xref: /freebsd/sys/vm/vm_page.c (revision 0f8f86b71f022b803e99151c19db81b280f245dc)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37  */
38 
39 /*
40  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41  * All rights reserved.
42  *
43  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
44  *
45  * Permission to use, copy, modify and distribute this software and
46  * its documentation is hereby granted, provided that both the copyright
47  * notice and this permission notice appear in all copies of the
48  * software, derivative works or modified versions, and any portions
49  * thereof, and that both notices appear in supporting documentation.
50  *
51  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
52  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
53  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
54  *
55  * Carnegie Mellon requests users of this software to return to
56  *
57  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
58  *  School of Computer Science
59  *  Carnegie Mellon University
60  *  Pittsburgh PA 15213-3890
61  *
62  * any improvements or extensions that they make and grant Carnegie the
63  * rights to redistribute these changes.
64  */
65 
66 /*
67  *			GENERAL RULES ON VM_PAGE MANIPULATION
68  *
69  *	- a pageq mutex is required when adding or removing a page from a
70  *	  page queue (vm_page_queue[]), regardless of other mutexes or the
71  *	  busy state of a page.
72  *
73  *	- a hash chain mutex is required when associating or disassociating
74  *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
75  *	  regardless of other mutexes or the busy state of a page.
76  *
77  *	- either a hash chain mutex OR a busied page is required in order
78  *	  to modify the page flags.  A hash chain mutex must be obtained in
79  *	  order to busy a page.  A page's flags cannot be modified by a
80  *	  hash chain mutex if the page is marked busy.
81  *
82  *	- The object memq mutex is held when inserting or removing
83  *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
84  *	  is different from the object's main mutex.
85  *
86  *	Generally speaking, you have to be aware of side effects when running
87  *	vm_page ops.  A vm_page_lookup() will return with the hash chain
88  *	locked, whether it was able to lookup the page or not.  vm_page_free(),
89  *	vm_page_cache(), vm_page_activate(), and a number of other routines
90  *	will release the hash chain mutex for you.  Intermediate manipulation
91  *	routines such as vm_page_flag_set() expect the hash chain to be held
92  *	on entry and the hash chain will remain held on return.
93  *
94  *	pageq scanning can only occur with the pageq in question locked.
95  *	We have a known bottleneck with the active queue, but the cache
96  *	and free queues are actually arrays already.
97  */
98 
99 /*
100  *	Resident memory management module.
101  */
102 
103 #include <sys/cdefs.h>
104 __FBSDID("$FreeBSD$");
105 
106 #include <sys/param.h>
107 #include <sys/systm.h>
108 #include <sys/lock.h>
109 #include <sys/malloc.h>
110 #include <sys/mutex.h>
111 #include <sys/proc.h>
112 #include <sys/vmmeter.h>
113 #include <sys/vnode.h>
114 
115 #include <vm/vm.h>
116 #include <vm/vm_param.h>
117 #include <vm/vm_kern.h>
118 #include <vm/vm_object.h>
119 #include <vm/vm_page.h>
120 #include <vm/vm_pageout.h>
121 #include <vm/vm_pager.h>
122 #include <vm/vm_extern.h>
123 #include <vm/uma.h>
124 #include <vm/uma_int.h>
125 
126 /*
127  *	Associated with page of user-allocatable memory is a
128  *	page structure.
129  */
130 
131 struct mtx vm_page_queue_mtx;
132 struct mtx vm_page_queue_free_mtx;
133 
134 vm_page_t vm_page_array = 0;
135 int vm_page_array_size = 0;
136 long first_page = 0;
137 int vm_page_zero_count = 0;
138 
139 /*
140  *	vm_set_page_size:
141  *
142  *	Sets the page size, perhaps based upon the memory
143  *	size.  Must be called before any use of page-size
144  *	dependent functions.
145  */
146 void
147 vm_set_page_size(void)
148 {
149 	if (cnt.v_page_size == 0)
150 		cnt.v_page_size = PAGE_SIZE;
151 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
152 		panic("vm_set_page_size: page size not a power of two");
153 }
154 
155 /*
156  *	vm_page_startup:
157  *
158  *	Initializes the resident memory module.
159  *
160  *	Allocates memory for the page cells, and
161  *	for the object/offset-to-page hash table headers.
162  *	Each page cell is initialized and placed on the free list.
163  */
164 vm_offset_t
165 vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr)
166 {
167 	vm_offset_t mapped;
168 	vm_size_t npages;
169 	vm_paddr_t page_range;
170 	vm_paddr_t new_end;
171 	int i;
172 	vm_paddr_t pa;
173 	int nblocks;
174 	vm_paddr_t last_pa;
175 
176 	/* the biggest memory array is the second group of pages */
177 	vm_paddr_t end;
178 	vm_paddr_t biggestsize;
179 	int biggestone;
180 
181 	vm_paddr_t total;
182 	vm_size_t bootpages;
183 
184 	total = 0;
185 	biggestsize = 0;
186 	biggestone = 0;
187 	nblocks = 0;
188 	vaddr = round_page(vaddr);
189 
190 	for (i = 0; phys_avail[i + 1]; i += 2) {
191 		phys_avail[i] = round_page(phys_avail[i]);
192 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
193 	}
194 
195 	for (i = 0; phys_avail[i + 1]; i += 2) {
196 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
197 
198 		if (size > biggestsize) {
199 			biggestone = i;
200 			biggestsize = size;
201 		}
202 		++nblocks;
203 		total += size;
204 	}
205 
206 	end = phys_avail[biggestone+1];
207 
208 	/*
209 	 * Initialize the locks.
210 	 */
211 	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF);
212 	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
213 	    MTX_SPIN);
214 
215 	/*
216 	 * Initialize the queue headers for the free queue, the active queue
217 	 * and the inactive queue.
218 	 */
219 	vm_pageq_init();
220 
221 	/*
222 	 * Allocate memory for use when boot strapping the kernel memory
223 	 * allocator.
224 	 */
225 	bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
226 	new_end = end - bootpages;
227 	new_end = trunc_page(new_end);
228 	mapped = pmap_map(&vaddr, new_end, end,
229 	    VM_PROT_READ | VM_PROT_WRITE);
230 	bzero((caddr_t) mapped, end - new_end);
231 	uma_startup((caddr_t)mapped);
232 
233 	/*
234 	 * Compute the number of pages of memory that will be available for
235 	 * use (taking into account the overhead of a page structure per
236 	 * page).
237 	 */
238 	first_page = phys_avail[0] / PAGE_SIZE;
239 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
240 	npages = (total - (page_range * sizeof(struct vm_page)) -
241 	    (end - new_end)) / PAGE_SIZE;
242 	end = new_end;
243 
244 	/*
245 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
246 	 */
247 	vaddr += PAGE_SIZE;
248 
249 	/*
250 	 * Initialize the mem entry structures now, and put them in the free
251 	 * queue.
252 	 */
253 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
254 	mapped = pmap_map(&vaddr, new_end, end,
255 	    VM_PROT_READ | VM_PROT_WRITE);
256 	vm_page_array = (vm_page_t) mapped;
257 	phys_avail[biggestone + 1] = new_end;
258 
259 	/*
260 	 * Clear all of the page structures
261 	 */
262 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
263 	vm_page_array_size = page_range;
264 
265 	/*
266 	 * Construct the free queue(s) in descending order (by physical
267 	 * address) so that the first 16MB of physical memory is allocated
268 	 * last rather than first.  On large-memory machines, this avoids
269 	 * the exhaustion of low physical memory before isa_dmainit has run.
270 	 */
271 	cnt.v_page_count = 0;
272 	cnt.v_free_count = 0;
273 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
274 		pa = phys_avail[i];
275 		last_pa = phys_avail[i + 1];
276 		while (pa < last_pa && npages-- > 0) {
277 			vm_pageq_add_new_page(pa);
278 			pa += PAGE_SIZE;
279 		}
280 	}
281 	return (vaddr);
282 }
283 
284 void
285 vm_page_flag_set(vm_page_t m, unsigned short bits)
286 {
287 
288 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
289 	m->flags |= bits;
290 }
291 
292 void
293 vm_page_flag_clear(vm_page_t m, unsigned short bits)
294 {
295 
296 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
297 	m->flags &= ~bits;
298 }
299 
300 void
301 vm_page_busy(vm_page_t m)
302 {
303 	KASSERT((m->flags & PG_BUSY) == 0,
304 	    ("vm_page_busy: page already busy!!!"));
305 	vm_page_flag_set(m, PG_BUSY);
306 }
307 
308 /*
309  *      vm_page_flash:
310  *
311  *      wakeup anyone waiting for the page.
312  */
313 void
314 vm_page_flash(vm_page_t m)
315 {
316 	if (m->flags & PG_WANTED) {
317 		vm_page_flag_clear(m, PG_WANTED);
318 		wakeup(m);
319 	}
320 }
321 
322 /*
323  *      vm_page_wakeup:
324  *
325  *      clear the PG_BUSY flag and wakeup anyone waiting for the
326  *      page.
327  *
328  */
329 void
330 vm_page_wakeup(vm_page_t m)
331 {
332 	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
333 	vm_page_flag_clear(m, PG_BUSY);
334 	vm_page_flash(m);
335 }
336 
337 void
338 vm_page_io_start(vm_page_t m)
339 {
340 
341 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
342 	m->busy++;
343 }
344 
345 void
346 vm_page_io_finish(vm_page_t m)
347 {
348 
349 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
350 	m->busy--;
351 	if (m->busy == 0)
352 		vm_page_flash(m);
353 }
354 
355 /*
356  * Keep page from being freed by the page daemon
357  * much of the same effect as wiring, except much lower
358  * overhead and should be used only for *very* temporary
359  * holding ("wiring").
360  */
361 void
362 vm_page_hold(vm_page_t mem)
363 {
364 
365 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
366         mem->hold_count++;
367 }
368 
369 void
370 vm_page_unhold(vm_page_t mem)
371 {
372 
373 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
374 	--mem->hold_count;
375 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
376 	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
377 		vm_page_free_toq(mem);
378 }
379 
380 /*
381  *	vm_page_free:
382  *
383  *	Free a page
384  *
385  *	The clearing of PG_ZERO is a temporary safety until the code can be
386  *	reviewed to determine that PG_ZERO is being properly cleared on
387  *	write faults or maps.  PG_ZERO was previously cleared in
388  *	vm_page_alloc().
389  */
390 void
391 vm_page_free(vm_page_t m)
392 {
393 	vm_page_flag_clear(m, PG_ZERO);
394 	vm_page_free_toq(m);
395 	vm_page_zero_idle_wakeup();
396 }
397 
398 /*
399  *	vm_page_free_zero:
400  *
401  *	Free a page to the zerod-pages queue
402  */
403 void
404 vm_page_free_zero(vm_page_t m)
405 {
406 	vm_page_flag_set(m, PG_ZERO);
407 	vm_page_free_toq(m);
408 }
409 
410 /*
411  *	vm_page_sleep_if_busy:
412  *
413  *	Sleep and release the page queues lock if PG_BUSY is set or,
414  *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
415  *	thread slept and the page queues lock was released.
416  *	Otherwise, retains the page queues lock and returns FALSE.
417  */
418 int
419 vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
420 {
421 	int is_object_locked;
422 
423 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
424 	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
425 		vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
426 		/*
427 		 * Remove mtx_owned() after vm_object locking is finished.
428 		 */
429 		if ((is_object_locked = m->object != NULL &&
430 		     mtx_owned(&m->object->mtx)))
431 			mtx_unlock(&m->object->mtx);
432 		msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
433 		if (is_object_locked)
434 			mtx_lock(&m->object->mtx);
435 		return (TRUE);
436 	}
437 	return (FALSE);
438 }
439 
440 /*
441  *	vm_page_dirty:
442  *
443  *	make page all dirty
444  */
445 void
446 vm_page_dirty(vm_page_t m)
447 {
448 	KASSERT(m->queue - m->pc != PQ_CACHE,
449 	    ("vm_page_dirty: page in cache!"));
450 	KASSERT(m->queue - m->pc != PQ_FREE,
451 	    ("vm_page_dirty: page is free!"));
452 	m->dirty = VM_PAGE_BITS_ALL;
453 }
454 
455 /*
456  *	vm_page_splay:
457  *
458  *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
459  *	the vm_page containing the given pindex.  If, however, that
460  *	pindex is not found in the vm_object, returns a vm_page that is
461  *	adjacent to the pindex, coming before or after it.
462  */
463 vm_page_t
464 vm_page_splay(vm_pindex_t pindex, vm_page_t root)
465 {
466 	struct vm_page dummy;
467 	vm_page_t lefttreemax, righttreemin, y;
468 
469 	if (root == NULL)
470 		return (root);
471 	lefttreemax = righttreemin = &dummy;
472 	for (;; root = y) {
473 		if (pindex < root->pindex) {
474 			if ((y = root->left) == NULL)
475 				break;
476 			if (pindex < y->pindex) {
477 				/* Rotate right. */
478 				root->left = y->right;
479 				y->right = root;
480 				root = y;
481 				if ((y = root->left) == NULL)
482 					break;
483 			}
484 			/* Link into the new root's right tree. */
485 			righttreemin->left = root;
486 			righttreemin = root;
487 		} else if (pindex > root->pindex) {
488 			if ((y = root->right) == NULL)
489 				break;
490 			if (pindex > y->pindex) {
491 				/* Rotate left. */
492 				root->right = y->left;
493 				y->left = root;
494 				root = y;
495 				if ((y = root->right) == NULL)
496 					break;
497 			}
498 			/* Link into the new root's left tree. */
499 			lefttreemax->right = root;
500 			lefttreemax = root;
501 		} else
502 			break;
503 	}
504 	/* Assemble the new root. */
505 	lefttreemax->right = root->left;
506 	righttreemin->left = root->right;
507 	root->left = dummy.right;
508 	root->right = dummy.left;
509 	return (root);
510 }
511 
512 /*
513  *	vm_page_insert:		[ internal use only ]
514  *
515  *	Inserts the given mem entry into the object and object list.
516  *
517  *	The pagetables are not updated but will presumably fault the page
518  *	in if necessary, or if a kernel page the caller will at some point
519  *	enter the page into the kernel's pmap.  We are not allowed to block
520  *	here so we *can't* do this anyway.
521  *
522  *	The object and page must be locked, and must be splhigh.
523  *	This routine may not block.
524  */
525 void
526 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
527 {
528 	vm_page_t root;
529 
530 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
531 	if (m->object != NULL)
532 		panic("vm_page_insert: page already inserted");
533 
534 	/*
535 	 * Record the object/offset pair in this page
536 	 */
537 	m->object = object;
538 	m->pindex = pindex;
539 
540 	/*
541 	 * Now link into the object's ordered list of backed pages.
542 	 */
543 	root = object->root;
544 	if (root == NULL) {
545 		m->left = NULL;
546 		m->right = NULL;
547 		TAILQ_INSERT_TAIL(&object->memq, m, listq);
548 	} else {
549 		root = vm_page_splay(pindex, root);
550 		if (pindex < root->pindex) {
551 			m->left = root->left;
552 			m->right = root;
553 			root->left = NULL;
554 			TAILQ_INSERT_BEFORE(root, m, listq);
555 		} else if (pindex == root->pindex)
556 			panic("vm_page_insert: offset already allocated");
557 		else {
558 			m->right = root->right;
559 			m->left = root;
560 			root->right = NULL;
561 			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
562 		}
563 	}
564 	object->root = m;
565 	object->generation++;
566 
567 	/*
568 	 * show that the object has one more resident page.
569 	 */
570 	object->resident_page_count++;
571 
572 	/*
573 	 * Since we are inserting a new and possibly dirty page,
574 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
575 	 */
576 	if (m->flags & PG_WRITEABLE)
577 		vm_object_set_writeable_dirty(object);
578 }
579 
580 /*
581  *	vm_page_remove:
582  *				NOTE: used by device pager as well -wfj
583  *
584  *	Removes the given mem entry from the object/offset-page
585  *	table and the object page list, but do not invalidate/terminate
586  *	the backing store.
587  *
588  *	The object and page must be locked, and at splhigh.
589  *	The underlying pmap entry (if any) is NOT removed here.
590  *	This routine may not block.
591  */
592 void
593 vm_page_remove(vm_page_t m)
594 {
595 	vm_object_t object;
596 	vm_page_t root;
597 
598 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
599 	if (m->object == NULL)
600 		return;
601 #ifndef	__alpha__
602 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
603 #endif
604 	if ((m->flags & PG_BUSY) == 0) {
605 		panic("vm_page_remove: page not busy");
606 	}
607 
608 	/*
609 	 * Basically destroy the page.
610 	 */
611 	vm_page_wakeup(m);
612 
613 	object = m->object;
614 
615 	/*
616 	 * Now remove from the object's list of backed pages.
617 	 */
618 	if (m != object->root)
619 		vm_page_splay(m->pindex, object->root);
620 	if (m->left == NULL)
621 		root = m->right;
622 	else {
623 		root = vm_page_splay(m->pindex, m->left);
624 		root->right = m->right;
625 	}
626 	object->root = root;
627 	TAILQ_REMOVE(&object->memq, m, listq);
628 
629 	/*
630 	 * And show that the object has one fewer resident page.
631 	 */
632 	object->resident_page_count--;
633 	object->generation++;
634 
635 	m->object = NULL;
636 }
637 
638 /*
639  *	vm_page_lookup:
640  *
641  *	Returns the page associated with the object/offset
642  *	pair specified; if none is found, NULL is returned.
643  *
644  *	The object must be locked.
645  *	This routine may not block.
646  *	This is a critical path routine
647  */
648 vm_page_t
649 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
650 {
651 	vm_page_t m;
652 
653 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
654 	if ((m = object->root) != NULL && m->pindex != pindex) {
655 		m = vm_page_splay(pindex, m);
656 		if ((object->root = m)->pindex != pindex)
657 			m = NULL;
658 	}
659 	return (m);
660 }
661 
662 /*
663  *	vm_page_rename:
664  *
665  *	Move the given memory entry from its
666  *	current object to the specified target object/offset.
667  *
668  *	The object must be locked.
669  *	This routine may not block.
670  *
671  *	Note: this routine will raise itself to splvm(), the caller need not.
672  *
673  *	Note: swap associated with the page must be invalidated by the move.  We
674  *	      have to do this for several reasons:  (1) we aren't freeing the
675  *	      page, (2) we are dirtying the page, (3) the VM system is probably
676  *	      moving the page from object A to B, and will then later move
677  *	      the backing store from A to B and we can't have a conflict.
678  *
679  *	Note: we *always* dirty the page.  It is necessary both for the
680  *	      fact that we moved it, and because we may be invalidating
681  *	      swap.  If the page is on the cache, we have to deactivate it
682  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
683  *	      on the cache.
684  */
685 void
686 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
687 {
688 	int s;
689 
690 	s = splvm();
691 	vm_page_remove(m);
692 	vm_page_insert(m, new_object, new_pindex);
693 	if (m->queue - m->pc == PQ_CACHE)
694 		vm_page_deactivate(m);
695 	vm_page_dirty(m);
696 	splx(s);
697 }
698 
699 /*
700  *	vm_page_select_cache:
701  *
702  *	Find a page on the cache queue with color optimization.  As pages
703  *	might be found, but not applicable, they are deactivated.  This
704  *	keeps us from using potentially busy cached pages.
705  *
706  *	This routine must be called at splvm().
707  *	This routine may not block.
708  */
709 vm_page_t
710 vm_page_select_cache(int color)
711 {
712 	vm_page_t m;
713 
714 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
715 	while (TRUE) {
716 		m = vm_pageq_find(PQ_CACHE, color, FALSE);
717 		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
718 			       m->hold_count || m->wire_count ||
719 			  (!VM_OBJECT_TRYLOCK(m->object) &&
720 			   !VM_OBJECT_LOCKED(m->object)))) {
721 			vm_page_deactivate(m);
722 			continue;
723 		}
724 		return m;
725 	}
726 }
727 
728 /*
729  *	vm_page_alloc:
730  *
731  *	Allocate and return a memory cell associated
732  *	with this VM object/offset pair.
733  *
734  *	page_req classes:
735  *	VM_ALLOC_NORMAL		normal process request
736  *	VM_ALLOC_SYSTEM		system *really* needs a page
737  *	VM_ALLOC_INTERRUPT	interrupt time request
738  *	VM_ALLOC_ZERO		zero page
739  *
740  *	This routine may not block.
741  *
742  *	Additional special handling is required when called from an
743  *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
744  *	the page cache in this case.
745  */
746 vm_page_t
747 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
748 {
749 	vm_object_t m_object;
750 	vm_page_t m = NULL;
751 	int color, flags, page_req, s;
752 
753 	page_req = req & VM_ALLOC_CLASS_MASK;
754 
755 	if ((req & VM_ALLOC_NOOBJ) == 0) {
756 		KASSERT(object != NULL,
757 		    ("vm_page_alloc: NULL object."));
758 		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
759 		color = (pindex + object->pg_color) & PQ_L2_MASK;
760 	} else
761 		color = pindex & PQ_L2_MASK;
762 
763 	/*
764 	 * The pager is allowed to eat deeper into the free page list.
765 	 */
766 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
767 		page_req = VM_ALLOC_SYSTEM;
768 	};
769 
770 	s = splvm();
771 loop:
772 	mtx_lock_spin(&vm_page_queue_free_mtx);
773 	if (cnt.v_free_count > cnt.v_free_reserved ||
774 	    (page_req == VM_ALLOC_SYSTEM &&
775 	     cnt.v_cache_count == 0 &&
776 	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
777 	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
778 		/*
779 		 * Allocate from the free queue if the number of free pages
780 		 * exceeds the minimum for the request class.
781 		 */
782 		m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
783 	} else if (page_req != VM_ALLOC_INTERRUPT) {
784 		mtx_unlock_spin(&vm_page_queue_free_mtx);
785 		/*
786 		 * Allocatable from cache (non-interrupt only).  On success,
787 		 * we must free the page and try again, thus ensuring that
788 		 * cnt.v_*_free_min counters are replenished.
789 		 */
790 		vm_page_lock_queues();
791 		if ((m = vm_page_select_cache(color)) == NULL) {
792 			vm_page_unlock_queues();
793 			splx(s);
794 #if defined(DIAGNOSTIC)
795 			if (cnt.v_cache_count > 0)
796 				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
797 #endif
798 			atomic_add_int(&vm_pageout_deficit, 1);
799 			pagedaemon_wakeup();
800 			return (NULL);
801 		}
802 		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
803 		m_object = m->object;
804 		VM_OBJECT_LOCK_ASSERT(m_object, MA_OWNED);
805 		vm_page_busy(m);
806 		pmap_remove_all(m);
807 		vm_page_free(m);
808 		vm_page_unlock_queues();
809 		if (m_object != object)
810 			VM_OBJECT_UNLOCK(m_object);
811 		goto loop;
812 	} else {
813 		/*
814 		 * Not allocatable from cache from interrupt, give up.
815 		 */
816 		mtx_unlock_spin(&vm_page_queue_free_mtx);
817 		splx(s);
818 		atomic_add_int(&vm_pageout_deficit, 1);
819 		pagedaemon_wakeup();
820 		return (NULL);
821 	}
822 
823 	/*
824 	 *  At this point we had better have found a good page.
825 	 */
826 
827 	KASSERT(
828 	    m != NULL,
829 	    ("vm_page_alloc(): missing page on free queue\n")
830 	);
831 
832 	/*
833 	 * Remove from free queue
834 	 */
835 
836 	vm_pageq_remove_nowakeup(m);
837 
838 	/*
839 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
840 	 */
841 	flags = PG_BUSY;
842 	if (m->flags & PG_ZERO) {
843 		vm_page_zero_count--;
844 		if (req & VM_ALLOC_ZERO)
845 			flags = PG_ZERO | PG_BUSY;
846 	}
847 	m->flags = flags;
848 	if (req & VM_ALLOC_WIRED) {
849 		atomic_add_int(&cnt.v_wire_count, 1);
850 		m->wire_count = 1;
851 	} else
852 		m->wire_count = 0;
853 	m->hold_count = 0;
854 	m->act_count = 0;
855 	m->busy = 0;
856 	m->valid = 0;
857 	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
858 	mtx_unlock_spin(&vm_page_queue_free_mtx);
859 
860 	/*
861 	 * vm_page_insert() is safe prior to the splx().  Note also that
862 	 * inserting a page here does not insert it into the pmap (which
863 	 * could cause us to block allocating memory).  We cannot block
864 	 * anywhere.
865 	 */
866 	if ((req & VM_ALLOC_NOOBJ) == 0)
867 		vm_page_insert(m, object, pindex);
868 	else
869 		m->pindex = pindex;
870 
871 	/*
872 	 * Don't wakeup too often - wakeup the pageout daemon when
873 	 * we would be nearly out of memory.
874 	 */
875 	if (vm_paging_needed())
876 		pagedaemon_wakeup();
877 
878 	splx(s);
879 	return (m);
880 }
881 
882 /*
883  *	vm_wait:	(also see VM_WAIT macro)
884  *
885  *	Block until free pages are available for allocation
886  *	- Called in various places before memory allocations.
887  */
888 void
889 vm_wait(void)
890 {
891 	int s;
892 
893 	s = splvm();
894 	vm_page_lock_queues();
895 	if (curproc == pageproc) {
896 		vm_pageout_pages_needed = 1;
897 		msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx,
898 		    PDROP | PSWP, "VMWait", 0);
899 	} else {
900 		if (!vm_pages_needed) {
901 			vm_pages_needed = 1;
902 			wakeup(&vm_pages_needed);
903 		}
904 		msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM,
905 		    "vmwait", 0);
906 	}
907 	splx(s);
908 }
909 
910 /*
911  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
912  *
913  *	Block until free pages are available for allocation
914  *	- Called only in vm_fault so that processes page faulting
915  *	  can be easily tracked.
916  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
917  *	  processes will be able to grab memory first.  Do not change
918  *	  this balance without careful testing first.
919  */
920 void
921 vm_waitpfault(void)
922 {
923 	int s;
924 
925 	s = splvm();
926 	vm_page_lock_queues();
927 	if (!vm_pages_needed) {
928 		vm_pages_needed = 1;
929 		wakeup(&vm_pages_needed);
930 	}
931 	msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER,
932 	    "pfault", 0);
933 	splx(s);
934 }
935 
936 /*
937  *	vm_page_activate:
938  *
939  *	Put the specified page on the active list (if appropriate).
940  *	Ensure that act_count is at least ACT_INIT but do not otherwise
941  *	mess with it.
942  *
943  *	The page queues must be locked.
944  *	This routine may not block.
945  */
946 void
947 vm_page_activate(vm_page_t m)
948 {
949 	int s;
950 
951 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
952 	s = splvm();
953 	if (m->queue != PQ_ACTIVE) {
954 		if ((m->queue - m->pc) == PQ_CACHE)
955 			cnt.v_reactivated++;
956 		vm_pageq_remove(m);
957 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
958 			if (m->act_count < ACT_INIT)
959 				m->act_count = ACT_INIT;
960 			vm_pageq_enqueue(PQ_ACTIVE, m);
961 		}
962 	} else {
963 		if (m->act_count < ACT_INIT)
964 			m->act_count = ACT_INIT;
965 	}
966 	splx(s);
967 }
968 
969 /*
970  *	vm_page_free_wakeup:
971  *
972  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
973  *	routine is called when a page has been added to the cache or free
974  *	queues.
975  *
976  *	This routine may not block.
977  *	This routine must be called at splvm()
978  */
979 static __inline void
980 vm_page_free_wakeup(void)
981 {
982 
983 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
984 	/*
985 	 * if pageout daemon needs pages, then tell it that there are
986 	 * some free.
987 	 */
988 	if (vm_pageout_pages_needed &&
989 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
990 		wakeup(&vm_pageout_pages_needed);
991 		vm_pageout_pages_needed = 0;
992 	}
993 	/*
994 	 * wakeup processes that are waiting on memory if we hit a
995 	 * high water mark. And wakeup scheduler process if we have
996 	 * lots of memory. this process will swapin processes.
997 	 */
998 	if (vm_pages_needed && !vm_page_count_min()) {
999 		vm_pages_needed = 0;
1000 		wakeup(&cnt.v_free_count);
1001 	}
1002 }
1003 
1004 /*
1005  *	vm_page_free_toq:
1006  *
1007  *	Returns the given page to the PQ_FREE list,
1008  *	disassociating it with any VM object.
1009  *
1010  *	Object and page must be locked prior to entry.
1011  *	This routine may not block.
1012  */
1013 
1014 void
1015 vm_page_free_toq(vm_page_t m)
1016 {
1017 	int s;
1018 	struct vpgqueues *pq;
1019 	vm_object_t object = m->object;
1020 
1021 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1022 	s = splvm();
1023 	cnt.v_tfree++;
1024 
1025 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1026 		printf(
1027 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1028 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1029 		    m->hold_count);
1030 		if ((m->queue - m->pc) == PQ_FREE)
1031 			panic("vm_page_free: freeing free page");
1032 		else
1033 			panic("vm_page_free: freeing busy page");
1034 	}
1035 
1036 	/*
1037 	 * unqueue, then remove page.  Note that we cannot destroy
1038 	 * the page here because we do not want to call the pager's
1039 	 * callback routine until after we've put the page on the
1040 	 * appropriate free queue.
1041 	 */
1042 	vm_pageq_remove_nowakeup(m);
1043 	vm_page_remove(m);
1044 
1045 	/*
1046 	 * If fictitious remove object association and
1047 	 * return, otherwise delay object association removal.
1048 	 */
1049 	if ((m->flags & PG_FICTITIOUS) != 0) {
1050 		splx(s);
1051 		return;
1052 	}
1053 
1054 	m->valid = 0;
1055 	vm_page_undirty(m);
1056 
1057 	if (m->wire_count != 0) {
1058 		if (m->wire_count > 1) {
1059 			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1060 				m->wire_count, (long)m->pindex);
1061 		}
1062 		panic("vm_page_free: freeing wired page\n");
1063 	}
1064 
1065 	/*
1066 	 * If we've exhausted the object's resident pages we want to free
1067 	 * it up.
1068 	 */
1069 	if (object &&
1070 	    (object->type == OBJT_VNODE) &&
1071 	    ((object->flags & OBJ_DEAD) == 0)
1072 	) {
1073 		struct vnode *vp = (struct vnode *)object->handle;
1074 
1075 		if (vp) {
1076 			VI_LOCK(vp);
1077 			if (VSHOULDFREE(vp))
1078 				vfree(vp);
1079 			VI_UNLOCK(vp);
1080 		}
1081 	}
1082 
1083 	/*
1084 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1085 	 */
1086 	if (m->flags & PG_UNMANAGED) {
1087 		m->flags &= ~PG_UNMANAGED;
1088 	}
1089 
1090 	if (m->hold_count != 0) {
1091 		m->flags &= ~PG_ZERO;
1092 		m->queue = PQ_HOLD;
1093 	} else
1094 		m->queue = PQ_FREE + m->pc;
1095 	pq = &vm_page_queues[m->queue];
1096 	mtx_lock_spin(&vm_page_queue_free_mtx);
1097 	pq->lcnt++;
1098 	++(*pq->cnt);
1099 
1100 	/*
1101 	 * Put zero'd pages on the end ( where we look for zero'd pages
1102 	 * first ) and non-zerod pages at the head.
1103 	 */
1104 	if (m->flags & PG_ZERO) {
1105 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1106 		++vm_page_zero_count;
1107 	} else {
1108 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1109 	}
1110 	mtx_unlock_spin(&vm_page_queue_free_mtx);
1111 	vm_page_free_wakeup();
1112 	splx(s);
1113 }
1114 
1115 /*
1116  *	vm_page_unmanage:
1117  *
1118  * 	Prevent PV management from being done on the page.  The page is
1119  *	removed from the paging queues as if it were wired, and as a
1120  *	consequence of no longer being managed the pageout daemon will not
1121  *	touch it (since there is no way to locate the pte mappings for the
1122  *	page).  madvise() calls that mess with the pmap will also no longer
1123  *	operate on the page.
1124  *
1125  *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1126  *	will clear the flag.
1127  *
1128  *	This routine is used by OBJT_PHYS objects - objects using unswappable
1129  *	physical memory as backing store rather then swap-backed memory and
1130  *	will eventually be extended to support 4MB unmanaged physical
1131  *	mappings.
1132  */
1133 void
1134 vm_page_unmanage(vm_page_t m)
1135 {
1136 	int s;
1137 
1138 	s = splvm();
1139 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1140 	if ((m->flags & PG_UNMANAGED) == 0) {
1141 		if (m->wire_count == 0)
1142 			vm_pageq_remove(m);
1143 	}
1144 	vm_page_flag_set(m, PG_UNMANAGED);
1145 	splx(s);
1146 }
1147 
1148 /*
1149  *	vm_page_wire:
1150  *
1151  *	Mark this page as wired down by yet
1152  *	another map, removing it from paging queues
1153  *	as necessary.
1154  *
1155  *	The page queues must be locked.
1156  *	This routine may not block.
1157  */
1158 void
1159 vm_page_wire(vm_page_t m)
1160 {
1161 	int s;
1162 
1163 	/*
1164 	 * Only bump the wire statistics if the page is not already wired,
1165 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1166 	 * it is already off the queues).
1167 	 */
1168 	s = splvm();
1169 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1170 	if (m->wire_count == 0) {
1171 		if ((m->flags & PG_UNMANAGED) == 0)
1172 			vm_pageq_remove(m);
1173 		atomic_add_int(&cnt.v_wire_count, 1);
1174 	}
1175 	m->wire_count++;
1176 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1177 	splx(s);
1178 }
1179 
1180 /*
1181  *	vm_page_unwire:
1182  *
1183  *	Release one wiring of this page, potentially
1184  *	enabling it to be paged again.
1185  *
1186  *	Many pages placed on the inactive queue should actually go
1187  *	into the cache, but it is difficult to figure out which.  What
1188  *	we do instead, if the inactive target is well met, is to put
1189  *	clean pages at the head of the inactive queue instead of the tail.
1190  *	This will cause them to be moved to the cache more quickly and
1191  *	if not actively re-referenced, freed more quickly.  If we just
1192  *	stick these pages at the end of the inactive queue, heavy filesystem
1193  *	meta-data accesses can cause an unnecessary paging load on memory bound
1194  *	processes.  This optimization causes one-time-use metadata to be
1195  *	reused more quickly.
1196  *
1197  *	BUT, if we are in a low-memory situation we have no choice but to
1198  *	put clean pages on the cache queue.
1199  *
1200  *	A number of routines use vm_page_unwire() to guarantee that the page
1201  *	will go into either the inactive or active queues, and will NEVER
1202  *	be placed in the cache - for example, just after dirtying a page.
1203  *	dirty pages in the cache are not allowed.
1204  *
1205  *	The page queues must be locked.
1206  *	This routine may not block.
1207  */
1208 void
1209 vm_page_unwire(vm_page_t m, int activate)
1210 {
1211 	int s;
1212 
1213 	s = splvm();
1214 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1215 	if (m->wire_count > 0) {
1216 		m->wire_count--;
1217 		if (m->wire_count == 0) {
1218 			atomic_subtract_int(&cnt.v_wire_count, 1);
1219 			if (m->flags & PG_UNMANAGED) {
1220 				;
1221 			} else if (activate)
1222 				vm_pageq_enqueue(PQ_ACTIVE, m);
1223 			else {
1224 				vm_page_flag_clear(m, PG_WINATCFLS);
1225 				vm_pageq_enqueue(PQ_INACTIVE, m);
1226 			}
1227 		}
1228 	} else {
1229 		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1230 	}
1231 	splx(s);
1232 }
1233 
1234 
1235 /*
1236  * Move the specified page to the inactive queue.  If the page has
1237  * any associated swap, the swap is deallocated.
1238  *
1239  * Normally athead is 0 resulting in LRU operation.  athead is set
1240  * to 1 if we want this page to be 'as if it were placed in the cache',
1241  * except without unmapping it from the process address space.
1242  *
1243  * This routine may not block.
1244  */
1245 static __inline void
1246 _vm_page_deactivate(vm_page_t m, int athead)
1247 {
1248 	int s;
1249 
1250 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1251 	/*
1252 	 * Ignore if already inactive.
1253 	 */
1254 	if (m->queue == PQ_INACTIVE)
1255 		return;
1256 
1257 	s = splvm();
1258 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1259 		if ((m->queue - m->pc) == PQ_CACHE)
1260 			cnt.v_reactivated++;
1261 		vm_page_flag_clear(m, PG_WINATCFLS);
1262 		vm_pageq_remove(m);
1263 		if (athead)
1264 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1265 		else
1266 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1267 		m->queue = PQ_INACTIVE;
1268 		vm_page_queues[PQ_INACTIVE].lcnt++;
1269 		cnt.v_inactive_count++;
1270 	}
1271 	splx(s);
1272 }
1273 
1274 void
1275 vm_page_deactivate(vm_page_t m)
1276 {
1277     _vm_page_deactivate(m, 0);
1278 }
1279 
1280 /*
1281  * vm_page_try_to_cache:
1282  *
1283  * Returns 0 on failure, 1 on success
1284  */
1285 int
1286 vm_page_try_to_cache(vm_page_t m)
1287 {
1288 
1289 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1290 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1291 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1292 		return (0);
1293 	}
1294 	pmap_remove_all(m);
1295 	if (m->dirty)
1296 		return (0);
1297 	vm_page_cache(m);
1298 	return (1);
1299 }
1300 
1301 /*
1302  * vm_page_try_to_free()
1303  *
1304  *	Attempt to free the page.  If we cannot free it, we do nothing.
1305  *	1 is returned on success, 0 on failure.
1306  */
1307 int
1308 vm_page_try_to_free(vm_page_t m)
1309 {
1310 
1311 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1312 	if (m->object != NULL)
1313 		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1314 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1315 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1316 		return (0);
1317 	}
1318 	pmap_remove_all(m);
1319 	if (m->dirty)
1320 		return (0);
1321 	vm_page_busy(m);
1322 	vm_page_free(m);
1323 	return (1);
1324 }
1325 
1326 /*
1327  * vm_page_cache
1328  *
1329  * Put the specified page onto the page cache queue (if appropriate).
1330  *
1331  * This routine may not block.
1332  */
1333 void
1334 vm_page_cache(vm_page_t m)
1335 {
1336 	int s;
1337 
1338 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1339 	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1340 	    m->hold_count || m->wire_count) {
1341 		printf("vm_page_cache: attempting to cache busy page\n");
1342 		return;
1343 	}
1344 	if ((m->queue - m->pc) == PQ_CACHE)
1345 		return;
1346 
1347 	/*
1348 	 * Remove all pmaps and indicate that the page is not
1349 	 * writeable or mapped.
1350 	 */
1351 	pmap_remove_all(m);
1352 	if (m->dirty != 0) {
1353 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1354 			(long)m->pindex);
1355 	}
1356 	s = splvm();
1357 	vm_pageq_remove_nowakeup(m);
1358 	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1359 	vm_page_free_wakeup();
1360 	splx(s);
1361 }
1362 
1363 /*
1364  * vm_page_dontneed
1365  *
1366  *	Cache, deactivate, or do nothing as appropriate.  This routine
1367  *	is typically used by madvise() MADV_DONTNEED.
1368  *
1369  *	Generally speaking we want to move the page into the cache so
1370  *	it gets reused quickly.  However, this can result in a silly syndrome
1371  *	due to the page recycling too quickly.  Small objects will not be
1372  *	fully cached.  On the otherhand, if we move the page to the inactive
1373  *	queue we wind up with a problem whereby very large objects
1374  *	unnecessarily blow away our inactive and cache queues.
1375  *
1376  *	The solution is to move the pages based on a fixed weighting.  We
1377  *	either leave them alone, deactivate them, or move them to the cache,
1378  *	where moving them to the cache has the highest weighting.
1379  *	By forcing some pages into other queues we eventually force the
1380  *	system to balance the queues, potentially recovering other unrelated
1381  *	space from active.  The idea is to not force this to happen too
1382  *	often.
1383  */
1384 void
1385 vm_page_dontneed(vm_page_t m)
1386 {
1387 	static int dnweight;
1388 	int dnw;
1389 	int head;
1390 
1391 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1392 	dnw = ++dnweight;
1393 
1394 	/*
1395 	 * occassionally leave the page alone
1396 	 */
1397 	if ((dnw & 0x01F0) == 0 ||
1398 	    m->queue == PQ_INACTIVE ||
1399 	    m->queue - m->pc == PQ_CACHE
1400 	) {
1401 		if (m->act_count >= ACT_INIT)
1402 			--m->act_count;
1403 		return;
1404 	}
1405 
1406 	if (m->dirty == 0 && pmap_is_modified(m))
1407 		vm_page_dirty(m);
1408 
1409 	if (m->dirty || (dnw & 0x0070) == 0) {
1410 		/*
1411 		 * Deactivate the page 3 times out of 32.
1412 		 */
1413 		head = 0;
1414 	} else {
1415 		/*
1416 		 * Cache the page 28 times out of every 32.  Note that
1417 		 * the page is deactivated instead of cached, but placed
1418 		 * at the head of the queue instead of the tail.
1419 		 */
1420 		head = 1;
1421 	}
1422 	_vm_page_deactivate(m, head);
1423 }
1424 
1425 /*
1426  * Grab a page, waiting until we are waken up due to the page
1427  * changing state.  We keep on waiting, if the page continues
1428  * to be in the object.  If the page doesn't exist, allocate it.
1429  *
1430  * This routine may block.
1431  */
1432 vm_page_t
1433 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1434 {
1435 	vm_page_t m;
1436 
1437 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1438 retrylookup:
1439 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1440 		vm_page_lock_queues();
1441 		if (m->busy || (m->flags & PG_BUSY)) {
1442 			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1443 			VM_OBJECT_UNLOCK(object);
1444 			msleep(m, &vm_page_queue_mtx, PDROP | PVM, "pgrbwt", 0);
1445 			VM_OBJECT_LOCK(object);
1446 			if ((allocflags & VM_ALLOC_RETRY) == 0)
1447 				return (NULL);
1448 			goto retrylookup;
1449 		} else {
1450 			if (allocflags & VM_ALLOC_WIRED)
1451 				vm_page_wire(m);
1452 			vm_page_busy(m);
1453 			vm_page_unlock_queues();
1454 			return m;
1455 		}
1456 	}
1457 
1458 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1459 	if (m == NULL) {
1460 		VM_OBJECT_UNLOCK(object);
1461 		VM_WAIT;
1462 		VM_OBJECT_LOCK(object);
1463 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1464 			return NULL;
1465 		goto retrylookup;
1466 	}
1467 
1468 	return m;
1469 }
1470 
1471 /*
1472  * Mapping function for valid bits or for dirty bits in
1473  * a page.  May not block.
1474  *
1475  * Inputs are required to range within a page.
1476  */
1477 __inline int
1478 vm_page_bits(int base, int size)
1479 {
1480 	int first_bit;
1481 	int last_bit;
1482 
1483 	KASSERT(
1484 	    base + size <= PAGE_SIZE,
1485 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1486 	);
1487 
1488 	if (size == 0)		/* handle degenerate case */
1489 		return (0);
1490 
1491 	first_bit = base >> DEV_BSHIFT;
1492 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1493 
1494 	return ((2 << last_bit) - (1 << first_bit));
1495 }
1496 
1497 /*
1498  *	vm_page_set_validclean:
1499  *
1500  *	Sets portions of a page valid and clean.  The arguments are expected
1501  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1502  *	of any partial chunks touched by the range.  The invalid portion of
1503  *	such chunks will be zero'd.
1504  *
1505  *	This routine may not block.
1506  *
1507  *	(base + size) must be less then or equal to PAGE_SIZE.
1508  */
1509 void
1510 vm_page_set_validclean(vm_page_t m, int base, int size)
1511 {
1512 	int pagebits;
1513 	int frag;
1514 	int endoff;
1515 
1516 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1517 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1518 	if (size == 0)	/* handle degenerate case */
1519 		return;
1520 
1521 	/*
1522 	 * If the base is not DEV_BSIZE aligned and the valid
1523 	 * bit is clear, we have to zero out a portion of the
1524 	 * first block.
1525 	 */
1526 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1527 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1528 		pmap_zero_page_area(m, frag, base - frag);
1529 
1530 	/*
1531 	 * If the ending offset is not DEV_BSIZE aligned and the
1532 	 * valid bit is clear, we have to zero out a portion of
1533 	 * the last block.
1534 	 */
1535 	endoff = base + size;
1536 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1537 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1538 		pmap_zero_page_area(m, endoff,
1539 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1540 
1541 	/*
1542 	 * Set valid, clear dirty bits.  If validating the entire
1543 	 * page we can safely clear the pmap modify bit.  We also
1544 	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1545 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1546 	 * be set again.
1547 	 *
1548 	 * We set valid bits inclusive of any overlap, but we can only
1549 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1550 	 * the range.
1551 	 */
1552 	pagebits = vm_page_bits(base, size);
1553 	m->valid |= pagebits;
1554 #if 0	/* NOT YET */
1555 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1556 		frag = DEV_BSIZE - frag;
1557 		base += frag;
1558 		size -= frag;
1559 		if (size < 0)
1560 			size = 0;
1561 	}
1562 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1563 #endif
1564 	m->dirty &= ~pagebits;
1565 	if (base == 0 && size == PAGE_SIZE) {
1566 		pmap_clear_modify(m);
1567 		vm_page_flag_clear(m, PG_NOSYNC);
1568 	}
1569 }
1570 
1571 void
1572 vm_page_clear_dirty(vm_page_t m, int base, int size)
1573 {
1574 
1575 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1576 	m->dirty &= ~vm_page_bits(base, size);
1577 }
1578 
1579 /*
1580  *	vm_page_set_invalid:
1581  *
1582  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1583  *	valid and dirty bits for the effected areas are cleared.
1584  *
1585  *	May not block.
1586  */
1587 void
1588 vm_page_set_invalid(vm_page_t m, int base, int size)
1589 {
1590 	int bits;
1591 
1592 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1593 	bits = vm_page_bits(base, size);
1594 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1595 	m->valid &= ~bits;
1596 	m->dirty &= ~bits;
1597 	m->object->generation++;
1598 }
1599 
1600 /*
1601  * vm_page_zero_invalid()
1602  *
1603  *	The kernel assumes that the invalid portions of a page contain
1604  *	garbage, but such pages can be mapped into memory by user code.
1605  *	When this occurs, we must zero out the non-valid portions of the
1606  *	page so user code sees what it expects.
1607  *
1608  *	Pages are most often semi-valid when the end of a file is mapped
1609  *	into memory and the file's size is not page aligned.
1610  */
1611 void
1612 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1613 {
1614 	int b;
1615 	int i;
1616 
1617 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1618 	/*
1619 	 * Scan the valid bits looking for invalid sections that
1620 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1621 	 * valid bit may be set ) have already been zerod by
1622 	 * vm_page_set_validclean().
1623 	 */
1624 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1625 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1626 		    (m->valid & (1 << i))
1627 		) {
1628 			if (i > b) {
1629 				pmap_zero_page_area(m,
1630 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1631 			}
1632 			b = i + 1;
1633 		}
1634 	}
1635 
1636 	/*
1637 	 * setvalid is TRUE when we can safely set the zero'd areas
1638 	 * as being valid.  We can do this if there are no cache consistancy
1639 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1640 	 */
1641 	if (setvalid)
1642 		m->valid = VM_PAGE_BITS_ALL;
1643 }
1644 
1645 /*
1646  *	vm_page_is_valid:
1647  *
1648  *	Is (partial) page valid?  Note that the case where size == 0
1649  *	will return FALSE in the degenerate case where the page is
1650  *	entirely invalid, and TRUE otherwise.
1651  *
1652  *	May not block.
1653  */
1654 int
1655 vm_page_is_valid(vm_page_t m, int base, int size)
1656 {
1657 	int bits = vm_page_bits(base, size);
1658 
1659 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1660 	if (m->valid && ((m->valid & bits) == bits))
1661 		return 1;
1662 	else
1663 		return 0;
1664 }
1665 
1666 /*
1667  * update dirty bits from pmap/mmu.  May not block.
1668  */
1669 void
1670 vm_page_test_dirty(vm_page_t m)
1671 {
1672 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1673 		vm_page_dirty(m);
1674 	}
1675 }
1676 
1677 int so_zerocp_fullpage = 0;
1678 
1679 void
1680 vm_page_cowfault(vm_page_t m)
1681 {
1682 	vm_page_t mnew;
1683 	vm_object_t object;
1684 	vm_pindex_t pindex;
1685 
1686 	object = m->object;
1687 	pindex = m->pindex;
1688 	vm_page_busy(m);
1689 
1690  retry_alloc:
1691 	vm_page_remove(m);
1692 	/*
1693 	 * An interrupt allocation is requested because the page
1694 	 * queues lock is held.
1695 	 */
1696 	mnew = vm_page_alloc(object, pindex, VM_ALLOC_INTERRUPT);
1697 	if (mnew == NULL) {
1698 		vm_page_insert(m, object, pindex);
1699 		vm_page_unlock_queues();
1700 		VM_OBJECT_UNLOCK(object);
1701 		VM_WAIT;
1702 		VM_OBJECT_LOCK(object);
1703 		vm_page_lock_queues();
1704 		goto retry_alloc;
1705 	}
1706 
1707 	if (m->cow == 0) {
1708 		/*
1709 		 * check to see if we raced with an xmit complete when
1710 		 * waiting to allocate a page.  If so, put things back
1711 		 * the way they were
1712 		 */
1713 		vm_page_busy(mnew);
1714 		vm_page_free(mnew);
1715 		vm_page_insert(m, object, pindex);
1716 	} else { /* clear COW & copy page */
1717 		if (!so_zerocp_fullpage)
1718 			pmap_copy_page(m, mnew);
1719 		mnew->valid = VM_PAGE_BITS_ALL;
1720 		vm_page_dirty(mnew);
1721 		vm_page_flag_clear(mnew, PG_BUSY);
1722 	}
1723 }
1724 
1725 void
1726 vm_page_cowclear(vm_page_t m)
1727 {
1728 
1729 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1730 	if (m->cow) {
1731 		m->cow--;
1732 		/*
1733 		 * let vm_fault add back write permission  lazily
1734 		 */
1735 	}
1736 	/*
1737 	 *  sf_buf_free() will free the page, so we needn't do it here
1738 	 */
1739 }
1740 
1741 void
1742 vm_page_cowsetup(vm_page_t m)
1743 {
1744 
1745 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1746 	m->cow++;
1747 	pmap_page_protect(m, VM_PROT_READ);
1748 }
1749 
1750 #include "opt_ddb.h"
1751 #ifdef DDB
1752 #include <sys/kernel.h>
1753 
1754 #include <ddb/ddb.h>
1755 
1756 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1757 {
1758 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1759 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1760 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1761 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1762 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1763 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1764 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1765 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1766 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1767 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1768 }
1769 
1770 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1771 {
1772 	int i;
1773 	db_printf("PQ_FREE:");
1774 	for (i = 0; i < PQ_L2_SIZE; i++) {
1775 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1776 	}
1777 	db_printf("\n");
1778 
1779 	db_printf("PQ_CACHE:");
1780 	for (i = 0; i < PQ_L2_SIZE; i++) {
1781 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1782 	}
1783 	db_printf("\n");
1784 
1785 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1786 		vm_page_queues[PQ_ACTIVE].lcnt,
1787 		vm_page_queues[PQ_INACTIVE].lcnt);
1788 }
1789 #endif /* DDB */
1790