 1485 base + size <= PAGE_SIZE, 1486 ("vm_page_bits: illegal base/size %d/%d", base, size) 1487 ); 1488 1489 if (size == 0) /* handle degenerate case */ 1490 return (0); 1491 1492 first_bit = base >> DEV_BSHIFT; 1493 last_bit = (base + size - 1) >> DEV_BSHIFT; 1494 1495 return ((2 << last_bit) - (1 << first_bit)); 1496 } 1497 1498 /* 1499 * vm_page_set_validclean: 1500 * 1501 * Sets portions of a page valid and clean. The arguments are expected 1502 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 1503 * of any partial chunks touched by the range. The invalid portion of 1504 * such chunks will be zero'd. 1505 * 1506 * This routine may not block. 1507 * 1508 * (base + size) must be less then or equal to PAGE_SIZE. 1509 */ 1510 void 1511 vm_page_set_validclean(vm_page_t m, int base, int size) 1512 { 1513 int pagebits; 1514 int frag; 1515 int endoff; 1516 1517 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1518 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1519 if (size == 0) /* handle degenerate case */ 1520 return; 1521 1522 /* 1523 * If the base is not DEV_BSIZE aligned and the valid 1524 * bit is clear, we have to zero out a portion of the 1525 * first block. 1526 */ 1527 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 1528 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 1529 pmap_zero_page_area(m, frag, base - frag); 1530 1531 /* 1532 * If the ending offset is not DEV_BSIZE aligned and the 1533 * valid bit is clear, we have to zero out a portion of 1534 * the last block. 1535 */ 1536 endoff = base + size; 1537 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 1538 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 1539 pmap_zero_page_area(m, endoff, 1540 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 1541 1542 /* 1543 * Set valid, clear dirty bits. If validating the entire 1544 * page we can safely clear the pmap modify bit. We also 1545 * use this opportunity to clear the PG_NOSYNC flag. If a process 1546 * takes a write fault on a MAP_NOSYNC memory area the flag will 1547 * be set again. 1548 * 1549 * We set valid bits inclusive of any overlap, but we can only 1550 * clear dirty bits for DEV_BSIZE chunks that are fully within 1551 * the range. 1552 */ 1553 pagebits = vm_page_bits(base, size); 1554 m->valid |= pagebits; 1555 #if 0 /* NOT YET */ 1556 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 1557 frag = DEV_BSIZE - frag; 1558 base += frag; 1559 size -= frag; 1560 if (size < 0) 1561 size = 0; 1562 } 1563 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 1564 #endif 1565 m->dirty &= ~pagebits; 1566 if (base == 0 && size == PAGE_SIZE) { 1567 pmap_clear_modify(m); 1568 vm_page_flag_clear(m, PG_NOSYNC); 1569 } 1570 } 1571 1572 void 1573 vm_page_clear_dirty(vm_page_t m, int base, int size) 1574 { 1575 1576 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1577 m->dirty &= ~vm_page_bits(base, size); 1578 } 1579 1580 /* 1581 * vm_page_set_invalid: 1582 * 1583 * Invalidates DEV_BSIZE'd chunks within a page. Both the 1584 * valid and dirty bits for the effected areas are cleared. 1585 * 1586 * May not block. 1587 */ 1588 void 1589 vm_page_set_invalid(vm_page_t m, int base, int size) 1590 { 1591 int bits; 1592 1593 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1594 bits = vm_page_bits(base, size); 1595 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1596 m->valid &= ~bits; 1597 m->dirty &= ~bits; 1598 m->object->generation++; 1599 } 1600 1601 /* 1602 * vm_page_zero_invalid() 1603 * 1604 * The kernel assumes that the invalid portions of a page contain 1605 * garbage, but such pages can be mapped into memory by user code. 1606 * When this occurs, we must zero out the non-valid portions of the 1607 * page so user code sees what it expects. 1608 * 1609 * Pages are most often semi-valid when the end of a file is mapped 1610 * into memory and the file's size is not page aligned. 1611 */ 1612 void 1613 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 1614 { 1615 int b; 1616 int i; 1617 1618 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1619 /* 1620 * Scan the valid bits looking for invalid sections that 1621 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 1622 * valid bit may be set ) have already been zerod by 1623 * vm_page_set_validclean(). 1624 */ 1625 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 1626 if (i == (PAGE_SIZE / DEV_BSIZE) || 1627 (m->valid & (1 << i)) 1628 ) { 1629 if (i > b) { 1630 pmap_zero_page_area(m, 1631 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 1632 } 1633 b = i + 1; 1634 } 1635 } 1636 1637 /* 1638 * setvalid is TRUE when we can safely set the zero'd areas 1639 * as being valid. We can do this if there are no cache consistancy 1640 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 1641 */ 1642 if (setvalid) 1643 m->valid = VM_PAGE_BITS_ALL; 1644 } 1645 1646 /* 1647 * vm_page_is_valid: 1648 * 1649 * Is (partial) page valid? Note that the case where size == 0 1650 * will return FALSE in the degenerate case where the page is 1651 * entirely invalid, and TRUE otherwise. 1652 * 1653 * May not block. 1654 */ 1655 int 1656 vm_page_is_valid(vm_page_t m, int base, int size) 1657 { 1658 int bits = vm_page_bits(base, size); 1659 1660 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1661 if (m->valid && ((m->valid & bits) == bits)) 1662 return 1; 1663 else 1664 return 0; 1665 } 1666 1667 /* 1668 * update dirty bits from pmap/mmu. May not block. 1669 */ 1670 void 1671 vm_page_test_dirty(vm_page_t m) 1672 { 1673 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) { 1674 vm_page_dirty(m); 1675 } 1676 } 1677 1678 int so_zerocp_fullpage = 0; 1679 1680 void 1681 vm_page_cowfault(vm_page_t m) 1682 { 1683 vm_page_t mnew; 1684 vm_object_t object; 1685 vm_pindex_t pindex; 1686 1687 object = m->object; 1688 pindex = m->pindex; 1689 vm_page_busy(m); 1690 1691 retry_alloc: 1692 vm_page_remove(m); 1693 /* 1694 * An interrupt allocation is requested because the page 1695 * queues lock is held. 1696 */ 1697 mnew = vm_page_alloc(object, pindex, VM_ALLOC_INTERRUPT); 1698 if (mnew == NULL) { 1699 vm_page_insert(m, object, pindex); 1700 vm_page_unlock_queues(); 1701 VM_OBJECT_UNLOCK(object); 1702 VM_WAIT; 1703 VM_OBJECT_LOCK(object); 1704 vm_page_lock_queues(); 1705 goto retry_alloc; 1706 } 1707 1708 if (m->cow == 0) { 1709 /* 1710 * check to see if we raced with an xmit complete when 1711 * waiting to allocate a page. If so, put things back 1712 * the way they were 1713 */ 1714 vm_page_busy(mnew); 1715 vm_page_free(mnew); 1716 vm_page_insert(m, object, pindex); 1717 } else { /* clear COW & copy page */ 1718 if (!so_zerocp_fullpage) 1719 pmap_copy_page(m, mnew); 1720 mnew->valid = VM_PAGE_BITS_ALL; 1721 vm_page_dirty(mnew); 1722 vm_page_flag_clear(mnew, PG_BUSY); 1723 } 1724 } 1725 1726 void 1727 vm_page_cowclear(vm_page_t m) 1728 { 1729 1730 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1731 if (m->cow) { 1732 m->cow--; 1733 /* 1734 * let vm_fault add back write permission lazily 1735 */ 1736 } 1737 /* 1738 * sf_buf_free() will free the page, so we needn't do it here 1739 */ 1740 } 1741 1742 void 1743 vm_page_cowsetup(vm_page_t m) 1744 { 1745 1746 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1747 m->cow++; 1748 pmap_page_protect(m, VM_PROT_READ); 1749 } 1750 1751 #include "opt_ddb.h" 1752 #ifdef DDB 1753 #include <sys/kernel.h> 1754 1755 #include <ddb/ddb.h> 1756 1757 DB_SHOW_COMMAND(page, vm_page_print_page_info) 1758 { 1759 db_printf("cnt.v_free_count: %d\n", cnt.v_free_count); 1760 db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count); 1761 db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count); 1762 db_printf("cnt.v_active_count: %d\n", cnt.v_active_count); 1763 db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count); 1764 db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved); 1765 db_printf("cnt.v_free_min: %d\n", cnt.v_free_min); 1766 db_printf("cnt.v_free_target: %d\n", cnt.v_free_target); 1767 db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min); 1768 db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target); 1769 } 1770 1771 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 1772 { 1773 int i; 1774 db_printf("PQ_FREE:"); 1775 for (i = 0; i < PQ_L2_SIZE; i++) { 1776 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt); 1777 } 1778 db_printf("\n"); 1779 1780 db_printf("PQ_CACHE:"); 1781 for (i = 0; i < PQ_L2_SIZE; i++) { 1782 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt); 1783 } 1784 db_printf("\n"); 1785 1786 db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n", 1787 vm_page_queues[PQ_ACTIVE].lcnt, 1788 vm_page_queues[PQ_INACTIVE].lcnt); 1789 } 1790 #endif /* DDB */ 1791