1 /*- 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 33 */ 34 35 /*- 36 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 37 * All rights reserved. 38 * 39 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 40 * 41 * Permission to use, copy, modify and distribute this software and 42 * its documentation is hereby granted, provided that both the copyright 43 * notice and this permission notice appear in all copies of the 44 * software, derivative works or modified versions, and any portions 45 * thereof, and that both notices appear in supporting documentation. 46 * 47 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 48 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 49 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 50 * 51 * Carnegie Mellon requests users of this software to return to 52 * 53 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 54 * School of Computer Science 55 * Carnegie Mellon University 56 * Pittsburgh PA 15213-3890 57 * 58 * any improvements or extensions that they make and grant Carnegie the 59 * rights to redistribute these changes. 60 */ 61 62 /* 63 * GENERAL RULES ON VM_PAGE MANIPULATION 64 * 65 * - a pageq mutex is required when adding or removing a page from a 66 * page queue (vm_page_queue[]), regardless of other mutexes or the 67 * busy state of a page. 68 * 69 * - a hash chain mutex is required when associating or disassociating 70 * a page from the VM PAGE CACHE hash table (vm_page_buckets), 71 * regardless of other mutexes or the busy state of a page. 72 * 73 * - either a hash chain mutex OR a busied page is required in order 74 * to modify the page flags. A hash chain mutex must be obtained in 75 * order to busy a page. A page's flags cannot be modified by a 76 * hash chain mutex if the page is marked busy. 77 * 78 * - The object memq mutex is held when inserting or removing 79 * pages from an object (vm_page_insert() or vm_page_remove()). This 80 * is different from the object's main mutex. 81 * 82 * Generally speaking, you have to be aware of side effects when running 83 * vm_page ops. A vm_page_lookup() will return with the hash chain 84 * locked, whether it was able to lookup the page or not. vm_page_free(), 85 * vm_page_cache(), vm_page_activate(), and a number of other routines 86 * will release the hash chain mutex for you. Intermediate manipulation 87 * routines such as vm_page_flag_set() expect the hash chain to be held 88 * on entry and the hash chain will remain held on return. 89 * 90 * pageq scanning can only occur with the pageq in question locked. 91 * We have a known bottleneck with the active queue, but the cache 92 * and free queues are actually arrays already. 93 */ 94 95 /* 96 * Resident memory management module. 97 */ 98 99 #include <sys/cdefs.h> 100 __FBSDID("$FreeBSD$"); 101 102 #include "opt_vm.h" 103 104 #include <sys/param.h> 105 #include <sys/systm.h> 106 #include <sys/lock.h> 107 #include <sys/kernel.h> 108 #include <sys/malloc.h> 109 #include <sys/mutex.h> 110 #include <sys/proc.h> 111 #include <sys/sysctl.h> 112 #include <sys/vmmeter.h> 113 #include <sys/vnode.h> 114 115 #include <vm/vm.h> 116 #include <vm/vm_param.h> 117 #include <vm/vm_kern.h> 118 #include <vm/vm_object.h> 119 #include <vm/vm_page.h> 120 #include <vm/vm_pageout.h> 121 #include <vm/vm_pager.h> 122 #include <vm/vm_phys.h> 123 #include <vm/vm_reserv.h> 124 #include <vm/vm_extern.h> 125 #include <vm/uma.h> 126 #include <vm/uma_int.h> 127 128 #include <machine/md_var.h> 129 130 /* 131 * Associated with page of user-allocatable memory is a 132 * page structure. 133 */ 134 135 struct mtx vm_page_queue_mtx; 136 struct mtx vm_page_queue_free_mtx; 137 138 vm_page_t vm_page_array = 0; 139 int vm_page_array_size = 0; 140 long first_page = 0; 141 int vm_page_zero_count = 0; 142 143 static int boot_pages = UMA_BOOT_PAGES; 144 TUNABLE_INT("vm.boot_pages", &boot_pages); 145 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0, 146 "number of pages allocated for bootstrapping the VM system"); 147 148 /* 149 * vm_set_page_size: 150 * 151 * Sets the page size, perhaps based upon the memory 152 * size. Must be called before any use of page-size 153 * dependent functions. 154 */ 155 void 156 vm_set_page_size(void) 157 { 158 if (cnt.v_page_size == 0) 159 cnt.v_page_size = PAGE_SIZE; 160 if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0) 161 panic("vm_set_page_size: page size not a power of two"); 162 } 163 164 /* 165 * vm_page_blacklist_lookup: 166 * 167 * See if a physical address in this page has been listed 168 * in the blacklist tunable. Entries in the tunable are 169 * separated by spaces or commas. If an invalid integer is 170 * encountered then the rest of the string is skipped. 171 */ 172 static int 173 vm_page_blacklist_lookup(char *list, vm_paddr_t pa) 174 { 175 vm_paddr_t bad; 176 char *cp, *pos; 177 178 for (pos = list; *pos != '\0'; pos = cp) { 179 bad = strtoq(pos, &cp, 0); 180 if (*cp != '\0') { 181 if (*cp == ' ' || *cp == ',') { 182 cp++; 183 if (cp == pos) 184 continue; 185 } else 186 break; 187 } 188 if (pa == trunc_page(bad)) 189 return (1); 190 } 191 return (0); 192 } 193 194 /* 195 * vm_page_startup: 196 * 197 * Initializes the resident memory module. 198 * 199 * Allocates memory for the page cells, and 200 * for the object/offset-to-page hash table headers. 201 * Each page cell is initialized and placed on the free list. 202 */ 203 vm_offset_t 204 vm_page_startup(vm_offset_t vaddr) 205 { 206 vm_offset_t mapped; 207 vm_paddr_t page_range; 208 vm_paddr_t new_end; 209 int i; 210 vm_paddr_t pa; 211 int nblocks; 212 vm_paddr_t last_pa; 213 char *list; 214 215 /* the biggest memory array is the second group of pages */ 216 vm_paddr_t end; 217 vm_paddr_t biggestsize; 218 vm_paddr_t low_water, high_water; 219 int biggestone; 220 221 biggestsize = 0; 222 biggestone = 0; 223 nblocks = 0; 224 vaddr = round_page(vaddr); 225 226 for (i = 0; phys_avail[i + 1]; i += 2) { 227 phys_avail[i] = round_page(phys_avail[i]); 228 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 229 } 230 231 low_water = phys_avail[0]; 232 high_water = phys_avail[1]; 233 234 for (i = 0; phys_avail[i + 1]; i += 2) { 235 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 236 237 if (size > biggestsize) { 238 biggestone = i; 239 biggestsize = size; 240 } 241 if (phys_avail[i] < low_water) 242 low_water = phys_avail[i]; 243 if (phys_avail[i + 1] > high_water) 244 high_water = phys_avail[i + 1]; 245 ++nblocks; 246 } 247 248 end = phys_avail[biggestone+1]; 249 250 /* 251 * Initialize the locks. 252 */ 253 mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF | 254 MTX_RECURSE); 255 mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL, 256 MTX_DEF); 257 258 /* 259 * Initialize the queue headers for the hold queue, the active queue, 260 * and the inactive queue. 261 */ 262 vm_pageq_init(); 263 264 /* 265 * Allocate memory for use when boot strapping the kernel memory 266 * allocator. 267 */ 268 new_end = end - (boot_pages * UMA_SLAB_SIZE); 269 new_end = trunc_page(new_end); 270 mapped = pmap_map(&vaddr, new_end, end, 271 VM_PROT_READ | VM_PROT_WRITE); 272 bzero((void *)mapped, end - new_end); 273 uma_startup((void *)mapped, boot_pages); 274 275 #if defined(__amd64__) || defined(__i386__) 276 /* 277 * Allocate a bitmap to indicate that a random physical page 278 * needs to be included in a minidump. 279 * 280 * The amd64 port needs this to indicate which direct map pages 281 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 282 * 283 * However, i386 still needs this workspace internally within the 284 * minidump code. In theory, they are not needed on i386, but are 285 * included should the sf_buf code decide to use them. 286 */ 287 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE; 288 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 289 new_end -= vm_page_dump_size; 290 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, 291 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); 292 bzero((void *)vm_page_dump, vm_page_dump_size); 293 #endif 294 /* 295 * Compute the number of pages of memory that will be available for 296 * use (taking into account the overhead of a page structure per 297 * page). 298 */ 299 first_page = low_water / PAGE_SIZE; 300 #ifdef VM_PHYSSEG_SPARSE 301 page_range = 0; 302 for (i = 0; phys_avail[i + 1] != 0; i += 2) 303 page_range += atop(phys_avail[i + 1] - phys_avail[i]); 304 #elif defined(VM_PHYSSEG_DENSE) 305 page_range = high_water / PAGE_SIZE - first_page; 306 #else 307 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 308 #endif 309 end = new_end; 310 311 /* 312 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 313 */ 314 vaddr += PAGE_SIZE; 315 316 /* 317 * Initialize the mem entry structures now, and put them in the free 318 * queue. 319 */ 320 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 321 mapped = pmap_map(&vaddr, new_end, end, 322 VM_PROT_READ | VM_PROT_WRITE); 323 vm_page_array = (vm_page_t) mapped; 324 #if VM_NRESERVLEVEL > 0 325 /* 326 * Allocate memory for the reservation management system's data 327 * structures. 328 */ 329 new_end = vm_reserv_startup(&vaddr, new_end, high_water); 330 #endif 331 #ifdef __amd64__ 332 /* 333 * pmap_map on amd64 comes out of the direct-map, not kvm like i386, 334 * so the pages must be tracked for a crashdump to include this data. 335 * This includes the vm_page_array and the early UMA bootstrap pages. 336 */ 337 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE) 338 dump_add_page(pa); 339 #endif 340 phys_avail[biggestone + 1] = new_end; 341 342 /* 343 * Clear all of the page structures 344 */ 345 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 346 for (i = 0; i < page_range; i++) 347 vm_page_array[i].order = VM_NFREEORDER; 348 vm_page_array_size = page_range; 349 350 /* 351 * Initialize the physical memory allocator. 352 */ 353 vm_phys_init(); 354 355 /* 356 * Add every available physical page that is not blacklisted to 357 * the free lists. 358 */ 359 cnt.v_page_count = 0; 360 cnt.v_free_count = 0; 361 list = getenv("vm.blacklist"); 362 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 363 pa = phys_avail[i]; 364 last_pa = phys_avail[i + 1]; 365 while (pa < last_pa) { 366 if (list != NULL && 367 vm_page_blacklist_lookup(list, pa)) 368 printf("Skipping page with pa 0x%jx\n", 369 (uintmax_t)pa); 370 else 371 vm_phys_add_page(pa); 372 pa += PAGE_SIZE; 373 } 374 } 375 freeenv(list); 376 #if VM_NRESERVLEVEL > 0 377 /* 378 * Initialize the reservation management system. 379 */ 380 vm_reserv_init(); 381 #endif 382 return (vaddr); 383 } 384 385 void 386 vm_page_flag_set(vm_page_t m, unsigned short bits) 387 { 388 389 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 390 m->flags |= bits; 391 } 392 393 void 394 vm_page_flag_clear(vm_page_t m, unsigned short bits) 395 { 396 397 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 398 m->flags &= ~bits; 399 } 400 401 void 402 vm_page_busy(vm_page_t m) 403 { 404 405 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 406 KASSERT((m->oflags & VPO_BUSY) == 0, 407 ("vm_page_busy: page already busy!!!")); 408 m->oflags |= VPO_BUSY; 409 } 410 411 /* 412 * vm_page_flash: 413 * 414 * wakeup anyone waiting for the page. 415 */ 416 void 417 vm_page_flash(vm_page_t m) 418 { 419 420 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 421 if (m->oflags & VPO_WANTED) { 422 m->oflags &= ~VPO_WANTED; 423 wakeup(m); 424 } 425 } 426 427 /* 428 * vm_page_wakeup: 429 * 430 * clear the VPO_BUSY flag and wakeup anyone waiting for the 431 * page. 432 * 433 */ 434 void 435 vm_page_wakeup(vm_page_t m) 436 { 437 438 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 439 KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!")); 440 m->oflags &= ~VPO_BUSY; 441 vm_page_flash(m); 442 } 443 444 void 445 vm_page_io_start(vm_page_t m) 446 { 447 448 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 449 m->busy++; 450 } 451 452 void 453 vm_page_io_finish(vm_page_t m) 454 { 455 456 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 457 m->busy--; 458 if (m->busy == 0) 459 vm_page_flash(m); 460 } 461 462 /* 463 * Keep page from being freed by the page daemon 464 * much of the same effect as wiring, except much lower 465 * overhead and should be used only for *very* temporary 466 * holding ("wiring"). 467 */ 468 void 469 vm_page_hold(vm_page_t mem) 470 { 471 472 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 473 mem->hold_count++; 474 } 475 476 void 477 vm_page_unhold(vm_page_t mem) 478 { 479 480 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 481 --mem->hold_count; 482 KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!")); 483 if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD)) 484 vm_page_free_toq(mem); 485 } 486 487 /* 488 * vm_page_free: 489 * 490 * Free a page. 491 */ 492 void 493 vm_page_free(vm_page_t m) 494 { 495 496 m->flags &= ~PG_ZERO; 497 vm_page_free_toq(m); 498 } 499 500 /* 501 * vm_page_free_zero: 502 * 503 * Free a page to the zerod-pages queue 504 */ 505 void 506 vm_page_free_zero(vm_page_t m) 507 { 508 509 m->flags |= PG_ZERO; 510 vm_page_free_toq(m); 511 } 512 513 /* 514 * vm_page_sleep: 515 * 516 * Sleep and release the page queues lock. 517 * 518 * The object containing the given page must be locked. 519 */ 520 void 521 vm_page_sleep(vm_page_t m, const char *msg) 522 { 523 524 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 525 if (!mtx_owned(&vm_page_queue_mtx)) 526 vm_page_lock_queues(); 527 vm_page_flag_set(m, PG_REFERENCED); 528 vm_page_unlock_queues(); 529 530 /* 531 * It's possible that while we sleep, the page will get 532 * unbusied and freed. If we are holding the object 533 * lock, we will assume we hold a reference to the object 534 * such that even if m->object changes, we can re-lock 535 * it. 536 */ 537 m->oflags |= VPO_WANTED; 538 msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0); 539 } 540 541 /* 542 * vm_page_dirty: 543 * 544 * make page all dirty 545 */ 546 void 547 vm_page_dirty(vm_page_t m) 548 { 549 KASSERT((m->flags & PG_CACHED) == 0, 550 ("vm_page_dirty: page in cache!")); 551 KASSERT(!VM_PAGE_IS_FREE(m), 552 ("vm_page_dirty: page is free!")); 553 m->dirty = VM_PAGE_BITS_ALL; 554 } 555 556 /* 557 * vm_page_splay: 558 * 559 * Implements Sleator and Tarjan's top-down splay algorithm. Returns 560 * the vm_page containing the given pindex. If, however, that 561 * pindex is not found in the vm_object, returns a vm_page that is 562 * adjacent to the pindex, coming before or after it. 563 */ 564 vm_page_t 565 vm_page_splay(vm_pindex_t pindex, vm_page_t root) 566 { 567 struct vm_page dummy; 568 vm_page_t lefttreemax, righttreemin, y; 569 570 if (root == NULL) 571 return (root); 572 lefttreemax = righttreemin = &dummy; 573 for (;; root = y) { 574 if (pindex < root->pindex) { 575 if ((y = root->left) == NULL) 576 break; 577 if (pindex < y->pindex) { 578 /* Rotate right. */ 579 root->left = y->right; 580 y->right = root; 581 root = y; 582 if ((y = root->left) == NULL) 583 break; 584 } 585 /* Link into the new root's right tree. */ 586 righttreemin->left = root; 587 righttreemin = root; 588 } else if (pindex > root->pindex) { 589 if ((y = root->right) == NULL) 590 break; 591 if (pindex > y->pindex) { 592 /* Rotate left. */ 593 root->right = y->left; 594 y->left = root; 595 root = y; 596 if ((y = root->right) == NULL) 597 break; 598 } 599 /* Link into the new root's left tree. */ 600 lefttreemax->right = root; 601 lefttreemax = root; 602 } else 603 break; 604 } 605 /* Assemble the new root. */ 606 lefttreemax->right = root->left; 607 righttreemin->left = root->right; 608 root->left = dummy.right; 609 root->right = dummy.left; 610 return (root); 611 } 612 613 /* 614 * vm_page_insert: [ internal use only ] 615 * 616 * Inserts the given mem entry into the object and object list. 617 * 618 * The pagetables are not updated but will presumably fault the page 619 * in if necessary, or if a kernel page the caller will at some point 620 * enter the page into the kernel's pmap. We are not allowed to block 621 * here so we *can't* do this anyway. 622 * 623 * The object and page must be locked. 624 * This routine may not block. 625 */ 626 void 627 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 628 { 629 vm_page_t root; 630 631 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 632 if (m->object != NULL) 633 panic("vm_page_insert: page already inserted"); 634 635 /* 636 * Record the object/offset pair in this page 637 */ 638 m->object = object; 639 m->pindex = pindex; 640 641 /* 642 * Now link into the object's ordered list of backed pages. 643 */ 644 root = object->root; 645 if (root == NULL) { 646 m->left = NULL; 647 m->right = NULL; 648 TAILQ_INSERT_TAIL(&object->memq, m, listq); 649 } else { 650 root = vm_page_splay(pindex, root); 651 if (pindex < root->pindex) { 652 m->left = root->left; 653 m->right = root; 654 root->left = NULL; 655 TAILQ_INSERT_BEFORE(root, m, listq); 656 } else if (pindex == root->pindex) 657 panic("vm_page_insert: offset already allocated"); 658 else { 659 m->right = root->right; 660 m->left = root; 661 root->right = NULL; 662 TAILQ_INSERT_AFTER(&object->memq, root, m, listq); 663 } 664 } 665 object->root = m; 666 object->generation++; 667 668 /* 669 * show that the object has one more resident page. 670 */ 671 object->resident_page_count++; 672 /* 673 * Hold the vnode until the last page is released. 674 */ 675 if (object->resident_page_count == 1 && object->type == OBJT_VNODE) 676 vhold((struct vnode *)object->handle); 677 678 /* 679 * Since we are inserting a new and possibly dirty page, 680 * update the object's OBJ_MIGHTBEDIRTY flag. 681 */ 682 if (m->flags & PG_WRITEABLE) 683 vm_object_set_writeable_dirty(object); 684 } 685 686 /* 687 * vm_page_remove: 688 * NOTE: used by device pager as well -wfj 689 * 690 * Removes the given mem entry from the object/offset-page 691 * table and the object page list, but do not invalidate/terminate 692 * the backing store. 693 * 694 * The object and page must be locked. 695 * The underlying pmap entry (if any) is NOT removed here. 696 * This routine may not block. 697 */ 698 void 699 vm_page_remove(vm_page_t m) 700 { 701 vm_object_t object; 702 vm_page_t root; 703 704 if ((object = m->object) == NULL) 705 return; 706 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 707 if (m->oflags & VPO_BUSY) { 708 m->oflags &= ~VPO_BUSY; 709 vm_page_flash(m); 710 } 711 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 712 713 /* 714 * Now remove from the object's list of backed pages. 715 */ 716 if (m != object->root) 717 vm_page_splay(m->pindex, object->root); 718 if (m->left == NULL) 719 root = m->right; 720 else { 721 root = vm_page_splay(m->pindex, m->left); 722 root->right = m->right; 723 } 724 object->root = root; 725 TAILQ_REMOVE(&object->memq, m, listq); 726 727 /* 728 * And show that the object has one fewer resident page. 729 */ 730 object->resident_page_count--; 731 object->generation++; 732 /* 733 * The vnode may now be recycled. 734 */ 735 if (object->resident_page_count == 0 && object->type == OBJT_VNODE) 736 vdrop((struct vnode *)object->handle); 737 738 m->object = NULL; 739 } 740 741 /* 742 * vm_page_lookup: 743 * 744 * Returns the page associated with the object/offset 745 * pair specified; if none is found, NULL is returned. 746 * 747 * The object must be locked. 748 * This routine may not block. 749 * This is a critical path routine 750 */ 751 vm_page_t 752 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 753 { 754 vm_page_t m; 755 756 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 757 if ((m = object->root) != NULL && m->pindex != pindex) { 758 m = vm_page_splay(pindex, m); 759 if ((object->root = m)->pindex != pindex) 760 m = NULL; 761 } 762 return (m); 763 } 764 765 /* 766 * vm_page_rename: 767 * 768 * Move the given memory entry from its 769 * current object to the specified target object/offset. 770 * 771 * The object must be locked. 772 * This routine may not block. 773 * 774 * Note: swap associated with the page must be invalidated by the move. We 775 * have to do this for several reasons: (1) we aren't freeing the 776 * page, (2) we are dirtying the page, (3) the VM system is probably 777 * moving the page from object A to B, and will then later move 778 * the backing store from A to B and we can't have a conflict. 779 * 780 * Note: we *always* dirty the page. It is necessary both for the 781 * fact that we moved it, and because we may be invalidating 782 * swap. If the page is on the cache, we have to deactivate it 783 * or vm_page_dirty() will panic. Dirty pages are not allowed 784 * on the cache. 785 */ 786 void 787 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 788 { 789 790 vm_page_remove(m); 791 vm_page_insert(m, new_object, new_pindex); 792 vm_page_dirty(m); 793 } 794 795 /* 796 * Convert all of the given object's cached pages that have a 797 * pindex within the given range into free pages. If the value 798 * zero is given for "end", then the range's upper bound is 799 * infinity. If the given object is backed by a vnode and it 800 * transitions from having one or more cached pages to none, the 801 * vnode's hold count is reduced. 802 */ 803 void 804 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 805 { 806 vm_page_t m, m_next; 807 boolean_t empty; 808 809 mtx_lock(&vm_page_queue_free_mtx); 810 if (__predict_false(object->cache == NULL)) { 811 mtx_unlock(&vm_page_queue_free_mtx); 812 return; 813 } 814 m = object->cache = vm_page_splay(start, object->cache); 815 if (m->pindex < start) { 816 if (m->right == NULL) 817 m = NULL; 818 else { 819 m_next = vm_page_splay(start, m->right); 820 m_next->left = m; 821 m->right = NULL; 822 m = object->cache = m_next; 823 } 824 } 825 826 /* 827 * At this point, "m" is either (1) a reference to the page 828 * with the least pindex that is greater than or equal to 829 * "start" or (2) NULL. 830 */ 831 for (; m != NULL && (m->pindex < end || end == 0); m = m_next) { 832 /* 833 * Find "m"'s successor and remove "m" from the 834 * object's cache. 835 */ 836 if (m->right == NULL) { 837 object->cache = m->left; 838 m_next = NULL; 839 } else { 840 m_next = vm_page_splay(start, m->right); 841 m_next->left = m->left; 842 object->cache = m_next; 843 } 844 /* Convert "m" to a free page. */ 845 m->object = NULL; 846 m->valid = 0; 847 /* Clear PG_CACHED and set PG_FREE. */ 848 m->flags ^= PG_CACHED | PG_FREE; 849 KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE, 850 ("vm_page_cache_free: page %p has inconsistent flags", m)); 851 cnt.v_cache_count--; 852 cnt.v_free_count++; 853 } 854 empty = object->cache == NULL; 855 mtx_unlock(&vm_page_queue_free_mtx); 856 if (object->type == OBJT_VNODE && empty) 857 vdrop(object->handle); 858 } 859 860 /* 861 * Returns the cached page that is associated with the given 862 * object and offset. If, however, none exists, returns NULL. 863 * 864 * The free page queue must be locked. 865 */ 866 static inline vm_page_t 867 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex) 868 { 869 vm_page_t m; 870 871 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 872 if ((m = object->cache) != NULL && m->pindex != pindex) { 873 m = vm_page_splay(pindex, m); 874 if ((object->cache = m)->pindex != pindex) 875 m = NULL; 876 } 877 return (m); 878 } 879 880 /* 881 * Remove the given cached page from its containing object's 882 * collection of cached pages. 883 * 884 * The free page queue must be locked. 885 */ 886 void 887 vm_page_cache_remove(vm_page_t m) 888 { 889 vm_object_t object; 890 vm_page_t root; 891 892 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 893 KASSERT((m->flags & PG_CACHED) != 0, 894 ("vm_page_cache_remove: page %p is not cached", m)); 895 object = m->object; 896 if (m != object->cache) { 897 root = vm_page_splay(m->pindex, object->cache); 898 KASSERT(root == m, 899 ("vm_page_cache_remove: page %p is not cached in object %p", 900 m, object)); 901 } 902 if (m->left == NULL) 903 root = m->right; 904 else if (m->right == NULL) 905 root = m->left; 906 else { 907 root = vm_page_splay(m->pindex, m->left); 908 root->right = m->right; 909 } 910 object->cache = root; 911 m->object = NULL; 912 cnt.v_cache_count--; 913 } 914 915 /* 916 * Transfer all of the cached pages with offset greater than or 917 * equal to 'offidxstart' from the original object's cache to the 918 * new object's cache. However, any cached pages with offset 919 * greater than or equal to the new object's size are kept in the 920 * original object. Initially, the new object's cache must be 921 * empty. Offset 'offidxstart' in the original object must 922 * correspond to offset zero in the new object. 923 * 924 * The new object must be locked. 925 */ 926 void 927 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart, 928 vm_object_t new_object) 929 { 930 vm_page_t m, m_next; 931 932 /* 933 * Insertion into an object's collection of cached pages 934 * requires the object to be locked. In contrast, removal does 935 * not. 936 */ 937 VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED); 938 KASSERT(new_object->cache == NULL, 939 ("vm_page_cache_transfer: object %p has cached pages", 940 new_object)); 941 mtx_lock(&vm_page_queue_free_mtx); 942 if ((m = orig_object->cache) != NULL) { 943 /* 944 * Transfer all of the pages with offset greater than or 945 * equal to 'offidxstart' from the original object's 946 * cache to the new object's cache. 947 */ 948 m = vm_page_splay(offidxstart, m); 949 if (m->pindex < offidxstart) { 950 orig_object->cache = m; 951 new_object->cache = m->right; 952 m->right = NULL; 953 } else { 954 orig_object->cache = m->left; 955 new_object->cache = m; 956 m->left = NULL; 957 } 958 while ((m = new_object->cache) != NULL) { 959 if ((m->pindex - offidxstart) >= new_object->size) { 960 /* 961 * Return all of the cached pages with 962 * offset greater than or equal to the 963 * new object's size to the original 964 * object's cache. 965 */ 966 new_object->cache = m->left; 967 m->left = orig_object->cache; 968 orig_object->cache = m; 969 break; 970 } 971 m_next = vm_page_splay(m->pindex, m->right); 972 /* Update the page's object and offset. */ 973 m->object = new_object; 974 m->pindex -= offidxstart; 975 if (m_next == NULL) 976 break; 977 m->right = NULL; 978 m_next->left = m; 979 new_object->cache = m_next; 980 } 981 KASSERT(new_object->cache == NULL || 982 new_object->type == OBJT_SWAP, 983 ("vm_page_cache_transfer: object %p's type is incompatible" 984 " with cached pages", new_object)); 985 } 986 mtx_unlock(&vm_page_queue_free_mtx); 987 } 988 989 /* 990 * vm_page_alloc: 991 * 992 * Allocate and return a memory cell associated 993 * with this VM object/offset pair. 994 * 995 * page_req classes: 996 * VM_ALLOC_NORMAL normal process request 997 * VM_ALLOC_SYSTEM system *really* needs a page 998 * VM_ALLOC_INTERRUPT interrupt time request 999 * VM_ALLOC_ZERO zero page 1000 * 1001 * This routine may not block. 1002 */ 1003 vm_page_t 1004 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 1005 { 1006 struct vnode *vp = NULL; 1007 vm_object_t m_object; 1008 vm_page_t m; 1009 int flags, page_req; 1010 1011 page_req = req & VM_ALLOC_CLASS_MASK; 1012 KASSERT(curthread->td_intr_nesting_level == 0 || 1013 page_req == VM_ALLOC_INTERRUPT, 1014 ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context")); 1015 1016 if ((req & VM_ALLOC_NOOBJ) == 0) { 1017 KASSERT(object != NULL, 1018 ("vm_page_alloc: NULL object.")); 1019 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1020 } 1021 1022 /* 1023 * The pager is allowed to eat deeper into the free page list. 1024 */ 1025 if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) { 1026 page_req = VM_ALLOC_SYSTEM; 1027 }; 1028 1029 mtx_lock(&vm_page_queue_free_mtx); 1030 if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved || 1031 (page_req == VM_ALLOC_SYSTEM && 1032 cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) || 1033 (page_req == VM_ALLOC_INTERRUPT && 1034 cnt.v_free_count + cnt.v_cache_count > 0)) { 1035 /* 1036 * Allocate from the free queue if the number of free pages 1037 * exceeds the minimum for the request class. 1038 */ 1039 if (object != NULL && 1040 (m = vm_page_cache_lookup(object, pindex)) != NULL) { 1041 if ((req & VM_ALLOC_IFNOTCACHED) != 0) { 1042 mtx_unlock(&vm_page_queue_free_mtx); 1043 return (NULL); 1044 } 1045 if (vm_phys_unfree_page(m)) 1046 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0); 1047 #if VM_NRESERVLEVEL > 0 1048 else if (!vm_reserv_reactivate_page(m)) 1049 #else 1050 else 1051 #endif 1052 panic("vm_page_alloc: cache page %p is missing" 1053 " from the free queue", m); 1054 } else if ((req & VM_ALLOC_IFCACHED) != 0) { 1055 mtx_unlock(&vm_page_queue_free_mtx); 1056 return (NULL); 1057 #if VM_NRESERVLEVEL > 0 1058 } else if (object == NULL || 1059 (object->flags & OBJ_COLORED) == 0 || 1060 (m = vm_reserv_alloc_page(object, pindex)) == NULL) { 1061 #else 1062 } else { 1063 #endif 1064 m = vm_phys_alloc_pages(object != NULL ? 1065 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0); 1066 #if VM_NRESERVLEVEL > 0 1067 if (m == NULL && vm_reserv_reclaim()) { 1068 m = vm_phys_alloc_pages(object != NULL ? 1069 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 1070 0); 1071 } 1072 #endif 1073 } 1074 } else { 1075 /* 1076 * Not allocatable, give up. 1077 */ 1078 mtx_unlock(&vm_page_queue_free_mtx); 1079 atomic_add_int(&vm_pageout_deficit, 1); 1080 pagedaemon_wakeup(); 1081 return (NULL); 1082 } 1083 1084 /* 1085 * At this point we had better have found a good page. 1086 */ 1087 1088 KASSERT( 1089 m != NULL, 1090 ("vm_page_alloc(): missing page on free queue") 1091 ); 1092 if ((m->flags & PG_CACHED) != 0) { 1093 KASSERT(m->valid != 0, 1094 ("vm_page_alloc: cached page %p is invalid", m)); 1095 if (m->object == object && m->pindex == pindex) 1096 cnt.v_reactivated++; 1097 else 1098 m->valid = 0; 1099 m_object = m->object; 1100 vm_page_cache_remove(m); 1101 if (m_object->type == OBJT_VNODE && m_object->cache == NULL) 1102 vp = m_object->handle; 1103 } else { 1104 KASSERT(VM_PAGE_IS_FREE(m), 1105 ("vm_page_alloc: page %p is not free", m)); 1106 KASSERT(m->valid == 0, 1107 ("vm_page_alloc: free page %p is valid", m)); 1108 cnt.v_free_count--; 1109 } 1110 1111 /* 1112 * Initialize structure. Only the PG_ZERO flag is inherited. 1113 */ 1114 flags = 0; 1115 if (m->flags & PG_ZERO) { 1116 vm_page_zero_count--; 1117 if (req & VM_ALLOC_ZERO) 1118 flags = PG_ZERO; 1119 } 1120 if (object == NULL || object->type == OBJT_PHYS) 1121 flags |= PG_UNMANAGED; 1122 m->flags = flags; 1123 if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ)) 1124 m->oflags = 0; 1125 else 1126 m->oflags = VPO_BUSY; 1127 if (req & VM_ALLOC_WIRED) { 1128 atomic_add_int(&cnt.v_wire_count, 1); 1129 m->wire_count = 1; 1130 } else 1131 m->wire_count = 0; 1132 m->hold_count = 0; 1133 m->act_count = 0; 1134 m->busy = 0; 1135 KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m)); 1136 mtx_unlock(&vm_page_queue_free_mtx); 1137 1138 if ((req & VM_ALLOC_NOOBJ) == 0) 1139 vm_page_insert(m, object, pindex); 1140 else 1141 m->pindex = pindex; 1142 1143 /* 1144 * The following call to vdrop() must come after the above call 1145 * to vm_page_insert() in case both affect the same object and 1146 * vnode. Otherwise, the affected vnode's hold count could 1147 * temporarily become zero. 1148 */ 1149 if (vp != NULL) 1150 vdrop(vp); 1151 1152 /* 1153 * Don't wakeup too often - wakeup the pageout daemon when 1154 * we would be nearly out of memory. 1155 */ 1156 if (vm_paging_needed()) 1157 pagedaemon_wakeup(); 1158 1159 return (m); 1160 } 1161 1162 /* 1163 * vm_wait: (also see VM_WAIT macro) 1164 * 1165 * Block until free pages are available for allocation 1166 * - Called in various places before memory allocations. 1167 */ 1168 void 1169 vm_wait(void) 1170 { 1171 1172 mtx_lock(&vm_page_queue_free_mtx); 1173 if (curproc == pageproc) { 1174 vm_pageout_pages_needed = 1; 1175 msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx, 1176 PDROP | PSWP, "VMWait", 0); 1177 } else { 1178 if (!vm_pages_needed) { 1179 vm_pages_needed = 1; 1180 wakeup(&vm_pages_needed); 1181 } 1182 msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM, 1183 "vmwait", 0); 1184 } 1185 } 1186 1187 /* 1188 * vm_waitpfault: (also see VM_WAITPFAULT macro) 1189 * 1190 * Block until free pages are available for allocation 1191 * - Called only in vm_fault so that processes page faulting 1192 * can be easily tracked. 1193 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 1194 * processes will be able to grab memory first. Do not change 1195 * this balance without careful testing first. 1196 */ 1197 void 1198 vm_waitpfault(void) 1199 { 1200 1201 mtx_lock(&vm_page_queue_free_mtx); 1202 if (!vm_pages_needed) { 1203 vm_pages_needed = 1; 1204 wakeup(&vm_pages_needed); 1205 } 1206 msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER, 1207 "pfault", 0); 1208 } 1209 1210 /* 1211 * vm_page_activate: 1212 * 1213 * Put the specified page on the active list (if appropriate). 1214 * Ensure that act_count is at least ACT_INIT but do not otherwise 1215 * mess with it. 1216 * 1217 * The page queues must be locked. 1218 * This routine may not block. 1219 */ 1220 void 1221 vm_page_activate(vm_page_t m) 1222 { 1223 1224 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1225 if (VM_PAGE_GETKNOWNQUEUE2(m) != PQ_ACTIVE) { 1226 vm_pageq_remove(m); 1227 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1228 if (m->act_count < ACT_INIT) 1229 m->act_count = ACT_INIT; 1230 vm_pageq_enqueue(PQ_ACTIVE, m); 1231 } 1232 } else { 1233 if (m->act_count < ACT_INIT) 1234 m->act_count = ACT_INIT; 1235 } 1236 } 1237 1238 /* 1239 * vm_page_free_wakeup: 1240 * 1241 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 1242 * routine is called when a page has been added to the cache or free 1243 * queues. 1244 * 1245 * The page queues must be locked. 1246 * This routine may not block. 1247 */ 1248 static inline void 1249 vm_page_free_wakeup(void) 1250 { 1251 1252 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1253 /* 1254 * if pageout daemon needs pages, then tell it that there are 1255 * some free. 1256 */ 1257 if (vm_pageout_pages_needed && 1258 cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) { 1259 wakeup(&vm_pageout_pages_needed); 1260 vm_pageout_pages_needed = 0; 1261 } 1262 /* 1263 * wakeup processes that are waiting on memory if we hit a 1264 * high water mark. And wakeup scheduler process if we have 1265 * lots of memory. this process will swapin processes. 1266 */ 1267 if (vm_pages_needed && !vm_page_count_min()) { 1268 vm_pages_needed = 0; 1269 wakeup(&cnt.v_free_count); 1270 } 1271 } 1272 1273 /* 1274 * vm_page_free_toq: 1275 * 1276 * Returns the given page to the free list, 1277 * disassociating it with any VM object. 1278 * 1279 * Object and page must be locked prior to entry. 1280 * This routine may not block. 1281 */ 1282 1283 void 1284 vm_page_free_toq(vm_page_t m) 1285 { 1286 1287 if (VM_PAGE_GETQUEUE(m) != PQ_NONE) 1288 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1289 KASSERT(!pmap_page_is_mapped(m), 1290 ("vm_page_free_toq: freeing mapped page %p", m)); 1291 PCPU_INC(cnt.v_tfree); 1292 1293 if (m->busy || VM_PAGE_IS_FREE(m)) { 1294 printf( 1295 "vm_page_free: pindex(%lu), busy(%d), VPO_BUSY(%d), hold(%d)\n", 1296 (u_long)m->pindex, m->busy, (m->oflags & VPO_BUSY) ? 1 : 0, 1297 m->hold_count); 1298 if (VM_PAGE_IS_FREE(m)) 1299 panic("vm_page_free: freeing free page"); 1300 else 1301 panic("vm_page_free: freeing busy page"); 1302 } 1303 1304 /* 1305 * unqueue, then remove page. Note that we cannot destroy 1306 * the page here because we do not want to call the pager's 1307 * callback routine until after we've put the page on the 1308 * appropriate free queue. 1309 */ 1310 vm_pageq_remove(m); 1311 vm_page_remove(m); 1312 1313 /* 1314 * If fictitious remove object association and 1315 * return, otherwise delay object association removal. 1316 */ 1317 if ((m->flags & PG_FICTITIOUS) != 0) { 1318 return; 1319 } 1320 1321 m->valid = 0; 1322 vm_page_undirty(m); 1323 1324 if (m->wire_count != 0) { 1325 if (m->wire_count > 1) { 1326 panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx", 1327 m->wire_count, (long)m->pindex); 1328 } 1329 panic("vm_page_free: freeing wired page"); 1330 } 1331 if (m->hold_count != 0) { 1332 m->flags &= ~PG_ZERO; 1333 vm_pageq_enqueue(PQ_HOLD, m); 1334 } else { 1335 mtx_lock(&vm_page_queue_free_mtx); 1336 m->flags |= PG_FREE; 1337 cnt.v_free_count++; 1338 #if VM_NRESERVLEVEL > 0 1339 if (!vm_reserv_free_page(m)) 1340 #else 1341 if (TRUE) 1342 #endif 1343 vm_phys_free_pages(m, 0); 1344 if ((m->flags & PG_ZERO) != 0) 1345 ++vm_page_zero_count; 1346 else 1347 vm_page_zero_idle_wakeup(); 1348 vm_page_free_wakeup(); 1349 mtx_unlock(&vm_page_queue_free_mtx); 1350 } 1351 } 1352 1353 /* 1354 * vm_page_wire: 1355 * 1356 * Mark this page as wired down by yet 1357 * another map, removing it from paging queues 1358 * as necessary. 1359 * 1360 * The page queues must be locked. 1361 * This routine may not block. 1362 */ 1363 void 1364 vm_page_wire(vm_page_t m) 1365 { 1366 1367 /* 1368 * Only bump the wire statistics if the page is not already wired, 1369 * and only unqueue the page if it is on some queue (if it is unmanaged 1370 * it is already off the queues). 1371 */ 1372 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1373 if (m->flags & PG_FICTITIOUS) 1374 return; 1375 if (m->wire_count == 0) { 1376 if ((m->flags & PG_UNMANAGED) == 0) 1377 vm_pageq_remove(m); 1378 atomic_add_int(&cnt.v_wire_count, 1); 1379 } 1380 m->wire_count++; 1381 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 1382 } 1383 1384 /* 1385 * vm_page_unwire: 1386 * 1387 * Release one wiring of this page, potentially 1388 * enabling it to be paged again. 1389 * 1390 * Many pages placed on the inactive queue should actually go 1391 * into the cache, but it is difficult to figure out which. What 1392 * we do instead, if the inactive target is well met, is to put 1393 * clean pages at the head of the inactive queue instead of the tail. 1394 * This will cause them to be moved to the cache more quickly and 1395 * if not actively re-referenced, freed more quickly. If we just 1396 * stick these pages at the end of the inactive queue, heavy filesystem 1397 * meta-data accesses can cause an unnecessary paging load on memory bound 1398 * processes. This optimization causes one-time-use metadata to be 1399 * reused more quickly. 1400 * 1401 * BUT, if we are in a low-memory situation we have no choice but to 1402 * put clean pages on the cache queue. 1403 * 1404 * A number of routines use vm_page_unwire() to guarantee that the page 1405 * will go into either the inactive or active queues, and will NEVER 1406 * be placed in the cache - for example, just after dirtying a page. 1407 * dirty pages in the cache are not allowed. 1408 * 1409 * The page queues must be locked. 1410 * This routine may not block. 1411 */ 1412 void 1413 vm_page_unwire(vm_page_t m, int activate) 1414 { 1415 1416 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1417 if (m->flags & PG_FICTITIOUS) 1418 return; 1419 if (m->wire_count > 0) { 1420 m->wire_count--; 1421 if (m->wire_count == 0) { 1422 atomic_subtract_int(&cnt.v_wire_count, 1); 1423 if (m->flags & PG_UNMANAGED) { 1424 ; 1425 } else if (activate) 1426 vm_pageq_enqueue(PQ_ACTIVE, m); 1427 else { 1428 vm_page_flag_clear(m, PG_WINATCFLS); 1429 vm_pageq_enqueue(PQ_INACTIVE, m); 1430 } 1431 } 1432 } else { 1433 panic("vm_page_unwire: invalid wire count: %d", m->wire_count); 1434 } 1435 } 1436 1437 1438 /* 1439 * Move the specified page to the inactive queue. If the page has 1440 * any associated swap, the swap is deallocated. 1441 * 1442 * Normally athead is 0 resulting in LRU operation. athead is set 1443 * to 1 if we want this page to be 'as if it were placed in the cache', 1444 * except without unmapping it from the process address space. 1445 * 1446 * This routine may not block. 1447 */ 1448 static inline void 1449 _vm_page_deactivate(vm_page_t m, int athead) 1450 { 1451 1452 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1453 1454 /* 1455 * Ignore if already inactive. 1456 */ 1457 if (VM_PAGE_INQUEUE2(m, PQ_INACTIVE)) 1458 return; 1459 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1460 vm_page_flag_clear(m, PG_WINATCFLS); 1461 vm_pageq_remove(m); 1462 if (athead) 1463 TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1464 else 1465 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1466 VM_PAGE_SETQUEUE2(m, PQ_INACTIVE); 1467 cnt.v_inactive_count++; 1468 } 1469 } 1470 1471 void 1472 vm_page_deactivate(vm_page_t m) 1473 { 1474 _vm_page_deactivate(m, 0); 1475 } 1476 1477 /* 1478 * vm_page_try_to_cache: 1479 * 1480 * Returns 0 on failure, 1 on success 1481 */ 1482 int 1483 vm_page_try_to_cache(vm_page_t m) 1484 { 1485 1486 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1487 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1488 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1489 (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) { 1490 return (0); 1491 } 1492 pmap_remove_all(m); 1493 if (m->dirty) 1494 return (0); 1495 vm_page_cache(m); 1496 return (1); 1497 } 1498 1499 /* 1500 * vm_page_try_to_free() 1501 * 1502 * Attempt to free the page. If we cannot free it, we do nothing. 1503 * 1 is returned on success, 0 on failure. 1504 */ 1505 int 1506 vm_page_try_to_free(vm_page_t m) 1507 { 1508 1509 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1510 if (m->object != NULL) 1511 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1512 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1513 (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) { 1514 return (0); 1515 } 1516 pmap_remove_all(m); 1517 if (m->dirty) 1518 return (0); 1519 vm_page_free(m); 1520 return (1); 1521 } 1522 1523 /* 1524 * vm_page_cache 1525 * 1526 * Put the specified page onto the page cache queue (if appropriate). 1527 * 1528 * This routine may not block. 1529 */ 1530 void 1531 vm_page_cache(vm_page_t m) 1532 { 1533 vm_object_t object; 1534 vm_page_t root; 1535 1536 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1537 object = m->object; 1538 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1539 if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy || 1540 m->hold_count || m->wire_count) { 1541 panic("vm_page_cache: attempting to cache busy page"); 1542 } 1543 pmap_remove_all(m); 1544 if (m->dirty != 0) 1545 panic("vm_page_cache: page %p is dirty", m); 1546 if (m->valid == 0 || object->type == OBJT_DEFAULT || 1547 (object->type == OBJT_SWAP && 1548 !vm_pager_has_page(object, m->pindex, NULL, NULL))) { 1549 /* 1550 * Hypothesis: A cache-elgible page belonging to a 1551 * default object or swap object but without a backing 1552 * store must be zero filled. 1553 */ 1554 vm_page_free(m); 1555 return; 1556 } 1557 KASSERT((m->flags & PG_CACHED) == 0, 1558 ("vm_page_cache: page %p is already cached", m)); 1559 cnt.v_tcached++; 1560 1561 /* 1562 * Remove the page from the paging queues. 1563 */ 1564 vm_pageq_remove(m); 1565 1566 /* 1567 * Remove the page from the object's collection of resident 1568 * pages. 1569 */ 1570 if (m != object->root) 1571 vm_page_splay(m->pindex, object->root); 1572 if (m->left == NULL) 1573 root = m->right; 1574 else { 1575 root = vm_page_splay(m->pindex, m->left); 1576 root->right = m->right; 1577 } 1578 object->root = root; 1579 TAILQ_REMOVE(&object->memq, m, listq); 1580 object->resident_page_count--; 1581 object->generation++; 1582 1583 /* 1584 * Insert the page into the object's collection of cached pages 1585 * and the physical memory allocator's cache/free page queues. 1586 */ 1587 vm_page_flag_clear(m, PG_ZERO); 1588 mtx_lock(&vm_page_queue_free_mtx); 1589 m->flags |= PG_CACHED; 1590 cnt.v_cache_count++; 1591 root = object->cache; 1592 if (root == NULL) { 1593 m->left = NULL; 1594 m->right = NULL; 1595 } else { 1596 root = vm_page_splay(m->pindex, root); 1597 if (m->pindex < root->pindex) { 1598 m->left = root->left; 1599 m->right = root; 1600 root->left = NULL; 1601 } else if (__predict_false(m->pindex == root->pindex)) 1602 panic("vm_page_cache: offset already cached"); 1603 else { 1604 m->right = root->right; 1605 m->left = root; 1606 root->right = NULL; 1607 } 1608 } 1609 object->cache = m; 1610 #if VM_NRESERVLEVEL > 0 1611 if (!vm_reserv_free_page(m)) { 1612 #else 1613 if (TRUE) { 1614 #endif 1615 vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0); 1616 vm_phys_free_pages(m, 0); 1617 } 1618 vm_page_free_wakeup(); 1619 mtx_unlock(&vm_page_queue_free_mtx); 1620 1621 /* 1622 * Increment the vnode's hold count if this is the object's only 1623 * cached page. Decrement the vnode's hold count if this was 1624 * the object's only resident page. 1625 */ 1626 if (object->type == OBJT_VNODE) { 1627 if (root == NULL && object->resident_page_count != 0) 1628 vhold(object->handle); 1629 else if (root != NULL && object->resident_page_count == 0) 1630 vdrop(object->handle); 1631 } 1632 } 1633 1634 /* 1635 * vm_page_dontneed 1636 * 1637 * Cache, deactivate, or do nothing as appropriate. This routine 1638 * is typically used by madvise() MADV_DONTNEED. 1639 * 1640 * Generally speaking we want to move the page into the cache so 1641 * it gets reused quickly. However, this can result in a silly syndrome 1642 * due to the page recycling too quickly. Small objects will not be 1643 * fully cached. On the otherhand, if we move the page to the inactive 1644 * queue we wind up with a problem whereby very large objects 1645 * unnecessarily blow away our inactive and cache queues. 1646 * 1647 * The solution is to move the pages based on a fixed weighting. We 1648 * either leave them alone, deactivate them, or move them to the cache, 1649 * where moving them to the cache has the highest weighting. 1650 * By forcing some pages into other queues we eventually force the 1651 * system to balance the queues, potentially recovering other unrelated 1652 * space from active. The idea is to not force this to happen too 1653 * often. 1654 */ 1655 void 1656 vm_page_dontneed(vm_page_t m) 1657 { 1658 static int dnweight; 1659 int dnw; 1660 int head; 1661 1662 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1663 dnw = ++dnweight; 1664 1665 /* 1666 * occassionally leave the page alone 1667 */ 1668 if ((dnw & 0x01F0) == 0 || 1669 VM_PAGE_INQUEUE2(m, PQ_INACTIVE)) { 1670 if (m->act_count >= ACT_INIT) 1671 --m->act_count; 1672 return; 1673 } 1674 1675 if (m->dirty == 0 && pmap_is_modified(m)) 1676 vm_page_dirty(m); 1677 1678 if (m->dirty || (dnw & 0x0070) == 0) { 1679 /* 1680 * Deactivate the page 3 times out of 32. 1681 */ 1682 head = 0; 1683 } else { 1684 /* 1685 * Cache the page 28 times out of every 32. Note that 1686 * the page is deactivated instead of cached, but placed 1687 * at the head of the queue instead of the tail. 1688 */ 1689 head = 1; 1690 } 1691 _vm_page_deactivate(m, head); 1692 } 1693 1694 /* 1695 * Grab a page, waiting until we are waken up due to the page 1696 * changing state. We keep on waiting, if the page continues 1697 * to be in the object. If the page doesn't exist, first allocate it 1698 * and then conditionally zero it. 1699 * 1700 * This routine may block. 1701 */ 1702 vm_page_t 1703 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 1704 { 1705 vm_page_t m; 1706 1707 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1708 retrylookup: 1709 if ((m = vm_page_lookup(object, pindex)) != NULL) { 1710 if (vm_page_sleep_if_busy(m, TRUE, "pgrbwt")) { 1711 if ((allocflags & VM_ALLOC_RETRY) == 0) 1712 return (NULL); 1713 goto retrylookup; 1714 } else { 1715 if ((allocflags & VM_ALLOC_WIRED) != 0) { 1716 vm_page_lock_queues(); 1717 vm_page_wire(m); 1718 vm_page_unlock_queues(); 1719 } 1720 if ((allocflags & VM_ALLOC_NOBUSY) == 0) 1721 vm_page_busy(m); 1722 return (m); 1723 } 1724 } 1725 m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY); 1726 if (m == NULL) { 1727 VM_OBJECT_UNLOCK(object); 1728 VM_WAIT; 1729 VM_OBJECT_LOCK(object); 1730 if ((allocflags & VM_ALLOC_RETRY) == 0) 1731 return (NULL); 1732 goto retrylookup; 1733 } else if (m->valid != 0) 1734 return (m); 1735 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 1736 pmap_zero_page(m); 1737 return (m); 1738 } 1739 1740 /* 1741 * Mapping function for valid bits or for dirty bits in 1742 * a page. May not block. 1743 * 1744 * Inputs are required to range within a page. 1745 */ 1746 int 1747 vm_page_bits(int base, int size) 1748 { 1749 int first_bit; 1750 int last_bit; 1751 1752 KASSERT( 1753 base + size <= PAGE_SIZE, 1754 ("vm_page_bits: illegal base/size %d/%d", base, size) 1755 ); 1756 1757 if (size == 0) /* handle degenerate case */ 1758 return (0); 1759 1760 first_bit = base >> DEV_BSHIFT; 1761 last_bit = (base + size - 1) >> DEV_BSHIFT; 1762 1763 return ((2 << last_bit) - (1 << first_bit)); 1764 } 1765 1766 /* 1767 * vm_page_set_validclean: 1768 * 1769 * Sets portions of a page valid and clean. The arguments are expected 1770 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 1771 * of any partial chunks touched by the range. The invalid portion of 1772 * such chunks will be zero'd. 1773 * 1774 * This routine may not block. 1775 * 1776 * (base + size) must be less then or equal to PAGE_SIZE. 1777 */ 1778 void 1779 vm_page_set_validclean(vm_page_t m, int base, int size) 1780 { 1781 int pagebits; 1782 int frag; 1783 int endoff; 1784 1785 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1786 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1787 if (size == 0) /* handle degenerate case */ 1788 return; 1789 1790 /* 1791 * If the base is not DEV_BSIZE aligned and the valid 1792 * bit is clear, we have to zero out a portion of the 1793 * first block. 1794 */ 1795 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 1796 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 1797 pmap_zero_page_area(m, frag, base - frag); 1798 1799 /* 1800 * If the ending offset is not DEV_BSIZE aligned and the 1801 * valid bit is clear, we have to zero out a portion of 1802 * the last block. 1803 */ 1804 endoff = base + size; 1805 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 1806 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 1807 pmap_zero_page_area(m, endoff, 1808 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 1809 1810 /* 1811 * Set valid, clear dirty bits. If validating the entire 1812 * page we can safely clear the pmap modify bit. We also 1813 * use this opportunity to clear the VPO_NOSYNC flag. If a process 1814 * takes a write fault on a MAP_NOSYNC memory area the flag will 1815 * be set again. 1816 * 1817 * We set valid bits inclusive of any overlap, but we can only 1818 * clear dirty bits for DEV_BSIZE chunks that are fully within 1819 * the range. 1820 */ 1821 pagebits = vm_page_bits(base, size); 1822 m->valid |= pagebits; 1823 #if 0 /* NOT YET */ 1824 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 1825 frag = DEV_BSIZE - frag; 1826 base += frag; 1827 size -= frag; 1828 if (size < 0) 1829 size = 0; 1830 } 1831 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 1832 #endif 1833 m->dirty &= ~pagebits; 1834 if (base == 0 && size == PAGE_SIZE) { 1835 pmap_clear_modify(m); 1836 m->oflags &= ~VPO_NOSYNC; 1837 } 1838 } 1839 1840 void 1841 vm_page_clear_dirty(vm_page_t m, int base, int size) 1842 { 1843 1844 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1845 m->dirty &= ~vm_page_bits(base, size); 1846 } 1847 1848 /* 1849 * vm_page_set_invalid: 1850 * 1851 * Invalidates DEV_BSIZE'd chunks within a page. Both the 1852 * valid and dirty bits for the effected areas are cleared. 1853 * 1854 * May not block. 1855 */ 1856 void 1857 vm_page_set_invalid(vm_page_t m, int base, int size) 1858 { 1859 int bits; 1860 1861 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1862 bits = vm_page_bits(base, size); 1863 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1864 if (m->valid == VM_PAGE_BITS_ALL && bits != 0) 1865 pmap_remove_all(m); 1866 m->valid &= ~bits; 1867 m->dirty &= ~bits; 1868 m->object->generation++; 1869 } 1870 1871 /* 1872 * vm_page_zero_invalid() 1873 * 1874 * The kernel assumes that the invalid portions of a page contain 1875 * garbage, but such pages can be mapped into memory by user code. 1876 * When this occurs, we must zero out the non-valid portions of the 1877 * page so user code sees what it expects. 1878 * 1879 * Pages are most often semi-valid when the end of a file is mapped 1880 * into memory and the file's size is not page aligned. 1881 */ 1882 void 1883 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 1884 { 1885 int b; 1886 int i; 1887 1888 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1889 /* 1890 * Scan the valid bits looking for invalid sections that 1891 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 1892 * valid bit may be set ) have already been zerod by 1893 * vm_page_set_validclean(). 1894 */ 1895 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 1896 if (i == (PAGE_SIZE / DEV_BSIZE) || 1897 (m->valid & (1 << i)) 1898 ) { 1899 if (i > b) { 1900 pmap_zero_page_area(m, 1901 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 1902 } 1903 b = i + 1; 1904 } 1905 } 1906 1907 /* 1908 * setvalid is TRUE when we can safely set the zero'd areas 1909 * as being valid. We can do this if there are no cache consistancy 1910 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 1911 */ 1912 if (setvalid) 1913 m->valid = VM_PAGE_BITS_ALL; 1914 } 1915 1916 /* 1917 * vm_page_is_valid: 1918 * 1919 * Is (partial) page valid? Note that the case where size == 0 1920 * will return FALSE in the degenerate case where the page is 1921 * entirely invalid, and TRUE otherwise. 1922 * 1923 * May not block. 1924 */ 1925 int 1926 vm_page_is_valid(vm_page_t m, int base, int size) 1927 { 1928 int bits = vm_page_bits(base, size); 1929 1930 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1931 if (m->valid && ((m->valid & bits) == bits)) 1932 return 1; 1933 else 1934 return 0; 1935 } 1936 1937 /* 1938 * update dirty bits from pmap/mmu. May not block. 1939 */ 1940 void 1941 vm_page_test_dirty(vm_page_t m) 1942 { 1943 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) { 1944 vm_page_dirty(m); 1945 } 1946 } 1947 1948 int so_zerocp_fullpage = 0; 1949 1950 /* 1951 * Replace the given page with a copy. The copied page assumes 1952 * the portion of the given page's "wire_count" that is not the 1953 * responsibility of this copy-on-write mechanism. 1954 * 1955 * The object containing the given page must have a non-zero 1956 * paging-in-progress count and be locked. 1957 */ 1958 void 1959 vm_page_cowfault(vm_page_t m) 1960 { 1961 vm_page_t mnew; 1962 vm_object_t object; 1963 vm_pindex_t pindex; 1964 1965 object = m->object; 1966 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1967 KASSERT(object->paging_in_progress != 0, 1968 ("vm_page_cowfault: object %p's paging-in-progress count is zero.", 1969 object)); 1970 pindex = m->pindex; 1971 1972 retry_alloc: 1973 pmap_remove_all(m); 1974 vm_page_remove(m); 1975 mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY); 1976 if (mnew == NULL) { 1977 vm_page_insert(m, object, pindex); 1978 vm_page_unlock_queues(); 1979 VM_OBJECT_UNLOCK(object); 1980 VM_WAIT; 1981 VM_OBJECT_LOCK(object); 1982 if (m == vm_page_lookup(object, pindex)) { 1983 vm_page_lock_queues(); 1984 goto retry_alloc; 1985 } else { 1986 /* 1987 * Page disappeared during the wait. 1988 */ 1989 vm_page_lock_queues(); 1990 return; 1991 } 1992 } 1993 1994 if (m->cow == 0) { 1995 /* 1996 * check to see if we raced with an xmit complete when 1997 * waiting to allocate a page. If so, put things back 1998 * the way they were 1999 */ 2000 vm_page_free(mnew); 2001 vm_page_insert(m, object, pindex); 2002 } else { /* clear COW & copy page */ 2003 if (!so_zerocp_fullpage) 2004 pmap_copy_page(m, mnew); 2005 mnew->valid = VM_PAGE_BITS_ALL; 2006 vm_page_dirty(mnew); 2007 mnew->wire_count = m->wire_count - m->cow; 2008 m->wire_count = m->cow; 2009 } 2010 } 2011 2012 void 2013 vm_page_cowclear(vm_page_t m) 2014 { 2015 2016 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 2017 if (m->cow) { 2018 m->cow--; 2019 /* 2020 * let vm_fault add back write permission lazily 2021 */ 2022 } 2023 /* 2024 * sf_buf_free() will free the page, so we needn't do it here 2025 */ 2026 } 2027 2028 void 2029 vm_page_cowsetup(vm_page_t m) 2030 { 2031 2032 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 2033 m->cow++; 2034 pmap_remove_write(m); 2035 } 2036 2037 #include "opt_ddb.h" 2038 #ifdef DDB 2039 #include <sys/kernel.h> 2040 2041 #include <ddb/ddb.h> 2042 2043 DB_SHOW_COMMAND(page, vm_page_print_page_info) 2044 { 2045 db_printf("cnt.v_free_count: %d\n", cnt.v_free_count); 2046 db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count); 2047 db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count); 2048 db_printf("cnt.v_active_count: %d\n", cnt.v_active_count); 2049 db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count); 2050 db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved); 2051 db_printf("cnt.v_free_min: %d\n", cnt.v_free_min); 2052 db_printf("cnt.v_free_target: %d\n", cnt.v_free_target); 2053 db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min); 2054 db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target); 2055 } 2056 2057 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 2058 { 2059 2060 db_printf("PQ_FREE:"); 2061 db_printf(" %d", cnt.v_free_count); 2062 db_printf("\n"); 2063 2064 db_printf("PQ_CACHE:"); 2065 db_printf(" %d", cnt.v_cache_count); 2066 db_printf("\n"); 2067 2068 db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n", 2069 *vm_page_queues[PQ_ACTIVE].cnt, 2070 *vm_page_queues[PQ_INACTIVE].cnt); 2071 } 2072 #endif /* DDB */ 2073