1 /*- 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * The Mach Operating System project at Carnegie-Mellon University. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 34 */ 35 36 /*- 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * GENERAL RULES ON VM_PAGE MANIPULATION 65 * 66 * - A page queue lock is required when adding or removing a page from a 67 * page queue regardless of other locks or the busy state of a page. 68 * 69 * * In general, no thread besides the page daemon can acquire or 70 * hold more than one page queue lock at a time. 71 * 72 * * The page daemon can acquire and hold any pair of page queue 73 * locks in any order. 74 * 75 * - The object lock is required when inserting or removing 76 * pages from an object (vm_page_insert() or vm_page_remove()). 77 * 78 */ 79 80 /* 81 * Resident memory management module. 82 */ 83 84 #include <sys/cdefs.h> 85 __FBSDID("$FreeBSD$"); 86 87 #include "opt_vm.h" 88 89 #include <sys/param.h> 90 #include <sys/systm.h> 91 #include <sys/lock.h> 92 #include <sys/kernel.h> 93 #include <sys/limits.h> 94 #include <sys/linker.h> 95 #include <sys/malloc.h> 96 #include <sys/mman.h> 97 #include <sys/msgbuf.h> 98 #include <sys/mutex.h> 99 #include <sys/proc.h> 100 #include <sys/rwlock.h> 101 #include <sys/sbuf.h> 102 #include <sys/sysctl.h> 103 #include <sys/vmmeter.h> 104 #include <sys/vnode.h> 105 106 #include <vm/vm.h> 107 #include <vm/pmap.h> 108 #include <vm/vm_param.h> 109 #include <vm/vm_kern.h> 110 #include <vm/vm_object.h> 111 #include <vm/vm_page.h> 112 #include <vm/vm_pageout.h> 113 #include <vm/vm_pager.h> 114 #include <vm/vm_phys.h> 115 #include <vm/vm_radix.h> 116 #include <vm/vm_reserv.h> 117 #include <vm/vm_extern.h> 118 #include <vm/uma.h> 119 #include <vm/uma_int.h> 120 121 #include <machine/md_var.h> 122 123 /* 124 * Associated with page of user-allocatable memory is a 125 * page structure. 126 */ 127 128 struct vm_domain vm_dom[MAXMEMDOM]; 129 struct mtx_padalign vm_page_queue_free_mtx; 130 131 struct mtx_padalign pa_lock[PA_LOCK_COUNT]; 132 133 vm_page_t vm_page_array; 134 long vm_page_array_size; 135 long first_page; 136 int vm_page_zero_count; 137 138 static int boot_pages = UMA_BOOT_PAGES; 139 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 140 &boot_pages, 0, 141 "number of pages allocated for bootstrapping the VM system"); 142 143 static int pa_tryrelock_restart; 144 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD, 145 &pa_tryrelock_restart, 0, "Number of tryrelock restarts"); 146 147 static TAILQ_HEAD(, vm_page) blacklist_head; 148 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS); 149 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD | 150 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages"); 151 152 /* Is the page daemon waiting for free pages? */ 153 static int vm_pageout_pages_needed; 154 155 static uma_zone_t fakepg_zone; 156 157 static struct vnode *vm_page_alloc_init(vm_page_t m); 158 static void vm_page_cache_turn_free(vm_page_t m); 159 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits); 160 static void vm_page_enqueue(uint8_t queue, vm_page_t m); 161 static void vm_page_init_fakepg(void *dummy); 162 static int vm_page_insert_after(vm_page_t m, vm_object_t object, 163 vm_pindex_t pindex, vm_page_t mpred); 164 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object, 165 vm_page_t mpred); 166 167 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL); 168 169 static void 170 vm_page_init_fakepg(void *dummy) 171 { 172 173 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL, 174 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 175 } 176 177 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */ 178 #if PAGE_SIZE == 32768 179 #ifdef CTASSERT 180 CTASSERT(sizeof(u_long) >= 8); 181 #endif 182 #endif 183 184 /* 185 * Try to acquire a physical address lock while a pmap is locked. If we 186 * fail to trylock we unlock and lock the pmap directly and cache the 187 * locked pa in *locked. The caller should then restart their loop in case 188 * the virtual to physical mapping has changed. 189 */ 190 int 191 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked) 192 { 193 vm_paddr_t lockpa; 194 195 lockpa = *locked; 196 *locked = pa; 197 if (lockpa) { 198 PA_LOCK_ASSERT(lockpa, MA_OWNED); 199 if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa)) 200 return (0); 201 PA_UNLOCK(lockpa); 202 } 203 if (PA_TRYLOCK(pa)) 204 return (0); 205 PMAP_UNLOCK(pmap); 206 atomic_add_int(&pa_tryrelock_restart, 1); 207 PA_LOCK(pa); 208 PMAP_LOCK(pmap); 209 return (EAGAIN); 210 } 211 212 /* 213 * vm_set_page_size: 214 * 215 * Sets the page size, perhaps based upon the memory 216 * size. Must be called before any use of page-size 217 * dependent functions. 218 */ 219 void 220 vm_set_page_size(void) 221 { 222 if (vm_cnt.v_page_size == 0) 223 vm_cnt.v_page_size = PAGE_SIZE; 224 if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0) 225 panic("vm_set_page_size: page size not a power of two"); 226 } 227 228 /* 229 * vm_page_blacklist_next: 230 * 231 * Find the next entry in the provided string of blacklist 232 * addresses. Entries are separated by space, comma, or newline. 233 * If an invalid integer is encountered then the rest of the 234 * string is skipped. Updates the list pointer to the next 235 * character, or NULL if the string is exhausted or invalid. 236 */ 237 static vm_paddr_t 238 vm_page_blacklist_next(char **list, char *end) 239 { 240 vm_paddr_t bad; 241 char *cp, *pos; 242 243 if (list == NULL || *list == NULL) 244 return (0); 245 if (**list =='\0') { 246 *list = NULL; 247 return (0); 248 } 249 250 /* 251 * If there's no end pointer then the buffer is coming from 252 * the kenv and we know it's null-terminated. 253 */ 254 if (end == NULL) 255 end = *list + strlen(*list); 256 257 /* Ensure that strtoq() won't walk off the end */ 258 if (*end != '\0') { 259 if (*end == '\n' || *end == ' ' || *end == ',') 260 *end = '\0'; 261 else { 262 printf("Blacklist not terminated, skipping\n"); 263 *list = NULL; 264 return (0); 265 } 266 } 267 268 for (pos = *list; *pos != '\0'; pos = cp) { 269 bad = strtoq(pos, &cp, 0); 270 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') { 271 if (bad == 0) { 272 if (++cp < end) 273 continue; 274 else 275 break; 276 } 277 } else 278 break; 279 if (*cp == '\0' || ++cp >= end) 280 *list = NULL; 281 else 282 *list = cp; 283 return (trunc_page(bad)); 284 } 285 printf("Garbage in RAM blacklist, skipping\n"); 286 *list = NULL; 287 return (0); 288 } 289 290 /* 291 * vm_page_blacklist_check: 292 * 293 * Iterate through the provided string of blacklist addresses, pulling 294 * each entry out of the physical allocator free list and putting it 295 * onto a list for reporting via the vm.page_blacklist sysctl. 296 */ 297 static void 298 vm_page_blacklist_check(char *list, char *end) 299 { 300 vm_paddr_t pa; 301 vm_page_t m; 302 char *next; 303 int ret; 304 305 next = list; 306 while (next != NULL) { 307 if ((pa = vm_page_blacklist_next(&next, end)) == 0) 308 continue; 309 m = vm_phys_paddr_to_vm_page(pa); 310 if (m == NULL) 311 continue; 312 mtx_lock(&vm_page_queue_free_mtx); 313 ret = vm_phys_unfree_page(m); 314 mtx_unlock(&vm_page_queue_free_mtx); 315 if (ret == TRUE) { 316 TAILQ_INSERT_TAIL(&blacklist_head, m, listq); 317 if (bootverbose) 318 printf("Skipping page with pa 0x%jx\n", 319 (uintmax_t)pa); 320 } 321 } 322 } 323 324 /* 325 * vm_page_blacklist_load: 326 * 327 * Search for a special module named "ram_blacklist". It'll be a 328 * plain text file provided by the user via the loader directive 329 * of the same name. 330 */ 331 static void 332 vm_page_blacklist_load(char **list, char **end) 333 { 334 void *mod; 335 u_char *ptr; 336 u_int len; 337 338 mod = NULL; 339 ptr = NULL; 340 341 mod = preload_search_by_type("ram_blacklist"); 342 if (mod != NULL) { 343 ptr = preload_fetch_addr(mod); 344 len = preload_fetch_size(mod); 345 } 346 *list = ptr; 347 if (ptr != NULL) 348 *end = ptr + len; 349 else 350 *end = NULL; 351 return; 352 } 353 354 static int 355 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS) 356 { 357 vm_page_t m; 358 struct sbuf sbuf; 359 int error, first; 360 361 first = 1; 362 error = sysctl_wire_old_buffer(req, 0); 363 if (error != 0) 364 return (error); 365 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 366 TAILQ_FOREACH(m, &blacklist_head, listq) { 367 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",", 368 (uintmax_t)m->phys_addr); 369 first = 0; 370 } 371 error = sbuf_finish(&sbuf); 372 sbuf_delete(&sbuf); 373 return (error); 374 } 375 376 static void 377 vm_page_domain_init(struct vm_domain *vmd) 378 { 379 struct vm_pagequeue *pq; 380 int i; 381 382 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) = 383 "vm inactive pagequeue"; 384 *__DECONST(int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) = 385 &vm_cnt.v_inactive_count; 386 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) = 387 "vm active pagequeue"; 388 *__DECONST(int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) = 389 &vm_cnt.v_active_count; 390 vmd->vmd_page_count = 0; 391 vmd->vmd_free_count = 0; 392 vmd->vmd_segs = 0; 393 vmd->vmd_oom = FALSE; 394 vmd->vmd_pass = 0; 395 for (i = 0; i < PQ_COUNT; i++) { 396 pq = &vmd->vmd_pagequeues[i]; 397 TAILQ_INIT(&pq->pq_pl); 398 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue", 399 MTX_DEF | MTX_DUPOK); 400 } 401 } 402 403 /* 404 * vm_page_startup: 405 * 406 * Initializes the resident memory module. 407 * 408 * Allocates memory for the page cells, and 409 * for the object/offset-to-page hash table headers. 410 * Each page cell is initialized and placed on the free list. 411 */ 412 vm_offset_t 413 vm_page_startup(vm_offset_t vaddr) 414 { 415 vm_offset_t mapped; 416 vm_paddr_t page_range; 417 vm_paddr_t new_end; 418 int i; 419 vm_paddr_t pa; 420 vm_paddr_t last_pa; 421 char *list, *listend; 422 vm_paddr_t end; 423 vm_paddr_t biggestsize; 424 vm_paddr_t low_water, high_water; 425 int biggestone; 426 427 biggestsize = 0; 428 biggestone = 0; 429 vaddr = round_page(vaddr); 430 431 for (i = 0; phys_avail[i + 1]; i += 2) { 432 phys_avail[i] = round_page(phys_avail[i]); 433 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 434 } 435 436 low_water = phys_avail[0]; 437 high_water = phys_avail[1]; 438 439 for (i = 0; i < vm_phys_nsegs; i++) { 440 if (vm_phys_segs[i].start < low_water) 441 low_water = vm_phys_segs[i].start; 442 if (vm_phys_segs[i].end > high_water) 443 high_water = vm_phys_segs[i].end; 444 } 445 for (i = 0; phys_avail[i + 1]; i += 2) { 446 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 447 448 if (size > biggestsize) { 449 biggestone = i; 450 biggestsize = size; 451 } 452 if (phys_avail[i] < low_water) 453 low_water = phys_avail[i]; 454 if (phys_avail[i + 1] > high_water) 455 high_water = phys_avail[i + 1]; 456 } 457 458 end = phys_avail[biggestone+1]; 459 460 /* 461 * Initialize the page and queue locks. 462 */ 463 mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF); 464 for (i = 0; i < PA_LOCK_COUNT; i++) 465 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF); 466 for (i = 0; i < vm_ndomains; i++) 467 vm_page_domain_init(&vm_dom[i]); 468 469 /* 470 * Allocate memory for use when boot strapping the kernel memory 471 * allocator. 472 * 473 * CTFLAG_RDTUN doesn't work during the early boot process, so we must 474 * manually fetch the value. 475 */ 476 TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages); 477 new_end = end - (boot_pages * UMA_SLAB_SIZE); 478 new_end = trunc_page(new_end); 479 mapped = pmap_map(&vaddr, new_end, end, 480 VM_PROT_READ | VM_PROT_WRITE); 481 bzero((void *)mapped, end - new_end); 482 uma_startup((void *)mapped, boot_pages); 483 484 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \ 485 defined(__i386__) || defined(__mips__) 486 /* 487 * Allocate a bitmap to indicate that a random physical page 488 * needs to be included in a minidump. 489 * 490 * The amd64 port needs this to indicate which direct map pages 491 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 492 * 493 * However, i386 still needs this workspace internally within the 494 * minidump code. In theory, they are not needed on i386, but are 495 * included should the sf_buf code decide to use them. 496 */ 497 last_pa = 0; 498 for (i = 0; dump_avail[i + 1] != 0; i += 2) 499 if (dump_avail[i + 1] > last_pa) 500 last_pa = dump_avail[i + 1]; 501 page_range = last_pa / PAGE_SIZE; 502 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 503 new_end -= vm_page_dump_size; 504 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, 505 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); 506 bzero((void *)vm_page_dump, vm_page_dump_size); 507 #endif 508 #ifdef __amd64__ 509 /* 510 * Request that the physical pages underlying the message buffer be 511 * included in a crash dump. Since the message buffer is accessed 512 * through the direct map, they are not automatically included. 513 */ 514 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr); 515 last_pa = pa + round_page(msgbufsize); 516 while (pa < last_pa) { 517 dump_add_page(pa); 518 pa += PAGE_SIZE; 519 } 520 #endif 521 /* 522 * Compute the number of pages of memory that will be available for 523 * use (taking into account the overhead of a page structure per 524 * page). 525 */ 526 first_page = low_water / PAGE_SIZE; 527 #ifdef VM_PHYSSEG_SPARSE 528 page_range = 0; 529 for (i = 0; i < vm_phys_nsegs; i++) { 530 page_range += atop(vm_phys_segs[i].end - 531 vm_phys_segs[i].start); 532 } 533 for (i = 0; phys_avail[i + 1] != 0; i += 2) 534 page_range += atop(phys_avail[i + 1] - phys_avail[i]); 535 #elif defined(VM_PHYSSEG_DENSE) 536 page_range = high_water / PAGE_SIZE - first_page; 537 #else 538 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 539 #endif 540 end = new_end; 541 542 /* 543 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 544 */ 545 vaddr += PAGE_SIZE; 546 547 /* 548 * Initialize the mem entry structures now, and put them in the free 549 * queue. 550 */ 551 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 552 mapped = pmap_map(&vaddr, new_end, end, 553 VM_PROT_READ | VM_PROT_WRITE); 554 vm_page_array = (vm_page_t) mapped; 555 #if VM_NRESERVLEVEL > 0 556 /* 557 * Allocate memory for the reservation management system's data 558 * structures. 559 */ 560 new_end = vm_reserv_startup(&vaddr, new_end, high_water); 561 #endif 562 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) 563 /* 564 * pmap_map on arm64, amd64, and mips can come out of the direct-map, 565 * not kvm like i386, so the pages must be tracked for a crashdump to 566 * include this data. This includes the vm_page_array and the early 567 * UMA bootstrap pages. 568 */ 569 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE) 570 dump_add_page(pa); 571 #endif 572 phys_avail[biggestone + 1] = new_end; 573 574 /* 575 * Add physical memory segments corresponding to the available 576 * physical pages. 577 */ 578 for (i = 0; phys_avail[i + 1] != 0; i += 2) 579 vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]); 580 581 /* 582 * Clear all of the page structures 583 */ 584 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 585 for (i = 0; i < page_range; i++) 586 vm_page_array[i].order = VM_NFREEORDER; 587 vm_page_array_size = page_range; 588 589 /* 590 * Initialize the physical memory allocator. 591 */ 592 vm_phys_init(); 593 594 /* 595 * Add every available physical page that is not blacklisted to 596 * the free lists. 597 */ 598 vm_cnt.v_page_count = 0; 599 vm_cnt.v_free_count = 0; 600 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 601 pa = phys_avail[i]; 602 last_pa = phys_avail[i + 1]; 603 while (pa < last_pa) { 604 vm_phys_add_page(pa); 605 pa += PAGE_SIZE; 606 } 607 } 608 609 TAILQ_INIT(&blacklist_head); 610 vm_page_blacklist_load(&list, &listend); 611 vm_page_blacklist_check(list, listend); 612 613 list = kern_getenv("vm.blacklist"); 614 vm_page_blacklist_check(list, NULL); 615 616 freeenv(list); 617 #if VM_NRESERVLEVEL > 0 618 /* 619 * Initialize the reservation management system. 620 */ 621 vm_reserv_init(); 622 #endif 623 return (vaddr); 624 } 625 626 void 627 vm_page_reference(vm_page_t m) 628 { 629 630 vm_page_aflag_set(m, PGA_REFERENCED); 631 } 632 633 /* 634 * vm_page_busy_downgrade: 635 * 636 * Downgrade an exclusive busy page into a single shared busy page. 637 */ 638 void 639 vm_page_busy_downgrade(vm_page_t m) 640 { 641 u_int x; 642 643 vm_page_assert_xbusied(m); 644 645 for (;;) { 646 x = m->busy_lock; 647 x &= VPB_BIT_WAITERS; 648 if (atomic_cmpset_rel_int(&m->busy_lock, 649 VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1) | x)) 650 break; 651 } 652 } 653 654 /* 655 * vm_page_sbusied: 656 * 657 * Return a positive value if the page is shared busied, 0 otherwise. 658 */ 659 int 660 vm_page_sbusied(vm_page_t m) 661 { 662 u_int x; 663 664 x = m->busy_lock; 665 return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED); 666 } 667 668 /* 669 * vm_page_sunbusy: 670 * 671 * Shared unbusy a page. 672 */ 673 void 674 vm_page_sunbusy(vm_page_t m) 675 { 676 u_int x; 677 678 vm_page_assert_sbusied(m); 679 680 for (;;) { 681 x = m->busy_lock; 682 if (VPB_SHARERS(x) > 1) { 683 if (atomic_cmpset_int(&m->busy_lock, x, 684 x - VPB_ONE_SHARER)) 685 break; 686 continue; 687 } 688 if ((x & VPB_BIT_WAITERS) == 0) { 689 KASSERT(x == VPB_SHARERS_WORD(1), 690 ("vm_page_sunbusy: invalid lock state")); 691 if (atomic_cmpset_int(&m->busy_lock, 692 VPB_SHARERS_WORD(1), VPB_UNBUSIED)) 693 break; 694 continue; 695 } 696 KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS), 697 ("vm_page_sunbusy: invalid lock state for waiters")); 698 699 vm_page_lock(m); 700 if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) { 701 vm_page_unlock(m); 702 continue; 703 } 704 wakeup(m); 705 vm_page_unlock(m); 706 break; 707 } 708 } 709 710 /* 711 * vm_page_busy_sleep: 712 * 713 * Sleep and release the page lock, using the page pointer as wchan. 714 * This is used to implement the hard-path of busying mechanism. 715 * 716 * The given page must be locked. 717 */ 718 void 719 vm_page_busy_sleep(vm_page_t m, const char *wmesg) 720 { 721 u_int x; 722 723 vm_page_lock_assert(m, MA_OWNED); 724 725 x = m->busy_lock; 726 if (x == VPB_UNBUSIED) { 727 vm_page_unlock(m); 728 return; 729 } 730 if ((x & VPB_BIT_WAITERS) == 0 && 731 !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS)) { 732 vm_page_unlock(m); 733 return; 734 } 735 msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0); 736 } 737 738 /* 739 * vm_page_trysbusy: 740 * 741 * Try to shared busy a page. 742 * If the operation succeeds 1 is returned otherwise 0. 743 * The operation never sleeps. 744 */ 745 int 746 vm_page_trysbusy(vm_page_t m) 747 { 748 u_int x; 749 750 for (;;) { 751 x = m->busy_lock; 752 if ((x & VPB_BIT_SHARED) == 0) 753 return (0); 754 if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER)) 755 return (1); 756 } 757 } 758 759 /* 760 * vm_page_xunbusy_hard: 761 * 762 * Called after the first try the exclusive unbusy of a page failed. 763 * It is assumed that the waiters bit is on. 764 */ 765 void 766 vm_page_xunbusy_hard(vm_page_t m) 767 { 768 769 vm_page_assert_xbusied(m); 770 771 vm_page_lock(m); 772 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED); 773 wakeup(m); 774 vm_page_unlock(m); 775 } 776 777 /* 778 * vm_page_flash: 779 * 780 * Wakeup anyone waiting for the page. 781 * The ownership bits do not change. 782 * 783 * The given page must be locked. 784 */ 785 void 786 vm_page_flash(vm_page_t m) 787 { 788 u_int x; 789 790 vm_page_lock_assert(m, MA_OWNED); 791 792 for (;;) { 793 x = m->busy_lock; 794 if ((x & VPB_BIT_WAITERS) == 0) 795 return; 796 if (atomic_cmpset_int(&m->busy_lock, x, 797 x & (~VPB_BIT_WAITERS))) 798 break; 799 } 800 wakeup(m); 801 } 802 803 /* 804 * Keep page from being freed by the page daemon 805 * much of the same effect as wiring, except much lower 806 * overhead and should be used only for *very* temporary 807 * holding ("wiring"). 808 */ 809 void 810 vm_page_hold(vm_page_t mem) 811 { 812 813 vm_page_lock_assert(mem, MA_OWNED); 814 mem->hold_count++; 815 } 816 817 void 818 vm_page_unhold(vm_page_t mem) 819 { 820 821 vm_page_lock_assert(mem, MA_OWNED); 822 KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!")); 823 --mem->hold_count; 824 if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0) 825 vm_page_free_toq(mem); 826 } 827 828 /* 829 * vm_page_unhold_pages: 830 * 831 * Unhold each of the pages that is referenced by the given array. 832 */ 833 void 834 vm_page_unhold_pages(vm_page_t *ma, int count) 835 { 836 struct mtx *mtx, *new_mtx; 837 838 mtx = NULL; 839 for (; count != 0; count--) { 840 /* 841 * Avoid releasing and reacquiring the same page lock. 842 */ 843 new_mtx = vm_page_lockptr(*ma); 844 if (mtx != new_mtx) { 845 if (mtx != NULL) 846 mtx_unlock(mtx); 847 mtx = new_mtx; 848 mtx_lock(mtx); 849 } 850 vm_page_unhold(*ma); 851 ma++; 852 } 853 if (mtx != NULL) 854 mtx_unlock(mtx); 855 } 856 857 vm_page_t 858 PHYS_TO_VM_PAGE(vm_paddr_t pa) 859 { 860 vm_page_t m; 861 862 #ifdef VM_PHYSSEG_SPARSE 863 m = vm_phys_paddr_to_vm_page(pa); 864 if (m == NULL) 865 m = vm_phys_fictitious_to_vm_page(pa); 866 return (m); 867 #elif defined(VM_PHYSSEG_DENSE) 868 long pi; 869 870 pi = atop(pa); 871 if (pi >= first_page && (pi - first_page) < vm_page_array_size) { 872 m = &vm_page_array[pi - first_page]; 873 return (m); 874 } 875 return (vm_phys_fictitious_to_vm_page(pa)); 876 #else 877 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 878 #endif 879 } 880 881 /* 882 * vm_page_getfake: 883 * 884 * Create a fictitious page with the specified physical address and 885 * memory attribute. The memory attribute is the only the machine- 886 * dependent aspect of a fictitious page that must be initialized. 887 */ 888 vm_page_t 889 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr) 890 { 891 vm_page_t m; 892 893 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO); 894 vm_page_initfake(m, paddr, memattr); 895 return (m); 896 } 897 898 void 899 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 900 { 901 902 if ((m->flags & PG_FICTITIOUS) != 0) { 903 /* 904 * The page's memattr might have changed since the 905 * previous initialization. Update the pmap to the 906 * new memattr. 907 */ 908 goto memattr; 909 } 910 m->phys_addr = paddr; 911 m->queue = PQ_NONE; 912 /* Fictitious pages don't use "segind". */ 913 m->flags = PG_FICTITIOUS; 914 /* Fictitious pages don't use "order" or "pool". */ 915 m->oflags = VPO_UNMANAGED; 916 m->busy_lock = VPB_SINGLE_EXCLUSIVER; 917 m->wire_count = 1; 918 pmap_page_init(m); 919 memattr: 920 pmap_page_set_memattr(m, memattr); 921 } 922 923 /* 924 * vm_page_putfake: 925 * 926 * Release a fictitious page. 927 */ 928 void 929 vm_page_putfake(vm_page_t m) 930 { 931 932 KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m)); 933 KASSERT((m->flags & PG_FICTITIOUS) != 0, 934 ("vm_page_putfake: bad page %p", m)); 935 uma_zfree(fakepg_zone, m); 936 } 937 938 /* 939 * vm_page_updatefake: 940 * 941 * Update the given fictitious page to the specified physical address and 942 * memory attribute. 943 */ 944 void 945 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 946 { 947 948 KASSERT((m->flags & PG_FICTITIOUS) != 0, 949 ("vm_page_updatefake: bad page %p", m)); 950 m->phys_addr = paddr; 951 pmap_page_set_memattr(m, memattr); 952 } 953 954 /* 955 * vm_page_free: 956 * 957 * Free a page. 958 */ 959 void 960 vm_page_free(vm_page_t m) 961 { 962 963 m->flags &= ~PG_ZERO; 964 vm_page_free_toq(m); 965 } 966 967 /* 968 * vm_page_free_zero: 969 * 970 * Free a page to the zerod-pages queue 971 */ 972 void 973 vm_page_free_zero(vm_page_t m) 974 { 975 976 m->flags |= PG_ZERO; 977 vm_page_free_toq(m); 978 } 979 980 /* 981 * Unbusy and handle the page queueing for a page from the VOP_GETPAGES() 982 * array which is not the request page. 983 */ 984 void 985 vm_page_readahead_finish(vm_page_t m) 986 { 987 988 if (m->valid != 0) { 989 /* 990 * Since the page is not the requested page, whether 991 * it should be activated or deactivated is not 992 * obvious. Empirical results have shown that 993 * deactivating the page is usually the best choice, 994 * unless the page is wanted by another thread. 995 */ 996 vm_page_lock(m); 997 if ((m->busy_lock & VPB_BIT_WAITERS) != 0) 998 vm_page_activate(m); 999 else 1000 vm_page_deactivate(m); 1001 vm_page_unlock(m); 1002 vm_page_xunbusy(m); 1003 } else { 1004 /* 1005 * Free the completely invalid page. Such page state 1006 * occurs due to the short read operation which did 1007 * not covered our page at all, or in case when a read 1008 * error happens. 1009 */ 1010 vm_page_lock(m); 1011 vm_page_free(m); 1012 vm_page_unlock(m); 1013 } 1014 } 1015 1016 /* 1017 * vm_page_sleep_if_busy: 1018 * 1019 * Sleep and release the page queues lock if the page is busied. 1020 * Returns TRUE if the thread slept. 1021 * 1022 * The given page must be unlocked and object containing it must 1023 * be locked. 1024 */ 1025 int 1026 vm_page_sleep_if_busy(vm_page_t m, const char *msg) 1027 { 1028 vm_object_t obj; 1029 1030 vm_page_lock_assert(m, MA_NOTOWNED); 1031 VM_OBJECT_ASSERT_WLOCKED(m->object); 1032 1033 if (vm_page_busied(m)) { 1034 /* 1035 * The page-specific object must be cached because page 1036 * identity can change during the sleep, causing the 1037 * re-lock of a different object. 1038 * It is assumed that a reference to the object is already 1039 * held by the callers. 1040 */ 1041 obj = m->object; 1042 vm_page_lock(m); 1043 VM_OBJECT_WUNLOCK(obj); 1044 vm_page_busy_sleep(m, msg); 1045 VM_OBJECT_WLOCK(obj); 1046 return (TRUE); 1047 } 1048 return (FALSE); 1049 } 1050 1051 /* 1052 * vm_page_dirty_KBI: [ internal use only ] 1053 * 1054 * Set all bits in the page's dirty field. 1055 * 1056 * The object containing the specified page must be locked if the 1057 * call is made from the machine-independent layer. 1058 * 1059 * See vm_page_clear_dirty_mask(). 1060 * 1061 * This function should only be called by vm_page_dirty(). 1062 */ 1063 void 1064 vm_page_dirty_KBI(vm_page_t m) 1065 { 1066 1067 /* These assertions refer to this operation by its public name. */ 1068 KASSERT((m->flags & PG_CACHED) == 0, 1069 ("vm_page_dirty: page in cache!")); 1070 KASSERT(m->valid == VM_PAGE_BITS_ALL, 1071 ("vm_page_dirty: page is invalid!")); 1072 m->dirty = VM_PAGE_BITS_ALL; 1073 } 1074 1075 /* 1076 * vm_page_insert: [ internal use only ] 1077 * 1078 * Inserts the given mem entry into the object and object list. 1079 * 1080 * The object must be locked. 1081 */ 1082 int 1083 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 1084 { 1085 vm_page_t mpred; 1086 1087 VM_OBJECT_ASSERT_WLOCKED(object); 1088 mpred = vm_radix_lookup_le(&object->rtree, pindex); 1089 return (vm_page_insert_after(m, object, pindex, mpred)); 1090 } 1091 1092 /* 1093 * vm_page_insert_after: 1094 * 1095 * Inserts the page "m" into the specified object at offset "pindex". 1096 * 1097 * The page "mpred" must immediately precede the offset "pindex" within 1098 * the specified object. 1099 * 1100 * The object must be locked. 1101 */ 1102 static int 1103 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex, 1104 vm_page_t mpred) 1105 { 1106 vm_pindex_t sidx; 1107 vm_object_t sobj; 1108 vm_page_t msucc; 1109 1110 VM_OBJECT_ASSERT_WLOCKED(object); 1111 KASSERT(m->object == NULL, 1112 ("vm_page_insert_after: page already inserted")); 1113 if (mpred != NULL) { 1114 KASSERT(mpred->object == object, 1115 ("vm_page_insert_after: object doesn't contain mpred")); 1116 KASSERT(mpred->pindex < pindex, 1117 ("vm_page_insert_after: mpred doesn't precede pindex")); 1118 msucc = TAILQ_NEXT(mpred, listq); 1119 } else 1120 msucc = TAILQ_FIRST(&object->memq); 1121 if (msucc != NULL) 1122 KASSERT(msucc->pindex > pindex, 1123 ("vm_page_insert_after: msucc doesn't succeed pindex")); 1124 1125 /* 1126 * Record the object/offset pair in this page 1127 */ 1128 sobj = m->object; 1129 sidx = m->pindex; 1130 m->object = object; 1131 m->pindex = pindex; 1132 1133 /* 1134 * Now link into the object's ordered list of backed pages. 1135 */ 1136 if (vm_radix_insert(&object->rtree, m)) { 1137 m->object = sobj; 1138 m->pindex = sidx; 1139 return (1); 1140 } 1141 vm_page_insert_radixdone(m, object, mpred); 1142 return (0); 1143 } 1144 1145 /* 1146 * vm_page_insert_radixdone: 1147 * 1148 * Complete page "m" insertion into the specified object after the 1149 * radix trie hooking. 1150 * 1151 * The page "mpred" must precede the offset "m->pindex" within the 1152 * specified object. 1153 * 1154 * The object must be locked. 1155 */ 1156 static void 1157 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred) 1158 { 1159 1160 VM_OBJECT_ASSERT_WLOCKED(object); 1161 KASSERT(object != NULL && m->object == object, 1162 ("vm_page_insert_radixdone: page %p has inconsistent object", m)); 1163 if (mpred != NULL) { 1164 KASSERT(mpred->object == object, 1165 ("vm_page_insert_after: object doesn't contain mpred")); 1166 KASSERT(mpred->pindex < m->pindex, 1167 ("vm_page_insert_after: mpred doesn't precede pindex")); 1168 } 1169 1170 if (mpred != NULL) 1171 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq); 1172 else 1173 TAILQ_INSERT_HEAD(&object->memq, m, listq); 1174 1175 /* 1176 * Show that the object has one more resident page. 1177 */ 1178 object->resident_page_count++; 1179 1180 /* 1181 * Hold the vnode until the last page is released. 1182 */ 1183 if (object->resident_page_count == 1 && object->type == OBJT_VNODE) 1184 vhold(object->handle); 1185 1186 /* 1187 * Since we are inserting a new and possibly dirty page, 1188 * update the object's OBJ_MIGHTBEDIRTY flag. 1189 */ 1190 if (pmap_page_is_write_mapped(m)) 1191 vm_object_set_writeable_dirty(object); 1192 } 1193 1194 /* 1195 * vm_page_remove: 1196 * 1197 * Removes the given mem entry from the object/offset-page 1198 * table and the object page list, but do not invalidate/terminate 1199 * the backing store. 1200 * 1201 * The object must be locked. The page must be locked if it is managed. 1202 */ 1203 void 1204 vm_page_remove(vm_page_t m) 1205 { 1206 vm_object_t object; 1207 boolean_t lockacq; 1208 1209 if ((m->oflags & VPO_UNMANAGED) == 0) 1210 vm_page_lock_assert(m, MA_OWNED); 1211 if ((object = m->object) == NULL) 1212 return; 1213 VM_OBJECT_ASSERT_WLOCKED(object); 1214 if (vm_page_xbusied(m)) { 1215 lockacq = FALSE; 1216 if ((m->oflags & VPO_UNMANAGED) != 0 && 1217 !mtx_owned(vm_page_lockptr(m))) { 1218 lockacq = TRUE; 1219 vm_page_lock(m); 1220 } 1221 vm_page_flash(m); 1222 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED); 1223 if (lockacq) 1224 vm_page_unlock(m); 1225 } 1226 1227 /* 1228 * Now remove from the object's list of backed pages. 1229 */ 1230 vm_radix_remove(&object->rtree, m->pindex); 1231 TAILQ_REMOVE(&object->memq, m, listq); 1232 1233 /* 1234 * And show that the object has one fewer resident page. 1235 */ 1236 object->resident_page_count--; 1237 1238 /* 1239 * The vnode may now be recycled. 1240 */ 1241 if (object->resident_page_count == 0 && object->type == OBJT_VNODE) 1242 vdrop(object->handle); 1243 1244 m->object = NULL; 1245 } 1246 1247 /* 1248 * vm_page_lookup: 1249 * 1250 * Returns the page associated with the object/offset 1251 * pair specified; if none is found, NULL is returned. 1252 * 1253 * The object must be locked. 1254 */ 1255 vm_page_t 1256 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 1257 { 1258 1259 VM_OBJECT_ASSERT_LOCKED(object); 1260 return (vm_radix_lookup(&object->rtree, pindex)); 1261 } 1262 1263 /* 1264 * vm_page_find_least: 1265 * 1266 * Returns the page associated with the object with least pindex 1267 * greater than or equal to the parameter pindex, or NULL. 1268 * 1269 * The object must be locked. 1270 */ 1271 vm_page_t 1272 vm_page_find_least(vm_object_t object, vm_pindex_t pindex) 1273 { 1274 vm_page_t m; 1275 1276 VM_OBJECT_ASSERT_LOCKED(object); 1277 if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex) 1278 m = vm_radix_lookup_ge(&object->rtree, pindex); 1279 return (m); 1280 } 1281 1282 /* 1283 * Returns the given page's successor (by pindex) within the object if it is 1284 * resident; if none is found, NULL is returned. 1285 * 1286 * The object must be locked. 1287 */ 1288 vm_page_t 1289 vm_page_next(vm_page_t m) 1290 { 1291 vm_page_t next; 1292 1293 VM_OBJECT_ASSERT_WLOCKED(m->object); 1294 if ((next = TAILQ_NEXT(m, listq)) != NULL && 1295 next->pindex != m->pindex + 1) 1296 next = NULL; 1297 return (next); 1298 } 1299 1300 /* 1301 * Returns the given page's predecessor (by pindex) within the object if it is 1302 * resident; if none is found, NULL is returned. 1303 * 1304 * The object must be locked. 1305 */ 1306 vm_page_t 1307 vm_page_prev(vm_page_t m) 1308 { 1309 vm_page_t prev; 1310 1311 VM_OBJECT_ASSERT_WLOCKED(m->object); 1312 if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL && 1313 prev->pindex != m->pindex - 1) 1314 prev = NULL; 1315 return (prev); 1316 } 1317 1318 /* 1319 * Uses the page mnew as a replacement for an existing page at index 1320 * pindex which must be already present in the object. 1321 * 1322 * The existing page must not be on a paging queue. 1323 */ 1324 vm_page_t 1325 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex) 1326 { 1327 vm_page_t mold; 1328 1329 VM_OBJECT_ASSERT_WLOCKED(object); 1330 KASSERT(mnew->object == NULL, 1331 ("vm_page_replace: page already in object")); 1332 1333 /* 1334 * This function mostly follows vm_page_insert() and 1335 * vm_page_remove() without the radix, object count and vnode 1336 * dance. Double check such functions for more comments. 1337 */ 1338 1339 mnew->object = object; 1340 mnew->pindex = pindex; 1341 mold = vm_radix_replace(&object->rtree, mnew); 1342 KASSERT(mold->queue == PQ_NONE, 1343 ("vm_page_replace: mold is on a paging queue")); 1344 1345 /* Keep the resident page list in sorted order. */ 1346 TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq); 1347 TAILQ_REMOVE(&object->memq, mold, listq); 1348 1349 mold->object = NULL; 1350 vm_page_xunbusy(mold); 1351 1352 /* 1353 * The object's resident_page_count does not change because we have 1354 * swapped one page for another, but OBJ_MIGHTBEDIRTY. 1355 */ 1356 if (pmap_page_is_write_mapped(mnew)) 1357 vm_object_set_writeable_dirty(object); 1358 return (mold); 1359 } 1360 1361 /* 1362 * vm_page_rename: 1363 * 1364 * Move the given memory entry from its 1365 * current object to the specified target object/offset. 1366 * 1367 * Note: swap associated with the page must be invalidated by the move. We 1368 * have to do this for several reasons: (1) we aren't freeing the 1369 * page, (2) we are dirtying the page, (3) the VM system is probably 1370 * moving the page from object A to B, and will then later move 1371 * the backing store from A to B and we can't have a conflict. 1372 * 1373 * Note: we *always* dirty the page. It is necessary both for the 1374 * fact that we moved it, and because we may be invalidating 1375 * swap. If the page is on the cache, we have to deactivate it 1376 * or vm_page_dirty() will panic. Dirty pages are not allowed 1377 * on the cache. 1378 * 1379 * The objects must be locked. 1380 */ 1381 int 1382 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 1383 { 1384 vm_page_t mpred; 1385 vm_pindex_t opidx; 1386 1387 VM_OBJECT_ASSERT_WLOCKED(new_object); 1388 1389 mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex); 1390 KASSERT(mpred == NULL || mpred->pindex != new_pindex, 1391 ("vm_page_rename: pindex already renamed")); 1392 1393 /* 1394 * Create a custom version of vm_page_insert() which does not depend 1395 * by m_prev and can cheat on the implementation aspects of the 1396 * function. 1397 */ 1398 opidx = m->pindex; 1399 m->pindex = new_pindex; 1400 if (vm_radix_insert(&new_object->rtree, m)) { 1401 m->pindex = opidx; 1402 return (1); 1403 } 1404 1405 /* 1406 * The operation cannot fail anymore. The removal must happen before 1407 * the listq iterator is tainted. 1408 */ 1409 m->pindex = opidx; 1410 vm_page_lock(m); 1411 vm_page_remove(m); 1412 1413 /* Return back to the new pindex to complete vm_page_insert(). */ 1414 m->pindex = new_pindex; 1415 m->object = new_object; 1416 vm_page_unlock(m); 1417 vm_page_insert_radixdone(m, new_object, mpred); 1418 vm_page_dirty(m); 1419 return (0); 1420 } 1421 1422 /* 1423 * Convert all of the given object's cached pages that have a 1424 * pindex within the given range into free pages. If the value 1425 * zero is given for "end", then the range's upper bound is 1426 * infinity. If the given object is backed by a vnode and it 1427 * transitions from having one or more cached pages to none, the 1428 * vnode's hold count is reduced. 1429 */ 1430 void 1431 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1432 { 1433 vm_page_t m; 1434 boolean_t empty; 1435 1436 mtx_lock(&vm_page_queue_free_mtx); 1437 if (__predict_false(vm_radix_is_empty(&object->cache))) { 1438 mtx_unlock(&vm_page_queue_free_mtx); 1439 return; 1440 } 1441 while ((m = vm_radix_lookup_ge(&object->cache, start)) != NULL) { 1442 if (end != 0 && m->pindex >= end) 1443 break; 1444 vm_radix_remove(&object->cache, m->pindex); 1445 vm_page_cache_turn_free(m); 1446 } 1447 empty = vm_radix_is_empty(&object->cache); 1448 mtx_unlock(&vm_page_queue_free_mtx); 1449 if (object->type == OBJT_VNODE && empty) 1450 vdrop(object->handle); 1451 } 1452 1453 /* 1454 * Returns the cached page that is associated with the given 1455 * object and offset. If, however, none exists, returns NULL. 1456 * 1457 * The free page queue must be locked. 1458 */ 1459 static inline vm_page_t 1460 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex) 1461 { 1462 1463 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1464 return (vm_radix_lookup(&object->cache, pindex)); 1465 } 1466 1467 /* 1468 * Remove the given cached page from its containing object's 1469 * collection of cached pages. 1470 * 1471 * The free page queue must be locked. 1472 */ 1473 static void 1474 vm_page_cache_remove(vm_page_t m) 1475 { 1476 1477 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1478 KASSERT((m->flags & PG_CACHED) != 0, 1479 ("vm_page_cache_remove: page %p is not cached", m)); 1480 vm_radix_remove(&m->object->cache, m->pindex); 1481 m->object = NULL; 1482 vm_cnt.v_cache_count--; 1483 } 1484 1485 /* 1486 * Transfer all of the cached pages with offset greater than or 1487 * equal to 'offidxstart' from the original object's cache to the 1488 * new object's cache. However, any cached pages with offset 1489 * greater than or equal to the new object's size are kept in the 1490 * original object. Initially, the new object's cache must be 1491 * empty. Offset 'offidxstart' in the original object must 1492 * correspond to offset zero in the new object. 1493 * 1494 * The new object must be locked. 1495 */ 1496 void 1497 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart, 1498 vm_object_t new_object) 1499 { 1500 vm_page_t m; 1501 1502 /* 1503 * Insertion into an object's collection of cached pages 1504 * requires the object to be locked. In contrast, removal does 1505 * not. 1506 */ 1507 VM_OBJECT_ASSERT_WLOCKED(new_object); 1508 KASSERT(vm_radix_is_empty(&new_object->cache), 1509 ("vm_page_cache_transfer: object %p has cached pages", 1510 new_object)); 1511 mtx_lock(&vm_page_queue_free_mtx); 1512 while ((m = vm_radix_lookup_ge(&orig_object->cache, 1513 offidxstart)) != NULL) { 1514 /* 1515 * Transfer all of the pages with offset greater than or 1516 * equal to 'offidxstart' from the original object's 1517 * cache to the new object's cache. 1518 */ 1519 if ((m->pindex - offidxstart) >= new_object->size) 1520 break; 1521 vm_radix_remove(&orig_object->cache, m->pindex); 1522 /* Update the page's object and offset. */ 1523 m->object = new_object; 1524 m->pindex -= offidxstart; 1525 if (vm_radix_insert(&new_object->cache, m)) 1526 vm_page_cache_turn_free(m); 1527 } 1528 mtx_unlock(&vm_page_queue_free_mtx); 1529 } 1530 1531 /* 1532 * Returns TRUE if a cached page is associated with the given object and 1533 * offset, and FALSE otherwise. 1534 * 1535 * The object must be locked. 1536 */ 1537 boolean_t 1538 vm_page_is_cached(vm_object_t object, vm_pindex_t pindex) 1539 { 1540 vm_page_t m; 1541 1542 /* 1543 * Insertion into an object's collection of cached pages requires the 1544 * object to be locked. Therefore, if the object is locked and the 1545 * object's collection is empty, there is no need to acquire the free 1546 * page queues lock in order to prove that the specified page doesn't 1547 * exist. 1548 */ 1549 VM_OBJECT_ASSERT_WLOCKED(object); 1550 if (__predict_true(vm_object_cache_is_empty(object))) 1551 return (FALSE); 1552 mtx_lock(&vm_page_queue_free_mtx); 1553 m = vm_page_cache_lookup(object, pindex); 1554 mtx_unlock(&vm_page_queue_free_mtx); 1555 return (m != NULL); 1556 } 1557 1558 /* 1559 * vm_page_alloc: 1560 * 1561 * Allocate and return a page that is associated with the specified 1562 * object and offset pair. By default, this page is exclusive busied. 1563 * 1564 * The caller must always specify an allocation class. 1565 * 1566 * allocation classes: 1567 * VM_ALLOC_NORMAL normal process request 1568 * VM_ALLOC_SYSTEM system *really* needs a page 1569 * VM_ALLOC_INTERRUPT interrupt time request 1570 * 1571 * optional allocation flags: 1572 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 1573 * intends to allocate 1574 * VM_ALLOC_IFCACHED return page only if it is cached 1575 * VM_ALLOC_IFNOTCACHED return NULL, do not reactivate if the page 1576 * is cached 1577 * VM_ALLOC_NOBUSY do not exclusive busy the page 1578 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 1579 * VM_ALLOC_NOOBJ page is not associated with an object and 1580 * should not be exclusive busy 1581 * VM_ALLOC_SBUSY shared busy the allocated page 1582 * VM_ALLOC_WIRED wire the allocated page 1583 * VM_ALLOC_ZERO prefer a zeroed page 1584 * 1585 * This routine may not sleep. 1586 */ 1587 vm_page_t 1588 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 1589 { 1590 struct vnode *vp = NULL; 1591 vm_object_t m_object; 1592 vm_page_t m, mpred; 1593 int flags, req_class; 1594 1595 mpred = 0; /* XXX: pacify gcc */ 1596 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) && 1597 (object != NULL || (req & VM_ALLOC_SBUSY) == 0) && 1598 ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 1599 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 1600 ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object, 1601 req)); 1602 if (object != NULL) 1603 VM_OBJECT_ASSERT_WLOCKED(object); 1604 1605 req_class = req & VM_ALLOC_CLASS_MASK; 1606 1607 /* 1608 * The page daemon is allowed to dig deeper into the free page list. 1609 */ 1610 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 1611 req_class = VM_ALLOC_SYSTEM; 1612 1613 if (object != NULL) { 1614 mpred = vm_radix_lookup_le(&object->rtree, pindex); 1615 KASSERT(mpred == NULL || mpred->pindex != pindex, 1616 ("vm_page_alloc: pindex already allocated")); 1617 } 1618 1619 /* 1620 * The page allocation request can came from consumers which already 1621 * hold the free page queue mutex, like vm_page_insert() in 1622 * vm_page_cache(). 1623 */ 1624 mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE); 1625 if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved || 1626 (req_class == VM_ALLOC_SYSTEM && 1627 vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) || 1628 (req_class == VM_ALLOC_INTERRUPT && 1629 vm_cnt.v_free_count + vm_cnt.v_cache_count > 0)) { 1630 /* 1631 * Allocate from the free queue if the number of free pages 1632 * exceeds the minimum for the request class. 1633 */ 1634 if (object != NULL && 1635 (m = vm_page_cache_lookup(object, pindex)) != NULL) { 1636 if ((req & VM_ALLOC_IFNOTCACHED) != 0) { 1637 mtx_unlock(&vm_page_queue_free_mtx); 1638 return (NULL); 1639 } 1640 if (vm_phys_unfree_page(m)) 1641 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0); 1642 #if VM_NRESERVLEVEL > 0 1643 else if (!vm_reserv_reactivate_page(m)) 1644 #else 1645 else 1646 #endif 1647 panic("vm_page_alloc: cache page %p is missing" 1648 " from the free queue", m); 1649 } else if ((req & VM_ALLOC_IFCACHED) != 0) { 1650 mtx_unlock(&vm_page_queue_free_mtx); 1651 return (NULL); 1652 #if VM_NRESERVLEVEL > 0 1653 } else if (object == NULL || (object->flags & (OBJ_COLORED | 1654 OBJ_FICTITIOUS)) != OBJ_COLORED || (m = 1655 vm_reserv_alloc_page(object, pindex, mpred)) == NULL) { 1656 #else 1657 } else { 1658 #endif 1659 m = vm_phys_alloc_pages(object != NULL ? 1660 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0); 1661 #if VM_NRESERVLEVEL > 0 1662 if (m == NULL && vm_reserv_reclaim_inactive()) { 1663 m = vm_phys_alloc_pages(object != NULL ? 1664 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 1665 0); 1666 } 1667 #endif 1668 } 1669 } else { 1670 /* 1671 * Not allocatable, give up. 1672 */ 1673 mtx_unlock(&vm_page_queue_free_mtx); 1674 atomic_add_int(&vm_pageout_deficit, 1675 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); 1676 pagedaemon_wakeup(); 1677 return (NULL); 1678 } 1679 1680 /* 1681 * At this point we had better have found a good page. 1682 */ 1683 KASSERT(m != NULL, ("vm_page_alloc: missing page")); 1684 KASSERT(m->queue == PQ_NONE, 1685 ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue)); 1686 KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m)); 1687 KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m)); 1688 KASSERT(!vm_page_sbusied(m), 1689 ("vm_page_alloc: page %p is busy", m)); 1690 KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m)); 1691 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, 1692 ("vm_page_alloc: page %p has unexpected memattr %d", m, 1693 pmap_page_get_memattr(m))); 1694 if ((m->flags & PG_CACHED) != 0) { 1695 KASSERT((m->flags & PG_ZERO) == 0, 1696 ("vm_page_alloc: cached page %p is PG_ZERO", m)); 1697 KASSERT(m->valid != 0, 1698 ("vm_page_alloc: cached page %p is invalid", m)); 1699 if (m->object == object && m->pindex == pindex) 1700 vm_cnt.v_reactivated++; 1701 else 1702 m->valid = 0; 1703 m_object = m->object; 1704 vm_page_cache_remove(m); 1705 if (m_object->type == OBJT_VNODE && 1706 vm_object_cache_is_empty(m_object)) 1707 vp = m_object->handle; 1708 } else { 1709 KASSERT(m->valid == 0, 1710 ("vm_page_alloc: free page %p is valid", m)); 1711 vm_phys_freecnt_adj(m, -1); 1712 if ((m->flags & PG_ZERO) != 0) 1713 vm_page_zero_count--; 1714 } 1715 mtx_unlock(&vm_page_queue_free_mtx); 1716 1717 /* 1718 * Initialize the page. Only the PG_ZERO flag is inherited. 1719 */ 1720 flags = 0; 1721 if ((req & VM_ALLOC_ZERO) != 0) 1722 flags = PG_ZERO; 1723 flags &= m->flags; 1724 if ((req & VM_ALLOC_NODUMP) != 0) 1725 flags |= PG_NODUMP; 1726 m->flags = flags; 1727 m->aflags = 0; 1728 m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ? 1729 VPO_UNMANAGED : 0; 1730 m->busy_lock = VPB_UNBUSIED; 1731 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0) 1732 m->busy_lock = VPB_SINGLE_EXCLUSIVER; 1733 if ((req & VM_ALLOC_SBUSY) != 0) 1734 m->busy_lock = VPB_SHARERS_WORD(1); 1735 if (req & VM_ALLOC_WIRED) { 1736 /* 1737 * The page lock is not required for wiring a page until that 1738 * page is inserted into the object. 1739 */ 1740 atomic_add_int(&vm_cnt.v_wire_count, 1); 1741 m->wire_count = 1; 1742 } 1743 m->act_count = 0; 1744 1745 if (object != NULL) { 1746 if (vm_page_insert_after(m, object, pindex, mpred)) { 1747 /* See the comment below about hold count. */ 1748 if (vp != NULL) 1749 vdrop(vp); 1750 pagedaemon_wakeup(); 1751 if (req & VM_ALLOC_WIRED) { 1752 atomic_subtract_int(&vm_cnt.v_wire_count, 1); 1753 m->wire_count = 0; 1754 } 1755 m->object = NULL; 1756 m->oflags = VPO_UNMANAGED; 1757 vm_page_free(m); 1758 return (NULL); 1759 } 1760 1761 /* Ignore device objects; the pager sets "memattr" for them. */ 1762 if (object->memattr != VM_MEMATTR_DEFAULT && 1763 (object->flags & OBJ_FICTITIOUS) == 0) 1764 pmap_page_set_memattr(m, object->memattr); 1765 } else 1766 m->pindex = pindex; 1767 1768 /* 1769 * The following call to vdrop() must come after the above call 1770 * to vm_page_insert() in case both affect the same object and 1771 * vnode. Otherwise, the affected vnode's hold count could 1772 * temporarily become zero. 1773 */ 1774 if (vp != NULL) 1775 vdrop(vp); 1776 1777 /* 1778 * Don't wakeup too often - wakeup the pageout daemon when 1779 * we would be nearly out of memory. 1780 */ 1781 if (vm_paging_needed()) 1782 pagedaemon_wakeup(); 1783 1784 return (m); 1785 } 1786 1787 static void 1788 vm_page_alloc_contig_vdrop(struct spglist *lst) 1789 { 1790 1791 while (!SLIST_EMPTY(lst)) { 1792 vdrop((struct vnode *)SLIST_FIRST(lst)-> plinks.s.pv); 1793 SLIST_REMOVE_HEAD(lst, plinks.s.ss); 1794 } 1795 } 1796 1797 /* 1798 * vm_page_alloc_contig: 1799 * 1800 * Allocate a contiguous set of physical pages of the given size "npages" 1801 * from the free lists. All of the physical pages must be at or above 1802 * the given physical address "low" and below the given physical address 1803 * "high". The given value "alignment" determines the alignment of the 1804 * first physical page in the set. If the given value "boundary" is 1805 * non-zero, then the set of physical pages cannot cross any physical 1806 * address boundary that is a multiple of that value. Both "alignment" 1807 * and "boundary" must be a power of two. 1808 * 1809 * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT, 1810 * then the memory attribute setting for the physical pages is configured 1811 * to the object's memory attribute setting. Otherwise, the memory 1812 * attribute setting for the physical pages is configured to "memattr", 1813 * overriding the object's memory attribute setting. However, if the 1814 * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the 1815 * memory attribute setting for the physical pages cannot be configured 1816 * to VM_MEMATTR_DEFAULT. 1817 * 1818 * The caller must always specify an allocation class. 1819 * 1820 * allocation classes: 1821 * VM_ALLOC_NORMAL normal process request 1822 * VM_ALLOC_SYSTEM system *really* needs a page 1823 * VM_ALLOC_INTERRUPT interrupt time request 1824 * 1825 * optional allocation flags: 1826 * VM_ALLOC_NOBUSY do not exclusive busy the page 1827 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 1828 * VM_ALLOC_NOOBJ page is not associated with an object and 1829 * should not be exclusive busy 1830 * VM_ALLOC_SBUSY shared busy the allocated page 1831 * VM_ALLOC_WIRED wire the allocated page 1832 * VM_ALLOC_ZERO prefer a zeroed page 1833 * 1834 * This routine may not sleep. 1835 */ 1836 vm_page_t 1837 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req, 1838 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 1839 vm_paddr_t boundary, vm_memattr_t memattr) 1840 { 1841 struct vnode *drop; 1842 struct spglist deferred_vdrop_list; 1843 vm_page_t m, m_tmp, m_ret; 1844 u_int flags; 1845 int req_class; 1846 1847 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) && 1848 (object != NULL || (req & VM_ALLOC_SBUSY) == 0) && 1849 ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 1850 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 1851 ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object, 1852 req)); 1853 if (object != NULL) { 1854 VM_OBJECT_ASSERT_WLOCKED(object); 1855 KASSERT(object->type == OBJT_PHYS, 1856 ("vm_page_alloc_contig: object %p isn't OBJT_PHYS", 1857 object)); 1858 } 1859 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero")); 1860 req_class = req & VM_ALLOC_CLASS_MASK; 1861 1862 /* 1863 * The page daemon is allowed to dig deeper into the free page list. 1864 */ 1865 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 1866 req_class = VM_ALLOC_SYSTEM; 1867 1868 SLIST_INIT(&deferred_vdrop_list); 1869 mtx_lock(&vm_page_queue_free_mtx); 1870 if (vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages + 1871 vm_cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM && 1872 vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages + 1873 vm_cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT && 1874 vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages)) { 1875 #if VM_NRESERVLEVEL > 0 1876 retry: 1877 if (object == NULL || (object->flags & OBJ_COLORED) == 0 || 1878 (m_ret = vm_reserv_alloc_contig(object, pindex, npages, 1879 low, high, alignment, boundary)) == NULL) 1880 #endif 1881 m_ret = vm_phys_alloc_contig(npages, low, high, 1882 alignment, boundary); 1883 } else { 1884 mtx_unlock(&vm_page_queue_free_mtx); 1885 atomic_add_int(&vm_pageout_deficit, npages); 1886 pagedaemon_wakeup(); 1887 return (NULL); 1888 } 1889 if (m_ret != NULL) 1890 for (m = m_ret; m < &m_ret[npages]; m++) { 1891 drop = vm_page_alloc_init(m); 1892 if (drop != NULL) { 1893 /* 1894 * Enqueue the vnode for deferred vdrop(). 1895 */ 1896 m->plinks.s.pv = drop; 1897 SLIST_INSERT_HEAD(&deferred_vdrop_list, m, 1898 plinks.s.ss); 1899 } 1900 } 1901 else { 1902 #if VM_NRESERVLEVEL > 0 1903 if (vm_reserv_reclaim_contig(npages, low, high, alignment, 1904 boundary)) 1905 goto retry; 1906 #endif 1907 } 1908 mtx_unlock(&vm_page_queue_free_mtx); 1909 if (m_ret == NULL) 1910 return (NULL); 1911 1912 /* 1913 * Initialize the pages. Only the PG_ZERO flag is inherited. 1914 */ 1915 flags = 0; 1916 if ((req & VM_ALLOC_ZERO) != 0) 1917 flags = PG_ZERO; 1918 if ((req & VM_ALLOC_NODUMP) != 0) 1919 flags |= PG_NODUMP; 1920 if ((req & VM_ALLOC_WIRED) != 0) 1921 atomic_add_int(&vm_cnt.v_wire_count, npages); 1922 if (object != NULL) { 1923 if (object->memattr != VM_MEMATTR_DEFAULT && 1924 memattr == VM_MEMATTR_DEFAULT) 1925 memattr = object->memattr; 1926 } 1927 for (m = m_ret; m < &m_ret[npages]; m++) { 1928 m->aflags = 0; 1929 m->flags = (m->flags | PG_NODUMP) & flags; 1930 m->busy_lock = VPB_UNBUSIED; 1931 if (object != NULL) { 1932 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0) 1933 m->busy_lock = VPB_SINGLE_EXCLUSIVER; 1934 if ((req & VM_ALLOC_SBUSY) != 0) 1935 m->busy_lock = VPB_SHARERS_WORD(1); 1936 } 1937 if ((req & VM_ALLOC_WIRED) != 0) 1938 m->wire_count = 1; 1939 /* Unmanaged pages don't use "act_count". */ 1940 m->oflags = VPO_UNMANAGED; 1941 if (object != NULL) { 1942 if (vm_page_insert(m, object, pindex)) { 1943 vm_page_alloc_contig_vdrop( 1944 &deferred_vdrop_list); 1945 if (vm_paging_needed()) 1946 pagedaemon_wakeup(); 1947 if ((req & VM_ALLOC_WIRED) != 0) 1948 atomic_subtract_int(&vm_cnt.v_wire_count, 1949 npages); 1950 for (m_tmp = m, m = m_ret; 1951 m < &m_ret[npages]; m++) { 1952 if ((req & VM_ALLOC_WIRED) != 0) 1953 m->wire_count = 0; 1954 if (m >= m_tmp) 1955 m->object = NULL; 1956 vm_page_free(m); 1957 } 1958 return (NULL); 1959 } 1960 } else 1961 m->pindex = pindex; 1962 if (memattr != VM_MEMATTR_DEFAULT) 1963 pmap_page_set_memattr(m, memattr); 1964 pindex++; 1965 } 1966 vm_page_alloc_contig_vdrop(&deferred_vdrop_list); 1967 if (vm_paging_needed()) 1968 pagedaemon_wakeup(); 1969 return (m_ret); 1970 } 1971 1972 /* 1973 * Initialize a page that has been freshly dequeued from a freelist. 1974 * The caller has to drop the vnode returned, if it is not NULL. 1975 * 1976 * This function may only be used to initialize unmanaged pages. 1977 * 1978 * To be called with vm_page_queue_free_mtx held. 1979 */ 1980 static struct vnode * 1981 vm_page_alloc_init(vm_page_t m) 1982 { 1983 struct vnode *drop; 1984 vm_object_t m_object; 1985 1986 KASSERT(m->queue == PQ_NONE, 1987 ("vm_page_alloc_init: page %p has unexpected queue %d", 1988 m, m->queue)); 1989 KASSERT(m->wire_count == 0, 1990 ("vm_page_alloc_init: page %p is wired", m)); 1991 KASSERT(m->hold_count == 0, 1992 ("vm_page_alloc_init: page %p is held", m)); 1993 KASSERT(!vm_page_sbusied(m), 1994 ("vm_page_alloc_init: page %p is busy", m)); 1995 KASSERT(m->dirty == 0, 1996 ("vm_page_alloc_init: page %p is dirty", m)); 1997 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, 1998 ("vm_page_alloc_init: page %p has unexpected memattr %d", 1999 m, pmap_page_get_memattr(m))); 2000 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 2001 drop = NULL; 2002 if ((m->flags & PG_CACHED) != 0) { 2003 KASSERT((m->flags & PG_ZERO) == 0, 2004 ("vm_page_alloc_init: cached page %p is PG_ZERO", m)); 2005 m->valid = 0; 2006 m_object = m->object; 2007 vm_page_cache_remove(m); 2008 if (m_object->type == OBJT_VNODE && 2009 vm_object_cache_is_empty(m_object)) 2010 drop = m_object->handle; 2011 } else { 2012 KASSERT(m->valid == 0, 2013 ("vm_page_alloc_init: free page %p is valid", m)); 2014 vm_phys_freecnt_adj(m, -1); 2015 if ((m->flags & PG_ZERO) != 0) 2016 vm_page_zero_count--; 2017 } 2018 return (drop); 2019 } 2020 2021 /* 2022 * vm_page_alloc_freelist: 2023 * 2024 * Allocate a physical page from the specified free page list. 2025 * 2026 * The caller must always specify an allocation class. 2027 * 2028 * allocation classes: 2029 * VM_ALLOC_NORMAL normal process request 2030 * VM_ALLOC_SYSTEM system *really* needs a page 2031 * VM_ALLOC_INTERRUPT interrupt time request 2032 * 2033 * optional allocation flags: 2034 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 2035 * intends to allocate 2036 * VM_ALLOC_WIRED wire the allocated page 2037 * VM_ALLOC_ZERO prefer a zeroed page 2038 * 2039 * This routine may not sleep. 2040 */ 2041 vm_page_t 2042 vm_page_alloc_freelist(int flind, int req) 2043 { 2044 struct vnode *drop; 2045 vm_page_t m; 2046 u_int flags; 2047 int req_class; 2048 2049 req_class = req & VM_ALLOC_CLASS_MASK; 2050 2051 /* 2052 * The page daemon is allowed to dig deeper into the free page list. 2053 */ 2054 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 2055 req_class = VM_ALLOC_SYSTEM; 2056 2057 /* 2058 * Do not allocate reserved pages unless the req has asked for it. 2059 */ 2060 mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE); 2061 if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved || 2062 (req_class == VM_ALLOC_SYSTEM && 2063 vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) || 2064 (req_class == VM_ALLOC_INTERRUPT && 2065 vm_cnt.v_free_count + vm_cnt.v_cache_count > 0)) 2066 m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0); 2067 else { 2068 mtx_unlock(&vm_page_queue_free_mtx); 2069 atomic_add_int(&vm_pageout_deficit, 2070 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); 2071 pagedaemon_wakeup(); 2072 return (NULL); 2073 } 2074 if (m == NULL) { 2075 mtx_unlock(&vm_page_queue_free_mtx); 2076 return (NULL); 2077 } 2078 drop = vm_page_alloc_init(m); 2079 mtx_unlock(&vm_page_queue_free_mtx); 2080 2081 /* 2082 * Initialize the page. Only the PG_ZERO flag is inherited. 2083 */ 2084 m->aflags = 0; 2085 flags = 0; 2086 if ((req & VM_ALLOC_ZERO) != 0) 2087 flags = PG_ZERO; 2088 m->flags &= flags; 2089 if ((req & VM_ALLOC_WIRED) != 0) { 2090 /* 2091 * The page lock is not required for wiring a page that does 2092 * not belong to an object. 2093 */ 2094 atomic_add_int(&vm_cnt.v_wire_count, 1); 2095 m->wire_count = 1; 2096 } 2097 /* Unmanaged pages don't use "act_count". */ 2098 m->oflags = VPO_UNMANAGED; 2099 if (drop != NULL) 2100 vdrop(drop); 2101 if (vm_paging_needed()) 2102 pagedaemon_wakeup(); 2103 return (m); 2104 } 2105 2106 /* 2107 * vm_wait: (also see VM_WAIT macro) 2108 * 2109 * Sleep until free pages are available for allocation. 2110 * - Called in various places before memory allocations. 2111 */ 2112 void 2113 vm_wait(void) 2114 { 2115 2116 mtx_lock(&vm_page_queue_free_mtx); 2117 if (curproc == pageproc) { 2118 vm_pageout_pages_needed = 1; 2119 msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx, 2120 PDROP | PSWP, "VMWait", 0); 2121 } else { 2122 if (!vm_pages_needed) { 2123 vm_pages_needed = 1; 2124 wakeup(&vm_pages_needed); 2125 } 2126 msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM, 2127 "vmwait", 0); 2128 } 2129 } 2130 2131 /* 2132 * vm_waitpfault: (also see VM_WAITPFAULT macro) 2133 * 2134 * Sleep until free pages are available for allocation. 2135 * - Called only in vm_fault so that processes page faulting 2136 * can be easily tracked. 2137 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 2138 * processes will be able to grab memory first. Do not change 2139 * this balance without careful testing first. 2140 */ 2141 void 2142 vm_waitpfault(void) 2143 { 2144 2145 mtx_lock(&vm_page_queue_free_mtx); 2146 if (!vm_pages_needed) { 2147 vm_pages_needed = 1; 2148 wakeup(&vm_pages_needed); 2149 } 2150 msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER, 2151 "pfault", 0); 2152 } 2153 2154 struct vm_pagequeue * 2155 vm_page_pagequeue(vm_page_t m) 2156 { 2157 2158 return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]); 2159 } 2160 2161 /* 2162 * vm_page_dequeue: 2163 * 2164 * Remove the given page from its current page queue. 2165 * 2166 * The page must be locked. 2167 */ 2168 void 2169 vm_page_dequeue(vm_page_t m) 2170 { 2171 struct vm_pagequeue *pq; 2172 2173 vm_page_assert_locked(m); 2174 KASSERT(m->queue < PQ_COUNT, ("vm_page_dequeue: page %p is not queued", 2175 m)); 2176 pq = vm_page_pagequeue(m); 2177 vm_pagequeue_lock(pq); 2178 m->queue = PQ_NONE; 2179 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 2180 vm_pagequeue_cnt_dec(pq); 2181 vm_pagequeue_unlock(pq); 2182 } 2183 2184 /* 2185 * vm_page_dequeue_locked: 2186 * 2187 * Remove the given page from its current page queue. 2188 * 2189 * The page and page queue must be locked. 2190 */ 2191 void 2192 vm_page_dequeue_locked(vm_page_t m) 2193 { 2194 struct vm_pagequeue *pq; 2195 2196 vm_page_lock_assert(m, MA_OWNED); 2197 pq = vm_page_pagequeue(m); 2198 vm_pagequeue_assert_locked(pq); 2199 m->queue = PQ_NONE; 2200 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 2201 vm_pagequeue_cnt_dec(pq); 2202 } 2203 2204 /* 2205 * vm_page_enqueue: 2206 * 2207 * Add the given page to the specified page queue. 2208 * 2209 * The page must be locked. 2210 */ 2211 static void 2212 vm_page_enqueue(uint8_t queue, vm_page_t m) 2213 { 2214 struct vm_pagequeue *pq; 2215 2216 vm_page_lock_assert(m, MA_OWNED); 2217 KASSERT(queue < PQ_COUNT, 2218 ("vm_page_enqueue: invalid queue %u request for page %p", 2219 queue, m)); 2220 pq = &vm_phys_domain(m)->vmd_pagequeues[queue]; 2221 vm_pagequeue_lock(pq); 2222 m->queue = queue; 2223 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 2224 vm_pagequeue_cnt_inc(pq); 2225 vm_pagequeue_unlock(pq); 2226 } 2227 2228 /* 2229 * vm_page_requeue: 2230 * 2231 * Move the given page to the tail of its current page queue. 2232 * 2233 * The page must be locked. 2234 */ 2235 void 2236 vm_page_requeue(vm_page_t m) 2237 { 2238 struct vm_pagequeue *pq; 2239 2240 vm_page_lock_assert(m, MA_OWNED); 2241 KASSERT(m->queue != PQ_NONE, 2242 ("vm_page_requeue: page %p is not queued", m)); 2243 pq = vm_page_pagequeue(m); 2244 vm_pagequeue_lock(pq); 2245 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 2246 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 2247 vm_pagequeue_unlock(pq); 2248 } 2249 2250 /* 2251 * vm_page_requeue_locked: 2252 * 2253 * Move the given page to the tail of its current page queue. 2254 * 2255 * The page queue must be locked. 2256 */ 2257 void 2258 vm_page_requeue_locked(vm_page_t m) 2259 { 2260 struct vm_pagequeue *pq; 2261 2262 KASSERT(m->queue != PQ_NONE, 2263 ("vm_page_requeue_locked: page %p is not queued", m)); 2264 pq = vm_page_pagequeue(m); 2265 vm_pagequeue_assert_locked(pq); 2266 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 2267 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 2268 } 2269 2270 /* 2271 * vm_page_activate: 2272 * 2273 * Put the specified page on the active list (if appropriate). 2274 * Ensure that act_count is at least ACT_INIT but do not otherwise 2275 * mess with it. 2276 * 2277 * The page must be locked. 2278 */ 2279 void 2280 vm_page_activate(vm_page_t m) 2281 { 2282 int queue; 2283 2284 vm_page_lock_assert(m, MA_OWNED); 2285 if ((queue = m->queue) != PQ_ACTIVE) { 2286 if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) { 2287 if (m->act_count < ACT_INIT) 2288 m->act_count = ACT_INIT; 2289 if (queue != PQ_NONE) 2290 vm_page_dequeue(m); 2291 vm_page_enqueue(PQ_ACTIVE, m); 2292 } else 2293 KASSERT(queue == PQ_NONE, 2294 ("vm_page_activate: wired page %p is queued", m)); 2295 } else { 2296 if (m->act_count < ACT_INIT) 2297 m->act_count = ACT_INIT; 2298 } 2299 } 2300 2301 /* 2302 * vm_page_free_wakeup: 2303 * 2304 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 2305 * routine is called when a page has been added to the cache or free 2306 * queues. 2307 * 2308 * The page queues must be locked. 2309 */ 2310 static inline void 2311 vm_page_free_wakeup(void) 2312 { 2313 2314 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 2315 /* 2316 * if pageout daemon needs pages, then tell it that there are 2317 * some free. 2318 */ 2319 if (vm_pageout_pages_needed && 2320 vm_cnt.v_cache_count + vm_cnt.v_free_count >= vm_cnt.v_pageout_free_min) { 2321 wakeup(&vm_pageout_pages_needed); 2322 vm_pageout_pages_needed = 0; 2323 } 2324 /* 2325 * wakeup processes that are waiting on memory if we hit a 2326 * high water mark. And wakeup scheduler process if we have 2327 * lots of memory. this process will swapin processes. 2328 */ 2329 if (vm_pages_needed && !vm_page_count_min()) { 2330 vm_pages_needed = 0; 2331 wakeup(&vm_cnt.v_free_count); 2332 } 2333 } 2334 2335 /* 2336 * Turn a cached page into a free page, by changing its attributes. 2337 * Keep the statistics up-to-date. 2338 * 2339 * The free page queue must be locked. 2340 */ 2341 static void 2342 vm_page_cache_turn_free(vm_page_t m) 2343 { 2344 2345 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 2346 2347 m->object = NULL; 2348 m->valid = 0; 2349 KASSERT((m->flags & PG_CACHED) != 0, 2350 ("vm_page_cache_turn_free: page %p is not cached", m)); 2351 m->flags &= ~PG_CACHED; 2352 vm_cnt.v_cache_count--; 2353 vm_phys_freecnt_adj(m, 1); 2354 } 2355 2356 /* 2357 * vm_page_free_toq: 2358 * 2359 * Returns the given page to the free list, 2360 * disassociating it with any VM object. 2361 * 2362 * The object must be locked. The page must be locked if it is managed. 2363 */ 2364 void 2365 vm_page_free_toq(vm_page_t m) 2366 { 2367 2368 if ((m->oflags & VPO_UNMANAGED) == 0) { 2369 vm_page_lock_assert(m, MA_OWNED); 2370 KASSERT(!pmap_page_is_mapped(m), 2371 ("vm_page_free_toq: freeing mapped page %p", m)); 2372 } else 2373 KASSERT(m->queue == PQ_NONE, 2374 ("vm_page_free_toq: unmanaged page %p is queued", m)); 2375 PCPU_INC(cnt.v_tfree); 2376 2377 if (vm_page_sbusied(m)) 2378 panic("vm_page_free: freeing busy page %p", m); 2379 2380 /* 2381 * Unqueue, then remove page. Note that we cannot destroy 2382 * the page here because we do not want to call the pager's 2383 * callback routine until after we've put the page on the 2384 * appropriate free queue. 2385 */ 2386 vm_page_remque(m); 2387 vm_page_remove(m); 2388 2389 /* 2390 * If fictitious remove object association and 2391 * return, otherwise delay object association removal. 2392 */ 2393 if ((m->flags & PG_FICTITIOUS) != 0) { 2394 return; 2395 } 2396 2397 m->valid = 0; 2398 vm_page_undirty(m); 2399 2400 if (m->wire_count != 0) 2401 panic("vm_page_free: freeing wired page %p", m); 2402 if (m->hold_count != 0) { 2403 m->flags &= ~PG_ZERO; 2404 KASSERT((m->flags & PG_UNHOLDFREE) == 0, 2405 ("vm_page_free: freeing PG_UNHOLDFREE page %p", m)); 2406 m->flags |= PG_UNHOLDFREE; 2407 } else { 2408 /* 2409 * Restore the default memory attribute to the page. 2410 */ 2411 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) 2412 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); 2413 2414 /* 2415 * Insert the page into the physical memory allocator's 2416 * cache/free page queues. 2417 */ 2418 mtx_lock(&vm_page_queue_free_mtx); 2419 vm_phys_freecnt_adj(m, 1); 2420 #if VM_NRESERVLEVEL > 0 2421 if (!vm_reserv_free_page(m)) 2422 #else 2423 if (TRUE) 2424 #endif 2425 vm_phys_free_pages(m, 0); 2426 if ((m->flags & PG_ZERO) != 0) 2427 ++vm_page_zero_count; 2428 else 2429 vm_page_zero_idle_wakeup(); 2430 vm_page_free_wakeup(); 2431 mtx_unlock(&vm_page_queue_free_mtx); 2432 } 2433 } 2434 2435 /* 2436 * vm_page_wire: 2437 * 2438 * Mark this page as wired down by yet 2439 * another map, removing it from paging queues 2440 * as necessary. 2441 * 2442 * If the page is fictitious, then its wire count must remain one. 2443 * 2444 * The page must be locked. 2445 */ 2446 void 2447 vm_page_wire(vm_page_t m) 2448 { 2449 2450 /* 2451 * Only bump the wire statistics if the page is not already wired, 2452 * and only unqueue the page if it is on some queue (if it is unmanaged 2453 * it is already off the queues). 2454 */ 2455 vm_page_lock_assert(m, MA_OWNED); 2456 if ((m->flags & PG_FICTITIOUS) != 0) { 2457 KASSERT(m->wire_count == 1, 2458 ("vm_page_wire: fictitious page %p's wire count isn't one", 2459 m)); 2460 return; 2461 } 2462 if (m->wire_count == 0) { 2463 KASSERT((m->oflags & VPO_UNMANAGED) == 0 || 2464 m->queue == PQ_NONE, 2465 ("vm_page_wire: unmanaged page %p is queued", m)); 2466 vm_page_remque(m); 2467 atomic_add_int(&vm_cnt.v_wire_count, 1); 2468 } 2469 m->wire_count++; 2470 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 2471 } 2472 2473 /* 2474 * vm_page_unwire: 2475 * 2476 * Release one wiring of the specified page, potentially allowing it to be 2477 * paged out. Returns TRUE if the number of wirings transitions to zero and 2478 * FALSE otherwise. 2479 * 2480 * Only managed pages belonging to an object can be paged out. If the number 2481 * of wirings transitions to zero and the page is eligible for page out, then 2482 * the page is added to the specified paging queue (unless PQ_NONE is 2483 * specified). 2484 * 2485 * If a page is fictitious, then its wire count must always be one. 2486 * 2487 * A managed page must be locked. 2488 */ 2489 boolean_t 2490 vm_page_unwire(vm_page_t m, uint8_t queue) 2491 { 2492 2493 KASSERT(queue < PQ_COUNT || queue == PQ_NONE, 2494 ("vm_page_unwire: invalid queue %u request for page %p", 2495 queue, m)); 2496 if ((m->oflags & VPO_UNMANAGED) == 0) 2497 vm_page_assert_locked(m); 2498 if ((m->flags & PG_FICTITIOUS) != 0) { 2499 KASSERT(m->wire_count == 1, 2500 ("vm_page_unwire: fictitious page %p's wire count isn't one", m)); 2501 return (FALSE); 2502 } 2503 if (m->wire_count > 0) { 2504 m->wire_count--; 2505 if (m->wire_count == 0) { 2506 atomic_subtract_int(&vm_cnt.v_wire_count, 1); 2507 if ((m->oflags & VPO_UNMANAGED) == 0 && 2508 m->object != NULL && queue != PQ_NONE) { 2509 if (queue == PQ_INACTIVE) 2510 m->flags &= ~PG_WINATCFLS; 2511 vm_page_enqueue(queue, m); 2512 } 2513 return (TRUE); 2514 } else 2515 return (FALSE); 2516 } else 2517 panic("vm_page_unwire: page %p's wire count is zero", m); 2518 } 2519 2520 /* 2521 * Move the specified page to the inactive queue. 2522 * 2523 * Many pages placed on the inactive queue should actually go 2524 * into the cache, but it is difficult to figure out which. What 2525 * we do instead, if the inactive target is well met, is to put 2526 * clean pages at the head of the inactive queue instead of the tail. 2527 * This will cause them to be moved to the cache more quickly and 2528 * if not actively re-referenced, reclaimed more quickly. If we just 2529 * stick these pages at the end of the inactive queue, heavy filesystem 2530 * meta-data accesses can cause an unnecessary paging load on memory bound 2531 * processes. This optimization causes one-time-use metadata to be 2532 * reused more quickly. 2533 * 2534 * Normally noreuse is FALSE, resulting in LRU operation. noreuse is set 2535 * to TRUE if we want this page to be 'as if it were placed in the cache', 2536 * except without unmapping it from the process address space. In 2537 * practice this is implemented by inserting the page at the head of the 2538 * queue, using a marker page to guide FIFO insertion ordering. 2539 * 2540 * The page must be locked. 2541 */ 2542 static inline void 2543 _vm_page_deactivate(vm_page_t m, boolean_t noreuse) 2544 { 2545 struct vm_pagequeue *pq; 2546 int queue; 2547 2548 vm_page_assert_locked(m); 2549 2550 /* 2551 * Ignore if the page is already inactive, unless it is unlikely to be 2552 * reactivated. 2553 */ 2554 if ((queue = m->queue) == PQ_INACTIVE && !noreuse) 2555 return; 2556 if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) { 2557 pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE]; 2558 /* Avoid multiple acquisitions of the inactive queue lock. */ 2559 if (queue == PQ_INACTIVE) { 2560 vm_pagequeue_lock(pq); 2561 vm_page_dequeue_locked(m); 2562 } else { 2563 if (queue != PQ_NONE) 2564 vm_page_dequeue(m); 2565 m->flags &= ~PG_WINATCFLS; 2566 vm_pagequeue_lock(pq); 2567 } 2568 m->queue = PQ_INACTIVE; 2569 if (noreuse) 2570 TAILQ_INSERT_BEFORE(&vm_phys_domain(m)->vmd_inacthead, 2571 m, plinks.q); 2572 else 2573 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 2574 vm_pagequeue_cnt_inc(pq); 2575 vm_pagequeue_unlock(pq); 2576 } 2577 } 2578 2579 /* 2580 * Move the specified page to the inactive queue. 2581 * 2582 * The page must be locked. 2583 */ 2584 void 2585 vm_page_deactivate(vm_page_t m) 2586 { 2587 2588 _vm_page_deactivate(m, FALSE); 2589 } 2590 2591 /* 2592 * Move the specified page to the inactive queue with the expectation 2593 * that it is unlikely to be reused. 2594 * 2595 * The page must be locked. 2596 */ 2597 void 2598 vm_page_deactivate_noreuse(vm_page_t m) 2599 { 2600 2601 _vm_page_deactivate(m, TRUE); 2602 } 2603 2604 /* 2605 * vm_page_try_to_cache: 2606 * 2607 * Returns 0 on failure, 1 on success 2608 */ 2609 int 2610 vm_page_try_to_cache(vm_page_t m) 2611 { 2612 2613 vm_page_lock_assert(m, MA_OWNED); 2614 VM_OBJECT_ASSERT_WLOCKED(m->object); 2615 if (m->dirty || m->hold_count || m->wire_count || 2616 (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m)) 2617 return (0); 2618 pmap_remove_all(m); 2619 if (m->dirty) 2620 return (0); 2621 vm_page_cache(m); 2622 return (1); 2623 } 2624 2625 /* 2626 * vm_page_try_to_free() 2627 * 2628 * Attempt to free the page. If we cannot free it, we do nothing. 2629 * 1 is returned on success, 0 on failure. 2630 */ 2631 int 2632 vm_page_try_to_free(vm_page_t m) 2633 { 2634 2635 vm_page_lock_assert(m, MA_OWNED); 2636 if (m->object != NULL) 2637 VM_OBJECT_ASSERT_WLOCKED(m->object); 2638 if (m->dirty || m->hold_count || m->wire_count || 2639 (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m)) 2640 return (0); 2641 pmap_remove_all(m); 2642 if (m->dirty) 2643 return (0); 2644 vm_page_free(m); 2645 return (1); 2646 } 2647 2648 /* 2649 * vm_page_cache 2650 * 2651 * Put the specified page onto the page cache queue (if appropriate). 2652 * 2653 * The object and page must be locked. 2654 */ 2655 void 2656 vm_page_cache(vm_page_t m) 2657 { 2658 vm_object_t object; 2659 boolean_t cache_was_empty; 2660 2661 vm_page_lock_assert(m, MA_OWNED); 2662 object = m->object; 2663 VM_OBJECT_ASSERT_WLOCKED(object); 2664 if (vm_page_busied(m) || (m->oflags & VPO_UNMANAGED) || 2665 m->hold_count || m->wire_count) 2666 panic("vm_page_cache: attempting to cache busy page"); 2667 KASSERT(!pmap_page_is_mapped(m), 2668 ("vm_page_cache: page %p is mapped", m)); 2669 KASSERT(m->dirty == 0, ("vm_page_cache: page %p is dirty", m)); 2670 if (m->valid == 0 || object->type == OBJT_DEFAULT || 2671 (object->type == OBJT_SWAP && 2672 !vm_pager_has_page(object, m->pindex, NULL, NULL))) { 2673 /* 2674 * Hypothesis: A cache-eligible page belonging to a 2675 * default object or swap object but without a backing 2676 * store must be zero filled. 2677 */ 2678 vm_page_free(m); 2679 return; 2680 } 2681 KASSERT((m->flags & PG_CACHED) == 0, 2682 ("vm_page_cache: page %p is already cached", m)); 2683 2684 /* 2685 * Remove the page from the paging queues. 2686 */ 2687 vm_page_remque(m); 2688 2689 /* 2690 * Remove the page from the object's collection of resident 2691 * pages. 2692 */ 2693 vm_radix_remove(&object->rtree, m->pindex); 2694 TAILQ_REMOVE(&object->memq, m, listq); 2695 object->resident_page_count--; 2696 2697 /* 2698 * Restore the default memory attribute to the page. 2699 */ 2700 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) 2701 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); 2702 2703 /* 2704 * Insert the page into the object's collection of cached pages 2705 * and the physical memory allocator's cache/free page queues. 2706 */ 2707 m->flags &= ~PG_ZERO; 2708 mtx_lock(&vm_page_queue_free_mtx); 2709 cache_was_empty = vm_radix_is_empty(&object->cache); 2710 if (vm_radix_insert(&object->cache, m)) { 2711 mtx_unlock(&vm_page_queue_free_mtx); 2712 if (object->resident_page_count == 0) 2713 vdrop(object->handle); 2714 m->object = NULL; 2715 vm_page_free(m); 2716 return; 2717 } 2718 2719 /* 2720 * The above call to vm_radix_insert() could reclaim the one pre- 2721 * existing cached page from this object, resulting in a call to 2722 * vdrop(). 2723 */ 2724 if (!cache_was_empty) 2725 cache_was_empty = vm_radix_is_singleton(&object->cache); 2726 2727 m->flags |= PG_CACHED; 2728 vm_cnt.v_cache_count++; 2729 PCPU_INC(cnt.v_tcached); 2730 #if VM_NRESERVLEVEL > 0 2731 if (!vm_reserv_free_page(m)) { 2732 #else 2733 if (TRUE) { 2734 #endif 2735 vm_phys_free_pages(m, 0); 2736 } 2737 vm_page_free_wakeup(); 2738 mtx_unlock(&vm_page_queue_free_mtx); 2739 2740 /* 2741 * Increment the vnode's hold count if this is the object's only 2742 * cached page. Decrement the vnode's hold count if this was 2743 * the object's only resident page. 2744 */ 2745 if (object->type == OBJT_VNODE) { 2746 if (cache_was_empty && object->resident_page_count != 0) 2747 vhold(object->handle); 2748 else if (!cache_was_empty && object->resident_page_count == 0) 2749 vdrop(object->handle); 2750 } 2751 } 2752 2753 /* 2754 * vm_page_advise 2755 * 2756 * Deactivate or do nothing, as appropriate. 2757 * 2758 * The object and page must be locked. 2759 */ 2760 void 2761 vm_page_advise(vm_page_t m, int advice) 2762 { 2763 2764 vm_page_assert_locked(m); 2765 VM_OBJECT_ASSERT_WLOCKED(m->object); 2766 if (advice == MADV_FREE) 2767 /* 2768 * Mark the page clean. This will allow the page to be freed 2769 * up by the system. However, such pages are often reused 2770 * quickly by malloc() so we do not do anything that would 2771 * cause a page fault if we can help it. 2772 * 2773 * Specifically, we do not try to actually free the page now 2774 * nor do we try to put it in the cache (which would cause a 2775 * page fault on reuse). 2776 * 2777 * But we do make the page as freeable as we can without 2778 * actually taking the step of unmapping it. 2779 */ 2780 m->dirty = 0; 2781 else if (advice != MADV_DONTNEED) 2782 return; 2783 2784 /* 2785 * Clear any references to the page. Otherwise, the page daemon will 2786 * immediately reactivate the page. 2787 */ 2788 vm_page_aflag_clear(m, PGA_REFERENCED); 2789 2790 if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m)) 2791 vm_page_dirty(m); 2792 2793 /* 2794 * Place clean pages at the head of the inactive queue rather than the 2795 * tail, thus defeating the queue's LRU operation and ensuring that the 2796 * page will be reused quickly. 2797 */ 2798 _vm_page_deactivate(m, m->dirty == 0); 2799 } 2800 2801 /* 2802 * Grab a page, waiting until we are waken up due to the page 2803 * changing state. We keep on waiting, if the page continues 2804 * to be in the object. If the page doesn't exist, first allocate it 2805 * and then conditionally zero it. 2806 * 2807 * This routine may sleep. 2808 * 2809 * The object must be locked on entry. The lock will, however, be released 2810 * and reacquired if the routine sleeps. 2811 */ 2812 vm_page_t 2813 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 2814 { 2815 vm_page_t m; 2816 int sleep; 2817 2818 VM_OBJECT_ASSERT_WLOCKED(object); 2819 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 2820 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 2821 ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch")); 2822 retrylookup: 2823 if ((m = vm_page_lookup(object, pindex)) != NULL) { 2824 sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ? 2825 vm_page_xbusied(m) : vm_page_busied(m); 2826 if (sleep) { 2827 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 2828 return (NULL); 2829 /* 2830 * Reference the page before unlocking and 2831 * sleeping so that the page daemon is less 2832 * likely to reclaim it. 2833 */ 2834 vm_page_aflag_set(m, PGA_REFERENCED); 2835 vm_page_lock(m); 2836 VM_OBJECT_WUNLOCK(object); 2837 vm_page_busy_sleep(m, "pgrbwt"); 2838 VM_OBJECT_WLOCK(object); 2839 goto retrylookup; 2840 } else { 2841 if ((allocflags & VM_ALLOC_WIRED) != 0) { 2842 vm_page_lock(m); 2843 vm_page_wire(m); 2844 vm_page_unlock(m); 2845 } 2846 if ((allocflags & 2847 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0) 2848 vm_page_xbusy(m); 2849 if ((allocflags & VM_ALLOC_SBUSY) != 0) 2850 vm_page_sbusy(m); 2851 return (m); 2852 } 2853 } 2854 m = vm_page_alloc(object, pindex, allocflags); 2855 if (m == NULL) { 2856 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 2857 return (NULL); 2858 VM_OBJECT_WUNLOCK(object); 2859 VM_WAIT; 2860 VM_OBJECT_WLOCK(object); 2861 goto retrylookup; 2862 } else if (m->valid != 0) 2863 return (m); 2864 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 2865 pmap_zero_page(m); 2866 return (m); 2867 } 2868 2869 /* 2870 * Mapping function for valid or dirty bits in a page. 2871 * 2872 * Inputs are required to range within a page. 2873 */ 2874 vm_page_bits_t 2875 vm_page_bits(int base, int size) 2876 { 2877 int first_bit; 2878 int last_bit; 2879 2880 KASSERT( 2881 base + size <= PAGE_SIZE, 2882 ("vm_page_bits: illegal base/size %d/%d", base, size) 2883 ); 2884 2885 if (size == 0) /* handle degenerate case */ 2886 return (0); 2887 2888 first_bit = base >> DEV_BSHIFT; 2889 last_bit = (base + size - 1) >> DEV_BSHIFT; 2890 2891 return (((vm_page_bits_t)2 << last_bit) - 2892 ((vm_page_bits_t)1 << first_bit)); 2893 } 2894 2895 /* 2896 * vm_page_set_valid_range: 2897 * 2898 * Sets portions of a page valid. The arguments are expected 2899 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 2900 * of any partial chunks touched by the range. The invalid portion of 2901 * such chunks will be zeroed. 2902 * 2903 * (base + size) must be less then or equal to PAGE_SIZE. 2904 */ 2905 void 2906 vm_page_set_valid_range(vm_page_t m, int base, int size) 2907 { 2908 int endoff, frag; 2909 2910 VM_OBJECT_ASSERT_WLOCKED(m->object); 2911 if (size == 0) /* handle degenerate case */ 2912 return; 2913 2914 /* 2915 * If the base is not DEV_BSIZE aligned and the valid 2916 * bit is clear, we have to zero out a portion of the 2917 * first block. 2918 */ 2919 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 2920 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 2921 pmap_zero_page_area(m, frag, base - frag); 2922 2923 /* 2924 * If the ending offset is not DEV_BSIZE aligned and the 2925 * valid bit is clear, we have to zero out a portion of 2926 * the last block. 2927 */ 2928 endoff = base + size; 2929 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 2930 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 2931 pmap_zero_page_area(m, endoff, 2932 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 2933 2934 /* 2935 * Assert that no previously invalid block that is now being validated 2936 * is already dirty. 2937 */ 2938 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0, 2939 ("vm_page_set_valid_range: page %p is dirty", m)); 2940 2941 /* 2942 * Set valid bits inclusive of any overlap. 2943 */ 2944 m->valid |= vm_page_bits(base, size); 2945 } 2946 2947 /* 2948 * Clear the given bits from the specified page's dirty field. 2949 */ 2950 static __inline void 2951 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits) 2952 { 2953 uintptr_t addr; 2954 #if PAGE_SIZE < 16384 2955 int shift; 2956 #endif 2957 2958 /* 2959 * If the object is locked and the page is neither exclusive busy nor 2960 * write mapped, then the page's dirty field cannot possibly be 2961 * set by a concurrent pmap operation. 2962 */ 2963 VM_OBJECT_ASSERT_WLOCKED(m->object); 2964 if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) 2965 m->dirty &= ~pagebits; 2966 else { 2967 /* 2968 * The pmap layer can call vm_page_dirty() without 2969 * holding a distinguished lock. The combination of 2970 * the object's lock and an atomic operation suffice 2971 * to guarantee consistency of the page dirty field. 2972 * 2973 * For PAGE_SIZE == 32768 case, compiler already 2974 * properly aligns the dirty field, so no forcible 2975 * alignment is needed. Only require existence of 2976 * atomic_clear_64 when page size is 32768. 2977 */ 2978 addr = (uintptr_t)&m->dirty; 2979 #if PAGE_SIZE == 32768 2980 atomic_clear_64((uint64_t *)addr, pagebits); 2981 #elif PAGE_SIZE == 16384 2982 atomic_clear_32((uint32_t *)addr, pagebits); 2983 #else /* PAGE_SIZE <= 8192 */ 2984 /* 2985 * Use a trick to perform a 32-bit atomic on the 2986 * containing aligned word, to not depend on the existence 2987 * of atomic_clear_{8, 16}. 2988 */ 2989 shift = addr & (sizeof(uint32_t) - 1); 2990 #if BYTE_ORDER == BIG_ENDIAN 2991 shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY; 2992 #else 2993 shift *= NBBY; 2994 #endif 2995 addr &= ~(sizeof(uint32_t) - 1); 2996 atomic_clear_32((uint32_t *)addr, pagebits << shift); 2997 #endif /* PAGE_SIZE */ 2998 } 2999 } 3000 3001 /* 3002 * vm_page_set_validclean: 3003 * 3004 * Sets portions of a page valid and clean. The arguments are expected 3005 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 3006 * of any partial chunks touched by the range. The invalid portion of 3007 * such chunks will be zero'd. 3008 * 3009 * (base + size) must be less then or equal to PAGE_SIZE. 3010 */ 3011 void 3012 vm_page_set_validclean(vm_page_t m, int base, int size) 3013 { 3014 vm_page_bits_t oldvalid, pagebits; 3015 int endoff, frag; 3016 3017 VM_OBJECT_ASSERT_WLOCKED(m->object); 3018 if (size == 0) /* handle degenerate case */ 3019 return; 3020 3021 /* 3022 * If the base is not DEV_BSIZE aligned and the valid 3023 * bit is clear, we have to zero out a portion of the 3024 * first block. 3025 */ 3026 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 3027 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0) 3028 pmap_zero_page_area(m, frag, base - frag); 3029 3030 /* 3031 * If the ending offset is not DEV_BSIZE aligned and the 3032 * valid bit is clear, we have to zero out a portion of 3033 * the last block. 3034 */ 3035 endoff = base + size; 3036 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 3037 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0) 3038 pmap_zero_page_area(m, endoff, 3039 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 3040 3041 /* 3042 * Set valid, clear dirty bits. If validating the entire 3043 * page we can safely clear the pmap modify bit. We also 3044 * use this opportunity to clear the VPO_NOSYNC flag. If a process 3045 * takes a write fault on a MAP_NOSYNC memory area the flag will 3046 * be set again. 3047 * 3048 * We set valid bits inclusive of any overlap, but we can only 3049 * clear dirty bits for DEV_BSIZE chunks that are fully within 3050 * the range. 3051 */ 3052 oldvalid = m->valid; 3053 pagebits = vm_page_bits(base, size); 3054 m->valid |= pagebits; 3055 #if 0 /* NOT YET */ 3056 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 3057 frag = DEV_BSIZE - frag; 3058 base += frag; 3059 size -= frag; 3060 if (size < 0) 3061 size = 0; 3062 } 3063 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 3064 #endif 3065 if (base == 0 && size == PAGE_SIZE) { 3066 /* 3067 * The page can only be modified within the pmap if it is 3068 * mapped, and it can only be mapped if it was previously 3069 * fully valid. 3070 */ 3071 if (oldvalid == VM_PAGE_BITS_ALL) 3072 /* 3073 * Perform the pmap_clear_modify() first. Otherwise, 3074 * a concurrent pmap operation, such as 3075 * pmap_protect(), could clear a modification in the 3076 * pmap and set the dirty field on the page before 3077 * pmap_clear_modify() had begun and after the dirty 3078 * field was cleared here. 3079 */ 3080 pmap_clear_modify(m); 3081 m->dirty = 0; 3082 m->oflags &= ~VPO_NOSYNC; 3083 } else if (oldvalid != VM_PAGE_BITS_ALL) 3084 m->dirty &= ~pagebits; 3085 else 3086 vm_page_clear_dirty_mask(m, pagebits); 3087 } 3088 3089 void 3090 vm_page_clear_dirty(vm_page_t m, int base, int size) 3091 { 3092 3093 vm_page_clear_dirty_mask(m, vm_page_bits(base, size)); 3094 } 3095 3096 /* 3097 * vm_page_set_invalid: 3098 * 3099 * Invalidates DEV_BSIZE'd chunks within a page. Both the 3100 * valid and dirty bits for the effected areas are cleared. 3101 */ 3102 void 3103 vm_page_set_invalid(vm_page_t m, int base, int size) 3104 { 3105 vm_page_bits_t bits; 3106 vm_object_t object; 3107 3108 object = m->object; 3109 VM_OBJECT_ASSERT_WLOCKED(object); 3110 if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) + 3111 size >= object->un_pager.vnp.vnp_size) 3112 bits = VM_PAGE_BITS_ALL; 3113 else 3114 bits = vm_page_bits(base, size); 3115 if (object->ref_count != 0 && m->valid == VM_PAGE_BITS_ALL && 3116 bits != 0) 3117 pmap_remove_all(m); 3118 KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) || 3119 !pmap_page_is_mapped(m), 3120 ("vm_page_set_invalid: page %p is mapped", m)); 3121 m->valid &= ~bits; 3122 m->dirty &= ~bits; 3123 } 3124 3125 /* 3126 * vm_page_zero_invalid() 3127 * 3128 * The kernel assumes that the invalid portions of a page contain 3129 * garbage, but such pages can be mapped into memory by user code. 3130 * When this occurs, we must zero out the non-valid portions of the 3131 * page so user code sees what it expects. 3132 * 3133 * Pages are most often semi-valid when the end of a file is mapped 3134 * into memory and the file's size is not page aligned. 3135 */ 3136 void 3137 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 3138 { 3139 int b; 3140 int i; 3141 3142 VM_OBJECT_ASSERT_WLOCKED(m->object); 3143 /* 3144 * Scan the valid bits looking for invalid sections that 3145 * must be zeroed. Invalid sub-DEV_BSIZE'd areas ( where the 3146 * valid bit may be set ) have already been zeroed by 3147 * vm_page_set_validclean(). 3148 */ 3149 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 3150 if (i == (PAGE_SIZE / DEV_BSIZE) || 3151 (m->valid & ((vm_page_bits_t)1 << i))) { 3152 if (i > b) { 3153 pmap_zero_page_area(m, 3154 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 3155 } 3156 b = i + 1; 3157 } 3158 } 3159 3160 /* 3161 * setvalid is TRUE when we can safely set the zero'd areas 3162 * as being valid. We can do this if there are no cache consistancy 3163 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 3164 */ 3165 if (setvalid) 3166 m->valid = VM_PAGE_BITS_ALL; 3167 } 3168 3169 /* 3170 * vm_page_is_valid: 3171 * 3172 * Is (partial) page valid? Note that the case where size == 0 3173 * will return FALSE in the degenerate case where the page is 3174 * entirely invalid, and TRUE otherwise. 3175 */ 3176 int 3177 vm_page_is_valid(vm_page_t m, int base, int size) 3178 { 3179 vm_page_bits_t bits; 3180 3181 VM_OBJECT_ASSERT_LOCKED(m->object); 3182 bits = vm_page_bits(base, size); 3183 return (m->valid != 0 && (m->valid & bits) == bits); 3184 } 3185 3186 /* 3187 * vm_page_ps_is_valid: 3188 * 3189 * Returns TRUE if the entire (super)page is valid and FALSE otherwise. 3190 */ 3191 boolean_t 3192 vm_page_ps_is_valid(vm_page_t m) 3193 { 3194 int i, npages; 3195 3196 VM_OBJECT_ASSERT_LOCKED(m->object); 3197 npages = atop(pagesizes[m->psind]); 3198 3199 /* 3200 * The physically contiguous pages that make up a superpage, i.e., a 3201 * page with a page size index ("psind") greater than zero, will 3202 * occupy adjacent entries in vm_page_array[]. 3203 */ 3204 for (i = 0; i < npages; i++) { 3205 if (m[i].valid != VM_PAGE_BITS_ALL) 3206 return (FALSE); 3207 } 3208 return (TRUE); 3209 } 3210 3211 /* 3212 * Set the page's dirty bits if the page is modified. 3213 */ 3214 void 3215 vm_page_test_dirty(vm_page_t m) 3216 { 3217 3218 VM_OBJECT_ASSERT_WLOCKED(m->object); 3219 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m)) 3220 vm_page_dirty(m); 3221 } 3222 3223 void 3224 vm_page_lock_KBI(vm_page_t m, const char *file, int line) 3225 { 3226 3227 mtx_lock_flags_(vm_page_lockptr(m), 0, file, line); 3228 } 3229 3230 void 3231 vm_page_unlock_KBI(vm_page_t m, const char *file, int line) 3232 { 3233 3234 mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line); 3235 } 3236 3237 int 3238 vm_page_trylock_KBI(vm_page_t m, const char *file, int line) 3239 { 3240 3241 return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line)); 3242 } 3243 3244 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT) 3245 void 3246 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line) 3247 { 3248 3249 vm_page_lock_assert_KBI(m, MA_OWNED, file, line); 3250 } 3251 3252 void 3253 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line) 3254 { 3255 3256 mtx_assert_(vm_page_lockptr(m), a, file, line); 3257 } 3258 #endif 3259 3260 #ifdef INVARIANTS 3261 void 3262 vm_page_object_lock_assert(vm_page_t m) 3263 { 3264 3265 /* 3266 * Certain of the page's fields may only be modified by the 3267 * holder of the containing object's lock or the exclusive busy. 3268 * holder. Unfortunately, the holder of the write busy is 3269 * not recorded, and thus cannot be checked here. 3270 */ 3271 if (m->object != NULL && !vm_page_xbusied(m)) 3272 VM_OBJECT_ASSERT_WLOCKED(m->object); 3273 } 3274 3275 void 3276 vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits) 3277 { 3278 3279 if ((bits & PGA_WRITEABLE) == 0) 3280 return; 3281 3282 /* 3283 * The PGA_WRITEABLE flag can only be set if the page is 3284 * managed, is exclusively busied or the object is locked. 3285 * Currently, this flag is only set by pmap_enter(). 3286 */ 3287 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 3288 ("PGA_WRITEABLE on unmanaged page")); 3289 if (!vm_page_xbusied(m)) 3290 VM_OBJECT_ASSERT_LOCKED(m->object); 3291 } 3292 #endif 3293 3294 #include "opt_ddb.h" 3295 #ifdef DDB 3296 #include <sys/kernel.h> 3297 3298 #include <ddb/ddb.h> 3299 3300 DB_SHOW_COMMAND(page, vm_page_print_page_info) 3301 { 3302 db_printf("vm_cnt.v_free_count: %d\n", vm_cnt.v_free_count); 3303 db_printf("vm_cnt.v_cache_count: %d\n", vm_cnt.v_cache_count); 3304 db_printf("vm_cnt.v_inactive_count: %d\n", vm_cnt.v_inactive_count); 3305 db_printf("vm_cnt.v_active_count: %d\n", vm_cnt.v_active_count); 3306 db_printf("vm_cnt.v_wire_count: %d\n", vm_cnt.v_wire_count); 3307 db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved); 3308 db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min); 3309 db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target); 3310 db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target); 3311 } 3312 3313 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 3314 { 3315 int dom; 3316 3317 db_printf("pq_free %d pq_cache %d\n", 3318 vm_cnt.v_free_count, vm_cnt.v_cache_count); 3319 for (dom = 0; dom < vm_ndomains; dom++) { 3320 db_printf( 3321 "dom %d page_cnt %d free %d pq_act %d pq_inact %d pass %d\n", 3322 dom, 3323 vm_dom[dom].vmd_page_count, 3324 vm_dom[dom].vmd_free_count, 3325 vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt, 3326 vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt, 3327 vm_dom[dom].vmd_pass); 3328 } 3329 } 3330 3331 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo) 3332 { 3333 vm_page_t m; 3334 boolean_t phys; 3335 3336 if (!have_addr) { 3337 db_printf("show pginfo addr\n"); 3338 return; 3339 } 3340 3341 phys = strchr(modif, 'p') != NULL; 3342 if (phys) 3343 m = PHYS_TO_VM_PAGE(addr); 3344 else 3345 m = (vm_page_t)addr; 3346 db_printf( 3347 "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n" 3348 " af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n", 3349 m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr, 3350 m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags, 3351 m->flags, m->act_count, m->busy_lock, m->valid, m->dirty); 3352 } 3353 #endif /* DDB */ 3354