xref: /freebsd/sys/vm/vm_page.c (revision 23541160bb3e58f5deb04a299eda60fc80b731bc)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * The Mach Operating System project at Carnegie-Mellon University.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34  */
35 
36 /*-
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *			GENERAL RULES ON VM_PAGE MANIPULATION
65  *
66  *	- A page queue lock is required when adding or removing a page from a
67  *	  page queue regardless of other locks or the busy state of a page.
68  *
69  *		* In general, no thread besides the page daemon can acquire or
70  *		  hold more than one page queue lock at a time.
71  *
72  *		* The page daemon can acquire and hold any pair of page queue
73  *		  locks in any order.
74  *
75  *	- The object lock is required when inserting or removing
76  *	  pages from an object (vm_page_insert() or vm_page_remove()).
77  *
78  */
79 
80 /*
81  *	Resident memory management module.
82  */
83 
84 #include <sys/cdefs.h>
85 __FBSDID("$FreeBSD$");
86 
87 #include "opt_vm.h"
88 
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/lock.h>
92 #include <sys/kernel.h>
93 #include <sys/limits.h>
94 #include <sys/linker.h>
95 #include <sys/malloc.h>
96 #include <sys/mman.h>
97 #include <sys/msgbuf.h>
98 #include <sys/mutex.h>
99 #include <sys/proc.h>
100 #include <sys/rwlock.h>
101 #include <sys/sbuf.h>
102 #include <sys/sysctl.h>
103 #include <sys/vmmeter.h>
104 #include <sys/vnode.h>
105 #include <sys/taskqueue.h>
106 
107 #include <vm/vm.h>
108 #include <vm/pmap.h>
109 #include <vm/vm_param.h>
110 #include <vm/vm_kern.h>
111 #include <vm/vm_object.h>
112 #include <vm/vm_page.h>
113 #include <vm/vm_pageout.h>
114 #include <vm/vm_pager.h>
115 #include <vm/vm_phys.h>
116 #include <vm/vm_radix.h>
117 #include <vm/vm_reserv.h>
118 #include <vm/vm_extern.h>
119 #include <vm/uma.h>
120 #include <vm/uma_int.h>
121 
122 #include <machine/md_var.h>
123 
124 /*
125  *	Associated with page of user-allocatable memory is a
126  *	page structure.
127  */
128 
129 struct vm_domain vm_dom[MAXMEMDOM];
130 struct mtx_padalign vm_page_queue_free_mtx;
131 
132 struct mtx_padalign pa_lock[PA_LOCK_COUNT];
133 
134 vm_page_t vm_page_array;
135 long vm_page_array_size;
136 long first_page;
137 int vm_page_zero_count;
138 
139 static int boot_pages = UMA_BOOT_PAGES;
140 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
141     &boot_pages, 0,
142     "number of pages allocated for bootstrapping the VM system");
143 
144 static int pa_tryrelock_restart;
145 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
146     &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
147 
148 static TAILQ_HEAD(, vm_page) blacklist_head;
149 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
150 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
151     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
152 
153 /* Is the page daemon waiting for free pages? */
154 static int vm_pageout_pages_needed;
155 
156 static uma_zone_t fakepg_zone;
157 
158 static struct vnode *vm_page_alloc_init(vm_page_t m);
159 static void vm_page_cache_turn_free(vm_page_t m);
160 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
161 static void vm_page_enqueue(uint8_t queue, vm_page_t m);
162 static void vm_page_free_wakeup(void);
163 static void vm_page_init_fakepg(void *dummy);
164 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
165     vm_pindex_t pindex, vm_page_t mpred);
166 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
167     vm_page_t mpred);
168 static int vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run,
169     vm_paddr_t high);
170 
171 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
172 
173 static void
174 vm_page_init_fakepg(void *dummy)
175 {
176 
177 	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
178 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
179 }
180 
181 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
182 #if PAGE_SIZE == 32768
183 #ifdef CTASSERT
184 CTASSERT(sizeof(u_long) >= 8);
185 #endif
186 #endif
187 
188 /*
189  * Try to acquire a physical address lock while a pmap is locked.  If we
190  * fail to trylock we unlock and lock the pmap directly and cache the
191  * locked pa in *locked.  The caller should then restart their loop in case
192  * the virtual to physical mapping has changed.
193  */
194 int
195 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
196 {
197 	vm_paddr_t lockpa;
198 
199 	lockpa = *locked;
200 	*locked = pa;
201 	if (lockpa) {
202 		PA_LOCK_ASSERT(lockpa, MA_OWNED);
203 		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
204 			return (0);
205 		PA_UNLOCK(lockpa);
206 	}
207 	if (PA_TRYLOCK(pa))
208 		return (0);
209 	PMAP_UNLOCK(pmap);
210 	atomic_add_int(&pa_tryrelock_restart, 1);
211 	PA_LOCK(pa);
212 	PMAP_LOCK(pmap);
213 	return (EAGAIN);
214 }
215 
216 /*
217  *	vm_set_page_size:
218  *
219  *	Sets the page size, perhaps based upon the memory
220  *	size.  Must be called before any use of page-size
221  *	dependent functions.
222  */
223 void
224 vm_set_page_size(void)
225 {
226 	if (vm_cnt.v_page_size == 0)
227 		vm_cnt.v_page_size = PAGE_SIZE;
228 	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
229 		panic("vm_set_page_size: page size not a power of two");
230 }
231 
232 /*
233  *	vm_page_blacklist_next:
234  *
235  *	Find the next entry in the provided string of blacklist
236  *	addresses.  Entries are separated by space, comma, or newline.
237  *	If an invalid integer is encountered then the rest of the
238  *	string is skipped.  Updates the list pointer to the next
239  *	character, or NULL if the string is exhausted or invalid.
240  */
241 static vm_paddr_t
242 vm_page_blacklist_next(char **list, char *end)
243 {
244 	vm_paddr_t bad;
245 	char *cp, *pos;
246 
247 	if (list == NULL || *list == NULL)
248 		return (0);
249 	if (**list =='\0') {
250 		*list = NULL;
251 		return (0);
252 	}
253 
254 	/*
255 	 * If there's no end pointer then the buffer is coming from
256 	 * the kenv and we know it's null-terminated.
257 	 */
258 	if (end == NULL)
259 		end = *list + strlen(*list);
260 
261 	/* Ensure that strtoq() won't walk off the end */
262 	if (*end != '\0') {
263 		if (*end == '\n' || *end == ' ' || *end  == ',')
264 			*end = '\0';
265 		else {
266 			printf("Blacklist not terminated, skipping\n");
267 			*list = NULL;
268 			return (0);
269 		}
270 	}
271 
272 	for (pos = *list; *pos != '\0'; pos = cp) {
273 		bad = strtoq(pos, &cp, 0);
274 		if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
275 			if (bad == 0) {
276 				if (++cp < end)
277 					continue;
278 				else
279 					break;
280 			}
281 		} else
282 			break;
283 		if (*cp == '\0' || ++cp >= end)
284 			*list = NULL;
285 		else
286 			*list = cp;
287 		return (trunc_page(bad));
288 	}
289 	printf("Garbage in RAM blacklist, skipping\n");
290 	*list = NULL;
291 	return (0);
292 }
293 
294 /*
295  *	vm_page_blacklist_check:
296  *
297  *	Iterate through the provided string of blacklist addresses, pulling
298  *	each entry out of the physical allocator free list and putting it
299  *	onto a list for reporting via the vm.page_blacklist sysctl.
300  */
301 static void
302 vm_page_blacklist_check(char *list, char *end)
303 {
304 	vm_paddr_t pa;
305 	vm_page_t m;
306 	char *next;
307 	int ret;
308 
309 	next = list;
310 	while (next != NULL) {
311 		if ((pa = vm_page_blacklist_next(&next, end)) == 0)
312 			continue;
313 		m = vm_phys_paddr_to_vm_page(pa);
314 		if (m == NULL)
315 			continue;
316 		mtx_lock(&vm_page_queue_free_mtx);
317 		ret = vm_phys_unfree_page(m);
318 		mtx_unlock(&vm_page_queue_free_mtx);
319 		if (ret == TRUE) {
320 			TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
321 			if (bootverbose)
322 				printf("Skipping page with pa 0x%jx\n",
323 				    (uintmax_t)pa);
324 		}
325 	}
326 }
327 
328 /*
329  *	vm_page_blacklist_load:
330  *
331  *	Search for a special module named "ram_blacklist".  It'll be a
332  *	plain text file provided by the user via the loader directive
333  *	of the same name.
334  */
335 static void
336 vm_page_blacklist_load(char **list, char **end)
337 {
338 	void *mod;
339 	u_char *ptr;
340 	u_int len;
341 
342 	mod = NULL;
343 	ptr = NULL;
344 
345 	mod = preload_search_by_type("ram_blacklist");
346 	if (mod != NULL) {
347 		ptr = preload_fetch_addr(mod);
348 		len = preload_fetch_size(mod);
349         }
350 	*list = ptr;
351 	if (ptr != NULL)
352 		*end = ptr + len;
353 	else
354 		*end = NULL;
355 	return;
356 }
357 
358 static int
359 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
360 {
361 	vm_page_t m;
362 	struct sbuf sbuf;
363 	int error, first;
364 
365 	first = 1;
366 	error = sysctl_wire_old_buffer(req, 0);
367 	if (error != 0)
368 		return (error);
369 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
370 	TAILQ_FOREACH(m, &blacklist_head, listq) {
371 		sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
372 		    (uintmax_t)m->phys_addr);
373 		first = 0;
374 	}
375 	error = sbuf_finish(&sbuf);
376 	sbuf_delete(&sbuf);
377 	return (error);
378 }
379 
380 static void
381 vm_page_domain_init(struct vm_domain *vmd)
382 {
383 	struct vm_pagequeue *pq;
384 	int i;
385 
386 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
387 	    "vm inactive pagequeue";
388 	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) =
389 	    &vm_cnt.v_inactive_count;
390 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
391 	    "vm active pagequeue";
392 	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) =
393 	    &vm_cnt.v_active_count;
394 	vmd->vmd_page_count = 0;
395 	vmd->vmd_free_count = 0;
396 	vmd->vmd_segs = 0;
397 	vmd->vmd_oom = FALSE;
398 	vmd->vmd_pass = 0;
399 	for (i = 0; i < PQ_COUNT; i++) {
400 		pq = &vmd->vmd_pagequeues[i];
401 		TAILQ_INIT(&pq->pq_pl);
402 		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
403 		    MTX_DEF | MTX_DUPOK);
404 	}
405 }
406 
407 /*
408  *	vm_page_startup:
409  *
410  *	Initializes the resident memory module.
411  *
412  *	Allocates memory for the page cells, and
413  *	for the object/offset-to-page hash table headers.
414  *	Each page cell is initialized and placed on the free list.
415  */
416 vm_offset_t
417 vm_page_startup(vm_offset_t vaddr)
418 {
419 	vm_offset_t mapped;
420 	vm_paddr_t page_range;
421 	vm_paddr_t new_end;
422 	int i;
423 	vm_paddr_t pa;
424 	vm_paddr_t last_pa;
425 	char *list, *listend;
426 	vm_paddr_t end;
427 	vm_paddr_t biggestsize;
428 	vm_paddr_t low_water, high_water;
429 	int biggestone;
430 
431 	biggestsize = 0;
432 	biggestone = 0;
433 	vaddr = round_page(vaddr);
434 
435 	for (i = 0; phys_avail[i + 1]; i += 2) {
436 		phys_avail[i] = round_page(phys_avail[i]);
437 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
438 	}
439 
440 	low_water = phys_avail[0];
441 	high_water = phys_avail[1];
442 
443 	for (i = 0; i < vm_phys_nsegs; i++) {
444 		if (vm_phys_segs[i].start < low_water)
445 			low_water = vm_phys_segs[i].start;
446 		if (vm_phys_segs[i].end > high_water)
447 			high_water = vm_phys_segs[i].end;
448 	}
449 	for (i = 0; phys_avail[i + 1]; i += 2) {
450 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
451 
452 		if (size > biggestsize) {
453 			biggestone = i;
454 			biggestsize = size;
455 		}
456 		if (phys_avail[i] < low_water)
457 			low_water = phys_avail[i];
458 		if (phys_avail[i + 1] > high_water)
459 			high_water = phys_avail[i + 1];
460 	}
461 
462 	end = phys_avail[biggestone+1];
463 
464 	/*
465 	 * Initialize the page and queue locks.
466 	 */
467 	mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
468 	for (i = 0; i < PA_LOCK_COUNT; i++)
469 		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
470 	for (i = 0; i < vm_ndomains; i++)
471 		vm_page_domain_init(&vm_dom[i]);
472 
473 	/*
474 	 * Allocate memory for use when boot strapping the kernel memory
475 	 * allocator.
476 	 *
477 	 * CTFLAG_RDTUN doesn't work during the early boot process, so we must
478 	 * manually fetch the value.
479 	 */
480 	TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages);
481 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
482 	new_end = trunc_page(new_end);
483 	mapped = pmap_map(&vaddr, new_end, end,
484 	    VM_PROT_READ | VM_PROT_WRITE);
485 	bzero((void *)mapped, end - new_end);
486 	uma_startup((void *)mapped, boot_pages);
487 
488 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
489     defined(__i386__) || defined(__mips__)
490 	/*
491 	 * Allocate a bitmap to indicate that a random physical page
492 	 * needs to be included in a minidump.
493 	 *
494 	 * The amd64 port needs this to indicate which direct map pages
495 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
496 	 *
497 	 * However, i386 still needs this workspace internally within the
498 	 * minidump code.  In theory, they are not needed on i386, but are
499 	 * included should the sf_buf code decide to use them.
500 	 */
501 	last_pa = 0;
502 	for (i = 0; dump_avail[i + 1] != 0; i += 2)
503 		if (dump_avail[i + 1] > last_pa)
504 			last_pa = dump_avail[i + 1];
505 	page_range = last_pa / PAGE_SIZE;
506 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
507 	new_end -= vm_page_dump_size;
508 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
509 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
510 	bzero((void *)vm_page_dump, vm_page_dump_size);
511 #endif
512 #ifdef __amd64__
513 	/*
514 	 * Request that the physical pages underlying the message buffer be
515 	 * included in a crash dump.  Since the message buffer is accessed
516 	 * through the direct map, they are not automatically included.
517 	 */
518 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
519 	last_pa = pa + round_page(msgbufsize);
520 	while (pa < last_pa) {
521 		dump_add_page(pa);
522 		pa += PAGE_SIZE;
523 	}
524 #endif
525 	/*
526 	 * Compute the number of pages of memory that will be available for
527 	 * use (taking into account the overhead of a page structure per
528 	 * page).
529 	 */
530 	first_page = low_water / PAGE_SIZE;
531 #ifdef VM_PHYSSEG_SPARSE
532 	page_range = 0;
533 	for (i = 0; i < vm_phys_nsegs; i++) {
534 		page_range += atop(vm_phys_segs[i].end -
535 		    vm_phys_segs[i].start);
536 	}
537 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
538 		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
539 #elif defined(VM_PHYSSEG_DENSE)
540 	page_range = high_water / PAGE_SIZE - first_page;
541 #else
542 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
543 #endif
544 	end = new_end;
545 
546 	/*
547 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
548 	 */
549 	vaddr += PAGE_SIZE;
550 
551 	/*
552 	 * Initialize the mem entry structures now, and put them in the free
553 	 * queue.
554 	 */
555 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
556 	mapped = pmap_map(&vaddr, new_end, end,
557 	    VM_PROT_READ | VM_PROT_WRITE);
558 	vm_page_array = (vm_page_t) mapped;
559 #if VM_NRESERVLEVEL > 0
560 	/*
561 	 * Allocate memory for the reservation management system's data
562 	 * structures.
563 	 */
564 	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
565 #endif
566 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__)
567 	/*
568 	 * pmap_map on arm64, amd64, and mips can come out of the direct-map,
569 	 * not kvm like i386, so the pages must be tracked for a crashdump to
570 	 * include this data.  This includes the vm_page_array and the early
571 	 * UMA bootstrap pages.
572 	 */
573 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
574 		dump_add_page(pa);
575 #endif
576 	phys_avail[biggestone + 1] = new_end;
577 
578 	/*
579 	 * Add physical memory segments corresponding to the available
580 	 * physical pages.
581 	 */
582 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
583 		vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
584 
585 	/*
586 	 * Clear all of the page structures
587 	 */
588 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
589 	for (i = 0; i < page_range; i++)
590 		vm_page_array[i].order = VM_NFREEORDER;
591 	vm_page_array_size = page_range;
592 
593 	/*
594 	 * Initialize the physical memory allocator.
595 	 */
596 	vm_phys_init();
597 
598 	/*
599 	 * Add every available physical page that is not blacklisted to
600 	 * the free lists.
601 	 */
602 	vm_cnt.v_page_count = 0;
603 	vm_cnt.v_free_count = 0;
604 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
605 		pa = phys_avail[i];
606 		last_pa = phys_avail[i + 1];
607 		while (pa < last_pa) {
608 			vm_phys_add_page(pa);
609 			pa += PAGE_SIZE;
610 		}
611 	}
612 
613 	TAILQ_INIT(&blacklist_head);
614 	vm_page_blacklist_load(&list, &listend);
615 	vm_page_blacklist_check(list, listend);
616 
617 	list = kern_getenv("vm.blacklist");
618 	vm_page_blacklist_check(list, NULL);
619 
620 	freeenv(list);
621 #if VM_NRESERVLEVEL > 0
622 	/*
623 	 * Initialize the reservation management system.
624 	 */
625 	vm_reserv_init();
626 #endif
627 	return (vaddr);
628 }
629 
630 void
631 vm_page_reference(vm_page_t m)
632 {
633 
634 	vm_page_aflag_set(m, PGA_REFERENCED);
635 }
636 
637 /*
638  *	vm_page_busy_downgrade:
639  *
640  *	Downgrade an exclusive busy page into a single shared busy page.
641  */
642 void
643 vm_page_busy_downgrade(vm_page_t m)
644 {
645 	u_int x;
646 
647 	vm_page_assert_xbusied(m);
648 
649 	for (;;) {
650 		x = m->busy_lock;
651 		x &= VPB_BIT_WAITERS;
652 		if (atomic_cmpset_rel_int(&m->busy_lock,
653 		    VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1) | x))
654 			break;
655 	}
656 }
657 
658 /*
659  *	vm_page_sbusied:
660  *
661  *	Return a positive value if the page is shared busied, 0 otherwise.
662  */
663 int
664 vm_page_sbusied(vm_page_t m)
665 {
666 	u_int x;
667 
668 	x = m->busy_lock;
669 	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
670 }
671 
672 /*
673  *	vm_page_sunbusy:
674  *
675  *	Shared unbusy a page.
676  */
677 void
678 vm_page_sunbusy(vm_page_t m)
679 {
680 	u_int x;
681 
682 	vm_page_assert_sbusied(m);
683 
684 	for (;;) {
685 		x = m->busy_lock;
686 		if (VPB_SHARERS(x) > 1) {
687 			if (atomic_cmpset_int(&m->busy_lock, x,
688 			    x - VPB_ONE_SHARER))
689 				break;
690 			continue;
691 		}
692 		if ((x & VPB_BIT_WAITERS) == 0) {
693 			KASSERT(x == VPB_SHARERS_WORD(1),
694 			    ("vm_page_sunbusy: invalid lock state"));
695 			if (atomic_cmpset_int(&m->busy_lock,
696 			    VPB_SHARERS_WORD(1), VPB_UNBUSIED))
697 				break;
698 			continue;
699 		}
700 		KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS),
701 		    ("vm_page_sunbusy: invalid lock state for waiters"));
702 
703 		vm_page_lock(m);
704 		if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) {
705 			vm_page_unlock(m);
706 			continue;
707 		}
708 		wakeup(m);
709 		vm_page_unlock(m);
710 		break;
711 	}
712 }
713 
714 /*
715  *	vm_page_busy_sleep:
716  *
717  *	Sleep and release the page lock, using the page pointer as wchan.
718  *	This is used to implement the hard-path of busying mechanism.
719  *
720  *	The given page must be locked.
721  */
722 void
723 vm_page_busy_sleep(vm_page_t m, const char *wmesg)
724 {
725 	u_int x;
726 
727 	vm_page_lock_assert(m, MA_OWNED);
728 
729 	x = m->busy_lock;
730 	if (x == VPB_UNBUSIED) {
731 		vm_page_unlock(m);
732 		return;
733 	}
734 	if ((x & VPB_BIT_WAITERS) == 0 &&
735 	    !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS)) {
736 		vm_page_unlock(m);
737 		return;
738 	}
739 	msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0);
740 }
741 
742 /*
743  *	vm_page_trysbusy:
744  *
745  *	Try to shared busy a page.
746  *	If the operation succeeds 1 is returned otherwise 0.
747  *	The operation never sleeps.
748  */
749 int
750 vm_page_trysbusy(vm_page_t m)
751 {
752 	u_int x;
753 
754 	for (;;) {
755 		x = m->busy_lock;
756 		if ((x & VPB_BIT_SHARED) == 0)
757 			return (0);
758 		if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER))
759 			return (1);
760 	}
761 }
762 
763 /*
764  *	vm_page_xunbusy_hard:
765  *
766  *	Called after the first try the exclusive unbusy of a page failed.
767  *	It is assumed that the waiters bit is on.
768  */
769 void
770 vm_page_xunbusy_hard(vm_page_t m)
771 {
772 
773 	vm_page_assert_xbusied(m);
774 
775 	vm_page_lock(m);
776 	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
777 	wakeup(m);
778 	vm_page_unlock(m);
779 }
780 
781 /*
782  *	vm_page_flash:
783  *
784  *	Wakeup anyone waiting for the page.
785  *	The ownership bits do not change.
786  *
787  *	The given page must be locked.
788  */
789 void
790 vm_page_flash(vm_page_t m)
791 {
792 	u_int x;
793 
794 	vm_page_lock_assert(m, MA_OWNED);
795 
796 	for (;;) {
797 		x = m->busy_lock;
798 		if ((x & VPB_BIT_WAITERS) == 0)
799 			return;
800 		if (atomic_cmpset_int(&m->busy_lock, x,
801 		    x & (~VPB_BIT_WAITERS)))
802 			break;
803 	}
804 	wakeup(m);
805 }
806 
807 /*
808  * Keep page from being freed by the page daemon
809  * much of the same effect as wiring, except much lower
810  * overhead and should be used only for *very* temporary
811  * holding ("wiring").
812  */
813 void
814 vm_page_hold(vm_page_t mem)
815 {
816 
817 	vm_page_lock_assert(mem, MA_OWNED);
818         mem->hold_count++;
819 }
820 
821 void
822 vm_page_unhold(vm_page_t mem)
823 {
824 
825 	vm_page_lock_assert(mem, MA_OWNED);
826 	KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!"));
827 	--mem->hold_count;
828 	if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
829 		vm_page_free_toq(mem);
830 }
831 
832 /*
833  *	vm_page_unhold_pages:
834  *
835  *	Unhold each of the pages that is referenced by the given array.
836  */
837 void
838 vm_page_unhold_pages(vm_page_t *ma, int count)
839 {
840 	struct mtx *mtx, *new_mtx;
841 
842 	mtx = NULL;
843 	for (; count != 0; count--) {
844 		/*
845 		 * Avoid releasing and reacquiring the same page lock.
846 		 */
847 		new_mtx = vm_page_lockptr(*ma);
848 		if (mtx != new_mtx) {
849 			if (mtx != NULL)
850 				mtx_unlock(mtx);
851 			mtx = new_mtx;
852 			mtx_lock(mtx);
853 		}
854 		vm_page_unhold(*ma);
855 		ma++;
856 	}
857 	if (mtx != NULL)
858 		mtx_unlock(mtx);
859 }
860 
861 vm_page_t
862 PHYS_TO_VM_PAGE(vm_paddr_t pa)
863 {
864 	vm_page_t m;
865 
866 #ifdef VM_PHYSSEG_SPARSE
867 	m = vm_phys_paddr_to_vm_page(pa);
868 	if (m == NULL)
869 		m = vm_phys_fictitious_to_vm_page(pa);
870 	return (m);
871 #elif defined(VM_PHYSSEG_DENSE)
872 	long pi;
873 
874 	pi = atop(pa);
875 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
876 		m = &vm_page_array[pi - first_page];
877 		return (m);
878 	}
879 	return (vm_phys_fictitious_to_vm_page(pa));
880 #else
881 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
882 #endif
883 }
884 
885 /*
886  *	vm_page_getfake:
887  *
888  *	Create a fictitious page with the specified physical address and
889  *	memory attribute.  The memory attribute is the only the machine-
890  *	dependent aspect of a fictitious page that must be initialized.
891  */
892 vm_page_t
893 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
894 {
895 	vm_page_t m;
896 
897 	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
898 	vm_page_initfake(m, paddr, memattr);
899 	return (m);
900 }
901 
902 void
903 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
904 {
905 
906 	if ((m->flags & PG_FICTITIOUS) != 0) {
907 		/*
908 		 * The page's memattr might have changed since the
909 		 * previous initialization.  Update the pmap to the
910 		 * new memattr.
911 		 */
912 		goto memattr;
913 	}
914 	m->phys_addr = paddr;
915 	m->queue = PQ_NONE;
916 	/* Fictitious pages don't use "segind". */
917 	m->flags = PG_FICTITIOUS;
918 	/* Fictitious pages don't use "order" or "pool". */
919 	m->oflags = VPO_UNMANAGED;
920 	m->busy_lock = VPB_SINGLE_EXCLUSIVER;
921 	m->wire_count = 1;
922 	pmap_page_init(m);
923 memattr:
924 	pmap_page_set_memattr(m, memattr);
925 }
926 
927 /*
928  *	vm_page_putfake:
929  *
930  *	Release a fictitious page.
931  */
932 void
933 vm_page_putfake(vm_page_t m)
934 {
935 
936 	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
937 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
938 	    ("vm_page_putfake: bad page %p", m));
939 	uma_zfree(fakepg_zone, m);
940 }
941 
942 /*
943  *	vm_page_updatefake:
944  *
945  *	Update the given fictitious page to the specified physical address and
946  *	memory attribute.
947  */
948 void
949 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
950 {
951 
952 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
953 	    ("vm_page_updatefake: bad page %p", m));
954 	m->phys_addr = paddr;
955 	pmap_page_set_memattr(m, memattr);
956 }
957 
958 /*
959  *	vm_page_free:
960  *
961  *	Free a page.
962  */
963 void
964 vm_page_free(vm_page_t m)
965 {
966 
967 	m->flags &= ~PG_ZERO;
968 	vm_page_free_toq(m);
969 }
970 
971 /*
972  *	vm_page_free_zero:
973  *
974  *	Free a page to the zerod-pages queue
975  */
976 void
977 vm_page_free_zero(vm_page_t m)
978 {
979 
980 	m->flags |= PG_ZERO;
981 	vm_page_free_toq(m);
982 }
983 
984 /*
985  * Unbusy and handle the page queueing for a page from the VOP_GETPAGES()
986  * array which was optionally read ahead or behind.
987  */
988 void
989 vm_page_readahead_finish(vm_page_t m)
990 {
991 
992 	/* We shouldn't put invalid pages on queues. */
993 	KASSERT(m->valid != 0, ("%s: %p is invalid", __func__, m));
994 
995 	/*
996 	 * Since the page is not the actually needed one, whether it should
997 	 * be activated or deactivated is not obvious.  Empirical results
998 	 * have shown that deactivating the page is usually the best choice,
999 	 * unless the page is wanted by another thread.
1000 	 */
1001 	vm_page_lock(m);
1002 	if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
1003 		vm_page_activate(m);
1004 	else
1005 		vm_page_deactivate(m);
1006 	vm_page_unlock(m);
1007 	vm_page_xunbusy(m);
1008 }
1009 
1010 /*
1011  *	vm_page_sleep_if_busy:
1012  *
1013  *	Sleep and release the page queues lock if the page is busied.
1014  *	Returns TRUE if the thread slept.
1015  *
1016  *	The given page must be unlocked and object containing it must
1017  *	be locked.
1018  */
1019 int
1020 vm_page_sleep_if_busy(vm_page_t m, const char *msg)
1021 {
1022 	vm_object_t obj;
1023 
1024 	vm_page_lock_assert(m, MA_NOTOWNED);
1025 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1026 
1027 	if (vm_page_busied(m)) {
1028 		/*
1029 		 * The page-specific object must be cached because page
1030 		 * identity can change during the sleep, causing the
1031 		 * re-lock of a different object.
1032 		 * It is assumed that a reference to the object is already
1033 		 * held by the callers.
1034 		 */
1035 		obj = m->object;
1036 		vm_page_lock(m);
1037 		VM_OBJECT_WUNLOCK(obj);
1038 		vm_page_busy_sleep(m, msg);
1039 		VM_OBJECT_WLOCK(obj);
1040 		return (TRUE);
1041 	}
1042 	return (FALSE);
1043 }
1044 
1045 /*
1046  *	vm_page_dirty_KBI:		[ internal use only ]
1047  *
1048  *	Set all bits in the page's dirty field.
1049  *
1050  *	The object containing the specified page must be locked if the
1051  *	call is made from the machine-independent layer.
1052  *
1053  *	See vm_page_clear_dirty_mask().
1054  *
1055  *	This function should only be called by vm_page_dirty().
1056  */
1057 void
1058 vm_page_dirty_KBI(vm_page_t m)
1059 {
1060 
1061 	/* These assertions refer to this operation by its public name. */
1062 	KASSERT((m->flags & PG_CACHED) == 0,
1063 	    ("vm_page_dirty: page in cache!"));
1064 	KASSERT(m->valid == VM_PAGE_BITS_ALL,
1065 	    ("vm_page_dirty: page is invalid!"));
1066 	m->dirty = VM_PAGE_BITS_ALL;
1067 }
1068 
1069 /*
1070  *	vm_page_insert:		[ internal use only ]
1071  *
1072  *	Inserts the given mem entry into the object and object list.
1073  *
1074  *	The object must be locked.
1075  */
1076 int
1077 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1078 {
1079 	vm_page_t mpred;
1080 
1081 	VM_OBJECT_ASSERT_WLOCKED(object);
1082 	mpred = vm_radix_lookup_le(&object->rtree, pindex);
1083 	return (vm_page_insert_after(m, object, pindex, mpred));
1084 }
1085 
1086 /*
1087  *	vm_page_insert_after:
1088  *
1089  *	Inserts the page "m" into the specified object at offset "pindex".
1090  *
1091  *	The page "mpred" must immediately precede the offset "pindex" within
1092  *	the specified object.
1093  *
1094  *	The object must be locked.
1095  */
1096 static int
1097 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1098     vm_page_t mpred)
1099 {
1100 	vm_pindex_t sidx;
1101 	vm_object_t sobj;
1102 	vm_page_t msucc;
1103 
1104 	VM_OBJECT_ASSERT_WLOCKED(object);
1105 	KASSERT(m->object == NULL,
1106 	    ("vm_page_insert_after: page already inserted"));
1107 	if (mpred != NULL) {
1108 		KASSERT(mpred->object == object,
1109 		    ("vm_page_insert_after: object doesn't contain mpred"));
1110 		KASSERT(mpred->pindex < pindex,
1111 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1112 		msucc = TAILQ_NEXT(mpred, listq);
1113 	} else
1114 		msucc = TAILQ_FIRST(&object->memq);
1115 	if (msucc != NULL)
1116 		KASSERT(msucc->pindex > pindex,
1117 		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
1118 
1119 	/*
1120 	 * Record the object/offset pair in this page
1121 	 */
1122 	sobj = m->object;
1123 	sidx = m->pindex;
1124 	m->object = object;
1125 	m->pindex = pindex;
1126 
1127 	/*
1128 	 * Now link into the object's ordered list of backed pages.
1129 	 */
1130 	if (vm_radix_insert(&object->rtree, m)) {
1131 		m->object = sobj;
1132 		m->pindex = sidx;
1133 		return (1);
1134 	}
1135 	vm_page_insert_radixdone(m, object, mpred);
1136 	return (0);
1137 }
1138 
1139 /*
1140  *	vm_page_insert_radixdone:
1141  *
1142  *	Complete page "m" insertion into the specified object after the
1143  *	radix trie hooking.
1144  *
1145  *	The page "mpred" must precede the offset "m->pindex" within the
1146  *	specified object.
1147  *
1148  *	The object must be locked.
1149  */
1150 static void
1151 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1152 {
1153 
1154 	VM_OBJECT_ASSERT_WLOCKED(object);
1155 	KASSERT(object != NULL && m->object == object,
1156 	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1157 	if (mpred != NULL) {
1158 		KASSERT(mpred->object == object,
1159 		    ("vm_page_insert_after: object doesn't contain mpred"));
1160 		KASSERT(mpred->pindex < m->pindex,
1161 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1162 	}
1163 
1164 	if (mpred != NULL)
1165 		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1166 	else
1167 		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1168 
1169 	/*
1170 	 * Show that the object has one more resident page.
1171 	 */
1172 	object->resident_page_count++;
1173 
1174 	/*
1175 	 * Hold the vnode until the last page is released.
1176 	 */
1177 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1178 		vhold(object->handle);
1179 
1180 	/*
1181 	 * Since we are inserting a new and possibly dirty page,
1182 	 * update the object's OBJ_MIGHTBEDIRTY flag.
1183 	 */
1184 	if (pmap_page_is_write_mapped(m))
1185 		vm_object_set_writeable_dirty(object);
1186 }
1187 
1188 /*
1189  *	vm_page_remove:
1190  *
1191  *	Removes the given mem entry from the object/offset-page
1192  *	table and the object page list, but do not invalidate/terminate
1193  *	the backing store.
1194  *
1195  *	The object must be locked.  The page must be locked if it is managed.
1196  */
1197 void
1198 vm_page_remove(vm_page_t m)
1199 {
1200 	vm_object_t object;
1201 	boolean_t lockacq;
1202 
1203 	if ((m->oflags & VPO_UNMANAGED) == 0)
1204 		vm_page_lock_assert(m, MA_OWNED);
1205 	if ((object = m->object) == NULL)
1206 		return;
1207 	VM_OBJECT_ASSERT_WLOCKED(object);
1208 	if (vm_page_xbusied(m)) {
1209 		lockacq = FALSE;
1210 		if ((m->oflags & VPO_UNMANAGED) != 0 &&
1211 		    !mtx_owned(vm_page_lockptr(m))) {
1212 			lockacq = TRUE;
1213 			vm_page_lock(m);
1214 		}
1215 		vm_page_flash(m);
1216 		atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1217 		if (lockacq)
1218 			vm_page_unlock(m);
1219 	}
1220 
1221 	/*
1222 	 * Now remove from the object's list of backed pages.
1223 	 */
1224 	vm_radix_remove(&object->rtree, m->pindex);
1225 	TAILQ_REMOVE(&object->memq, m, listq);
1226 
1227 	/*
1228 	 * And show that the object has one fewer resident page.
1229 	 */
1230 	object->resident_page_count--;
1231 
1232 	/*
1233 	 * The vnode may now be recycled.
1234 	 */
1235 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1236 		vdrop(object->handle);
1237 
1238 	m->object = NULL;
1239 }
1240 
1241 /*
1242  *	vm_page_lookup:
1243  *
1244  *	Returns the page associated with the object/offset
1245  *	pair specified; if none is found, NULL is returned.
1246  *
1247  *	The object must be locked.
1248  */
1249 vm_page_t
1250 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1251 {
1252 
1253 	VM_OBJECT_ASSERT_LOCKED(object);
1254 	return (vm_radix_lookup(&object->rtree, pindex));
1255 }
1256 
1257 /*
1258  *	vm_page_find_least:
1259  *
1260  *	Returns the page associated with the object with least pindex
1261  *	greater than or equal to the parameter pindex, or NULL.
1262  *
1263  *	The object must be locked.
1264  */
1265 vm_page_t
1266 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1267 {
1268 	vm_page_t m;
1269 
1270 	VM_OBJECT_ASSERT_LOCKED(object);
1271 	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1272 		m = vm_radix_lookup_ge(&object->rtree, pindex);
1273 	return (m);
1274 }
1275 
1276 /*
1277  * Returns the given page's successor (by pindex) within the object if it is
1278  * resident; if none is found, NULL is returned.
1279  *
1280  * The object must be locked.
1281  */
1282 vm_page_t
1283 vm_page_next(vm_page_t m)
1284 {
1285 	vm_page_t next;
1286 
1287 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1288 	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
1289 	    next->pindex != m->pindex + 1)
1290 		next = NULL;
1291 	return (next);
1292 }
1293 
1294 /*
1295  * Returns the given page's predecessor (by pindex) within the object if it is
1296  * resident; if none is found, NULL is returned.
1297  *
1298  * The object must be locked.
1299  */
1300 vm_page_t
1301 vm_page_prev(vm_page_t m)
1302 {
1303 	vm_page_t prev;
1304 
1305 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1306 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
1307 	    prev->pindex != m->pindex - 1)
1308 		prev = NULL;
1309 	return (prev);
1310 }
1311 
1312 /*
1313  * Uses the page mnew as a replacement for an existing page at index
1314  * pindex which must be already present in the object.
1315  *
1316  * The existing page must not be on a paging queue.
1317  */
1318 vm_page_t
1319 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1320 {
1321 	vm_page_t mold;
1322 
1323 	VM_OBJECT_ASSERT_WLOCKED(object);
1324 	KASSERT(mnew->object == NULL,
1325 	    ("vm_page_replace: page already in object"));
1326 
1327 	/*
1328 	 * This function mostly follows vm_page_insert() and
1329 	 * vm_page_remove() without the radix, object count and vnode
1330 	 * dance.  Double check such functions for more comments.
1331 	 */
1332 
1333 	mnew->object = object;
1334 	mnew->pindex = pindex;
1335 	mold = vm_radix_replace(&object->rtree, mnew);
1336 	KASSERT(mold->queue == PQ_NONE,
1337 	    ("vm_page_replace: mold is on a paging queue"));
1338 
1339 	/* Keep the resident page list in sorted order. */
1340 	TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1341 	TAILQ_REMOVE(&object->memq, mold, listq);
1342 
1343 	mold->object = NULL;
1344 	vm_page_xunbusy(mold);
1345 
1346 	/*
1347 	 * The object's resident_page_count does not change because we have
1348 	 * swapped one page for another, but OBJ_MIGHTBEDIRTY.
1349 	 */
1350 	if (pmap_page_is_write_mapped(mnew))
1351 		vm_object_set_writeable_dirty(object);
1352 	return (mold);
1353 }
1354 
1355 /*
1356  *	vm_page_rename:
1357  *
1358  *	Move the given memory entry from its
1359  *	current object to the specified target object/offset.
1360  *
1361  *	Note: swap associated with the page must be invalidated by the move.  We
1362  *	      have to do this for several reasons:  (1) we aren't freeing the
1363  *	      page, (2) we are dirtying the page, (3) the VM system is probably
1364  *	      moving the page from object A to B, and will then later move
1365  *	      the backing store from A to B and we can't have a conflict.
1366  *
1367  *	Note: we *always* dirty the page.  It is necessary both for the
1368  *	      fact that we moved it, and because we may be invalidating
1369  *	      swap.  If the page is on the cache, we have to deactivate it
1370  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
1371  *	      on the cache.
1372  *
1373  *	The objects must be locked.
1374  */
1375 int
1376 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1377 {
1378 	vm_page_t mpred;
1379 	vm_pindex_t opidx;
1380 
1381 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1382 
1383 	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1384 	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1385 	    ("vm_page_rename: pindex already renamed"));
1386 
1387 	/*
1388 	 * Create a custom version of vm_page_insert() which does not depend
1389 	 * by m_prev and can cheat on the implementation aspects of the
1390 	 * function.
1391 	 */
1392 	opidx = m->pindex;
1393 	m->pindex = new_pindex;
1394 	if (vm_radix_insert(&new_object->rtree, m)) {
1395 		m->pindex = opidx;
1396 		return (1);
1397 	}
1398 
1399 	/*
1400 	 * The operation cannot fail anymore.  The removal must happen before
1401 	 * the listq iterator is tainted.
1402 	 */
1403 	m->pindex = opidx;
1404 	vm_page_lock(m);
1405 	vm_page_remove(m);
1406 
1407 	/* Return back to the new pindex to complete vm_page_insert(). */
1408 	m->pindex = new_pindex;
1409 	m->object = new_object;
1410 	vm_page_unlock(m);
1411 	vm_page_insert_radixdone(m, new_object, mpred);
1412 	vm_page_dirty(m);
1413 	return (0);
1414 }
1415 
1416 /*
1417  *	Convert all of the given object's cached pages that have a
1418  *	pindex within the given range into free pages.  If the value
1419  *	zero is given for "end", then the range's upper bound is
1420  *	infinity.  If the given object is backed by a vnode and it
1421  *	transitions from having one or more cached pages to none, the
1422  *	vnode's hold count is reduced.
1423  */
1424 void
1425 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1426 {
1427 	vm_page_t m;
1428 	boolean_t empty;
1429 
1430 	mtx_lock(&vm_page_queue_free_mtx);
1431 	if (__predict_false(vm_radix_is_empty(&object->cache))) {
1432 		mtx_unlock(&vm_page_queue_free_mtx);
1433 		return;
1434 	}
1435 	while ((m = vm_radix_lookup_ge(&object->cache, start)) != NULL) {
1436 		if (end != 0 && m->pindex >= end)
1437 			break;
1438 		vm_radix_remove(&object->cache, m->pindex);
1439 		vm_page_cache_turn_free(m);
1440 	}
1441 	empty = vm_radix_is_empty(&object->cache);
1442 	mtx_unlock(&vm_page_queue_free_mtx);
1443 	if (object->type == OBJT_VNODE && empty)
1444 		vdrop(object->handle);
1445 }
1446 
1447 /*
1448  *	Returns the cached page that is associated with the given
1449  *	object and offset.  If, however, none exists, returns NULL.
1450  *
1451  *	The free page queue must be locked.
1452  */
1453 static inline vm_page_t
1454 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1455 {
1456 
1457 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1458 	return (vm_radix_lookup(&object->cache, pindex));
1459 }
1460 
1461 /*
1462  *	Remove the given cached page from its containing object's
1463  *	collection of cached pages.
1464  *
1465  *	The free page queue must be locked.
1466  */
1467 static void
1468 vm_page_cache_remove(vm_page_t m)
1469 {
1470 
1471 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1472 	KASSERT((m->flags & PG_CACHED) != 0,
1473 	    ("vm_page_cache_remove: page %p is not cached", m));
1474 	vm_radix_remove(&m->object->cache, m->pindex);
1475 	m->object = NULL;
1476 	vm_cnt.v_cache_count--;
1477 }
1478 
1479 /*
1480  *	Transfer all of the cached pages with offset greater than or
1481  *	equal to 'offidxstart' from the original object's cache to the
1482  *	new object's cache.  However, any cached pages with offset
1483  *	greater than or equal to the new object's size are kept in the
1484  *	original object.  Initially, the new object's cache must be
1485  *	empty.  Offset 'offidxstart' in the original object must
1486  *	correspond to offset zero in the new object.
1487  *
1488  *	The new object must be locked.
1489  */
1490 void
1491 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1492     vm_object_t new_object)
1493 {
1494 	vm_page_t m;
1495 
1496 	/*
1497 	 * Insertion into an object's collection of cached pages
1498 	 * requires the object to be locked.  In contrast, removal does
1499 	 * not.
1500 	 */
1501 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1502 	KASSERT(vm_radix_is_empty(&new_object->cache),
1503 	    ("vm_page_cache_transfer: object %p has cached pages",
1504 	    new_object));
1505 	mtx_lock(&vm_page_queue_free_mtx);
1506 	while ((m = vm_radix_lookup_ge(&orig_object->cache,
1507 	    offidxstart)) != NULL) {
1508 		/*
1509 		 * Transfer all of the pages with offset greater than or
1510 		 * equal to 'offidxstart' from the original object's
1511 		 * cache to the new object's cache.
1512 		 */
1513 		if ((m->pindex - offidxstart) >= new_object->size)
1514 			break;
1515 		vm_radix_remove(&orig_object->cache, m->pindex);
1516 		/* Update the page's object and offset. */
1517 		m->object = new_object;
1518 		m->pindex -= offidxstart;
1519 		if (vm_radix_insert(&new_object->cache, m))
1520 			vm_page_cache_turn_free(m);
1521 	}
1522 	mtx_unlock(&vm_page_queue_free_mtx);
1523 }
1524 
1525 /*
1526  *	Returns TRUE if a cached page is associated with the given object and
1527  *	offset, and FALSE otherwise.
1528  *
1529  *	The object must be locked.
1530  */
1531 boolean_t
1532 vm_page_is_cached(vm_object_t object, vm_pindex_t pindex)
1533 {
1534 	vm_page_t m;
1535 
1536 	/*
1537 	 * Insertion into an object's collection of cached pages requires the
1538 	 * object to be locked.  Therefore, if the object is locked and the
1539 	 * object's collection is empty, there is no need to acquire the free
1540 	 * page queues lock in order to prove that the specified page doesn't
1541 	 * exist.
1542 	 */
1543 	VM_OBJECT_ASSERT_WLOCKED(object);
1544 	if (__predict_true(vm_object_cache_is_empty(object)))
1545 		return (FALSE);
1546 	mtx_lock(&vm_page_queue_free_mtx);
1547 	m = vm_page_cache_lookup(object, pindex);
1548 	mtx_unlock(&vm_page_queue_free_mtx);
1549 	return (m != NULL);
1550 }
1551 
1552 /*
1553  *	vm_page_alloc:
1554  *
1555  *	Allocate and return a page that is associated with the specified
1556  *	object and offset pair.  By default, this page is exclusive busied.
1557  *
1558  *	The caller must always specify an allocation class.
1559  *
1560  *	allocation classes:
1561  *	VM_ALLOC_NORMAL		normal process request
1562  *	VM_ALLOC_SYSTEM		system *really* needs a page
1563  *	VM_ALLOC_INTERRUPT	interrupt time request
1564  *
1565  *	optional allocation flags:
1566  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1567  *				intends to allocate
1568  *	VM_ALLOC_IFCACHED	return page only if it is cached
1569  *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1570  *				is cached
1571  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1572  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1573  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1574  *				should not be exclusive busy
1575  *	VM_ALLOC_SBUSY		shared busy the allocated page
1576  *	VM_ALLOC_WIRED		wire the allocated page
1577  *	VM_ALLOC_ZERO		prefer a zeroed page
1578  *
1579  *	This routine may not sleep.
1580  */
1581 vm_page_t
1582 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1583 {
1584 	struct vnode *vp = NULL;
1585 	vm_object_t m_object;
1586 	vm_page_t m, mpred;
1587 	int flags, req_class;
1588 
1589 	mpred = 0;	/* XXX: pacify gcc */
1590 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1591 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1592 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1593 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1594 	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1595 	    req));
1596 	if (object != NULL)
1597 		VM_OBJECT_ASSERT_WLOCKED(object);
1598 
1599 	req_class = req & VM_ALLOC_CLASS_MASK;
1600 
1601 	/*
1602 	 * The page daemon is allowed to dig deeper into the free page list.
1603 	 */
1604 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1605 		req_class = VM_ALLOC_SYSTEM;
1606 
1607 	if (object != NULL) {
1608 		mpred = vm_radix_lookup_le(&object->rtree, pindex);
1609 		KASSERT(mpred == NULL || mpred->pindex != pindex,
1610 		   ("vm_page_alloc: pindex already allocated"));
1611 	}
1612 
1613 	/*
1614 	 * The page allocation request can came from consumers which already
1615 	 * hold the free page queue mutex, like vm_page_insert() in
1616 	 * vm_page_cache().
1617 	 */
1618 	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
1619 	if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved ||
1620 	    (req_class == VM_ALLOC_SYSTEM &&
1621 	    vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) ||
1622 	    (req_class == VM_ALLOC_INTERRUPT &&
1623 	    vm_cnt.v_free_count + vm_cnt.v_cache_count > 0)) {
1624 		/*
1625 		 * Allocate from the free queue if the number of free pages
1626 		 * exceeds the minimum for the request class.
1627 		 */
1628 		if (object != NULL &&
1629 		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1630 			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1631 				mtx_unlock(&vm_page_queue_free_mtx);
1632 				return (NULL);
1633 			}
1634 			if (vm_phys_unfree_page(m))
1635 				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1636 #if VM_NRESERVLEVEL > 0
1637 			else if (!vm_reserv_reactivate_page(m))
1638 #else
1639 			else
1640 #endif
1641 				panic("vm_page_alloc: cache page %p is missing"
1642 				    " from the free queue", m);
1643 		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1644 			mtx_unlock(&vm_page_queue_free_mtx);
1645 			return (NULL);
1646 #if VM_NRESERVLEVEL > 0
1647 		} else if (object == NULL || (object->flags & (OBJ_COLORED |
1648 		    OBJ_FICTITIOUS)) != OBJ_COLORED || (m =
1649 		    vm_reserv_alloc_page(object, pindex, mpred)) == NULL) {
1650 #else
1651 		} else {
1652 #endif
1653 			m = vm_phys_alloc_pages(object != NULL ?
1654 			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1655 #if VM_NRESERVLEVEL > 0
1656 			if (m == NULL && vm_reserv_reclaim_inactive()) {
1657 				m = vm_phys_alloc_pages(object != NULL ?
1658 				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1659 				    0);
1660 			}
1661 #endif
1662 		}
1663 	} else {
1664 		/*
1665 		 * Not allocatable, give up.
1666 		 */
1667 		mtx_unlock(&vm_page_queue_free_mtx);
1668 		atomic_add_int(&vm_pageout_deficit,
1669 		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1670 		pagedaemon_wakeup();
1671 		return (NULL);
1672 	}
1673 
1674 	/*
1675 	 *  At this point we had better have found a good page.
1676 	 */
1677 	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1678 	KASSERT(m->queue == PQ_NONE,
1679 	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1680 	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1681 	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1682 	KASSERT(!vm_page_sbusied(m),
1683 	    ("vm_page_alloc: page %p is busy", m));
1684 	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1685 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1686 	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1687 	    pmap_page_get_memattr(m)));
1688 	if ((m->flags & PG_CACHED) != 0) {
1689 		KASSERT((m->flags & PG_ZERO) == 0,
1690 		    ("vm_page_alloc: cached page %p is PG_ZERO", m));
1691 		KASSERT(m->valid != 0,
1692 		    ("vm_page_alloc: cached page %p is invalid", m));
1693 		if (m->object == object && m->pindex == pindex)
1694 			vm_cnt.v_reactivated++;
1695 		else
1696 			m->valid = 0;
1697 		m_object = m->object;
1698 		vm_page_cache_remove(m);
1699 		if (m_object->type == OBJT_VNODE &&
1700 		    vm_object_cache_is_empty(m_object))
1701 			vp = m_object->handle;
1702 	} else {
1703 		KASSERT(m->valid == 0,
1704 		    ("vm_page_alloc: free page %p is valid", m));
1705 		vm_phys_freecnt_adj(m, -1);
1706 		if ((m->flags & PG_ZERO) != 0)
1707 			vm_page_zero_count--;
1708 	}
1709 	mtx_unlock(&vm_page_queue_free_mtx);
1710 
1711 	/*
1712 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1713 	 */
1714 	flags = 0;
1715 	if ((req & VM_ALLOC_ZERO) != 0)
1716 		flags = PG_ZERO;
1717 	flags &= m->flags;
1718 	if ((req & VM_ALLOC_NODUMP) != 0)
1719 		flags |= PG_NODUMP;
1720 	m->flags = flags;
1721 	m->aflags = 0;
1722 	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1723 	    VPO_UNMANAGED : 0;
1724 	m->busy_lock = VPB_UNBUSIED;
1725 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1726 		m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1727 	if ((req & VM_ALLOC_SBUSY) != 0)
1728 		m->busy_lock = VPB_SHARERS_WORD(1);
1729 	if (req & VM_ALLOC_WIRED) {
1730 		/*
1731 		 * The page lock is not required for wiring a page until that
1732 		 * page is inserted into the object.
1733 		 */
1734 		atomic_add_int(&vm_cnt.v_wire_count, 1);
1735 		m->wire_count = 1;
1736 	}
1737 	m->act_count = 0;
1738 
1739 	if (object != NULL) {
1740 		if (vm_page_insert_after(m, object, pindex, mpred)) {
1741 			/* See the comment below about hold count. */
1742 			if (vp != NULL)
1743 				vdrop(vp);
1744 			pagedaemon_wakeup();
1745 			if (req & VM_ALLOC_WIRED) {
1746 				atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1747 				m->wire_count = 0;
1748 			}
1749 			m->object = NULL;
1750 			m->oflags = VPO_UNMANAGED;
1751 			vm_page_free(m);
1752 			return (NULL);
1753 		}
1754 
1755 		/* Ignore device objects; the pager sets "memattr" for them. */
1756 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1757 		    (object->flags & OBJ_FICTITIOUS) == 0)
1758 			pmap_page_set_memattr(m, object->memattr);
1759 	} else
1760 		m->pindex = pindex;
1761 
1762 	/*
1763 	 * The following call to vdrop() must come after the above call
1764 	 * to vm_page_insert() in case both affect the same object and
1765 	 * vnode.  Otherwise, the affected vnode's hold count could
1766 	 * temporarily become zero.
1767 	 */
1768 	if (vp != NULL)
1769 		vdrop(vp);
1770 
1771 	/*
1772 	 * Don't wakeup too often - wakeup the pageout daemon when
1773 	 * we would be nearly out of memory.
1774 	 */
1775 	if (vm_paging_needed())
1776 		pagedaemon_wakeup();
1777 
1778 	return (m);
1779 }
1780 
1781 static void
1782 vm_page_alloc_contig_vdrop(struct spglist *lst)
1783 {
1784 
1785 	while (!SLIST_EMPTY(lst)) {
1786 		vdrop((struct vnode *)SLIST_FIRST(lst)-> plinks.s.pv);
1787 		SLIST_REMOVE_HEAD(lst, plinks.s.ss);
1788 	}
1789 }
1790 
1791 /*
1792  *	vm_page_alloc_contig:
1793  *
1794  *	Allocate a contiguous set of physical pages of the given size "npages"
1795  *	from the free lists.  All of the physical pages must be at or above
1796  *	the given physical address "low" and below the given physical address
1797  *	"high".  The given value "alignment" determines the alignment of the
1798  *	first physical page in the set.  If the given value "boundary" is
1799  *	non-zero, then the set of physical pages cannot cross any physical
1800  *	address boundary that is a multiple of that value.  Both "alignment"
1801  *	and "boundary" must be a power of two.
1802  *
1803  *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1804  *	then the memory attribute setting for the physical pages is configured
1805  *	to the object's memory attribute setting.  Otherwise, the memory
1806  *	attribute setting for the physical pages is configured to "memattr",
1807  *	overriding the object's memory attribute setting.  However, if the
1808  *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1809  *	memory attribute setting for the physical pages cannot be configured
1810  *	to VM_MEMATTR_DEFAULT.
1811  *
1812  *	The caller must always specify an allocation class.
1813  *
1814  *	allocation classes:
1815  *	VM_ALLOC_NORMAL		normal process request
1816  *	VM_ALLOC_SYSTEM		system *really* needs a page
1817  *	VM_ALLOC_INTERRUPT	interrupt time request
1818  *
1819  *	optional allocation flags:
1820  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1821  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1822  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1823  *				should not be exclusive busy
1824  *	VM_ALLOC_SBUSY		shared busy the allocated page
1825  *	VM_ALLOC_WIRED		wire the allocated page
1826  *	VM_ALLOC_ZERO		prefer a zeroed page
1827  *
1828  *	This routine may not sleep.
1829  */
1830 vm_page_t
1831 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1832     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1833     vm_paddr_t boundary, vm_memattr_t memattr)
1834 {
1835 	struct vnode *drop;
1836 	struct spglist deferred_vdrop_list;
1837 	vm_page_t m, m_tmp, m_ret;
1838 	u_int flags;
1839 	int req_class;
1840 
1841 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1842 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1843 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1844 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1845 	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1846 	    req));
1847 	if (object != NULL) {
1848 		VM_OBJECT_ASSERT_WLOCKED(object);
1849 		KASSERT(object->type == OBJT_PHYS,
1850 		    ("vm_page_alloc_contig: object %p isn't OBJT_PHYS",
1851 		    object));
1852 	}
1853 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1854 	req_class = req & VM_ALLOC_CLASS_MASK;
1855 
1856 	/*
1857 	 * The page daemon is allowed to dig deeper into the free page list.
1858 	 */
1859 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1860 		req_class = VM_ALLOC_SYSTEM;
1861 
1862 	SLIST_INIT(&deferred_vdrop_list);
1863 	mtx_lock(&vm_page_queue_free_mtx);
1864 	if (vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages +
1865 	    vm_cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM &&
1866 	    vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages +
1867 	    vm_cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT &&
1868 	    vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages)) {
1869 #if VM_NRESERVLEVEL > 0
1870 retry:
1871 		if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
1872 		    (m_ret = vm_reserv_alloc_contig(object, pindex, npages,
1873 		    low, high, alignment, boundary)) == NULL)
1874 #endif
1875 			m_ret = vm_phys_alloc_contig(npages, low, high,
1876 			    alignment, boundary);
1877 	} else {
1878 		mtx_unlock(&vm_page_queue_free_mtx);
1879 		atomic_add_int(&vm_pageout_deficit, npages);
1880 		pagedaemon_wakeup();
1881 		return (NULL);
1882 	}
1883 	if (m_ret != NULL)
1884 		for (m = m_ret; m < &m_ret[npages]; m++) {
1885 			drop = vm_page_alloc_init(m);
1886 			if (drop != NULL) {
1887 				/*
1888 				 * Enqueue the vnode for deferred vdrop().
1889 				 */
1890 				m->plinks.s.pv = drop;
1891 				SLIST_INSERT_HEAD(&deferred_vdrop_list, m,
1892 				    plinks.s.ss);
1893 			}
1894 		}
1895 	else {
1896 #if VM_NRESERVLEVEL > 0
1897 		if (vm_reserv_reclaim_contig(npages, low, high, alignment,
1898 		    boundary))
1899 			goto retry;
1900 #endif
1901 	}
1902 	mtx_unlock(&vm_page_queue_free_mtx);
1903 	if (m_ret == NULL)
1904 		return (NULL);
1905 
1906 	/*
1907 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
1908 	 */
1909 	flags = 0;
1910 	if ((req & VM_ALLOC_ZERO) != 0)
1911 		flags = PG_ZERO;
1912 	if ((req & VM_ALLOC_NODUMP) != 0)
1913 		flags |= PG_NODUMP;
1914 	if ((req & VM_ALLOC_WIRED) != 0)
1915 		atomic_add_int(&vm_cnt.v_wire_count, npages);
1916 	if (object != NULL) {
1917 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1918 		    memattr == VM_MEMATTR_DEFAULT)
1919 			memattr = object->memattr;
1920 	}
1921 	for (m = m_ret; m < &m_ret[npages]; m++) {
1922 		m->aflags = 0;
1923 		m->flags = (m->flags | PG_NODUMP) & flags;
1924 		m->busy_lock = VPB_UNBUSIED;
1925 		if (object != NULL) {
1926 			if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
1927 				m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1928 			if ((req & VM_ALLOC_SBUSY) != 0)
1929 				m->busy_lock = VPB_SHARERS_WORD(1);
1930 		}
1931 		if ((req & VM_ALLOC_WIRED) != 0)
1932 			m->wire_count = 1;
1933 		/* Unmanaged pages don't use "act_count". */
1934 		m->oflags = VPO_UNMANAGED;
1935 		if (object != NULL) {
1936 			if (vm_page_insert(m, object, pindex)) {
1937 				vm_page_alloc_contig_vdrop(
1938 				    &deferred_vdrop_list);
1939 				if (vm_paging_needed())
1940 					pagedaemon_wakeup();
1941 				if ((req & VM_ALLOC_WIRED) != 0)
1942 					atomic_subtract_int(&vm_cnt.v_wire_count,
1943 					    npages);
1944 				for (m_tmp = m, m = m_ret;
1945 				    m < &m_ret[npages]; m++) {
1946 					if ((req & VM_ALLOC_WIRED) != 0)
1947 						m->wire_count = 0;
1948 					if (m >= m_tmp)
1949 						m->object = NULL;
1950 					vm_page_free(m);
1951 				}
1952 				return (NULL);
1953 			}
1954 		} else
1955 			m->pindex = pindex;
1956 		if (memattr != VM_MEMATTR_DEFAULT)
1957 			pmap_page_set_memattr(m, memattr);
1958 		pindex++;
1959 	}
1960 	vm_page_alloc_contig_vdrop(&deferred_vdrop_list);
1961 	if (vm_paging_needed())
1962 		pagedaemon_wakeup();
1963 	return (m_ret);
1964 }
1965 
1966 /*
1967  * Initialize a page that has been freshly dequeued from a freelist.
1968  * The caller has to drop the vnode returned, if it is not NULL.
1969  *
1970  * This function may only be used to initialize unmanaged pages.
1971  *
1972  * To be called with vm_page_queue_free_mtx held.
1973  */
1974 static struct vnode *
1975 vm_page_alloc_init(vm_page_t m)
1976 {
1977 	struct vnode *drop;
1978 	vm_object_t m_object;
1979 
1980 	KASSERT(m->queue == PQ_NONE,
1981 	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1982 	    m, m->queue));
1983 	KASSERT(m->wire_count == 0,
1984 	    ("vm_page_alloc_init: page %p is wired", m));
1985 	KASSERT(m->hold_count == 0,
1986 	    ("vm_page_alloc_init: page %p is held", m));
1987 	KASSERT(!vm_page_sbusied(m),
1988 	    ("vm_page_alloc_init: page %p is busy", m));
1989 	KASSERT(m->dirty == 0,
1990 	    ("vm_page_alloc_init: page %p is dirty", m));
1991 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1992 	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
1993 	    m, pmap_page_get_memattr(m)));
1994 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1995 	drop = NULL;
1996 	if ((m->flags & PG_CACHED) != 0) {
1997 		KASSERT((m->flags & PG_ZERO) == 0,
1998 		    ("vm_page_alloc_init: cached page %p is PG_ZERO", m));
1999 		m->valid = 0;
2000 		m_object = m->object;
2001 		vm_page_cache_remove(m);
2002 		if (m_object->type == OBJT_VNODE &&
2003 		    vm_object_cache_is_empty(m_object))
2004 			drop = m_object->handle;
2005 	} else {
2006 		KASSERT(m->valid == 0,
2007 		    ("vm_page_alloc_init: free page %p is valid", m));
2008 		vm_phys_freecnt_adj(m, -1);
2009 		if ((m->flags & PG_ZERO) != 0)
2010 			vm_page_zero_count--;
2011 	}
2012 	return (drop);
2013 }
2014 
2015 /*
2016  * 	vm_page_alloc_freelist:
2017  *
2018  *	Allocate a physical page from the specified free page list.
2019  *
2020  *	The caller must always specify an allocation class.
2021  *
2022  *	allocation classes:
2023  *	VM_ALLOC_NORMAL		normal process request
2024  *	VM_ALLOC_SYSTEM		system *really* needs a page
2025  *	VM_ALLOC_INTERRUPT	interrupt time request
2026  *
2027  *	optional allocation flags:
2028  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
2029  *				intends to allocate
2030  *	VM_ALLOC_WIRED		wire the allocated page
2031  *	VM_ALLOC_ZERO		prefer a zeroed page
2032  *
2033  *	This routine may not sleep.
2034  */
2035 vm_page_t
2036 vm_page_alloc_freelist(int flind, int req)
2037 {
2038 	struct vnode *drop;
2039 	vm_page_t m;
2040 	u_int flags;
2041 	int req_class;
2042 
2043 	req_class = req & VM_ALLOC_CLASS_MASK;
2044 
2045 	/*
2046 	 * The page daemon is allowed to dig deeper into the free page list.
2047 	 */
2048 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2049 		req_class = VM_ALLOC_SYSTEM;
2050 
2051 	/*
2052 	 * Do not allocate reserved pages unless the req has asked for it.
2053 	 */
2054 	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
2055 	if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved ||
2056 	    (req_class == VM_ALLOC_SYSTEM &&
2057 	    vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) ||
2058 	    (req_class == VM_ALLOC_INTERRUPT &&
2059 	    vm_cnt.v_free_count + vm_cnt.v_cache_count > 0))
2060 		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
2061 	else {
2062 		mtx_unlock(&vm_page_queue_free_mtx);
2063 		atomic_add_int(&vm_pageout_deficit,
2064 		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
2065 		pagedaemon_wakeup();
2066 		return (NULL);
2067 	}
2068 	if (m == NULL) {
2069 		mtx_unlock(&vm_page_queue_free_mtx);
2070 		return (NULL);
2071 	}
2072 	drop = vm_page_alloc_init(m);
2073 	mtx_unlock(&vm_page_queue_free_mtx);
2074 
2075 	/*
2076 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2077 	 */
2078 	m->aflags = 0;
2079 	flags = 0;
2080 	if ((req & VM_ALLOC_ZERO) != 0)
2081 		flags = PG_ZERO;
2082 	m->flags &= flags;
2083 	if ((req & VM_ALLOC_WIRED) != 0) {
2084 		/*
2085 		 * The page lock is not required for wiring a page that does
2086 		 * not belong to an object.
2087 		 */
2088 		atomic_add_int(&vm_cnt.v_wire_count, 1);
2089 		m->wire_count = 1;
2090 	}
2091 	/* Unmanaged pages don't use "act_count". */
2092 	m->oflags = VPO_UNMANAGED;
2093 	if (drop != NULL)
2094 		vdrop(drop);
2095 	if (vm_paging_needed())
2096 		pagedaemon_wakeup();
2097 	return (m);
2098 }
2099 
2100 #define	VPSC_ANY	0	/* No restrictions. */
2101 #define	VPSC_NORESERV	1	/* Skip reservations; implies VPSC_NOSUPER. */
2102 #define	VPSC_NOSUPER	2	/* Skip superpages. */
2103 
2104 /*
2105  *	vm_page_scan_contig:
2106  *
2107  *	Scan vm_page_array[] between the specified entries "m_start" and
2108  *	"m_end" for a run of contiguous physical pages that satisfy the
2109  *	specified conditions, and return the lowest page in the run.  The
2110  *	specified "alignment" determines the alignment of the lowest physical
2111  *	page in the run.  If the specified "boundary" is non-zero, then the
2112  *	run of physical pages cannot span a physical address that is a
2113  *	multiple of "boundary".
2114  *
2115  *	"m_end" is never dereferenced, so it need not point to a vm_page
2116  *	structure within vm_page_array[].
2117  *
2118  *	"npages" must be greater than zero.  "m_start" and "m_end" must not
2119  *	span a hole (or discontiguity) in the physical address space.  Both
2120  *	"alignment" and "boundary" must be a power of two.
2121  */
2122 vm_page_t
2123 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2124     u_long alignment, vm_paddr_t boundary, int options)
2125 {
2126 	struct mtx *m_mtx, *new_mtx;
2127 	vm_object_t object;
2128 	vm_paddr_t pa;
2129 	vm_page_t m, m_run;
2130 #if VM_NRESERVLEVEL > 0
2131 	int level;
2132 #endif
2133 	int m_inc, order, run_ext, run_len;
2134 
2135 	KASSERT(npages > 0, ("npages is 0"));
2136 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2137 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2138 	m_run = NULL;
2139 	run_len = 0;
2140 	m_mtx = NULL;
2141 	for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2142 		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2143 		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2144 
2145 		/*
2146 		 * If the current page would be the start of a run, check its
2147 		 * physical address against the end, alignment, and boundary
2148 		 * conditions.  If it doesn't satisfy these conditions, either
2149 		 * terminate the scan or advance to the next page that
2150 		 * satisfies the failed condition.
2151 		 */
2152 		if (run_len == 0) {
2153 			KASSERT(m_run == NULL, ("m_run != NULL"));
2154 			if (m + npages > m_end)
2155 				break;
2156 			pa = VM_PAGE_TO_PHYS(m);
2157 			if ((pa & (alignment - 1)) != 0) {
2158 				m_inc = atop(roundup2(pa, alignment) - pa);
2159 				continue;
2160 			}
2161 			if (((pa ^ (pa + ptoa(npages) - 1)) & ~(boundary -
2162 			    1)) != 0) {
2163 				m_inc = atop(roundup2(pa, boundary) - pa);
2164 				continue;
2165 			}
2166 		} else
2167 			KASSERT(m_run != NULL, ("m_run == NULL"));
2168 
2169 		/*
2170 		 * Avoid releasing and reacquiring the same page lock.
2171 		 */
2172 		new_mtx = vm_page_lockptr(m);
2173 		if (m_mtx != new_mtx) {
2174 			if (m_mtx != NULL)
2175 				mtx_unlock(m_mtx);
2176 			m_mtx = new_mtx;
2177 			mtx_lock(m_mtx);
2178 		}
2179 		m_inc = 1;
2180 retry:
2181 		if (m->wire_count != 0 || m->hold_count != 0)
2182 			run_ext = 0;
2183 #if VM_NRESERVLEVEL > 0
2184 		else if ((level = vm_reserv_level(m)) >= 0 &&
2185 		    (options & VPSC_NORESERV) != 0) {
2186 			run_ext = 0;
2187 			/* Advance to the end of the reservation. */
2188 			pa = VM_PAGE_TO_PHYS(m);
2189 			m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2190 			    pa);
2191 		}
2192 #endif
2193 		else if ((object = m->object) != NULL) {
2194 			/*
2195 			 * The page is considered eligible for relocation if
2196 			 * and only if it could be laundered or reclaimed by
2197 			 * the page daemon.
2198 			 */
2199 			if (!VM_OBJECT_TRYRLOCK(object)) {
2200 				mtx_unlock(m_mtx);
2201 				VM_OBJECT_RLOCK(object);
2202 				mtx_lock(m_mtx);
2203 				if (m->object != object) {
2204 					/*
2205 					 * The page may have been freed.
2206 					 */
2207 					VM_OBJECT_RUNLOCK(object);
2208 					goto retry;
2209 				} else if (m->wire_count != 0 ||
2210 				    m->hold_count != 0) {
2211 					run_ext = 0;
2212 					goto unlock;
2213 				}
2214 			}
2215 			KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2216 			    ("page %p is PG_UNHOLDFREE", m));
2217 			/* Don't care: PG_NODUMP, PG_WINATCFLS, PG_ZERO. */
2218 			if (object->type != OBJT_DEFAULT &&
2219 			    object->type != OBJT_SWAP &&
2220 			    object->type != OBJT_VNODE)
2221 				run_ext = 0;
2222 			else if ((m->flags & PG_CACHED) != 0 ||
2223 			    m != vm_page_lookup(object, m->pindex)) {
2224 				/*
2225 				 * The page is cached or recently converted
2226 				 * from cached to free.
2227 				 */
2228 #if VM_NRESERVLEVEL > 0
2229 				if (level >= 0) {
2230 					/*
2231 					 * The page is reserved.  Extend the
2232 					 * current run by one page.
2233 					 */
2234 					run_ext = 1;
2235 				} else
2236 #endif
2237 				if ((order = m->order) < VM_NFREEORDER) {
2238 					/*
2239 					 * The page is enqueued in the
2240 					 * physical memory allocator's cache/
2241 					 * free page queues.  Moreover, it is
2242 					 * the first page in a power-of-two-
2243 					 * sized run of contiguous cache/free
2244 					 * pages.  Add these pages to the end
2245 					 * of the current run, and jump
2246 					 * ahead.
2247 					 */
2248 					run_ext = 1 << order;
2249 					m_inc = 1 << order;
2250 				} else
2251 					run_ext = 0;
2252 #if VM_NRESERVLEVEL > 0
2253 			} else if ((options & VPSC_NOSUPER) != 0 &&
2254 			    (level = vm_reserv_level_iffullpop(m)) >= 0) {
2255 				run_ext = 0;
2256 				/* Advance to the end of the superpage. */
2257 				pa = VM_PAGE_TO_PHYS(m);
2258 				m_inc = atop(roundup2(pa + 1,
2259 				    vm_reserv_size(level)) - pa);
2260 #endif
2261 			} else if (object->memattr == VM_MEMATTR_DEFAULT &&
2262 			    m->queue != PQ_NONE && !vm_page_busied(m)) {
2263 				/*
2264 				 * The page is allocated but eligible for
2265 				 * relocation.  Extend the current run by one
2266 				 * page.
2267 				 */
2268 				KASSERT(pmap_page_get_memattr(m) ==
2269 				    VM_MEMATTR_DEFAULT,
2270 				    ("page %p has an unexpected memattr", m));
2271 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2272 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2273 				    ("page %p has unexpected oflags", m));
2274 				/* Don't care: VPO_NOSYNC. */
2275 				run_ext = 1;
2276 			} else
2277 				run_ext = 0;
2278 unlock:
2279 			VM_OBJECT_RUNLOCK(object);
2280 #if VM_NRESERVLEVEL > 0
2281 		} else if (level >= 0) {
2282 			/*
2283 			 * The page is reserved but not yet allocated.  In
2284 			 * other words, it is still cached or free.  Extend
2285 			 * the current run by one page.
2286 			 */
2287 			run_ext = 1;
2288 #endif
2289 		} else if ((order = m->order) < VM_NFREEORDER) {
2290 			/*
2291 			 * The page is enqueued in the physical memory
2292 			 * allocator's cache/free page queues.  Moreover, it
2293 			 * is the first page in a power-of-two-sized run of
2294 			 * contiguous cache/free pages.  Add these pages to
2295 			 * the end of the current run, and jump ahead.
2296 			 */
2297 			run_ext = 1 << order;
2298 			m_inc = 1 << order;
2299 		} else {
2300 			/*
2301 			 * Skip the page for one of the following reasons: (1)
2302 			 * It is enqueued in the physical memory allocator's
2303 			 * cache/free page queues.  However, it is not the
2304 			 * first page in a run of contiguous cache/free pages.
2305 			 * (This case rarely occurs because the scan is
2306 			 * performed in ascending order.) (2) It is not
2307 			 * reserved, and it is transitioning from free to
2308 			 * allocated.  (Conversely, the transition from
2309 			 * allocated to free for managed pages is blocked by
2310 			 * the page lock.) (3) It is allocated but not
2311 			 * contained by an object and not wired, e.g.,
2312 			 * allocated by Xen's balloon driver.
2313 			 */
2314 			run_ext = 0;
2315 		}
2316 
2317 		/*
2318 		 * Extend or reset the current run of pages.
2319 		 */
2320 		if (run_ext > 0) {
2321 			if (run_len == 0)
2322 				m_run = m;
2323 			run_len += run_ext;
2324 		} else {
2325 			if (run_len > 0) {
2326 				m_run = NULL;
2327 				run_len = 0;
2328 			}
2329 		}
2330 	}
2331 	if (m_mtx != NULL)
2332 		mtx_unlock(m_mtx);
2333 	if (run_len >= npages)
2334 		return (m_run);
2335 	return (NULL);
2336 }
2337 
2338 /*
2339  *	vm_page_reclaim_run:
2340  *
2341  *	Try to relocate each of the allocated virtual pages within the
2342  *	specified run of physical pages to a new physical address.  Free the
2343  *	physical pages underlying the relocated virtual pages.  A virtual page
2344  *	is relocatable if and only if it could be laundered or reclaimed by
2345  *	the page daemon.  Whenever possible, a virtual page is relocated to a
2346  *	physical address above "high".
2347  *
2348  *	Returns 0 if every physical page within the run was already free or
2349  *	just freed by a successful relocation.  Otherwise, returns a non-zero
2350  *	value indicating why the last attempt to relocate a virtual page was
2351  *	unsuccessful.
2352  *
2353  *	"req_class" must be an allocation class.
2354  */
2355 static int
2356 vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run,
2357     vm_paddr_t high)
2358 {
2359 	struct mtx *m_mtx, *new_mtx;
2360 	struct spglist free;
2361 	vm_object_t object;
2362 	vm_paddr_t pa;
2363 	vm_page_t m, m_end, m_new;
2364 	int error, order, req;
2365 
2366 	KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2367 	    ("req_class is not an allocation class"));
2368 	SLIST_INIT(&free);
2369 	error = 0;
2370 	m = m_run;
2371 	m_end = m_run + npages;
2372 	m_mtx = NULL;
2373 	for (; error == 0 && m < m_end; m++) {
2374 		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2375 		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2376 
2377 		/*
2378 		 * Avoid releasing and reacquiring the same page lock.
2379 		 */
2380 		new_mtx = vm_page_lockptr(m);
2381 		if (m_mtx != new_mtx) {
2382 			if (m_mtx != NULL)
2383 				mtx_unlock(m_mtx);
2384 			m_mtx = new_mtx;
2385 			mtx_lock(m_mtx);
2386 		}
2387 retry:
2388 		if (m->wire_count != 0 || m->hold_count != 0)
2389 			error = EBUSY;
2390 		else if ((object = m->object) != NULL) {
2391 			/*
2392 			 * The page is relocated if and only if it could be
2393 			 * laundered or reclaimed by the page daemon.
2394 			 */
2395 			if (!VM_OBJECT_TRYWLOCK(object)) {
2396 				mtx_unlock(m_mtx);
2397 				VM_OBJECT_WLOCK(object);
2398 				mtx_lock(m_mtx);
2399 				if (m->object != object) {
2400 					/*
2401 					 * The page may have been freed.
2402 					 */
2403 					VM_OBJECT_WUNLOCK(object);
2404 					goto retry;
2405 				} else if (m->wire_count != 0 ||
2406 				    m->hold_count != 0) {
2407 					error = EBUSY;
2408 					goto unlock;
2409 				}
2410 			}
2411 			KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2412 			    ("page %p is PG_UNHOLDFREE", m));
2413 			/* Don't care: PG_NODUMP, PG_WINATCFLS, PG_ZERO. */
2414 			if (object->type != OBJT_DEFAULT &&
2415 			    object->type != OBJT_SWAP &&
2416 			    object->type != OBJT_VNODE)
2417 				error = EINVAL;
2418 			else if ((m->flags & PG_CACHED) != 0 ||
2419 			    m != vm_page_lookup(object, m->pindex)) {
2420 				/*
2421 				 * The page is cached or recently converted
2422 				 * from cached to free.
2423 				 */
2424 				VM_OBJECT_WUNLOCK(object);
2425 				goto cached;
2426 			} else if (object->memattr != VM_MEMATTR_DEFAULT)
2427 				error = EINVAL;
2428 			else if (m->queue != PQ_NONE && !vm_page_busied(m)) {
2429 				KASSERT(pmap_page_get_memattr(m) ==
2430 				    VM_MEMATTR_DEFAULT,
2431 				    ("page %p has an unexpected memattr", m));
2432 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2433 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2434 				    ("page %p has unexpected oflags", m));
2435 				/* Don't care: VPO_NOSYNC. */
2436 				if (m->valid != 0) {
2437 					/*
2438 					 * First, try to allocate a new page
2439 					 * that is above "high".  Failing
2440 					 * that, try to allocate a new page
2441 					 * that is below "m_run".  Allocate
2442 					 * the new page between the end of
2443 					 * "m_run" and "high" only as a last
2444 					 * resort.
2445 					 */
2446 					req = req_class | VM_ALLOC_NOOBJ;
2447 					if ((m->flags & PG_NODUMP) != 0)
2448 						req |= VM_ALLOC_NODUMP;
2449 					if (trunc_page(high) !=
2450 					    ~(vm_paddr_t)PAGE_MASK) {
2451 						m_new = vm_page_alloc_contig(
2452 						    NULL, 0, req, 1,
2453 						    round_page(high),
2454 						    ~(vm_paddr_t)0,
2455 						    PAGE_SIZE, 0,
2456 						    VM_MEMATTR_DEFAULT);
2457 					} else
2458 						m_new = NULL;
2459 					if (m_new == NULL) {
2460 						pa = VM_PAGE_TO_PHYS(m_run);
2461 						m_new = vm_page_alloc_contig(
2462 						    NULL, 0, req, 1,
2463 						    0, pa - 1, PAGE_SIZE, 0,
2464 						    VM_MEMATTR_DEFAULT);
2465 					}
2466 					if (m_new == NULL) {
2467 						pa += ptoa(npages);
2468 						m_new = vm_page_alloc_contig(
2469 						    NULL, 0, req, 1,
2470 						    pa, high, PAGE_SIZE, 0,
2471 						    VM_MEMATTR_DEFAULT);
2472 					}
2473 					if (m_new == NULL) {
2474 						error = ENOMEM;
2475 						goto unlock;
2476 					}
2477 					KASSERT(m_new->wire_count == 0,
2478 					    ("page %p is wired", m));
2479 
2480 					/*
2481 					 * Replace "m" with the new page.  For
2482 					 * vm_page_replace(), "m" must be busy
2483 					 * and dequeued.  Finally, change "m"
2484 					 * as if vm_page_free() was called.
2485 					 */
2486 					if (object->ref_count != 0)
2487 						pmap_remove_all(m);
2488 					m_new->aflags = m->aflags;
2489 					KASSERT(m_new->oflags == VPO_UNMANAGED,
2490 					    ("page %p is managed", m));
2491 					m_new->oflags = m->oflags & VPO_NOSYNC;
2492 					pmap_copy_page(m, m_new);
2493 					m_new->valid = m->valid;
2494 					m_new->dirty = m->dirty;
2495 					m->flags &= ~PG_ZERO;
2496 					vm_page_xbusy(m);
2497 					vm_page_remque(m);
2498 					vm_page_replace_checked(m_new, object,
2499 					    m->pindex, m);
2500 					m->valid = 0;
2501 					vm_page_undirty(m);
2502 
2503 					/*
2504 					 * The new page must be deactivated
2505 					 * before the object is unlocked.
2506 					 */
2507 					new_mtx = vm_page_lockptr(m_new);
2508 					if (m_mtx != new_mtx) {
2509 						mtx_unlock(m_mtx);
2510 						m_mtx = new_mtx;
2511 						mtx_lock(m_mtx);
2512 					}
2513 					vm_page_deactivate(m_new);
2514 				} else {
2515 					m->flags &= ~PG_ZERO;
2516 					vm_page_remque(m);
2517 					vm_page_remove(m);
2518 					KASSERT(m->dirty == 0,
2519 					    ("page %p is dirty", m));
2520 				}
2521 				SLIST_INSERT_HEAD(&free, m, plinks.s.ss);
2522 			} else
2523 				error = EBUSY;
2524 unlock:
2525 			VM_OBJECT_WUNLOCK(object);
2526 		} else {
2527 cached:
2528 			mtx_lock(&vm_page_queue_free_mtx);
2529 			order = m->order;
2530 			if (order < VM_NFREEORDER) {
2531 				/*
2532 				 * The page is enqueued in the physical memory
2533 				 * allocator's cache/free page queues.
2534 				 * Moreover, it is the first page in a power-
2535 				 * of-two-sized run of contiguous cache/free
2536 				 * pages.  Jump ahead to the last page within
2537 				 * that run, and continue from there.
2538 				 */
2539 				m += (1 << order) - 1;
2540 			}
2541 #if VM_NRESERVLEVEL > 0
2542 			else if (vm_reserv_is_page_free(m))
2543 				order = 0;
2544 #endif
2545 			mtx_unlock(&vm_page_queue_free_mtx);
2546 			if (order == VM_NFREEORDER)
2547 				error = EINVAL;
2548 		}
2549 	}
2550 	if (m_mtx != NULL)
2551 		mtx_unlock(m_mtx);
2552 	if ((m = SLIST_FIRST(&free)) != NULL) {
2553 		mtx_lock(&vm_page_queue_free_mtx);
2554 		do {
2555 			SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2556 			vm_phys_freecnt_adj(m, 1);
2557 #if VM_NRESERVLEVEL > 0
2558 			if (!vm_reserv_free_page(m))
2559 #else
2560 			if (true)
2561 #endif
2562 				vm_phys_free_pages(m, 0);
2563 		} while ((m = SLIST_FIRST(&free)) != NULL);
2564 		vm_page_zero_idle_wakeup();
2565 		vm_page_free_wakeup();
2566 		mtx_unlock(&vm_page_queue_free_mtx);
2567 	}
2568 	return (error);
2569 }
2570 
2571 #define	NRUNS	16
2572 
2573 CTASSERT(powerof2(NRUNS));
2574 
2575 #define	RUN_INDEX(count)	((count) & (NRUNS - 1))
2576 
2577 #define	MIN_RECLAIM	8
2578 
2579 /*
2580  *	vm_page_reclaim_contig:
2581  *
2582  *	Reclaim allocated, contiguous physical memory satisfying the specified
2583  *	conditions by relocating the virtual pages using that physical memory.
2584  *	Returns true if reclamation is successful and false otherwise.  Since
2585  *	relocation requires the allocation of physical pages, reclamation may
2586  *	fail due to a shortage of cache/free pages.  When reclamation fails,
2587  *	callers are expected to perform VM_WAIT before retrying a failed
2588  *	allocation operation, e.g., vm_page_alloc_contig().
2589  *
2590  *	The caller must always specify an allocation class through "req".
2591  *
2592  *	allocation classes:
2593  *	VM_ALLOC_NORMAL		normal process request
2594  *	VM_ALLOC_SYSTEM		system *really* needs a page
2595  *	VM_ALLOC_INTERRUPT	interrupt time request
2596  *
2597  *	The optional allocation flags are ignored.
2598  *
2599  *	"npages" must be greater than zero.  Both "alignment" and "boundary"
2600  *	must be a power of two.
2601  */
2602 bool
2603 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
2604     u_long alignment, vm_paddr_t boundary)
2605 {
2606 	vm_paddr_t curr_low;
2607 	vm_page_t m_run, m_runs[NRUNS];
2608 	u_long count, reclaimed;
2609 	int error, i, options, req_class;
2610 
2611 	KASSERT(npages > 0, ("npages is 0"));
2612 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2613 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2614 	req_class = req & VM_ALLOC_CLASS_MASK;
2615 
2616 	/*
2617 	 * The page daemon is allowed to dig deeper into the free page list.
2618 	 */
2619 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2620 		req_class = VM_ALLOC_SYSTEM;
2621 
2622 	/*
2623 	 * Return if the number of cached and free pages cannot satisfy the
2624 	 * requested allocation.
2625 	 */
2626 	count = vm_cnt.v_free_count + vm_cnt.v_cache_count;
2627 	if (count < npages + vm_cnt.v_free_reserved || (count < npages +
2628 	    vm_cnt.v_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2629 	    (count < npages && req_class == VM_ALLOC_INTERRUPT))
2630 		return (false);
2631 
2632 	/*
2633 	 * Scan up to three times, relaxing the restrictions ("options") on
2634 	 * the reclamation of reservations and superpages each time.
2635 	 */
2636 	for (options = VPSC_NORESERV;;) {
2637 		/*
2638 		 * Find the highest runs that satisfy the given constraints
2639 		 * and restrictions, and record them in "m_runs".
2640 		 */
2641 		curr_low = low;
2642 		count = 0;
2643 		for (;;) {
2644 			m_run = vm_phys_scan_contig(npages, curr_low, high,
2645 			    alignment, boundary, options);
2646 			if (m_run == NULL)
2647 				break;
2648 			curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
2649 			m_runs[RUN_INDEX(count)] = m_run;
2650 			count++;
2651 		}
2652 
2653 		/*
2654 		 * Reclaim the highest runs in LIFO (descending) order until
2655 		 * the number of reclaimed pages, "reclaimed", is at least
2656 		 * MIN_RECLAIM.  Reset "reclaimed" each time because each
2657 		 * reclamation is idempotent, and runs will (likely) recur
2658 		 * from one scan to the next as restrictions are relaxed.
2659 		 */
2660 		reclaimed = 0;
2661 		for (i = 0; count > 0 && i < NRUNS; i++) {
2662 			count--;
2663 			m_run = m_runs[RUN_INDEX(count)];
2664 			error = vm_page_reclaim_run(req_class, npages, m_run,
2665 			    high);
2666 			if (error == 0) {
2667 				reclaimed += npages;
2668 				if (reclaimed >= MIN_RECLAIM)
2669 					return (true);
2670 			}
2671 		}
2672 
2673 		/*
2674 		 * Either relax the restrictions on the next scan or return if
2675 		 * the last scan had no restrictions.
2676 		 */
2677 		if (options == VPSC_NORESERV)
2678 			options = VPSC_NOSUPER;
2679 		else if (options == VPSC_NOSUPER)
2680 			options = VPSC_ANY;
2681 		else if (options == VPSC_ANY)
2682 			return (reclaimed != 0);
2683 	}
2684 }
2685 
2686 /*
2687  *	vm_wait:	(also see VM_WAIT macro)
2688  *
2689  *	Sleep until free pages are available for allocation.
2690  *	- Called in various places before memory allocations.
2691  */
2692 void
2693 vm_wait(void)
2694 {
2695 
2696 	mtx_lock(&vm_page_queue_free_mtx);
2697 	if (curproc == pageproc) {
2698 		vm_pageout_pages_needed = 1;
2699 		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
2700 		    PDROP | PSWP, "VMWait", 0);
2701 	} else {
2702 		if (!vm_pages_needed) {
2703 			vm_pages_needed = 1;
2704 			wakeup(&vm_pages_needed);
2705 		}
2706 		msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
2707 		    "vmwait", 0);
2708 	}
2709 }
2710 
2711 /*
2712  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
2713  *
2714  *	Sleep until free pages are available for allocation.
2715  *	- Called only in vm_fault so that processes page faulting
2716  *	  can be easily tracked.
2717  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
2718  *	  processes will be able to grab memory first.  Do not change
2719  *	  this balance without careful testing first.
2720  */
2721 void
2722 vm_waitpfault(void)
2723 {
2724 
2725 	mtx_lock(&vm_page_queue_free_mtx);
2726 	if (!vm_pages_needed) {
2727 		vm_pages_needed = 1;
2728 		wakeup(&vm_pages_needed);
2729 	}
2730 	msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
2731 	    "pfault", 0);
2732 }
2733 
2734 struct vm_pagequeue *
2735 vm_page_pagequeue(vm_page_t m)
2736 {
2737 
2738 	return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]);
2739 }
2740 
2741 /*
2742  *	vm_page_dequeue:
2743  *
2744  *	Remove the given page from its current page queue.
2745  *
2746  *	The page must be locked.
2747  */
2748 void
2749 vm_page_dequeue(vm_page_t m)
2750 {
2751 	struct vm_pagequeue *pq;
2752 
2753 	vm_page_assert_locked(m);
2754 	KASSERT(m->queue < PQ_COUNT, ("vm_page_dequeue: page %p is not queued",
2755 	    m));
2756 	pq = vm_page_pagequeue(m);
2757 	vm_pagequeue_lock(pq);
2758 	m->queue = PQ_NONE;
2759 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2760 	vm_pagequeue_cnt_dec(pq);
2761 	vm_pagequeue_unlock(pq);
2762 }
2763 
2764 /*
2765  *	vm_page_dequeue_locked:
2766  *
2767  *	Remove the given page from its current page queue.
2768  *
2769  *	The page and page queue must be locked.
2770  */
2771 void
2772 vm_page_dequeue_locked(vm_page_t m)
2773 {
2774 	struct vm_pagequeue *pq;
2775 
2776 	vm_page_lock_assert(m, MA_OWNED);
2777 	pq = vm_page_pagequeue(m);
2778 	vm_pagequeue_assert_locked(pq);
2779 	m->queue = PQ_NONE;
2780 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2781 	vm_pagequeue_cnt_dec(pq);
2782 }
2783 
2784 /*
2785  *	vm_page_enqueue:
2786  *
2787  *	Add the given page to the specified page queue.
2788  *
2789  *	The page must be locked.
2790  */
2791 static void
2792 vm_page_enqueue(uint8_t queue, vm_page_t m)
2793 {
2794 	struct vm_pagequeue *pq;
2795 
2796 	vm_page_lock_assert(m, MA_OWNED);
2797 	KASSERT(queue < PQ_COUNT,
2798 	    ("vm_page_enqueue: invalid queue %u request for page %p",
2799 	    queue, m));
2800 	pq = &vm_phys_domain(m)->vmd_pagequeues[queue];
2801 	vm_pagequeue_lock(pq);
2802 	m->queue = queue;
2803 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2804 	vm_pagequeue_cnt_inc(pq);
2805 	vm_pagequeue_unlock(pq);
2806 }
2807 
2808 /*
2809  *	vm_page_requeue:
2810  *
2811  *	Move the given page to the tail of its current page queue.
2812  *
2813  *	The page must be locked.
2814  */
2815 void
2816 vm_page_requeue(vm_page_t m)
2817 {
2818 	struct vm_pagequeue *pq;
2819 
2820 	vm_page_lock_assert(m, MA_OWNED);
2821 	KASSERT(m->queue != PQ_NONE,
2822 	    ("vm_page_requeue: page %p is not queued", m));
2823 	pq = vm_page_pagequeue(m);
2824 	vm_pagequeue_lock(pq);
2825 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2826 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2827 	vm_pagequeue_unlock(pq);
2828 }
2829 
2830 /*
2831  *	vm_page_requeue_locked:
2832  *
2833  *	Move the given page to the tail of its current page queue.
2834  *
2835  *	The page queue must be locked.
2836  */
2837 void
2838 vm_page_requeue_locked(vm_page_t m)
2839 {
2840 	struct vm_pagequeue *pq;
2841 
2842 	KASSERT(m->queue != PQ_NONE,
2843 	    ("vm_page_requeue_locked: page %p is not queued", m));
2844 	pq = vm_page_pagequeue(m);
2845 	vm_pagequeue_assert_locked(pq);
2846 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2847 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2848 }
2849 
2850 /*
2851  *	vm_page_activate:
2852  *
2853  *	Put the specified page on the active list (if appropriate).
2854  *	Ensure that act_count is at least ACT_INIT but do not otherwise
2855  *	mess with it.
2856  *
2857  *	The page must be locked.
2858  */
2859 void
2860 vm_page_activate(vm_page_t m)
2861 {
2862 	int queue;
2863 
2864 	vm_page_lock_assert(m, MA_OWNED);
2865 	if ((queue = m->queue) != PQ_ACTIVE) {
2866 		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2867 			if (m->act_count < ACT_INIT)
2868 				m->act_count = ACT_INIT;
2869 			if (queue != PQ_NONE)
2870 				vm_page_dequeue(m);
2871 			vm_page_enqueue(PQ_ACTIVE, m);
2872 		} else
2873 			KASSERT(queue == PQ_NONE,
2874 			    ("vm_page_activate: wired page %p is queued", m));
2875 	} else {
2876 		if (m->act_count < ACT_INIT)
2877 			m->act_count = ACT_INIT;
2878 	}
2879 }
2880 
2881 /*
2882  *	vm_page_free_wakeup:
2883  *
2884  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
2885  *	routine is called when a page has been added to the cache or free
2886  *	queues.
2887  *
2888  *	The page queues must be locked.
2889  */
2890 static inline void
2891 vm_page_free_wakeup(void)
2892 {
2893 
2894 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2895 	/*
2896 	 * if pageout daemon needs pages, then tell it that there are
2897 	 * some free.
2898 	 */
2899 	if (vm_pageout_pages_needed &&
2900 	    vm_cnt.v_cache_count + vm_cnt.v_free_count >= vm_cnt.v_pageout_free_min) {
2901 		wakeup(&vm_pageout_pages_needed);
2902 		vm_pageout_pages_needed = 0;
2903 	}
2904 	/*
2905 	 * wakeup processes that are waiting on memory if we hit a
2906 	 * high water mark. And wakeup scheduler process if we have
2907 	 * lots of memory. this process will swapin processes.
2908 	 */
2909 	if (vm_pages_needed && !vm_page_count_min()) {
2910 		vm_pages_needed = 0;
2911 		wakeup(&vm_cnt.v_free_count);
2912 	}
2913 }
2914 
2915 /*
2916  *	Turn a cached page into a free page, by changing its attributes.
2917  *	Keep the statistics up-to-date.
2918  *
2919  *	The free page queue must be locked.
2920  */
2921 static void
2922 vm_page_cache_turn_free(vm_page_t m)
2923 {
2924 
2925 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2926 
2927 	m->object = NULL;
2928 	m->valid = 0;
2929 	KASSERT((m->flags & PG_CACHED) != 0,
2930 	    ("vm_page_cache_turn_free: page %p is not cached", m));
2931 	m->flags &= ~PG_CACHED;
2932 	vm_cnt.v_cache_count--;
2933 	vm_phys_freecnt_adj(m, 1);
2934 }
2935 
2936 /*
2937  *	vm_page_free_toq:
2938  *
2939  *	Returns the given page to the free list,
2940  *	disassociating it with any VM object.
2941  *
2942  *	The object must be locked.  The page must be locked if it is managed.
2943  */
2944 void
2945 vm_page_free_toq(vm_page_t m)
2946 {
2947 
2948 	if ((m->oflags & VPO_UNMANAGED) == 0) {
2949 		vm_page_lock_assert(m, MA_OWNED);
2950 		KASSERT(!pmap_page_is_mapped(m),
2951 		    ("vm_page_free_toq: freeing mapped page %p", m));
2952 	} else
2953 		KASSERT(m->queue == PQ_NONE,
2954 		    ("vm_page_free_toq: unmanaged page %p is queued", m));
2955 	PCPU_INC(cnt.v_tfree);
2956 
2957 	if (vm_page_sbusied(m))
2958 		panic("vm_page_free: freeing busy page %p", m);
2959 
2960 	/*
2961 	 * Unqueue, then remove page.  Note that we cannot destroy
2962 	 * the page here because we do not want to call the pager's
2963 	 * callback routine until after we've put the page on the
2964 	 * appropriate free queue.
2965 	 */
2966 	vm_page_remque(m);
2967 	vm_page_remove(m);
2968 
2969 	/*
2970 	 * If fictitious remove object association and
2971 	 * return, otherwise delay object association removal.
2972 	 */
2973 	if ((m->flags & PG_FICTITIOUS) != 0) {
2974 		return;
2975 	}
2976 
2977 	m->valid = 0;
2978 	vm_page_undirty(m);
2979 
2980 	if (m->wire_count != 0)
2981 		panic("vm_page_free: freeing wired page %p", m);
2982 	if (m->hold_count != 0) {
2983 		m->flags &= ~PG_ZERO;
2984 		KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2985 		    ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
2986 		m->flags |= PG_UNHOLDFREE;
2987 	} else {
2988 		/*
2989 		 * Restore the default memory attribute to the page.
2990 		 */
2991 		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2992 			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2993 
2994 		/*
2995 		 * Insert the page into the physical memory allocator's
2996 		 * cache/free page queues.
2997 		 */
2998 		mtx_lock(&vm_page_queue_free_mtx);
2999 		vm_phys_freecnt_adj(m, 1);
3000 #if VM_NRESERVLEVEL > 0
3001 		if (!vm_reserv_free_page(m))
3002 #else
3003 		if (TRUE)
3004 #endif
3005 			vm_phys_free_pages(m, 0);
3006 		if ((m->flags & PG_ZERO) != 0)
3007 			++vm_page_zero_count;
3008 		else
3009 			vm_page_zero_idle_wakeup();
3010 		vm_page_free_wakeup();
3011 		mtx_unlock(&vm_page_queue_free_mtx);
3012 	}
3013 }
3014 
3015 /*
3016  *	vm_page_wire:
3017  *
3018  *	Mark this page as wired down by yet
3019  *	another map, removing it from paging queues
3020  *	as necessary.
3021  *
3022  *	If the page is fictitious, then its wire count must remain one.
3023  *
3024  *	The page must be locked.
3025  */
3026 void
3027 vm_page_wire(vm_page_t m)
3028 {
3029 
3030 	/*
3031 	 * Only bump the wire statistics if the page is not already wired,
3032 	 * and only unqueue the page if it is on some queue (if it is unmanaged
3033 	 * it is already off the queues).
3034 	 */
3035 	vm_page_lock_assert(m, MA_OWNED);
3036 	if ((m->flags & PG_FICTITIOUS) != 0) {
3037 		KASSERT(m->wire_count == 1,
3038 		    ("vm_page_wire: fictitious page %p's wire count isn't one",
3039 		    m));
3040 		return;
3041 	}
3042 	if (m->wire_count == 0) {
3043 		KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
3044 		    m->queue == PQ_NONE,
3045 		    ("vm_page_wire: unmanaged page %p is queued", m));
3046 		vm_page_remque(m);
3047 		atomic_add_int(&vm_cnt.v_wire_count, 1);
3048 	}
3049 	m->wire_count++;
3050 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
3051 }
3052 
3053 /*
3054  * vm_page_unwire:
3055  *
3056  * Release one wiring of the specified page, potentially allowing it to be
3057  * paged out.  Returns TRUE if the number of wirings transitions to zero and
3058  * FALSE otherwise.
3059  *
3060  * Only managed pages belonging to an object can be paged out.  If the number
3061  * of wirings transitions to zero and the page is eligible for page out, then
3062  * the page is added to the specified paging queue (unless PQ_NONE is
3063  * specified).
3064  *
3065  * If a page is fictitious, then its wire count must always be one.
3066  *
3067  * A managed page must be locked.
3068  */
3069 boolean_t
3070 vm_page_unwire(vm_page_t m, uint8_t queue)
3071 {
3072 
3073 	KASSERT(queue < PQ_COUNT || queue == PQ_NONE,
3074 	    ("vm_page_unwire: invalid queue %u request for page %p",
3075 	    queue, m));
3076 	if ((m->oflags & VPO_UNMANAGED) == 0)
3077 		vm_page_assert_locked(m);
3078 	if ((m->flags & PG_FICTITIOUS) != 0) {
3079 		KASSERT(m->wire_count == 1,
3080 	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
3081 		return (FALSE);
3082 	}
3083 	if (m->wire_count > 0) {
3084 		m->wire_count--;
3085 		if (m->wire_count == 0) {
3086 			atomic_subtract_int(&vm_cnt.v_wire_count, 1);
3087 			if ((m->oflags & VPO_UNMANAGED) == 0 &&
3088 			    m->object != NULL && queue != PQ_NONE) {
3089 				if (queue == PQ_INACTIVE)
3090 					m->flags &= ~PG_WINATCFLS;
3091 				vm_page_enqueue(queue, m);
3092 			}
3093 			return (TRUE);
3094 		} else
3095 			return (FALSE);
3096 	} else
3097 		panic("vm_page_unwire: page %p's wire count is zero", m);
3098 }
3099 
3100 /*
3101  * Move the specified page to the inactive queue.
3102  *
3103  * Many pages placed on the inactive queue should actually go
3104  * into the cache, but it is difficult to figure out which.  What
3105  * we do instead, if the inactive target is well met, is to put
3106  * clean pages at the head of the inactive queue instead of the tail.
3107  * This will cause them to be moved to the cache more quickly and
3108  * if not actively re-referenced, reclaimed more quickly.  If we just
3109  * stick these pages at the end of the inactive queue, heavy filesystem
3110  * meta-data accesses can cause an unnecessary paging load on memory bound
3111  * processes.  This optimization causes one-time-use metadata to be
3112  * reused more quickly.
3113  *
3114  * Normally noreuse is FALSE, resulting in LRU operation.  noreuse is set
3115  * to TRUE if we want this page to be 'as if it were placed in the cache',
3116  * except without unmapping it from the process address space.  In
3117  * practice this is implemented by inserting the page at the head of the
3118  * queue, using a marker page to guide FIFO insertion ordering.
3119  *
3120  * The page must be locked.
3121  */
3122 static inline void
3123 _vm_page_deactivate(vm_page_t m, boolean_t noreuse)
3124 {
3125 	struct vm_pagequeue *pq;
3126 	int queue;
3127 
3128 	vm_page_assert_locked(m);
3129 
3130 	/*
3131 	 * Ignore if the page is already inactive, unless it is unlikely to be
3132 	 * reactivated.
3133 	 */
3134 	if ((queue = m->queue) == PQ_INACTIVE && !noreuse)
3135 		return;
3136 	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
3137 		pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE];
3138 		/* Avoid multiple acquisitions of the inactive queue lock. */
3139 		if (queue == PQ_INACTIVE) {
3140 			vm_pagequeue_lock(pq);
3141 			vm_page_dequeue_locked(m);
3142 		} else {
3143 			if (queue != PQ_NONE)
3144 				vm_page_dequeue(m);
3145 			m->flags &= ~PG_WINATCFLS;
3146 			vm_pagequeue_lock(pq);
3147 		}
3148 		m->queue = PQ_INACTIVE;
3149 		if (noreuse)
3150 			TAILQ_INSERT_BEFORE(&vm_phys_domain(m)->vmd_inacthead,
3151 			    m, plinks.q);
3152 		else
3153 			TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3154 		vm_pagequeue_cnt_inc(pq);
3155 		vm_pagequeue_unlock(pq);
3156 	}
3157 }
3158 
3159 /*
3160  * Move the specified page to the inactive queue.
3161  *
3162  * The page must be locked.
3163  */
3164 void
3165 vm_page_deactivate(vm_page_t m)
3166 {
3167 
3168 	_vm_page_deactivate(m, FALSE);
3169 }
3170 
3171 /*
3172  * Move the specified page to the inactive queue with the expectation
3173  * that it is unlikely to be reused.
3174  *
3175  * The page must be locked.
3176  */
3177 void
3178 vm_page_deactivate_noreuse(vm_page_t m)
3179 {
3180 
3181 	_vm_page_deactivate(m, TRUE);
3182 }
3183 
3184 /*
3185  * vm_page_try_to_cache:
3186  *
3187  * Returns 0 on failure, 1 on success
3188  */
3189 int
3190 vm_page_try_to_cache(vm_page_t m)
3191 {
3192 
3193 	vm_page_lock_assert(m, MA_OWNED);
3194 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3195 	if (m->dirty || m->hold_count || m->wire_count ||
3196 	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
3197 		return (0);
3198 	pmap_remove_all(m);
3199 	if (m->dirty)
3200 		return (0);
3201 	vm_page_cache(m);
3202 	return (1);
3203 }
3204 
3205 /*
3206  * vm_page_try_to_free()
3207  *
3208  *	Attempt to free the page.  If we cannot free it, we do nothing.
3209  *	1 is returned on success, 0 on failure.
3210  */
3211 int
3212 vm_page_try_to_free(vm_page_t m)
3213 {
3214 
3215 	vm_page_lock_assert(m, MA_OWNED);
3216 	if (m->object != NULL)
3217 		VM_OBJECT_ASSERT_WLOCKED(m->object);
3218 	if (m->dirty || m->hold_count || m->wire_count ||
3219 	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
3220 		return (0);
3221 	pmap_remove_all(m);
3222 	if (m->dirty)
3223 		return (0);
3224 	vm_page_free(m);
3225 	return (1);
3226 }
3227 
3228 /*
3229  * vm_page_cache
3230  *
3231  * Put the specified page onto the page cache queue (if appropriate).
3232  *
3233  * The object and page must be locked.
3234  */
3235 void
3236 vm_page_cache(vm_page_t m)
3237 {
3238 	vm_object_t object;
3239 	boolean_t cache_was_empty;
3240 
3241 	vm_page_lock_assert(m, MA_OWNED);
3242 	object = m->object;
3243 	VM_OBJECT_ASSERT_WLOCKED(object);
3244 	if (vm_page_busied(m) || (m->oflags & VPO_UNMANAGED) ||
3245 	    m->hold_count || m->wire_count)
3246 		panic("vm_page_cache: attempting to cache busy page");
3247 	KASSERT(!pmap_page_is_mapped(m),
3248 	    ("vm_page_cache: page %p is mapped", m));
3249 	KASSERT(m->dirty == 0, ("vm_page_cache: page %p is dirty", m));
3250 	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
3251 	    (object->type == OBJT_SWAP &&
3252 	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
3253 		/*
3254 		 * Hypothesis: A cache-eligible page belonging to a
3255 		 * default object or swap object but without a backing
3256 		 * store must be zero filled.
3257 		 */
3258 		vm_page_free(m);
3259 		return;
3260 	}
3261 	KASSERT((m->flags & PG_CACHED) == 0,
3262 	    ("vm_page_cache: page %p is already cached", m));
3263 
3264 	/*
3265 	 * Remove the page from the paging queues.
3266 	 */
3267 	vm_page_remque(m);
3268 
3269 	/*
3270 	 * Remove the page from the object's collection of resident
3271 	 * pages.
3272 	 */
3273 	vm_radix_remove(&object->rtree, m->pindex);
3274 	TAILQ_REMOVE(&object->memq, m, listq);
3275 	object->resident_page_count--;
3276 
3277 	/*
3278 	 * Restore the default memory attribute to the page.
3279 	 */
3280 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3281 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3282 
3283 	/*
3284 	 * Insert the page into the object's collection of cached pages
3285 	 * and the physical memory allocator's cache/free page queues.
3286 	 */
3287 	m->flags &= ~PG_ZERO;
3288 	mtx_lock(&vm_page_queue_free_mtx);
3289 	cache_was_empty = vm_radix_is_empty(&object->cache);
3290 	if (vm_radix_insert(&object->cache, m)) {
3291 		mtx_unlock(&vm_page_queue_free_mtx);
3292 		if (object->resident_page_count == 0)
3293 			vdrop(object->handle);
3294 		m->object = NULL;
3295 		vm_page_free(m);
3296 		return;
3297 	}
3298 
3299 	/*
3300 	 * The above call to vm_radix_insert() could reclaim the one pre-
3301 	 * existing cached page from this object, resulting in a call to
3302 	 * vdrop().
3303 	 */
3304 	if (!cache_was_empty)
3305 		cache_was_empty = vm_radix_is_singleton(&object->cache);
3306 
3307 	m->flags |= PG_CACHED;
3308 	vm_cnt.v_cache_count++;
3309 	PCPU_INC(cnt.v_tcached);
3310 #if VM_NRESERVLEVEL > 0
3311 	if (!vm_reserv_free_page(m)) {
3312 #else
3313 	if (TRUE) {
3314 #endif
3315 		vm_phys_free_pages(m, 0);
3316 	}
3317 	vm_page_free_wakeup();
3318 	mtx_unlock(&vm_page_queue_free_mtx);
3319 
3320 	/*
3321 	 * Increment the vnode's hold count if this is the object's only
3322 	 * cached page.  Decrement the vnode's hold count if this was
3323 	 * the object's only resident page.
3324 	 */
3325 	if (object->type == OBJT_VNODE) {
3326 		if (cache_was_empty && object->resident_page_count != 0)
3327 			vhold(object->handle);
3328 		else if (!cache_was_empty && object->resident_page_count == 0)
3329 			vdrop(object->handle);
3330 	}
3331 }
3332 
3333 /*
3334  * vm_page_advise
3335  *
3336  * 	Deactivate or do nothing, as appropriate.
3337  *
3338  *	The object and page must be locked.
3339  */
3340 void
3341 vm_page_advise(vm_page_t m, int advice)
3342 {
3343 
3344 	vm_page_assert_locked(m);
3345 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3346 	if (advice == MADV_FREE)
3347 		/*
3348 		 * Mark the page clean.  This will allow the page to be freed
3349 		 * up by the system.  However, such pages are often reused
3350 		 * quickly by malloc() so we do not do anything that would
3351 		 * cause a page fault if we can help it.
3352 		 *
3353 		 * Specifically, we do not try to actually free the page now
3354 		 * nor do we try to put it in the cache (which would cause a
3355 		 * page fault on reuse).
3356 		 *
3357 		 * But we do make the page as freeable as we can without
3358 		 * actually taking the step of unmapping it.
3359 		 */
3360 		m->dirty = 0;
3361 	else if (advice != MADV_DONTNEED)
3362 		return;
3363 
3364 	/*
3365 	 * Clear any references to the page.  Otherwise, the page daemon will
3366 	 * immediately reactivate the page.
3367 	 */
3368 	vm_page_aflag_clear(m, PGA_REFERENCED);
3369 
3370 	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
3371 		vm_page_dirty(m);
3372 
3373 	/*
3374 	 * Place clean pages at the head of the inactive queue rather than the
3375 	 * tail, thus defeating the queue's LRU operation and ensuring that the
3376 	 * page will be reused quickly.
3377 	 */
3378 	_vm_page_deactivate(m, m->dirty == 0);
3379 }
3380 
3381 /*
3382  * Grab a page, waiting until we are waken up due to the page
3383  * changing state.  We keep on waiting, if the page continues
3384  * to be in the object.  If the page doesn't exist, first allocate it
3385  * and then conditionally zero it.
3386  *
3387  * This routine may sleep.
3388  *
3389  * The object must be locked on entry.  The lock will, however, be released
3390  * and reacquired if the routine sleeps.
3391  */
3392 vm_page_t
3393 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
3394 {
3395 	vm_page_t m;
3396 	int sleep;
3397 
3398 	VM_OBJECT_ASSERT_WLOCKED(object);
3399 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
3400 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
3401 	    ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
3402 retrylookup:
3403 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
3404 		sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
3405 		    vm_page_xbusied(m) : vm_page_busied(m);
3406 		if (sleep) {
3407 			if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3408 				return (NULL);
3409 			/*
3410 			 * Reference the page before unlocking and
3411 			 * sleeping so that the page daemon is less
3412 			 * likely to reclaim it.
3413 			 */
3414 			vm_page_aflag_set(m, PGA_REFERENCED);
3415 			vm_page_lock(m);
3416 			VM_OBJECT_WUNLOCK(object);
3417 			vm_page_busy_sleep(m, "pgrbwt");
3418 			VM_OBJECT_WLOCK(object);
3419 			goto retrylookup;
3420 		} else {
3421 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
3422 				vm_page_lock(m);
3423 				vm_page_wire(m);
3424 				vm_page_unlock(m);
3425 			}
3426 			if ((allocflags &
3427 			    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
3428 				vm_page_xbusy(m);
3429 			if ((allocflags & VM_ALLOC_SBUSY) != 0)
3430 				vm_page_sbusy(m);
3431 			return (m);
3432 		}
3433 	}
3434 	m = vm_page_alloc(object, pindex, allocflags);
3435 	if (m == NULL) {
3436 		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3437 			return (NULL);
3438 		VM_OBJECT_WUNLOCK(object);
3439 		VM_WAIT;
3440 		VM_OBJECT_WLOCK(object);
3441 		goto retrylookup;
3442 	} else if (m->valid != 0)
3443 		return (m);
3444 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
3445 		pmap_zero_page(m);
3446 	return (m);
3447 }
3448 
3449 /*
3450  * Mapping function for valid or dirty bits in a page.
3451  *
3452  * Inputs are required to range within a page.
3453  */
3454 vm_page_bits_t
3455 vm_page_bits(int base, int size)
3456 {
3457 	int first_bit;
3458 	int last_bit;
3459 
3460 	KASSERT(
3461 	    base + size <= PAGE_SIZE,
3462 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
3463 	);
3464 
3465 	if (size == 0)		/* handle degenerate case */
3466 		return (0);
3467 
3468 	first_bit = base >> DEV_BSHIFT;
3469 	last_bit = (base + size - 1) >> DEV_BSHIFT;
3470 
3471 	return (((vm_page_bits_t)2 << last_bit) -
3472 	    ((vm_page_bits_t)1 << first_bit));
3473 }
3474 
3475 /*
3476  *	vm_page_set_valid_range:
3477  *
3478  *	Sets portions of a page valid.  The arguments are expected
3479  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3480  *	of any partial chunks touched by the range.  The invalid portion of
3481  *	such chunks will be zeroed.
3482  *
3483  *	(base + size) must be less then or equal to PAGE_SIZE.
3484  */
3485 void
3486 vm_page_set_valid_range(vm_page_t m, int base, int size)
3487 {
3488 	int endoff, frag;
3489 
3490 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3491 	if (size == 0)	/* handle degenerate case */
3492 		return;
3493 
3494 	/*
3495 	 * If the base is not DEV_BSIZE aligned and the valid
3496 	 * bit is clear, we have to zero out a portion of the
3497 	 * first block.
3498 	 */
3499 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
3500 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
3501 		pmap_zero_page_area(m, frag, base - frag);
3502 
3503 	/*
3504 	 * If the ending offset is not DEV_BSIZE aligned and the
3505 	 * valid bit is clear, we have to zero out a portion of
3506 	 * the last block.
3507 	 */
3508 	endoff = base + size;
3509 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
3510 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
3511 		pmap_zero_page_area(m, endoff,
3512 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
3513 
3514 	/*
3515 	 * Assert that no previously invalid block that is now being validated
3516 	 * is already dirty.
3517 	 */
3518 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
3519 	    ("vm_page_set_valid_range: page %p is dirty", m));
3520 
3521 	/*
3522 	 * Set valid bits inclusive of any overlap.
3523 	 */
3524 	m->valid |= vm_page_bits(base, size);
3525 }
3526 
3527 /*
3528  * Clear the given bits from the specified page's dirty field.
3529  */
3530 static __inline void
3531 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
3532 {
3533 	uintptr_t addr;
3534 #if PAGE_SIZE < 16384
3535 	int shift;
3536 #endif
3537 
3538 	/*
3539 	 * If the object is locked and the page is neither exclusive busy nor
3540 	 * write mapped, then the page's dirty field cannot possibly be
3541 	 * set by a concurrent pmap operation.
3542 	 */
3543 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3544 	if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
3545 		m->dirty &= ~pagebits;
3546 	else {
3547 		/*
3548 		 * The pmap layer can call vm_page_dirty() without
3549 		 * holding a distinguished lock.  The combination of
3550 		 * the object's lock and an atomic operation suffice
3551 		 * to guarantee consistency of the page dirty field.
3552 		 *
3553 		 * For PAGE_SIZE == 32768 case, compiler already
3554 		 * properly aligns the dirty field, so no forcible
3555 		 * alignment is needed. Only require existence of
3556 		 * atomic_clear_64 when page size is 32768.
3557 		 */
3558 		addr = (uintptr_t)&m->dirty;
3559 #if PAGE_SIZE == 32768
3560 		atomic_clear_64((uint64_t *)addr, pagebits);
3561 #elif PAGE_SIZE == 16384
3562 		atomic_clear_32((uint32_t *)addr, pagebits);
3563 #else		/* PAGE_SIZE <= 8192 */
3564 		/*
3565 		 * Use a trick to perform a 32-bit atomic on the
3566 		 * containing aligned word, to not depend on the existence
3567 		 * of atomic_clear_{8, 16}.
3568 		 */
3569 		shift = addr & (sizeof(uint32_t) - 1);
3570 #if BYTE_ORDER == BIG_ENDIAN
3571 		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
3572 #else
3573 		shift *= NBBY;
3574 #endif
3575 		addr &= ~(sizeof(uint32_t) - 1);
3576 		atomic_clear_32((uint32_t *)addr, pagebits << shift);
3577 #endif		/* PAGE_SIZE */
3578 	}
3579 }
3580 
3581 /*
3582  *	vm_page_set_validclean:
3583  *
3584  *	Sets portions of a page valid and clean.  The arguments are expected
3585  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3586  *	of any partial chunks touched by the range.  The invalid portion of
3587  *	such chunks will be zero'd.
3588  *
3589  *	(base + size) must be less then or equal to PAGE_SIZE.
3590  */
3591 void
3592 vm_page_set_validclean(vm_page_t m, int base, int size)
3593 {
3594 	vm_page_bits_t oldvalid, pagebits;
3595 	int endoff, frag;
3596 
3597 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3598 	if (size == 0)	/* handle degenerate case */
3599 		return;
3600 
3601 	/*
3602 	 * If the base is not DEV_BSIZE aligned and the valid
3603 	 * bit is clear, we have to zero out a portion of the
3604 	 * first block.
3605 	 */
3606 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
3607 	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
3608 		pmap_zero_page_area(m, frag, base - frag);
3609 
3610 	/*
3611 	 * If the ending offset is not DEV_BSIZE aligned and the
3612 	 * valid bit is clear, we have to zero out a portion of
3613 	 * the last block.
3614 	 */
3615 	endoff = base + size;
3616 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
3617 	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
3618 		pmap_zero_page_area(m, endoff,
3619 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
3620 
3621 	/*
3622 	 * Set valid, clear dirty bits.  If validating the entire
3623 	 * page we can safely clear the pmap modify bit.  We also
3624 	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
3625 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
3626 	 * be set again.
3627 	 *
3628 	 * We set valid bits inclusive of any overlap, but we can only
3629 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
3630 	 * the range.
3631 	 */
3632 	oldvalid = m->valid;
3633 	pagebits = vm_page_bits(base, size);
3634 	m->valid |= pagebits;
3635 #if 0	/* NOT YET */
3636 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
3637 		frag = DEV_BSIZE - frag;
3638 		base += frag;
3639 		size -= frag;
3640 		if (size < 0)
3641 			size = 0;
3642 	}
3643 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
3644 #endif
3645 	if (base == 0 && size == PAGE_SIZE) {
3646 		/*
3647 		 * The page can only be modified within the pmap if it is
3648 		 * mapped, and it can only be mapped if it was previously
3649 		 * fully valid.
3650 		 */
3651 		if (oldvalid == VM_PAGE_BITS_ALL)
3652 			/*
3653 			 * Perform the pmap_clear_modify() first.  Otherwise,
3654 			 * a concurrent pmap operation, such as
3655 			 * pmap_protect(), could clear a modification in the
3656 			 * pmap and set the dirty field on the page before
3657 			 * pmap_clear_modify() had begun and after the dirty
3658 			 * field was cleared here.
3659 			 */
3660 			pmap_clear_modify(m);
3661 		m->dirty = 0;
3662 		m->oflags &= ~VPO_NOSYNC;
3663 	} else if (oldvalid != VM_PAGE_BITS_ALL)
3664 		m->dirty &= ~pagebits;
3665 	else
3666 		vm_page_clear_dirty_mask(m, pagebits);
3667 }
3668 
3669 void
3670 vm_page_clear_dirty(vm_page_t m, int base, int size)
3671 {
3672 
3673 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
3674 }
3675 
3676 /*
3677  *	vm_page_set_invalid:
3678  *
3679  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
3680  *	valid and dirty bits for the effected areas are cleared.
3681  */
3682 void
3683 vm_page_set_invalid(vm_page_t m, int base, int size)
3684 {
3685 	vm_page_bits_t bits;
3686 	vm_object_t object;
3687 
3688 	object = m->object;
3689 	VM_OBJECT_ASSERT_WLOCKED(object);
3690 	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
3691 	    size >= object->un_pager.vnp.vnp_size)
3692 		bits = VM_PAGE_BITS_ALL;
3693 	else
3694 		bits = vm_page_bits(base, size);
3695 	if (object->ref_count != 0 && m->valid == VM_PAGE_BITS_ALL &&
3696 	    bits != 0)
3697 		pmap_remove_all(m);
3698 	KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) ||
3699 	    !pmap_page_is_mapped(m),
3700 	    ("vm_page_set_invalid: page %p is mapped", m));
3701 	m->valid &= ~bits;
3702 	m->dirty &= ~bits;
3703 }
3704 
3705 /*
3706  * vm_page_zero_invalid()
3707  *
3708  *	The kernel assumes that the invalid portions of a page contain
3709  *	garbage, but such pages can be mapped into memory by user code.
3710  *	When this occurs, we must zero out the non-valid portions of the
3711  *	page so user code sees what it expects.
3712  *
3713  *	Pages are most often semi-valid when the end of a file is mapped
3714  *	into memory and the file's size is not page aligned.
3715  */
3716 void
3717 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3718 {
3719 	int b;
3720 	int i;
3721 
3722 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3723 	/*
3724 	 * Scan the valid bits looking for invalid sections that
3725 	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
3726 	 * valid bit may be set ) have already been zeroed by
3727 	 * vm_page_set_validclean().
3728 	 */
3729 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3730 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
3731 		    (m->valid & ((vm_page_bits_t)1 << i))) {
3732 			if (i > b) {
3733 				pmap_zero_page_area(m,
3734 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
3735 			}
3736 			b = i + 1;
3737 		}
3738 	}
3739 
3740 	/*
3741 	 * setvalid is TRUE when we can safely set the zero'd areas
3742 	 * as being valid.  We can do this if there are no cache consistancy
3743 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
3744 	 */
3745 	if (setvalid)
3746 		m->valid = VM_PAGE_BITS_ALL;
3747 }
3748 
3749 /*
3750  *	vm_page_is_valid:
3751  *
3752  *	Is (partial) page valid?  Note that the case where size == 0
3753  *	will return FALSE in the degenerate case where the page is
3754  *	entirely invalid, and TRUE otherwise.
3755  */
3756 int
3757 vm_page_is_valid(vm_page_t m, int base, int size)
3758 {
3759 	vm_page_bits_t bits;
3760 
3761 	VM_OBJECT_ASSERT_LOCKED(m->object);
3762 	bits = vm_page_bits(base, size);
3763 	return (m->valid != 0 && (m->valid & bits) == bits);
3764 }
3765 
3766 /*
3767  *	vm_page_ps_is_valid:
3768  *
3769  *	Returns TRUE if the entire (super)page is valid and FALSE otherwise.
3770  */
3771 boolean_t
3772 vm_page_ps_is_valid(vm_page_t m)
3773 {
3774 	int i, npages;
3775 
3776 	VM_OBJECT_ASSERT_LOCKED(m->object);
3777 	npages = atop(pagesizes[m->psind]);
3778 
3779 	/*
3780 	 * The physically contiguous pages that make up a superpage, i.e., a
3781 	 * page with a page size index ("psind") greater than zero, will
3782 	 * occupy adjacent entries in vm_page_array[].
3783 	 */
3784 	for (i = 0; i < npages; i++) {
3785 		if (m[i].valid != VM_PAGE_BITS_ALL)
3786 			return (FALSE);
3787 	}
3788 	return (TRUE);
3789 }
3790 
3791 /*
3792  * Set the page's dirty bits if the page is modified.
3793  */
3794 void
3795 vm_page_test_dirty(vm_page_t m)
3796 {
3797 
3798 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3799 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
3800 		vm_page_dirty(m);
3801 }
3802 
3803 void
3804 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
3805 {
3806 
3807 	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
3808 }
3809 
3810 void
3811 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
3812 {
3813 
3814 	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
3815 }
3816 
3817 int
3818 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
3819 {
3820 
3821 	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
3822 }
3823 
3824 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
3825 void
3826 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
3827 {
3828 
3829 	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
3830 }
3831 
3832 void
3833 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
3834 {
3835 
3836 	mtx_assert_(vm_page_lockptr(m), a, file, line);
3837 }
3838 #endif
3839 
3840 #ifdef INVARIANTS
3841 void
3842 vm_page_object_lock_assert(vm_page_t m)
3843 {
3844 
3845 	/*
3846 	 * Certain of the page's fields may only be modified by the
3847 	 * holder of the containing object's lock or the exclusive busy.
3848 	 * holder.  Unfortunately, the holder of the write busy is
3849 	 * not recorded, and thus cannot be checked here.
3850 	 */
3851 	if (m->object != NULL && !vm_page_xbusied(m))
3852 		VM_OBJECT_ASSERT_WLOCKED(m->object);
3853 }
3854 
3855 void
3856 vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
3857 {
3858 
3859 	if ((bits & PGA_WRITEABLE) == 0)
3860 		return;
3861 
3862 	/*
3863 	 * The PGA_WRITEABLE flag can only be set if the page is
3864 	 * managed, is exclusively busied or the object is locked.
3865 	 * Currently, this flag is only set by pmap_enter().
3866 	 */
3867 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3868 	    ("PGA_WRITEABLE on unmanaged page"));
3869 	if (!vm_page_xbusied(m))
3870 		VM_OBJECT_ASSERT_LOCKED(m->object);
3871 }
3872 #endif
3873 
3874 #include "opt_ddb.h"
3875 #ifdef DDB
3876 #include <sys/kernel.h>
3877 
3878 #include <ddb/ddb.h>
3879 
3880 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3881 {
3882 	db_printf("vm_cnt.v_free_count: %d\n", vm_cnt.v_free_count);
3883 	db_printf("vm_cnt.v_cache_count: %d\n", vm_cnt.v_cache_count);
3884 	db_printf("vm_cnt.v_inactive_count: %d\n", vm_cnt.v_inactive_count);
3885 	db_printf("vm_cnt.v_active_count: %d\n", vm_cnt.v_active_count);
3886 	db_printf("vm_cnt.v_wire_count: %d\n", vm_cnt.v_wire_count);
3887 	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
3888 	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
3889 	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
3890 	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
3891 }
3892 
3893 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3894 {
3895 	int dom;
3896 
3897 	db_printf("pq_free %d pq_cache %d\n",
3898 	    vm_cnt.v_free_count, vm_cnt.v_cache_count);
3899 	for (dom = 0; dom < vm_ndomains; dom++) {
3900 		db_printf(
3901 	"dom %d page_cnt %d free %d pq_act %d pq_inact %d pass %d\n",
3902 		    dom,
3903 		    vm_dom[dom].vmd_page_count,
3904 		    vm_dom[dom].vmd_free_count,
3905 		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
3906 		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
3907 		    vm_dom[dom].vmd_pass);
3908 	}
3909 }
3910 
3911 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
3912 {
3913 	vm_page_t m;
3914 	boolean_t phys;
3915 
3916 	if (!have_addr) {
3917 		db_printf("show pginfo addr\n");
3918 		return;
3919 	}
3920 
3921 	phys = strchr(modif, 'p') != NULL;
3922 	if (phys)
3923 		m = PHYS_TO_VM_PAGE(addr);
3924 	else
3925 		m = (vm_page_t)addr;
3926 	db_printf(
3927     "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
3928     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
3929 	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
3930 	    m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
3931 	    m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
3932 }
3933 #endif /* DDB */
3934