xref: /freebsd/sys/vm/vm_page.c (revision 137a344c6341d1469432e9deb3a25593f96672ad)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * The Mach Operating System project at Carnegie-Mellon University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
36  */
37 
38 /*-
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64 
65 /*
66  *			GENERAL RULES ON VM_PAGE MANIPULATION
67  *
68  *	- A page queue lock is required when adding or removing a page from a
69  *	  page queue regardless of other locks or the busy state of a page.
70  *
71  *		* In general, no thread besides the page daemon can acquire or
72  *		  hold more than one page queue lock at a time.
73  *
74  *		* The page daemon can acquire and hold any pair of page queue
75  *		  locks in any order.
76  *
77  *	- The object lock is required when inserting or removing
78  *	  pages from an object (vm_page_insert() or vm_page_remove()).
79  *
80  */
81 
82 /*
83  *	Resident memory management module.
84  */
85 
86 #include <sys/cdefs.h>
87 __FBSDID("$FreeBSD$");
88 
89 #include "opt_vm.h"
90 
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/lock.h>
94 #include <sys/domainset.h>
95 #include <sys/kernel.h>
96 #include <sys/limits.h>
97 #include <sys/linker.h>
98 #include <sys/malloc.h>
99 #include <sys/mman.h>
100 #include <sys/msgbuf.h>
101 #include <sys/mutex.h>
102 #include <sys/proc.h>
103 #include <sys/rwlock.h>
104 #include <sys/sbuf.h>
105 #include <sys/smp.h>
106 #include <sys/sysctl.h>
107 #include <sys/vmmeter.h>
108 #include <sys/vnode.h>
109 
110 #include <vm/vm.h>
111 #include <vm/pmap.h>
112 #include <vm/vm_param.h>
113 #include <vm/vm_domainset.h>
114 #include <vm/vm_kern.h>
115 #include <vm/vm_object.h>
116 #include <vm/vm_page.h>
117 #include <vm/vm_pageout.h>
118 #include <vm/vm_pager.h>
119 #include <vm/vm_phys.h>
120 #include <vm/vm_radix.h>
121 #include <vm/vm_reserv.h>
122 #include <vm/vm_extern.h>
123 #include <vm/uma.h>
124 #include <vm/uma_int.h>
125 
126 #include <machine/md_var.h>
127 
128 /*
129  *	Associated with page of user-allocatable memory is a
130  *	page structure.
131  */
132 
133 struct vm_domain vm_dom[MAXMEMDOM];
134 struct mtx_padalign __exclusive_cache_line vm_page_queue_free_mtx;
135 
136 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
137 
138 /*
139  * bogus page -- for I/O to/from partially complete buffers,
140  * or for paging into sparsely invalid regions.
141  */
142 vm_page_t bogus_page;
143 
144 vm_page_t vm_page_array;
145 long vm_page_array_size;
146 long first_page;
147 
148 static int boot_pages = UMA_BOOT_PAGES;
149 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
150     &boot_pages, 0,
151     "number of pages allocated for bootstrapping the VM system");
152 
153 static int pa_tryrelock_restart;
154 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
155     &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
156 
157 static TAILQ_HEAD(, vm_page) blacklist_head;
158 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
159 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
160     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
161 
162 /* Is the page daemon waiting for free pages? */
163 static int vm_pageout_pages_needed;
164 
165 static uma_zone_t fakepg_zone;
166 
167 static void vm_page_alloc_check(vm_page_t m);
168 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
169 static void vm_page_enqueue(uint8_t queue, vm_page_t m);
170 static void vm_page_free_phys(vm_page_t m);
171 static void vm_page_free_wakeup(void);
172 static void vm_page_init(void *dummy);
173 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
174     vm_pindex_t pindex, vm_page_t mpred);
175 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
176     vm_page_t mpred);
177 static int vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run,
178     vm_paddr_t high);
179 static int vm_page_alloc_fail(vm_object_t object, int req);
180 
181 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
182 
183 static void
184 vm_page_init(void *dummy)
185 {
186 
187 	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
188 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
189 	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
190 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
191 }
192 
193 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
194 #if PAGE_SIZE == 32768
195 #ifdef CTASSERT
196 CTASSERT(sizeof(u_long) >= 8);
197 #endif
198 #endif
199 
200 /*
201  * Try to acquire a physical address lock while a pmap is locked.  If we
202  * fail to trylock we unlock and lock the pmap directly and cache the
203  * locked pa in *locked.  The caller should then restart their loop in case
204  * the virtual to physical mapping has changed.
205  */
206 int
207 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
208 {
209 	vm_paddr_t lockpa;
210 
211 	lockpa = *locked;
212 	*locked = pa;
213 	if (lockpa) {
214 		PA_LOCK_ASSERT(lockpa, MA_OWNED);
215 		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
216 			return (0);
217 		PA_UNLOCK(lockpa);
218 	}
219 	if (PA_TRYLOCK(pa))
220 		return (0);
221 	PMAP_UNLOCK(pmap);
222 	atomic_add_int(&pa_tryrelock_restart, 1);
223 	PA_LOCK(pa);
224 	PMAP_LOCK(pmap);
225 	return (EAGAIN);
226 }
227 
228 /*
229  *	vm_set_page_size:
230  *
231  *	Sets the page size, perhaps based upon the memory
232  *	size.  Must be called before any use of page-size
233  *	dependent functions.
234  */
235 void
236 vm_set_page_size(void)
237 {
238 	if (vm_cnt.v_page_size == 0)
239 		vm_cnt.v_page_size = PAGE_SIZE;
240 	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
241 		panic("vm_set_page_size: page size not a power of two");
242 }
243 
244 /*
245  *	vm_page_blacklist_next:
246  *
247  *	Find the next entry in the provided string of blacklist
248  *	addresses.  Entries are separated by space, comma, or newline.
249  *	If an invalid integer is encountered then the rest of the
250  *	string is skipped.  Updates the list pointer to the next
251  *	character, or NULL if the string is exhausted or invalid.
252  */
253 static vm_paddr_t
254 vm_page_blacklist_next(char **list, char *end)
255 {
256 	vm_paddr_t bad;
257 	char *cp, *pos;
258 
259 	if (list == NULL || *list == NULL)
260 		return (0);
261 	if (**list =='\0') {
262 		*list = NULL;
263 		return (0);
264 	}
265 
266 	/*
267 	 * If there's no end pointer then the buffer is coming from
268 	 * the kenv and we know it's null-terminated.
269 	 */
270 	if (end == NULL)
271 		end = *list + strlen(*list);
272 
273 	/* Ensure that strtoq() won't walk off the end */
274 	if (*end != '\0') {
275 		if (*end == '\n' || *end == ' ' || *end  == ',')
276 			*end = '\0';
277 		else {
278 			printf("Blacklist not terminated, skipping\n");
279 			*list = NULL;
280 			return (0);
281 		}
282 	}
283 
284 	for (pos = *list; *pos != '\0'; pos = cp) {
285 		bad = strtoq(pos, &cp, 0);
286 		if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
287 			if (bad == 0) {
288 				if (++cp < end)
289 					continue;
290 				else
291 					break;
292 			}
293 		} else
294 			break;
295 		if (*cp == '\0' || ++cp >= end)
296 			*list = NULL;
297 		else
298 			*list = cp;
299 		return (trunc_page(bad));
300 	}
301 	printf("Garbage in RAM blacklist, skipping\n");
302 	*list = NULL;
303 	return (0);
304 }
305 
306 /*
307  *	vm_page_blacklist_check:
308  *
309  *	Iterate through the provided string of blacklist addresses, pulling
310  *	each entry out of the physical allocator free list and putting it
311  *	onto a list for reporting via the vm.page_blacklist sysctl.
312  */
313 static void
314 vm_page_blacklist_check(char *list, char *end)
315 {
316 	vm_paddr_t pa;
317 	vm_page_t m;
318 	char *next;
319 	int ret;
320 
321 	next = list;
322 	while (next != NULL) {
323 		if ((pa = vm_page_blacklist_next(&next, end)) == 0)
324 			continue;
325 		m = vm_phys_paddr_to_vm_page(pa);
326 		if (m == NULL)
327 			continue;
328 		mtx_lock(&vm_page_queue_free_mtx);
329 		ret = vm_phys_unfree_page(m);
330 		mtx_unlock(&vm_page_queue_free_mtx);
331 		if (ret == TRUE) {
332 			TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
333 			if (bootverbose)
334 				printf("Skipping page with pa 0x%jx\n",
335 				    (uintmax_t)pa);
336 		}
337 	}
338 }
339 
340 /*
341  *	vm_page_blacklist_load:
342  *
343  *	Search for a special module named "ram_blacklist".  It'll be a
344  *	plain text file provided by the user via the loader directive
345  *	of the same name.
346  */
347 static void
348 vm_page_blacklist_load(char **list, char **end)
349 {
350 	void *mod;
351 	u_char *ptr;
352 	u_int len;
353 
354 	mod = NULL;
355 	ptr = NULL;
356 
357 	mod = preload_search_by_type("ram_blacklist");
358 	if (mod != NULL) {
359 		ptr = preload_fetch_addr(mod);
360 		len = preload_fetch_size(mod);
361         }
362 	*list = ptr;
363 	if (ptr != NULL)
364 		*end = ptr + len;
365 	else
366 		*end = NULL;
367 	return;
368 }
369 
370 static int
371 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
372 {
373 	vm_page_t m;
374 	struct sbuf sbuf;
375 	int error, first;
376 
377 	first = 1;
378 	error = sysctl_wire_old_buffer(req, 0);
379 	if (error != 0)
380 		return (error);
381 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
382 	TAILQ_FOREACH(m, &blacklist_head, listq) {
383 		sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
384 		    (uintmax_t)m->phys_addr);
385 		first = 0;
386 	}
387 	error = sbuf_finish(&sbuf);
388 	sbuf_delete(&sbuf);
389 	return (error);
390 }
391 
392 static void
393 vm_page_domain_init(struct vm_domain *vmd)
394 {
395 	struct vm_pagequeue *pq;
396 	int i;
397 
398 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
399 	    "vm inactive pagequeue";
400 	*__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) =
401 	    &vm_cnt.v_inactive_count;
402 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
403 	    "vm active pagequeue";
404 	*__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) =
405 	    &vm_cnt.v_active_count;
406 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
407 	    "vm laundry pagequeue";
408 	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_vcnt) =
409 	    &vm_cnt.v_laundry_count;
410 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
411 	    "vm unswappable pagequeue";
412 	/* Unswappable dirty pages are counted as being in the laundry. */
413 	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_vcnt) =
414 	    &vm_cnt.v_laundry_count;
415 	vmd->vmd_page_count = 0;
416 	vmd->vmd_free_count = 0;
417 	vmd->vmd_segs = 0;
418 	vmd->vmd_oom = FALSE;
419 	for (i = 0; i < PQ_COUNT; i++) {
420 		pq = &vmd->vmd_pagequeues[i];
421 		TAILQ_INIT(&pq->pq_pl);
422 		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
423 		    MTX_DEF | MTX_DUPOK);
424 	}
425 }
426 
427 /*
428  * Initialize a physical page in preparation for adding it to the free
429  * lists.
430  */
431 static void
432 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind)
433 {
434 
435 	m->object = NULL;
436 	m->wire_count = 0;
437 	m->busy_lock = VPB_UNBUSIED;
438 	m->hold_count = 0;
439 	m->flags = 0;
440 	m->phys_addr = pa;
441 	m->queue = PQ_NONE;
442 	m->psind = 0;
443 	m->segind = segind;
444 	m->order = VM_NFREEORDER;
445 	m->pool = VM_FREEPOOL_DEFAULT;
446 	m->valid = m->dirty = 0;
447 	pmap_page_init(m);
448 }
449 
450 /*
451  *	vm_page_startup:
452  *
453  *	Initializes the resident memory module.  Allocates physical memory for
454  *	bootstrapping UMA and some data structures that are used to manage
455  *	physical pages.  Initializes these structures, and populates the free
456  *	page queues.
457  */
458 vm_offset_t
459 vm_page_startup(vm_offset_t vaddr)
460 {
461 	struct vm_domain *vmd;
462 	struct vm_phys_seg *seg;
463 	vm_page_t m;
464 	char *list, *listend;
465 	vm_offset_t mapped;
466 	vm_paddr_t end, high_avail, low_avail, new_end, page_range, size;
467 	vm_paddr_t biggestsize, last_pa, pa;
468 	u_long pagecount;
469 	int biggestone, i, pages_per_zone, segind;
470 
471 	biggestsize = 0;
472 	biggestone = 0;
473 	vaddr = round_page(vaddr);
474 
475 	for (i = 0; phys_avail[i + 1]; i += 2) {
476 		phys_avail[i] = round_page(phys_avail[i]);
477 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
478 	}
479 	for (i = 0; phys_avail[i + 1]; i += 2) {
480 		size = phys_avail[i + 1] - phys_avail[i];
481 		if (size > biggestsize) {
482 			biggestone = i;
483 			biggestsize = size;
484 		}
485 	}
486 
487 	end = phys_avail[biggestone+1];
488 
489 	/*
490 	 * Initialize the page and queue locks.
491 	 */
492 	mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
493 	for (i = 0; i < PA_LOCK_COUNT; i++)
494 		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
495 	for (i = 0; i < vm_ndomains; i++)
496 		vm_page_domain_init(&vm_dom[i]);
497 
498 	/*
499 	 * Almost all of the pages needed for bootstrapping UMA are used
500 	 * for zone structures, so if the number of CPUs results in those
501 	 * structures taking more than one page each, we set aside more pages
502 	 * in proportion to the zone structure size.
503 	 */
504 	pages_per_zone = howmany(sizeof(struct uma_zone) +
505 	    sizeof(struct uma_cache) * (mp_maxid + 1) +
506 	    roundup2(sizeof(struct uma_slab), sizeof(void *)), UMA_SLAB_SIZE);
507 	if (pages_per_zone > 1) {
508 		/* Reserve more pages so that we don't run out. */
509 		boot_pages = UMA_BOOT_PAGES_ZONES * pages_per_zone;
510 	}
511 
512 	/*
513 	 * Allocate memory for use when boot strapping the kernel memory
514 	 * allocator.
515 	 *
516 	 * CTFLAG_RDTUN doesn't work during the early boot process, so we must
517 	 * manually fetch the value.
518 	 */
519 	TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages);
520 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
521 	new_end = trunc_page(new_end);
522 	mapped = pmap_map(&vaddr, new_end, end,
523 	    VM_PROT_READ | VM_PROT_WRITE);
524 	bzero((void *)mapped, end - new_end);
525 	uma_startup((void *)mapped, boot_pages);
526 
527 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
528     defined(__i386__) || defined(__mips__)
529 	/*
530 	 * Allocate a bitmap to indicate that a random physical page
531 	 * needs to be included in a minidump.
532 	 *
533 	 * The amd64 port needs this to indicate which direct map pages
534 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
535 	 *
536 	 * However, i386 still needs this workspace internally within the
537 	 * minidump code.  In theory, they are not needed on i386, but are
538 	 * included should the sf_buf code decide to use them.
539 	 */
540 	last_pa = 0;
541 	for (i = 0; dump_avail[i + 1] != 0; i += 2)
542 		if (dump_avail[i + 1] > last_pa)
543 			last_pa = dump_avail[i + 1];
544 	page_range = last_pa / PAGE_SIZE;
545 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
546 	new_end -= vm_page_dump_size;
547 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
548 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
549 	bzero((void *)vm_page_dump, vm_page_dump_size);
550 #else
551 	(void)last_pa;
552 #endif
553 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__)
554 	/*
555 	 * Include the UMA bootstrap pages and vm_page_dump in a crash dump.
556 	 * When pmap_map() uses the direct map, they are not automatically
557 	 * included.
558 	 */
559 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
560 		dump_add_page(pa);
561 #endif
562 	phys_avail[biggestone + 1] = new_end;
563 #ifdef __amd64__
564 	/*
565 	 * Request that the physical pages underlying the message buffer be
566 	 * included in a crash dump.  Since the message buffer is accessed
567 	 * through the direct map, they are not automatically included.
568 	 */
569 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
570 	last_pa = pa + round_page(msgbufsize);
571 	while (pa < last_pa) {
572 		dump_add_page(pa);
573 		pa += PAGE_SIZE;
574 	}
575 #endif
576 	/*
577 	 * Compute the number of pages of memory that will be available for
578 	 * use, taking into account the overhead of a page structure per page.
579 	 * In other words, solve
580 	 *	"available physical memory" - round_page(page_range *
581 	 *	    sizeof(struct vm_page)) = page_range * PAGE_SIZE
582 	 * for page_range.
583 	 */
584 	low_avail = phys_avail[0];
585 	high_avail = phys_avail[1];
586 	for (i = 0; i < vm_phys_nsegs; i++) {
587 		if (vm_phys_segs[i].start < low_avail)
588 			low_avail = vm_phys_segs[i].start;
589 		if (vm_phys_segs[i].end > high_avail)
590 			high_avail = vm_phys_segs[i].end;
591 	}
592 	/* Skip the first chunk.  It is already accounted for. */
593 	for (i = 2; phys_avail[i + 1] != 0; i += 2) {
594 		if (phys_avail[i] < low_avail)
595 			low_avail = phys_avail[i];
596 		if (phys_avail[i + 1] > high_avail)
597 			high_avail = phys_avail[i + 1];
598 	}
599 	first_page = low_avail / PAGE_SIZE;
600 #ifdef VM_PHYSSEG_SPARSE
601 	size = 0;
602 	for (i = 0; i < vm_phys_nsegs; i++)
603 		size += vm_phys_segs[i].end - vm_phys_segs[i].start;
604 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
605 		size += phys_avail[i + 1] - phys_avail[i];
606 #elif defined(VM_PHYSSEG_DENSE)
607 	size = high_avail - low_avail;
608 #else
609 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
610 #endif
611 
612 #ifdef VM_PHYSSEG_DENSE
613 	/*
614 	 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
615 	 * the overhead of a page structure per page only if vm_page_array is
616 	 * allocated from the last physical memory chunk.  Otherwise, we must
617 	 * allocate page structures representing the physical memory
618 	 * underlying vm_page_array, even though they will not be used.
619 	 */
620 	if (new_end != high_avail)
621 		page_range = size / PAGE_SIZE;
622 	else
623 #endif
624 	{
625 		page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
626 
627 		/*
628 		 * If the partial bytes remaining are large enough for
629 		 * a page (PAGE_SIZE) without a corresponding
630 		 * 'struct vm_page', then new_end will contain an
631 		 * extra page after subtracting the length of the VM
632 		 * page array.  Compensate by subtracting an extra
633 		 * page from new_end.
634 		 */
635 		if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
636 			if (new_end == high_avail)
637 				high_avail -= PAGE_SIZE;
638 			new_end -= PAGE_SIZE;
639 		}
640 	}
641 	end = new_end;
642 
643 	/*
644 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
645 	 * However, because this page is allocated from KVM, out-of-bounds
646 	 * accesses using the direct map will not be trapped.
647 	 */
648 	vaddr += PAGE_SIZE;
649 
650 	/*
651 	 * Allocate physical memory for the page structures, and map it.
652 	 */
653 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
654 	mapped = pmap_map(&vaddr, new_end, end,
655 	    VM_PROT_READ | VM_PROT_WRITE);
656 	vm_page_array = (vm_page_t)mapped;
657 	vm_page_array_size = page_range;
658 
659 #if VM_NRESERVLEVEL > 0
660 	/*
661 	 * Allocate physical memory for the reservation management system's
662 	 * data structures, and map it.
663 	 */
664 	if (high_avail == end)
665 		high_avail = new_end;
666 	new_end = vm_reserv_startup(&vaddr, new_end, high_avail);
667 #endif
668 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__)
669 	/*
670 	 * Include vm_page_array and vm_reserv_array in a crash dump.
671 	 */
672 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
673 		dump_add_page(pa);
674 #endif
675 	phys_avail[biggestone + 1] = new_end;
676 
677 	/*
678 	 * Add physical memory segments corresponding to the available
679 	 * physical pages.
680 	 */
681 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
682 		vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
683 
684 	/*
685 	 * Initialize the physical memory allocator.
686 	 */
687 	vm_phys_init();
688 
689 	/*
690 	 * Initialize the page structures and add every available page to the
691 	 * physical memory allocator's free lists.
692 	 */
693 	vm_cnt.v_page_count = 0;
694 	vm_cnt.v_free_count = 0;
695 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
696 		seg = &vm_phys_segs[segind];
697 		for (m = seg->first_page, pa = seg->start; pa < seg->end;
698 		    m++, pa += PAGE_SIZE)
699 			vm_page_init_page(m, pa, segind);
700 
701 		/*
702 		 * Add the segment to the free lists only if it is covered by
703 		 * one of the ranges in phys_avail.  Because we've added the
704 		 * ranges to the vm_phys_segs array, we can assume that each
705 		 * segment is either entirely contained in one of the ranges,
706 		 * or doesn't overlap any of them.
707 		 */
708 		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
709 			if (seg->start < phys_avail[i] ||
710 			    seg->end > phys_avail[i + 1])
711 				continue;
712 
713 			m = seg->first_page;
714 			pagecount = (u_long)atop(seg->end - seg->start);
715 
716 			mtx_lock(&vm_page_queue_free_mtx);
717 			vm_phys_free_contig(m, pagecount);
718 			vm_phys_freecnt_adj(m, (int)pagecount);
719 			mtx_unlock(&vm_page_queue_free_mtx);
720 			vm_cnt.v_page_count += (u_int)pagecount;
721 
722 			vmd = &vm_dom[seg->domain];
723 			vmd->vmd_page_count += (u_int)pagecount;
724 			vmd->vmd_segs |= 1UL << m->segind;
725 			break;
726 		}
727 	}
728 
729 	/*
730 	 * Remove blacklisted pages from the physical memory allocator.
731 	 */
732 	TAILQ_INIT(&blacklist_head);
733 	vm_page_blacklist_load(&list, &listend);
734 	vm_page_blacklist_check(list, listend);
735 
736 	list = kern_getenv("vm.blacklist");
737 	vm_page_blacklist_check(list, NULL);
738 
739 	freeenv(list);
740 #if VM_NRESERVLEVEL > 0
741 	/*
742 	 * Initialize the reservation management system.
743 	 */
744 	vm_reserv_init();
745 #endif
746 	/*
747 	 * Set an initial domain policy for thread0 so that allocations
748 	 * can work.
749 	 */
750 	domainset_zero();
751 
752 	return (vaddr);
753 }
754 
755 void
756 vm_page_reference(vm_page_t m)
757 {
758 
759 	vm_page_aflag_set(m, PGA_REFERENCED);
760 }
761 
762 /*
763  *	vm_page_busy_downgrade:
764  *
765  *	Downgrade an exclusive busy page into a single shared busy page.
766  */
767 void
768 vm_page_busy_downgrade(vm_page_t m)
769 {
770 	u_int x;
771 	bool locked;
772 
773 	vm_page_assert_xbusied(m);
774 	locked = mtx_owned(vm_page_lockptr(m));
775 
776 	for (;;) {
777 		x = m->busy_lock;
778 		x &= VPB_BIT_WAITERS;
779 		if (x != 0 && !locked)
780 			vm_page_lock(m);
781 		if (atomic_cmpset_rel_int(&m->busy_lock,
782 		    VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1)))
783 			break;
784 		if (x != 0 && !locked)
785 			vm_page_unlock(m);
786 	}
787 	if (x != 0) {
788 		wakeup(m);
789 		if (!locked)
790 			vm_page_unlock(m);
791 	}
792 }
793 
794 /*
795  *	vm_page_sbusied:
796  *
797  *	Return a positive value if the page is shared busied, 0 otherwise.
798  */
799 int
800 vm_page_sbusied(vm_page_t m)
801 {
802 	u_int x;
803 
804 	x = m->busy_lock;
805 	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
806 }
807 
808 /*
809  *	vm_page_sunbusy:
810  *
811  *	Shared unbusy a page.
812  */
813 void
814 vm_page_sunbusy(vm_page_t m)
815 {
816 	u_int x;
817 
818 	vm_page_lock_assert(m, MA_NOTOWNED);
819 	vm_page_assert_sbusied(m);
820 
821 	for (;;) {
822 		x = m->busy_lock;
823 		if (VPB_SHARERS(x) > 1) {
824 			if (atomic_cmpset_int(&m->busy_lock, x,
825 			    x - VPB_ONE_SHARER))
826 				break;
827 			continue;
828 		}
829 		if ((x & VPB_BIT_WAITERS) == 0) {
830 			KASSERT(x == VPB_SHARERS_WORD(1),
831 			    ("vm_page_sunbusy: invalid lock state"));
832 			if (atomic_cmpset_int(&m->busy_lock,
833 			    VPB_SHARERS_WORD(1), VPB_UNBUSIED))
834 				break;
835 			continue;
836 		}
837 		KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS),
838 		    ("vm_page_sunbusy: invalid lock state for waiters"));
839 
840 		vm_page_lock(m);
841 		if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) {
842 			vm_page_unlock(m);
843 			continue;
844 		}
845 		wakeup(m);
846 		vm_page_unlock(m);
847 		break;
848 	}
849 }
850 
851 /*
852  *	vm_page_busy_sleep:
853  *
854  *	Sleep and release the page lock, using the page pointer as wchan.
855  *	This is used to implement the hard-path of busying mechanism.
856  *
857  *	The given page must be locked.
858  *
859  *	If nonshared is true, sleep only if the page is xbusy.
860  */
861 void
862 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared)
863 {
864 	u_int x;
865 
866 	vm_page_assert_locked(m);
867 
868 	x = m->busy_lock;
869 	if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) ||
870 	    ((x & VPB_BIT_WAITERS) == 0 &&
871 	    !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) {
872 		vm_page_unlock(m);
873 		return;
874 	}
875 	msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0);
876 }
877 
878 /*
879  *	vm_page_trysbusy:
880  *
881  *	Try to shared busy a page.
882  *	If the operation succeeds 1 is returned otherwise 0.
883  *	The operation never sleeps.
884  */
885 int
886 vm_page_trysbusy(vm_page_t m)
887 {
888 	u_int x;
889 
890 	for (;;) {
891 		x = m->busy_lock;
892 		if ((x & VPB_BIT_SHARED) == 0)
893 			return (0);
894 		if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER))
895 			return (1);
896 	}
897 }
898 
899 static void
900 vm_page_xunbusy_locked(vm_page_t m)
901 {
902 
903 	vm_page_assert_xbusied(m);
904 	vm_page_assert_locked(m);
905 
906 	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
907 	/* There is a waiter, do wakeup() instead of vm_page_flash(). */
908 	wakeup(m);
909 }
910 
911 void
912 vm_page_xunbusy_maybelocked(vm_page_t m)
913 {
914 	bool lockacq;
915 
916 	vm_page_assert_xbusied(m);
917 
918 	/*
919 	 * Fast path for unbusy.  If it succeeds, we know that there
920 	 * are no waiters, so we do not need a wakeup.
921 	 */
922 	if (atomic_cmpset_rel_int(&m->busy_lock, VPB_SINGLE_EXCLUSIVER,
923 	    VPB_UNBUSIED))
924 		return;
925 
926 	lockacq = !mtx_owned(vm_page_lockptr(m));
927 	if (lockacq)
928 		vm_page_lock(m);
929 	vm_page_xunbusy_locked(m);
930 	if (lockacq)
931 		vm_page_unlock(m);
932 }
933 
934 /*
935  *	vm_page_xunbusy_hard:
936  *
937  *	Called after the first try the exclusive unbusy of a page failed.
938  *	It is assumed that the waiters bit is on.
939  */
940 void
941 vm_page_xunbusy_hard(vm_page_t m)
942 {
943 
944 	vm_page_assert_xbusied(m);
945 
946 	vm_page_lock(m);
947 	vm_page_xunbusy_locked(m);
948 	vm_page_unlock(m);
949 }
950 
951 /*
952  *	vm_page_flash:
953  *
954  *	Wakeup anyone waiting for the page.
955  *	The ownership bits do not change.
956  *
957  *	The given page must be locked.
958  */
959 void
960 vm_page_flash(vm_page_t m)
961 {
962 	u_int x;
963 
964 	vm_page_lock_assert(m, MA_OWNED);
965 
966 	for (;;) {
967 		x = m->busy_lock;
968 		if ((x & VPB_BIT_WAITERS) == 0)
969 			return;
970 		if (atomic_cmpset_int(&m->busy_lock, x,
971 		    x & (~VPB_BIT_WAITERS)))
972 			break;
973 	}
974 	wakeup(m);
975 }
976 
977 /*
978  * Avoid releasing and reacquiring the same page lock.
979  */
980 void
981 vm_page_change_lock(vm_page_t m, struct mtx **mtx)
982 {
983 	struct mtx *mtx1;
984 
985 	mtx1 = vm_page_lockptr(m);
986 	if (*mtx == mtx1)
987 		return;
988 	if (*mtx != NULL)
989 		mtx_unlock(*mtx);
990 	*mtx = mtx1;
991 	mtx_lock(mtx1);
992 }
993 
994 /*
995  * Keep page from being freed by the page daemon
996  * much of the same effect as wiring, except much lower
997  * overhead and should be used only for *very* temporary
998  * holding ("wiring").
999  */
1000 void
1001 vm_page_hold(vm_page_t mem)
1002 {
1003 
1004 	vm_page_lock_assert(mem, MA_OWNED);
1005         mem->hold_count++;
1006 }
1007 
1008 void
1009 vm_page_unhold(vm_page_t mem)
1010 {
1011 
1012 	vm_page_lock_assert(mem, MA_OWNED);
1013 	KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!"));
1014 	--mem->hold_count;
1015 	if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
1016 		vm_page_free_toq(mem);
1017 }
1018 
1019 /*
1020  *	vm_page_unhold_pages:
1021  *
1022  *	Unhold each of the pages that is referenced by the given array.
1023  */
1024 void
1025 vm_page_unhold_pages(vm_page_t *ma, int count)
1026 {
1027 	struct mtx *mtx;
1028 
1029 	mtx = NULL;
1030 	for (; count != 0; count--) {
1031 		vm_page_change_lock(*ma, &mtx);
1032 		vm_page_unhold(*ma);
1033 		ma++;
1034 	}
1035 	if (mtx != NULL)
1036 		mtx_unlock(mtx);
1037 }
1038 
1039 vm_page_t
1040 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1041 {
1042 	vm_page_t m;
1043 
1044 #ifdef VM_PHYSSEG_SPARSE
1045 	m = vm_phys_paddr_to_vm_page(pa);
1046 	if (m == NULL)
1047 		m = vm_phys_fictitious_to_vm_page(pa);
1048 	return (m);
1049 #elif defined(VM_PHYSSEG_DENSE)
1050 	long pi;
1051 
1052 	pi = atop(pa);
1053 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1054 		m = &vm_page_array[pi - first_page];
1055 		return (m);
1056 	}
1057 	return (vm_phys_fictitious_to_vm_page(pa));
1058 #else
1059 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1060 #endif
1061 }
1062 
1063 /*
1064  *	vm_page_getfake:
1065  *
1066  *	Create a fictitious page with the specified physical address and
1067  *	memory attribute.  The memory attribute is the only the machine-
1068  *	dependent aspect of a fictitious page that must be initialized.
1069  */
1070 vm_page_t
1071 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1072 {
1073 	vm_page_t m;
1074 
1075 	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1076 	vm_page_initfake(m, paddr, memattr);
1077 	return (m);
1078 }
1079 
1080 void
1081 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1082 {
1083 
1084 	if ((m->flags & PG_FICTITIOUS) != 0) {
1085 		/*
1086 		 * The page's memattr might have changed since the
1087 		 * previous initialization.  Update the pmap to the
1088 		 * new memattr.
1089 		 */
1090 		goto memattr;
1091 	}
1092 	m->phys_addr = paddr;
1093 	m->queue = PQ_NONE;
1094 	/* Fictitious pages don't use "segind". */
1095 	m->flags = PG_FICTITIOUS;
1096 	/* Fictitious pages don't use "order" or "pool". */
1097 	m->oflags = VPO_UNMANAGED;
1098 	m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1099 	m->wire_count = 1;
1100 	pmap_page_init(m);
1101 memattr:
1102 	pmap_page_set_memattr(m, memattr);
1103 }
1104 
1105 /*
1106  *	vm_page_putfake:
1107  *
1108  *	Release a fictitious page.
1109  */
1110 void
1111 vm_page_putfake(vm_page_t m)
1112 {
1113 
1114 	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1115 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1116 	    ("vm_page_putfake: bad page %p", m));
1117 	uma_zfree(fakepg_zone, m);
1118 }
1119 
1120 /*
1121  *	vm_page_updatefake:
1122  *
1123  *	Update the given fictitious page to the specified physical address and
1124  *	memory attribute.
1125  */
1126 void
1127 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1128 {
1129 
1130 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1131 	    ("vm_page_updatefake: bad page %p", m));
1132 	m->phys_addr = paddr;
1133 	pmap_page_set_memattr(m, memattr);
1134 }
1135 
1136 /*
1137  *	vm_page_free:
1138  *
1139  *	Free a page.
1140  */
1141 void
1142 vm_page_free(vm_page_t m)
1143 {
1144 
1145 	m->flags &= ~PG_ZERO;
1146 	vm_page_free_toq(m);
1147 }
1148 
1149 /*
1150  *	vm_page_free_zero:
1151  *
1152  *	Free a page to the zerod-pages queue
1153  */
1154 void
1155 vm_page_free_zero(vm_page_t m)
1156 {
1157 
1158 	m->flags |= PG_ZERO;
1159 	vm_page_free_toq(m);
1160 }
1161 
1162 /*
1163  * Unbusy and handle the page queueing for a page from a getpages request that
1164  * was optionally read ahead or behind.
1165  */
1166 void
1167 vm_page_readahead_finish(vm_page_t m)
1168 {
1169 
1170 	/* We shouldn't put invalid pages on queues. */
1171 	KASSERT(m->valid != 0, ("%s: %p is invalid", __func__, m));
1172 
1173 	/*
1174 	 * Since the page is not the actually needed one, whether it should
1175 	 * be activated or deactivated is not obvious.  Empirical results
1176 	 * have shown that deactivating the page is usually the best choice,
1177 	 * unless the page is wanted by another thread.
1178 	 */
1179 	vm_page_lock(m);
1180 	if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
1181 		vm_page_activate(m);
1182 	else
1183 		vm_page_deactivate(m);
1184 	vm_page_unlock(m);
1185 	vm_page_xunbusy(m);
1186 }
1187 
1188 /*
1189  *	vm_page_sleep_if_busy:
1190  *
1191  *	Sleep and release the page queues lock if the page is busied.
1192  *	Returns TRUE if the thread slept.
1193  *
1194  *	The given page must be unlocked and object containing it must
1195  *	be locked.
1196  */
1197 int
1198 vm_page_sleep_if_busy(vm_page_t m, const char *msg)
1199 {
1200 	vm_object_t obj;
1201 
1202 	vm_page_lock_assert(m, MA_NOTOWNED);
1203 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1204 
1205 	if (vm_page_busied(m)) {
1206 		/*
1207 		 * The page-specific object must be cached because page
1208 		 * identity can change during the sleep, causing the
1209 		 * re-lock of a different object.
1210 		 * It is assumed that a reference to the object is already
1211 		 * held by the callers.
1212 		 */
1213 		obj = m->object;
1214 		vm_page_lock(m);
1215 		VM_OBJECT_WUNLOCK(obj);
1216 		vm_page_busy_sleep(m, msg, false);
1217 		VM_OBJECT_WLOCK(obj);
1218 		return (TRUE);
1219 	}
1220 	return (FALSE);
1221 }
1222 
1223 /*
1224  *	vm_page_dirty_KBI:		[ internal use only ]
1225  *
1226  *	Set all bits in the page's dirty field.
1227  *
1228  *	The object containing the specified page must be locked if the
1229  *	call is made from the machine-independent layer.
1230  *
1231  *	See vm_page_clear_dirty_mask().
1232  *
1233  *	This function should only be called by vm_page_dirty().
1234  */
1235 void
1236 vm_page_dirty_KBI(vm_page_t m)
1237 {
1238 
1239 	/* Refer to this operation by its public name. */
1240 	KASSERT(m->valid == VM_PAGE_BITS_ALL,
1241 	    ("vm_page_dirty: page is invalid!"));
1242 	m->dirty = VM_PAGE_BITS_ALL;
1243 }
1244 
1245 /*
1246  *	vm_page_insert:		[ internal use only ]
1247  *
1248  *	Inserts the given mem entry into the object and object list.
1249  *
1250  *	The object must be locked.
1251  */
1252 int
1253 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1254 {
1255 	vm_page_t mpred;
1256 
1257 	VM_OBJECT_ASSERT_WLOCKED(object);
1258 	mpred = vm_radix_lookup_le(&object->rtree, pindex);
1259 	return (vm_page_insert_after(m, object, pindex, mpred));
1260 }
1261 
1262 /*
1263  *	vm_page_insert_after:
1264  *
1265  *	Inserts the page "m" into the specified object at offset "pindex".
1266  *
1267  *	The page "mpred" must immediately precede the offset "pindex" within
1268  *	the specified object.
1269  *
1270  *	The object must be locked.
1271  */
1272 static int
1273 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1274     vm_page_t mpred)
1275 {
1276 	vm_page_t msucc;
1277 
1278 	VM_OBJECT_ASSERT_WLOCKED(object);
1279 	KASSERT(m->object == NULL,
1280 	    ("vm_page_insert_after: page already inserted"));
1281 	if (mpred != NULL) {
1282 		KASSERT(mpred->object == object,
1283 		    ("vm_page_insert_after: object doesn't contain mpred"));
1284 		KASSERT(mpred->pindex < pindex,
1285 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1286 		msucc = TAILQ_NEXT(mpred, listq);
1287 	} else
1288 		msucc = TAILQ_FIRST(&object->memq);
1289 	if (msucc != NULL)
1290 		KASSERT(msucc->pindex > pindex,
1291 		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
1292 
1293 	/*
1294 	 * Record the object/offset pair in this page
1295 	 */
1296 	m->object = object;
1297 	m->pindex = pindex;
1298 
1299 	/*
1300 	 * Now link into the object's ordered list of backed pages.
1301 	 */
1302 	if (vm_radix_insert(&object->rtree, m)) {
1303 		m->object = NULL;
1304 		m->pindex = 0;
1305 		return (1);
1306 	}
1307 	vm_page_insert_radixdone(m, object, mpred);
1308 	return (0);
1309 }
1310 
1311 /*
1312  *	vm_page_insert_radixdone:
1313  *
1314  *	Complete page "m" insertion into the specified object after the
1315  *	radix trie hooking.
1316  *
1317  *	The page "mpred" must precede the offset "m->pindex" within the
1318  *	specified object.
1319  *
1320  *	The object must be locked.
1321  */
1322 static void
1323 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1324 {
1325 
1326 	VM_OBJECT_ASSERT_WLOCKED(object);
1327 	KASSERT(object != NULL && m->object == object,
1328 	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1329 	if (mpred != NULL) {
1330 		KASSERT(mpred->object == object,
1331 		    ("vm_page_insert_after: object doesn't contain mpred"));
1332 		KASSERT(mpred->pindex < m->pindex,
1333 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1334 	}
1335 
1336 	if (mpred != NULL)
1337 		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1338 	else
1339 		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1340 
1341 	/*
1342 	 * Show that the object has one more resident page.
1343 	 */
1344 	object->resident_page_count++;
1345 
1346 	/*
1347 	 * Hold the vnode until the last page is released.
1348 	 */
1349 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1350 		vhold(object->handle);
1351 
1352 	/*
1353 	 * Since we are inserting a new and possibly dirty page,
1354 	 * update the object's OBJ_MIGHTBEDIRTY flag.
1355 	 */
1356 	if (pmap_page_is_write_mapped(m))
1357 		vm_object_set_writeable_dirty(object);
1358 }
1359 
1360 /*
1361  *	vm_page_remove:
1362  *
1363  *	Removes the specified page from its containing object, but does not
1364  *	invalidate any backing storage.
1365  *
1366  *	The object must be locked.  The page must be locked if it is managed.
1367  */
1368 void
1369 vm_page_remove(vm_page_t m)
1370 {
1371 	vm_object_t object;
1372 	vm_page_t mrem;
1373 
1374 	if ((m->oflags & VPO_UNMANAGED) == 0)
1375 		vm_page_assert_locked(m);
1376 	if ((object = m->object) == NULL)
1377 		return;
1378 	VM_OBJECT_ASSERT_WLOCKED(object);
1379 	if (vm_page_xbusied(m))
1380 		vm_page_xunbusy_maybelocked(m);
1381 	mrem = vm_radix_remove(&object->rtree, m->pindex);
1382 	KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1383 
1384 	/*
1385 	 * Now remove from the object's list of backed pages.
1386 	 */
1387 	TAILQ_REMOVE(&object->memq, m, listq);
1388 
1389 	/*
1390 	 * And show that the object has one fewer resident page.
1391 	 */
1392 	object->resident_page_count--;
1393 
1394 	/*
1395 	 * The vnode may now be recycled.
1396 	 */
1397 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1398 		vdrop(object->handle);
1399 
1400 	m->object = NULL;
1401 }
1402 
1403 /*
1404  *	vm_page_lookup:
1405  *
1406  *	Returns the page associated with the object/offset
1407  *	pair specified; if none is found, NULL is returned.
1408  *
1409  *	The object must be locked.
1410  */
1411 vm_page_t
1412 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1413 {
1414 
1415 	VM_OBJECT_ASSERT_LOCKED(object);
1416 	return (vm_radix_lookup(&object->rtree, pindex));
1417 }
1418 
1419 /*
1420  *	vm_page_find_least:
1421  *
1422  *	Returns the page associated with the object with least pindex
1423  *	greater than or equal to the parameter pindex, or NULL.
1424  *
1425  *	The object must be locked.
1426  */
1427 vm_page_t
1428 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1429 {
1430 	vm_page_t m;
1431 
1432 	VM_OBJECT_ASSERT_LOCKED(object);
1433 	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1434 		m = vm_radix_lookup_ge(&object->rtree, pindex);
1435 	return (m);
1436 }
1437 
1438 /*
1439  * Returns the given page's successor (by pindex) within the object if it is
1440  * resident; if none is found, NULL is returned.
1441  *
1442  * The object must be locked.
1443  */
1444 vm_page_t
1445 vm_page_next(vm_page_t m)
1446 {
1447 	vm_page_t next;
1448 
1449 	VM_OBJECT_ASSERT_LOCKED(m->object);
1450 	if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1451 		MPASS(next->object == m->object);
1452 		if (next->pindex != m->pindex + 1)
1453 			next = NULL;
1454 	}
1455 	return (next);
1456 }
1457 
1458 /*
1459  * Returns the given page's predecessor (by pindex) within the object if it is
1460  * resident; if none is found, NULL is returned.
1461  *
1462  * The object must be locked.
1463  */
1464 vm_page_t
1465 vm_page_prev(vm_page_t m)
1466 {
1467 	vm_page_t prev;
1468 
1469 	VM_OBJECT_ASSERT_LOCKED(m->object);
1470 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1471 		MPASS(prev->object == m->object);
1472 		if (prev->pindex != m->pindex - 1)
1473 			prev = NULL;
1474 	}
1475 	return (prev);
1476 }
1477 
1478 /*
1479  * Uses the page mnew as a replacement for an existing page at index
1480  * pindex which must be already present in the object.
1481  *
1482  * The existing page must not be on a paging queue.
1483  */
1484 vm_page_t
1485 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1486 {
1487 	vm_page_t mold;
1488 
1489 	VM_OBJECT_ASSERT_WLOCKED(object);
1490 	KASSERT(mnew->object == NULL,
1491 	    ("vm_page_replace: page already in object"));
1492 
1493 	/*
1494 	 * This function mostly follows vm_page_insert() and
1495 	 * vm_page_remove() without the radix, object count and vnode
1496 	 * dance.  Double check such functions for more comments.
1497 	 */
1498 
1499 	mnew->object = object;
1500 	mnew->pindex = pindex;
1501 	mold = vm_radix_replace(&object->rtree, mnew);
1502 	KASSERT(mold->queue == PQ_NONE,
1503 	    ("vm_page_replace: mold is on a paging queue"));
1504 
1505 	/* Keep the resident page list in sorted order. */
1506 	TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1507 	TAILQ_REMOVE(&object->memq, mold, listq);
1508 
1509 	mold->object = NULL;
1510 	vm_page_xunbusy_maybelocked(mold);
1511 
1512 	/*
1513 	 * The object's resident_page_count does not change because we have
1514 	 * swapped one page for another, but OBJ_MIGHTBEDIRTY.
1515 	 */
1516 	if (pmap_page_is_write_mapped(mnew))
1517 		vm_object_set_writeable_dirty(object);
1518 	return (mold);
1519 }
1520 
1521 /*
1522  *	vm_page_rename:
1523  *
1524  *	Move the given memory entry from its
1525  *	current object to the specified target object/offset.
1526  *
1527  *	Note: swap associated with the page must be invalidated by the move.  We
1528  *	      have to do this for several reasons:  (1) we aren't freeing the
1529  *	      page, (2) we are dirtying the page, (3) the VM system is probably
1530  *	      moving the page from object A to B, and will then later move
1531  *	      the backing store from A to B and we can't have a conflict.
1532  *
1533  *	Note: we *always* dirty the page.  It is necessary both for the
1534  *	      fact that we moved it, and because we may be invalidating
1535  *	      swap.
1536  *
1537  *	The objects must be locked.
1538  */
1539 int
1540 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1541 {
1542 	vm_page_t mpred;
1543 	vm_pindex_t opidx;
1544 
1545 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1546 
1547 	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1548 	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1549 	    ("vm_page_rename: pindex already renamed"));
1550 
1551 	/*
1552 	 * Create a custom version of vm_page_insert() which does not depend
1553 	 * by m_prev and can cheat on the implementation aspects of the
1554 	 * function.
1555 	 */
1556 	opidx = m->pindex;
1557 	m->pindex = new_pindex;
1558 	if (vm_radix_insert(&new_object->rtree, m)) {
1559 		m->pindex = opidx;
1560 		return (1);
1561 	}
1562 
1563 	/*
1564 	 * The operation cannot fail anymore.  The removal must happen before
1565 	 * the listq iterator is tainted.
1566 	 */
1567 	m->pindex = opidx;
1568 	vm_page_lock(m);
1569 	vm_page_remove(m);
1570 
1571 	/* Return back to the new pindex to complete vm_page_insert(). */
1572 	m->pindex = new_pindex;
1573 	m->object = new_object;
1574 	vm_page_unlock(m);
1575 	vm_page_insert_radixdone(m, new_object, mpred);
1576 	vm_page_dirty(m);
1577 	return (0);
1578 }
1579 
1580 /*
1581  *	vm_page_alloc:
1582  *
1583  *	Allocate and return a page that is associated with the specified
1584  *	object and offset pair.  By default, this page is exclusive busied.
1585  *
1586  *	The caller must always specify an allocation class.
1587  *
1588  *	allocation classes:
1589  *	VM_ALLOC_NORMAL		normal process request
1590  *	VM_ALLOC_SYSTEM		system *really* needs a page
1591  *	VM_ALLOC_INTERRUPT	interrupt time request
1592  *
1593  *	optional allocation flags:
1594  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1595  *				intends to allocate
1596  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1597  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1598  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1599  *				should not be exclusive busy
1600  *	VM_ALLOC_SBUSY		shared busy the allocated page
1601  *	VM_ALLOC_WIRED		wire the allocated page
1602  *	VM_ALLOC_ZERO		prefer a zeroed page
1603  */
1604 vm_page_t
1605 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1606 {
1607 
1608 	return (vm_page_alloc_after(object, pindex, req, object != NULL ?
1609 	    vm_radix_lookup_le(&object->rtree, pindex) : NULL));
1610 }
1611 
1612 vm_page_t
1613 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain,
1614     int req)
1615 {
1616 
1617 	return (vm_page_alloc_domain_after(object, pindex, domain, req,
1618 	    object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) :
1619 	    NULL));
1620 }
1621 
1622 /*
1623  * Allocate a page in the specified object with the given page index.  To
1624  * optimize insertion of the page into the object, the caller must also specifiy
1625  * the resident page in the object with largest index smaller than the given
1626  * page index, or NULL if no such page exists.
1627  */
1628 vm_page_t
1629 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
1630     int req, vm_page_t mpred)
1631 {
1632 	struct vm_domainset_iter di;
1633 	vm_page_t m;
1634 	int domain;
1635 
1636 	vm_domainset_iter_page_init(&di, object, &domain, &req);
1637 	do {
1638 		m = vm_page_alloc_domain_after(object, pindex, domain, req,
1639 		    mpred);
1640 		if (m != NULL)
1641 			break;
1642 	} while (vm_domainset_iter_page(&di, &domain, &req) == 0);
1643 
1644 	return (m);
1645 }
1646 
1647 vm_page_t
1648 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
1649     int req, vm_page_t mpred)
1650 {
1651 	vm_page_t m;
1652 	int flags, req_class;
1653 	u_int free_count;
1654 
1655 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1656 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1657 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1658 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1659 	    ("inconsistent object(%p)/req(%x)", object, req));
1660 	KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
1661 	    ("Can't sleep and retry object insertion."));
1662 	KASSERT(mpred == NULL || mpred->pindex < pindex,
1663 	    ("mpred %p doesn't precede pindex 0x%jx", mpred,
1664 	    (uintmax_t)pindex));
1665 	if (object != NULL)
1666 		VM_OBJECT_ASSERT_WLOCKED(object);
1667 
1668 	req_class = req & VM_ALLOC_CLASS_MASK;
1669 
1670 	/*
1671 	 * The page daemon is allowed to dig deeper into the free page list.
1672 	 */
1673 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1674 		req_class = VM_ALLOC_SYSTEM;
1675 
1676 	/*
1677 	 * Allocate a page if the number of free pages exceeds the minimum
1678 	 * for the request class.
1679 	 */
1680 again:
1681 	m = NULL;
1682 	mtx_lock(&vm_page_queue_free_mtx);
1683 	if (vm_cnt.v_free_count > vm_cnt.v_free_reserved ||
1684 	    (req_class == VM_ALLOC_SYSTEM &&
1685 	    vm_cnt.v_free_count > vm_cnt.v_interrupt_free_min) ||
1686 	    (req_class == VM_ALLOC_INTERRUPT &&
1687 	    vm_cnt.v_free_count > 0)) {
1688 		/*
1689 		 * Can we allocate the page from a reservation?
1690 		 */
1691 #if VM_NRESERVLEVEL > 0
1692 		if (object == NULL || (object->flags & (OBJ_COLORED |
1693 		    OBJ_FICTITIOUS)) != OBJ_COLORED || (m =
1694 		    vm_reserv_alloc_page(object, pindex, domain,
1695 		    mpred)) == NULL)
1696 #endif
1697 		{
1698 			/*
1699 			 * If not, allocate it from the free page queues.
1700 			 */
1701 			m = vm_phys_alloc_pages(domain, object != NULL ?
1702 			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1703 #if VM_NRESERVLEVEL > 0
1704 			if (m == NULL && vm_reserv_reclaim_inactive(domain)) {
1705 				m = vm_phys_alloc_pages(domain,
1706 				    object != NULL ?
1707 				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1708 				    0);
1709 			}
1710 #endif
1711 		}
1712 	}
1713 	if (m == NULL) {
1714 		/*
1715 		 * Not allocatable, give up.
1716 		 */
1717 		if (vm_page_alloc_fail(object, req))
1718 			goto again;
1719 		return (NULL);
1720 	}
1721 
1722 	/*
1723 	 *  At this point we had better have found a good page.
1724 	 */
1725 	KASSERT(m != NULL, ("missing page"));
1726 	free_count = vm_phys_freecnt_adj(m, -1);
1727 	mtx_unlock(&vm_page_queue_free_mtx);
1728 	vm_page_alloc_check(m);
1729 
1730 	/*
1731 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1732 	 */
1733 	flags = 0;
1734 	if ((req & VM_ALLOC_ZERO) != 0)
1735 		flags = PG_ZERO;
1736 	flags &= m->flags;
1737 	if ((req & VM_ALLOC_NODUMP) != 0)
1738 		flags |= PG_NODUMP;
1739 	m->flags = flags;
1740 	m->aflags = 0;
1741 	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1742 	    VPO_UNMANAGED : 0;
1743 	m->busy_lock = VPB_UNBUSIED;
1744 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1745 		m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1746 	if ((req & VM_ALLOC_SBUSY) != 0)
1747 		m->busy_lock = VPB_SHARERS_WORD(1);
1748 	if (req & VM_ALLOC_WIRED) {
1749 		/*
1750 		 * The page lock is not required for wiring a page until that
1751 		 * page is inserted into the object.
1752 		 */
1753 		atomic_add_int(&vm_cnt.v_wire_count, 1);
1754 		m->wire_count = 1;
1755 	}
1756 	m->act_count = 0;
1757 
1758 	if (object != NULL) {
1759 		if (vm_page_insert_after(m, object, pindex, mpred)) {
1760 			pagedaemon_wakeup();
1761 			if (req & VM_ALLOC_WIRED) {
1762 				atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1763 				m->wire_count = 0;
1764 			}
1765 			KASSERT(m->object == NULL, ("page %p has object", m));
1766 			m->oflags = VPO_UNMANAGED;
1767 			m->busy_lock = VPB_UNBUSIED;
1768 			/* Don't change PG_ZERO. */
1769 			vm_page_free_toq(m);
1770 			if (req & VM_ALLOC_WAITFAIL) {
1771 				VM_OBJECT_WUNLOCK(object);
1772 				vm_radix_wait();
1773 				VM_OBJECT_WLOCK(object);
1774 			}
1775 			return (NULL);
1776 		}
1777 
1778 		/* Ignore device objects; the pager sets "memattr" for them. */
1779 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1780 		    (object->flags & OBJ_FICTITIOUS) == 0)
1781 			pmap_page_set_memattr(m, object->memattr);
1782 	} else
1783 		m->pindex = pindex;
1784 
1785 	/*
1786 	 * Don't wakeup too often - wakeup the pageout daemon when
1787 	 * we would be nearly out of memory.
1788 	 */
1789 	if (vm_paging_needed(free_count))
1790 		pagedaemon_wakeup();
1791 
1792 	return (m);
1793 }
1794 
1795 /*
1796  *	vm_page_alloc_contig:
1797  *
1798  *	Allocate a contiguous set of physical pages of the given size "npages"
1799  *	from the free lists.  All of the physical pages must be at or above
1800  *	the given physical address "low" and below the given physical address
1801  *	"high".  The given value "alignment" determines the alignment of the
1802  *	first physical page in the set.  If the given value "boundary" is
1803  *	non-zero, then the set of physical pages cannot cross any physical
1804  *	address boundary that is a multiple of that value.  Both "alignment"
1805  *	and "boundary" must be a power of two.
1806  *
1807  *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1808  *	then the memory attribute setting for the physical pages is configured
1809  *	to the object's memory attribute setting.  Otherwise, the memory
1810  *	attribute setting for the physical pages is configured to "memattr",
1811  *	overriding the object's memory attribute setting.  However, if the
1812  *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1813  *	memory attribute setting for the physical pages cannot be configured
1814  *	to VM_MEMATTR_DEFAULT.
1815  *
1816  *	The specified object may not contain fictitious pages.
1817  *
1818  *	The caller must always specify an allocation class.
1819  *
1820  *	allocation classes:
1821  *	VM_ALLOC_NORMAL		normal process request
1822  *	VM_ALLOC_SYSTEM		system *really* needs a page
1823  *	VM_ALLOC_INTERRUPT	interrupt time request
1824  *
1825  *	optional allocation flags:
1826  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1827  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1828  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1829  *				should not be exclusive busy
1830  *	VM_ALLOC_SBUSY		shared busy the allocated page
1831  *	VM_ALLOC_WIRED		wire the allocated page
1832  *	VM_ALLOC_ZERO		prefer a zeroed page
1833  */
1834 vm_page_t
1835 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1836     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1837     vm_paddr_t boundary, vm_memattr_t memattr)
1838 {
1839 	struct vm_domainset_iter di;
1840 	vm_page_t m;
1841 	int domain;
1842 
1843 	vm_domainset_iter_page_init(&di, object, &domain, &req);
1844 	do {
1845 		m = vm_page_alloc_contig_domain(object, pindex, domain, req,
1846 		    npages, low, high, alignment, boundary, memattr);
1847 		if (m != NULL)
1848 			break;
1849 	} while (vm_domainset_iter_page(&di, &domain, &req) == 0);
1850 
1851 	return (m);
1852 }
1853 
1854 vm_page_t
1855 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
1856     int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1857     vm_paddr_t boundary, vm_memattr_t memattr)
1858 {
1859 	vm_page_t m, m_ret, mpred;
1860 	u_int busy_lock, flags, oflags;
1861 	int req_class;
1862 
1863 	mpred = NULL;	/* XXX: pacify gcc */
1864 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1865 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1866 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1867 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1868 	    ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object,
1869 	    req));
1870 	KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
1871 	    ("Can't sleep and retry object insertion."));
1872 	if (object != NULL) {
1873 		VM_OBJECT_ASSERT_WLOCKED(object);
1874 		KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
1875 		    ("vm_page_alloc_contig: object %p has fictitious pages",
1876 		    object));
1877 	}
1878 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1879 	req_class = req & VM_ALLOC_CLASS_MASK;
1880 
1881 	/*
1882 	 * The page daemon is allowed to dig deeper into the free page list.
1883 	 */
1884 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1885 		req_class = VM_ALLOC_SYSTEM;
1886 
1887 	if (object != NULL) {
1888 		mpred = vm_radix_lookup_le(&object->rtree, pindex);
1889 		KASSERT(mpred == NULL || mpred->pindex != pindex,
1890 		    ("vm_page_alloc_contig: pindex already allocated"));
1891 	}
1892 
1893 	/*
1894 	 * Can we allocate the pages without the number of free pages falling
1895 	 * below the lower bound for the allocation class?
1896 	 */
1897 again:
1898 	m_ret = NULL;
1899 	mtx_lock(&vm_page_queue_free_mtx);
1900 	if (vm_cnt.v_free_count >= npages + vm_cnt.v_free_reserved ||
1901 	    (req_class == VM_ALLOC_SYSTEM &&
1902 	    vm_cnt.v_free_count >= npages + vm_cnt.v_interrupt_free_min) ||
1903 	    (req_class == VM_ALLOC_INTERRUPT &&
1904 	    vm_cnt.v_free_count >= npages)) {
1905 		/*
1906 		 * Can we allocate the pages from a reservation?
1907 		 */
1908 #if VM_NRESERVLEVEL > 0
1909 retry:
1910 		if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
1911 		    (m_ret = vm_reserv_alloc_contig(object, pindex, domain,
1912 		    npages, low, high, alignment, boundary, mpred)) == NULL)
1913 #endif
1914 			/*
1915 			 * If not, allocate them from the free page queues.
1916 			 */
1917 			m_ret = vm_phys_alloc_contig(domain, npages, low, high,
1918 			    alignment, boundary);
1919 #if VM_NRESERVLEVEL > 0
1920 		if (m_ret == NULL && vm_reserv_reclaim_contig(
1921 		    domain, npages, low, high, alignment, boundary))
1922 			goto retry;
1923 #endif
1924 	}
1925 	if (m_ret == NULL) {
1926 		if (vm_page_alloc_fail(object, req))
1927 			goto again;
1928 		return (NULL);
1929 	}
1930 	vm_phys_freecnt_adj(m_ret, -npages);
1931 	mtx_unlock(&vm_page_queue_free_mtx);
1932 	for (m = m_ret; m < &m_ret[npages]; m++)
1933 		vm_page_alloc_check(m);
1934 
1935 	/*
1936 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
1937 	 */
1938 	flags = 0;
1939 	if ((req & VM_ALLOC_ZERO) != 0)
1940 		flags = PG_ZERO;
1941 	if ((req & VM_ALLOC_NODUMP) != 0)
1942 		flags |= PG_NODUMP;
1943 	oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1944 	    VPO_UNMANAGED : 0;
1945 	busy_lock = VPB_UNBUSIED;
1946 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1947 		busy_lock = VPB_SINGLE_EXCLUSIVER;
1948 	if ((req & VM_ALLOC_SBUSY) != 0)
1949 		busy_lock = VPB_SHARERS_WORD(1);
1950 	if ((req & VM_ALLOC_WIRED) != 0)
1951 		atomic_add_int(&vm_cnt.v_wire_count, npages);
1952 	if (object != NULL) {
1953 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1954 		    memattr == VM_MEMATTR_DEFAULT)
1955 			memattr = object->memattr;
1956 	}
1957 	for (m = m_ret; m < &m_ret[npages]; m++) {
1958 		m->aflags = 0;
1959 		m->flags = (m->flags | PG_NODUMP) & flags;
1960 		m->busy_lock = busy_lock;
1961 		if ((req & VM_ALLOC_WIRED) != 0)
1962 			m->wire_count = 1;
1963 		m->act_count = 0;
1964 		m->oflags = oflags;
1965 		if (object != NULL) {
1966 			if (vm_page_insert_after(m, object, pindex, mpred)) {
1967 				pagedaemon_wakeup();
1968 				if ((req & VM_ALLOC_WIRED) != 0)
1969 					atomic_subtract_int(
1970 					    &vm_cnt.v_wire_count, npages);
1971 				KASSERT(m->object == NULL,
1972 				    ("page %p has object", m));
1973 				mpred = m;
1974 				for (m = m_ret; m < &m_ret[npages]; m++) {
1975 					if (m <= mpred &&
1976 					    (req & VM_ALLOC_WIRED) != 0)
1977 						m->wire_count = 0;
1978 					m->oflags = VPO_UNMANAGED;
1979 					m->busy_lock = VPB_UNBUSIED;
1980 					/* Don't change PG_ZERO. */
1981 					vm_page_free_toq(m);
1982 				}
1983 				if (req & VM_ALLOC_WAITFAIL) {
1984 					VM_OBJECT_WUNLOCK(object);
1985 					vm_radix_wait();
1986 					VM_OBJECT_WLOCK(object);
1987 				}
1988 				return (NULL);
1989 			}
1990 			mpred = m;
1991 		} else
1992 			m->pindex = pindex;
1993 		if (memattr != VM_MEMATTR_DEFAULT)
1994 			pmap_page_set_memattr(m, memattr);
1995 		pindex++;
1996 	}
1997 	if (vm_paging_needed(vm_cnt.v_free_count))
1998 		pagedaemon_wakeup();
1999 	return (m_ret);
2000 }
2001 
2002 /*
2003  * Check a page that has been freshly dequeued from a freelist.
2004  */
2005 static void
2006 vm_page_alloc_check(vm_page_t m)
2007 {
2008 
2009 	KASSERT(m->object == NULL, ("page %p has object", m));
2010 	KASSERT(m->queue == PQ_NONE,
2011 	    ("page %p has unexpected queue %d", m, m->queue));
2012 	KASSERT(m->wire_count == 0, ("page %p is wired", m));
2013 	KASSERT(m->hold_count == 0, ("page %p is held", m));
2014 	KASSERT(!vm_page_busied(m), ("page %p is busy", m));
2015 	KASSERT(m->dirty == 0, ("page %p is dirty", m));
2016 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2017 	    ("page %p has unexpected memattr %d",
2018 	    m, pmap_page_get_memattr(m)));
2019 	KASSERT(m->valid == 0, ("free page %p is valid", m));
2020 }
2021 
2022 /*
2023  * 	vm_page_alloc_freelist:
2024  *
2025  *	Allocate a physical page from the specified free page list.
2026  *
2027  *	The caller must always specify an allocation class.
2028  *
2029  *	allocation classes:
2030  *	VM_ALLOC_NORMAL		normal process request
2031  *	VM_ALLOC_SYSTEM		system *really* needs a page
2032  *	VM_ALLOC_INTERRUPT	interrupt time request
2033  *
2034  *	optional allocation flags:
2035  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
2036  *				intends to allocate
2037  *	VM_ALLOC_WIRED		wire the allocated page
2038  *	VM_ALLOC_ZERO		prefer a zeroed page
2039  */
2040 vm_page_t
2041 vm_page_alloc_freelist(int freelist, int req)
2042 {
2043 	struct vm_domainset_iter di;
2044 	vm_page_t m;
2045 	int domain;
2046 
2047 	vm_domainset_iter_page_init(&di, kernel_object, &domain, &req);
2048 	do {
2049 		m = vm_page_alloc_freelist_domain(domain, freelist, req);
2050 		if (m != NULL)
2051 			break;
2052 	} while (vm_domainset_iter_page(&di, &domain, &req) == 0);
2053 
2054 	return (m);
2055 }
2056 
2057 vm_page_t
2058 vm_page_alloc_freelist_domain(int domain, int freelist, int req)
2059 {
2060 	vm_page_t m;
2061 	u_int flags, free_count;
2062 	int req_class;
2063 
2064 	req_class = req & VM_ALLOC_CLASS_MASK;
2065 
2066 	/*
2067 	 * The page daemon is allowed to dig deeper into the free page list.
2068 	 */
2069 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2070 		req_class = VM_ALLOC_SYSTEM;
2071 
2072 	/*
2073 	 * Do not allocate reserved pages unless the req has asked for it.
2074 	 */
2075 again:
2076 	mtx_lock(&vm_page_queue_free_mtx);
2077 	if (vm_cnt.v_free_count > vm_cnt.v_free_reserved ||
2078 	    (req_class == VM_ALLOC_SYSTEM &&
2079 	    vm_cnt.v_free_count > vm_cnt.v_interrupt_free_min) ||
2080 	    (req_class == VM_ALLOC_INTERRUPT &&
2081 	    vm_cnt.v_free_count > 0))
2082 		m = vm_phys_alloc_freelist_pages(domain, freelist,
2083 		    VM_FREEPOOL_DIRECT, 0);
2084 	if (m == NULL) {
2085 		if (vm_page_alloc_fail(NULL, req))
2086 			goto again;
2087 		return (NULL);
2088 	}
2089 	free_count = vm_phys_freecnt_adj(m, -1);
2090 	mtx_unlock(&vm_page_queue_free_mtx);
2091 	vm_page_alloc_check(m);
2092 
2093 	/*
2094 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2095 	 */
2096 	m->aflags = 0;
2097 	flags = 0;
2098 	if ((req & VM_ALLOC_ZERO) != 0)
2099 		flags = PG_ZERO;
2100 	m->flags &= flags;
2101 	if ((req & VM_ALLOC_WIRED) != 0) {
2102 		/*
2103 		 * The page lock is not required for wiring a page that does
2104 		 * not belong to an object.
2105 		 */
2106 		atomic_add_int(&vm_cnt.v_wire_count, 1);
2107 		m->wire_count = 1;
2108 	}
2109 	/* Unmanaged pages don't use "act_count". */
2110 	m->oflags = VPO_UNMANAGED;
2111 	if (vm_paging_needed(free_count))
2112 		pagedaemon_wakeup();
2113 	return (m);
2114 }
2115 
2116 #define	VPSC_ANY	0	/* No restrictions. */
2117 #define	VPSC_NORESERV	1	/* Skip reservations; implies VPSC_NOSUPER. */
2118 #define	VPSC_NOSUPER	2	/* Skip superpages. */
2119 
2120 /*
2121  *	vm_page_scan_contig:
2122  *
2123  *	Scan vm_page_array[] between the specified entries "m_start" and
2124  *	"m_end" for a run of contiguous physical pages that satisfy the
2125  *	specified conditions, and return the lowest page in the run.  The
2126  *	specified "alignment" determines the alignment of the lowest physical
2127  *	page in the run.  If the specified "boundary" is non-zero, then the
2128  *	run of physical pages cannot span a physical address that is a
2129  *	multiple of "boundary".
2130  *
2131  *	"m_end" is never dereferenced, so it need not point to a vm_page
2132  *	structure within vm_page_array[].
2133  *
2134  *	"npages" must be greater than zero.  "m_start" and "m_end" must not
2135  *	span a hole (or discontiguity) in the physical address space.  Both
2136  *	"alignment" and "boundary" must be a power of two.
2137  */
2138 vm_page_t
2139 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2140     u_long alignment, vm_paddr_t boundary, int options)
2141 {
2142 	struct mtx *m_mtx;
2143 	vm_object_t object;
2144 	vm_paddr_t pa;
2145 	vm_page_t m, m_run;
2146 #if VM_NRESERVLEVEL > 0
2147 	int level;
2148 #endif
2149 	int m_inc, order, run_ext, run_len;
2150 
2151 	KASSERT(npages > 0, ("npages is 0"));
2152 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2153 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2154 	m_run = NULL;
2155 	run_len = 0;
2156 	m_mtx = NULL;
2157 	for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2158 		KASSERT((m->flags & PG_MARKER) == 0,
2159 		    ("page %p is PG_MARKER", m));
2160 		KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->wire_count == 1,
2161 		    ("fictitious page %p has invalid wire count", m));
2162 
2163 		/*
2164 		 * If the current page would be the start of a run, check its
2165 		 * physical address against the end, alignment, and boundary
2166 		 * conditions.  If it doesn't satisfy these conditions, either
2167 		 * terminate the scan or advance to the next page that
2168 		 * satisfies the failed condition.
2169 		 */
2170 		if (run_len == 0) {
2171 			KASSERT(m_run == NULL, ("m_run != NULL"));
2172 			if (m + npages > m_end)
2173 				break;
2174 			pa = VM_PAGE_TO_PHYS(m);
2175 			if ((pa & (alignment - 1)) != 0) {
2176 				m_inc = atop(roundup2(pa, alignment) - pa);
2177 				continue;
2178 			}
2179 			if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2180 			    boundary) != 0) {
2181 				m_inc = atop(roundup2(pa, boundary) - pa);
2182 				continue;
2183 			}
2184 		} else
2185 			KASSERT(m_run != NULL, ("m_run == NULL"));
2186 
2187 		vm_page_change_lock(m, &m_mtx);
2188 		m_inc = 1;
2189 retry:
2190 		if (m->wire_count != 0 || m->hold_count != 0)
2191 			run_ext = 0;
2192 #if VM_NRESERVLEVEL > 0
2193 		else if ((level = vm_reserv_level(m)) >= 0 &&
2194 		    (options & VPSC_NORESERV) != 0) {
2195 			run_ext = 0;
2196 			/* Advance to the end of the reservation. */
2197 			pa = VM_PAGE_TO_PHYS(m);
2198 			m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2199 			    pa);
2200 		}
2201 #endif
2202 		else if ((object = m->object) != NULL) {
2203 			/*
2204 			 * The page is considered eligible for relocation if
2205 			 * and only if it could be laundered or reclaimed by
2206 			 * the page daemon.
2207 			 */
2208 			if (!VM_OBJECT_TRYRLOCK(object)) {
2209 				mtx_unlock(m_mtx);
2210 				VM_OBJECT_RLOCK(object);
2211 				mtx_lock(m_mtx);
2212 				if (m->object != object) {
2213 					/*
2214 					 * The page may have been freed.
2215 					 */
2216 					VM_OBJECT_RUNLOCK(object);
2217 					goto retry;
2218 				} else if (m->wire_count != 0 ||
2219 				    m->hold_count != 0) {
2220 					run_ext = 0;
2221 					goto unlock;
2222 				}
2223 			}
2224 			KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2225 			    ("page %p is PG_UNHOLDFREE", m));
2226 			/* Don't care: PG_NODUMP, PG_ZERO. */
2227 			if (object->type != OBJT_DEFAULT &&
2228 			    object->type != OBJT_SWAP &&
2229 			    object->type != OBJT_VNODE) {
2230 				run_ext = 0;
2231 #if VM_NRESERVLEVEL > 0
2232 			} else if ((options & VPSC_NOSUPER) != 0 &&
2233 			    (level = vm_reserv_level_iffullpop(m)) >= 0) {
2234 				run_ext = 0;
2235 				/* Advance to the end of the superpage. */
2236 				pa = VM_PAGE_TO_PHYS(m);
2237 				m_inc = atop(roundup2(pa + 1,
2238 				    vm_reserv_size(level)) - pa);
2239 #endif
2240 			} else if (object->memattr == VM_MEMATTR_DEFAULT &&
2241 			    m->queue != PQ_NONE && !vm_page_busied(m)) {
2242 				/*
2243 				 * The page is allocated but eligible for
2244 				 * relocation.  Extend the current run by one
2245 				 * page.
2246 				 */
2247 				KASSERT(pmap_page_get_memattr(m) ==
2248 				    VM_MEMATTR_DEFAULT,
2249 				    ("page %p has an unexpected memattr", m));
2250 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2251 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2252 				    ("page %p has unexpected oflags", m));
2253 				/* Don't care: VPO_NOSYNC. */
2254 				run_ext = 1;
2255 			} else
2256 				run_ext = 0;
2257 unlock:
2258 			VM_OBJECT_RUNLOCK(object);
2259 #if VM_NRESERVLEVEL > 0
2260 		} else if (level >= 0) {
2261 			/*
2262 			 * The page is reserved but not yet allocated.  In
2263 			 * other words, it is still free.  Extend the current
2264 			 * run by one page.
2265 			 */
2266 			run_ext = 1;
2267 #endif
2268 		} else if ((order = m->order) < VM_NFREEORDER) {
2269 			/*
2270 			 * The page is enqueued in the physical memory
2271 			 * allocator's free page queues.  Moreover, it is the
2272 			 * first page in a power-of-two-sized run of
2273 			 * contiguous free pages.  Add these pages to the end
2274 			 * of the current run, and jump ahead.
2275 			 */
2276 			run_ext = 1 << order;
2277 			m_inc = 1 << order;
2278 		} else {
2279 			/*
2280 			 * Skip the page for one of the following reasons: (1)
2281 			 * It is enqueued in the physical memory allocator's
2282 			 * free page queues.  However, it is not the first
2283 			 * page in a run of contiguous free pages.  (This case
2284 			 * rarely occurs because the scan is performed in
2285 			 * ascending order.) (2) It is not reserved, and it is
2286 			 * transitioning from free to allocated.  (Conversely,
2287 			 * the transition from allocated to free for managed
2288 			 * pages is blocked by the page lock.) (3) It is
2289 			 * allocated but not contained by an object and not
2290 			 * wired, e.g., allocated by Xen's balloon driver.
2291 			 */
2292 			run_ext = 0;
2293 		}
2294 
2295 		/*
2296 		 * Extend or reset the current run of pages.
2297 		 */
2298 		if (run_ext > 0) {
2299 			if (run_len == 0)
2300 				m_run = m;
2301 			run_len += run_ext;
2302 		} else {
2303 			if (run_len > 0) {
2304 				m_run = NULL;
2305 				run_len = 0;
2306 			}
2307 		}
2308 	}
2309 	if (m_mtx != NULL)
2310 		mtx_unlock(m_mtx);
2311 	if (run_len >= npages)
2312 		return (m_run);
2313 	return (NULL);
2314 }
2315 
2316 /*
2317  *	vm_page_reclaim_run:
2318  *
2319  *	Try to relocate each of the allocated virtual pages within the
2320  *	specified run of physical pages to a new physical address.  Free the
2321  *	physical pages underlying the relocated virtual pages.  A virtual page
2322  *	is relocatable if and only if it could be laundered or reclaimed by
2323  *	the page daemon.  Whenever possible, a virtual page is relocated to a
2324  *	physical address above "high".
2325  *
2326  *	Returns 0 if every physical page within the run was already free or
2327  *	just freed by a successful relocation.  Otherwise, returns a non-zero
2328  *	value indicating why the last attempt to relocate a virtual page was
2329  *	unsuccessful.
2330  *
2331  *	"req_class" must be an allocation class.
2332  */
2333 static int
2334 vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run,
2335     vm_paddr_t high)
2336 {
2337 	struct mtx *m_mtx;
2338 	struct spglist free;
2339 	vm_object_t object;
2340 	vm_paddr_t pa;
2341 	vm_page_t m, m_end, m_new;
2342 	int error, order, req;
2343 
2344 	KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2345 	    ("req_class is not an allocation class"));
2346 	SLIST_INIT(&free);
2347 	error = 0;
2348 	m = m_run;
2349 	m_end = m_run + npages;
2350 	m_mtx = NULL;
2351 	for (; error == 0 && m < m_end; m++) {
2352 		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2353 		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2354 
2355 		/*
2356 		 * Avoid releasing and reacquiring the same page lock.
2357 		 */
2358 		vm_page_change_lock(m, &m_mtx);
2359 retry:
2360 		if (m->wire_count != 0 || m->hold_count != 0)
2361 			error = EBUSY;
2362 		else if ((object = m->object) != NULL) {
2363 			/*
2364 			 * The page is relocated if and only if it could be
2365 			 * laundered or reclaimed by the page daemon.
2366 			 */
2367 			if (!VM_OBJECT_TRYWLOCK(object)) {
2368 				mtx_unlock(m_mtx);
2369 				VM_OBJECT_WLOCK(object);
2370 				mtx_lock(m_mtx);
2371 				if (m->object != object) {
2372 					/*
2373 					 * The page may have been freed.
2374 					 */
2375 					VM_OBJECT_WUNLOCK(object);
2376 					goto retry;
2377 				} else if (m->wire_count != 0 ||
2378 				    m->hold_count != 0) {
2379 					error = EBUSY;
2380 					goto unlock;
2381 				}
2382 			}
2383 			KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2384 			    ("page %p is PG_UNHOLDFREE", m));
2385 			/* Don't care: PG_NODUMP, PG_ZERO. */
2386 			if (object->type != OBJT_DEFAULT &&
2387 			    object->type != OBJT_SWAP &&
2388 			    object->type != OBJT_VNODE)
2389 				error = EINVAL;
2390 			else if (object->memattr != VM_MEMATTR_DEFAULT)
2391 				error = EINVAL;
2392 			else if (m->queue != PQ_NONE && !vm_page_busied(m)) {
2393 				KASSERT(pmap_page_get_memattr(m) ==
2394 				    VM_MEMATTR_DEFAULT,
2395 				    ("page %p has an unexpected memattr", m));
2396 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2397 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2398 				    ("page %p has unexpected oflags", m));
2399 				/* Don't care: VPO_NOSYNC. */
2400 				if (m->valid != 0) {
2401 					/*
2402 					 * First, try to allocate a new page
2403 					 * that is above "high".  Failing
2404 					 * that, try to allocate a new page
2405 					 * that is below "m_run".  Allocate
2406 					 * the new page between the end of
2407 					 * "m_run" and "high" only as a last
2408 					 * resort.
2409 					 */
2410 					req = req_class | VM_ALLOC_NOOBJ;
2411 					if ((m->flags & PG_NODUMP) != 0)
2412 						req |= VM_ALLOC_NODUMP;
2413 					if (trunc_page(high) !=
2414 					    ~(vm_paddr_t)PAGE_MASK) {
2415 						m_new = vm_page_alloc_contig(
2416 						    NULL, 0, req, 1,
2417 						    round_page(high),
2418 						    ~(vm_paddr_t)0,
2419 						    PAGE_SIZE, 0,
2420 						    VM_MEMATTR_DEFAULT);
2421 					} else
2422 						m_new = NULL;
2423 					if (m_new == NULL) {
2424 						pa = VM_PAGE_TO_PHYS(m_run);
2425 						m_new = vm_page_alloc_contig(
2426 						    NULL, 0, req, 1,
2427 						    0, pa - 1, PAGE_SIZE, 0,
2428 						    VM_MEMATTR_DEFAULT);
2429 					}
2430 					if (m_new == NULL) {
2431 						pa += ptoa(npages);
2432 						m_new = vm_page_alloc_contig(
2433 						    NULL, 0, req, 1,
2434 						    pa, high, PAGE_SIZE, 0,
2435 						    VM_MEMATTR_DEFAULT);
2436 					}
2437 					if (m_new == NULL) {
2438 						error = ENOMEM;
2439 						goto unlock;
2440 					}
2441 					KASSERT(m_new->wire_count == 0,
2442 					    ("page %p is wired", m));
2443 
2444 					/*
2445 					 * Replace "m" with the new page.  For
2446 					 * vm_page_replace(), "m" must be busy
2447 					 * and dequeued.  Finally, change "m"
2448 					 * as if vm_page_free() was called.
2449 					 */
2450 					if (object->ref_count != 0)
2451 						pmap_remove_all(m);
2452 					m_new->aflags = m->aflags;
2453 					KASSERT(m_new->oflags == VPO_UNMANAGED,
2454 					    ("page %p is managed", m));
2455 					m_new->oflags = m->oflags & VPO_NOSYNC;
2456 					pmap_copy_page(m, m_new);
2457 					m_new->valid = m->valid;
2458 					m_new->dirty = m->dirty;
2459 					m->flags &= ~PG_ZERO;
2460 					vm_page_xbusy(m);
2461 					vm_page_remque(m);
2462 					vm_page_replace_checked(m_new, object,
2463 					    m->pindex, m);
2464 					m->valid = 0;
2465 					vm_page_undirty(m);
2466 
2467 					/*
2468 					 * The new page must be deactivated
2469 					 * before the object is unlocked.
2470 					 */
2471 					vm_page_change_lock(m_new, &m_mtx);
2472 					vm_page_deactivate(m_new);
2473 				} else {
2474 					m->flags &= ~PG_ZERO;
2475 					vm_page_remque(m);
2476 					vm_page_remove(m);
2477 					KASSERT(m->dirty == 0,
2478 					    ("page %p is dirty", m));
2479 				}
2480 				SLIST_INSERT_HEAD(&free, m, plinks.s.ss);
2481 			} else
2482 				error = EBUSY;
2483 unlock:
2484 			VM_OBJECT_WUNLOCK(object);
2485 		} else {
2486 			mtx_lock(&vm_page_queue_free_mtx);
2487 			order = m->order;
2488 			if (order < VM_NFREEORDER) {
2489 				/*
2490 				 * The page is enqueued in the physical memory
2491 				 * allocator's free page queues.  Moreover, it
2492 				 * is the first page in a power-of-two-sized
2493 				 * run of contiguous free pages.  Jump ahead
2494 				 * to the last page within that run, and
2495 				 * continue from there.
2496 				 */
2497 				m += (1 << order) - 1;
2498 			}
2499 #if VM_NRESERVLEVEL > 0
2500 			else if (vm_reserv_is_page_free(m))
2501 				order = 0;
2502 #endif
2503 			mtx_unlock(&vm_page_queue_free_mtx);
2504 			if (order == VM_NFREEORDER)
2505 				error = EINVAL;
2506 		}
2507 	}
2508 	if (m_mtx != NULL)
2509 		mtx_unlock(m_mtx);
2510 	if ((m = SLIST_FIRST(&free)) != NULL) {
2511 		mtx_lock(&vm_page_queue_free_mtx);
2512 		do {
2513 			SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2514 			vm_page_free_phys(m);
2515 		} while ((m = SLIST_FIRST(&free)) != NULL);
2516 		vm_page_free_wakeup();
2517 		mtx_unlock(&vm_page_queue_free_mtx);
2518 	}
2519 	return (error);
2520 }
2521 
2522 #define	NRUNS	16
2523 
2524 CTASSERT(powerof2(NRUNS));
2525 
2526 #define	RUN_INDEX(count)	((count) & (NRUNS - 1))
2527 
2528 #define	MIN_RECLAIM	8
2529 
2530 /*
2531  *	vm_page_reclaim_contig:
2532  *
2533  *	Reclaim allocated, contiguous physical memory satisfying the specified
2534  *	conditions by relocating the virtual pages using that physical memory.
2535  *	Returns true if reclamation is successful and false otherwise.  Since
2536  *	relocation requires the allocation of physical pages, reclamation may
2537  *	fail due to a shortage of free pages.  When reclamation fails, callers
2538  *	are expected to perform VM_WAIT before retrying a failed allocation
2539  *	operation, e.g., vm_page_alloc_contig().
2540  *
2541  *	The caller must always specify an allocation class through "req".
2542  *
2543  *	allocation classes:
2544  *	VM_ALLOC_NORMAL		normal process request
2545  *	VM_ALLOC_SYSTEM		system *really* needs a page
2546  *	VM_ALLOC_INTERRUPT	interrupt time request
2547  *
2548  *	The optional allocation flags are ignored.
2549  *
2550  *	"npages" must be greater than zero.  Both "alignment" and "boundary"
2551  *	must be a power of two.
2552  */
2553 bool
2554 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
2555     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2556 {
2557 	vm_paddr_t curr_low;
2558 	vm_page_t m_run, m_runs[NRUNS];
2559 	u_long count, reclaimed;
2560 	int error, i, options, req_class;
2561 
2562 	KASSERT(npages > 0, ("npages is 0"));
2563 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2564 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2565 	req_class = req & VM_ALLOC_CLASS_MASK;
2566 
2567 	/*
2568 	 * The page daemon is allowed to dig deeper into the free page list.
2569 	 */
2570 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2571 		req_class = VM_ALLOC_SYSTEM;
2572 
2573 	/*
2574 	 * Return if the number of free pages cannot satisfy the requested
2575 	 * allocation.
2576 	 */
2577 	count = vm_cnt.v_free_count;
2578 	if (count < npages + vm_cnt.v_free_reserved || (count < npages +
2579 	    vm_cnt.v_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2580 	    (count < npages && req_class == VM_ALLOC_INTERRUPT))
2581 		return (false);
2582 
2583 	/*
2584 	 * Scan up to three times, relaxing the restrictions ("options") on
2585 	 * the reclamation of reservations and superpages each time.
2586 	 */
2587 	for (options = VPSC_NORESERV;;) {
2588 		/*
2589 		 * Find the highest runs that satisfy the given constraints
2590 		 * and restrictions, and record them in "m_runs".
2591 		 */
2592 		curr_low = low;
2593 		count = 0;
2594 		for (;;) {
2595 			m_run = vm_phys_scan_contig(domain, npages, curr_low,
2596 			    high, alignment, boundary, options);
2597 			if (m_run == NULL)
2598 				break;
2599 			curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
2600 			m_runs[RUN_INDEX(count)] = m_run;
2601 			count++;
2602 		}
2603 
2604 		/*
2605 		 * Reclaim the highest runs in LIFO (descending) order until
2606 		 * the number of reclaimed pages, "reclaimed", is at least
2607 		 * MIN_RECLAIM.  Reset "reclaimed" each time because each
2608 		 * reclamation is idempotent, and runs will (likely) recur
2609 		 * from one scan to the next as restrictions are relaxed.
2610 		 */
2611 		reclaimed = 0;
2612 		for (i = 0; count > 0 && i < NRUNS; i++) {
2613 			count--;
2614 			m_run = m_runs[RUN_INDEX(count)];
2615 			error = vm_page_reclaim_run(req_class, npages, m_run,
2616 			    high);
2617 			if (error == 0) {
2618 				reclaimed += npages;
2619 				if (reclaimed >= MIN_RECLAIM)
2620 					return (true);
2621 			}
2622 		}
2623 
2624 		/*
2625 		 * Either relax the restrictions on the next scan or return if
2626 		 * the last scan had no restrictions.
2627 		 */
2628 		if (options == VPSC_NORESERV)
2629 			options = VPSC_NOSUPER;
2630 		else if (options == VPSC_NOSUPER)
2631 			options = VPSC_ANY;
2632 		else if (options == VPSC_ANY)
2633 			return (reclaimed != 0);
2634 	}
2635 }
2636 
2637 bool
2638 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
2639     u_long alignment, vm_paddr_t boundary)
2640 {
2641 	struct vm_domainset_iter di;
2642 	int domain;
2643 	bool ret;
2644 
2645 	vm_domainset_iter_page_init(&di, kernel_object, &domain, &req);
2646 	do {
2647 		ret = vm_page_reclaim_contig_domain(domain, req, npages, low,
2648 		    high, alignment, boundary);
2649 		if (ret)
2650 			break;
2651 	} while (vm_domainset_iter_page(&di, &domain, &req) == 0);
2652 
2653 	return (ret);
2654 }
2655 
2656 
2657 /*
2658  *	vm_wait:	(also see VM_WAIT macro)
2659  *
2660  *	Sleep until free pages are available for allocation.
2661  *	- Called in various places before memory allocations.
2662  */
2663 static void
2664 _vm_wait(void)
2665 {
2666 
2667 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2668 	if (curproc == pageproc) {
2669 		vm_pageout_pages_needed = 1;
2670 		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
2671 		    PDROP | PSWP, "VMWait", 0);
2672 	} else {
2673 		if (pageproc == NULL)
2674 			panic("vm_wait in early boot");
2675 		pagedaemon_wait(PVM, "vmwait");
2676 	}
2677 }
2678 
2679 void
2680 vm_wait(void)
2681 {
2682 
2683 	mtx_lock(&vm_page_queue_free_mtx);
2684 	_vm_wait();
2685 }
2686 
2687 /*
2688  *	vm_page_alloc_fail:
2689  *
2690  *	Called when a page allocation function fails.  Informs the
2691  *	pagedaemon and performs the requested wait.  Requires the
2692  *	page_queue_free and object lock on entry.  Returns with the
2693  *	object lock held and free lock released.  Returns an error when
2694  *	retry is necessary.
2695  *
2696  */
2697 static int
2698 vm_page_alloc_fail(vm_object_t object, int req)
2699 {
2700 
2701 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2702 
2703 	atomic_add_int(&vm_pageout_deficit,
2704 	    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
2705 	if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
2706 		if (object != NULL)
2707 			VM_OBJECT_WUNLOCK(object);
2708 		_vm_wait();
2709 		if (object != NULL)
2710 			VM_OBJECT_WLOCK(object);
2711 		if (req & VM_ALLOC_WAITOK)
2712 			return (EAGAIN);
2713 	} else {
2714 		mtx_unlock(&vm_page_queue_free_mtx);
2715 		pagedaemon_wakeup();
2716 	}
2717 	return (0);
2718 }
2719 
2720 /*
2721  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
2722  *
2723  *	Sleep until free pages are available for allocation.
2724  *	- Called only in vm_fault so that processes page faulting
2725  *	  can be easily tracked.
2726  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
2727  *	  processes will be able to grab memory first.  Do not change
2728  *	  this balance without careful testing first.
2729  */
2730 void
2731 vm_waitpfault(void)
2732 {
2733 
2734 	mtx_lock(&vm_page_queue_free_mtx);
2735 	pagedaemon_wait(PUSER, "pfault");
2736 }
2737 
2738 struct vm_pagequeue *
2739 vm_page_pagequeue(vm_page_t m)
2740 {
2741 
2742 	if (vm_page_in_laundry(m))
2743 		return (&vm_dom[0].vmd_pagequeues[m->queue]);
2744 	else
2745 		return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]);
2746 }
2747 
2748 /*
2749  *	vm_page_dequeue:
2750  *
2751  *	Remove the given page from its current page queue.
2752  *
2753  *	The page must be locked.
2754  */
2755 void
2756 vm_page_dequeue(vm_page_t m)
2757 {
2758 	struct vm_pagequeue *pq;
2759 
2760 	vm_page_assert_locked(m);
2761 	KASSERT(m->queue < PQ_COUNT, ("vm_page_dequeue: page %p is not queued",
2762 	    m));
2763 	pq = vm_page_pagequeue(m);
2764 	vm_pagequeue_lock(pq);
2765 	m->queue = PQ_NONE;
2766 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2767 	vm_pagequeue_cnt_dec(pq);
2768 	vm_pagequeue_unlock(pq);
2769 }
2770 
2771 /*
2772  *	vm_page_dequeue_locked:
2773  *
2774  *	Remove the given page from its current page queue.
2775  *
2776  *	The page and page queue must be locked.
2777  */
2778 void
2779 vm_page_dequeue_locked(vm_page_t m)
2780 {
2781 	struct vm_pagequeue *pq;
2782 
2783 	vm_page_lock_assert(m, MA_OWNED);
2784 	pq = vm_page_pagequeue(m);
2785 	vm_pagequeue_assert_locked(pq);
2786 	m->queue = PQ_NONE;
2787 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2788 	vm_pagequeue_cnt_dec(pq);
2789 }
2790 
2791 /*
2792  *	vm_page_enqueue:
2793  *
2794  *	Add the given page to the specified page queue.
2795  *
2796  *	The page must be locked.
2797  */
2798 static void
2799 vm_page_enqueue(uint8_t queue, vm_page_t m)
2800 {
2801 	struct vm_pagequeue *pq;
2802 
2803 	vm_page_lock_assert(m, MA_OWNED);
2804 	KASSERT(queue < PQ_COUNT,
2805 	    ("vm_page_enqueue: invalid queue %u request for page %p",
2806 	    queue, m));
2807 	if (queue == PQ_LAUNDRY || queue == PQ_UNSWAPPABLE)
2808 		pq = &vm_dom[0].vmd_pagequeues[queue];
2809 	else
2810 		pq = &vm_phys_domain(m)->vmd_pagequeues[queue];
2811 	vm_pagequeue_lock(pq);
2812 	m->queue = queue;
2813 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2814 	vm_pagequeue_cnt_inc(pq);
2815 	vm_pagequeue_unlock(pq);
2816 }
2817 
2818 /*
2819  *	vm_page_requeue:
2820  *
2821  *	Move the given page to the tail of its current page queue.
2822  *
2823  *	The page must be locked.
2824  */
2825 void
2826 vm_page_requeue(vm_page_t m)
2827 {
2828 	struct vm_pagequeue *pq;
2829 
2830 	vm_page_lock_assert(m, MA_OWNED);
2831 	KASSERT(m->queue != PQ_NONE,
2832 	    ("vm_page_requeue: page %p is not queued", m));
2833 	pq = vm_page_pagequeue(m);
2834 	vm_pagequeue_lock(pq);
2835 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2836 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2837 	vm_pagequeue_unlock(pq);
2838 }
2839 
2840 /*
2841  *	vm_page_requeue_locked:
2842  *
2843  *	Move the given page to the tail of its current page queue.
2844  *
2845  *	The page queue must be locked.
2846  */
2847 void
2848 vm_page_requeue_locked(vm_page_t m)
2849 {
2850 	struct vm_pagequeue *pq;
2851 
2852 	KASSERT(m->queue != PQ_NONE,
2853 	    ("vm_page_requeue_locked: page %p is not queued", m));
2854 	pq = vm_page_pagequeue(m);
2855 	vm_pagequeue_assert_locked(pq);
2856 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2857 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2858 }
2859 
2860 /*
2861  *	vm_page_activate:
2862  *
2863  *	Put the specified page on the active list (if appropriate).
2864  *	Ensure that act_count is at least ACT_INIT but do not otherwise
2865  *	mess with it.
2866  *
2867  *	The page must be locked.
2868  */
2869 void
2870 vm_page_activate(vm_page_t m)
2871 {
2872 	int queue;
2873 
2874 	vm_page_lock_assert(m, MA_OWNED);
2875 	if ((queue = m->queue) != PQ_ACTIVE) {
2876 		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2877 			if (m->act_count < ACT_INIT)
2878 				m->act_count = ACT_INIT;
2879 			if (queue != PQ_NONE)
2880 				vm_page_dequeue(m);
2881 			vm_page_enqueue(PQ_ACTIVE, m);
2882 		} else
2883 			KASSERT(queue == PQ_NONE,
2884 			    ("vm_page_activate: wired page %p is queued", m));
2885 	} else {
2886 		if (m->act_count < ACT_INIT)
2887 			m->act_count = ACT_INIT;
2888 	}
2889 }
2890 
2891 /*
2892  *	vm_page_free_wakeup:
2893  *
2894  *	Helper routine for vm_page_free_toq().  This routine is called
2895  *	when a page is added to the free queues.
2896  *
2897  *	The page queues must be locked.
2898  */
2899 static void
2900 vm_page_free_wakeup(void)
2901 {
2902 
2903 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2904 	/*
2905 	 * if pageout daemon needs pages, then tell it that there are
2906 	 * some free.
2907 	 */
2908 	if (vm_pageout_pages_needed &&
2909 	    vm_cnt.v_free_count >= vm_cnt.v_pageout_free_min) {
2910 		wakeup(&vm_pageout_pages_needed);
2911 		vm_pageout_pages_needed = 0;
2912 	}
2913 	/*
2914 	 * wakeup processes that are waiting on memory if we hit a
2915 	 * high water mark. And wakeup scheduler process if we have
2916 	 * lots of memory. this process will swapin processes.
2917 	 */
2918 	if (vm_pages_needed && !vm_page_count_min()) {
2919 		vm_pages_needed = false;
2920 		wakeup(&vm_cnt.v_free_count);
2921 	}
2922 }
2923 
2924 /*
2925  *	vm_page_free_prep:
2926  *
2927  *	Prepares the given page to be put on the free list,
2928  *	disassociating it from any VM object. The caller may return
2929  *	the page to the free list only if this function returns true.
2930  *
2931  *	The object must be locked.  The page must be locked if it is
2932  *	managed.  For a queued managed page, the pagequeue_locked
2933  *	argument specifies whether the page queue is already locked.
2934  */
2935 bool
2936 vm_page_free_prep(vm_page_t m, bool pagequeue_locked)
2937 {
2938 
2939 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
2940 	if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
2941 		uint64_t *p;
2942 		int i;
2943 		p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
2944 		for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
2945 			KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
2946 			    m, i, (uintmax_t)*p));
2947 	}
2948 #endif
2949 	if ((m->oflags & VPO_UNMANAGED) == 0) {
2950 		vm_page_lock_assert(m, MA_OWNED);
2951 		KASSERT(!pmap_page_is_mapped(m),
2952 		    ("vm_page_free_toq: freeing mapped page %p", m));
2953 	} else
2954 		KASSERT(m->queue == PQ_NONE,
2955 		    ("vm_page_free_toq: unmanaged page %p is queued", m));
2956 	VM_CNT_INC(v_tfree);
2957 
2958 	if (vm_page_sbusied(m))
2959 		panic("vm_page_free: freeing busy page %p", m);
2960 
2961 	vm_page_remove(m);
2962 
2963 	/*
2964 	 * If fictitious remove object association and
2965 	 * return.
2966 	 */
2967 	if ((m->flags & PG_FICTITIOUS) != 0) {
2968 		KASSERT(m->wire_count == 1,
2969 		    ("fictitious page %p is not wired", m));
2970 		KASSERT(m->queue == PQ_NONE,
2971 		    ("fictitious page %p is queued", m));
2972 		return (false);
2973 	}
2974 
2975 	if (m->queue != PQ_NONE) {
2976 		if (pagequeue_locked)
2977 			vm_page_dequeue_locked(m);
2978 		else
2979 			vm_page_dequeue(m);
2980 	}
2981 	m->valid = 0;
2982 	vm_page_undirty(m);
2983 
2984 	if (m->wire_count != 0)
2985 		panic("vm_page_free: freeing wired page %p", m);
2986 	if (m->hold_count != 0) {
2987 		m->flags &= ~PG_ZERO;
2988 		KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2989 		    ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
2990 		m->flags |= PG_UNHOLDFREE;
2991 		return (false);
2992 	}
2993 
2994 	/*
2995 	 * Restore the default memory attribute to the page.
2996 	 */
2997 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2998 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2999 
3000 	return (true);
3001 }
3002 
3003 /*
3004  * Insert the page into the physical memory allocator's free page
3005  * queues.  This is the last step to free a page.
3006  */
3007 static void
3008 vm_page_free_phys(vm_page_t m)
3009 {
3010 
3011 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
3012 
3013 	vm_phys_freecnt_adj(m, 1);
3014 #if VM_NRESERVLEVEL > 0
3015 	if (!vm_reserv_free_page(m))
3016 #endif
3017 		vm_phys_free_pages(m, 0);
3018 }
3019 
3020 void
3021 vm_page_free_phys_pglist(struct pglist *tq)
3022 {
3023 	vm_page_t m;
3024 
3025 	if (TAILQ_EMPTY(tq))
3026 		return;
3027 	mtx_lock(&vm_page_queue_free_mtx);
3028 	TAILQ_FOREACH(m, tq, listq)
3029 		vm_page_free_phys(m);
3030 	vm_page_free_wakeup();
3031 	mtx_unlock(&vm_page_queue_free_mtx);
3032 }
3033 
3034 /*
3035  *	vm_page_free_toq:
3036  *
3037  *	Returns the given page to the free list, disassociating it
3038  *	from any VM object.
3039  *
3040  *	The object must be locked.  The page must be locked if it is
3041  *	managed.
3042  */
3043 void
3044 vm_page_free_toq(vm_page_t m)
3045 {
3046 
3047 	if (!vm_page_free_prep(m, false))
3048 		return;
3049 	mtx_lock(&vm_page_queue_free_mtx);
3050 	vm_page_free_phys(m);
3051 	vm_page_free_wakeup();
3052 	mtx_unlock(&vm_page_queue_free_mtx);
3053 }
3054 
3055 /*
3056  *	vm_page_wire:
3057  *
3058  *	Mark this page as wired down by yet
3059  *	another map, removing it from paging queues
3060  *	as necessary.
3061  *
3062  *	If the page is fictitious, then its wire count must remain one.
3063  *
3064  *	The page must be locked.
3065  */
3066 void
3067 vm_page_wire(vm_page_t m)
3068 {
3069 
3070 	/*
3071 	 * Only bump the wire statistics if the page is not already wired,
3072 	 * and only unqueue the page if it is on some queue (if it is unmanaged
3073 	 * it is already off the queues).
3074 	 */
3075 	vm_page_lock_assert(m, MA_OWNED);
3076 	if ((m->flags & PG_FICTITIOUS) != 0) {
3077 		KASSERT(m->wire_count == 1,
3078 		    ("vm_page_wire: fictitious page %p's wire count isn't one",
3079 		    m));
3080 		return;
3081 	}
3082 	if (m->wire_count == 0) {
3083 		KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
3084 		    m->queue == PQ_NONE,
3085 		    ("vm_page_wire: unmanaged page %p is queued", m));
3086 		vm_page_remque(m);
3087 		atomic_add_int(&vm_cnt.v_wire_count, 1);
3088 	}
3089 	m->wire_count++;
3090 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
3091 }
3092 
3093 /*
3094  * vm_page_unwire:
3095  *
3096  * Release one wiring of the specified page, potentially allowing it to be
3097  * paged out.  Returns TRUE if the number of wirings transitions to zero and
3098  * FALSE otherwise.
3099  *
3100  * Only managed pages belonging to an object can be paged out.  If the number
3101  * of wirings transitions to zero and the page is eligible for page out, then
3102  * the page is added to the specified paging queue (unless PQ_NONE is
3103  * specified).
3104  *
3105  * If a page is fictitious, then its wire count must always be one.
3106  *
3107  * A managed page must be locked.
3108  */
3109 boolean_t
3110 vm_page_unwire(vm_page_t m, uint8_t queue)
3111 {
3112 
3113 	KASSERT(queue < PQ_COUNT || queue == PQ_NONE,
3114 	    ("vm_page_unwire: invalid queue %u request for page %p",
3115 	    queue, m));
3116 	if ((m->oflags & VPO_UNMANAGED) == 0)
3117 		vm_page_assert_locked(m);
3118 	if ((m->flags & PG_FICTITIOUS) != 0) {
3119 		KASSERT(m->wire_count == 1,
3120 	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
3121 		return (FALSE);
3122 	}
3123 	if (m->wire_count > 0) {
3124 		m->wire_count--;
3125 		if (m->wire_count == 0) {
3126 			atomic_subtract_int(&vm_cnt.v_wire_count, 1);
3127 			if ((m->oflags & VPO_UNMANAGED) == 0 &&
3128 			    m->object != NULL && queue != PQ_NONE)
3129 				vm_page_enqueue(queue, m);
3130 			return (TRUE);
3131 		} else
3132 			return (FALSE);
3133 	} else
3134 		panic("vm_page_unwire: page %p's wire count is zero", m);
3135 }
3136 
3137 /*
3138  * Move the specified page to the inactive queue.
3139  *
3140  * Normally, "noreuse" is FALSE, resulting in LRU ordering of the inactive
3141  * queue.  However, setting "noreuse" to TRUE will accelerate the specified
3142  * page's reclamation, but it will not unmap the page from any address space.
3143  * This is implemented by inserting the page near the head of the inactive
3144  * queue, using a marker page to guide FIFO insertion ordering.
3145  *
3146  * The page must be locked.
3147  */
3148 static inline void
3149 _vm_page_deactivate(vm_page_t m, boolean_t noreuse)
3150 {
3151 	struct vm_pagequeue *pq;
3152 	int queue;
3153 
3154 	vm_page_assert_locked(m);
3155 
3156 	/*
3157 	 * Ignore if the page is already inactive, unless it is unlikely to be
3158 	 * reactivated.
3159 	 */
3160 	if ((queue = m->queue) == PQ_INACTIVE && !noreuse)
3161 		return;
3162 	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
3163 		pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE];
3164 		/* Avoid multiple acquisitions of the inactive queue lock. */
3165 		if (queue == PQ_INACTIVE) {
3166 			vm_pagequeue_lock(pq);
3167 			vm_page_dequeue_locked(m);
3168 		} else {
3169 			if (queue != PQ_NONE)
3170 				vm_page_dequeue(m);
3171 			vm_pagequeue_lock(pq);
3172 		}
3173 		m->queue = PQ_INACTIVE;
3174 		if (noreuse)
3175 			TAILQ_INSERT_BEFORE(&vm_phys_domain(m)->vmd_inacthead,
3176 			    m, plinks.q);
3177 		else
3178 			TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3179 		vm_pagequeue_cnt_inc(pq);
3180 		vm_pagequeue_unlock(pq);
3181 	}
3182 }
3183 
3184 /*
3185  * Move the specified page to the inactive queue.
3186  *
3187  * The page must be locked.
3188  */
3189 void
3190 vm_page_deactivate(vm_page_t m)
3191 {
3192 
3193 	_vm_page_deactivate(m, FALSE);
3194 }
3195 
3196 /*
3197  * Move the specified page to the inactive queue with the expectation
3198  * that it is unlikely to be reused.
3199  *
3200  * The page must be locked.
3201  */
3202 void
3203 vm_page_deactivate_noreuse(vm_page_t m)
3204 {
3205 
3206 	_vm_page_deactivate(m, TRUE);
3207 }
3208 
3209 /*
3210  * vm_page_launder
3211  *
3212  * 	Put a page in the laundry.
3213  */
3214 void
3215 vm_page_launder(vm_page_t m)
3216 {
3217 	int queue;
3218 
3219 	vm_page_assert_locked(m);
3220 	if ((queue = m->queue) != PQ_LAUNDRY) {
3221 		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
3222 			if (queue != PQ_NONE)
3223 				vm_page_dequeue(m);
3224 			vm_page_enqueue(PQ_LAUNDRY, m);
3225 		} else
3226 			KASSERT(queue == PQ_NONE,
3227 			    ("wired page %p is queued", m));
3228 	}
3229 }
3230 
3231 /*
3232  * vm_page_unswappable
3233  *
3234  *	Put a page in the PQ_UNSWAPPABLE holding queue.
3235  */
3236 void
3237 vm_page_unswappable(vm_page_t m)
3238 {
3239 
3240 	vm_page_assert_locked(m);
3241 	KASSERT(m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0,
3242 	    ("page %p already unswappable", m));
3243 	if (m->queue != PQ_NONE)
3244 		vm_page_dequeue(m);
3245 	vm_page_enqueue(PQ_UNSWAPPABLE, m);
3246 }
3247 
3248 /*
3249  * Attempt to free the page.  If it cannot be freed, do nothing.  Returns true
3250  * if the page is freed and false otherwise.
3251  *
3252  * The page must be managed.  The page and its containing object must be
3253  * locked.
3254  */
3255 bool
3256 vm_page_try_to_free(vm_page_t m)
3257 {
3258 
3259 	vm_page_assert_locked(m);
3260 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3261 	KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("page %p is unmanaged", m));
3262 	if (m->dirty != 0 || m->hold_count != 0 || m->wire_count != 0 ||
3263 	    vm_page_busied(m))
3264 		return (false);
3265 	if (m->object->ref_count != 0) {
3266 		pmap_remove_all(m);
3267 		if (m->dirty != 0)
3268 			return (false);
3269 	}
3270 	vm_page_free(m);
3271 	return (true);
3272 }
3273 
3274 /*
3275  * vm_page_advise
3276  *
3277  * 	Apply the specified advice to the given page.
3278  *
3279  *	The object and page must be locked.
3280  */
3281 void
3282 vm_page_advise(vm_page_t m, int advice)
3283 {
3284 
3285 	vm_page_assert_locked(m);
3286 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3287 	if (advice == MADV_FREE)
3288 		/*
3289 		 * Mark the page clean.  This will allow the page to be freed
3290 		 * without first paging it out.  MADV_FREE pages are often
3291 		 * quickly reused by malloc(3), so we do not do anything that
3292 		 * would result in a page fault on a later access.
3293 		 */
3294 		vm_page_undirty(m);
3295 	else if (advice != MADV_DONTNEED) {
3296 		if (advice == MADV_WILLNEED)
3297 			vm_page_activate(m);
3298 		return;
3299 	}
3300 
3301 	/*
3302 	 * Clear any references to the page.  Otherwise, the page daemon will
3303 	 * immediately reactivate the page.
3304 	 */
3305 	vm_page_aflag_clear(m, PGA_REFERENCED);
3306 
3307 	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
3308 		vm_page_dirty(m);
3309 
3310 	/*
3311 	 * Place clean pages near the head of the inactive queue rather than
3312 	 * the tail, thus defeating the queue's LRU operation and ensuring that
3313 	 * the page will be reused quickly.  Dirty pages not already in the
3314 	 * laundry are moved there.
3315 	 */
3316 	if (m->dirty == 0)
3317 		vm_page_deactivate_noreuse(m);
3318 	else
3319 		vm_page_launder(m);
3320 }
3321 
3322 /*
3323  * Grab a page, waiting until we are waken up due to the page
3324  * changing state.  We keep on waiting, if the page continues
3325  * to be in the object.  If the page doesn't exist, first allocate it
3326  * and then conditionally zero it.
3327  *
3328  * This routine may sleep.
3329  *
3330  * The object must be locked on entry.  The lock will, however, be released
3331  * and reacquired if the routine sleeps.
3332  */
3333 vm_page_t
3334 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
3335 {
3336 	vm_page_t m;
3337 	int sleep;
3338 	int pflags;
3339 
3340 	VM_OBJECT_ASSERT_WLOCKED(object);
3341 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
3342 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
3343 	    ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
3344 	pflags = allocflags &
3345 	    ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
3346 	if ((allocflags & VM_ALLOC_NOWAIT) == 0)
3347 		pflags |= VM_ALLOC_WAITFAIL;
3348 retrylookup:
3349 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
3350 		sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
3351 		    vm_page_xbusied(m) : vm_page_busied(m);
3352 		if (sleep) {
3353 			if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3354 				return (NULL);
3355 			/*
3356 			 * Reference the page before unlocking and
3357 			 * sleeping so that the page daemon is less
3358 			 * likely to reclaim it.
3359 			 */
3360 			vm_page_aflag_set(m, PGA_REFERENCED);
3361 			vm_page_lock(m);
3362 			VM_OBJECT_WUNLOCK(object);
3363 			vm_page_busy_sleep(m, "pgrbwt", (allocflags &
3364 			    VM_ALLOC_IGN_SBUSY) != 0);
3365 			VM_OBJECT_WLOCK(object);
3366 			goto retrylookup;
3367 		} else {
3368 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
3369 				vm_page_lock(m);
3370 				vm_page_wire(m);
3371 				vm_page_unlock(m);
3372 			}
3373 			if ((allocflags &
3374 			    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
3375 				vm_page_xbusy(m);
3376 			if ((allocflags & VM_ALLOC_SBUSY) != 0)
3377 				vm_page_sbusy(m);
3378 			return (m);
3379 		}
3380 	}
3381 	m = vm_page_alloc(object, pindex, pflags);
3382 	if (m == NULL) {
3383 		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3384 			return (NULL);
3385 		goto retrylookup;
3386 	}
3387 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
3388 		pmap_zero_page(m);
3389 	return (m);
3390 }
3391 
3392 /*
3393  * Return the specified range of pages from the given object.  For each
3394  * page offset within the range, if a page already exists within the object
3395  * at that offset and it is busy, then wait for it to change state.  If,
3396  * instead, the page doesn't exist, then allocate it.
3397  *
3398  * The caller must always specify an allocation class.
3399  *
3400  * allocation classes:
3401  *	VM_ALLOC_NORMAL		normal process request
3402  *	VM_ALLOC_SYSTEM		system *really* needs the pages
3403  *
3404  * The caller must always specify that the pages are to be busied and/or
3405  * wired.
3406  *
3407  * optional allocation flags:
3408  *	VM_ALLOC_IGN_SBUSY	do not sleep on soft busy pages
3409  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
3410  *	VM_ALLOC_NOWAIT		do not sleep
3411  *	VM_ALLOC_SBUSY		set page to sbusy state
3412  *	VM_ALLOC_WIRED		wire the pages
3413  *	VM_ALLOC_ZERO		zero and validate any invalid pages
3414  *
3415  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
3416  * may return a partial prefix of the requested range.
3417  */
3418 int
3419 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
3420     vm_page_t *ma, int count)
3421 {
3422 	vm_page_t m, mpred;
3423 	int pflags;
3424 	int i;
3425 	bool sleep;
3426 
3427 	VM_OBJECT_ASSERT_WLOCKED(object);
3428 	KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
3429 	    ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
3430 	KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
3431 	    (allocflags & VM_ALLOC_WIRED) != 0,
3432 	    ("vm_page_grab_pages: the pages must be busied or wired"));
3433 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
3434 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
3435 	    ("vm_page_grab_pages: VM_ALLOC_SBUSY/IGN_SBUSY mismatch"));
3436 	if (count == 0)
3437 		return (0);
3438 	pflags = allocflags & ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK |
3439 	    VM_ALLOC_WAITFAIL | VM_ALLOC_IGN_SBUSY);
3440 	if ((allocflags & VM_ALLOC_NOWAIT) == 0)
3441 		pflags |= VM_ALLOC_WAITFAIL;
3442 	i = 0;
3443 retrylookup:
3444 	m = vm_radix_lookup_le(&object->rtree, pindex + i);
3445 	if (m == NULL || m->pindex != pindex + i) {
3446 		mpred = m;
3447 		m = NULL;
3448 	} else
3449 		mpred = TAILQ_PREV(m, pglist, listq);
3450 	for (; i < count; i++) {
3451 		if (m != NULL) {
3452 			sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
3453 			    vm_page_xbusied(m) : vm_page_busied(m);
3454 			if (sleep) {
3455 				if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3456 					break;
3457 				/*
3458 				 * Reference the page before unlocking and
3459 				 * sleeping so that the page daemon is less
3460 				 * likely to reclaim it.
3461 				 */
3462 				vm_page_aflag_set(m, PGA_REFERENCED);
3463 				vm_page_lock(m);
3464 				VM_OBJECT_WUNLOCK(object);
3465 				vm_page_busy_sleep(m, "grbmaw", (allocflags &
3466 				    VM_ALLOC_IGN_SBUSY) != 0);
3467 				VM_OBJECT_WLOCK(object);
3468 				goto retrylookup;
3469 			}
3470 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
3471 				vm_page_lock(m);
3472 				vm_page_wire(m);
3473 				vm_page_unlock(m);
3474 			}
3475 			if ((allocflags & (VM_ALLOC_NOBUSY |
3476 			    VM_ALLOC_SBUSY)) == 0)
3477 				vm_page_xbusy(m);
3478 			if ((allocflags & VM_ALLOC_SBUSY) != 0)
3479 				vm_page_sbusy(m);
3480 		} else {
3481 			m = vm_page_alloc_after(object, pindex + i,
3482 			    pflags | VM_ALLOC_COUNT(count - i), mpred);
3483 			if (m == NULL) {
3484 				if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3485 					break;
3486 				goto retrylookup;
3487 			}
3488 		}
3489 		if (m->valid == 0 && (allocflags & VM_ALLOC_ZERO) != 0) {
3490 			if ((m->flags & PG_ZERO) == 0)
3491 				pmap_zero_page(m);
3492 			m->valid = VM_PAGE_BITS_ALL;
3493 		}
3494 		ma[i] = mpred = m;
3495 		m = vm_page_next(m);
3496 	}
3497 	return (i);
3498 }
3499 
3500 /*
3501  * Mapping function for valid or dirty bits in a page.
3502  *
3503  * Inputs are required to range within a page.
3504  */
3505 vm_page_bits_t
3506 vm_page_bits(int base, int size)
3507 {
3508 	int first_bit;
3509 	int last_bit;
3510 
3511 	KASSERT(
3512 	    base + size <= PAGE_SIZE,
3513 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
3514 	);
3515 
3516 	if (size == 0)		/* handle degenerate case */
3517 		return (0);
3518 
3519 	first_bit = base >> DEV_BSHIFT;
3520 	last_bit = (base + size - 1) >> DEV_BSHIFT;
3521 
3522 	return (((vm_page_bits_t)2 << last_bit) -
3523 	    ((vm_page_bits_t)1 << first_bit));
3524 }
3525 
3526 /*
3527  *	vm_page_set_valid_range:
3528  *
3529  *	Sets portions of a page valid.  The arguments are expected
3530  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3531  *	of any partial chunks touched by the range.  The invalid portion of
3532  *	such chunks will be zeroed.
3533  *
3534  *	(base + size) must be less then or equal to PAGE_SIZE.
3535  */
3536 void
3537 vm_page_set_valid_range(vm_page_t m, int base, int size)
3538 {
3539 	int endoff, frag;
3540 
3541 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3542 	if (size == 0)	/* handle degenerate case */
3543 		return;
3544 
3545 	/*
3546 	 * If the base is not DEV_BSIZE aligned and the valid
3547 	 * bit is clear, we have to zero out a portion of the
3548 	 * first block.
3549 	 */
3550 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
3551 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
3552 		pmap_zero_page_area(m, frag, base - frag);
3553 
3554 	/*
3555 	 * If the ending offset is not DEV_BSIZE aligned and the
3556 	 * valid bit is clear, we have to zero out a portion of
3557 	 * the last block.
3558 	 */
3559 	endoff = base + size;
3560 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
3561 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
3562 		pmap_zero_page_area(m, endoff,
3563 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
3564 
3565 	/*
3566 	 * Assert that no previously invalid block that is now being validated
3567 	 * is already dirty.
3568 	 */
3569 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
3570 	    ("vm_page_set_valid_range: page %p is dirty", m));
3571 
3572 	/*
3573 	 * Set valid bits inclusive of any overlap.
3574 	 */
3575 	m->valid |= vm_page_bits(base, size);
3576 }
3577 
3578 /*
3579  * Clear the given bits from the specified page's dirty field.
3580  */
3581 static __inline void
3582 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
3583 {
3584 	uintptr_t addr;
3585 #if PAGE_SIZE < 16384
3586 	int shift;
3587 #endif
3588 
3589 	/*
3590 	 * If the object is locked and the page is neither exclusive busy nor
3591 	 * write mapped, then the page's dirty field cannot possibly be
3592 	 * set by a concurrent pmap operation.
3593 	 */
3594 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3595 	if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
3596 		m->dirty &= ~pagebits;
3597 	else {
3598 		/*
3599 		 * The pmap layer can call vm_page_dirty() without
3600 		 * holding a distinguished lock.  The combination of
3601 		 * the object's lock and an atomic operation suffice
3602 		 * to guarantee consistency of the page dirty field.
3603 		 *
3604 		 * For PAGE_SIZE == 32768 case, compiler already
3605 		 * properly aligns the dirty field, so no forcible
3606 		 * alignment is needed. Only require existence of
3607 		 * atomic_clear_64 when page size is 32768.
3608 		 */
3609 		addr = (uintptr_t)&m->dirty;
3610 #if PAGE_SIZE == 32768
3611 		atomic_clear_64((uint64_t *)addr, pagebits);
3612 #elif PAGE_SIZE == 16384
3613 		atomic_clear_32((uint32_t *)addr, pagebits);
3614 #else		/* PAGE_SIZE <= 8192 */
3615 		/*
3616 		 * Use a trick to perform a 32-bit atomic on the
3617 		 * containing aligned word, to not depend on the existence
3618 		 * of atomic_clear_{8, 16}.
3619 		 */
3620 		shift = addr & (sizeof(uint32_t) - 1);
3621 #if BYTE_ORDER == BIG_ENDIAN
3622 		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
3623 #else
3624 		shift *= NBBY;
3625 #endif
3626 		addr &= ~(sizeof(uint32_t) - 1);
3627 		atomic_clear_32((uint32_t *)addr, pagebits << shift);
3628 #endif		/* PAGE_SIZE */
3629 	}
3630 }
3631 
3632 /*
3633  *	vm_page_set_validclean:
3634  *
3635  *	Sets portions of a page valid and clean.  The arguments are expected
3636  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3637  *	of any partial chunks touched by the range.  The invalid portion of
3638  *	such chunks will be zero'd.
3639  *
3640  *	(base + size) must be less then or equal to PAGE_SIZE.
3641  */
3642 void
3643 vm_page_set_validclean(vm_page_t m, int base, int size)
3644 {
3645 	vm_page_bits_t oldvalid, pagebits;
3646 	int endoff, frag;
3647 
3648 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3649 	if (size == 0)	/* handle degenerate case */
3650 		return;
3651 
3652 	/*
3653 	 * If the base is not DEV_BSIZE aligned and the valid
3654 	 * bit is clear, we have to zero out a portion of the
3655 	 * first block.
3656 	 */
3657 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
3658 	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
3659 		pmap_zero_page_area(m, frag, base - frag);
3660 
3661 	/*
3662 	 * If the ending offset is not DEV_BSIZE aligned and the
3663 	 * valid bit is clear, we have to zero out a portion of
3664 	 * the last block.
3665 	 */
3666 	endoff = base + size;
3667 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
3668 	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
3669 		pmap_zero_page_area(m, endoff,
3670 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
3671 
3672 	/*
3673 	 * Set valid, clear dirty bits.  If validating the entire
3674 	 * page we can safely clear the pmap modify bit.  We also
3675 	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
3676 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
3677 	 * be set again.
3678 	 *
3679 	 * We set valid bits inclusive of any overlap, but we can only
3680 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
3681 	 * the range.
3682 	 */
3683 	oldvalid = m->valid;
3684 	pagebits = vm_page_bits(base, size);
3685 	m->valid |= pagebits;
3686 #if 0	/* NOT YET */
3687 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
3688 		frag = DEV_BSIZE - frag;
3689 		base += frag;
3690 		size -= frag;
3691 		if (size < 0)
3692 			size = 0;
3693 	}
3694 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
3695 #endif
3696 	if (base == 0 && size == PAGE_SIZE) {
3697 		/*
3698 		 * The page can only be modified within the pmap if it is
3699 		 * mapped, and it can only be mapped if it was previously
3700 		 * fully valid.
3701 		 */
3702 		if (oldvalid == VM_PAGE_BITS_ALL)
3703 			/*
3704 			 * Perform the pmap_clear_modify() first.  Otherwise,
3705 			 * a concurrent pmap operation, such as
3706 			 * pmap_protect(), could clear a modification in the
3707 			 * pmap and set the dirty field on the page before
3708 			 * pmap_clear_modify() had begun and after the dirty
3709 			 * field was cleared here.
3710 			 */
3711 			pmap_clear_modify(m);
3712 		m->dirty = 0;
3713 		m->oflags &= ~VPO_NOSYNC;
3714 	} else if (oldvalid != VM_PAGE_BITS_ALL)
3715 		m->dirty &= ~pagebits;
3716 	else
3717 		vm_page_clear_dirty_mask(m, pagebits);
3718 }
3719 
3720 void
3721 vm_page_clear_dirty(vm_page_t m, int base, int size)
3722 {
3723 
3724 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
3725 }
3726 
3727 /*
3728  *	vm_page_set_invalid:
3729  *
3730  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
3731  *	valid and dirty bits for the effected areas are cleared.
3732  */
3733 void
3734 vm_page_set_invalid(vm_page_t m, int base, int size)
3735 {
3736 	vm_page_bits_t bits;
3737 	vm_object_t object;
3738 
3739 	object = m->object;
3740 	VM_OBJECT_ASSERT_WLOCKED(object);
3741 	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
3742 	    size >= object->un_pager.vnp.vnp_size)
3743 		bits = VM_PAGE_BITS_ALL;
3744 	else
3745 		bits = vm_page_bits(base, size);
3746 	if (object->ref_count != 0 && m->valid == VM_PAGE_BITS_ALL &&
3747 	    bits != 0)
3748 		pmap_remove_all(m);
3749 	KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) ||
3750 	    !pmap_page_is_mapped(m),
3751 	    ("vm_page_set_invalid: page %p is mapped", m));
3752 	m->valid &= ~bits;
3753 	m->dirty &= ~bits;
3754 }
3755 
3756 /*
3757  * vm_page_zero_invalid()
3758  *
3759  *	The kernel assumes that the invalid portions of a page contain
3760  *	garbage, but such pages can be mapped into memory by user code.
3761  *	When this occurs, we must zero out the non-valid portions of the
3762  *	page so user code sees what it expects.
3763  *
3764  *	Pages are most often semi-valid when the end of a file is mapped
3765  *	into memory and the file's size is not page aligned.
3766  */
3767 void
3768 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3769 {
3770 	int b;
3771 	int i;
3772 
3773 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3774 	/*
3775 	 * Scan the valid bits looking for invalid sections that
3776 	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
3777 	 * valid bit may be set ) have already been zeroed by
3778 	 * vm_page_set_validclean().
3779 	 */
3780 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3781 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
3782 		    (m->valid & ((vm_page_bits_t)1 << i))) {
3783 			if (i > b) {
3784 				pmap_zero_page_area(m,
3785 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
3786 			}
3787 			b = i + 1;
3788 		}
3789 	}
3790 
3791 	/*
3792 	 * setvalid is TRUE when we can safely set the zero'd areas
3793 	 * as being valid.  We can do this if there are no cache consistancy
3794 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
3795 	 */
3796 	if (setvalid)
3797 		m->valid = VM_PAGE_BITS_ALL;
3798 }
3799 
3800 /*
3801  *	vm_page_is_valid:
3802  *
3803  *	Is (partial) page valid?  Note that the case where size == 0
3804  *	will return FALSE in the degenerate case where the page is
3805  *	entirely invalid, and TRUE otherwise.
3806  */
3807 int
3808 vm_page_is_valid(vm_page_t m, int base, int size)
3809 {
3810 	vm_page_bits_t bits;
3811 
3812 	VM_OBJECT_ASSERT_LOCKED(m->object);
3813 	bits = vm_page_bits(base, size);
3814 	return (m->valid != 0 && (m->valid & bits) == bits);
3815 }
3816 
3817 /*
3818  * Returns true if all of the specified predicates are true for the entire
3819  * (super)page and false otherwise.
3820  */
3821 bool
3822 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
3823 {
3824 	vm_object_t object;
3825 	int i, npages;
3826 
3827 	object = m->object;
3828 	VM_OBJECT_ASSERT_LOCKED(object);
3829 	npages = atop(pagesizes[m->psind]);
3830 
3831 	/*
3832 	 * The physically contiguous pages that make up a superpage, i.e., a
3833 	 * page with a page size index ("psind") greater than zero, will
3834 	 * occupy adjacent entries in vm_page_array[].
3835 	 */
3836 	for (i = 0; i < npages; i++) {
3837 		/* Always test object consistency, including "skip_m". */
3838 		if (m[i].object != object)
3839 			return (false);
3840 		if (&m[i] == skip_m)
3841 			continue;
3842 		if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
3843 			return (false);
3844 		if ((flags & PS_ALL_DIRTY) != 0) {
3845 			/*
3846 			 * Calling vm_page_test_dirty() or pmap_is_modified()
3847 			 * might stop this case from spuriously returning
3848 			 * "false".  However, that would require a write lock
3849 			 * on the object containing "m[i]".
3850 			 */
3851 			if (m[i].dirty != VM_PAGE_BITS_ALL)
3852 				return (false);
3853 		}
3854 		if ((flags & PS_ALL_VALID) != 0 &&
3855 		    m[i].valid != VM_PAGE_BITS_ALL)
3856 			return (false);
3857 	}
3858 	return (true);
3859 }
3860 
3861 /*
3862  * Set the page's dirty bits if the page is modified.
3863  */
3864 void
3865 vm_page_test_dirty(vm_page_t m)
3866 {
3867 
3868 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3869 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
3870 		vm_page_dirty(m);
3871 }
3872 
3873 void
3874 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
3875 {
3876 
3877 	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
3878 }
3879 
3880 void
3881 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
3882 {
3883 
3884 	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
3885 }
3886 
3887 int
3888 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
3889 {
3890 
3891 	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
3892 }
3893 
3894 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
3895 void
3896 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
3897 {
3898 
3899 	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
3900 }
3901 
3902 void
3903 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
3904 {
3905 
3906 	mtx_assert_(vm_page_lockptr(m), a, file, line);
3907 }
3908 #endif
3909 
3910 #ifdef INVARIANTS
3911 void
3912 vm_page_object_lock_assert(vm_page_t m)
3913 {
3914 
3915 	/*
3916 	 * Certain of the page's fields may only be modified by the
3917 	 * holder of the containing object's lock or the exclusive busy.
3918 	 * holder.  Unfortunately, the holder of the write busy is
3919 	 * not recorded, and thus cannot be checked here.
3920 	 */
3921 	if (m->object != NULL && !vm_page_xbusied(m))
3922 		VM_OBJECT_ASSERT_WLOCKED(m->object);
3923 }
3924 
3925 void
3926 vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
3927 {
3928 
3929 	if ((bits & PGA_WRITEABLE) == 0)
3930 		return;
3931 
3932 	/*
3933 	 * The PGA_WRITEABLE flag can only be set if the page is
3934 	 * managed, is exclusively busied or the object is locked.
3935 	 * Currently, this flag is only set by pmap_enter().
3936 	 */
3937 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3938 	    ("PGA_WRITEABLE on unmanaged page"));
3939 	if (!vm_page_xbusied(m))
3940 		VM_OBJECT_ASSERT_LOCKED(m->object);
3941 }
3942 #endif
3943 
3944 #include "opt_ddb.h"
3945 #ifdef DDB
3946 #include <sys/kernel.h>
3947 
3948 #include <ddb/ddb.h>
3949 
3950 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3951 {
3952 
3953 	db_printf("vm_cnt.v_free_count: %d\n", vm_cnt.v_free_count);
3954 	db_printf("vm_cnt.v_inactive_count: %d\n", vm_cnt.v_inactive_count);
3955 	db_printf("vm_cnt.v_active_count: %d\n", vm_cnt.v_active_count);
3956 	db_printf("vm_cnt.v_laundry_count: %d\n", vm_cnt.v_laundry_count);
3957 	db_printf("vm_cnt.v_wire_count: %d\n", vm_cnt.v_wire_count);
3958 	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
3959 	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
3960 	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
3961 	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
3962 }
3963 
3964 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3965 {
3966 	int dom;
3967 
3968 	db_printf("pq_free %d\n", vm_cnt.v_free_count);
3969 	for (dom = 0; dom < vm_ndomains; dom++) {
3970 		db_printf(
3971     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
3972 		    dom,
3973 		    vm_dom[dom].vmd_page_count,
3974 		    vm_dom[dom].vmd_free_count,
3975 		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
3976 		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
3977 		    vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
3978 		    vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
3979 	}
3980 }
3981 
3982 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
3983 {
3984 	vm_page_t m;
3985 	boolean_t phys;
3986 
3987 	if (!have_addr) {
3988 		db_printf("show pginfo addr\n");
3989 		return;
3990 	}
3991 
3992 	phys = strchr(modif, 'p') != NULL;
3993 	if (phys)
3994 		m = PHYS_TO_VM_PAGE(addr);
3995 	else
3996 		m = (vm_page_t)addr;
3997 	db_printf(
3998     "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
3999     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
4000 	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
4001 	    m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
4002 	    m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
4003 }
4004 #endif /* DDB */
4005