xref: /freebsd/sys/vm/vm_page.c (revision 1b6c76a2fe091c74f08427e6c870851025a9cf67)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37  * $FreeBSD$
38  */
39 
40 /*
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  */
66 
67 /*
68  *	Resident memory management module.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/lock.h>
74 #include <sys/malloc.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/vmmeter.h>
78 #include <sys/vnode.h>
79 
80 #include <vm/vm.h>
81 #include <vm/vm_param.h>
82 #include <vm/vm_kern.h>
83 #include <vm/vm_object.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_pageout.h>
86 #include <vm/vm_pager.h>
87 #include <vm/vm_extern.h>
88 
89 static void	vm_page_queue_init __P((void));
90 static vm_page_t vm_page_select_cache __P((vm_object_t, vm_pindex_t));
91 
92 /*
93  *	Associated with page of user-allocatable memory is a
94  *	page structure.
95  */
96 
97 static struct vm_page **vm_page_buckets; /* Array of buckets */
98 static int vm_page_bucket_count;	/* How big is array? */
99 static int vm_page_hash_mask;		/* Mask for hash function */
100 static volatile int vm_page_bucket_generation;
101 
102 struct vpgqueues vm_page_queues[PQ_COUNT];
103 
104 static void
105 vm_page_queue_init(void) {
106 	int i;
107 
108 	for(i=0;i<PQ_L2_SIZE;i++) {
109 		vm_page_queues[PQ_FREE+i].cnt = &cnt.v_free_count;
110 	}
111 	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
112 
113 	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
114 	for(i=0;i<PQ_L2_SIZE;i++) {
115 		vm_page_queues[PQ_CACHE+i].cnt = &cnt.v_cache_count;
116 	}
117 	for(i=0;i<PQ_COUNT;i++) {
118 		TAILQ_INIT(&vm_page_queues[i].pl);
119 	}
120 }
121 
122 vm_page_t vm_page_array = 0;
123 int vm_page_array_size = 0;
124 long first_page = 0;
125 int vm_page_zero_count = 0;
126 
127 static __inline int vm_page_hash __P((vm_object_t object, vm_pindex_t pindex));
128 static void vm_page_free_wakeup __P((void));
129 
130 /*
131  *	vm_set_page_size:
132  *
133  *	Sets the page size, perhaps based upon the memory
134  *	size.  Must be called before any use of page-size
135  *	dependent functions.
136  */
137 void
138 vm_set_page_size()
139 {
140 	if (cnt.v_page_size == 0)
141 		cnt.v_page_size = PAGE_SIZE;
142 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
143 		panic("vm_set_page_size: page size not a power of two");
144 }
145 
146 /*
147  *	vm_add_new_page:
148  *
149  *	Add a new page to the freelist for use by the system.
150  *	Must be called at splhigh().
151  *	Must be called with the vm_mtx held.
152  */
153 vm_page_t
154 vm_add_new_page(pa)
155 	vm_offset_t pa;
156 {
157 	vm_page_t m;
158 
159 	mtx_assert(&vm_mtx, MA_OWNED);
160 	++cnt.v_page_count;
161 	++cnt.v_free_count;
162 	m = PHYS_TO_VM_PAGE(pa);
163 	m->phys_addr = pa;
164 	m->flags = 0;
165 	m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
166 	m->queue = m->pc + PQ_FREE;
167 	TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
168 	vm_page_queues[m->queue].lcnt++;
169 	return (m);
170 }
171 
172 /*
173  *	vm_page_startup:
174  *
175  *	Initializes the resident memory module.
176  *
177  *	Allocates memory for the page cells, and
178  *	for the object/offset-to-page hash table headers.
179  *	Each page cell is initialized and placed on the free list.
180  */
181 
182 vm_offset_t
183 vm_page_startup(starta, enda, vaddr)
184 	register vm_offset_t starta;
185 	vm_offset_t enda;
186 	vm_offset_t vaddr;
187 {
188 	register vm_offset_t mapped;
189 	register struct vm_page **bucket;
190 	vm_size_t npages, page_range;
191 	register vm_offset_t new_end;
192 	int i;
193 	vm_offset_t pa;
194 	int nblocks;
195 	vm_offset_t last_pa;
196 
197 	/* the biggest memory array is the second group of pages */
198 	vm_offset_t end;
199 	vm_offset_t biggestone, biggestsize;
200 
201 	vm_offset_t total;
202 
203 	total = 0;
204 	biggestsize = 0;
205 	biggestone = 0;
206 	nblocks = 0;
207 	vaddr = round_page(vaddr);
208 
209 	for (i = 0; phys_avail[i + 1]; i += 2) {
210 		phys_avail[i] = round_page(phys_avail[i]);
211 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
212 	}
213 
214 	for (i = 0; phys_avail[i + 1]; i += 2) {
215 		int size = phys_avail[i + 1] - phys_avail[i];
216 
217 		if (size > biggestsize) {
218 			biggestone = i;
219 			biggestsize = size;
220 		}
221 		++nblocks;
222 		total += size;
223 	}
224 
225 	end = phys_avail[biggestone+1];
226 
227 	/*
228 	 * Initialize the queue headers for the free queue, the active queue
229 	 * and the inactive queue.
230 	 */
231 
232 	vm_page_queue_init();
233 
234 	/*
235 	 * Allocate (and initialize) the hash table buckets.
236 	 *
237 	 * The number of buckets MUST BE a power of 2, and the actual value is
238 	 * the next power of 2 greater than the number of physical pages in
239 	 * the system.
240 	 *
241 	 * We make the hash table approximately 2x the number of pages to
242 	 * reduce the chain length.  This is about the same size using the
243 	 * singly-linked list as the 1x hash table we were using before
244 	 * using TAILQ but the chain length will be smaller.
245 	 *
246 	 * Note: This computation can be tweaked if desired.
247 	 */
248 	if (vm_page_bucket_count == 0) {
249 		vm_page_bucket_count = 1;
250 		while (vm_page_bucket_count < atop(total))
251 			vm_page_bucket_count <<= 1;
252 	}
253 	vm_page_bucket_count <<= 1;
254 	vm_page_hash_mask = vm_page_bucket_count - 1;
255 
256 	/*
257 	 * Validate these addresses.
258 	 */
259 	new_end = end - vm_page_bucket_count * sizeof(struct vm_page *);
260 	new_end = trunc_page(new_end);
261 	mapped = pmap_map(&vaddr, new_end, end,
262 	    VM_PROT_READ | VM_PROT_WRITE);
263 	bzero((caddr_t) mapped, end - new_end);
264 
265 	vm_page_buckets = (struct vm_page **)mapped;
266 	bucket = vm_page_buckets;
267 	for (i = 0; i < vm_page_bucket_count; i++) {
268 		*bucket = NULL;
269 		bucket++;
270 	}
271 
272 	/*
273 	 * Compute the number of pages of memory that will be available for
274 	 * use (taking into account the overhead of a page structure per
275 	 * page).
276 	 */
277 
278 	first_page = phys_avail[0] / PAGE_SIZE;
279 
280 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
281 	npages = (total - (page_range * sizeof(struct vm_page)) -
282 	    (end - new_end)) / PAGE_SIZE;
283 
284 	end = new_end;
285 
286 	/*
287 	 * Initialize the mem entry structures now, and put them in the free
288 	 * queue.
289 	 */
290 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
291 	mapped = pmap_map(&vaddr, new_end, end,
292 	    VM_PROT_READ | VM_PROT_WRITE);
293 	vm_page_array = (vm_page_t) mapped;
294 
295 	/*
296 	 * Clear all of the page structures
297 	 */
298 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
299 	vm_page_array_size = page_range;
300 
301 	/*
302 	 * Construct the free queue(s) in descending order (by physical
303 	 * address) so that the first 16MB of physical memory is allocated
304 	 * last rather than first.  On large-memory machines, this avoids
305 	 * the exhaustion of low physical memory before isa_dmainit has run.
306 	 */
307 	cnt.v_page_count = 0;
308 	cnt.v_free_count = 0;
309 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
310 		pa = phys_avail[i];
311 		if (i == biggestone)
312 			last_pa = new_end;
313 		else
314 			last_pa = phys_avail[i + 1];
315 		while (pa < last_pa && npages-- > 0) {
316 			vm_add_new_page(pa);
317 			pa += PAGE_SIZE;
318 		}
319 	}
320 	return (vaddr);
321 }
322 
323 /*
324  *	vm_page_hash:
325  *
326  *	Distributes the object/offset key pair among hash buckets.
327  *
328  *	NOTE:  This macro depends on vm_page_bucket_count being a power of 2.
329  *	This routine may not block.
330  *
331  *	We try to randomize the hash based on the object to spread the pages
332  *	out in the hash table without it costing us too much.
333  */
334 static __inline int
335 vm_page_hash(object, pindex)
336 	vm_object_t object;
337 	vm_pindex_t pindex;
338 {
339 	int i = ((uintptr_t)object + pindex) ^ object->hash_rand;
340 
341 	return(i & vm_page_hash_mask);
342 }
343 
344 /*
345  *	vm_page_insert:		[ internal use only ]
346  *
347  *	Inserts the given mem entry into the object and object list.
348  *
349  *	The pagetables are not updated but will presumably fault the page
350  *	in if necessary, or if a kernel page the caller will at some point
351  *	enter the page into the kernel's pmap.  We are not allowed to block
352  *	here so we *can't* do this anyway.
353  *
354  *	The object and page must be locked, and must be splhigh.
355  *	This routine may not block.
356  */
357 
358 void
359 vm_page_insert(m, object, pindex)
360 	register vm_page_t m;
361 	register vm_object_t object;
362 	register vm_pindex_t pindex;
363 {
364 	register struct vm_page **bucket;
365 
366 	mtx_assert(&vm_mtx, MA_OWNED);
367 	if (m->object != NULL)
368 		panic("vm_page_insert: already inserted");
369 
370 	/*
371 	 * Record the object/offset pair in this page
372 	 */
373 
374 	m->object = object;
375 	m->pindex = pindex;
376 
377 	/*
378 	 * Insert it into the object_object/offset hash table
379 	 */
380 
381 	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
382 	m->hnext = *bucket;
383 	*bucket = m;
384 	vm_page_bucket_generation++;
385 
386 	/*
387 	 * Now link into the object's list of backed pages.
388 	 */
389 
390 	TAILQ_INSERT_TAIL(&object->memq, m, listq);
391 	object->generation++;
392 
393 	/*
394 	 * show that the object has one more resident page.
395 	 */
396 
397 	object->resident_page_count++;
398 
399 	/*
400 	 * Since we are inserting a new and possibly dirty page,
401 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
402 	 */
403 	if (m->flags & PG_WRITEABLE)
404 	    vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
405 }
406 
407 /*
408  *	vm_page_remove:
409  *				NOTE: used by device pager as well -wfj
410  *
411  *	Removes the given mem entry from the object/offset-page
412  *	table and the object page list, but do not invalidate/terminate
413  *	the backing store.
414  *
415  *	The object and page must be locked, and at splhigh.
416  *	The underlying pmap entry (if any) is NOT removed here.
417  *	This routine may not block.
418  */
419 
420 void
421 vm_page_remove(m)
422 	vm_page_t m;
423 {
424 	vm_object_t object;
425 
426 	mtx_assert(&vm_mtx, MA_OWNED);
427 	if (m->object == NULL)
428 		return;
429 
430 	if ((m->flags & PG_BUSY) == 0) {
431 		panic("vm_page_remove: page not busy");
432 	}
433 
434 	/*
435 	 * Basically destroy the page.
436 	 */
437 
438 	vm_page_wakeup(m);
439 
440 	object = m->object;
441 
442 	/*
443 	 * Remove from the object_object/offset hash table.  The object
444 	 * must be on the hash queue, we will panic if it isn't
445 	 *
446 	 * Note: we must NULL-out m->hnext to prevent loops in detached
447 	 * buffers with vm_page_lookup().
448 	 */
449 
450 	{
451 		struct vm_page **bucket;
452 
453 		bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)];
454 		while (*bucket != m) {
455 			if (*bucket == NULL)
456 				panic("vm_page_remove(): page not found in hash");
457 			bucket = &(*bucket)->hnext;
458 		}
459 		*bucket = m->hnext;
460 		m->hnext = NULL;
461 		vm_page_bucket_generation++;
462 	}
463 
464 	/*
465 	 * Now remove from the object's list of backed pages.
466 	 */
467 
468 	TAILQ_REMOVE(&object->memq, m, listq);
469 
470 	/*
471 	 * And show that the object has one fewer resident page.
472 	 */
473 
474 	object->resident_page_count--;
475 	object->generation++;
476 
477 	m->object = NULL;
478 }
479 
480 /*
481  *	vm_page_lookup:
482  *
483  *	Returns the page associated with the object/offset
484  *	pair specified; if none is found, NULL is returned.
485  *
486  *	NOTE: the code below does not lock.  It will operate properly if
487  *	an interrupt makes a change, but the generation algorithm will not
488  *	operate properly in an SMP environment where both cpu's are able to run
489  *	kernel code simultaneously.
490  *	NOTE: under the giant vm lock we should be ok, there should be
491  *	no reason to check vm_page_bucket_generation
492  *
493  *	The object must be locked.  No side effects.
494  *	This routine may not block.
495  *	This is a critical path routine
496  */
497 
498 vm_page_t
499 vm_page_lookup(object, pindex)
500 	register vm_object_t object;
501 	register vm_pindex_t pindex;
502 {
503 	register vm_page_t m;
504 	register struct vm_page **bucket;
505 	int generation;
506 
507 	/*
508 	 * Search the hash table for this object/offset pair
509 	 */
510 
511 retry:
512 	generation = vm_page_bucket_generation;
513 	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
514 	for (m = *bucket; m != NULL; m = m->hnext) {
515 		if ((m->object == object) && (m->pindex == pindex)) {
516 			if (vm_page_bucket_generation != generation)
517 				goto retry;
518 			return (m);
519 		}
520 	}
521 	if (vm_page_bucket_generation != generation)
522 		goto retry;
523 	return (NULL);
524 }
525 
526 /*
527  *	vm_page_rename:
528  *
529  *	Move the given memory entry from its
530  *	current object to the specified target object/offset.
531  *
532  *	The object must be locked.
533  *	This routine may not block.
534  *
535  *	Note: this routine will raise itself to splvm(), the caller need not.
536  *
537  *	Note: swap associated with the page must be invalidated by the move.  We
538  *	      have to do this for several reasons:  (1) we aren't freeing the
539  *	      page, (2) we are dirtying the page, (3) the VM system is probably
540  *	      moving the page from object A to B, and will then later move
541  *	      the backing store from A to B and we can't have a conflict.
542  *
543  *	Note: we *always* dirty the page.  It is necessary both for the
544  *	      fact that we moved it, and because we may be invalidating
545  *	      swap.  If the page is on the cache, we have to deactivate it
546  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
547  *	      on the cache.
548  */
549 
550 void
551 vm_page_rename(m, new_object, new_pindex)
552 	register vm_page_t m;
553 	register vm_object_t new_object;
554 	vm_pindex_t new_pindex;
555 {
556 	int s;
557 
558 	s = splvm();
559 	vm_page_remove(m);
560 	vm_page_insert(m, new_object, new_pindex);
561 	if (m->queue - m->pc == PQ_CACHE)
562 		vm_page_deactivate(m);
563 	vm_page_dirty(m);
564 	splx(s);
565 }
566 
567 /*
568  * vm_page_unqueue_nowakeup:
569  *
570  * 	vm_page_unqueue() without any wakeup
571  *
572  *	This routine must be called at splhigh().
573  *	This routine may not block.
574  */
575 
576 void
577 vm_page_unqueue_nowakeup(m)
578 	vm_page_t m;
579 {
580 	int queue = m->queue;
581 	struct vpgqueues *pq;
582 	if (queue != PQ_NONE) {
583 		pq = &vm_page_queues[queue];
584 		m->queue = PQ_NONE;
585 		TAILQ_REMOVE(&pq->pl, m, pageq);
586 		(*pq->cnt)--;
587 		pq->lcnt--;
588 	}
589 }
590 
591 /*
592  * vm_page_unqueue:
593  *
594  *	Remove a page from its queue.
595  *
596  *	This routine must be called at splhigh().
597  *	This routine may not block.
598  */
599 
600 void
601 vm_page_unqueue(m)
602 	vm_page_t m;
603 {
604 	int queue = m->queue;
605 	struct vpgqueues *pq;
606 
607 	mtx_assert(&vm_mtx, MA_OWNED);
608 	if (queue != PQ_NONE) {
609 		m->queue = PQ_NONE;
610 		pq = &vm_page_queues[queue];
611 		TAILQ_REMOVE(&pq->pl, m, pageq);
612 		(*pq->cnt)--;
613 		pq->lcnt--;
614 		if ((queue - m->pc) == PQ_CACHE) {
615 			if (vm_paging_needed())
616 				pagedaemon_wakeup();
617 		}
618 	}
619 }
620 
621 #if PQ_L2_SIZE > 1
622 
623 /*
624  *	vm_page_list_find:
625  *
626  *	Find a page on the specified queue with color optimization.
627  *
628  *	The page coloring optimization attempts to locate a page
629  *	that does not overload other nearby pages in the object in
630  *	the cpu's L1 or L2 caches.  We need this optimization because
631  *	cpu caches tend to be physical caches, while object spaces tend
632  *	to be virtual.
633  *
634  *	This routine must be called at splvm().
635  *	This routine may not block.
636  *
637  *	This routine may only be called from the vm_page_list_find() macro
638  *	in vm_page.h
639  */
640 vm_page_t
641 _vm_page_list_find(basequeue, index)
642 	int basequeue, index;
643 {
644 	int i;
645 	vm_page_t m = NULL;
646 	struct vpgqueues *pq;
647 
648 	mtx_assert(&vm_mtx, MA_OWNED);
649 	pq = &vm_page_queues[basequeue];
650 
651 	/*
652 	 * Note that for the first loop, index+i and index-i wind up at the
653 	 * same place.  Even though this is not totally optimal, we've already
654 	 * blown it by missing the cache case so we do not care.
655 	 */
656 
657 	for(i = PQ_L2_SIZE / 2; i > 0; --i) {
658 		if ((m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl)) != NULL)
659 			break;
660 
661 		if ((m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl)) != NULL)
662 			break;
663 	}
664 	return(m);
665 }
666 
667 #endif
668 
669 /*
670  *	vm_page_select_cache:
671  *
672  *	Find a page on the cache queue with color optimization.  As pages
673  *	might be found, but not applicable, they are deactivated.  This
674  *	keeps us from using potentially busy cached pages.
675  *
676  *	This routine must be called at splvm().
677  *	This routine may not block.
678  */
679 vm_page_t
680 vm_page_select_cache(object, pindex)
681 	vm_object_t object;
682 	vm_pindex_t pindex;
683 {
684 	vm_page_t m;
685 
686 	mtx_assert(&vm_mtx, MA_OWNED);
687 	while (TRUE) {
688 		m = vm_page_list_find(
689 		    PQ_CACHE,
690 		    (pindex + object->pg_color) & PQ_L2_MASK,
691 		    FALSE
692 		);
693 		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
694 			       m->hold_count || m->wire_count)) {
695 			vm_page_deactivate(m);
696 			continue;
697 		}
698 		return m;
699 	}
700 }
701 
702 /*
703  *	vm_page_select_free:
704  *
705  *	Find a free or zero page, with specified preference.  We attempt to
706  *	inline the nominal case and fall back to _vm_page_select_free()
707  *	otherwise.
708  *
709  *	This routine must be called at splvm().
710  *	This routine may not block.
711  */
712 
713 static __inline vm_page_t
714 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
715 {
716 	vm_page_t m;
717 
718 	m = vm_page_list_find(
719 		PQ_FREE,
720 		(pindex + object->pg_color) & PQ_L2_MASK,
721 		prefer_zero
722 	);
723 	return(m);
724 }
725 
726 /*
727  *	vm_page_alloc:
728  *
729  *	Allocate and return a memory cell associated
730  *	with this VM object/offset pair.
731  *
732  *	page_req classes:
733  *	VM_ALLOC_NORMAL		normal process request
734  *	VM_ALLOC_SYSTEM		system *really* needs a page
735  *	VM_ALLOC_INTERRUPT	interrupt time request
736  *	VM_ALLOC_ZERO		zero page
737  *
738  *	vm_mtx must be locked.
739  *	This routine may not block.
740  *
741  *	Additional special handling is required when called from an
742  *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
743  *	the page cache in this case.
744  */
745 
746 vm_page_t
747 vm_page_alloc(object, pindex, page_req)
748 	vm_object_t object;
749 	vm_pindex_t pindex;
750 	int page_req;
751 {
752 	register vm_page_t m = NULL;
753 	int s;
754 
755 	mtx_assert(&vm_mtx, MA_OWNED);
756 	KASSERT(!vm_page_lookup(object, pindex),
757 		("vm_page_alloc: page already allocated"));
758 
759 	/*
760 	 * The pager is allowed to eat deeper into the free page list.
761 	 */
762 
763 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
764 		page_req = VM_ALLOC_SYSTEM;
765 	};
766 
767 	s = splvm();
768 
769 loop:
770 	if (cnt.v_free_count > cnt.v_free_reserved) {
771 		/*
772 		 * Allocate from the free queue if there are plenty of pages
773 		 * in it.
774 		 */
775 		if (page_req == VM_ALLOC_ZERO)
776 			m = vm_page_select_free(object, pindex, TRUE);
777 		else
778 			m = vm_page_select_free(object, pindex, FALSE);
779 	} else if (
780 	    (page_req == VM_ALLOC_SYSTEM &&
781 	     cnt.v_cache_count == 0 &&
782 	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
783 	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)
784 	) {
785 		/*
786 		 * Interrupt or system, dig deeper into the free list.
787 		 */
788 		m = vm_page_select_free(object, pindex, FALSE);
789 	} else if (page_req != VM_ALLOC_INTERRUPT) {
790 		/*
791 		 * Allocatable from cache (non-interrupt only).  On success,
792 		 * we must free the page and try again, thus ensuring that
793 		 * cnt.v_*_free_min counters are replenished.
794 		 */
795 		m = vm_page_select_cache(object, pindex);
796 		if (m == NULL) {
797 			splx(s);
798 #if defined(DIAGNOSTIC)
799 			if (cnt.v_cache_count > 0)
800 				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
801 #endif
802 			vm_pageout_deficit++;
803 			pagedaemon_wakeup();
804 			return (NULL);
805 		}
806 		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
807 		vm_page_busy(m);
808 		vm_page_protect(m, VM_PROT_NONE);
809 		vm_page_free(m);
810 		goto loop;
811 	} else {
812 		/*
813 		 * Not allocatable from cache from interrupt, give up.
814 		 */
815 		splx(s);
816 		vm_pageout_deficit++;
817 		pagedaemon_wakeup();
818 		return (NULL);
819 	}
820 
821 	/*
822 	 *  At this point we had better have found a good page.
823 	 */
824 
825 	KASSERT(
826 	    m != NULL,
827 	    ("vm_page_alloc(): missing page on free queue\n")
828 	);
829 
830 	/*
831 	 * Remove from free queue
832 	 */
833 
834 	vm_page_unqueue_nowakeup(m);
835 
836 	/*
837 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
838 	 */
839 
840 	if (m->flags & PG_ZERO) {
841 		vm_page_zero_count--;
842 		m->flags = PG_ZERO | PG_BUSY;
843 	} else {
844 		m->flags = PG_BUSY;
845 	}
846 	m->wire_count = 0;
847 	m->hold_count = 0;
848 	m->act_count = 0;
849 	m->busy = 0;
850 	m->valid = 0;
851 	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
852 
853 	/*
854 	 * vm_page_insert() is safe prior to the splx().  Note also that
855 	 * inserting a page here does not insert it into the pmap (which
856 	 * could cause us to block allocating memory).  We cannot block
857 	 * anywhere.
858 	 */
859 
860 	vm_page_insert(m, object, pindex);
861 
862 	/*
863 	 * Don't wakeup too often - wakeup the pageout daemon when
864 	 * we would be nearly out of memory.
865 	 */
866 	if (vm_paging_needed())
867 		pagedaemon_wakeup();
868 
869 	splx(s);
870 
871 	return (m);
872 }
873 
874 /*
875  *	vm_wait:	(also see VM_WAIT macro)
876  *
877  *	Block until free pages are available for allocation
878  */
879 
880 void
881 vm_wait()
882 {
883 	int s;
884 
885 	s = splvm();
886 	if (curproc == pageproc) {
887 		vm_pageout_pages_needed = 1;
888 		msleep(&vm_pageout_pages_needed, &vm_mtx, PSWP, "VMWait", 0);
889 	} else {
890 		if (!vm_pages_needed) {
891 			vm_pages_needed = 1;
892 			wakeup(&vm_pages_needed);
893 		}
894 		msleep(&cnt.v_free_count, &vm_mtx, PVM, "vmwait", 0);
895 	}
896 	splx(s);
897 }
898 
899 /*
900  *	vm_await:	(also see VM_AWAIT macro)
901  *
902  *	asleep on an event that will signal when free pages are available
903  *	for allocation.
904  */
905 
906 void
907 vm_await()
908 {
909 	int s;
910 
911 	s = splvm();
912 	if (curproc == pageproc) {
913 		vm_pageout_pages_needed = 1;
914 		asleep(&vm_pageout_pages_needed, PSWP, "vmwait", 0);
915 	} else {
916 		if (!vm_pages_needed) {
917 			vm_pages_needed++;
918 			wakeup(&vm_pages_needed);
919 		}
920 		asleep(&cnt.v_free_count, PVM, "vmwait", 0);
921 	}
922 	splx(s);
923 }
924 
925 /*
926  *	vm_page_activate:
927  *
928  *	Put the specified page on the active list (if appropriate).
929  *	Ensure that act_count is at least ACT_INIT but do not otherwise
930  *	mess with it.
931  *
932  *	The page queues must be locked.
933  *	This routine may not block.
934  */
935 void
936 vm_page_activate(m)
937 	register vm_page_t m;
938 {
939 	int s;
940 
941 	s = splvm();
942 	mtx_assert(&vm_mtx, MA_OWNED);
943 	if (m->queue != PQ_ACTIVE) {
944 		if ((m->queue - m->pc) == PQ_CACHE)
945 			cnt.v_reactivated++;
946 
947 		vm_page_unqueue(m);
948 
949 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
950 			m->queue = PQ_ACTIVE;
951 			vm_page_queues[PQ_ACTIVE].lcnt++;
952 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
953 			if (m->act_count < ACT_INIT)
954 				m->act_count = ACT_INIT;
955 			cnt.v_active_count++;
956 		}
957 	} else {
958 		if (m->act_count < ACT_INIT)
959 			m->act_count = ACT_INIT;
960 	}
961 
962 	splx(s);
963 }
964 
965 /*
966  *	vm_page_free_wakeup:
967  *
968  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
969  *	routine is called when a page has been added to the cache or free
970  *	queues.
971  *
972  *	This routine may not block.
973  *	This routine must be called at splvm()
974  */
975 static __inline void
976 vm_page_free_wakeup()
977 {
978 	/*
979 	 * if pageout daemon needs pages, then tell it that there are
980 	 * some free.
981 	 */
982 	if (vm_pageout_pages_needed &&
983 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
984 		wakeup(&vm_pageout_pages_needed);
985 		vm_pageout_pages_needed = 0;
986 	}
987 	/*
988 	 * wakeup processes that are waiting on memory if we hit a
989 	 * high water mark. And wakeup scheduler process if we have
990 	 * lots of memory. this process will swapin processes.
991 	 */
992 	if (vm_pages_needed && !vm_page_count_min()) {
993 		vm_pages_needed = 0;
994 		wakeup(&cnt.v_free_count);
995 	}
996 }
997 
998 /*
999  *	vm_page_free_toq:
1000  *
1001  *	Returns the given page to the PQ_FREE list,
1002  *	disassociating it with any VM object.
1003  *
1004  *	Object and page must be locked prior to entry.
1005  *	This routine may not block.
1006  */
1007 
1008 void
1009 vm_page_free_toq(vm_page_t m)
1010 {
1011 	int s;
1012 	struct vpgqueues *pq;
1013 	vm_object_t object = m->object;
1014 
1015 	s = splvm();
1016 
1017 	mtx_assert(&vm_mtx, MA_OWNED);
1018 	cnt.v_tfree++;
1019 
1020 	if (m->busy || ((m->queue - m->pc) == PQ_FREE) ||
1021 		(m->hold_count != 0)) {
1022 		printf(
1023 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1024 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1025 		    m->hold_count);
1026 		if ((m->queue - m->pc) == PQ_FREE)
1027 			panic("vm_page_free: freeing free page");
1028 		else
1029 			panic("vm_page_free: freeing busy page");
1030 	}
1031 
1032 	/*
1033 	 * unqueue, then remove page.  Note that we cannot destroy
1034 	 * the page here because we do not want to call the pager's
1035 	 * callback routine until after we've put the page on the
1036 	 * appropriate free queue.
1037 	 */
1038 
1039 	vm_page_unqueue_nowakeup(m);
1040 	vm_page_remove(m);
1041 
1042 	/*
1043 	 * If fictitious remove object association and
1044 	 * return, otherwise delay object association removal.
1045 	 */
1046 
1047 	if ((m->flags & PG_FICTITIOUS) != 0) {
1048 		splx(s);
1049 		return;
1050 	}
1051 
1052 	m->valid = 0;
1053 	vm_page_undirty(m);
1054 
1055 	if (m->wire_count != 0) {
1056 		if (m->wire_count > 1) {
1057 			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1058 				m->wire_count, (long)m->pindex);
1059 		}
1060 		panic("vm_page_free: freeing wired page\n");
1061 	}
1062 
1063 	/*
1064 	 * If we've exhausted the object's resident pages we want to free
1065 	 * it up.
1066 	 */
1067 
1068 	if (object &&
1069 	    (object->type == OBJT_VNODE) &&
1070 	    ((object->flags & OBJ_DEAD) == 0)
1071 	) {
1072 		struct vnode *vp = (struct vnode *)object->handle;
1073 
1074 		if (vp && VSHOULDFREE(vp))
1075 			vfree(vp);
1076 	}
1077 
1078 	/*
1079 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1080 	 */
1081 
1082 	if (m->flags & PG_UNMANAGED) {
1083 	    m->flags &= ~PG_UNMANAGED;
1084 	} else {
1085 #ifdef __alpha__
1086 	    pmap_page_is_free(m);
1087 #endif
1088 	}
1089 
1090 	m->queue = PQ_FREE + m->pc;
1091 	pq = &vm_page_queues[m->queue];
1092 	pq->lcnt++;
1093 	++(*pq->cnt);
1094 
1095 	/*
1096 	 * Put zero'd pages on the end ( where we look for zero'd pages
1097 	 * first ) and non-zerod pages at the head.
1098 	 */
1099 
1100 	if (m->flags & PG_ZERO) {
1101 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1102 		++vm_page_zero_count;
1103 	} else {
1104 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1105 	}
1106 
1107 	vm_page_free_wakeup();
1108 
1109 	splx(s);
1110 }
1111 
1112 /*
1113  *	vm_page_unmanage:
1114  *
1115  * 	Prevent PV management from being done on the page.  The page is
1116  *	removed from the paging queues as if it were wired, and as a
1117  *	consequence of no longer being managed the pageout daemon will not
1118  *	touch it (since there is no way to locate the pte mappings for the
1119  *	page).  madvise() calls that mess with the pmap will also no longer
1120  *	operate on the page.
1121  *
1122  *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1123  *	will clear the flag.
1124  *
1125  *	This routine is used by OBJT_PHYS objects - objects using unswappable
1126  *	physical memory as backing store rather then swap-backed memory and
1127  *	will eventually be extended to support 4MB unmanaged physical
1128  *	mappings.
1129  */
1130 
1131 void
1132 vm_page_unmanage(vm_page_t m)
1133 {
1134 	int s;
1135 
1136 	s = splvm();
1137 	if ((m->flags & PG_UNMANAGED) == 0) {
1138 		if (m->wire_count == 0)
1139 			vm_page_unqueue(m);
1140 	}
1141 	vm_page_flag_set(m, PG_UNMANAGED);
1142 	splx(s);
1143 }
1144 
1145 /*
1146  *	vm_page_wire:
1147  *
1148  *	Mark this page as wired down by yet
1149  *	another map, removing it from paging queues
1150  *	as necessary.
1151  *
1152  *	The page queues must be locked.
1153  *	This routine may not block.
1154  */
1155 void
1156 vm_page_wire(m)
1157 	register vm_page_t m;
1158 {
1159 	int s;
1160 
1161 	/*
1162 	 * Only bump the wire statistics if the page is not already wired,
1163 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1164 	 * it is already off the queues).
1165 	 */
1166 	s = splvm();
1167 	if (m->wire_count == 0) {
1168 		if ((m->flags & PG_UNMANAGED) == 0)
1169 			vm_page_unqueue(m);
1170 		cnt.v_wire_count++;
1171 	}
1172 	m->wire_count++;
1173 	splx(s);
1174 	vm_page_flag_set(m, PG_MAPPED);
1175 }
1176 
1177 /*
1178  *	vm_page_unwire:
1179  *
1180  *	Release one wiring of this page, potentially
1181  *	enabling it to be paged again.
1182  *
1183  *	Many pages placed on the inactive queue should actually go
1184  *	into the cache, but it is difficult to figure out which.  What
1185  *	we do instead, if the inactive target is well met, is to put
1186  *	clean pages at the head of the inactive queue instead of the tail.
1187  *	This will cause them to be moved to the cache more quickly and
1188  *	if not actively re-referenced, freed more quickly.  If we just
1189  *	stick these pages at the end of the inactive queue, heavy filesystem
1190  *	meta-data accesses can cause an unnecessary paging load on memory bound
1191  *	processes.  This optimization causes one-time-use metadata to be
1192  *	reused more quickly.
1193  *
1194  *	BUT, if we are in a low-memory situation we have no choice but to
1195  *	put clean pages on the cache queue.
1196  *
1197  *	A number of routines use vm_page_unwire() to guarantee that the page
1198  *	will go into either the inactive or active queues, and will NEVER
1199  *	be placed in the cache - for example, just after dirtying a page.
1200  *	dirty pages in the cache are not allowed.
1201  *
1202  *	The page queues must be locked.
1203  *	This routine may not block.
1204  */
1205 void
1206 vm_page_unwire(m, activate)
1207 	register vm_page_t m;
1208 	int activate;
1209 {
1210 	int s;
1211 
1212 	s = splvm();
1213 
1214 	if (m->wire_count > 0) {
1215 		m->wire_count--;
1216 		if (m->wire_count == 0) {
1217 			cnt.v_wire_count--;
1218 			if (m->flags & PG_UNMANAGED) {
1219 				;
1220 			} else if (activate) {
1221 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1222 				m->queue = PQ_ACTIVE;
1223 				vm_page_queues[PQ_ACTIVE].lcnt++;
1224 				cnt.v_active_count++;
1225 			} else {
1226 				vm_page_flag_clear(m, PG_WINATCFLS);
1227 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1228 				m->queue = PQ_INACTIVE;
1229 				vm_page_queues[PQ_INACTIVE].lcnt++;
1230 				cnt.v_inactive_count++;
1231 			}
1232 		}
1233 	} else {
1234 		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1235 	}
1236 	splx(s);
1237 }
1238 
1239 
1240 /*
1241  * Move the specified page to the inactive queue.  If the page has
1242  * any associated swap, the swap is deallocated.
1243  *
1244  * Normally athead is 0 resulting in LRU operation.  athead is set
1245  * to 1 if we want this page to be 'as if it were placed in the cache',
1246  * except without unmapping it from the process address space.
1247  *
1248  * This routine may not block.
1249  */
1250 static __inline void
1251 _vm_page_deactivate(vm_page_t m, int athead)
1252 {
1253 	int s;
1254 
1255 	mtx_assert(&vm_mtx, MA_OWNED);
1256 	/*
1257 	 * Ignore if already inactive.
1258 	 */
1259 	if (m->queue == PQ_INACTIVE)
1260 		return;
1261 
1262 	s = splvm();
1263 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1264 		if ((m->queue - m->pc) == PQ_CACHE)
1265 			cnt.v_reactivated++;
1266 		vm_page_flag_clear(m, PG_WINATCFLS);
1267 		vm_page_unqueue(m);
1268 		if (athead)
1269 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1270 		else
1271 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1272 		m->queue = PQ_INACTIVE;
1273 		vm_page_queues[PQ_INACTIVE].lcnt++;
1274 		cnt.v_inactive_count++;
1275 	}
1276 	splx(s);
1277 }
1278 
1279 void
1280 vm_page_deactivate(vm_page_t m)
1281 {
1282     _vm_page_deactivate(m, 0);
1283 }
1284 
1285 /*
1286  * vm_page_try_to_cache:
1287  *
1288  * Returns 0 on failure, 1 on success
1289  */
1290 int
1291 vm_page_try_to_cache(vm_page_t m)
1292 {
1293 
1294 	mtx_assert(VM_PAGE_MTX(m), MA_OWNED);
1295 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1296 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1297 		return(0);
1298 	}
1299 	vm_page_test_dirty(m);
1300 	if (m->dirty)
1301 		return(0);
1302 	vm_page_cache(m);
1303 	return(1);
1304 }
1305 
1306 /*
1307  * vm_page_try_to_free()
1308  *
1309  *	Attempt to free the page.  If we cannot free it, we do nothing.
1310  *	1 is returned on success, 0 on failure.
1311  */
1312 int
1313 vm_page_try_to_free(m)
1314 	vm_page_t m;
1315 {
1316 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1317 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1318 		return(0);
1319 	}
1320 	vm_page_test_dirty(m);
1321 	if (m->dirty)
1322 		return(0);
1323 	vm_page_busy(m);
1324 	vm_page_protect(m, VM_PROT_NONE);
1325 	vm_page_free(m);
1326 	return(1);
1327 }
1328 
1329 /*
1330  * vm_page_cache
1331  *
1332  * Put the specified page onto the page cache queue (if appropriate).
1333  *
1334  * This routine may not block.
1335  */
1336 void
1337 vm_page_cache(m)
1338 	register vm_page_t m;
1339 {
1340 	int s;
1341 
1342 	mtx_assert(&vm_mtx, MA_OWNED);
1343 	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) {
1344 		printf("vm_page_cache: attempting to cache busy page\n");
1345 		return;
1346 	}
1347 	if ((m->queue - m->pc) == PQ_CACHE)
1348 		return;
1349 
1350 	/*
1351 	 * Remove all pmaps and indicate that the page is not
1352 	 * writeable or mapped.
1353 	 */
1354 
1355 	vm_page_protect(m, VM_PROT_NONE);
1356 	if (m->dirty != 0) {
1357 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1358 			(long)m->pindex);
1359 	}
1360 	s = splvm();
1361 	vm_page_unqueue_nowakeup(m);
1362 	m->queue = PQ_CACHE + m->pc;
1363 	vm_page_queues[m->queue].lcnt++;
1364 	TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
1365 	cnt.v_cache_count++;
1366 	vm_page_free_wakeup();
1367 	splx(s);
1368 }
1369 
1370 /*
1371  * vm_page_dontneed
1372  *
1373  *	Cache, deactivate, or do nothing as appropriate.  This routine
1374  *	is typically used by madvise() MADV_DONTNEED.
1375  *
1376  *	Generally speaking we want to move the page into the cache so
1377  *	it gets reused quickly.  However, this can result in a silly syndrome
1378  *	due to the page recycling too quickly.  Small objects will not be
1379  *	fully cached.  On the otherhand, if we move the page to the inactive
1380  *	queue we wind up with a problem whereby very large objects
1381  *	unnecessarily blow away our inactive and cache queues.
1382  *
1383  *	The solution is to move the pages based on a fixed weighting.  We
1384  *	either leave them alone, deactivate them, or move them to the cache,
1385  *	where moving them to the cache has the highest weighting.
1386  *	By forcing some pages into other queues we eventually force the
1387  *	system to balance the queues, potentially recovering other unrelated
1388  *	space from active.  The idea is to not force this to happen too
1389  *	often.
1390  */
1391 
1392 void
1393 vm_page_dontneed(m)
1394 	vm_page_t m;
1395 {
1396 	static int dnweight;
1397 	int dnw;
1398 	int head;
1399 
1400 	mtx_assert(&vm_mtx, MA_OWNED);
1401 	dnw = ++dnweight;
1402 
1403 	/*
1404 	 * occassionally leave the page alone
1405 	 */
1406 
1407 	if ((dnw & 0x01F0) == 0 ||
1408 	    m->queue == PQ_INACTIVE ||
1409 	    m->queue - m->pc == PQ_CACHE
1410 	) {
1411 		if (m->act_count >= ACT_INIT)
1412 			--m->act_count;
1413 		return;
1414 	}
1415 
1416 	if (m->dirty == 0)
1417 		vm_page_test_dirty(m);
1418 
1419 	if (m->dirty || (dnw & 0x0070) == 0) {
1420 		/*
1421 		 * Deactivate the page 3 times out of 32.
1422 		 */
1423 		head = 0;
1424 	} else {
1425 		/*
1426 		 * Cache the page 28 times out of every 32.  Note that
1427 		 * the page is deactivated instead of cached, but placed
1428 		 * at the head of the queue instead of the tail.
1429 		 */
1430 		head = 1;
1431 	}
1432 	_vm_page_deactivate(m, head);
1433 }
1434 
1435 /*
1436  * Grab a page, waiting until we are waken up due to the page
1437  * changing state.  We keep on waiting, if the page continues
1438  * to be in the object.  If the page doesn't exist, allocate it.
1439  *
1440  * This routine may block.
1441  * Requires vm_mtx.
1442  */
1443 vm_page_t
1444 vm_page_grab(object, pindex, allocflags)
1445 	vm_object_t object;
1446 	vm_pindex_t pindex;
1447 	int allocflags;
1448 {
1449 	vm_page_t m;
1450 	int s, generation;
1451 
1452 	mtx_assert(&vm_mtx, MA_OWNED);
1453 retrylookup:
1454 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1455 		if (m->busy || (m->flags & PG_BUSY)) {
1456 			generation = object->generation;
1457 
1458 			s = splvm();
1459 			while ((object->generation == generation) &&
1460 					(m->busy || (m->flags & PG_BUSY))) {
1461 				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1462 				msleep(m, &vm_mtx, PVM, "pgrbwt", 0);
1463 				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1464 					splx(s);
1465 					return NULL;
1466 				}
1467 			}
1468 			splx(s);
1469 			goto retrylookup;
1470 		} else {
1471 			vm_page_busy(m);
1472 			return m;
1473 		}
1474 	}
1475 
1476 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1477 	if (m == NULL) {
1478 		VM_WAIT;
1479 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1480 			return NULL;
1481 		goto retrylookup;
1482 	}
1483 
1484 	return m;
1485 }
1486 
1487 /*
1488  * Mapping function for valid bits or for dirty bits in
1489  * a page.  May not block.
1490  *
1491  * Inputs are required to range within a page.
1492  */
1493 
1494 __inline int
1495 vm_page_bits(int base, int size)
1496 {
1497 	int first_bit;
1498 	int last_bit;
1499 
1500 	KASSERT(
1501 	    base + size <= PAGE_SIZE,
1502 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1503 	);
1504 
1505 	if (size == 0)		/* handle degenerate case */
1506 		return(0);
1507 
1508 	first_bit = base >> DEV_BSHIFT;
1509 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1510 
1511 	return ((2 << last_bit) - (1 << first_bit));
1512 }
1513 
1514 /*
1515  *	vm_page_set_validclean:
1516  *
1517  *	Sets portions of a page valid and clean.  The arguments are expected
1518  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1519  *	of any partial chunks touched by the range.  The invalid portion of
1520  *	such chunks will be zero'd.
1521  *
1522  *	This routine may not block.
1523  *
1524  *	(base + size) must be less then or equal to PAGE_SIZE.
1525  *
1526  *	vm_mtx needs to be held
1527  */
1528 void
1529 vm_page_set_validclean(m, base, size)
1530 	vm_page_t m;
1531 	int base;
1532 	int size;
1533 {
1534 	int pagebits;
1535 	int frag;
1536 	int endoff;
1537 
1538 	mtx_assert(&vm_mtx, MA_OWNED);
1539 	if (size == 0)	/* handle degenerate case */
1540 		return;
1541 
1542 	/*
1543 	 * If the base is not DEV_BSIZE aligned and the valid
1544 	 * bit is clear, we have to zero out a portion of the
1545 	 * first block.
1546 	 */
1547 
1548 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1549 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
1550 	) {
1551 		pmap_zero_page_area(
1552 		    VM_PAGE_TO_PHYS(m),
1553 		    frag,
1554 		    base - frag
1555 		);
1556 	}
1557 
1558 	/*
1559 	 * If the ending offset is not DEV_BSIZE aligned and the
1560 	 * valid bit is clear, we have to zero out a portion of
1561 	 * the last block.
1562 	 */
1563 
1564 	endoff = base + size;
1565 
1566 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1567 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
1568 	) {
1569 		pmap_zero_page_area(
1570 		    VM_PAGE_TO_PHYS(m),
1571 		    endoff,
1572 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
1573 		);
1574 	}
1575 
1576 	/*
1577 	 * Set valid, clear dirty bits.  If validating the entire
1578 	 * page we can safely clear the pmap modify bit.  We also
1579 	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1580 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1581 	 * be set again.
1582 	 */
1583 
1584 	pagebits = vm_page_bits(base, size);
1585 	m->valid |= pagebits;
1586 	m->dirty &= ~pagebits;
1587 	if (base == 0 && size == PAGE_SIZE) {
1588 		pmap_clear_modify(m);
1589 		vm_page_flag_clear(m, PG_NOSYNC);
1590 	}
1591 }
1592 
1593 #if 0
1594 
1595 void
1596 vm_page_set_dirty(m, base, size)
1597 	vm_page_t m;
1598 	int base;
1599 	int size;
1600 {
1601 	m->dirty |= vm_page_bits(base, size);
1602 }
1603 
1604 #endif
1605 
1606 void
1607 vm_page_clear_dirty(m, base, size)
1608 	vm_page_t m;
1609 	int base;
1610 	int size;
1611 {
1612 
1613 	mtx_assert(&vm_mtx, MA_OWNED);
1614 	m->dirty &= ~vm_page_bits(base, size);
1615 }
1616 
1617 /*
1618  *	vm_page_set_invalid:
1619  *
1620  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1621  *	valid and dirty bits for the effected areas are cleared.
1622  *
1623  *	May not block.
1624  */
1625 void
1626 vm_page_set_invalid(m, base, size)
1627 	vm_page_t m;
1628 	int base;
1629 	int size;
1630 {
1631 	int bits;
1632 
1633 	mtx_assert(&vm_mtx, MA_OWNED);
1634 	bits = vm_page_bits(base, size);
1635 	m->valid &= ~bits;
1636 	m->dirty &= ~bits;
1637 	m->object->generation++;
1638 }
1639 
1640 /*
1641  * vm_page_zero_invalid()
1642  *
1643  *	The kernel assumes that the invalid portions of a page contain
1644  *	garbage, but such pages can be mapped into memory by user code.
1645  *	When this occurs, we must zero out the non-valid portions of the
1646  *	page so user code sees what it expects.
1647  *
1648  *	Pages are most often semi-valid when the end of a file is mapped
1649  *	into memory and the file's size is not page aligned.
1650  */
1651 
1652 void
1653 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1654 {
1655 	int b;
1656 	int i;
1657 
1658 	/*
1659 	 * Scan the valid bits looking for invalid sections that
1660 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1661 	 * valid bit may be set ) have already been zerod by
1662 	 * vm_page_set_validclean().
1663 	 */
1664 
1665 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1666 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1667 		    (m->valid & (1 << i))
1668 		) {
1669 			if (i > b) {
1670 				pmap_zero_page_area(
1671 				    VM_PAGE_TO_PHYS(m),
1672 				    b << DEV_BSHIFT,
1673 				    (i - b) << DEV_BSHIFT
1674 				);
1675 			}
1676 			b = i + 1;
1677 		}
1678 	}
1679 
1680 	/*
1681 	 * setvalid is TRUE when we can safely set the zero'd areas
1682 	 * as being valid.  We can do this if there are no cache consistancy
1683 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1684 	 */
1685 
1686 	if (setvalid)
1687 		m->valid = VM_PAGE_BITS_ALL;
1688 }
1689 
1690 /*
1691  *	vm_page_is_valid:
1692  *
1693  *	Is (partial) page valid?  Note that the case where size == 0
1694  *	will return FALSE in the degenerate case where the page is
1695  *	entirely invalid, and TRUE otherwise.
1696  *
1697  *	May not block.
1698  */
1699 
1700 int
1701 vm_page_is_valid(m, base, size)
1702 	vm_page_t m;
1703 	int base;
1704 	int size;
1705 {
1706 	int bits = vm_page_bits(base, size);
1707 
1708 	if (m->valid && ((m->valid & bits) == bits))
1709 		return 1;
1710 	else
1711 		return 0;
1712 }
1713 
1714 /*
1715  * update dirty bits from pmap/mmu.  May not block.
1716  */
1717 
1718 void
1719 vm_page_test_dirty(m)
1720 	vm_page_t m;
1721 {
1722 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1723 		vm_page_dirty(m);
1724 	}
1725 }
1726 
1727 /*
1728  * This interface is for merging with malloc() someday.
1729  * Even if we never implement compaction so that contiguous allocation
1730  * works after initialization time, malloc()'s data structures are good
1731  * for statistics and for allocations of less than a page.
1732  */
1733 void *
1734 contigmalloc1(size, type, flags, low, high, alignment, boundary, map)
1735 	unsigned long size;	/* should be size_t here and for malloc() */
1736 	struct malloc_type *type;
1737 	int flags;
1738 	unsigned long low;
1739 	unsigned long high;
1740 	unsigned long alignment;
1741 	unsigned long boundary;
1742 	vm_map_t map;
1743 {
1744 	int i, s, start;
1745 	vm_offset_t addr, phys, tmp_addr;
1746 	int pass;
1747 	vm_page_t pga = vm_page_array;
1748 
1749 	size = round_page(size);
1750 	if (size == 0)
1751 		panic("contigmalloc1: size must not be 0");
1752 	if ((alignment & (alignment - 1)) != 0)
1753 		panic("contigmalloc1: alignment must be a power of 2");
1754 	if ((boundary & (boundary - 1)) != 0)
1755 		panic("contigmalloc1: boundary must be a power of 2");
1756 
1757 	start = 0;
1758 	for (pass = 0; pass <= 1; pass++) {
1759 		s = splvm();
1760 again:
1761 		/*
1762 		 * Find first page in array that is free, within range, aligned, and
1763 		 * such that the boundary won't be crossed.
1764 		 */
1765 		for (i = start; i < cnt.v_page_count; i++) {
1766 			int pqtype;
1767 			phys = VM_PAGE_TO_PHYS(&pga[i]);
1768 			pqtype = pga[i].queue - pga[i].pc;
1769 			if (((pqtype == PQ_FREE) || (pqtype == PQ_CACHE)) &&
1770 			    (phys >= low) && (phys < high) &&
1771 			    ((phys & (alignment - 1)) == 0) &&
1772 			    (((phys ^ (phys + size - 1)) & ~(boundary - 1)) == 0))
1773 				break;
1774 		}
1775 
1776 		/*
1777 		 * If the above failed or we will exceed the upper bound, fail.
1778 		 */
1779 		if ((i == cnt.v_page_count) ||
1780 			((VM_PAGE_TO_PHYS(&pga[i]) + size) > high)) {
1781 			vm_page_t m, next;
1782 
1783 again1:
1784 			for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
1785 				m != NULL;
1786 				m = next) {
1787 
1788 				KASSERT(m->queue == PQ_INACTIVE,
1789 					("contigmalloc1: page %p is not PQ_INACTIVE", m));
1790 
1791 				next = TAILQ_NEXT(m, pageq);
1792 				if (vm_page_sleep_busy(m, TRUE, "vpctw0"))
1793 					goto again1;
1794 				vm_page_test_dirty(m);
1795 				if (m->dirty) {
1796 					if (m->object->type == OBJT_VNODE) {
1797 						vn_lock(m->object->handle, LK_EXCLUSIVE | LK_RETRY, curproc);
1798 						vm_object_page_clean(m->object, 0, 0, OBJPC_SYNC);
1799 						VOP_UNLOCK(m->object->handle, 0, curproc);
1800 						goto again1;
1801 					} else if (m->object->type == OBJT_SWAP ||
1802 								m->object->type == OBJT_DEFAULT) {
1803 						vm_pageout_flush(&m, 1, 0);
1804 						goto again1;
1805 					}
1806 				}
1807 				if ((m->dirty == 0) && (m->busy == 0) && (m->hold_count == 0))
1808 					vm_page_cache(m);
1809 			}
1810 
1811 			for (m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1812 				m != NULL;
1813 				m = next) {
1814 
1815 				KASSERT(m->queue == PQ_ACTIVE,
1816 					("contigmalloc1: page %p is not PQ_ACTIVE", m));
1817 
1818 				next = TAILQ_NEXT(m, pageq);
1819 				if (vm_page_sleep_busy(m, TRUE, "vpctw1"))
1820 					goto again1;
1821 				vm_page_test_dirty(m);
1822 				if (m->dirty) {
1823 					if (m->object->type == OBJT_VNODE) {
1824 						vn_lock(m->object->handle, LK_EXCLUSIVE | LK_RETRY, curproc);
1825 						vm_object_page_clean(m->object, 0, 0, OBJPC_SYNC);
1826 						VOP_UNLOCK(m->object->handle, 0, curproc);
1827 						goto again1;
1828 					} else if (m->object->type == OBJT_SWAP ||
1829 								m->object->type == OBJT_DEFAULT) {
1830 						vm_pageout_flush(&m, 1, 0);
1831 						goto again1;
1832 					}
1833 				}
1834 				if ((m->dirty == 0) && (m->busy == 0) && (m->hold_count == 0))
1835 					vm_page_cache(m);
1836 			}
1837 
1838 			splx(s);
1839 			continue;
1840 		}
1841 		start = i;
1842 
1843 		/*
1844 		 * Check successive pages for contiguous and free.
1845 		 */
1846 		for (i = start + 1; i < (start + size / PAGE_SIZE); i++) {
1847 			int pqtype;
1848 			pqtype = pga[i].queue - pga[i].pc;
1849 			if ((VM_PAGE_TO_PHYS(&pga[i]) !=
1850 			    (VM_PAGE_TO_PHYS(&pga[i - 1]) + PAGE_SIZE)) ||
1851 			    ((pqtype != PQ_FREE) && (pqtype != PQ_CACHE))) {
1852 				start++;
1853 				goto again;
1854 			}
1855 		}
1856 
1857 		for (i = start; i < (start + size / PAGE_SIZE); i++) {
1858 			int pqtype;
1859 			vm_page_t m = &pga[i];
1860 
1861 			pqtype = m->queue - m->pc;
1862 			if (pqtype == PQ_CACHE) {
1863 				vm_page_busy(m);
1864 				vm_page_free(m);
1865 			}
1866 
1867 			TAILQ_REMOVE(&vm_page_queues[m->queue].pl, m, pageq);
1868 			vm_page_queues[m->queue].lcnt--;
1869 			cnt.v_free_count--;
1870 			m->valid = VM_PAGE_BITS_ALL;
1871 			m->flags = 0;
1872 			KASSERT(m->dirty == 0, ("contigmalloc1: page %p was dirty", m));
1873 			m->wire_count = 0;
1874 			m->busy = 0;
1875 			m->queue = PQ_NONE;
1876 			m->object = NULL;
1877 			vm_page_wire(m);
1878 		}
1879 
1880 		/*
1881 		 * We've found a contiguous chunk that meets are requirements.
1882 		 * Allocate kernel VM, unfree and assign the physical pages to it and
1883 		 * return kernel VM pointer.
1884 		 */
1885 		tmp_addr = addr = kmem_alloc_pageable(map, size);
1886 		if (addr == 0) {
1887 			/*
1888 			 * XXX We almost never run out of kernel virtual
1889 			 * space, so we don't make the allocated memory
1890 			 * above available.
1891 			 */
1892 			splx(s);
1893 			return (NULL);
1894 		}
1895 
1896 		for (i = start; i < (start + size / PAGE_SIZE); i++) {
1897 			vm_page_t m = &pga[i];
1898 			vm_page_insert(m, kernel_object,
1899 				OFF_TO_IDX(tmp_addr - VM_MIN_KERNEL_ADDRESS));
1900 			pmap_kenter(tmp_addr, VM_PAGE_TO_PHYS(m));
1901 			tmp_addr += PAGE_SIZE;
1902 		}
1903 
1904 		splx(s);
1905 		return ((void *)addr);
1906 	}
1907 	return NULL;
1908 }
1909 
1910 void *
1911 contigmalloc(size, type, flags, low, high, alignment, boundary)
1912 	unsigned long size;	/* should be size_t here and for malloc() */
1913 	struct malloc_type *type;
1914 	int flags;
1915 	unsigned long low;
1916 	unsigned long high;
1917 	unsigned long alignment;
1918 	unsigned long boundary;
1919 {
1920 	void * ret;
1921 	int hadvmlock;
1922 
1923 	hadvmlock = mtx_owned(&vm_mtx);
1924 	if (!hadvmlock)
1925 		mtx_lock(&vm_mtx);
1926 	ret = contigmalloc1(size, type, flags, low, high, alignment, boundary,
1927 			     kernel_map);
1928 	if (!hadvmlock)
1929 		mtx_unlock(&vm_mtx);
1930 
1931 	return (ret);
1932 
1933 }
1934 
1935 void
1936 contigfree(addr, size, type)
1937 	void *addr;
1938 	unsigned long size;
1939 	struct malloc_type *type;
1940 {
1941 	int hadvmlock;
1942 
1943 	hadvmlock = mtx_owned(&vm_mtx);
1944 	if (!hadvmlock)
1945 		mtx_lock(&vm_mtx);
1946 	kmem_free(kernel_map, (vm_offset_t)addr, size);
1947 	if (!hadvmlock)
1948 		mtx_unlock(&vm_mtx);
1949 }
1950 
1951 vm_offset_t
1952 vm_page_alloc_contig(size, low, high, alignment)
1953 	vm_offset_t size;
1954 	vm_offset_t low;
1955 	vm_offset_t high;
1956 	vm_offset_t alignment;
1957 {
1958 	vm_offset_t ret;
1959 	int hadvmlock;
1960 
1961 	hadvmlock = mtx_owned(&vm_mtx);
1962 	if (!hadvmlock)
1963 		mtx_lock(&vm_mtx);
1964 	ret = ((vm_offset_t)contigmalloc1(size, M_DEVBUF, M_NOWAIT, low, high,
1965 					  alignment, 0ul, kernel_map));
1966 	if (!hadvmlock)
1967 		mtx_unlock(&vm_mtx);
1968 	return (ret);
1969 
1970 }
1971 
1972 #include "opt_ddb.h"
1973 #ifdef DDB
1974 #include <sys/kernel.h>
1975 
1976 #include <ddb/ddb.h>
1977 
1978 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1979 {
1980 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1981 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1982 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1983 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1984 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1985 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1986 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1987 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1988 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1989 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1990 }
1991 
1992 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1993 {
1994 	int i;
1995 	db_printf("PQ_FREE:");
1996 	for(i=0;i<PQ_L2_SIZE;i++) {
1997 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1998 	}
1999 	db_printf("\n");
2000 
2001 	db_printf("PQ_CACHE:");
2002 	for(i=0;i<PQ_L2_SIZE;i++) {
2003 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
2004 	}
2005 	db_printf("\n");
2006 
2007 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
2008 		vm_page_queues[PQ_ACTIVE].lcnt,
2009 		vm_page_queues[PQ_INACTIVE].lcnt);
2010 }
2011 #endif /* DDB */
2012