xref: /freebsd/sys/vm/vm_page.c (revision 22cf89c938886d14f5796fc49f9f020c23ea8eaf)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * The Mach Operating System project at Carnegie-Mellon University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
36  */
37 
38 /*-
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64 
65 /*
66  *	Resident memory management module.
67  */
68 
69 #include <sys/cdefs.h>
70 #include "opt_vm.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/counter.h>
75 #include <sys/domainset.h>
76 #include <sys/kernel.h>
77 #include <sys/limits.h>
78 #include <sys/linker.h>
79 #include <sys/lock.h>
80 #include <sys/malloc.h>
81 #include <sys/mman.h>
82 #include <sys/msgbuf.h>
83 #include <sys/mutex.h>
84 #include <sys/proc.h>
85 #include <sys/rwlock.h>
86 #include <sys/sleepqueue.h>
87 #include <sys/sbuf.h>
88 #include <sys/sched.h>
89 #include <sys/smp.h>
90 #include <sys/sysctl.h>
91 #include <sys/vmmeter.h>
92 #include <sys/vnode.h>
93 
94 #include <vm/vm.h>
95 #include <vm/pmap.h>
96 #include <vm/vm_param.h>
97 #include <vm/vm_domainset.h>
98 #include <vm/vm_kern.h>
99 #include <vm/vm_map.h>
100 #include <vm/vm_object.h>
101 #include <vm/vm_page.h>
102 #include <vm/vm_pageout.h>
103 #include <vm/vm_phys.h>
104 #include <vm/vm_pagequeue.h>
105 #include <vm/vm_pager.h>
106 #include <vm/vm_radix.h>
107 #include <vm/vm_reserv.h>
108 #include <vm/vm_extern.h>
109 #include <vm/vm_dumpset.h>
110 #include <vm/uma.h>
111 #include <vm/uma_int.h>
112 
113 #include <machine/md_var.h>
114 
115 struct vm_domain vm_dom[MAXMEMDOM];
116 
117 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
118 
119 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
120 
121 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
122 /* The following fields are protected by the domainset lock. */
123 domainset_t __exclusive_cache_line vm_min_domains;
124 domainset_t __exclusive_cache_line vm_severe_domains;
125 static int vm_min_waiters;
126 static int vm_severe_waiters;
127 static int vm_pageproc_waiters;
128 
129 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
130     "VM page statistics");
131 
132 static COUNTER_U64_DEFINE_EARLY(pqstate_commit_retries);
133 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries,
134     CTLFLAG_RD, &pqstate_commit_retries,
135     "Number of failed per-page atomic queue state updates");
136 
137 static COUNTER_U64_DEFINE_EARLY(queue_ops);
138 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
139     CTLFLAG_RD, &queue_ops,
140     "Number of batched queue operations");
141 
142 static COUNTER_U64_DEFINE_EARLY(queue_nops);
143 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
144     CTLFLAG_RD, &queue_nops,
145     "Number of batched queue operations with no effects");
146 
147 /*
148  * bogus page -- for I/O to/from partially complete buffers,
149  * or for paging into sparsely invalid regions.
150  */
151 vm_page_t bogus_page;
152 
153 vm_page_t vm_page_array;
154 long vm_page_array_size;
155 long first_page;
156 
157 struct bitset *vm_page_dump;
158 long vm_page_dump_pages;
159 
160 static TAILQ_HEAD(, vm_page) blacklist_head;
161 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
162 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
163     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
164 
165 static uma_zone_t fakepg_zone;
166 
167 static void vm_page_alloc_check(vm_page_t m);
168 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
169     vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked);
170 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
171 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
172 static bool vm_page_free_prep(vm_page_t m);
173 static void vm_page_free_toq(vm_page_t m);
174 static void vm_page_init(void *dummy);
175 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
176     vm_pindex_t pindex, vm_page_t mpred);
177 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
178     vm_page_t mpred);
179 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue,
180     const uint16_t nflag);
181 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
182     vm_page_t m_run, vm_paddr_t high);
183 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse);
184 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
185     int req);
186 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
187     int flags);
188 static void vm_page_zone_release(void *arg, void **store, int cnt);
189 
190 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
191 
192 static void
193 vm_page_init(void *dummy)
194 {
195 
196 	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
197 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
198 	bogus_page = vm_page_alloc_noobj(VM_ALLOC_WIRED);
199 }
200 
201 /*
202  * The cache page zone is initialized later since we need to be able to allocate
203  * pages before UMA is fully initialized.
204  */
205 static void
206 vm_page_init_cache_zones(void *dummy __unused)
207 {
208 	struct vm_domain *vmd;
209 	struct vm_pgcache *pgcache;
210 	int cache, domain, maxcache, pool;
211 
212 	maxcache = 0;
213 	TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &maxcache);
214 	maxcache *= mp_ncpus;
215 	for (domain = 0; domain < vm_ndomains; domain++) {
216 		vmd = VM_DOMAIN(domain);
217 		for (pool = 0; pool < VM_NFREEPOOL; pool++) {
218 			pgcache = &vmd->vmd_pgcache[pool];
219 			pgcache->domain = domain;
220 			pgcache->pool = pool;
221 			pgcache->zone = uma_zcache_create("vm pgcache",
222 			    PAGE_SIZE, NULL, NULL, NULL, NULL,
223 			    vm_page_zone_import, vm_page_zone_release, pgcache,
224 			    UMA_ZONE_VM);
225 
226 			/*
227 			 * Limit each pool's zone to 0.1% of the pages in the
228 			 * domain.
229 			 */
230 			cache = maxcache != 0 ? maxcache :
231 			    vmd->vmd_page_count / 1000;
232 			uma_zone_set_maxcache(pgcache->zone, cache);
233 		}
234 	}
235 }
236 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
237 
238 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
239 #if PAGE_SIZE == 32768
240 #ifdef CTASSERT
241 CTASSERT(sizeof(u_long) >= 8);
242 #endif
243 #endif
244 
245 /*
246  *	vm_set_page_size:
247  *
248  *	Sets the page size, perhaps based upon the memory
249  *	size.  Must be called before any use of page-size
250  *	dependent functions.
251  */
252 void
253 vm_set_page_size(void)
254 {
255 	if (vm_cnt.v_page_size == 0)
256 		vm_cnt.v_page_size = PAGE_SIZE;
257 	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
258 		panic("vm_set_page_size: page size not a power of two");
259 }
260 
261 /*
262  *	vm_page_blacklist_next:
263  *
264  *	Find the next entry in the provided string of blacklist
265  *	addresses.  Entries are separated by space, comma, or newline.
266  *	If an invalid integer is encountered then the rest of the
267  *	string is skipped.  Updates the list pointer to the next
268  *	character, or NULL if the string is exhausted or invalid.
269  */
270 static vm_paddr_t
271 vm_page_blacklist_next(char **list, char *end)
272 {
273 	vm_paddr_t bad;
274 	char *cp, *pos;
275 
276 	if (list == NULL || *list == NULL)
277 		return (0);
278 	if (**list =='\0') {
279 		*list = NULL;
280 		return (0);
281 	}
282 
283 	/*
284 	 * If there's no end pointer then the buffer is coming from
285 	 * the kenv and we know it's null-terminated.
286 	 */
287 	if (end == NULL)
288 		end = *list + strlen(*list);
289 
290 	/* Ensure that strtoq() won't walk off the end */
291 	if (*end != '\0') {
292 		if (*end == '\n' || *end == ' ' || *end  == ',')
293 			*end = '\0';
294 		else {
295 			printf("Blacklist not terminated, skipping\n");
296 			*list = NULL;
297 			return (0);
298 		}
299 	}
300 
301 	for (pos = *list; *pos != '\0'; pos = cp) {
302 		bad = strtoq(pos, &cp, 0);
303 		if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
304 			if (bad == 0) {
305 				if (++cp < end)
306 					continue;
307 				else
308 					break;
309 			}
310 		} else
311 			break;
312 		if (*cp == '\0' || ++cp >= end)
313 			*list = NULL;
314 		else
315 			*list = cp;
316 		return (trunc_page(bad));
317 	}
318 	printf("Garbage in RAM blacklist, skipping\n");
319 	*list = NULL;
320 	return (0);
321 }
322 
323 bool
324 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
325 {
326 	struct vm_domain *vmd;
327 	vm_page_t m;
328 	bool found;
329 
330 	m = vm_phys_paddr_to_vm_page(pa);
331 	if (m == NULL)
332 		return (true); /* page does not exist, no failure */
333 
334 	vmd = vm_pagequeue_domain(m);
335 	vm_domain_free_lock(vmd);
336 	found = vm_phys_unfree_page(m);
337 	vm_domain_free_unlock(vmd);
338 	if (found) {
339 		vm_domain_freecnt_inc(vmd, -1);
340 		TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
341 		if (verbose)
342 			printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
343 	}
344 	return (found);
345 }
346 
347 /*
348  *	vm_page_blacklist_check:
349  *
350  *	Iterate through the provided string of blacklist addresses, pulling
351  *	each entry out of the physical allocator free list and putting it
352  *	onto a list for reporting via the vm.page_blacklist sysctl.
353  */
354 static void
355 vm_page_blacklist_check(char *list, char *end)
356 {
357 	vm_paddr_t pa;
358 	char *next;
359 
360 	next = list;
361 	while (next != NULL) {
362 		if ((pa = vm_page_blacklist_next(&next, end)) == 0)
363 			continue;
364 		vm_page_blacklist_add(pa, bootverbose);
365 	}
366 }
367 
368 /*
369  *	vm_page_blacklist_load:
370  *
371  *	Search for a special module named "ram_blacklist".  It'll be a
372  *	plain text file provided by the user via the loader directive
373  *	of the same name.
374  */
375 static void
376 vm_page_blacklist_load(char **list, char **end)
377 {
378 	void *mod;
379 	u_char *ptr;
380 	u_int len;
381 
382 	mod = NULL;
383 	ptr = NULL;
384 
385 	mod = preload_search_by_type("ram_blacklist");
386 	if (mod != NULL) {
387 		ptr = preload_fetch_addr(mod);
388 		len = preload_fetch_size(mod);
389         }
390 	*list = ptr;
391 	if (ptr != NULL)
392 		*end = ptr + len;
393 	else
394 		*end = NULL;
395 	return;
396 }
397 
398 static int
399 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
400 {
401 	vm_page_t m;
402 	struct sbuf sbuf;
403 	int error, first;
404 
405 	first = 1;
406 	error = sysctl_wire_old_buffer(req, 0);
407 	if (error != 0)
408 		return (error);
409 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
410 	TAILQ_FOREACH(m, &blacklist_head, listq) {
411 		sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
412 		    (uintmax_t)m->phys_addr);
413 		first = 0;
414 	}
415 	error = sbuf_finish(&sbuf);
416 	sbuf_delete(&sbuf);
417 	return (error);
418 }
419 
420 /*
421  * Initialize a dummy page for use in scans of the specified paging queue.
422  * In principle, this function only needs to set the flag PG_MARKER.
423  * Nonetheless, it write busies the page as a safety precaution.
424  */
425 void
426 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags)
427 {
428 
429 	bzero(marker, sizeof(*marker));
430 	marker->flags = PG_MARKER;
431 	marker->a.flags = aflags;
432 	marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
433 	marker->a.queue = queue;
434 }
435 
436 static void
437 vm_page_domain_init(int domain)
438 {
439 	struct vm_domain *vmd;
440 	struct vm_pagequeue *pq;
441 	int i;
442 
443 	vmd = VM_DOMAIN(domain);
444 	bzero(vmd, sizeof(*vmd));
445 	*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
446 	    "vm inactive pagequeue";
447 	*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
448 	    "vm active pagequeue";
449 	*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
450 	    "vm laundry pagequeue";
451 	*__DECONST(const char **,
452 	    &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
453 	    "vm unswappable pagequeue";
454 	vmd->vmd_domain = domain;
455 	vmd->vmd_page_count = 0;
456 	vmd->vmd_free_count = 0;
457 	vmd->vmd_segs = 0;
458 	vmd->vmd_oom = FALSE;
459 	for (i = 0; i < PQ_COUNT; i++) {
460 		pq = &vmd->vmd_pagequeues[i];
461 		TAILQ_INIT(&pq->pq_pl);
462 		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
463 		    MTX_DEF | MTX_DUPOK);
464 		pq->pq_pdpages = 0;
465 		vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
466 	}
467 	mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
468 	mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
469 	snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
470 
471 	/*
472 	 * inacthead is used to provide FIFO ordering for LRU-bypassing
473 	 * insertions.
474 	 */
475 	vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
476 	TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
477 	    &vmd->vmd_inacthead, plinks.q);
478 
479 	/*
480 	 * The clock pages are used to implement active queue scanning without
481 	 * requeues.  Scans start at clock[0], which is advanced after the scan
482 	 * ends.  When the two clock hands meet, they are reset and scanning
483 	 * resumes from the head of the queue.
484 	 */
485 	vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
486 	vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
487 	TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
488 	    &vmd->vmd_clock[0], plinks.q);
489 	TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
490 	    &vmd->vmd_clock[1], plinks.q);
491 }
492 
493 /*
494  * Initialize a physical page in preparation for adding it to the free
495  * lists.
496  */
497 void
498 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind)
499 {
500 
501 	m->object = NULL;
502 	m->ref_count = 0;
503 	m->busy_lock = VPB_FREED;
504 	m->flags = m->a.flags = 0;
505 	m->phys_addr = pa;
506 	m->a.queue = PQ_NONE;
507 	m->psind = 0;
508 	m->segind = segind;
509 	m->order = VM_NFREEORDER;
510 	m->pool = VM_FREEPOOL_DEFAULT;
511 	m->valid = m->dirty = 0;
512 	pmap_page_init(m);
513 }
514 
515 #ifndef PMAP_HAS_PAGE_ARRAY
516 static vm_paddr_t
517 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
518 {
519 	vm_paddr_t new_end;
520 
521 	/*
522 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
523 	 * However, because this page is allocated from KVM, out-of-bounds
524 	 * accesses using the direct map will not be trapped.
525 	 */
526 	*vaddr += PAGE_SIZE;
527 
528 	/*
529 	 * Allocate physical memory for the page structures, and map it.
530 	 */
531 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
532 	vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
533 	    VM_PROT_READ | VM_PROT_WRITE);
534 	vm_page_array_size = page_range;
535 
536 	return (new_end);
537 }
538 #endif
539 
540 /*
541  *	vm_page_startup:
542  *
543  *	Initializes the resident memory module.  Allocates physical memory for
544  *	bootstrapping UMA and some data structures that are used to manage
545  *	physical pages.  Initializes these structures, and populates the free
546  *	page queues.
547  */
548 vm_offset_t
549 vm_page_startup(vm_offset_t vaddr)
550 {
551 	struct vm_phys_seg *seg;
552 	struct vm_domain *vmd;
553 	vm_page_t m;
554 	char *list, *listend;
555 	vm_paddr_t end, high_avail, low_avail, new_end, size;
556 	vm_paddr_t page_range __unused;
557 	vm_paddr_t last_pa, pa, startp, endp;
558 	u_long pagecount;
559 #if MINIDUMP_PAGE_TRACKING
560 	u_long vm_page_dump_size;
561 #endif
562 	int biggestone, i, segind;
563 #ifdef WITNESS
564 	vm_offset_t mapped;
565 	int witness_size;
566 #endif
567 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
568 	long ii;
569 #endif
570 
571 	vaddr = round_page(vaddr);
572 
573 	vm_phys_early_startup();
574 	biggestone = vm_phys_avail_largest();
575 	end = phys_avail[biggestone+1];
576 
577 	/*
578 	 * Initialize the page and queue locks.
579 	 */
580 	mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
581 	for (i = 0; i < PA_LOCK_COUNT; i++)
582 		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
583 	for (i = 0; i < vm_ndomains; i++)
584 		vm_page_domain_init(i);
585 
586 	new_end = end;
587 #ifdef WITNESS
588 	witness_size = round_page(witness_startup_count());
589 	new_end -= witness_size;
590 	mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
591 	    VM_PROT_READ | VM_PROT_WRITE);
592 	bzero((void *)mapped, witness_size);
593 	witness_startup((void *)mapped);
594 #endif
595 
596 #if MINIDUMP_PAGE_TRACKING
597 	/*
598 	 * Allocate a bitmap to indicate that a random physical page
599 	 * needs to be included in a minidump.
600 	 *
601 	 * The amd64 port needs this to indicate which direct map pages
602 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
603 	 *
604 	 * However, i386 still needs this workspace internally within the
605 	 * minidump code.  In theory, they are not needed on i386, but are
606 	 * included should the sf_buf code decide to use them.
607 	 */
608 	last_pa = 0;
609 	vm_page_dump_pages = 0;
610 	for (i = 0; dump_avail[i + 1] != 0; i += 2) {
611 		vm_page_dump_pages += howmany(dump_avail[i + 1], PAGE_SIZE) -
612 		    dump_avail[i] / PAGE_SIZE;
613 		if (dump_avail[i + 1] > last_pa)
614 			last_pa = dump_avail[i + 1];
615 	}
616 	vm_page_dump_size = round_page(BITSET_SIZE(vm_page_dump_pages));
617 	new_end -= vm_page_dump_size;
618 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
619 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
620 	bzero((void *)vm_page_dump, vm_page_dump_size);
621 #else
622 	(void)last_pa;
623 #endif
624 #if defined(__aarch64__) || defined(__amd64__) || \
625     defined(__riscv) || defined(__powerpc64__)
626 	/*
627 	 * Include the UMA bootstrap pages, witness pages and vm_page_dump
628 	 * in a crash dump.  When pmap_map() uses the direct map, they are
629 	 * not automatically included.
630 	 */
631 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
632 		dump_add_page(pa);
633 #endif
634 	phys_avail[biggestone + 1] = new_end;
635 #ifdef __amd64__
636 	/*
637 	 * Request that the physical pages underlying the message buffer be
638 	 * included in a crash dump.  Since the message buffer is accessed
639 	 * through the direct map, they are not automatically included.
640 	 */
641 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
642 	last_pa = pa + round_page(msgbufsize);
643 	while (pa < last_pa) {
644 		dump_add_page(pa);
645 		pa += PAGE_SIZE;
646 	}
647 #endif
648 	/*
649 	 * Compute the number of pages of memory that will be available for
650 	 * use, taking into account the overhead of a page structure per page.
651 	 * In other words, solve
652 	 *	"available physical memory" - round_page(page_range *
653 	 *	    sizeof(struct vm_page)) = page_range * PAGE_SIZE
654 	 * for page_range.
655 	 */
656 	low_avail = phys_avail[0];
657 	high_avail = phys_avail[1];
658 	for (i = 0; i < vm_phys_nsegs; i++) {
659 		if (vm_phys_segs[i].start < low_avail)
660 			low_avail = vm_phys_segs[i].start;
661 		if (vm_phys_segs[i].end > high_avail)
662 			high_avail = vm_phys_segs[i].end;
663 	}
664 	/* Skip the first chunk.  It is already accounted for. */
665 	for (i = 2; phys_avail[i + 1] != 0; i += 2) {
666 		if (phys_avail[i] < low_avail)
667 			low_avail = phys_avail[i];
668 		if (phys_avail[i + 1] > high_avail)
669 			high_avail = phys_avail[i + 1];
670 	}
671 	first_page = low_avail / PAGE_SIZE;
672 #ifdef VM_PHYSSEG_SPARSE
673 	size = 0;
674 	for (i = 0; i < vm_phys_nsegs; i++)
675 		size += vm_phys_segs[i].end - vm_phys_segs[i].start;
676 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
677 		size += phys_avail[i + 1] - phys_avail[i];
678 #elif defined(VM_PHYSSEG_DENSE)
679 	size = high_avail - low_avail;
680 #else
681 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
682 #endif
683 
684 #ifdef PMAP_HAS_PAGE_ARRAY
685 	pmap_page_array_startup(size / PAGE_SIZE);
686 	biggestone = vm_phys_avail_largest();
687 	end = new_end = phys_avail[biggestone + 1];
688 #else
689 #ifdef VM_PHYSSEG_DENSE
690 	/*
691 	 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
692 	 * the overhead of a page structure per page only if vm_page_array is
693 	 * allocated from the last physical memory chunk.  Otherwise, we must
694 	 * allocate page structures representing the physical memory
695 	 * underlying vm_page_array, even though they will not be used.
696 	 */
697 	if (new_end != high_avail)
698 		page_range = size / PAGE_SIZE;
699 	else
700 #endif
701 	{
702 		page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
703 
704 		/*
705 		 * If the partial bytes remaining are large enough for
706 		 * a page (PAGE_SIZE) without a corresponding
707 		 * 'struct vm_page', then new_end will contain an
708 		 * extra page after subtracting the length of the VM
709 		 * page array.  Compensate by subtracting an extra
710 		 * page from new_end.
711 		 */
712 		if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
713 			if (new_end == high_avail)
714 				high_avail -= PAGE_SIZE;
715 			new_end -= PAGE_SIZE;
716 		}
717 	}
718 	end = new_end;
719 	new_end = vm_page_array_alloc(&vaddr, end, page_range);
720 #endif
721 
722 #if VM_NRESERVLEVEL > 0
723 	/*
724 	 * Allocate physical memory for the reservation management system's
725 	 * data structures, and map it.
726 	 */
727 	new_end = vm_reserv_startup(&vaddr, new_end);
728 #endif
729 #if defined(__aarch64__) || defined(__amd64__) || \
730     defined(__riscv) || defined(__powerpc64__)
731 	/*
732 	 * Include vm_page_array and vm_reserv_array in a crash dump.
733 	 */
734 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
735 		dump_add_page(pa);
736 #endif
737 	phys_avail[biggestone + 1] = new_end;
738 
739 	/*
740 	 * Add physical memory segments corresponding to the available
741 	 * physical pages.
742 	 */
743 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
744 		if (vm_phys_avail_size(i) != 0)
745 			vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
746 
747 	/*
748 	 * Initialize the physical memory allocator.
749 	 */
750 	vm_phys_init();
751 
752 	/*
753 	 * Initialize the page structures and add every available page to the
754 	 * physical memory allocator's free lists.
755 	 */
756 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
757 	for (ii = 0; ii < vm_page_array_size; ii++) {
758 		m = &vm_page_array[ii];
759 		vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0);
760 		m->flags = PG_FICTITIOUS;
761 	}
762 #endif
763 	vm_cnt.v_page_count = 0;
764 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
765 		seg = &vm_phys_segs[segind];
766 		for (m = seg->first_page, pa = seg->start; pa < seg->end;
767 		    m++, pa += PAGE_SIZE)
768 			vm_page_init_page(m, pa, segind);
769 
770 		/*
771 		 * Add the segment's pages that are covered by one of
772 		 * phys_avail's ranges to the free lists.
773 		 */
774 		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
775 			if (seg->end <= phys_avail[i] ||
776 			    seg->start >= phys_avail[i + 1])
777 				continue;
778 
779 			startp = MAX(seg->start, phys_avail[i]);
780 			endp = MIN(seg->end, phys_avail[i + 1]);
781 			pagecount = (u_long)atop(endp - startp);
782 			if (pagecount == 0)
783 				continue;
784 
785 			m = seg->first_page + atop(startp - seg->start);
786 			vmd = VM_DOMAIN(seg->domain);
787 			vm_domain_free_lock(vmd);
788 			vm_phys_enqueue_contig(m, pagecount);
789 			vm_domain_free_unlock(vmd);
790 			vm_domain_freecnt_inc(vmd, pagecount);
791 			vm_cnt.v_page_count += (u_int)pagecount;
792 			vmd->vmd_page_count += (u_int)pagecount;
793 			vmd->vmd_segs |= 1UL << segind;
794 		}
795 	}
796 
797 	/*
798 	 * Remove blacklisted pages from the physical memory allocator.
799 	 */
800 	TAILQ_INIT(&blacklist_head);
801 	vm_page_blacklist_load(&list, &listend);
802 	vm_page_blacklist_check(list, listend);
803 
804 	list = kern_getenv("vm.blacklist");
805 	vm_page_blacklist_check(list, NULL);
806 
807 	freeenv(list);
808 #if VM_NRESERVLEVEL > 0
809 	/*
810 	 * Initialize the reservation management system.
811 	 */
812 	vm_reserv_init();
813 #endif
814 
815 	return (vaddr);
816 }
817 
818 void
819 vm_page_reference(vm_page_t m)
820 {
821 
822 	vm_page_aflag_set(m, PGA_REFERENCED);
823 }
824 
825 /*
826  *	vm_page_trybusy
827  *
828  *	Helper routine for grab functions to trylock busy.
829  *
830  *	Returns true on success and false on failure.
831  */
832 static bool
833 vm_page_trybusy(vm_page_t m, int allocflags)
834 {
835 
836 	if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
837 		return (vm_page_trysbusy(m));
838 	else
839 		return (vm_page_tryxbusy(m));
840 }
841 
842 /*
843  *	vm_page_tryacquire
844  *
845  *	Helper routine for grab functions to trylock busy and wire.
846  *
847  *	Returns true on success and false on failure.
848  */
849 static inline bool
850 vm_page_tryacquire(vm_page_t m, int allocflags)
851 {
852 	bool locked;
853 
854 	locked = vm_page_trybusy(m, allocflags);
855 	if (locked && (allocflags & VM_ALLOC_WIRED) != 0)
856 		vm_page_wire(m);
857 	return (locked);
858 }
859 
860 /*
861  *	vm_page_busy_acquire:
862  *
863  *	Acquire the busy lock as described by VM_ALLOC_* flags.  Will loop
864  *	and drop the object lock if necessary.
865  */
866 bool
867 vm_page_busy_acquire(vm_page_t m, int allocflags)
868 {
869 	vm_object_t obj;
870 	bool locked;
871 
872 	/*
873 	 * The page-specific object must be cached because page
874 	 * identity can change during the sleep, causing the
875 	 * re-lock of a different object.
876 	 * It is assumed that a reference to the object is already
877 	 * held by the callers.
878 	 */
879 	obj = atomic_load_ptr(&m->object);
880 	for (;;) {
881 		if (vm_page_tryacquire(m, allocflags))
882 			return (true);
883 		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
884 			return (false);
885 		if (obj != NULL)
886 			locked = VM_OBJECT_WOWNED(obj);
887 		else
888 			locked = false;
889 		MPASS(locked || vm_page_wired(m));
890 		if (_vm_page_busy_sleep(obj, m, m->pindex, "vmpba", allocflags,
891 		    locked) && locked)
892 			VM_OBJECT_WLOCK(obj);
893 		if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
894 			return (false);
895 		KASSERT(m->object == obj || m->object == NULL,
896 		    ("vm_page_busy_acquire: page %p does not belong to %p",
897 		    m, obj));
898 	}
899 }
900 
901 /*
902  *	vm_page_busy_downgrade:
903  *
904  *	Downgrade an exclusive busy page into a single shared busy page.
905  */
906 void
907 vm_page_busy_downgrade(vm_page_t m)
908 {
909 	u_int x;
910 
911 	vm_page_assert_xbusied(m);
912 
913 	x = vm_page_busy_fetch(m);
914 	for (;;) {
915 		if (atomic_fcmpset_rel_int(&m->busy_lock,
916 		    &x, VPB_SHARERS_WORD(1)))
917 			break;
918 	}
919 	if ((x & VPB_BIT_WAITERS) != 0)
920 		wakeup(m);
921 }
922 
923 /*
924  *
925  *	vm_page_busy_tryupgrade:
926  *
927  *	Attempt to upgrade a single shared busy into an exclusive busy.
928  */
929 int
930 vm_page_busy_tryupgrade(vm_page_t m)
931 {
932 	u_int ce, x;
933 
934 	vm_page_assert_sbusied(m);
935 
936 	x = vm_page_busy_fetch(m);
937 	ce = VPB_CURTHREAD_EXCLUSIVE;
938 	for (;;) {
939 		if (VPB_SHARERS(x) > 1)
940 			return (0);
941 		KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
942 		    ("vm_page_busy_tryupgrade: invalid lock state"));
943 		if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
944 		    ce | (x & VPB_BIT_WAITERS)))
945 			continue;
946 		return (1);
947 	}
948 }
949 
950 /*
951  *	vm_page_sbusied:
952  *
953  *	Return a positive value if the page is shared busied, 0 otherwise.
954  */
955 int
956 vm_page_sbusied(vm_page_t m)
957 {
958 	u_int x;
959 
960 	x = vm_page_busy_fetch(m);
961 	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
962 }
963 
964 /*
965  *	vm_page_sunbusy:
966  *
967  *	Shared unbusy a page.
968  */
969 void
970 vm_page_sunbusy(vm_page_t m)
971 {
972 	u_int x;
973 
974 	vm_page_assert_sbusied(m);
975 
976 	x = vm_page_busy_fetch(m);
977 	for (;;) {
978 		KASSERT(x != VPB_FREED,
979 		    ("vm_page_sunbusy: Unlocking freed page."));
980 		if (VPB_SHARERS(x) > 1) {
981 			if (atomic_fcmpset_int(&m->busy_lock, &x,
982 			    x - VPB_ONE_SHARER))
983 				break;
984 			continue;
985 		}
986 		KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
987 		    ("vm_page_sunbusy: invalid lock state"));
988 		if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
989 			continue;
990 		if ((x & VPB_BIT_WAITERS) == 0)
991 			break;
992 		wakeup(m);
993 		break;
994 	}
995 }
996 
997 /*
998  *	vm_page_busy_sleep:
999  *
1000  *	Sleep if the page is busy, using the page pointer as wchan.
1001  *	This is used to implement the hard-path of the busying mechanism.
1002  *
1003  *	If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
1004  *	will not sleep if the page is shared-busy.
1005  *
1006  *	The object lock must be held on entry.
1007  *
1008  *	Returns true if it slept and dropped the object lock, or false
1009  *	if there was no sleep and the lock is still held.
1010  */
1011 bool
1012 vm_page_busy_sleep(vm_page_t m, const char *wmesg, int allocflags)
1013 {
1014 	vm_object_t obj;
1015 
1016 	obj = m->object;
1017 	VM_OBJECT_ASSERT_LOCKED(obj);
1018 
1019 	return (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, allocflags,
1020 	    true));
1021 }
1022 
1023 /*
1024  *	vm_page_busy_sleep_unlocked:
1025  *
1026  *	Sleep if the page is busy, using the page pointer as wchan.
1027  *	This is used to implement the hard-path of busying mechanism.
1028  *
1029  *	If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
1030  *	will not sleep if the page is shared-busy.
1031  *
1032  *	The object lock must not be held on entry.  The operation will
1033  *	return if the page changes identity.
1034  */
1035 void
1036 vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1037     const char *wmesg, int allocflags)
1038 {
1039 	VM_OBJECT_ASSERT_UNLOCKED(obj);
1040 
1041 	(void)_vm_page_busy_sleep(obj, m, pindex, wmesg, allocflags, false);
1042 }
1043 
1044 /*
1045  *	_vm_page_busy_sleep:
1046  *
1047  *	Internal busy sleep function.  Verifies the page identity and
1048  *	lockstate against parameters.  Returns true if it sleeps and
1049  *	false otherwise.
1050  *
1051  *	allocflags uses VM_ALLOC_* flags to specify the lock required.
1052  *
1053  *	If locked is true the lock will be dropped for any true returns
1054  *	and held for any false returns.
1055  */
1056 static bool
1057 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1058     const char *wmesg, int allocflags, bool locked)
1059 {
1060 	bool xsleep;
1061 	u_int x;
1062 
1063 	/*
1064 	 * If the object is busy we must wait for that to drain to zero
1065 	 * before trying the page again.
1066 	 */
1067 	if (obj != NULL && vm_object_busied(obj)) {
1068 		if (locked)
1069 			VM_OBJECT_DROP(obj);
1070 		vm_object_busy_wait(obj, wmesg);
1071 		return (true);
1072 	}
1073 
1074 	if (!vm_page_busied(m))
1075 		return (false);
1076 
1077 	xsleep = (allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0;
1078 	sleepq_lock(m);
1079 	x = vm_page_busy_fetch(m);
1080 	do {
1081 		/*
1082 		 * If the page changes objects or becomes unlocked we can
1083 		 * simply return.
1084 		 */
1085 		if (x == VPB_UNBUSIED ||
1086 		    (xsleep && (x & VPB_BIT_SHARED) != 0) ||
1087 		    m->object != obj || m->pindex != pindex) {
1088 			sleepq_release(m);
1089 			return (false);
1090 		}
1091 		if ((x & VPB_BIT_WAITERS) != 0)
1092 			break;
1093 	} while (!atomic_fcmpset_int(&m->busy_lock, &x, x | VPB_BIT_WAITERS));
1094 	if (locked)
1095 		VM_OBJECT_DROP(obj);
1096 	DROP_GIANT();
1097 	sleepq_add(m, NULL, wmesg, 0, 0);
1098 	sleepq_wait(m, PVM);
1099 	PICKUP_GIANT();
1100 	return (true);
1101 }
1102 
1103 /*
1104  *	vm_page_trysbusy:
1105  *
1106  *	Try to shared busy a page.
1107  *	If the operation succeeds 1 is returned otherwise 0.
1108  *	The operation never sleeps.
1109  */
1110 int
1111 vm_page_trysbusy(vm_page_t m)
1112 {
1113 	vm_object_t obj;
1114 	u_int x;
1115 
1116 	obj = m->object;
1117 	x = vm_page_busy_fetch(m);
1118 	for (;;) {
1119 		if ((x & VPB_BIT_SHARED) == 0)
1120 			return (0);
1121 		/*
1122 		 * Reduce the window for transient busies that will trigger
1123 		 * false negatives in vm_page_ps_test().
1124 		 */
1125 		if (obj != NULL && vm_object_busied(obj))
1126 			return (0);
1127 		if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1128 		    x + VPB_ONE_SHARER))
1129 			break;
1130 	}
1131 
1132 	/* Refetch the object now that we're guaranteed that it is stable. */
1133 	obj = m->object;
1134 	if (obj != NULL && vm_object_busied(obj)) {
1135 		vm_page_sunbusy(m);
1136 		return (0);
1137 	}
1138 	return (1);
1139 }
1140 
1141 /*
1142  *	vm_page_tryxbusy:
1143  *
1144  *	Try to exclusive busy a page.
1145  *	If the operation succeeds 1 is returned otherwise 0.
1146  *	The operation never sleeps.
1147  */
1148 int
1149 vm_page_tryxbusy(vm_page_t m)
1150 {
1151 	vm_object_t obj;
1152 
1153         if (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED,
1154             VPB_CURTHREAD_EXCLUSIVE) == 0)
1155 		return (0);
1156 
1157 	obj = m->object;
1158 	if (obj != NULL && vm_object_busied(obj)) {
1159 		vm_page_xunbusy(m);
1160 		return (0);
1161 	}
1162 	return (1);
1163 }
1164 
1165 static void
1166 vm_page_xunbusy_hard_tail(vm_page_t m)
1167 {
1168 	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1169 	/* Wake the waiter. */
1170 	wakeup(m);
1171 }
1172 
1173 /*
1174  *	vm_page_xunbusy_hard:
1175  *
1176  *	Called when unbusy has failed because there is a waiter.
1177  */
1178 void
1179 vm_page_xunbusy_hard(vm_page_t m)
1180 {
1181 	vm_page_assert_xbusied(m);
1182 	vm_page_xunbusy_hard_tail(m);
1183 }
1184 
1185 void
1186 vm_page_xunbusy_hard_unchecked(vm_page_t m)
1187 {
1188 	vm_page_assert_xbusied_unchecked(m);
1189 	vm_page_xunbusy_hard_tail(m);
1190 }
1191 
1192 static void
1193 vm_page_busy_free(vm_page_t m)
1194 {
1195 	u_int x;
1196 
1197 	atomic_thread_fence_rel();
1198 	x = atomic_swap_int(&m->busy_lock, VPB_FREED);
1199 	if ((x & VPB_BIT_WAITERS) != 0)
1200 		wakeup(m);
1201 }
1202 
1203 /*
1204  *	vm_page_unhold_pages:
1205  *
1206  *	Unhold each of the pages that is referenced by the given array.
1207  */
1208 void
1209 vm_page_unhold_pages(vm_page_t *ma, int count)
1210 {
1211 
1212 	for (; count != 0; count--) {
1213 		vm_page_unwire(*ma, PQ_ACTIVE);
1214 		ma++;
1215 	}
1216 }
1217 
1218 vm_page_t
1219 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1220 {
1221 	vm_page_t m;
1222 
1223 #ifdef VM_PHYSSEG_SPARSE
1224 	m = vm_phys_paddr_to_vm_page(pa);
1225 	if (m == NULL)
1226 		m = vm_phys_fictitious_to_vm_page(pa);
1227 	return (m);
1228 #elif defined(VM_PHYSSEG_DENSE)
1229 	long pi;
1230 
1231 	pi = atop(pa);
1232 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1233 		m = &vm_page_array[pi - first_page];
1234 		return (m);
1235 	}
1236 	return (vm_phys_fictitious_to_vm_page(pa));
1237 #else
1238 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1239 #endif
1240 }
1241 
1242 /*
1243  *	vm_page_getfake:
1244  *
1245  *	Create a fictitious page with the specified physical address and
1246  *	memory attribute.  The memory attribute is the only the machine-
1247  *	dependent aspect of a fictitious page that must be initialized.
1248  */
1249 vm_page_t
1250 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1251 {
1252 	vm_page_t m;
1253 
1254 	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1255 	vm_page_initfake(m, paddr, memattr);
1256 	return (m);
1257 }
1258 
1259 void
1260 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1261 {
1262 
1263 	if ((m->flags & PG_FICTITIOUS) != 0) {
1264 		/*
1265 		 * The page's memattr might have changed since the
1266 		 * previous initialization.  Update the pmap to the
1267 		 * new memattr.
1268 		 */
1269 		goto memattr;
1270 	}
1271 	m->phys_addr = paddr;
1272 	m->a.queue = PQ_NONE;
1273 	/* Fictitious pages don't use "segind". */
1274 	m->flags = PG_FICTITIOUS;
1275 	/* Fictitious pages don't use "order" or "pool". */
1276 	m->oflags = VPO_UNMANAGED;
1277 	m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
1278 	/* Fictitious pages are unevictable. */
1279 	m->ref_count = 1;
1280 	pmap_page_init(m);
1281 memattr:
1282 	pmap_page_set_memattr(m, memattr);
1283 }
1284 
1285 /*
1286  *	vm_page_putfake:
1287  *
1288  *	Release a fictitious page.
1289  */
1290 void
1291 vm_page_putfake(vm_page_t m)
1292 {
1293 
1294 	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1295 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1296 	    ("vm_page_putfake: bad page %p", m));
1297 	vm_page_assert_xbusied(m);
1298 	vm_page_busy_free(m);
1299 	uma_zfree(fakepg_zone, m);
1300 }
1301 
1302 /*
1303  *	vm_page_updatefake:
1304  *
1305  *	Update the given fictitious page to the specified physical address and
1306  *	memory attribute.
1307  */
1308 void
1309 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1310 {
1311 
1312 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1313 	    ("vm_page_updatefake: bad page %p", m));
1314 	m->phys_addr = paddr;
1315 	pmap_page_set_memattr(m, memattr);
1316 }
1317 
1318 /*
1319  *	vm_page_free:
1320  *
1321  *	Free a page.
1322  */
1323 void
1324 vm_page_free(vm_page_t m)
1325 {
1326 
1327 	m->flags &= ~PG_ZERO;
1328 	vm_page_free_toq(m);
1329 }
1330 
1331 /*
1332  *	vm_page_free_zero:
1333  *
1334  *	Free a page to the zerod-pages queue
1335  */
1336 void
1337 vm_page_free_zero(vm_page_t m)
1338 {
1339 
1340 	m->flags |= PG_ZERO;
1341 	vm_page_free_toq(m);
1342 }
1343 
1344 /*
1345  * Unbusy and handle the page queueing for a page from a getpages request that
1346  * was optionally read ahead or behind.
1347  */
1348 void
1349 vm_page_readahead_finish(vm_page_t m)
1350 {
1351 
1352 	/* We shouldn't put invalid pages on queues. */
1353 	KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1354 
1355 	/*
1356 	 * Since the page is not the actually needed one, whether it should
1357 	 * be activated or deactivated is not obvious.  Empirical results
1358 	 * have shown that deactivating the page is usually the best choice,
1359 	 * unless the page is wanted by another thread.
1360 	 */
1361 	if ((vm_page_busy_fetch(m) & VPB_BIT_WAITERS) != 0)
1362 		vm_page_activate(m);
1363 	else
1364 		vm_page_deactivate(m);
1365 	vm_page_xunbusy_unchecked(m);
1366 }
1367 
1368 /*
1369  * Destroy the identity of an invalid page and free it if possible.
1370  * This is intended to be used when reading a page from backing store fails.
1371  */
1372 void
1373 vm_page_free_invalid(vm_page_t m)
1374 {
1375 
1376 	KASSERT(vm_page_none_valid(m), ("page %p is valid", m));
1377 	KASSERT(!pmap_page_is_mapped(m), ("page %p is mapped", m));
1378 	KASSERT(m->object != NULL, ("page %p has no object", m));
1379 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1380 
1381 	/*
1382 	 * We may be attempting to free the page as part of the handling for an
1383 	 * I/O error, in which case the page was xbusied by a different thread.
1384 	 */
1385 	vm_page_xbusy_claim(m);
1386 
1387 	/*
1388 	 * If someone has wired this page while the object lock
1389 	 * was not held, then the thread that unwires is responsible
1390 	 * for freeing the page.  Otherwise just free the page now.
1391 	 * The wire count of this unmapped page cannot change while
1392 	 * we have the page xbusy and the page's object wlocked.
1393 	 */
1394 	if (vm_page_remove(m))
1395 		vm_page_free(m);
1396 }
1397 
1398 /*
1399  *	vm_page_dirty_KBI:		[ internal use only ]
1400  *
1401  *	Set all bits in the page's dirty field.
1402  *
1403  *	The object containing the specified page must be locked if the
1404  *	call is made from the machine-independent layer.
1405  *
1406  *	See vm_page_clear_dirty_mask().
1407  *
1408  *	This function should only be called by vm_page_dirty().
1409  */
1410 void
1411 vm_page_dirty_KBI(vm_page_t m)
1412 {
1413 
1414 	/* Refer to this operation by its public name. */
1415 	KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1416 	m->dirty = VM_PAGE_BITS_ALL;
1417 }
1418 
1419 /*
1420  *	vm_page_insert:		[ internal use only ]
1421  *
1422  *	Inserts the given mem entry into the object and object list.
1423  *
1424  *	The object must be locked.
1425  */
1426 int
1427 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1428 {
1429 	vm_page_t mpred;
1430 
1431 	VM_OBJECT_ASSERT_WLOCKED(object);
1432 	mpred = vm_radix_lookup_le(&object->rtree, pindex);
1433 	return (vm_page_insert_after(m, object, pindex, mpred));
1434 }
1435 
1436 /*
1437  *	vm_page_insert_after:
1438  *
1439  *	Inserts the page "m" into the specified object at offset "pindex".
1440  *
1441  *	The page "mpred" must immediately precede the offset "pindex" within
1442  *	the specified object.
1443  *
1444  *	The object must be locked.
1445  */
1446 static int
1447 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1448     vm_page_t mpred)
1449 {
1450 	vm_page_t msucc;
1451 
1452 	VM_OBJECT_ASSERT_WLOCKED(object);
1453 	KASSERT(m->object == NULL,
1454 	    ("vm_page_insert_after: page already inserted"));
1455 	if (mpred != NULL) {
1456 		KASSERT(mpred->object == object,
1457 		    ("vm_page_insert_after: object doesn't contain mpred"));
1458 		KASSERT(mpred->pindex < pindex,
1459 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1460 		msucc = TAILQ_NEXT(mpred, listq);
1461 	} else
1462 		msucc = TAILQ_FIRST(&object->memq);
1463 	if (msucc != NULL)
1464 		KASSERT(msucc->pindex > pindex,
1465 		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
1466 
1467 	/*
1468 	 * Record the object/offset pair in this page.
1469 	 */
1470 	m->object = object;
1471 	m->pindex = pindex;
1472 	m->ref_count |= VPRC_OBJREF;
1473 
1474 	/*
1475 	 * Now link into the object's ordered list of backed pages.
1476 	 */
1477 	if (vm_radix_insert(&object->rtree, m)) {
1478 		m->object = NULL;
1479 		m->pindex = 0;
1480 		m->ref_count &= ~VPRC_OBJREF;
1481 		return (1);
1482 	}
1483 	vm_page_insert_radixdone(m, object, mpred);
1484 	vm_pager_page_inserted(object, m);
1485 	return (0);
1486 }
1487 
1488 /*
1489  *	vm_page_insert_radixdone:
1490  *
1491  *	Complete page "m" insertion into the specified object after the
1492  *	radix trie hooking.
1493  *
1494  *	The page "mpred" must precede the offset "m->pindex" within the
1495  *	specified object.
1496  *
1497  *	The object must be locked.
1498  */
1499 static void
1500 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1501 {
1502 
1503 	VM_OBJECT_ASSERT_WLOCKED(object);
1504 	KASSERT(object != NULL && m->object == object,
1505 	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1506 	KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1507 	    ("vm_page_insert_radixdone: page %p is missing object ref", m));
1508 	if (mpred != NULL) {
1509 		KASSERT(mpred->object == object,
1510 		    ("vm_page_insert_radixdone: object doesn't contain mpred"));
1511 		KASSERT(mpred->pindex < m->pindex,
1512 		    ("vm_page_insert_radixdone: mpred doesn't precede pindex"));
1513 	}
1514 
1515 	if (mpred != NULL)
1516 		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1517 	else
1518 		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1519 
1520 	/*
1521 	 * Show that the object has one more resident page.
1522 	 */
1523 	object->resident_page_count++;
1524 
1525 	/*
1526 	 * Hold the vnode until the last page is released.
1527 	 */
1528 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1529 		vhold(object->handle);
1530 
1531 	/*
1532 	 * Since we are inserting a new and possibly dirty page,
1533 	 * update the object's generation count.
1534 	 */
1535 	if (pmap_page_is_write_mapped(m))
1536 		vm_object_set_writeable_dirty(object);
1537 }
1538 
1539 /*
1540  * Do the work to remove a page from its object.  The caller is responsible for
1541  * updating the page's fields to reflect this removal.
1542  */
1543 static void
1544 vm_page_object_remove(vm_page_t m)
1545 {
1546 	vm_object_t object;
1547 	vm_page_t mrem __diagused;
1548 
1549 	vm_page_assert_xbusied(m);
1550 	object = m->object;
1551 	VM_OBJECT_ASSERT_WLOCKED(object);
1552 	KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1553 	    ("page %p is missing its object ref", m));
1554 
1555 	/* Deferred free of swap space. */
1556 	if ((m->a.flags & PGA_SWAP_FREE) != 0)
1557 		vm_pager_page_unswapped(m);
1558 
1559 	vm_pager_page_removed(object, m);
1560 
1561 	m->object = NULL;
1562 	mrem = vm_radix_remove(&object->rtree, m->pindex);
1563 	KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1564 
1565 	/*
1566 	 * Now remove from the object's list of backed pages.
1567 	 */
1568 	TAILQ_REMOVE(&object->memq, m, listq);
1569 
1570 	/*
1571 	 * And show that the object has one fewer resident page.
1572 	 */
1573 	object->resident_page_count--;
1574 
1575 	/*
1576 	 * The vnode may now be recycled.
1577 	 */
1578 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1579 		vdrop(object->handle);
1580 }
1581 
1582 /*
1583  *	vm_page_remove:
1584  *
1585  *	Removes the specified page from its containing object, but does not
1586  *	invalidate any backing storage.  Returns true if the object's reference
1587  *	was the last reference to the page, and false otherwise.
1588  *
1589  *	The object must be locked and the page must be exclusively busied.
1590  *	The exclusive busy will be released on return.  If this is not the
1591  *	final ref and the caller does not hold a wire reference it may not
1592  *	continue to access the page.
1593  */
1594 bool
1595 vm_page_remove(vm_page_t m)
1596 {
1597 	bool dropped;
1598 
1599 	dropped = vm_page_remove_xbusy(m);
1600 	vm_page_xunbusy(m);
1601 
1602 	return (dropped);
1603 }
1604 
1605 /*
1606  *	vm_page_remove_xbusy
1607  *
1608  *	Removes the page but leaves the xbusy held.  Returns true if this
1609  *	removed the final ref and false otherwise.
1610  */
1611 bool
1612 vm_page_remove_xbusy(vm_page_t m)
1613 {
1614 
1615 	vm_page_object_remove(m);
1616 	return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1617 }
1618 
1619 /*
1620  *	vm_page_lookup:
1621  *
1622  *	Returns the page associated with the object/offset
1623  *	pair specified; if none is found, NULL is returned.
1624  *
1625  *	The object must be locked.
1626  */
1627 vm_page_t
1628 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1629 {
1630 
1631 	VM_OBJECT_ASSERT_LOCKED(object);
1632 	return (vm_radix_lookup(&object->rtree, pindex));
1633 }
1634 
1635 /*
1636  *	vm_page_lookup_unlocked:
1637  *
1638  *	Returns the page associated with the object/offset pair specified;
1639  *	if none is found, NULL is returned.  The page may be no longer be
1640  *	present in the object at the time that this function returns.  Only
1641  *	useful for opportunistic checks such as inmem().
1642  */
1643 vm_page_t
1644 vm_page_lookup_unlocked(vm_object_t object, vm_pindex_t pindex)
1645 {
1646 
1647 	return (vm_radix_lookup_unlocked(&object->rtree, pindex));
1648 }
1649 
1650 /*
1651  *	vm_page_relookup:
1652  *
1653  *	Returns a page that must already have been busied by
1654  *	the caller.  Used for bogus page replacement.
1655  */
1656 vm_page_t
1657 vm_page_relookup(vm_object_t object, vm_pindex_t pindex)
1658 {
1659 	vm_page_t m;
1660 
1661 	m = vm_radix_lookup_unlocked(&object->rtree, pindex);
1662 	KASSERT(m != NULL && (vm_page_busied(m) || vm_page_wired(m)) &&
1663 	    m->object == object && m->pindex == pindex,
1664 	    ("vm_page_relookup: Invalid page %p", m));
1665 	return (m);
1666 }
1667 
1668 /*
1669  * This should only be used by lockless functions for releasing transient
1670  * incorrect acquires.  The page may have been freed after we acquired a
1671  * busy lock.  In this case busy_lock == VPB_FREED and we have nothing
1672  * further to do.
1673  */
1674 static void
1675 vm_page_busy_release(vm_page_t m)
1676 {
1677 	u_int x;
1678 
1679 	x = vm_page_busy_fetch(m);
1680 	for (;;) {
1681 		if (x == VPB_FREED)
1682 			break;
1683 		if ((x & VPB_BIT_SHARED) != 0 && VPB_SHARERS(x) > 1) {
1684 			if (atomic_fcmpset_int(&m->busy_lock, &x,
1685 			    x - VPB_ONE_SHARER))
1686 				break;
1687 			continue;
1688 		}
1689 		KASSERT((x & VPB_BIT_SHARED) != 0 ||
1690 		    (x & ~VPB_BIT_WAITERS) == VPB_CURTHREAD_EXCLUSIVE,
1691 		    ("vm_page_busy_release: %p xbusy not owned.", m));
1692 		if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1693 			continue;
1694 		if ((x & VPB_BIT_WAITERS) != 0)
1695 			wakeup(m);
1696 		break;
1697 	}
1698 }
1699 
1700 /*
1701  *	vm_page_find_least:
1702  *
1703  *	Returns the page associated with the object with least pindex
1704  *	greater than or equal to the parameter pindex, or NULL.
1705  *
1706  *	The object must be locked.
1707  */
1708 vm_page_t
1709 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1710 {
1711 	vm_page_t m;
1712 
1713 	VM_OBJECT_ASSERT_LOCKED(object);
1714 	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1715 		m = vm_radix_lookup_ge(&object->rtree, pindex);
1716 	return (m);
1717 }
1718 
1719 /*
1720  * Returns the given page's successor (by pindex) within the object if it is
1721  * resident; if none is found, NULL is returned.
1722  *
1723  * The object must be locked.
1724  */
1725 vm_page_t
1726 vm_page_next(vm_page_t m)
1727 {
1728 	vm_page_t next;
1729 
1730 	VM_OBJECT_ASSERT_LOCKED(m->object);
1731 	if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1732 		MPASS(next->object == m->object);
1733 		if (next->pindex != m->pindex + 1)
1734 			next = NULL;
1735 	}
1736 	return (next);
1737 }
1738 
1739 /*
1740  * Returns the given page's predecessor (by pindex) within the object if it is
1741  * resident; if none is found, NULL is returned.
1742  *
1743  * The object must be locked.
1744  */
1745 vm_page_t
1746 vm_page_prev(vm_page_t m)
1747 {
1748 	vm_page_t prev;
1749 
1750 	VM_OBJECT_ASSERT_LOCKED(m->object);
1751 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1752 		MPASS(prev->object == m->object);
1753 		if (prev->pindex != m->pindex - 1)
1754 			prev = NULL;
1755 	}
1756 	return (prev);
1757 }
1758 
1759 /*
1760  * Uses the page mnew as a replacement for an existing page at index
1761  * pindex which must be already present in the object.
1762  *
1763  * Both pages must be exclusively busied on enter.  The old page is
1764  * unbusied on exit.
1765  *
1766  * A return value of true means mold is now free.  If this is not the
1767  * final ref and the caller does not hold a wire reference it may not
1768  * continue to access the page.
1769  */
1770 static bool
1771 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1772     vm_page_t mold)
1773 {
1774 	vm_page_t mret __diagused;
1775 	bool dropped;
1776 
1777 	VM_OBJECT_ASSERT_WLOCKED(object);
1778 	vm_page_assert_xbusied(mold);
1779 	KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
1780 	    ("vm_page_replace: page %p already in object", mnew));
1781 
1782 	/*
1783 	 * This function mostly follows vm_page_insert() and
1784 	 * vm_page_remove() without the radix, object count and vnode
1785 	 * dance.  Double check such functions for more comments.
1786 	 */
1787 
1788 	mnew->object = object;
1789 	mnew->pindex = pindex;
1790 	atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
1791 	mret = vm_radix_replace(&object->rtree, mnew);
1792 	KASSERT(mret == mold,
1793 	    ("invalid page replacement, mold=%p, mret=%p", mold, mret));
1794 	KASSERT((mold->oflags & VPO_UNMANAGED) ==
1795 	    (mnew->oflags & VPO_UNMANAGED),
1796 	    ("vm_page_replace: mismatched VPO_UNMANAGED"));
1797 
1798 	/* Keep the resident page list in sorted order. */
1799 	TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1800 	TAILQ_REMOVE(&object->memq, mold, listq);
1801 	mold->object = NULL;
1802 
1803 	/*
1804 	 * The object's resident_page_count does not change because we have
1805 	 * swapped one page for another, but the generation count should
1806 	 * change if the page is dirty.
1807 	 */
1808 	if (pmap_page_is_write_mapped(mnew))
1809 		vm_object_set_writeable_dirty(object);
1810 	dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF;
1811 	vm_page_xunbusy(mold);
1812 
1813 	return (dropped);
1814 }
1815 
1816 void
1817 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1818     vm_page_t mold)
1819 {
1820 
1821 	vm_page_assert_xbusied(mnew);
1822 
1823 	if (vm_page_replace_hold(mnew, object, pindex, mold))
1824 		vm_page_free(mold);
1825 }
1826 
1827 /*
1828  *	vm_page_rename:
1829  *
1830  *	Move the given memory entry from its
1831  *	current object to the specified target object/offset.
1832  *
1833  *	Note: swap associated with the page must be invalidated by the move.  We
1834  *	      have to do this for several reasons:  (1) we aren't freeing the
1835  *	      page, (2) we are dirtying the page, (3) the VM system is probably
1836  *	      moving the page from object A to B, and will then later move
1837  *	      the backing store from A to B and we can't have a conflict.
1838  *
1839  *	Note: we *always* dirty the page.  It is necessary both for the
1840  *	      fact that we moved it, and because we may be invalidating
1841  *	      swap.
1842  *
1843  *	The objects must be locked.
1844  */
1845 int
1846 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1847 {
1848 	vm_page_t mpred;
1849 	vm_pindex_t opidx;
1850 
1851 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1852 
1853 	KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m));
1854 	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1855 	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1856 	    ("vm_page_rename: pindex already renamed"));
1857 
1858 	/*
1859 	 * Create a custom version of vm_page_insert() which does not depend
1860 	 * by m_prev and can cheat on the implementation aspects of the
1861 	 * function.
1862 	 */
1863 	opidx = m->pindex;
1864 	m->pindex = new_pindex;
1865 	if (vm_radix_insert(&new_object->rtree, m)) {
1866 		m->pindex = opidx;
1867 		return (1);
1868 	}
1869 
1870 	/*
1871 	 * The operation cannot fail anymore.  The removal must happen before
1872 	 * the listq iterator is tainted.
1873 	 */
1874 	m->pindex = opidx;
1875 	vm_page_object_remove(m);
1876 
1877 	/* Return back to the new pindex to complete vm_page_insert(). */
1878 	m->pindex = new_pindex;
1879 	m->object = new_object;
1880 
1881 	vm_page_insert_radixdone(m, new_object, mpred);
1882 	vm_page_dirty(m);
1883 	vm_pager_page_inserted(new_object, m);
1884 	return (0);
1885 }
1886 
1887 /*
1888  *	vm_page_alloc:
1889  *
1890  *	Allocate and return a page that is associated with the specified
1891  *	object and offset pair.  By default, this page is exclusive busied.
1892  *
1893  *	The caller must always specify an allocation class.
1894  *
1895  *	allocation classes:
1896  *	VM_ALLOC_NORMAL		normal process request
1897  *	VM_ALLOC_SYSTEM		system *really* needs a page
1898  *	VM_ALLOC_INTERRUPT	interrupt time request
1899  *
1900  *	optional allocation flags:
1901  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1902  *				intends to allocate
1903  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1904  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1905  *	VM_ALLOC_SBUSY		shared busy the allocated page
1906  *	VM_ALLOC_WIRED		wire the allocated page
1907  *	VM_ALLOC_ZERO		prefer a zeroed page
1908  */
1909 vm_page_t
1910 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1911 {
1912 
1913 	return (vm_page_alloc_after(object, pindex, req,
1914 	    vm_radix_lookup_le(&object->rtree, pindex)));
1915 }
1916 
1917 vm_page_t
1918 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain,
1919     int req)
1920 {
1921 
1922 	return (vm_page_alloc_domain_after(object, pindex, domain, req,
1923 	    vm_radix_lookup_le(&object->rtree, pindex)));
1924 }
1925 
1926 /*
1927  * Allocate a page in the specified object with the given page index.  To
1928  * optimize insertion of the page into the object, the caller must also specifiy
1929  * the resident page in the object with largest index smaller than the given
1930  * page index, or NULL if no such page exists.
1931  */
1932 vm_page_t
1933 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
1934     int req, vm_page_t mpred)
1935 {
1936 	struct vm_domainset_iter di;
1937 	vm_page_t m;
1938 	int domain;
1939 
1940 	vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
1941 	do {
1942 		m = vm_page_alloc_domain_after(object, pindex, domain, req,
1943 		    mpred);
1944 		if (m != NULL)
1945 			break;
1946 	} while (vm_domainset_iter_page(&di, object, &domain) == 0);
1947 
1948 	return (m);
1949 }
1950 
1951 /*
1952  * Returns true if the number of free pages exceeds the minimum
1953  * for the request class and false otherwise.
1954  */
1955 static int
1956 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages)
1957 {
1958 	u_int limit, old, new;
1959 
1960 	if (req_class == VM_ALLOC_INTERRUPT)
1961 		limit = 0;
1962 	else if (req_class == VM_ALLOC_SYSTEM)
1963 		limit = vmd->vmd_interrupt_free_min;
1964 	else
1965 		limit = vmd->vmd_free_reserved;
1966 
1967 	/*
1968 	 * Attempt to reserve the pages.  Fail if we're below the limit.
1969 	 */
1970 	limit += npages;
1971 	old = vmd->vmd_free_count;
1972 	do {
1973 		if (old < limit)
1974 			return (0);
1975 		new = old - npages;
1976 	} while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
1977 
1978 	/* Wake the page daemon if we've crossed the threshold. */
1979 	if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
1980 		pagedaemon_wakeup(vmd->vmd_domain);
1981 
1982 	/* Only update bitsets on transitions. */
1983 	if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
1984 	    (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
1985 		vm_domain_set(vmd);
1986 
1987 	return (1);
1988 }
1989 
1990 int
1991 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
1992 {
1993 	int req_class;
1994 
1995 	/*
1996 	 * The page daemon is allowed to dig deeper into the free page list.
1997 	 */
1998 	req_class = req & VM_ALLOC_CLASS_MASK;
1999 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2000 		req_class = VM_ALLOC_SYSTEM;
2001 	return (_vm_domain_allocate(vmd, req_class, npages));
2002 }
2003 
2004 vm_page_t
2005 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
2006     int req, vm_page_t mpred)
2007 {
2008 	struct vm_domain *vmd;
2009 	vm_page_t m;
2010 	int flags;
2011 
2012 #define	VPA_FLAGS	(VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL |	\
2013 			 VM_ALLOC_NOWAIT | VM_ALLOC_NOBUSY |		\
2014 			 VM_ALLOC_SBUSY | VM_ALLOC_WIRED |		\
2015 			 VM_ALLOC_NODUMP | VM_ALLOC_ZERO | VM_ALLOC_COUNT_MASK)
2016 	KASSERT((req & ~VPA_FLAGS) == 0,
2017 	    ("invalid request %#x", req));
2018 	KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2019 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2020 	    ("invalid request %#x", req));
2021 	KASSERT(mpred == NULL || mpred->pindex < pindex,
2022 	    ("mpred %p doesn't precede pindex 0x%jx", mpred,
2023 	    (uintmax_t)pindex));
2024 	VM_OBJECT_ASSERT_WLOCKED(object);
2025 
2026 	flags = 0;
2027 	m = NULL;
2028 	if (!vm_pager_can_alloc_page(object, pindex))
2029 		return (NULL);
2030 again:
2031 #if VM_NRESERVLEVEL > 0
2032 	/*
2033 	 * Can we allocate the page from a reservation?
2034 	 */
2035 	if (vm_object_reserv(object) &&
2036 	    (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) !=
2037 	    NULL) {
2038 		goto found;
2039 	}
2040 #endif
2041 	vmd = VM_DOMAIN(domain);
2042 	if (vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone != NULL) {
2043 		m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone,
2044 		    M_NOWAIT | M_NOVM);
2045 		if (m != NULL) {
2046 			flags |= PG_PCPU_CACHE;
2047 			goto found;
2048 		}
2049 	}
2050 	if (vm_domain_allocate(vmd, req, 1)) {
2051 		/*
2052 		 * If not, allocate it from the free page queues.
2053 		 */
2054 		vm_domain_free_lock(vmd);
2055 		m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, 0);
2056 		vm_domain_free_unlock(vmd);
2057 		if (m == NULL) {
2058 			vm_domain_freecnt_inc(vmd, 1);
2059 #if VM_NRESERVLEVEL > 0
2060 			if (vm_reserv_reclaim_inactive(domain))
2061 				goto again;
2062 #endif
2063 		}
2064 	}
2065 	if (m == NULL) {
2066 		/*
2067 		 * Not allocatable, give up.
2068 		 */
2069 		if (vm_domain_alloc_fail(vmd, object, req))
2070 			goto again;
2071 		return (NULL);
2072 	}
2073 
2074 	/*
2075 	 * At this point we had better have found a good page.
2076 	 */
2077 found:
2078 	vm_page_dequeue(m);
2079 	vm_page_alloc_check(m);
2080 
2081 	/*
2082 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2083 	 */
2084 	flags |= m->flags & PG_ZERO;
2085 	if ((req & VM_ALLOC_NODUMP) != 0)
2086 		flags |= PG_NODUMP;
2087 	m->flags = flags;
2088 	m->a.flags = 0;
2089 	m->oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
2090 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2091 		m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2092 	else if ((req & VM_ALLOC_SBUSY) != 0)
2093 		m->busy_lock = VPB_SHARERS_WORD(1);
2094 	else
2095 		m->busy_lock = VPB_UNBUSIED;
2096 	if (req & VM_ALLOC_WIRED) {
2097 		vm_wire_add(1);
2098 		m->ref_count = 1;
2099 	}
2100 	m->a.act_count = 0;
2101 
2102 	if (vm_page_insert_after(m, object, pindex, mpred)) {
2103 		if (req & VM_ALLOC_WIRED) {
2104 			vm_wire_sub(1);
2105 			m->ref_count = 0;
2106 		}
2107 		KASSERT(m->object == NULL, ("page %p has object", m));
2108 		m->oflags = VPO_UNMANAGED;
2109 		m->busy_lock = VPB_UNBUSIED;
2110 		/* Don't change PG_ZERO. */
2111 		vm_page_free_toq(m);
2112 		if (req & VM_ALLOC_WAITFAIL) {
2113 			VM_OBJECT_WUNLOCK(object);
2114 			vm_radix_wait();
2115 			VM_OBJECT_WLOCK(object);
2116 		}
2117 		return (NULL);
2118 	}
2119 
2120 	/* Ignore device objects; the pager sets "memattr" for them. */
2121 	if (object->memattr != VM_MEMATTR_DEFAULT &&
2122 	    (object->flags & OBJ_FICTITIOUS) == 0)
2123 		pmap_page_set_memattr(m, object->memattr);
2124 
2125 	return (m);
2126 }
2127 
2128 /*
2129  *	vm_page_alloc_contig:
2130  *
2131  *	Allocate a contiguous set of physical pages of the given size "npages"
2132  *	from the free lists.  All of the physical pages must be at or above
2133  *	the given physical address "low" and below the given physical address
2134  *	"high".  The given value "alignment" determines the alignment of the
2135  *	first physical page in the set.  If the given value "boundary" is
2136  *	non-zero, then the set of physical pages cannot cross any physical
2137  *	address boundary that is a multiple of that value.  Both "alignment"
2138  *	and "boundary" must be a power of two.
2139  *
2140  *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2141  *	then the memory attribute setting for the physical pages is configured
2142  *	to the object's memory attribute setting.  Otherwise, the memory
2143  *	attribute setting for the physical pages is configured to "memattr",
2144  *	overriding the object's memory attribute setting.  However, if the
2145  *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2146  *	memory attribute setting for the physical pages cannot be configured
2147  *	to VM_MEMATTR_DEFAULT.
2148  *
2149  *	The specified object may not contain fictitious pages.
2150  *
2151  *	The caller must always specify an allocation class.
2152  *
2153  *	allocation classes:
2154  *	VM_ALLOC_NORMAL		normal process request
2155  *	VM_ALLOC_SYSTEM		system *really* needs a page
2156  *	VM_ALLOC_INTERRUPT	interrupt time request
2157  *
2158  *	optional allocation flags:
2159  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
2160  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
2161  *	VM_ALLOC_SBUSY		shared busy the allocated page
2162  *	VM_ALLOC_WIRED		wire the allocated page
2163  *	VM_ALLOC_ZERO		prefer a zeroed page
2164  */
2165 vm_page_t
2166 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2167     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2168     vm_paddr_t boundary, vm_memattr_t memattr)
2169 {
2170 	struct vm_domainset_iter di;
2171 	vm_page_t m;
2172 	int domain;
2173 
2174 	vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2175 	do {
2176 		m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2177 		    npages, low, high, alignment, boundary, memattr);
2178 		if (m != NULL)
2179 			break;
2180 	} while (vm_domainset_iter_page(&di, object, &domain) == 0);
2181 
2182 	return (m);
2183 }
2184 
2185 static vm_page_t
2186 vm_page_find_contig_domain(int domain, int req, u_long npages, vm_paddr_t low,
2187     vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2188 {
2189 	struct vm_domain *vmd;
2190 	vm_page_t m_ret;
2191 
2192 	/*
2193 	 * Can we allocate the pages without the number of free pages falling
2194 	 * below the lower bound for the allocation class?
2195 	 */
2196 	vmd = VM_DOMAIN(domain);
2197 	if (!vm_domain_allocate(vmd, req, npages))
2198 		return (NULL);
2199 	/*
2200 	 * Try to allocate the pages from the free page queues.
2201 	 */
2202 	vm_domain_free_lock(vmd);
2203 	m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2204 	    alignment, boundary);
2205 	vm_domain_free_unlock(vmd);
2206 	if (m_ret != NULL)
2207 		return (m_ret);
2208 #if VM_NRESERVLEVEL > 0
2209 	/*
2210 	 * Try to break a reservation to allocate the pages.
2211 	 */
2212 	if ((req & VM_ALLOC_NORECLAIM) == 0) {
2213 		m_ret = vm_reserv_reclaim_contig(domain, npages, low,
2214 	            high, alignment, boundary);
2215 		if (m_ret != NULL)
2216 			return (m_ret);
2217 	}
2218 #endif
2219 	vm_domain_freecnt_inc(vmd, npages);
2220 	return (NULL);
2221 }
2222 
2223 vm_page_t
2224 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2225     int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2226     vm_paddr_t boundary, vm_memattr_t memattr)
2227 {
2228 	vm_page_t m, m_ret, mpred;
2229 	u_int busy_lock, flags, oflags;
2230 
2231 #define	VPAC_FLAGS	(VPA_FLAGS | VM_ALLOC_NORECLAIM)
2232 	KASSERT((req & ~VPAC_FLAGS) == 0,
2233 	    ("invalid request %#x", req));
2234 	KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2235 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2236 	    ("invalid request %#x", req));
2237 	KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) !=
2238 	    (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM),
2239 	    ("invalid request %#x", req));
2240 	VM_OBJECT_ASSERT_WLOCKED(object);
2241 	KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2242 	    ("vm_page_alloc_contig: object %p has fictitious pages",
2243 	    object));
2244 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2245 
2246 	mpred = vm_radix_lookup_le(&object->rtree, pindex);
2247 	KASSERT(mpred == NULL || mpred->pindex != pindex,
2248 	    ("vm_page_alloc_contig: pindex already allocated"));
2249 	for (;;) {
2250 #if VM_NRESERVLEVEL > 0
2251 		/*
2252 		 * Can we allocate the pages from a reservation?
2253 		 */
2254 		if (vm_object_reserv(object) &&
2255 		    (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req,
2256 		    mpred, npages, low, high, alignment, boundary)) != NULL) {
2257 			break;
2258 		}
2259 #endif
2260 		if ((m_ret = vm_page_find_contig_domain(domain, req, npages,
2261 		    low, high, alignment, boundary)) != NULL)
2262 			break;
2263 		if (!vm_domain_alloc_fail(VM_DOMAIN(domain), object, req))
2264 			return (NULL);
2265 	}
2266 	for (m = m_ret; m < &m_ret[npages]; m++) {
2267 		vm_page_dequeue(m);
2268 		vm_page_alloc_check(m);
2269 	}
2270 
2271 	/*
2272 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
2273 	 */
2274 	flags = PG_ZERO;
2275 	if ((req & VM_ALLOC_NODUMP) != 0)
2276 		flags |= PG_NODUMP;
2277 	oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
2278 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2279 		busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2280 	else if ((req & VM_ALLOC_SBUSY) != 0)
2281 		busy_lock = VPB_SHARERS_WORD(1);
2282 	else
2283 		busy_lock = VPB_UNBUSIED;
2284 	if ((req & VM_ALLOC_WIRED) != 0)
2285 		vm_wire_add(npages);
2286 	if (object->memattr != VM_MEMATTR_DEFAULT &&
2287 	    memattr == VM_MEMATTR_DEFAULT)
2288 		memattr = object->memattr;
2289 	for (m = m_ret; m < &m_ret[npages]; m++) {
2290 		m->a.flags = 0;
2291 		m->flags = (m->flags | PG_NODUMP) & flags;
2292 		m->busy_lock = busy_lock;
2293 		if ((req & VM_ALLOC_WIRED) != 0)
2294 			m->ref_count = 1;
2295 		m->a.act_count = 0;
2296 		m->oflags = oflags;
2297 		if (vm_page_insert_after(m, object, pindex, mpred)) {
2298 			if ((req & VM_ALLOC_WIRED) != 0)
2299 				vm_wire_sub(npages);
2300 			KASSERT(m->object == NULL,
2301 			    ("page %p has object", m));
2302 			mpred = m;
2303 			for (m = m_ret; m < &m_ret[npages]; m++) {
2304 				if (m <= mpred &&
2305 				    (req & VM_ALLOC_WIRED) != 0)
2306 					m->ref_count = 0;
2307 				m->oflags = VPO_UNMANAGED;
2308 				m->busy_lock = VPB_UNBUSIED;
2309 				/* Don't change PG_ZERO. */
2310 				vm_page_free_toq(m);
2311 			}
2312 			if (req & VM_ALLOC_WAITFAIL) {
2313 				VM_OBJECT_WUNLOCK(object);
2314 				vm_radix_wait();
2315 				VM_OBJECT_WLOCK(object);
2316 			}
2317 			return (NULL);
2318 		}
2319 		mpred = m;
2320 		if (memattr != VM_MEMATTR_DEFAULT)
2321 			pmap_page_set_memattr(m, memattr);
2322 		pindex++;
2323 	}
2324 	return (m_ret);
2325 }
2326 
2327 /*
2328  * Allocate a physical page that is not intended to be inserted into a VM
2329  * object.  If the "freelist" parameter is not equal to VM_NFREELIST, then only
2330  * pages from the specified vm_phys freelist will be returned.
2331  */
2332 static __always_inline vm_page_t
2333 _vm_page_alloc_noobj_domain(int domain, const int freelist, int req)
2334 {
2335 	struct vm_domain *vmd;
2336 	vm_page_t m;
2337 	int flags;
2338 
2339 #define	VPAN_FLAGS	(VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL |      \
2340 			 VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK |		\
2341 			 VM_ALLOC_NOBUSY | VM_ALLOC_WIRED |		\
2342 			 VM_ALLOC_NODUMP | VM_ALLOC_ZERO | VM_ALLOC_COUNT_MASK)
2343 	KASSERT((req & ~VPAN_FLAGS) == 0,
2344 	    ("invalid request %#x", req));
2345 
2346 	flags = (req & VM_ALLOC_NODUMP) != 0 ? PG_NODUMP : 0;
2347 	vmd = VM_DOMAIN(domain);
2348 again:
2349 	if (freelist == VM_NFREELIST &&
2350 	    vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone != NULL) {
2351 		m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone,
2352 		    M_NOWAIT | M_NOVM);
2353 		if (m != NULL) {
2354 			flags |= PG_PCPU_CACHE;
2355 			goto found;
2356 		}
2357 	}
2358 
2359 	if (vm_domain_allocate(vmd, req, 1)) {
2360 		vm_domain_free_lock(vmd);
2361 		if (freelist == VM_NFREELIST)
2362 			m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DIRECT, 0);
2363 		else
2364 			m = vm_phys_alloc_freelist_pages(domain, freelist,
2365 			    VM_FREEPOOL_DIRECT, 0);
2366 		vm_domain_free_unlock(vmd);
2367 		if (m == NULL) {
2368 			vm_domain_freecnt_inc(vmd, 1);
2369 #if VM_NRESERVLEVEL > 0
2370 			if (freelist == VM_NFREELIST &&
2371 			    vm_reserv_reclaim_inactive(domain))
2372 				goto again;
2373 #endif
2374 		}
2375 	}
2376 	if (m == NULL) {
2377 		if (vm_domain_alloc_fail(vmd, NULL, req))
2378 			goto again;
2379 		return (NULL);
2380 	}
2381 
2382 found:
2383 	vm_page_dequeue(m);
2384 	vm_page_alloc_check(m);
2385 
2386 	/*
2387 	 * Consumers should not rely on a useful default pindex value.
2388 	 */
2389 	m->pindex = 0xdeadc0dedeadc0de;
2390 	m->flags = (m->flags & PG_ZERO) | flags;
2391 	m->a.flags = 0;
2392 	m->oflags = VPO_UNMANAGED;
2393 	m->busy_lock = VPB_UNBUSIED;
2394 	if ((req & VM_ALLOC_WIRED) != 0) {
2395 		vm_wire_add(1);
2396 		m->ref_count = 1;
2397 	}
2398 
2399 	if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
2400 		pmap_zero_page(m);
2401 
2402 	return (m);
2403 }
2404 
2405 vm_page_t
2406 vm_page_alloc_freelist(int freelist, int req)
2407 {
2408 	struct vm_domainset_iter di;
2409 	vm_page_t m;
2410 	int domain;
2411 
2412 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2413 	do {
2414 		m = vm_page_alloc_freelist_domain(domain, freelist, req);
2415 		if (m != NULL)
2416 			break;
2417 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2418 
2419 	return (m);
2420 }
2421 
2422 vm_page_t
2423 vm_page_alloc_freelist_domain(int domain, int freelist, int req)
2424 {
2425 	KASSERT(freelist >= 0 && freelist < VM_NFREELIST,
2426 	    ("%s: invalid freelist %d", __func__, freelist));
2427 
2428 	return (_vm_page_alloc_noobj_domain(domain, freelist, req));
2429 }
2430 
2431 vm_page_t
2432 vm_page_alloc_noobj(int req)
2433 {
2434 	struct vm_domainset_iter di;
2435 	vm_page_t m;
2436 	int domain;
2437 
2438 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2439 	do {
2440 		m = vm_page_alloc_noobj_domain(domain, req);
2441 		if (m != NULL)
2442 			break;
2443 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2444 
2445 	return (m);
2446 }
2447 
2448 vm_page_t
2449 vm_page_alloc_noobj_domain(int domain, int req)
2450 {
2451 	return (_vm_page_alloc_noobj_domain(domain, VM_NFREELIST, req));
2452 }
2453 
2454 vm_page_t
2455 vm_page_alloc_noobj_contig(int req, u_long npages, vm_paddr_t low,
2456     vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
2457     vm_memattr_t memattr)
2458 {
2459 	struct vm_domainset_iter di;
2460 	vm_page_t m;
2461 	int domain;
2462 
2463 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2464 	do {
2465 		m = vm_page_alloc_noobj_contig_domain(domain, req, npages, low,
2466 		    high, alignment, boundary, memattr);
2467 		if (m != NULL)
2468 			break;
2469 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2470 
2471 	return (m);
2472 }
2473 
2474 vm_page_t
2475 vm_page_alloc_noobj_contig_domain(int domain, int req, u_long npages,
2476     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
2477     vm_memattr_t memattr)
2478 {
2479 	vm_page_t m, m_ret;
2480 	u_int flags;
2481 
2482 #define	VPANC_FLAGS	(VPAN_FLAGS | VM_ALLOC_NORECLAIM)
2483 	KASSERT((req & ~VPANC_FLAGS) == 0,
2484 	    ("invalid request %#x", req));
2485 	KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) !=
2486 	    (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM),
2487 	    ("invalid request %#x", req));
2488 	KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2489 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2490 	    ("invalid request %#x", req));
2491 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2492 
2493 	while ((m_ret = vm_page_find_contig_domain(domain, req, npages,
2494 	    low, high, alignment, boundary)) == NULL) {
2495 		if (!vm_domain_alloc_fail(VM_DOMAIN(domain), NULL, req))
2496 			return (NULL);
2497 	}
2498 
2499 	/*
2500 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
2501 	 */
2502 	flags = PG_ZERO;
2503 	if ((req & VM_ALLOC_NODUMP) != 0)
2504 		flags |= PG_NODUMP;
2505 	if ((req & VM_ALLOC_WIRED) != 0)
2506 		vm_wire_add(npages);
2507 	for (m = m_ret; m < &m_ret[npages]; m++) {
2508 		vm_page_dequeue(m);
2509 		vm_page_alloc_check(m);
2510 
2511 		/*
2512 		 * Consumers should not rely on a useful default pindex value.
2513 		 */
2514 		m->pindex = 0xdeadc0dedeadc0de;
2515 		m->a.flags = 0;
2516 		m->flags = (m->flags | PG_NODUMP) & flags;
2517 		m->busy_lock = VPB_UNBUSIED;
2518 		if ((req & VM_ALLOC_WIRED) != 0)
2519 			m->ref_count = 1;
2520 		m->a.act_count = 0;
2521 		m->oflags = VPO_UNMANAGED;
2522 
2523 		/*
2524 		 * Zero the page before updating any mappings since the page is
2525 		 * not yet shared with any devices which might require the
2526 		 * non-default memory attribute.  pmap_page_set_memattr()
2527 		 * flushes data caches before returning.
2528 		 */
2529 		if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
2530 			pmap_zero_page(m);
2531 		if (memattr != VM_MEMATTR_DEFAULT)
2532 			pmap_page_set_memattr(m, memattr);
2533 	}
2534 	return (m_ret);
2535 }
2536 
2537 /*
2538  * Check a page that has been freshly dequeued from a freelist.
2539  */
2540 static void
2541 vm_page_alloc_check(vm_page_t m)
2542 {
2543 
2544 	KASSERT(m->object == NULL, ("page %p has object", m));
2545 	KASSERT(m->a.queue == PQ_NONE &&
2546 	    (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
2547 	    ("page %p has unexpected queue %d, flags %#x",
2548 	    m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK)));
2549 	KASSERT(m->ref_count == 0, ("page %p has references", m));
2550 	KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m));
2551 	KASSERT(m->dirty == 0, ("page %p is dirty", m));
2552 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2553 	    ("page %p has unexpected memattr %d",
2554 	    m, pmap_page_get_memattr(m)));
2555 	KASSERT(vm_page_none_valid(m), ("free page %p is valid", m));
2556 	pmap_vm_page_alloc_check(m);
2557 }
2558 
2559 static int
2560 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2561 {
2562 	struct vm_domain *vmd;
2563 	struct vm_pgcache *pgcache;
2564 	int i;
2565 
2566 	pgcache = arg;
2567 	vmd = VM_DOMAIN(pgcache->domain);
2568 
2569 	/*
2570 	 * The page daemon should avoid creating extra memory pressure since its
2571 	 * main purpose is to replenish the store of free pages.
2572 	 */
2573 	if (vmd->vmd_severeset || curproc == pageproc ||
2574 	    !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2575 		return (0);
2576 	domain = vmd->vmd_domain;
2577 	vm_domain_free_lock(vmd);
2578 	i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2579 	    (vm_page_t *)store);
2580 	vm_domain_free_unlock(vmd);
2581 	if (cnt != i)
2582 		vm_domain_freecnt_inc(vmd, cnt - i);
2583 
2584 	return (i);
2585 }
2586 
2587 static void
2588 vm_page_zone_release(void *arg, void **store, int cnt)
2589 {
2590 	struct vm_domain *vmd;
2591 	struct vm_pgcache *pgcache;
2592 	vm_page_t m;
2593 	int i;
2594 
2595 	pgcache = arg;
2596 	vmd = VM_DOMAIN(pgcache->domain);
2597 	vm_domain_free_lock(vmd);
2598 	for (i = 0; i < cnt; i++) {
2599 		m = (vm_page_t)store[i];
2600 		vm_phys_free_pages(m, 0);
2601 	}
2602 	vm_domain_free_unlock(vmd);
2603 	vm_domain_freecnt_inc(vmd, cnt);
2604 }
2605 
2606 #define	VPSC_ANY	0	/* No restrictions. */
2607 #define	VPSC_NORESERV	1	/* Skip reservations; implies VPSC_NOSUPER. */
2608 #define	VPSC_NOSUPER	2	/* Skip superpages. */
2609 
2610 /*
2611  *	vm_page_scan_contig:
2612  *
2613  *	Scan vm_page_array[] between the specified entries "m_start" and
2614  *	"m_end" for a run of contiguous physical pages that satisfy the
2615  *	specified conditions, and return the lowest page in the run.  The
2616  *	specified "alignment" determines the alignment of the lowest physical
2617  *	page in the run.  If the specified "boundary" is non-zero, then the
2618  *	run of physical pages cannot span a physical address that is a
2619  *	multiple of "boundary".
2620  *
2621  *	"m_end" is never dereferenced, so it need not point to a vm_page
2622  *	structure within vm_page_array[].
2623  *
2624  *	"npages" must be greater than zero.  "m_start" and "m_end" must not
2625  *	span a hole (or discontiguity) in the physical address space.  Both
2626  *	"alignment" and "boundary" must be a power of two.
2627  */
2628 static vm_page_t
2629 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2630     u_long alignment, vm_paddr_t boundary, int options)
2631 {
2632 	vm_object_t object;
2633 	vm_paddr_t pa;
2634 	vm_page_t m, m_run;
2635 #if VM_NRESERVLEVEL > 0
2636 	int level;
2637 #endif
2638 	int m_inc, order, run_ext, run_len;
2639 
2640 	KASSERT(npages > 0, ("npages is 0"));
2641 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2642 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2643 	m_run = NULL;
2644 	run_len = 0;
2645 	for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2646 		KASSERT((m->flags & PG_MARKER) == 0,
2647 		    ("page %p is PG_MARKER", m));
2648 		KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2649 		    ("fictitious page %p has invalid ref count", m));
2650 
2651 		/*
2652 		 * If the current page would be the start of a run, check its
2653 		 * physical address against the end, alignment, and boundary
2654 		 * conditions.  If it doesn't satisfy these conditions, either
2655 		 * terminate the scan or advance to the next page that
2656 		 * satisfies the failed condition.
2657 		 */
2658 		if (run_len == 0) {
2659 			KASSERT(m_run == NULL, ("m_run != NULL"));
2660 			if (m + npages > m_end)
2661 				break;
2662 			pa = VM_PAGE_TO_PHYS(m);
2663 			if (!vm_addr_align_ok(pa, alignment)) {
2664 				m_inc = atop(roundup2(pa, alignment) - pa);
2665 				continue;
2666 			}
2667 			if (!vm_addr_bound_ok(pa, ptoa(npages), boundary)) {
2668 				m_inc = atop(roundup2(pa, boundary) - pa);
2669 				continue;
2670 			}
2671 		} else
2672 			KASSERT(m_run != NULL, ("m_run == NULL"));
2673 
2674 retry:
2675 		m_inc = 1;
2676 		if (vm_page_wired(m))
2677 			run_ext = 0;
2678 #if VM_NRESERVLEVEL > 0
2679 		else if ((level = vm_reserv_level(m)) >= 0 &&
2680 		    (options & VPSC_NORESERV) != 0) {
2681 			run_ext = 0;
2682 			/* Advance to the end of the reservation. */
2683 			pa = VM_PAGE_TO_PHYS(m);
2684 			m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2685 			    pa);
2686 		}
2687 #endif
2688 		else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2689 			/*
2690 			 * The page is considered eligible for relocation if
2691 			 * and only if it could be laundered or reclaimed by
2692 			 * the page daemon.
2693 			 */
2694 			VM_OBJECT_RLOCK(object);
2695 			if (object != m->object) {
2696 				VM_OBJECT_RUNLOCK(object);
2697 				goto retry;
2698 			}
2699 			/* Don't care: PG_NODUMP, PG_ZERO. */
2700 			if ((object->flags & OBJ_SWAP) == 0 &&
2701 			    object->type != OBJT_VNODE) {
2702 				run_ext = 0;
2703 #if VM_NRESERVLEVEL > 0
2704 			} else if ((options & VPSC_NOSUPER) != 0 &&
2705 			    (level = vm_reserv_level_iffullpop(m)) >= 0) {
2706 				run_ext = 0;
2707 				/* Advance to the end of the superpage. */
2708 				pa = VM_PAGE_TO_PHYS(m);
2709 				m_inc = atop(roundup2(pa + 1,
2710 				    vm_reserv_size(level)) - pa);
2711 #endif
2712 			} else if (object->memattr == VM_MEMATTR_DEFAULT &&
2713 			    vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) {
2714 				/*
2715 				 * The page is allocated but eligible for
2716 				 * relocation.  Extend the current run by one
2717 				 * page.
2718 				 */
2719 				KASSERT(pmap_page_get_memattr(m) ==
2720 				    VM_MEMATTR_DEFAULT,
2721 				    ("page %p has an unexpected memattr", m));
2722 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2723 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2724 				    ("page %p has unexpected oflags", m));
2725 				/* Don't care: PGA_NOSYNC. */
2726 				run_ext = 1;
2727 			} else
2728 				run_ext = 0;
2729 			VM_OBJECT_RUNLOCK(object);
2730 #if VM_NRESERVLEVEL > 0
2731 		} else if (level >= 0) {
2732 			/*
2733 			 * The page is reserved but not yet allocated.  In
2734 			 * other words, it is still free.  Extend the current
2735 			 * run by one page.
2736 			 */
2737 			run_ext = 1;
2738 #endif
2739 		} else if ((order = m->order) < VM_NFREEORDER) {
2740 			/*
2741 			 * The page is enqueued in the physical memory
2742 			 * allocator's free page queues.  Moreover, it is the
2743 			 * first page in a power-of-two-sized run of
2744 			 * contiguous free pages.  Add these pages to the end
2745 			 * of the current run, and jump ahead.
2746 			 */
2747 			run_ext = 1 << order;
2748 			m_inc = 1 << order;
2749 		} else {
2750 			/*
2751 			 * Skip the page for one of the following reasons: (1)
2752 			 * It is enqueued in the physical memory allocator's
2753 			 * free page queues.  However, it is not the first
2754 			 * page in a run of contiguous free pages.  (This case
2755 			 * rarely occurs because the scan is performed in
2756 			 * ascending order.) (2) It is not reserved, and it is
2757 			 * transitioning from free to allocated.  (Conversely,
2758 			 * the transition from allocated to free for managed
2759 			 * pages is blocked by the page busy lock.) (3) It is
2760 			 * allocated but not contained by an object and not
2761 			 * wired, e.g., allocated by Xen's balloon driver.
2762 			 */
2763 			run_ext = 0;
2764 		}
2765 
2766 		/*
2767 		 * Extend or reset the current run of pages.
2768 		 */
2769 		if (run_ext > 0) {
2770 			if (run_len == 0)
2771 				m_run = m;
2772 			run_len += run_ext;
2773 		} else {
2774 			if (run_len > 0) {
2775 				m_run = NULL;
2776 				run_len = 0;
2777 			}
2778 		}
2779 	}
2780 	if (run_len >= npages)
2781 		return (m_run);
2782 	return (NULL);
2783 }
2784 
2785 /*
2786  *	vm_page_reclaim_run:
2787  *
2788  *	Try to relocate each of the allocated virtual pages within the
2789  *	specified run of physical pages to a new physical address.  Free the
2790  *	physical pages underlying the relocated virtual pages.  A virtual page
2791  *	is relocatable if and only if it could be laundered or reclaimed by
2792  *	the page daemon.  Whenever possible, a virtual page is relocated to a
2793  *	physical address above "high".
2794  *
2795  *	Returns 0 if every physical page within the run was already free or
2796  *	just freed by a successful relocation.  Otherwise, returns a non-zero
2797  *	value indicating why the last attempt to relocate a virtual page was
2798  *	unsuccessful.
2799  *
2800  *	"req_class" must be an allocation class.
2801  */
2802 static int
2803 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
2804     vm_paddr_t high)
2805 {
2806 	struct vm_domain *vmd;
2807 	struct spglist free;
2808 	vm_object_t object;
2809 	vm_paddr_t pa;
2810 	vm_page_t m, m_end, m_new;
2811 	int error, order, req;
2812 
2813 	KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2814 	    ("req_class is not an allocation class"));
2815 	SLIST_INIT(&free);
2816 	error = 0;
2817 	m = m_run;
2818 	m_end = m_run + npages;
2819 	for (; error == 0 && m < m_end; m++) {
2820 		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2821 		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2822 
2823 		/*
2824 		 * Racily check for wirings.  Races are handled once the object
2825 		 * lock is held and the page is unmapped.
2826 		 */
2827 		if (vm_page_wired(m))
2828 			error = EBUSY;
2829 		else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2830 			/*
2831 			 * The page is relocated if and only if it could be
2832 			 * laundered or reclaimed by the page daemon.
2833 			 */
2834 			VM_OBJECT_WLOCK(object);
2835 			/* Don't care: PG_NODUMP, PG_ZERO. */
2836 			if (m->object != object ||
2837 			    ((object->flags & OBJ_SWAP) == 0 &&
2838 			    object->type != OBJT_VNODE))
2839 				error = EINVAL;
2840 			else if (object->memattr != VM_MEMATTR_DEFAULT)
2841 				error = EINVAL;
2842 			else if (vm_page_queue(m) != PQ_NONE &&
2843 			    vm_page_tryxbusy(m) != 0) {
2844 				if (vm_page_wired(m)) {
2845 					vm_page_xunbusy(m);
2846 					error = EBUSY;
2847 					goto unlock;
2848 				}
2849 				KASSERT(pmap_page_get_memattr(m) ==
2850 				    VM_MEMATTR_DEFAULT,
2851 				    ("page %p has an unexpected memattr", m));
2852 				KASSERT(m->oflags == 0,
2853 				    ("page %p has unexpected oflags", m));
2854 				/* Don't care: PGA_NOSYNC. */
2855 				if (!vm_page_none_valid(m)) {
2856 					/*
2857 					 * First, try to allocate a new page
2858 					 * that is above "high".  Failing
2859 					 * that, try to allocate a new page
2860 					 * that is below "m_run".  Allocate
2861 					 * the new page between the end of
2862 					 * "m_run" and "high" only as a last
2863 					 * resort.
2864 					 */
2865 					req = req_class;
2866 					if ((m->flags & PG_NODUMP) != 0)
2867 						req |= VM_ALLOC_NODUMP;
2868 					if (trunc_page(high) !=
2869 					    ~(vm_paddr_t)PAGE_MASK) {
2870 						m_new =
2871 						    vm_page_alloc_noobj_contig(
2872 						    req, 1, round_page(high),
2873 						    ~(vm_paddr_t)0, PAGE_SIZE,
2874 						    0, VM_MEMATTR_DEFAULT);
2875 					} else
2876 						m_new = NULL;
2877 					if (m_new == NULL) {
2878 						pa = VM_PAGE_TO_PHYS(m_run);
2879 						m_new =
2880 						    vm_page_alloc_noobj_contig(
2881 						    req, 1, 0, pa - 1,
2882 						    PAGE_SIZE, 0,
2883 						    VM_MEMATTR_DEFAULT);
2884 					}
2885 					if (m_new == NULL) {
2886 						pa += ptoa(npages);
2887 						m_new =
2888 						    vm_page_alloc_noobj_contig(
2889 						    req, 1, pa, high, PAGE_SIZE,
2890 						    0, VM_MEMATTR_DEFAULT);
2891 					}
2892 					if (m_new == NULL) {
2893 						vm_page_xunbusy(m);
2894 						error = ENOMEM;
2895 						goto unlock;
2896 					}
2897 
2898 					/*
2899 					 * Unmap the page and check for new
2900 					 * wirings that may have been acquired
2901 					 * through a pmap lookup.
2902 					 */
2903 					if (object->ref_count != 0 &&
2904 					    !vm_page_try_remove_all(m)) {
2905 						vm_page_xunbusy(m);
2906 						vm_page_free(m_new);
2907 						error = EBUSY;
2908 						goto unlock;
2909 					}
2910 
2911 					/*
2912 					 * Replace "m" with the new page.  For
2913 					 * vm_page_replace(), "m" must be busy
2914 					 * and dequeued.  Finally, change "m"
2915 					 * as if vm_page_free() was called.
2916 					 */
2917 					m_new->a.flags = m->a.flags &
2918 					    ~PGA_QUEUE_STATE_MASK;
2919 					KASSERT(m_new->oflags == VPO_UNMANAGED,
2920 					    ("page %p is managed", m_new));
2921 					m_new->oflags = 0;
2922 					pmap_copy_page(m, m_new);
2923 					m_new->valid = m->valid;
2924 					m_new->dirty = m->dirty;
2925 					m->flags &= ~PG_ZERO;
2926 					vm_page_dequeue(m);
2927 					if (vm_page_replace_hold(m_new, object,
2928 					    m->pindex, m) &&
2929 					    vm_page_free_prep(m))
2930 						SLIST_INSERT_HEAD(&free, m,
2931 						    plinks.s.ss);
2932 
2933 					/*
2934 					 * The new page must be deactivated
2935 					 * before the object is unlocked.
2936 					 */
2937 					vm_page_deactivate(m_new);
2938 				} else {
2939 					m->flags &= ~PG_ZERO;
2940 					vm_page_dequeue(m);
2941 					if (vm_page_free_prep(m))
2942 						SLIST_INSERT_HEAD(&free, m,
2943 						    plinks.s.ss);
2944 					KASSERT(m->dirty == 0,
2945 					    ("page %p is dirty", m));
2946 				}
2947 			} else
2948 				error = EBUSY;
2949 unlock:
2950 			VM_OBJECT_WUNLOCK(object);
2951 		} else {
2952 			MPASS(vm_page_domain(m) == domain);
2953 			vmd = VM_DOMAIN(domain);
2954 			vm_domain_free_lock(vmd);
2955 			order = m->order;
2956 			if (order < VM_NFREEORDER) {
2957 				/*
2958 				 * The page is enqueued in the physical memory
2959 				 * allocator's free page queues.  Moreover, it
2960 				 * is the first page in a power-of-two-sized
2961 				 * run of contiguous free pages.  Jump ahead
2962 				 * to the last page within that run, and
2963 				 * continue from there.
2964 				 */
2965 				m += (1 << order) - 1;
2966 			}
2967 #if VM_NRESERVLEVEL > 0
2968 			else if (vm_reserv_is_page_free(m))
2969 				order = 0;
2970 #endif
2971 			vm_domain_free_unlock(vmd);
2972 			if (order == VM_NFREEORDER)
2973 				error = EINVAL;
2974 		}
2975 	}
2976 	if ((m = SLIST_FIRST(&free)) != NULL) {
2977 		int cnt;
2978 
2979 		vmd = VM_DOMAIN(domain);
2980 		cnt = 0;
2981 		vm_domain_free_lock(vmd);
2982 		do {
2983 			MPASS(vm_page_domain(m) == domain);
2984 			SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2985 			vm_phys_free_pages(m, 0);
2986 			cnt++;
2987 		} while ((m = SLIST_FIRST(&free)) != NULL);
2988 		vm_domain_free_unlock(vmd);
2989 		vm_domain_freecnt_inc(vmd, cnt);
2990 	}
2991 	return (error);
2992 }
2993 
2994 #define	NRUNS	16
2995 
2996 #define	RUN_INDEX(count, nruns)	((count) % (nruns))
2997 
2998 #define	MIN_RECLAIM	8
2999 
3000 /*
3001  *	vm_page_reclaim_contig:
3002  *
3003  *	Reclaim allocated, contiguous physical memory satisfying the specified
3004  *	conditions by relocating the virtual pages using that physical memory.
3005  *	Returns true if reclamation is successful and false otherwise.  Since
3006  *	relocation requires the allocation of physical pages, reclamation may
3007  *	fail due to a shortage of free pages.  When reclamation fails, callers
3008  *	are expected to perform vm_wait() before retrying a failed allocation
3009  *	operation, e.g., vm_page_alloc_contig().
3010  *
3011  *	The caller must always specify an allocation class through "req".
3012  *
3013  *	allocation classes:
3014  *	VM_ALLOC_NORMAL		normal process request
3015  *	VM_ALLOC_SYSTEM		system *really* needs a page
3016  *	VM_ALLOC_INTERRUPT	interrupt time request
3017  *
3018  *	The optional allocation flags are ignored.
3019  *
3020  *	"npages" must be greater than zero.  Both "alignment" and "boundary"
3021  *	must be a power of two.
3022  */
3023 bool
3024 vm_page_reclaim_contig_domain_ext(int domain, int req, u_long npages,
3025     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
3026     int desired_runs)
3027 {
3028 	struct vm_domain *vmd;
3029 	vm_page_t bounds[2], m_run, _m_runs[NRUNS], *m_runs;
3030 	u_long count, minalign, reclaimed;
3031 	int error, i, min_reclaim, nruns, options, req_class, segind;
3032 	bool ret;
3033 
3034 	KASSERT(npages > 0, ("npages is 0"));
3035 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
3036 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
3037 
3038 	ret = false;
3039 
3040 	/*
3041 	 * If the caller wants to reclaim multiple runs, try to allocate
3042 	 * space to store the runs.  If that fails, fall back to the old
3043 	 * behavior of just reclaiming MIN_RECLAIM pages.
3044 	 */
3045 	if (desired_runs > 1)
3046 		m_runs = malloc((NRUNS + desired_runs) * sizeof(*m_runs),
3047 		    M_TEMP, M_NOWAIT);
3048 	else
3049 		m_runs = NULL;
3050 
3051 	if (m_runs == NULL) {
3052 		m_runs = _m_runs;
3053 		nruns = NRUNS;
3054 	} else {
3055 		nruns = NRUNS + desired_runs - 1;
3056 	}
3057 	min_reclaim = MAX(desired_runs * npages, MIN_RECLAIM);
3058 
3059 	/*
3060 	 * The caller will attempt an allocation after some runs have been
3061 	 * reclaimed and added to the vm_phys buddy lists.  Due to limitations
3062 	 * of vm_phys_alloc_contig(), round up the requested length to the next
3063 	 * power of two or maximum chunk size, and ensure that each run is
3064 	 * suitably aligned.
3065 	 */
3066 	minalign = 1ul << imin(flsl(npages - 1), VM_NFREEORDER - 1);
3067 	npages = roundup2(npages, minalign);
3068 	if (alignment < ptoa(minalign))
3069 		alignment = ptoa(minalign);
3070 
3071 	/*
3072 	 * The page daemon is allowed to dig deeper into the free page list.
3073 	 */
3074 	req_class = req & VM_ALLOC_CLASS_MASK;
3075 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
3076 		req_class = VM_ALLOC_SYSTEM;
3077 
3078 	/*
3079 	 * Return if the number of free pages cannot satisfy the requested
3080 	 * allocation.
3081 	 */
3082 	vmd = VM_DOMAIN(domain);
3083 	count = vmd->vmd_free_count;
3084 	if (count < npages + vmd->vmd_free_reserved || (count < npages +
3085 	    vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
3086 	    (count < npages && req_class == VM_ALLOC_INTERRUPT))
3087 		goto done;
3088 
3089 	/*
3090 	 * Scan up to three times, relaxing the restrictions ("options") on
3091 	 * the reclamation of reservations and superpages each time.
3092 	 */
3093 	for (options = VPSC_NORESERV;;) {
3094 		/*
3095 		 * Find the highest runs that satisfy the given constraints
3096 		 * and restrictions, and record them in "m_runs".
3097 		 */
3098 		count = 0;
3099 		segind = vm_phys_lookup_segind(low);
3100 		while ((segind = vm_phys_find_range(bounds, segind, domain,
3101 		    npages, low, high)) != -1) {
3102 			while ((m_run = vm_page_scan_contig(npages, bounds[0],
3103 			    bounds[1], alignment, boundary, options))) {
3104 				bounds[0] = m_run + npages;
3105 				m_runs[RUN_INDEX(count, nruns)] = m_run;
3106 				count++;
3107 			}
3108 			segind++;
3109 		}
3110 
3111 		/*
3112 		 * Reclaim the highest runs in LIFO (descending) order until
3113 		 * the number of reclaimed pages, "reclaimed", is at least
3114 		 * "min_reclaim".  Reset "reclaimed" each time because each
3115 		 * reclamation is idempotent, and runs will (likely) recur
3116 		 * from one scan to the next as restrictions are relaxed.
3117 		 */
3118 		reclaimed = 0;
3119 		for (i = 0; count > 0 && i < nruns; i++) {
3120 			count--;
3121 			m_run = m_runs[RUN_INDEX(count, nruns)];
3122 			error = vm_page_reclaim_run(req_class, domain, npages,
3123 			    m_run, high);
3124 			if (error == 0) {
3125 				reclaimed += npages;
3126 				if (reclaimed >= min_reclaim) {
3127 					ret = true;
3128 					goto done;
3129 				}
3130 			}
3131 		}
3132 
3133 		/*
3134 		 * Either relax the restrictions on the next scan or return if
3135 		 * the last scan had no restrictions.
3136 		 */
3137 		if (options == VPSC_NORESERV)
3138 			options = VPSC_NOSUPER;
3139 		else if (options == VPSC_NOSUPER)
3140 			options = VPSC_ANY;
3141 		else if (options == VPSC_ANY) {
3142 			ret = reclaimed != 0;
3143 			goto done;
3144 		}
3145 	}
3146 done:
3147 	if (m_runs != _m_runs)
3148 		free(m_runs, M_TEMP);
3149 	return (ret);
3150 }
3151 
3152 bool
3153 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
3154     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
3155 {
3156 	return (vm_page_reclaim_contig_domain_ext(domain, req, npages, low, high,
3157 	    alignment, boundary, 1));
3158 }
3159 
3160 bool
3161 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
3162     u_long alignment, vm_paddr_t boundary)
3163 {
3164 	struct vm_domainset_iter di;
3165 	int domain;
3166 	bool ret;
3167 
3168 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
3169 	do {
3170 		ret = vm_page_reclaim_contig_domain(domain, req, npages, low,
3171 		    high, alignment, boundary);
3172 		if (ret)
3173 			break;
3174 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
3175 
3176 	return (ret);
3177 }
3178 
3179 /*
3180  * Set the domain in the appropriate page level domainset.
3181  */
3182 void
3183 vm_domain_set(struct vm_domain *vmd)
3184 {
3185 
3186 	mtx_lock(&vm_domainset_lock);
3187 	if (!vmd->vmd_minset && vm_paging_min(vmd)) {
3188 		vmd->vmd_minset = 1;
3189 		DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
3190 	}
3191 	if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
3192 		vmd->vmd_severeset = 1;
3193 		DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
3194 	}
3195 	mtx_unlock(&vm_domainset_lock);
3196 }
3197 
3198 /*
3199  * Clear the domain from the appropriate page level domainset.
3200  */
3201 void
3202 vm_domain_clear(struct vm_domain *vmd)
3203 {
3204 
3205 	mtx_lock(&vm_domainset_lock);
3206 	if (vmd->vmd_minset && !vm_paging_min(vmd)) {
3207 		vmd->vmd_minset = 0;
3208 		DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
3209 		if (vm_min_waiters != 0) {
3210 			vm_min_waiters = 0;
3211 			wakeup(&vm_min_domains);
3212 		}
3213 	}
3214 	if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
3215 		vmd->vmd_severeset = 0;
3216 		DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
3217 		if (vm_severe_waiters != 0) {
3218 			vm_severe_waiters = 0;
3219 			wakeup(&vm_severe_domains);
3220 		}
3221 	}
3222 
3223 	/*
3224 	 * If pageout daemon needs pages, then tell it that there are
3225 	 * some free.
3226 	 */
3227 	if (vmd->vmd_pageout_pages_needed &&
3228 	    vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
3229 		wakeup(&vmd->vmd_pageout_pages_needed);
3230 		vmd->vmd_pageout_pages_needed = 0;
3231 	}
3232 
3233 	/* See comments in vm_wait_doms(). */
3234 	if (vm_pageproc_waiters) {
3235 		vm_pageproc_waiters = 0;
3236 		wakeup(&vm_pageproc_waiters);
3237 	}
3238 	mtx_unlock(&vm_domainset_lock);
3239 }
3240 
3241 /*
3242  * Wait for free pages to exceed the min threshold globally.
3243  */
3244 void
3245 vm_wait_min(void)
3246 {
3247 
3248 	mtx_lock(&vm_domainset_lock);
3249 	while (vm_page_count_min()) {
3250 		vm_min_waiters++;
3251 		msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
3252 	}
3253 	mtx_unlock(&vm_domainset_lock);
3254 }
3255 
3256 /*
3257  * Wait for free pages to exceed the severe threshold globally.
3258  */
3259 void
3260 vm_wait_severe(void)
3261 {
3262 
3263 	mtx_lock(&vm_domainset_lock);
3264 	while (vm_page_count_severe()) {
3265 		vm_severe_waiters++;
3266 		msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
3267 		    "vmwait", 0);
3268 	}
3269 	mtx_unlock(&vm_domainset_lock);
3270 }
3271 
3272 u_int
3273 vm_wait_count(void)
3274 {
3275 
3276 	return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3277 }
3278 
3279 int
3280 vm_wait_doms(const domainset_t *wdoms, int mflags)
3281 {
3282 	int error;
3283 
3284 	error = 0;
3285 
3286 	/*
3287 	 * We use racey wakeup synchronization to avoid expensive global
3288 	 * locking for the pageproc when sleeping with a non-specific vm_wait.
3289 	 * To handle this, we only sleep for one tick in this instance.  It
3290 	 * is expected that most allocations for the pageproc will come from
3291 	 * kmem or vm_page_grab* which will use the more specific and
3292 	 * race-free vm_wait_domain().
3293 	 */
3294 	if (curproc == pageproc) {
3295 		mtx_lock(&vm_domainset_lock);
3296 		vm_pageproc_waiters++;
3297 		error = msleep(&vm_pageproc_waiters, &vm_domainset_lock,
3298 		    PVM | PDROP | mflags, "pageprocwait", 1);
3299 	} else {
3300 		/*
3301 		 * XXX Ideally we would wait only until the allocation could
3302 		 * be satisfied.  This condition can cause new allocators to
3303 		 * consume all freed pages while old allocators wait.
3304 		 */
3305 		mtx_lock(&vm_domainset_lock);
3306 		if (vm_page_count_min_set(wdoms)) {
3307 			if (pageproc == NULL)
3308 				panic("vm_wait in early boot");
3309 			vm_min_waiters++;
3310 			error = msleep(&vm_min_domains, &vm_domainset_lock,
3311 			    PVM | PDROP | mflags, "vmwait", 0);
3312 		} else
3313 			mtx_unlock(&vm_domainset_lock);
3314 	}
3315 	return (error);
3316 }
3317 
3318 /*
3319  *	vm_wait_domain:
3320  *
3321  *	Sleep until free pages are available for allocation.
3322  *	- Called in various places after failed memory allocations.
3323  */
3324 void
3325 vm_wait_domain(int domain)
3326 {
3327 	struct vm_domain *vmd;
3328 	domainset_t wdom;
3329 
3330 	vmd = VM_DOMAIN(domain);
3331 	vm_domain_free_assert_unlocked(vmd);
3332 
3333 	if (curproc == pageproc) {
3334 		mtx_lock(&vm_domainset_lock);
3335 		if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3336 			vmd->vmd_pageout_pages_needed = 1;
3337 			msleep(&vmd->vmd_pageout_pages_needed,
3338 			    &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3339 		} else
3340 			mtx_unlock(&vm_domainset_lock);
3341 	} else {
3342 		DOMAINSET_ZERO(&wdom);
3343 		DOMAINSET_SET(vmd->vmd_domain, &wdom);
3344 		vm_wait_doms(&wdom, 0);
3345 	}
3346 }
3347 
3348 static int
3349 vm_wait_flags(vm_object_t obj, int mflags)
3350 {
3351 	struct domainset *d;
3352 
3353 	d = NULL;
3354 
3355 	/*
3356 	 * Carefully fetch pointers only once: the struct domainset
3357 	 * itself is ummutable but the pointer might change.
3358 	 */
3359 	if (obj != NULL)
3360 		d = obj->domain.dr_policy;
3361 	if (d == NULL)
3362 		d = curthread->td_domain.dr_policy;
3363 
3364 	return (vm_wait_doms(&d->ds_mask, mflags));
3365 }
3366 
3367 /*
3368  *	vm_wait:
3369  *
3370  *	Sleep until free pages are available for allocation in the
3371  *	affinity domains of the obj.  If obj is NULL, the domain set
3372  *	for the calling thread is used.
3373  *	Called in various places after failed memory allocations.
3374  */
3375 void
3376 vm_wait(vm_object_t obj)
3377 {
3378 	(void)vm_wait_flags(obj, 0);
3379 }
3380 
3381 int
3382 vm_wait_intr(vm_object_t obj)
3383 {
3384 	return (vm_wait_flags(obj, PCATCH));
3385 }
3386 
3387 /*
3388  *	vm_domain_alloc_fail:
3389  *
3390  *	Called when a page allocation function fails.  Informs the
3391  *	pagedaemon and performs the requested wait.  Requires the
3392  *	domain_free and object lock on entry.  Returns with the
3393  *	object lock held and free lock released.  Returns an error when
3394  *	retry is necessary.
3395  *
3396  */
3397 static int
3398 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3399 {
3400 
3401 	vm_domain_free_assert_unlocked(vmd);
3402 
3403 	atomic_add_int(&vmd->vmd_pageout_deficit,
3404 	    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3405 	if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3406 		if (object != NULL)
3407 			VM_OBJECT_WUNLOCK(object);
3408 		vm_wait_domain(vmd->vmd_domain);
3409 		if (object != NULL)
3410 			VM_OBJECT_WLOCK(object);
3411 		if (req & VM_ALLOC_WAITOK)
3412 			return (EAGAIN);
3413 	}
3414 
3415 	return (0);
3416 }
3417 
3418 /*
3419  *	vm_waitpfault:
3420  *
3421  *	Sleep until free pages are available for allocation.
3422  *	- Called only in vm_fault so that processes page faulting
3423  *	  can be easily tracked.
3424  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3425  *	  processes will be able to grab memory first.  Do not change
3426  *	  this balance without careful testing first.
3427  */
3428 void
3429 vm_waitpfault(struct domainset *dset, int timo)
3430 {
3431 
3432 	/*
3433 	 * XXX Ideally we would wait only until the allocation could
3434 	 * be satisfied.  This condition can cause new allocators to
3435 	 * consume all freed pages while old allocators wait.
3436 	 */
3437 	mtx_lock(&vm_domainset_lock);
3438 	if (vm_page_count_min_set(&dset->ds_mask)) {
3439 		vm_min_waiters++;
3440 		msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3441 		    "pfault", timo);
3442 	} else
3443 		mtx_unlock(&vm_domainset_lock);
3444 }
3445 
3446 static struct vm_pagequeue *
3447 _vm_page_pagequeue(vm_page_t m, uint8_t queue)
3448 {
3449 
3450 	return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3451 }
3452 
3453 #ifdef INVARIANTS
3454 static struct vm_pagequeue *
3455 vm_page_pagequeue(vm_page_t m)
3456 {
3457 
3458 	return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue));
3459 }
3460 #endif
3461 
3462 static __always_inline bool
3463 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3464 {
3465 	vm_page_astate_t tmp;
3466 
3467 	tmp = *old;
3468 	do {
3469 		if (__predict_true(vm_page_astate_fcmpset(m, old, new)))
3470 			return (true);
3471 		counter_u64_add(pqstate_commit_retries, 1);
3472 	} while (old->_bits == tmp._bits);
3473 
3474 	return (false);
3475 }
3476 
3477 /*
3478  * Do the work of committing a queue state update that moves the page out of
3479  * its current queue.
3480  */
3481 static bool
3482 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m,
3483     vm_page_astate_t *old, vm_page_astate_t new)
3484 {
3485 	vm_page_t next;
3486 
3487 	vm_pagequeue_assert_locked(pq);
3488 	KASSERT(vm_page_pagequeue(m) == pq,
3489 	    ("%s: queue %p does not match page %p", __func__, pq, m));
3490 	KASSERT(old->queue != PQ_NONE && new.queue != old->queue,
3491 	    ("%s: invalid queue indices %d %d",
3492 	    __func__, old->queue, new.queue));
3493 
3494 	/*
3495 	 * Once the queue index of the page changes there is nothing
3496 	 * synchronizing with further updates to the page's physical
3497 	 * queue state.  Therefore we must speculatively remove the page
3498 	 * from the queue now and be prepared to roll back if the queue
3499 	 * state update fails.  If the page is not physically enqueued then
3500 	 * we just update its queue index.
3501 	 */
3502 	if ((old->flags & PGA_ENQUEUED) != 0) {
3503 		new.flags &= ~PGA_ENQUEUED;
3504 		next = TAILQ_NEXT(m, plinks.q);
3505 		TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3506 		vm_pagequeue_cnt_dec(pq);
3507 		if (!vm_page_pqstate_fcmpset(m, old, new)) {
3508 			if (next == NULL)
3509 				TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3510 			else
3511 				TAILQ_INSERT_BEFORE(next, m, plinks.q);
3512 			vm_pagequeue_cnt_inc(pq);
3513 			return (false);
3514 		} else {
3515 			return (true);
3516 		}
3517 	} else {
3518 		return (vm_page_pqstate_fcmpset(m, old, new));
3519 	}
3520 }
3521 
3522 static bool
3523 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old,
3524     vm_page_astate_t new)
3525 {
3526 	struct vm_pagequeue *pq;
3527 	vm_page_astate_t as;
3528 	bool ret;
3529 
3530 	pq = _vm_page_pagequeue(m, old->queue);
3531 
3532 	/*
3533 	 * The queue field and PGA_ENQUEUED flag are stable only so long as the
3534 	 * corresponding page queue lock is held.
3535 	 */
3536 	vm_pagequeue_lock(pq);
3537 	as = vm_page_astate_load(m);
3538 	if (__predict_false(as._bits != old->_bits)) {
3539 		*old = as;
3540 		ret = false;
3541 	} else {
3542 		ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new);
3543 	}
3544 	vm_pagequeue_unlock(pq);
3545 	return (ret);
3546 }
3547 
3548 /*
3549  * Commit a queue state update that enqueues or requeues a page.
3550  */
3551 static bool
3552 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m,
3553     vm_page_astate_t *old, vm_page_astate_t new)
3554 {
3555 	struct vm_domain *vmd;
3556 
3557 	vm_pagequeue_assert_locked(pq);
3558 	KASSERT(old->queue != PQ_NONE && new.queue == old->queue,
3559 	    ("%s: invalid queue indices %d %d",
3560 	    __func__, old->queue, new.queue));
3561 
3562 	new.flags |= PGA_ENQUEUED;
3563 	if (!vm_page_pqstate_fcmpset(m, old, new))
3564 		return (false);
3565 
3566 	if ((old->flags & PGA_ENQUEUED) != 0)
3567 		TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3568 	else
3569 		vm_pagequeue_cnt_inc(pq);
3570 
3571 	/*
3572 	 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE.  In particular, if
3573 	 * both flags are set in close succession, only PGA_REQUEUE_HEAD will be
3574 	 * applied, even if it was set first.
3575 	 */
3576 	if ((old->flags & PGA_REQUEUE_HEAD) != 0) {
3577 		vmd = vm_pagequeue_domain(m);
3578 		KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE],
3579 		    ("%s: invalid page queue for page %p", __func__, m));
3580 		TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3581 	} else {
3582 		TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3583 	}
3584 	return (true);
3585 }
3586 
3587 /*
3588  * Commit a queue state update that encodes a request for a deferred queue
3589  * operation.
3590  */
3591 static bool
3592 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old,
3593     vm_page_astate_t new)
3594 {
3595 
3596 	KASSERT(old->queue == new.queue || new.queue != PQ_NONE,
3597 	    ("%s: invalid state, queue %d flags %x",
3598 	    __func__, new.queue, new.flags));
3599 
3600 	if (old->_bits != new._bits &&
3601 	    !vm_page_pqstate_fcmpset(m, old, new))
3602 		return (false);
3603 	vm_page_pqbatch_submit(m, new.queue);
3604 	return (true);
3605 }
3606 
3607 /*
3608  * A generic queue state update function.  This handles more cases than the
3609  * specialized functions above.
3610  */
3611 bool
3612 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3613 {
3614 
3615 	if (old->_bits == new._bits)
3616 		return (true);
3617 
3618 	if (old->queue != PQ_NONE && new.queue != old->queue) {
3619 		if (!vm_page_pqstate_commit_dequeue(m, old, new))
3620 			return (false);
3621 		if (new.queue != PQ_NONE)
3622 			vm_page_pqbatch_submit(m, new.queue);
3623 	} else {
3624 		if (!vm_page_pqstate_fcmpset(m, old, new))
3625 			return (false);
3626 		if (new.queue != PQ_NONE &&
3627 		    ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0)
3628 			vm_page_pqbatch_submit(m, new.queue);
3629 	}
3630 	return (true);
3631 }
3632 
3633 /*
3634  * Apply deferred queue state updates to a page.
3635  */
3636 static inline void
3637 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue)
3638 {
3639 	vm_page_astate_t new, old;
3640 
3641 	CRITICAL_ASSERT(curthread);
3642 	vm_pagequeue_assert_locked(pq);
3643 	KASSERT(queue < PQ_COUNT,
3644 	    ("%s: invalid queue index %d", __func__, queue));
3645 	KASSERT(pq == _vm_page_pagequeue(m, queue),
3646 	    ("%s: page %p does not belong to queue %p", __func__, m, pq));
3647 
3648 	for (old = vm_page_astate_load(m);;) {
3649 		if (__predict_false(old.queue != queue ||
3650 		    (old.flags & PGA_QUEUE_OP_MASK) == 0)) {
3651 			counter_u64_add(queue_nops, 1);
3652 			break;
3653 		}
3654 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3655 		    ("%s: page %p is unmanaged", __func__, m));
3656 
3657 		new = old;
3658 		if ((old.flags & PGA_DEQUEUE) != 0) {
3659 			new.flags &= ~PGA_QUEUE_OP_MASK;
3660 			new.queue = PQ_NONE;
3661 			if (__predict_true(_vm_page_pqstate_commit_dequeue(pq,
3662 			    m, &old, new))) {
3663 				counter_u64_add(queue_ops, 1);
3664 				break;
3665 			}
3666 		} else {
3667 			new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD);
3668 			if (__predict_true(_vm_page_pqstate_commit_requeue(pq,
3669 			    m, &old, new))) {
3670 				counter_u64_add(queue_ops, 1);
3671 				break;
3672 			}
3673 		}
3674 	}
3675 }
3676 
3677 static void
3678 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3679     uint8_t queue)
3680 {
3681 	int i;
3682 
3683 	for (i = 0; i < bq->bq_cnt; i++)
3684 		vm_pqbatch_process_page(pq, bq->bq_pa[i], queue);
3685 	vm_batchqueue_init(bq);
3686 }
3687 
3688 /*
3689  *	vm_page_pqbatch_submit:		[ internal use only ]
3690  *
3691  *	Enqueue a page in the specified page queue's batched work queue.
3692  *	The caller must have encoded the requested operation in the page
3693  *	structure's a.flags field.
3694  */
3695 void
3696 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
3697 {
3698 	struct vm_batchqueue *bq;
3699 	struct vm_pagequeue *pq;
3700 	int domain, slots_remaining;
3701 
3702 	KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3703 
3704 	domain = vm_page_domain(m);
3705 	critical_enter();
3706 	bq = DPCPU_PTR(pqbatch[domain][queue]);
3707 	slots_remaining = vm_batchqueue_insert(bq, m);
3708 	if (slots_remaining > (VM_BATCHQUEUE_SIZE >> 1)) {
3709 		/* keep building the bq */
3710 		critical_exit();
3711 		return;
3712 	} else if (slots_remaining > 0 ) {
3713 		/* Try to process the bq if we can get the lock */
3714 		pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
3715 		if (vm_pagequeue_trylock(pq)) {
3716 			vm_pqbatch_process(pq, bq, queue);
3717 			vm_pagequeue_unlock(pq);
3718 		}
3719 		critical_exit();
3720 		return;
3721 	}
3722 	critical_exit();
3723 
3724 	/* if we make it here, the bq is full so wait for the lock */
3725 
3726 	pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
3727 	vm_pagequeue_lock(pq);
3728 	critical_enter();
3729 	bq = DPCPU_PTR(pqbatch[domain][queue]);
3730 	vm_pqbatch_process(pq, bq, queue);
3731 	vm_pqbatch_process_page(pq, m, queue);
3732 	vm_pagequeue_unlock(pq);
3733 	critical_exit();
3734 }
3735 
3736 /*
3737  *	vm_page_pqbatch_drain:		[ internal use only ]
3738  *
3739  *	Force all per-CPU page queue batch queues to be drained.  This is
3740  *	intended for use in severe memory shortages, to ensure that pages
3741  *	do not remain stuck in the batch queues.
3742  */
3743 void
3744 vm_page_pqbatch_drain(void)
3745 {
3746 	struct thread *td;
3747 	struct vm_domain *vmd;
3748 	struct vm_pagequeue *pq;
3749 	int cpu, domain, queue;
3750 
3751 	td = curthread;
3752 	CPU_FOREACH(cpu) {
3753 		thread_lock(td);
3754 		sched_bind(td, cpu);
3755 		thread_unlock(td);
3756 
3757 		for (domain = 0; domain < vm_ndomains; domain++) {
3758 			vmd = VM_DOMAIN(domain);
3759 			for (queue = 0; queue < PQ_COUNT; queue++) {
3760 				pq = &vmd->vmd_pagequeues[queue];
3761 				vm_pagequeue_lock(pq);
3762 				critical_enter();
3763 				vm_pqbatch_process(pq,
3764 				    DPCPU_PTR(pqbatch[domain][queue]), queue);
3765 				critical_exit();
3766 				vm_pagequeue_unlock(pq);
3767 			}
3768 		}
3769 	}
3770 	thread_lock(td);
3771 	sched_unbind(td);
3772 	thread_unlock(td);
3773 }
3774 
3775 /*
3776  *	vm_page_dequeue_deferred:	[ internal use only ]
3777  *
3778  *	Request removal of the given page from its current page
3779  *	queue.  Physical removal from the queue may be deferred
3780  *	indefinitely.
3781  */
3782 void
3783 vm_page_dequeue_deferred(vm_page_t m)
3784 {
3785 	vm_page_astate_t new, old;
3786 
3787 	old = vm_page_astate_load(m);
3788 	do {
3789 		if (old.queue == PQ_NONE) {
3790 			KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3791 			    ("%s: page %p has unexpected queue state",
3792 			    __func__, m));
3793 			break;
3794 		}
3795 		new = old;
3796 		new.flags |= PGA_DEQUEUE;
3797 	} while (!vm_page_pqstate_commit_request(m, &old, new));
3798 }
3799 
3800 /*
3801  *	vm_page_dequeue:
3802  *
3803  *	Remove the page from whichever page queue it's in, if any, before
3804  *	returning.
3805  */
3806 void
3807 vm_page_dequeue(vm_page_t m)
3808 {
3809 	vm_page_astate_t new, old;
3810 
3811 	old = vm_page_astate_load(m);
3812 	do {
3813 		if (old.queue == PQ_NONE) {
3814 			KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3815 			    ("%s: page %p has unexpected queue state",
3816 			    __func__, m));
3817 			break;
3818 		}
3819 		new = old;
3820 		new.flags &= ~PGA_QUEUE_OP_MASK;
3821 		new.queue = PQ_NONE;
3822 	} while (!vm_page_pqstate_commit_dequeue(m, &old, new));
3823 
3824 }
3825 
3826 /*
3827  * Schedule the given page for insertion into the specified page queue.
3828  * Physical insertion of the page may be deferred indefinitely.
3829  */
3830 static void
3831 vm_page_enqueue(vm_page_t m, uint8_t queue)
3832 {
3833 
3834 	KASSERT(m->a.queue == PQ_NONE &&
3835 	    (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
3836 	    ("%s: page %p is already enqueued", __func__, m));
3837 	KASSERT(m->ref_count > 0,
3838 	    ("%s: page %p does not carry any references", __func__, m));
3839 
3840 	m->a.queue = queue;
3841 	if ((m->a.flags & PGA_REQUEUE) == 0)
3842 		vm_page_aflag_set(m, PGA_REQUEUE);
3843 	vm_page_pqbatch_submit(m, queue);
3844 }
3845 
3846 /*
3847  *	vm_page_free_prep:
3848  *
3849  *	Prepares the given page to be put on the free list,
3850  *	disassociating it from any VM object. The caller may return
3851  *	the page to the free list only if this function returns true.
3852  *
3853  *	The object, if it exists, must be locked, and then the page must
3854  *	be xbusy.  Otherwise the page must be not busied.  A managed
3855  *	page must be unmapped.
3856  */
3857 static bool
3858 vm_page_free_prep(vm_page_t m)
3859 {
3860 
3861 	/*
3862 	 * Synchronize with threads that have dropped a reference to this
3863 	 * page.
3864 	 */
3865 	atomic_thread_fence_acq();
3866 
3867 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
3868 	if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
3869 		uint64_t *p;
3870 		int i;
3871 		p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3872 		for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
3873 			KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
3874 			    m, i, (uintmax_t)*p));
3875 	}
3876 #endif
3877 	if ((m->oflags & VPO_UNMANAGED) == 0) {
3878 		KASSERT(!pmap_page_is_mapped(m),
3879 		    ("vm_page_free_prep: freeing mapped page %p", m));
3880 		KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
3881 		    ("vm_page_free_prep: mapping flags set in page %p", m));
3882 	} else {
3883 		KASSERT(m->a.queue == PQ_NONE,
3884 		    ("vm_page_free_prep: unmanaged page %p is queued", m));
3885 	}
3886 	VM_CNT_INC(v_tfree);
3887 
3888 	if (m->object != NULL) {
3889 		KASSERT(((m->oflags & VPO_UNMANAGED) != 0) ==
3890 		    ((m->object->flags & OBJ_UNMANAGED) != 0),
3891 		    ("vm_page_free_prep: managed flag mismatch for page %p",
3892 		    m));
3893 		vm_page_assert_xbusied(m);
3894 
3895 		/*
3896 		 * The object reference can be released without an atomic
3897 		 * operation.
3898 		 */
3899 		KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
3900 		    m->ref_count == VPRC_OBJREF,
3901 		    ("vm_page_free_prep: page %p has unexpected ref_count %u",
3902 		    m, m->ref_count));
3903 		vm_page_object_remove(m);
3904 		m->ref_count -= VPRC_OBJREF;
3905 	} else
3906 		vm_page_assert_unbusied(m);
3907 
3908 	vm_page_busy_free(m);
3909 
3910 	/*
3911 	 * If fictitious remove object association and
3912 	 * return.
3913 	 */
3914 	if ((m->flags & PG_FICTITIOUS) != 0) {
3915 		KASSERT(m->ref_count == 1,
3916 		    ("fictitious page %p is referenced", m));
3917 		KASSERT(m->a.queue == PQ_NONE,
3918 		    ("fictitious page %p is queued", m));
3919 		return (false);
3920 	}
3921 
3922 	/*
3923 	 * Pages need not be dequeued before they are returned to the physical
3924 	 * memory allocator, but they must at least be marked for a deferred
3925 	 * dequeue.
3926 	 */
3927 	if ((m->oflags & VPO_UNMANAGED) == 0)
3928 		vm_page_dequeue_deferred(m);
3929 
3930 	m->valid = 0;
3931 	vm_page_undirty(m);
3932 
3933 	if (m->ref_count != 0)
3934 		panic("vm_page_free_prep: page %p has references", m);
3935 
3936 	/*
3937 	 * Restore the default memory attribute to the page.
3938 	 */
3939 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3940 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3941 
3942 #if VM_NRESERVLEVEL > 0
3943 	/*
3944 	 * Determine whether the page belongs to a reservation.  If the page was
3945 	 * allocated from a per-CPU cache, it cannot belong to a reservation, so
3946 	 * as an optimization, we avoid the check in that case.
3947 	 */
3948 	if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
3949 		return (false);
3950 #endif
3951 
3952 	return (true);
3953 }
3954 
3955 /*
3956  *	vm_page_free_toq:
3957  *
3958  *	Returns the given page to the free list, disassociating it
3959  *	from any VM object.
3960  *
3961  *	The object must be locked.  The page must be exclusively busied if it
3962  *	belongs to an object.
3963  */
3964 static void
3965 vm_page_free_toq(vm_page_t m)
3966 {
3967 	struct vm_domain *vmd;
3968 	uma_zone_t zone;
3969 
3970 	if (!vm_page_free_prep(m))
3971 		return;
3972 
3973 	vmd = vm_pagequeue_domain(m);
3974 	zone = vmd->vmd_pgcache[m->pool].zone;
3975 	if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
3976 		uma_zfree(zone, m);
3977 		return;
3978 	}
3979 	vm_domain_free_lock(vmd);
3980 	vm_phys_free_pages(m, 0);
3981 	vm_domain_free_unlock(vmd);
3982 	vm_domain_freecnt_inc(vmd, 1);
3983 }
3984 
3985 /*
3986  *	vm_page_free_pages_toq:
3987  *
3988  *	Returns a list of pages to the free list, disassociating it
3989  *	from any VM object.  In other words, this is equivalent to
3990  *	calling vm_page_free_toq() for each page of a list of VM objects.
3991  */
3992 void
3993 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
3994 {
3995 	vm_page_t m;
3996 	int count;
3997 
3998 	if (SLIST_EMPTY(free))
3999 		return;
4000 
4001 	count = 0;
4002 	while ((m = SLIST_FIRST(free)) != NULL) {
4003 		count++;
4004 		SLIST_REMOVE_HEAD(free, plinks.s.ss);
4005 		vm_page_free_toq(m);
4006 	}
4007 
4008 	if (update_wire_count)
4009 		vm_wire_sub(count);
4010 }
4011 
4012 /*
4013  * Mark this page as wired down.  For managed pages, this prevents reclamation
4014  * by the page daemon, or when the containing object, if any, is destroyed.
4015  */
4016 void
4017 vm_page_wire(vm_page_t m)
4018 {
4019 	u_int old;
4020 
4021 #ifdef INVARIANTS
4022 	if (m->object != NULL && !vm_page_busied(m) &&
4023 	    !vm_object_busied(m->object))
4024 		VM_OBJECT_ASSERT_LOCKED(m->object);
4025 #endif
4026 	KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
4027 	    VPRC_WIRE_COUNT(m->ref_count) >= 1,
4028 	    ("vm_page_wire: fictitious page %p has zero wirings", m));
4029 
4030 	old = atomic_fetchadd_int(&m->ref_count, 1);
4031 	KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
4032 	    ("vm_page_wire: counter overflow for page %p", m));
4033 	if (VPRC_WIRE_COUNT(old) == 0) {
4034 		if ((m->oflags & VPO_UNMANAGED) == 0)
4035 			vm_page_aflag_set(m, PGA_DEQUEUE);
4036 		vm_wire_add(1);
4037 	}
4038 }
4039 
4040 /*
4041  * Attempt to wire a mapped page following a pmap lookup of that page.
4042  * This may fail if a thread is concurrently tearing down mappings of the page.
4043  * The transient failure is acceptable because it translates to the
4044  * failure of the caller pmap_extract_and_hold(), which should be then
4045  * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages().
4046  */
4047 bool
4048 vm_page_wire_mapped(vm_page_t m)
4049 {
4050 	u_int old;
4051 
4052 	old = m->ref_count;
4053 	do {
4054 		KASSERT(old > 0,
4055 		    ("vm_page_wire_mapped: wiring unreferenced page %p", m));
4056 		if ((old & VPRC_BLOCKED) != 0)
4057 			return (false);
4058 	} while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
4059 
4060 	if (VPRC_WIRE_COUNT(old) == 0) {
4061 		if ((m->oflags & VPO_UNMANAGED) == 0)
4062 			vm_page_aflag_set(m, PGA_DEQUEUE);
4063 		vm_wire_add(1);
4064 	}
4065 	return (true);
4066 }
4067 
4068 /*
4069  * Release a wiring reference to a managed page.  If the page still belongs to
4070  * an object, update its position in the page queues to reflect the reference.
4071  * If the wiring was the last reference to the page, free the page.
4072  */
4073 static void
4074 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse)
4075 {
4076 	u_int old;
4077 
4078 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4079 	    ("%s: page %p is unmanaged", __func__, m));
4080 
4081 	/*
4082 	 * Update LRU state before releasing the wiring reference.
4083 	 * Use a release store when updating the reference count to
4084 	 * synchronize with vm_page_free_prep().
4085 	 */
4086 	old = m->ref_count;
4087 	do {
4088 		KASSERT(VPRC_WIRE_COUNT(old) > 0,
4089 		    ("vm_page_unwire: wire count underflow for page %p", m));
4090 
4091 		if (old > VPRC_OBJREF + 1) {
4092 			/*
4093 			 * The page has at least one other wiring reference.  An
4094 			 * earlier iteration of this loop may have called
4095 			 * vm_page_release_toq() and cleared PGA_DEQUEUE, so
4096 			 * re-set it if necessary.
4097 			 */
4098 			if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0)
4099 				vm_page_aflag_set(m, PGA_DEQUEUE);
4100 		} else if (old == VPRC_OBJREF + 1) {
4101 			/*
4102 			 * This is the last wiring.  Clear PGA_DEQUEUE and
4103 			 * update the page's queue state to reflect the
4104 			 * reference.  If the page does not belong to an object
4105 			 * (i.e., the VPRC_OBJREF bit is clear), we only need to
4106 			 * clear leftover queue state.
4107 			 */
4108 			vm_page_release_toq(m, nqueue, noreuse);
4109 		} else if (old == 1) {
4110 			vm_page_aflag_clear(m, PGA_DEQUEUE);
4111 		}
4112 	} while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
4113 
4114 	if (VPRC_WIRE_COUNT(old) == 1) {
4115 		vm_wire_sub(1);
4116 		if (old == 1)
4117 			vm_page_free(m);
4118 	}
4119 }
4120 
4121 /*
4122  * Release one wiring of the specified page, potentially allowing it to be
4123  * paged out.
4124  *
4125  * Only managed pages belonging to an object can be paged out.  If the number
4126  * of wirings transitions to zero and the page is eligible for page out, then
4127  * the page is added to the specified paging queue.  If the released wiring
4128  * represented the last reference to the page, the page is freed.
4129  */
4130 void
4131 vm_page_unwire(vm_page_t m, uint8_t nqueue)
4132 {
4133 
4134 	KASSERT(nqueue < PQ_COUNT,
4135 	    ("vm_page_unwire: invalid queue %u request for page %p",
4136 	    nqueue, m));
4137 
4138 	if ((m->oflags & VPO_UNMANAGED) != 0) {
4139 		if (vm_page_unwire_noq(m) && m->ref_count == 0)
4140 			vm_page_free(m);
4141 		return;
4142 	}
4143 	vm_page_unwire_managed(m, nqueue, false);
4144 }
4145 
4146 /*
4147  * Unwire a page without (re-)inserting it into a page queue.  It is up
4148  * to the caller to enqueue, requeue, or free the page as appropriate.
4149  * In most cases involving managed pages, vm_page_unwire() should be used
4150  * instead.
4151  */
4152 bool
4153 vm_page_unwire_noq(vm_page_t m)
4154 {
4155 	u_int old;
4156 
4157 	old = vm_page_drop(m, 1);
4158 	KASSERT(VPRC_WIRE_COUNT(old) != 0,
4159 	    ("%s: counter underflow for page %p", __func__,  m));
4160 	KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
4161 	    ("%s: missing ref on fictitious page %p", __func__, m));
4162 
4163 	if (VPRC_WIRE_COUNT(old) > 1)
4164 		return (false);
4165 	if ((m->oflags & VPO_UNMANAGED) == 0)
4166 		vm_page_aflag_clear(m, PGA_DEQUEUE);
4167 	vm_wire_sub(1);
4168 	return (true);
4169 }
4170 
4171 /*
4172  * Ensure that the page ends up in the specified page queue.  If the page is
4173  * active or being moved to the active queue, ensure that its act_count is
4174  * at least ACT_INIT but do not otherwise mess with it.
4175  */
4176 static __always_inline void
4177 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag)
4178 {
4179 	vm_page_astate_t old, new;
4180 
4181 	KASSERT(m->ref_count > 0,
4182 	    ("%s: page %p does not carry any references", __func__, m));
4183 	KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD,
4184 	    ("%s: invalid flags %x", __func__, nflag));
4185 
4186 	if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
4187 		return;
4188 
4189 	old = vm_page_astate_load(m);
4190 	do {
4191 		if ((old.flags & PGA_DEQUEUE) != 0)
4192 			break;
4193 		new = old;
4194 		new.flags &= ~PGA_QUEUE_OP_MASK;
4195 		if (nqueue == PQ_ACTIVE)
4196 			new.act_count = max(old.act_count, ACT_INIT);
4197 		if (old.queue == nqueue) {
4198 			/*
4199 			 * There is no need to requeue pages already in the
4200 			 * active queue.
4201 			 */
4202 			if (nqueue != PQ_ACTIVE ||
4203 			    (old.flags & PGA_ENQUEUED) == 0)
4204 				new.flags |= nflag;
4205 		} else {
4206 			new.flags |= nflag;
4207 			new.queue = nqueue;
4208 		}
4209 	} while (!vm_page_pqstate_commit(m, &old, new));
4210 }
4211 
4212 /*
4213  * Put the specified page on the active list (if appropriate).
4214  */
4215 void
4216 vm_page_activate(vm_page_t m)
4217 {
4218 
4219 	vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE);
4220 }
4221 
4222 /*
4223  * Move the specified page to the tail of the inactive queue, or requeue
4224  * the page if it is already in the inactive queue.
4225  */
4226 void
4227 vm_page_deactivate(vm_page_t m)
4228 {
4229 
4230 	vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE);
4231 }
4232 
4233 void
4234 vm_page_deactivate_noreuse(vm_page_t m)
4235 {
4236 
4237 	vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD);
4238 }
4239 
4240 /*
4241  * Put a page in the laundry, or requeue it if it is already there.
4242  */
4243 void
4244 vm_page_launder(vm_page_t m)
4245 {
4246 
4247 	vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE);
4248 }
4249 
4250 /*
4251  * Put a page in the PQ_UNSWAPPABLE holding queue.
4252  */
4253 void
4254 vm_page_unswappable(vm_page_t m)
4255 {
4256 
4257 	VM_OBJECT_ASSERT_LOCKED(m->object);
4258 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4259 	    ("page %p already unswappable", m));
4260 
4261 	vm_page_dequeue(m);
4262 	vm_page_enqueue(m, PQ_UNSWAPPABLE);
4263 }
4264 
4265 /*
4266  * Release a page back to the page queues in preparation for unwiring.
4267  */
4268 static void
4269 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse)
4270 {
4271 	vm_page_astate_t old, new;
4272 	uint16_t nflag;
4273 
4274 	/*
4275 	 * Use a check of the valid bits to determine whether we should
4276 	 * accelerate reclamation of the page.  The object lock might not be
4277 	 * held here, in which case the check is racy.  At worst we will either
4278 	 * accelerate reclamation of a valid page and violate LRU, or
4279 	 * unnecessarily defer reclamation of an invalid page.
4280 	 *
4281 	 * If we were asked to not cache the page, place it near the head of the
4282 	 * inactive queue so that is reclaimed sooner.
4283 	 */
4284 	if (noreuse || vm_page_none_valid(m)) {
4285 		nqueue = PQ_INACTIVE;
4286 		nflag = PGA_REQUEUE_HEAD;
4287 	} else {
4288 		nflag = PGA_REQUEUE;
4289 	}
4290 
4291 	old = vm_page_astate_load(m);
4292 	do {
4293 		new = old;
4294 
4295 		/*
4296 		 * If the page is already in the active queue and we are not
4297 		 * trying to accelerate reclamation, simply mark it as
4298 		 * referenced and avoid any queue operations.
4299 		 */
4300 		new.flags &= ~PGA_QUEUE_OP_MASK;
4301 		if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE &&
4302 		    (old.flags & PGA_ENQUEUED) != 0)
4303 			new.flags |= PGA_REFERENCED;
4304 		else {
4305 			new.flags |= nflag;
4306 			new.queue = nqueue;
4307 		}
4308 	} while (!vm_page_pqstate_commit(m, &old, new));
4309 }
4310 
4311 /*
4312  * Unwire a page and either attempt to free it or re-add it to the page queues.
4313  */
4314 void
4315 vm_page_release(vm_page_t m, int flags)
4316 {
4317 	vm_object_t object;
4318 
4319 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4320 	    ("vm_page_release: page %p is unmanaged", m));
4321 
4322 	if ((flags & VPR_TRYFREE) != 0) {
4323 		for (;;) {
4324 			object = atomic_load_ptr(&m->object);
4325 			if (object == NULL)
4326 				break;
4327 			/* Depends on type-stability. */
4328 			if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object))
4329 				break;
4330 			if (object == m->object) {
4331 				vm_page_release_locked(m, flags);
4332 				VM_OBJECT_WUNLOCK(object);
4333 				return;
4334 			}
4335 			VM_OBJECT_WUNLOCK(object);
4336 		}
4337 	}
4338 	vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0);
4339 }
4340 
4341 /* See vm_page_release(). */
4342 void
4343 vm_page_release_locked(vm_page_t m, int flags)
4344 {
4345 
4346 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4347 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4348 	    ("vm_page_release_locked: page %p is unmanaged", m));
4349 
4350 	if (vm_page_unwire_noq(m)) {
4351 		if ((flags & VPR_TRYFREE) != 0 &&
4352 		    (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4353 		    m->dirty == 0 && vm_page_tryxbusy(m)) {
4354 			/*
4355 			 * An unlocked lookup may have wired the page before the
4356 			 * busy lock was acquired, in which case the page must
4357 			 * not be freed.
4358 			 */
4359 			if (__predict_true(!vm_page_wired(m))) {
4360 				vm_page_free(m);
4361 				return;
4362 			}
4363 			vm_page_xunbusy(m);
4364 		} else {
4365 			vm_page_release_toq(m, PQ_INACTIVE, flags != 0);
4366 		}
4367 	}
4368 }
4369 
4370 static bool
4371 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4372 {
4373 	u_int old;
4374 
4375 	KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4376 	    ("vm_page_try_blocked_op: page %p has no object", m));
4377 	KASSERT(vm_page_busied(m),
4378 	    ("vm_page_try_blocked_op: page %p is not busy", m));
4379 	VM_OBJECT_ASSERT_LOCKED(m->object);
4380 
4381 	old = m->ref_count;
4382 	do {
4383 		KASSERT(old != 0,
4384 		    ("vm_page_try_blocked_op: page %p has no references", m));
4385 		if (VPRC_WIRE_COUNT(old) != 0)
4386 			return (false);
4387 	} while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4388 
4389 	(op)(m);
4390 
4391 	/*
4392 	 * If the object is read-locked, new wirings may be created via an
4393 	 * object lookup.
4394 	 */
4395 	old = vm_page_drop(m, VPRC_BLOCKED);
4396 	KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4397 	    old == (VPRC_BLOCKED | VPRC_OBJREF),
4398 	    ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4399 	    old, m));
4400 	return (true);
4401 }
4402 
4403 /*
4404  * Atomically check for wirings and remove all mappings of the page.
4405  */
4406 bool
4407 vm_page_try_remove_all(vm_page_t m)
4408 {
4409 
4410 	return (vm_page_try_blocked_op(m, pmap_remove_all));
4411 }
4412 
4413 /*
4414  * Atomically check for wirings and remove all writeable mappings of the page.
4415  */
4416 bool
4417 vm_page_try_remove_write(vm_page_t m)
4418 {
4419 
4420 	return (vm_page_try_blocked_op(m, pmap_remove_write));
4421 }
4422 
4423 /*
4424  * vm_page_advise
4425  *
4426  * 	Apply the specified advice to the given page.
4427  */
4428 void
4429 vm_page_advise(vm_page_t m, int advice)
4430 {
4431 
4432 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4433 	vm_page_assert_xbusied(m);
4434 
4435 	if (advice == MADV_FREE)
4436 		/*
4437 		 * Mark the page clean.  This will allow the page to be freed
4438 		 * without first paging it out.  MADV_FREE pages are often
4439 		 * quickly reused by malloc(3), so we do not do anything that
4440 		 * would result in a page fault on a later access.
4441 		 */
4442 		vm_page_undirty(m);
4443 	else if (advice != MADV_DONTNEED) {
4444 		if (advice == MADV_WILLNEED)
4445 			vm_page_activate(m);
4446 		return;
4447 	}
4448 
4449 	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4450 		vm_page_dirty(m);
4451 
4452 	/*
4453 	 * Clear any references to the page.  Otherwise, the page daemon will
4454 	 * immediately reactivate the page.
4455 	 */
4456 	vm_page_aflag_clear(m, PGA_REFERENCED);
4457 
4458 	/*
4459 	 * Place clean pages near the head of the inactive queue rather than
4460 	 * the tail, thus defeating the queue's LRU operation and ensuring that
4461 	 * the page will be reused quickly.  Dirty pages not already in the
4462 	 * laundry are moved there.
4463 	 */
4464 	if (m->dirty == 0)
4465 		vm_page_deactivate_noreuse(m);
4466 	else if (!vm_page_in_laundry(m))
4467 		vm_page_launder(m);
4468 }
4469 
4470 /*
4471  *	vm_page_grab_release
4472  *
4473  *	Helper routine for grab functions to release busy on return.
4474  */
4475 static inline void
4476 vm_page_grab_release(vm_page_t m, int allocflags)
4477 {
4478 
4479 	if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4480 		if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4481 			vm_page_sunbusy(m);
4482 		else
4483 			vm_page_xunbusy(m);
4484 	}
4485 }
4486 
4487 /*
4488  *	vm_page_grab_sleep
4489  *
4490  *	Sleep for busy according to VM_ALLOC_ parameters.  Returns true
4491  *	if the caller should retry and false otherwise.
4492  *
4493  *	If the object is locked on entry the object will be unlocked with
4494  *	false returns and still locked but possibly having been dropped
4495  *	with true returns.
4496  */
4497 static bool
4498 vm_page_grab_sleep(vm_object_t object, vm_page_t m, vm_pindex_t pindex,
4499     const char *wmesg, int allocflags, bool locked)
4500 {
4501 
4502 	if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4503 		return (false);
4504 
4505 	/*
4506 	 * Reference the page before unlocking and sleeping so that
4507 	 * the page daemon is less likely to reclaim it.
4508 	 */
4509 	if (locked && (allocflags & VM_ALLOC_NOCREAT) == 0)
4510 		vm_page_reference(m);
4511 
4512 	if (_vm_page_busy_sleep(object, m, pindex, wmesg, allocflags, locked) &&
4513 	    locked)
4514 		VM_OBJECT_WLOCK(object);
4515 	if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
4516 		return (false);
4517 
4518 	return (true);
4519 }
4520 
4521 /*
4522  * Assert that the grab flags are valid.
4523  */
4524 static inline void
4525 vm_page_grab_check(int allocflags)
4526 {
4527 
4528 	KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4529 	    (allocflags & VM_ALLOC_WIRED) != 0,
4530 	    ("vm_page_grab*: the pages must be busied or wired"));
4531 
4532 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4533 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4534 	    ("vm_page_grab*: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4535 }
4536 
4537 /*
4538  * Calculate the page allocation flags for grab.
4539  */
4540 static inline int
4541 vm_page_grab_pflags(int allocflags)
4542 {
4543 	int pflags;
4544 
4545 	pflags = allocflags &
4546 	    ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4547 	    VM_ALLOC_NOBUSY | VM_ALLOC_IGN_SBUSY);
4548 	if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4549 		pflags |= VM_ALLOC_WAITFAIL;
4550 	if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4551 		pflags |= VM_ALLOC_SBUSY;
4552 
4553 	return (pflags);
4554 }
4555 
4556 /*
4557  * Grab a page, waiting until we are waken up due to the page
4558  * changing state.  We keep on waiting, if the page continues
4559  * to be in the object.  If the page doesn't exist, first allocate it
4560  * and then conditionally zero it.
4561  *
4562  * This routine may sleep.
4563  *
4564  * The object must be locked on entry.  The lock will, however, be released
4565  * and reacquired if the routine sleeps.
4566  */
4567 vm_page_t
4568 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4569 {
4570 	vm_page_t m;
4571 
4572 	VM_OBJECT_ASSERT_WLOCKED(object);
4573 	vm_page_grab_check(allocflags);
4574 
4575 retrylookup:
4576 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
4577 		if (!vm_page_tryacquire(m, allocflags)) {
4578 			if (vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4579 			    allocflags, true))
4580 				goto retrylookup;
4581 			return (NULL);
4582 		}
4583 		goto out;
4584 	}
4585 	if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4586 		return (NULL);
4587 	m = vm_page_alloc(object, pindex, vm_page_grab_pflags(allocflags));
4588 	if (m == NULL) {
4589 		if ((allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
4590 			return (NULL);
4591 		goto retrylookup;
4592 	}
4593 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
4594 		pmap_zero_page(m);
4595 
4596 out:
4597 	vm_page_grab_release(m, allocflags);
4598 
4599 	return (m);
4600 }
4601 
4602 /*
4603  * Locklessly attempt to acquire a page given a (object, pindex) tuple
4604  * and an optional previous page to avoid the radix lookup.  The resulting
4605  * page will be validated against the identity tuple and busied or wired
4606  * as requested.  A NULL *mp return guarantees that the page was not in
4607  * radix at the time of the call but callers must perform higher level
4608  * synchronization or retry the operation under a lock if they require
4609  * an atomic answer.  This is the only lock free validation routine,
4610  * other routines can depend on the resulting page state.
4611  *
4612  * The return value indicates whether the operation failed due to caller
4613  * flags.  The return is tri-state with mp:
4614  *
4615  * (true, *mp != NULL) - The operation was successful.
4616  * (true, *mp == NULL) - The page was not found in tree.
4617  * (false, *mp == NULL) - WAITFAIL or NOWAIT prevented acquisition.
4618  */
4619 static bool
4620 vm_page_acquire_unlocked(vm_object_t object, vm_pindex_t pindex,
4621     vm_page_t prev, vm_page_t *mp, int allocflags)
4622 {
4623 	vm_page_t m;
4624 
4625 	vm_page_grab_check(allocflags);
4626 	MPASS(prev == NULL || vm_page_busied(prev) || vm_page_wired(prev));
4627 
4628 	*mp = NULL;
4629 	for (;;) {
4630 		/*
4631 		 * We may see a false NULL here because the previous page
4632 		 * has been removed or just inserted and the list is loaded
4633 		 * without barriers.  Switch to radix to verify.
4634 		 */
4635 		if (prev == NULL || (m = TAILQ_NEXT(prev, listq)) == NULL ||
4636 		    QMD_IS_TRASHED(m) || m->pindex != pindex ||
4637 		    atomic_load_ptr(&m->object) != object) {
4638 			prev = NULL;
4639 			/*
4640 			 * This guarantees the result is instantaneously
4641 			 * correct.
4642 			 */
4643 			m = vm_radix_lookup_unlocked(&object->rtree, pindex);
4644 		}
4645 		if (m == NULL)
4646 			return (true);
4647 		if (vm_page_trybusy(m, allocflags)) {
4648 			if (m->object == object && m->pindex == pindex)
4649 				break;
4650 			/* relookup. */
4651 			vm_page_busy_release(m);
4652 			cpu_spinwait();
4653 			continue;
4654 		}
4655 		if (!vm_page_grab_sleep(object, m, pindex, "pgnslp",
4656 		    allocflags, false))
4657 			return (false);
4658 	}
4659 	if ((allocflags & VM_ALLOC_WIRED) != 0)
4660 		vm_page_wire(m);
4661 	vm_page_grab_release(m, allocflags);
4662 	*mp = m;
4663 	return (true);
4664 }
4665 
4666 /*
4667  * Try to locklessly grab a page and fall back to the object lock if NOCREAT
4668  * is not set.
4669  */
4670 vm_page_t
4671 vm_page_grab_unlocked(vm_object_t object, vm_pindex_t pindex, int allocflags)
4672 {
4673 	vm_page_t m;
4674 
4675 	vm_page_grab_check(allocflags);
4676 
4677 	if (!vm_page_acquire_unlocked(object, pindex, NULL, &m, allocflags))
4678 		return (NULL);
4679 	if (m != NULL)
4680 		return (m);
4681 
4682 	/*
4683 	 * The radix lockless lookup should never return a false negative
4684 	 * errors.  If the user specifies NOCREAT they are guaranteed there
4685 	 * was no page present at the instant of the call.  A NOCREAT caller
4686 	 * must handle create races gracefully.
4687 	 */
4688 	if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4689 		return (NULL);
4690 
4691 	VM_OBJECT_WLOCK(object);
4692 	m = vm_page_grab(object, pindex, allocflags);
4693 	VM_OBJECT_WUNLOCK(object);
4694 
4695 	return (m);
4696 }
4697 
4698 /*
4699  * Grab a page and make it valid, paging in if necessary.  Pages missing from
4700  * their pager are zero filled and validated.  If a VM_ALLOC_COUNT is supplied
4701  * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought
4702  * in simultaneously.  Additional pages will be left on a paging queue but
4703  * will neither be wired nor busy regardless of allocflags.
4704  */
4705 int
4706 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags)
4707 {
4708 	vm_page_t m;
4709 	vm_page_t ma[VM_INITIAL_PAGEIN];
4710 	int after, i, pflags, rv;
4711 
4712 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4713 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4714 	    ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4715 	KASSERT((allocflags &
4716 	    (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4717 	    ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4718 	VM_OBJECT_ASSERT_WLOCKED(object);
4719 	pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY |
4720 	    VM_ALLOC_WIRED | VM_ALLOC_IGN_SBUSY);
4721 	pflags |= VM_ALLOC_WAITFAIL;
4722 
4723 retrylookup:
4724 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
4725 		/*
4726 		 * If the page is fully valid it can only become invalid
4727 		 * with the object lock held.  If it is not valid it can
4728 		 * become valid with the busy lock held.  Therefore, we
4729 		 * may unnecessarily lock the exclusive busy here if we
4730 		 * race with I/O completion not using the object lock.
4731 		 * However, we will not end up with an invalid page and a
4732 		 * shared lock.
4733 		 */
4734 		if (!vm_page_trybusy(m,
4735 		    vm_page_all_valid(m) ? allocflags : 0)) {
4736 			(void)vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4737 			    allocflags, true);
4738 			goto retrylookup;
4739 		}
4740 		if (vm_page_all_valid(m))
4741 			goto out;
4742 		if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4743 			vm_page_busy_release(m);
4744 			*mp = NULL;
4745 			return (VM_PAGER_FAIL);
4746 		}
4747 	} else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4748 		*mp = NULL;
4749 		return (VM_PAGER_FAIL);
4750 	} else if ((m = vm_page_alloc(object, pindex, pflags)) == NULL) {
4751 		if (!vm_pager_can_alloc_page(object, pindex)) {
4752 			*mp = NULL;
4753 			return (VM_PAGER_AGAIN);
4754 		}
4755 		goto retrylookup;
4756 	}
4757 
4758 	vm_page_assert_xbusied(m);
4759 	if (vm_pager_has_page(object, pindex, NULL, &after)) {
4760 		after = MIN(after, VM_INITIAL_PAGEIN);
4761 		after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT);
4762 		after = MAX(after, 1);
4763 		ma[0] = m;
4764 		for (i = 1; i < after; i++) {
4765 			if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) {
4766 				if (vm_page_any_valid(ma[i]) ||
4767 				    !vm_page_tryxbusy(ma[i]))
4768 					break;
4769 			} else {
4770 				ma[i] = vm_page_alloc(object, m->pindex + i,
4771 				    VM_ALLOC_NORMAL);
4772 				if (ma[i] == NULL)
4773 					break;
4774 			}
4775 		}
4776 		after = i;
4777 		vm_object_pip_add(object, after);
4778 		VM_OBJECT_WUNLOCK(object);
4779 		rv = vm_pager_get_pages(object, ma, after, NULL, NULL);
4780 		VM_OBJECT_WLOCK(object);
4781 		vm_object_pip_wakeupn(object, after);
4782 		/* Pager may have replaced a page. */
4783 		m = ma[0];
4784 		if (rv != VM_PAGER_OK) {
4785 			for (i = 0; i < after; i++) {
4786 				if (!vm_page_wired(ma[i]))
4787 					vm_page_free(ma[i]);
4788 				else
4789 					vm_page_xunbusy(ma[i]);
4790 			}
4791 			*mp = NULL;
4792 			return (rv);
4793 		}
4794 		for (i = 1; i < after; i++)
4795 			vm_page_readahead_finish(ma[i]);
4796 		MPASS(vm_page_all_valid(m));
4797 	} else {
4798 		vm_page_zero_invalid(m, TRUE);
4799 	}
4800 out:
4801 	if ((allocflags & VM_ALLOC_WIRED) != 0)
4802 		vm_page_wire(m);
4803 	if ((allocflags & VM_ALLOC_SBUSY) != 0 && vm_page_xbusied(m))
4804 		vm_page_busy_downgrade(m);
4805 	else if ((allocflags & VM_ALLOC_NOBUSY) != 0)
4806 		vm_page_busy_release(m);
4807 	*mp = m;
4808 	return (VM_PAGER_OK);
4809 }
4810 
4811 /*
4812  * Locklessly grab a valid page.  If the page is not valid or not yet
4813  * allocated this will fall back to the object lock method.
4814  */
4815 int
4816 vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object,
4817     vm_pindex_t pindex, int allocflags)
4818 {
4819 	vm_page_t m;
4820 	int flags;
4821 	int error;
4822 
4823 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4824 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4825 	    ("vm_page_grab_valid_unlocked: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY "
4826 	    "mismatch"));
4827 	KASSERT((allocflags &
4828 	    (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4829 	    ("vm_page_grab_valid_unlocked: Invalid flags 0x%X", allocflags));
4830 
4831 	/*
4832 	 * Attempt a lockless lookup and busy.  We need at least an sbusy
4833 	 * before we can inspect the valid field and return a wired page.
4834 	 */
4835 	flags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
4836 	if (!vm_page_acquire_unlocked(object, pindex, NULL, mp, flags))
4837 		return (VM_PAGER_FAIL);
4838 	if ((m = *mp) != NULL) {
4839 		if (vm_page_all_valid(m)) {
4840 			if ((allocflags & VM_ALLOC_WIRED) != 0)
4841 				vm_page_wire(m);
4842 			vm_page_grab_release(m, allocflags);
4843 			return (VM_PAGER_OK);
4844 		}
4845 		vm_page_busy_release(m);
4846 	}
4847 	if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4848 		*mp = NULL;
4849 		return (VM_PAGER_FAIL);
4850 	}
4851 	VM_OBJECT_WLOCK(object);
4852 	error = vm_page_grab_valid(mp, object, pindex, allocflags);
4853 	VM_OBJECT_WUNLOCK(object);
4854 
4855 	return (error);
4856 }
4857 
4858 /*
4859  * Return the specified range of pages from the given object.  For each
4860  * page offset within the range, if a page already exists within the object
4861  * at that offset and it is busy, then wait for it to change state.  If,
4862  * instead, the page doesn't exist, then allocate it.
4863  *
4864  * The caller must always specify an allocation class.
4865  *
4866  * allocation classes:
4867  *	VM_ALLOC_NORMAL		normal process request
4868  *	VM_ALLOC_SYSTEM		system *really* needs the pages
4869  *
4870  * The caller must always specify that the pages are to be busied and/or
4871  * wired.
4872  *
4873  * optional allocation flags:
4874  *	VM_ALLOC_IGN_SBUSY	do not sleep on soft busy pages
4875  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
4876  *	VM_ALLOC_NOWAIT		do not sleep
4877  *	VM_ALLOC_SBUSY		set page to sbusy state
4878  *	VM_ALLOC_WIRED		wire the pages
4879  *	VM_ALLOC_ZERO		zero and validate any invalid pages
4880  *
4881  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
4882  * may return a partial prefix of the requested range.
4883  */
4884 int
4885 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
4886     vm_page_t *ma, int count)
4887 {
4888 	vm_page_t m, mpred;
4889 	int pflags;
4890 	int i;
4891 
4892 	VM_OBJECT_ASSERT_WLOCKED(object);
4893 	KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
4894 	    ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
4895 	KASSERT(count > 0,
4896 	    ("vm_page_grab_pages: invalid page count %d", count));
4897 	vm_page_grab_check(allocflags);
4898 
4899 	pflags = vm_page_grab_pflags(allocflags);
4900 	i = 0;
4901 retrylookup:
4902 	m = vm_radix_lookup_le(&object->rtree, pindex + i);
4903 	if (m == NULL || m->pindex != pindex + i) {
4904 		mpred = m;
4905 		m = NULL;
4906 	} else
4907 		mpred = TAILQ_PREV(m, pglist, listq);
4908 	for (; i < count; i++) {
4909 		if (m != NULL) {
4910 			if (!vm_page_tryacquire(m, allocflags)) {
4911 				if (vm_page_grab_sleep(object, m, pindex + i,
4912 				    "grbmaw", allocflags, true))
4913 					goto retrylookup;
4914 				break;
4915 			}
4916 		} else {
4917 			if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4918 				break;
4919 			m = vm_page_alloc_after(object, pindex + i,
4920 			    pflags | VM_ALLOC_COUNT(count - i), mpred);
4921 			if (m == NULL) {
4922 				if ((allocflags & (VM_ALLOC_NOWAIT |
4923 				    VM_ALLOC_WAITFAIL)) != 0)
4924 					break;
4925 				goto retrylookup;
4926 			}
4927 		}
4928 		if (vm_page_none_valid(m) &&
4929 		    (allocflags & VM_ALLOC_ZERO) != 0) {
4930 			if ((m->flags & PG_ZERO) == 0)
4931 				pmap_zero_page(m);
4932 			vm_page_valid(m);
4933 		}
4934 		vm_page_grab_release(m, allocflags);
4935 		ma[i] = mpred = m;
4936 		m = vm_page_next(m);
4937 	}
4938 	return (i);
4939 }
4940 
4941 /*
4942  * Unlocked variant of vm_page_grab_pages().  This accepts the same flags
4943  * and will fall back to the locked variant to handle allocation.
4944  */
4945 int
4946 vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex,
4947     int allocflags, vm_page_t *ma, int count)
4948 {
4949 	vm_page_t m, pred;
4950 	int flags;
4951 	int i;
4952 
4953 	KASSERT(count > 0,
4954 	    ("vm_page_grab_pages_unlocked: invalid page count %d", count));
4955 	vm_page_grab_check(allocflags);
4956 
4957 	/*
4958 	 * Modify flags for lockless acquire to hold the page until we
4959 	 * set it valid if necessary.
4960 	 */
4961 	flags = allocflags & ~VM_ALLOC_NOBUSY;
4962 	pred = NULL;
4963 	for (i = 0; i < count; i++, pindex++) {
4964 		if (!vm_page_acquire_unlocked(object, pindex, pred, &m, flags))
4965 			return (i);
4966 		if (m == NULL)
4967 			break;
4968 		if ((flags & VM_ALLOC_ZERO) != 0 && vm_page_none_valid(m)) {
4969 			if ((m->flags & PG_ZERO) == 0)
4970 				pmap_zero_page(m);
4971 			vm_page_valid(m);
4972 		}
4973 		/* m will still be wired or busy according to flags. */
4974 		vm_page_grab_release(m, allocflags);
4975 		pred = ma[i] = m;
4976 	}
4977 	if (i == count || (allocflags & VM_ALLOC_NOCREAT) != 0)
4978 		return (i);
4979 	count -= i;
4980 	VM_OBJECT_WLOCK(object);
4981 	i += vm_page_grab_pages(object, pindex, allocflags, &ma[i], count);
4982 	VM_OBJECT_WUNLOCK(object);
4983 
4984 	return (i);
4985 }
4986 
4987 /*
4988  * Mapping function for valid or dirty bits in a page.
4989  *
4990  * Inputs are required to range within a page.
4991  */
4992 vm_page_bits_t
4993 vm_page_bits(int base, int size)
4994 {
4995 	int first_bit;
4996 	int last_bit;
4997 
4998 	KASSERT(
4999 	    base + size <= PAGE_SIZE,
5000 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
5001 	);
5002 
5003 	if (size == 0)		/* handle degenerate case */
5004 		return (0);
5005 
5006 	first_bit = base >> DEV_BSHIFT;
5007 	last_bit = (base + size - 1) >> DEV_BSHIFT;
5008 
5009 	return (((vm_page_bits_t)2 << last_bit) -
5010 	    ((vm_page_bits_t)1 << first_bit));
5011 }
5012 
5013 void
5014 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
5015 {
5016 
5017 #if PAGE_SIZE == 32768
5018 	atomic_set_64((uint64_t *)bits, set);
5019 #elif PAGE_SIZE == 16384
5020 	atomic_set_32((uint32_t *)bits, set);
5021 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
5022 	atomic_set_16((uint16_t *)bits, set);
5023 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
5024 	atomic_set_8((uint8_t *)bits, set);
5025 #else		/* PAGE_SIZE <= 8192 */
5026 	uintptr_t addr;
5027 	int shift;
5028 
5029 	addr = (uintptr_t)bits;
5030 	/*
5031 	 * Use a trick to perform a 32-bit atomic on the
5032 	 * containing aligned word, to not depend on the existence
5033 	 * of atomic_{set, clear}_{8, 16}.
5034 	 */
5035 	shift = addr & (sizeof(uint32_t) - 1);
5036 #if BYTE_ORDER == BIG_ENDIAN
5037 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5038 #else
5039 	shift *= NBBY;
5040 #endif
5041 	addr &= ~(sizeof(uint32_t) - 1);
5042 	atomic_set_32((uint32_t *)addr, set << shift);
5043 #endif		/* PAGE_SIZE */
5044 }
5045 
5046 static inline void
5047 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
5048 {
5049 
5050 #if PAGE_SIZE == 32768
5051 	atomic_clear_64((uint64_t *)bits, clear);
5052 #elif PAGE_SIZE == 16384
5053 	atomic_clear_32((uint32_t *)bits, clear);
5054 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
5055 	atomic_clear_16((uint16_t *)bits, clear);
5056 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
5057 	atomic_clear_8((uint8_t *)bits, clear);
5058 #else		/* PAGE_SIZE <= 8192 */
5059 	uintptr_t addr;
5060 	int shift;
5061 
5062 	addr = (uintptr_t)bits;
5063 	/*
5064 	 * Use a trick to perform a 32-bit atomic on the
5065 	 * containing aligned word, to not depend on the existence
5066 	 * of atomic_{set, clear}_{8, 16}.
5067 	 */
5068 	shift = addr & (sizeof(uint32_t) - 1);
5069 #if BYTE_ORDER == BIG_ENDIAN
5070 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5071 #else
5072 	shift *= NBBY;
5073 #endif
5074 	addr &= ~(sizeof(uint32_t) - 1);
5075 	atomic_clear_32((uint32_t *)addr, clear << shift);
5076 #endif		/* PAGE_SIZE */
5077 }
5078 
5079 static inline vm_page_bits_t
5080 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits)
5081 {
5082 #if PAGE_SIZE == 32768
5083 	uint64_t old;
5084 
5085 	old = *bits;
5086 	while (atomic_fcmpset_64(bits, &old, newbits) == 0);
5087 	return (old);
5088 #elif PAGE_SIZE == 16384
5089 	uint32_t old;
5090 
5091 	old = *bits;
5092 	while (atomic_fcmpset_32(bits, &old, newbits) == 0);
5093 	return (old);
5094 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16)
5095 	uint16_t old;
5096 
5097 	old = *bits;
5098 	while (atomic_fcmpset_16(bits, &old, newbits) == 0);
5099 	return (old);
5100 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8)
5101 	uint8_t old;
5102 
5103 	old = *bits;
5104 	while (atomic_fcmpset_8(bits, &old, newbits) == 0);
5105 	return (old);
5106 #else		/* PAGE_SIZE <= 4096*/
5107 	uintptr_t addr;
5108 	uint32_t old, new, mask;
5109 	int shift;
5110 
5111 	addr = (uintptr_t)bits;
5112 	/*
5113 	 * Use a trick to perform a 32-bit atomic on the
5114 	 * containing aligned word, to not depend on the existence
5115 	 * of atomic_{set, swap, clear}_{8, 16}.
5116 	 */
5117 	shift = addr & (sizeof(uint32_t) - 1);
5118 #if BYTE_ORDER == BIG_ENDIAN
5119 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5120 #else
5121 	shift *= NBBY;
5122 #endif
5123 	addr &= ~(sizeof(uint32_t) - 1);
5124 	mask = VM_PAGE_BITS_ALL << shift;
5125 
5126 	old = *bits;
5127 	do {
5128 		new = old & ~mask;
5129 		new |= newbits << shift;
5130 	} while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0);
5131 	return (old >> shift);
5132 #endif		/* PAGE_SIZE */
5133 }
5134 
5135 /*
5136  *	vm_page_set_valid_range:
5137  *
5138  *	Sets portions of a page valid.  The arguments are expected
5139  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5140  *	of any partial chunks touched by the range.  The invalid portion of
5141  *	such chunks will be zeroed.
5142  *
5143  *	(base + size) must be less then or equal to PAGE_SIZE.
5144  */
5145 void
5146 vm_page_set_valid_range(vm_page_t m, int base, int size)
5147 {
5148 	int endoff, frag;
5149 	vm_page_bits_t pagebits;
5150 
5151 	vm_page_assert_busied(m);
5152 	if (size == 0)	/* handle degenerate case */
5153 		return;
5154 
5155 	/*
5156 	 * If the base is not DEV_BSIZE aligned and the valid
5157 	 * bit is clear, we have to zero out a portion of the
5158 	 * first block.
5159 	 */
5160 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5161 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
5162 		pmap_zero_page_area(m, frag, base - frag);
5163 
5164 	/*
5165 	 * If the ending offset is not DEV_BSIZE aligned and the
5166 	 * valid bit is clear, we have to zero out a portion of
5167 	 * the last block.
5168 	 */
5169 	endoff = base + size;
5170 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5171 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
5172 		pmap_zero_page_area(m, endoff,
5173 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5174 
5175 	/*
5176 	 * Assert that no previously invalid block that is now being validated
5177 	 * is already dirty.
5178 	 */
5179 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
5180 	    ("vm_page_set_valid_range: page %p is dirty", m));
5181 
5182 	/*
5183 	 * Set valid bits inclusive of any overlap.
5184 	 */
5185 	pagebits = vm_page_bits(base, size);
5186 	if (vm_page_xbusied(m))
5187 		m->valid |= pagebits;
5188 	else
5189 		vm_page_bits_set(m, &m->valid, pagebits);
5190 }
5191 
5192 /*
5193  * Set the page dirty bits and free the invalid swap space if
5194  * present.  Returns the previous dirty bits.
5195  */
5196 vm_page_bits_t
5197 vm_page_set_dirty(vm_page_t m)
5198 {
5199 	vm_page_bits_t old;
5200 
5201 	VM_PAGE_OBJECT_BUSY_ASSERT(m);
5202 
5203 	if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) {
5204 		old = m->dirty;
5205 		m->dirty = VM_PAGE_BITS_ALL;
5206 	} else
5207 		old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL);
5208 	if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0)
5209 		vm_pager_page_unswapped(m);
5210 
5211 	return (old);
5212 }
5213 
5214 /*
5215  * Clear the given bits from the specified page's dirty field.
5216  */
5217 static __inline void
5218 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
5219 {
5220 
5221 	vm_page_assert_busied(m);
5222 
5223 	/*
5224 	 * If the page is xbusied and not write mapped we are the
5225 	 * only thread that can modify dirty bits.  Otherwise, The pmap
5226 	 * layer can call vm_page_dirty() without holding a distinguished
5227 	 * lock.  The combination of page busy and atomic operations
5228 	 * suffice to guarantee consistency of the page dirty field.
5229 	 */
5230 	if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
5231 		m->dirty &= ~pagebits;
5232 	else
5233 		vm_page_bits_clear(m, &m->dirty, pagebits);
5234 }
5235 
5236 /*
5237  *	vm_page_set_validclean:
5238  *
5239  *	Sets portions of a page valid and clean.  The arguments are expected
5240  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5241  *	of any partial chunks touched by the range.  The invalid portion of
5242  *	such chunks will be zero'd.
5243  *
5244  *	(base + size) must be less then or equal to PAGE_SIZE.
5245  */
5246 void
5247 vm_page_set_validclean(vm_page_t m, int base, int size)
5248 {
5249 	vm_page_bits_t oldvalid, pagebits;
5250 	int endoff, frag;
5251 
5252 	vm_page_assert_busied(m);
5253 	if (size == 0)	/* handle degenerate case */
5254 		return;
5255 
5256 	/*
5257 	 * If the base is not DEV_BSIZE aligned and the valid
5258 	 * bit is clear, we have to zero out a portion of the
5259 	 * first block.
5260 	 */
5261 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5262 	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
5263 		pmap_zero_page_area(m, frag, base - frag);
5264 
5265 	/*
5266 	 * If the ending offset is not DEV_BSIZE aligned and the
5267 	 * valid bit is clear, we have to zero out a portion of
5268 	 * the last block.
5269 	 */
5270 	endoff = base + size;
5271 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5272 	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
5273 		pmap_zero_page_area(m, endoff,
5274 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5275 
5276 	/*
5277 	 * Set valid, clear dirty bits.  If validating the entire
5278 	 * page we can safely clear the pmap modify bit.  We also
5279 	 * use this opportunity to clear the PGA_NOSYNC flag.  If a process
5280 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
5281 	 * be set again.
5282 	 *
5283 	 * We set valid bits inclusive of any overlap, but we can only
5284 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
5285 	 * the range.
5286 	 */
5287 	oldvalid = m->valid;
5288 	pagebits = vm_page_bits(base, size);
5289 	if (vm_page_xbusied(m))
5290 		m->valid |= pagebits;
5291 	else
5292 		vm_page_bits_set(m, &m->valid, pagebits);
5293 #if 0	/* NOT YET */
5294 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
5295 		frag = DEV_BSIZE - frag;
5296 		base += frag;
5297 		size -= frag;
5298 		if (size < 0)
5299 			size = 0;
5300 	}
5301 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
5302 #endif
5303 	if (base == 0 && size == PAGE_SIZE) {
5304 		/*
5305 		 * The page can only be modified within the pmap if it is
5306 		 * mapped, and it can only be mapped if it was previously
5307 		 * fully valid.
5308 		 */
5309 		if (oldvalid == VM_PAGE_BITS_ALL)
5310 			/*
5311 			 * Perform the pmap_clear_modify() first.  Otherwise,
5312 			 * a concurrent pmap operation, such as
5313 			 * pmap_protect(), could clear a modification in the
5314 			 * pmap and set the dirty field on the page before
5315 			 * pmap_clear_modify() had begun and after the dirty
5316 			 * field was cleared here.
5317 			 */
5318 			pmap_clear_modify(m);
5319 		m->dirty = 0;
5320 		vm_page_aflag_clear(m, PGA_NOSYNC);
5321 	} else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
5322 		m->dirty &= ~pagebits;
5323 	else
5324 		vm_page_clear_dirty_mask(m, pagebits);
5325 }
5326 
5327 void
5328 vm_page_clear_dirty(vm_page_t m, int base, int size)
5329 {
5330 
5331 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
5332 }
5333 
5334 /*
5335  *	vm_page_set_invalid:
5336  *
5337  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
5338  *	valid and dirty bits for the effected areas are cleared.
5339  */
5340 void
5341 vm_page_set_invalid(vm_page_t m, int base, int size)
5342 {
5343 	vm_page_bits_t bits;
5344 	vm_object_t object;
5345 
5346 	/*
5347 	 * The object lock is required so that pages can't be mapped
5348 	 * read-only while we're in the process of invalidating them.
5349 	 */
5350 	object = m->object;
5351 	VM_OBJECT_ASSERT_WLOCKED(object);
5352 	vm_page_assert_busied(m);
5353 
5354 	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
5355 	    size >= object->un_pager.vnp.vnp_size)
5356 		bits = VM_PAGE_BITS_ALL;
5357 	else
5358 		bits = vm_page_bits(base, size);
5359 	if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
5360 		pmap_remove_all(m);
5361 	KASSERT((bits == 0 && vm_page_all_valid(m)) ||
5362 	    !pmap_page_is_mapped(m),
5363 	    ("vm_page_set_invalid: page %p is mapped", m));
5364 	if (vm_page_xbusied(m)) {
5365 		m->valid &= ~bits;
5366 		m->dirty &= ~bits;
5367 	} else {
5368 		vm_page_bits_clear(m, &m->valid, bits);
5369 		vm_page_bits_clear(m, &m->dirty, bits);
5370 	}
5371 }
5372 
5373 /*
5374  *	vm_page_invalid:
5375  *
5376  *	Invalidates the entire page.  The page must be busy, unmapped, and
5377  *	the enclosing object must be locked.  The object locks protects
5378  *	against concurrent read-only pmap enter which is done without
5379  *	busy.
5380  */
5381 void
5382 vm_page_invalid(vm_page_t m)
5383 {
5384 
5385 	vm_page_assert_busied(m);
5386 	VM_OBJECT_ASSERT_WLOCKED(m->object);
5387 	MPASS(!pmap_page_is_mapped(m));
5388 
5389 	if (vm_page_xbusied(m))
5390 		m->valid = 0;
5391 	else
5392 		vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
5393 }
5394 
5395 /*
5396  * vm_page_zero_invalid()
5397  *
5398  *	The kernel assumes that the invalid portions of a page contain
5399  *	garbage, but such pages can be mapped into memory by user code.
5400  *	When this occurs, we must zero out the non-valid portions of the
5401  *	page so user code sees what it expects.
5402  *
5403  *	Pages are most often semi-valid when the end of a file is mapped
5404  *	into memory and the file's size is not page aligned.
5405  */
5406 void
5407 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
5408 {
5409 	int b;
5410 	int i;
5411 
5412 	/*
5413 	 * Scan the valid bits looking for invalid sections that
5414 	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
5415 	 * valid bit may be set ) have already been zeroed by
5416 	 * vm_page_set_validclean().
5417 	 */
5418 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
5419 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
5420 		    (m->valid & ((vm_page_bits_t)1 << i))) {
5421 			if (i > b) {
5422 				pmap_zero_page_area(m,
5423 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
5424 			}
5425 			b = i + 1;
5426 		}
5427 	}
5428 
5429 	/*
5430 	 * setvalid is TRUE when we can safely set the zero'd areas
5431 	 * as being valid.  We can do this if there are no cache consistency
5432 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
5433 	 */
5434 	if (setvalid)
5435 		vm_page_valid(m);
5436 }
5437 
5438 /*
5439  *	vm_page_is_valid:
5440  *
5441  *	Is (partial) page valid?  Note that the case where size == 0
5442  *	will return FALSE in the degenerate case where the page is
5443  *	entirely invalid, and TRUE otherwise.
5444  *
5445  *	Some callers envoke this routine without the busy lock held and
5446  *	handle races via higher level locks.  Typical callers should
5447  *	hold a busy lock to prevent invalidation.
5448  */
5449 int
5450 vm_page_is_valid(vm_page_t m, int base, int size)
5451 {
5452 	vm_page_bits_t bits;
5453 
5454 	bits = vm_page_bits(base, size);
5455 	return (vm_page_any_valid(m) && (m->valid & bits) == bits);
5456 }
5457 
5458 /*
5459  * Returns true if all of the specified predicates are true for the entire
5460  * (super)page and false otherwise.
5461  */
5462 bool
5463 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
5464 {
5465 	vm_object_t object;
5466 	int i, npages;
5467 
5468 	object = m->object;
5469 	if (skip_m != NULL && skip_m->object != object)
5470 		return (false);
5471 	VM_OBJECT_ASSERT_LOCKED(object);
5472 	npages = atop(pagesizes[m->psind]);
5473 
5474 	/*
5475 	 * The physically contiguous pages that make up a superpage, i.e., a
5476 	 * page with a page size index ("psind") greater than zero, will
5477 	 * occupy adjacent entries in vm_page_array[].
5478 	 */
5479 	for (i = 0; i < npages; i++) {
5480 		/* Always test object consistency, including "skip_m". */
5481 		if (m[i].object != object)
5482 			return (false);
5483 		if (&m[i] == skip_m)
5484 			continue;
5485 		if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
5486 			return (false);
5487 		if ((flags & PS_ALL_DIRTY) != 0) {
5488 			/*
5489 			 * Calling vm_page_test_dirty() or pmap_is_modified()
5490 			 * might stop this case from spuriously returning
5491 			 * "false".  However, that would require a write lock
5492 			 * on the object containing "m[i]".
5493 			 */
5494 			if (m[i].dirty != VM_PAGE_BITS_ALL)
5495 				return (false);
5496 		}
5497 		if ((flags & PS_ALL_VALID) != 0 &&
5498 		    m[i].valid != VM_PAGE_BITS_ALL)
5499 			return (false);
5500 	}
5501 	return (true);
5502 }
5503 
5504 /*
5505  * Set the page's dirty bits if the page is modified.
5506  */
5507 void
5508 vm_page_test_dirty(vm_page_t m)
5509 {
5510 
5511 	vm_page_assert_busied(m);
5512 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
5513 		vm_page_dirty(m);
5514 }
5515 
5516 void
5517 vm_page_valid(vm_page_t m)
5518 {
5519 
5520 	vm_page_assert_busied(m);
5521 	if (vm_page_xbusied(m))
5522 		m->valid = VM_PAGE_BITS_ALL;
5523 	else
5524 		vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
5525 }
5526 
5527 void
5528 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
5529 {
5530 
5531 	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
5532 }
5533 
5534 void
5535 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
5536 {
5537 
5538 	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
5539 }
5540 
5541 int
5542 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
5543 {
5544 
5545 	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
5546 }
5547 
5548 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
5549 void
5550 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
5551 {
5552 
5553 	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
5554 }
5555 
5556 void
5557 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
5558 {
5559 
5560 	mtx_assert_(vm_page_lockptr(m), a, file, line);
5561 }
5562 #endif
5563 
5564 #ifdef INVARIANTS
5565 void
5566 vm_page_object_busy_assert(vm_page_t m)
5567 {
5568 
5569 	/*
5570 	 * Certain of the page's fields may only be modified by the
5571 	 * holder of a page or object busy.
5572 	 */
5573 	if (m->object != NULL && !vm_page_busied(m))
5574 		VM_OBJECT_ASSERT_BUSY(m->object);
5575 }
5576 
5577 void
5578 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits)
5579 {
5580 
5581 	if ((bits & PGA_WRITEABLE) == 0)
5582 		return;
5583 
5584 	/*
5585 	 * The PGA_WRITEABLE flag can only be set if the page is
5586 	 * managed, is exclusively busied or the object is locked.
5587 	 * Currently, this flag is only set by pmap_enter().
5588 	 */
5589 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5590 	    ("PGA_WRITEABLE on unmanaged page"));
5591 	if (!vm_page_xbusied(m))
5592 		VM_OBJECT_ASSERT_BUSY(m->object);
5593 }
5594 #endif
5595 
5596 #include "opt_ddb.h"
5597 #ifdef DDB
5598 #include <sys/kernel.h>
5599 
5600 #include <ddb/ddb.h>
5601 
5602 DB_SHOW_COMMAND_FLAGS(page, vm_page_print_page_info, DB_CMD_MEMSAFE)
5603 {
5604 
5605 	db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5606 	db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5607 	db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5608 	db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5609 	db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5610 	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5611 	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5612 	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5613 	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5614 }
5615 
5616 DB_SHOW_COMMAND_FLAGS(pageq, vm_page_print_pageq_info, DB_CMD_MEMSAFE)
5617 {
5618 	int dom;
5619 
5620 	db_printf("pq_free %d\n", vm_free_count());
5621 	for (dom = 0; dom < vm_ndomains; dom++) {
5622 		db_printf(
5623     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5624 		    dom,
5625 		    vm_dom[dom].vmd_page_count,
5626 		    vm_dom[dom].vmd_free_count,
5627 		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5628 		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5629 		    vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5630 		    vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5631 	}
5632 }
5633 
5634 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5635 {
5636 	vm_page_t m;
5637 	boolean_t phys, virt;
5638 
5639 	if (!have_addr) {
5640 		db_printf("show pginfo addr\n");
5641 		return;
5642 	}
5643 
5644 	phys = strchr(modif, 'p') != NULL;
5645 	virt = strchr(modif, 'v') != NULL;
5646 	if (virt)
5647 		m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5648 	else if (phys)
5649 		m = PHYS_TO_VM_PAGE(addr);
5650 	else
5651 		m = (vm_page_t)addr;
5652 	db_printf(
5653     "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref 0x%x\n"
5654     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5655 	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5656 	    m->a.queue, m->ref_count, m->a.flags, m->oflags,
5657 	    m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty);
5658 }
5659 #endif /* DDB */
5660