xref: /freebsd/sys/vm/vm_page.c (revision 0f27aaf940f2fa5a6540285537b33115a96161a4)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * The Mach Operating System project at Carnegie-Mellon University.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34  */
35 
36 /*-
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *			GENERAL RULES ON VM_PAGE MANIPULATION
65  *
66  *	- a pageq mutex is required when adding or removing a page from a
67  *	  page queue (vm_page_queue[]), regardless of other mutexes or the
68  *	  busy state of a page.
69  *
70  *	- a hash chain mutex is required when associating or disassociating
71  *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
72  *	  regardless of other mutexes or the busy state of a page.
73  *
74  *	- either a hash chain mutex OR a busied page is required in order
75  *	  to modify the page flags.  A hash chain mutex must be obtained in
76  *	  order to busy a page.  A page's flags cannot be modified by a
77  *	  hash chain mutex if the page is marked busy.
78  *
79  *	- The object memq mutex is held when inserting or removing
80  *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
81  *	  is different from the object's main mutex.
82  *
83  *	Generally speaking, you have to be aware of side effects when running
84  *	vm_page ops.  A vm_page_lookup() will return with the hash chain
85  *	locked, whether it was able to lookup the page or not.  vm_page_free(),
86  *	vm_page_cache(), vm_page_activate(), and a number of other routines
87  *	will release the hash chain mutex for you.  Intermediate manipulation
88  *	routines such as vm_page_flag_set() expect the hash chain to be held
89  *	on entry and the hash chain will remain held on return.
90  *
91  *	pageq scanning can only occur with the pageq in question locked.
92  *	We have a known bottleneck with the active queue, but the cache
93  *	and free queues are actually arrays already.
94  */
95 
96 /*
97  *	Resident memory management module.
98  */
99 
100 #include <sys/cdefs.h>
101 __FBSDID("$FreeBSD$");
102 
103 #include "opt_vm.h"
104 
105 #include <sys/param.h>
106 #include <sys/systm.h>
107 #include <sys/lock.h>
108 #include <sys/kernel.h>
109 #include <sys/limits.h>
110 #include <sys/malloc.h>
111 #include <sys/msgbuf.h>
112 #include <sys/mutex.h>
113 #include <sys/proc.h>
114 #include <sys/sysctl.h>
115 #include <sys/vmmeter.h>
116 #include <sys/vnode.h>
117 
118 #include <vm/vm.h>
119 #include <vm/pmap.h>
120 #include <vm/vm_param.h>
121 #include <vm/vm_kern.h>
122 #include <vm/vm_object.h>
123 #include <vm/vm_page.h>
124 #include <vm/vm_pageout.h>
125 #include <vm/vm_pager.h>
126 #include <vm/vm_phys.h>
127 #include <vm/vm_reserv.h>
128 #include <vm/vm_extern.h>
129 #include <vm/uma.h>
130 #include <vm/uma_int.h>
131 
132 #include <machine/md_var.h>
133 
134 /*
135  *	Associated with page of user-allocatable memory is a
136  *	page structure.
137  */
138 
139 struct vpgqueues vm_page_queues[PQ_COUNT];
140 struct vpglocks vm_page_queue_lock;
141 struct vpglocks vm_page_queue_free_lock;
142 
143 struct vpglocks	pa_lock[PA_LOCK_COUNT];
144 
145 vm_page_t vm_page_array = 0;
146 int vm_page_array_size = 0;
147 long first_page = 0;
148 int vm_page_zero_count = 0;
149 
150 static int boot_pages = UMA_BOOT_PAGES;
151 TUNABLE_INT("vm.boot_pages", &boot_pages);
152 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
153 	"number of pages allocated for bootstrapping the VM system");
154 
155 static int pa_tryrelock_race;
156 SYSCTL_INT(_vm, OID_AUTO, tryrelock_race, CTLFLAG_RD,
157     &pa_tryrelock_race, 0, "Number of tryrelock race cases");
158 
159 static int pa_tryrelock_restart;
160 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
161     &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
162 
163 static void vm_page_clear_dirty_mask(vm_page_t m, int pagebits);
164 static void vm_page_queue_remove(int queue, vm_page_t m);
165 static void vm_page_enqueue(int queue, vm_page_t m);
166 
167 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
168 #if PAGE_SIZE == 32768
169 #ifdef CTASSERT
170 CTASSERT(sizeof(u_long) >= 8);
171 #endif
172 #endif
173 
174 /*
175  * Try to acquire a physical address lock while a pmap is locked.  If we
176  * fail to trylock we unlock and lock the pmap directly and cache the
177  * locked pa in *locked.  The caller should then restart their loop in case
178  * the virtual to physical mapping has changed.
179  */
180 int
181 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
182 {
183 	vm_paddr_t lockpa;
184 	uint32_t gen_count;
185 
186 	gen_count = pmap->pm_gen_count;
187 	lockpa = *locked;
188 	*locked = pa;
189 	if (lockpa) {
190 		PA_LOCK_ASSERT(lockpa, MA_OWNED);
191 		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
192 			return (0);
193 		PA_UNLOCK(lockpa);
194 	}
195 	if (PA_TRYLOCK(pa))
196 		return (0);
197 	PMAP_UNLOCK(pmap);
198 	atomic_add_int(&pa_tryrelock_restart, 1);
199 	PA_LOCK(pa);
200 	PMAP_LOCK(pmap);
201 
202 	if (pmap->pm_gen_count != gen_count + 1) {
203 		pmap->pm_retries++;
204 		atomic_add_int(&pa_tryrelock_race, 1);
205 		return (EAGAIN);
206 	}
207 	return (0);
208 }
209 
210 /*
211  *	vm_set_page_size:
212  *
213  *	Sets the page size, perhaps based upon the memory
214  *	size.  Must be called before any use of page-size
215  *	dependent functions.
216  */
217 void
218 vm_set_page_size(void)
219 {
220 	if (cnt.v_page_size == 0)
221 		cnt.v_page_size = PAGE_SIZE;
222 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
223 		panic("vm_set_page_size: page size not a power of two");
224 }
225 
226 /*
227  *	vm_page_blacklist_lookup:
228  *
229  *	See if a physical address in this page has been listed
230  *	in the blacklist tunable.  Entries in the tunable are
231  *	separated by spaces or commas.  If an invalid integer is
232  *	encountered then the rest of the string is skipped.
233  */
234 static int
235 vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
236 {
237 	vm_paddr_t bad;
238 	char *cp, *pos;
239 
240 	for (pos = list; *pos != '\0'; pos = cp) {
241 		bad = strtoq(pos, &cp, 0);
242 		if (*cp != '\0') {
243 			if (*cp == ' ' || *cp == ',') {
244 				cp++;
245 				if (cp == pos)
246 					continue;
247 			} else
248 				break;
249 		}
250 		if (pa == trunc_page(bad))
251 			return (1);
252 	}
253 	return (0);
254 }
255 
256 /*
257  *	vm_page_startup:
258  *
259  *	Initializes the resident memory module.
260  *
261  *	Allocates memory for the page cells, and
262  *	for the object/offset-to-page hash table headers.
263  *	Each page cell is initialized and placed on the free list.
264  */
265 vm_offset_t
266 vm_page_startup(vm_offset_t vaddr)
267 {
268 	vm_offset_t mapped;
269 	vm_paddr_t page_range;
270 	vm_paddr_t new_end;
271 	int i;
272 	vm_paddr_t pa;
273 	vm_paddr_t last_pa;
274 	char *list;
275 
276 	/* the biggest memory array is the second group of pages */
277 	vm_paddr_t end;
278 	vm_paddr_t biggestsize;
279 	vm_paddr_t low_water, high_water;
280 	int biggestone;
281 
282 	biggestsize = 0;
283 	biggestone = 0;
284 	vaddr = round_page(vaddr);
285 
286 	for (i = 0; phys_avail[i + 1]; i += 2) {
287 		phys_avail[i] = round_page(phys_avail[i]);
288 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
289 	}
290 
291 	low_water = phys_avail[0];
292 	high_water = phys_avail[1];
293 
294 	for (i = 0; phys_avail[i + 1]; i += 2) {
295 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
296 
297 		if (size > biggestsize) {
298 			biggestone = i;
299 			biggestsize = size;
300 		}
301 		if (phys_avail[i] < low_water)
302 			low_water = phys_avail[i];
303 		if (phys_avail[i + 1] > high_water)
304 			high_water = phys_avail[i + 1];
305 	}
306 
307 #ifdef XEN
308 	low_water = 0;
309 #endif
310 
311 	end = phys_avail[biggestone+1];
312 
313 	/*
314 	 * Initialize the locks.
315 	 */
316 	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
317 	    MTX_RECURSE);
318 	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
319 	    MTX_DEF);
320 
321 	/* Setup page locks. */
322 	for (i = 0; i < PA_LOCK_COUNT; i++)
323 		mtx_init(&pa_lock[i].data, "page lock", NULL, MTX_DEF);
324 
325 	/*
326 	 * Initialize the queue headers for the hold queue, the active queue,
327 	 * and the inactive queue.
328 	 */
329 	for (i = 0; i < PQ_COUNT; i++)
330 		TAILQ_INIT(&vm_page_queues[i].pl);
331 	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
332 	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
333 	vm_page_queues[PQ_HOLD].cnt = &cnt.v_active_count;
334 
335 	/*
336 	 * Allocate memory for use when boot strapping the kernel memory
337 	 * allocator.
338 	 */
339 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
340 	new_end = trunc_page(new_end);
341 	mapped = pmap_map(&vaddr, new_end, end,
342 	    VM_PROT_READ | VM_PROT_WRITE);
343 	bzero((void *)mapped, end - new_end);
344 	uma_startup((void *)mapped, boot_pages);
345 
346 #if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \
347     defined(__mips__)
348 	/*
349 	 * Allocate a bitmap to indicate that a random physical page
350 	 * needs to be included in a minidump.
351 	 *
352 	 * The amd64 port needs this to indicate which direct map pages
353 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
354 	 *
355 	 * However, i386 still needs this workspace internally within the
356 	 * minidump code.  In theory, they are not needed on i386, but are
357 	 * included should the sf_buf code decide to use them.
358 	 */
359 	last_pa = 0;
360 	for (i = 0; dump_avail[i + 1] != 0; i += 2)
361 		if (dump_avail[i + 1] > last_pa)
362 			last_pa = dump_avail[i + 1];
363 	page_range = last_pa / PAGE_SIZE;
364 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
365 	new_end -= vm_page_dump_size;
366 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
367 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
368 	bzero((void *)vm_page_dump, vm_page_dump_size);
369 #endif
370 #ifdef __amd64__
371 	/*
372 	 * Request that the physical pages underlying the message buffer be
373 	 * included in a crash dump.  Since the message buffer is accessed
374 	 * through the direct map, they are not automatically included.
375 	 */
376 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
377 	last_pa = pa + round_page(msgbufsize);
378 	while (pa < last_pa) {
379 		dump_add_page(pa);
380 		pa += PAGE_SIZE;
381 	}
382 #endif
383 	/*
384 	 * Compute the number of pages of memory that will be available for
385 	 * use (taking into account the overhead of a page structure per
386 	 * page).
387 	 */
388 	first_page = low_water / PAGE_SIZE;
389 #ifdef VM_PHYSSEG_SPARSE
390 	page_range = 0;
391 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
392 		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
393 #elif defined(VM_PHYSSEG_DENSE)
394 	page_range = high_water / PAGE_SIZE - first_page;
395 #else
396 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
397 #endif
398 	end = new_end;
399 
400 	/*
401 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
402 	 */
403 	vaddr += PAGE_SIZE;
404 
405 	/*
406 	 * Initialize the mem entry structures now, and put them in the free
407 	 * queue.
408 	 */
409 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
410 	mapped = pmap_map(&vaddr, new_end, end,
411 	    VM_PROT_READ | VM_PROT_WRITE);
412 	vm_page_array = (vm_page_t) mapped;
413 #if VM_NRESERVLEVEL > 0
414 	/*
415 	 * Allocate memory for the reservation management system's data
416 	 * structures.
417 	 */
418 	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
419 #endif
420 #if defined(__amd64__) || defined(__mips__)
421 	/*
422 	 * pmap_map on amd64 and mips can come out of the direct-map, not kvm
423 	 * like i386, so the pages must be tracked for a crashdump to include
424 	 * this data.  This includes the vm_page_array and the early UMA
425 	 * bootstrap pages.
426 	 */
427 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
428 		dump_add_page(pa);
429 #endif
430 	phys_avail[biggestone + 1] = new_end;
431 
432 	/*
433 	 * Clear all of the page structures
434 	 */
435 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
436 	for (i = 0; i < page_range; i++)
437 		vm_page_array[i].order = VM_NFREEORDER;
438 	vm_page_array_size = page_range;
439 
440 	/*
441 	 * Initialize the physical memory allocator.
442 	 */
443 	vm_phys_init();
444 
445 	/*
446 	 * Add every available physical page that is not blacklisted to
447 	 * the free lists.
448 	 */
449 	cnt.v_page_count = 0;
450 	cnt.v_free_count = 0;
451 	list = getenv("vm.blacklist");
452 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
453 		pa = phys_avail[i];
454 		last_pa = phys_avail[i + 1];
455 		while (pa < last_pa) {
456 			if (list != NULL &&
457 			    vm_page_blacklist_lookup(list, pa))
458 				printf("Skipping page with pa 0x%jx\n",
459 				    (uintmax_t)pa);
460 			else
461 				vm_phys_add_page(pa);
462 			pa += PAGE_SIZE;
463 		}
464 	}
465 	freeenv(list);
466 #if VM_NRESERVLEVEL > 0
467 	/*
468 	 * Initialize the reservation management system.
469 	 */
470 	vm_reserv_init();
471 #endif
472 	return (vaddr);
473 }
474 
475 void
476 vm_page_flag_set(vm_page_t m, unsigned short bits)
477 {
478 
479 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
480 	/*
481 	 * The PG_WRITEABLE flag can only be set if the page is managed and
482 	 * VPO_BUSY.  Currently, this flag is only set by pmap_enter().
483 	 */
484 	KASSERT((bits & PG_WRITEABLE) == 0 ||
485 	    ((m->flags & (PG_UNMANAGED | PG_FICTITIOUS)) == 0 &&
486 	    (m->oflags & VPO_BUSY) != 0), ("PG_WRITEABLE and !VPO_BUSY"));
487 	m->flags |= bits;
488 }
489 
490 void
491 vm_page_flag_clear(vm_page_t m, unsigned short bits)
492 {
493 
494 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
495 	/*
496 	 * The PG_REFERENCED flag can only be cleared if the object
497 	 * containing the page is locked.
498 	 */
499 	KASSERT((bits & PG_REFERENCED) == 0 || VM_OBJECT_LOCKED(m->object),
500 	    ("PG_REFERENCED and !VM_OBJECT_LOCKED"));
501 	m->flags &= ~bits;
502 }
503 
504 void
505 vm_page_busy(vm_page_t m)
506 {
507 
508 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
509 	KASSERT((m->oflags & VPO_BUSY) == 0,
510 	    ("vm_page_busy: page already busy!!!"));
511 	m->oflags |= VPO_BUSY;
512 }
513 
514 /*
515  *      vm_page_flash:
516  *
517  *      wakeup anyone waiting for the page.
518  */
519 void
520 vm_page_flash(vm_page_t m)
521 {
522 
523 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
524 	if (m->oflags & VPO_WANTED) {
525 		m->oflags &= ~VPO_WANTED;
526 		wakeup(m);
527 	}
528 }
529 
530 /*
531  *      vm_page_wakeup:
532  *
533  *      clear the VPO_BUSY flag and wakeup anyone waiting for the
534  *      page.
535  *
536  */
537 void
538 vm_page_wakeup(vm_page_t m)
539 {
540 
541 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
542 	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
543 	m->oflags &= ~VPO_BUSY;
544 	vm_page_flash(m);
545 }
546 
547 void
548 vm_page_io_start(vm_page_t m)
549 {
550 
551 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
552 	m->busy++;
553 }
554 
555 void
556 vm_page_io_finish(vm_page_t m)
557 {
558 
559 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
560 	m->busy--;
561 	if (m->busy == 0)
562 		vm_page_flash(m);
563 }
564 
565 /*
566  * Keep page from being freed by the page daemon
567  * much of the same effect as wiring, except much lower
568  * overhead and should be used only for *very* temporary
569  * holding ("wiring").
570  */
571 void
572 vm_page_hold(vm_page_t mem)
573 {
574 
575 	vm_page_lock_assert(mem, MA_OWNED);
576         mem->hold_count++;
577 }
578 
579 void
580 vm_page_unhold(vm_page_t mem)
581 {
582 
583 	vm_page_lock_assert(mem, MA_OWNED);
584 	--mem->hold_count;
585 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
586 	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
587 		vm_page_free_toq(mem);
588 }
589 
590 /*
591  *	vm_page_unhold_pages:
592  *
593  *	Unhold each of the pages that is referenced by the given array.
594  */
595 void
596 vm_page_unhold_pages(vm_page_t *ma, int count)
597 {
598 	struct mtx *mtx, *new_mtx;
599 
600 	mtx = NULL;
601 	for (; count != 0; count--) {
602 		/*
603 		 * Avoid releasing and reacquiring the same page lock.
604 		 */
605 		new_mtx = vm_page_lockptr(*ma);
606 		if (mtx != new_mtx) {
607 			if (mtx != NULL)
608 				mtx_unlock(mtx);
609 			mtx = new_mtx;
610 			mtx_lock(mtx);
611 		}
612 		vm_page_unhold(*ma);
613 		ma++;
614 	}
615 	if (mtx != NULL)
616 		mtx_unlock(mtx);
617 }
618 
619 /*
620  *	vm_page_free:
621  *
622  *	Free a page.
623  */
624 void
625 vm_page_free(vm_page_t m)
626 {
627 
628 	m->flags &= ~PG_ZERO;
629 	vm_page_free_toq(m);
630 }
631 
632 /*
633  *	vm_page_free_zero:
634  *
635  *	Free a page to the zerod-pages queue
636  */
637 void
638 vm_page_free_zero(vm_page_t m)
639 {
640 
641 	m->flags |= PG_ZERO;
642 	vm_page_free_toq(m);
643 }
644 
645 /*
646  *	vm_page_sleep:
647  *
648  *	Sleep and release the page and page queues locks.
649  *
650  *	The object containing the given page must be locked.
651  */
652 void
653 vm_page_sleep(vm_page_t m, const char *msg)
654 {
655 
656 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
657 	if (mtx_owned(&vm_page_queue_mtx))
658 		vm_page_unlock_queues();
659 	if (mtx_owned(vm_page_lockptr(m)))
660 		vm_page_unlock(m);
661 
662 	/*
663 	 * It's possible that while we sleep, the page will get
664 	 * unbusied and freed.  If we are holding the object
665 	 * lock, we will assume we hold a reference to the object
666 	 * such that even if m->object changes, we can re-lock
667 	 * it.
668 	 */
669 	m->oflags |= VPO_WANTED;
670 	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
671 }
672 
673 /*
674  *	vm_page_dirty:
675  *
676  *	make page all dirty
677  */
678 void
679 vm_page_dirty(vm_page_t m)
680 {
681 
682 	KASSERT((m->flags & PG_CACHED) == 0,
683 	    ("vm_page_dirty: page in cache!"));
684 	KASSERT(!VM_PAGE_IS_FREE(m),
685 	    ("vm_page_dirty: page is free!"));
686 	KASSERT(m->valid == VM_PAGE_BITS_ALL,
687 	    ("vm_page_dirty: page is invalid!"));
688 	m->dirty = VM_PAGE_BITS_ALL;
689 }
690 
691 /*
692  *	vm_page_splay:
693  *
694  *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
695  *	the vm_page containing the given pindex.  If, however, that
696  *	pindex is not found in the vm_object, returns a vm_page that is
697  *	adjacent to the pindex, coming before or after it.
698  */
699 vm_page_t
700 vm_page_splay(vm_pindex_t pindex, vm_page_t root)
701 {
702 	struct vm_page dummy;
703 	vm_page_t lefttreemax, righttreemin, y;
704 
705 	if (root == NULL)
706 		return (root);
707 	lefttreemax = righttreemin = &dummy;
708 	for (;; root = y) {
709 		if (pindex < root->pindex) {
710 			if ((y = root->left) == NULL)
711 				break;
712 			if (pindex < y->pindex) {
713 				/* Rotate right. */
714 				root->left = y->right;
715 				y->right = root;
716 				root = y;
717 				if ((y = root->left) == NULL)
718 					break;
719 			}
720 			/* Link into the new root's right tree. */
721 			righttreemin->left = root;
722 			righttreemin = root;
723 		} else if (pindex > root->pindex) {
724 			if ((y = root->right) == NULL)
725 				break;
726 			if (pindex > y->pindex) {
727 				/* Rotate left. */
728 				root->right = y->left;
729 				y->left = root;
730 				root = y;
731 				if ((y = root->right) == NULL)
732 					break;
733 			}
734 			/* Link into the new root's left tree. */
735 			lefttreemax->right = root;
736 			lefttreemax = root;
737 		} else
738 			break;
739 	}
740 	/* Assemble the new root. */
741 	lefttreemax->right = root->left;
742 	righttreemin->left = root->right;
743 	root->left = dummy.right;
744 	root->right = dummy.left;
745 	return (root);
746 }
747 
748 /*
749  *	vm_page_insert:		[ internal use only ]
750  *
751  *	Inserts the given mem entry into the object and object list.
752  *
753  *	The pagetables are not updated but will presumably fault the page
754  *	in if necessary, or if a kernel page the caller will at some point
755  *	enter the page into the kernel's pmap.  We are not allowed to block
756  *	here so we *can't* do this anyway.
757  *
758  *	The object and page must be locked.
759  *	This routine may not block.
760  */
761 void
762 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
763 {
764 	vm_page_t root;
765 
766 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
767 	if (m->object != NULL)
768 		panic("vm_page_insert: page already inserted");
769 
770 	/*
771 	 * Record the object/offset pair in this page
772 	 */
773 	m->object = object;
774 	m->pindex = pindex;
775 
776 	/*
777 	 * Now link into the object's ordered list of backed pages.
778 	 */
779 	root = object->root;
780 	if (root == NULL) {
781 		m->left = NULL;
782 		m->right = NULL;
783 		TAILQ_INSERT_TAIL(&object->memq, m, listq);
784 	} else {
785 		root = vm_page_splay(pindex, root);
786 		if (pindex < root->pindex) {
787 			m->left = root->left;
788 			m->right = root;
789 			root->left = NULL;
790 			TAILQ_INSERT_BEFORE(root, m, listq);
791 		} else if (pindex == root->pindex)
792 			panic("vm_page_insert: offset already allocated");
793 		else {
794 			m->right = root->right;
795 			m->left = root;
796 			root->right = NULL;
797 			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
798 		}
799 	}
800 	object->root = m;
801 
802 	/*
803 	 * show that the object has one more resident page.
804 	 */
805 	object->resident_page_count++;
806 	/*
807 	 * Hold the vnode until the last page is released.
808 	 */
809 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
810 		vhold((struct vnode *)object->handle);
811 
812 	/*
813 	 * Since we are inserting a new and possibly dirty page,
814 	 * update the object's OBJ_MIGHTBEDIRTY flag.
815 	 */
816 	if (m->flags & PG_WRITEABLE)
817 		vm_object_set_writeable_dirty(object);
818 }
819 
820 /*
821  *	vm_page_remove:
822  *				NOTE: used by device pager as well -wfj
823  *
824  *	Removes the given mem entry from the object/offset-page
825  *	table and the object page list, but do not invalidate/terminate
826  *	the backing store.
827  *
828  *	The object and page must be locked.
829  *	The underlying pmap entry (if any) is NOT removed here.
830  *	This routine may not block.
831  */
832 void
833 vm_page_remove(vm_page_t m)
834 {
835 	vm_object_t object;
836 	vm_page_t root;
837 
838 	if ((m->flags & PG_UNMANAGED) == 0)
839 		vm_page_lock_assert(m, MA_OWNED);
840 	if ((object = m->object) == NULL)
841 		return;
842 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
843 	if (m->oflags & VPO_BUSY) {
844 		m->oflags &= ~VPO_BUSY;
845 		vm_page_flash(m);
846 	}
847 
848 	/*
849 	 * Now remove from the object's list of backed pages.
850 	 */
851 	if (m != object->root)
852 		vm_page_splay(m->pindex, object->root);
853 	if (m->left == NULL)
854 		root = m->right;
855 	else {
856 		root = vm_page_splay(m->pindex, m->left);
857 		root->right = m->right;
858 	}
859 	object->root = root;
860 	TAILQ_REMOVE(&object->memq, m, listq);
861 
862 	/*
863 	 * And show that the object has one fewer resident page.
864 	 */
865 	object->resident_page_count--;
866 	/*
867 	 * The vnode may now be recycled.
868 	 */
869 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
870 		vdrop((struct vnode *)object->handle);
871 
872 	m->object = NULL;
873 }
874 
875 /*
876  *	vm_page_lookup:
877  *
878  *	Returns the page associated with the object/offset
879  *	pair specified; if none is found, NULL is returned.
880  *
881  *	The object must be locked.
882  *	This routine may not block.
883  *	This is a critical path routine
884  */
885 vm_page_t
886 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
887 {
888 	vm_page_t m;
889 
890 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
891 	if ((m = object->root) != NULL && m->pindex != pindex) {
892 		m = vm_page_splay(pindex, m);
893 		if ((object->root = m)->pindex != pindex)
894 			m = NULL;
895 	}
896 	return (m);
897 }
898 
899 /*
900  *	vm_page_find_least:
901  *
902  *	Returns the page associated with the object with least pindex
903  *	greater than or equal to the parameter pindex, or NULL.
904  *
905  *	The object must be locked.
906  *	The routine may not block.
907  */
908 vm_page_t
909 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
910 {
911 	vm_page_t m;
912 
913 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
914 	if ((m = TAILQ_FIRST(&object->memq)) != NULL) {
915 		if (m->pindex < pindex) {
916 			m = vm_page_splay(pindex, object->root);
917 			if ((object->root = m)->pindex < pindex)
918 				m = TAILQ_NEXT(m, listq);
919 		}
920 	}
921 	return (m);
922 }
923 
924 /*
925  * Returns the given page's successor (by pindex) within the object if it is
926  * resident; if none is found, NULL is returned.
927  *
928  * The object must be locked.
929  */
930 vm_page_t
931 vm_page_next(vm_page_t m)
932 {
933 	vm_page_t next;
934 
935 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
936 	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
937 	    next->pindex != m->pindex + 1)
938 		next = NULL;
939 	return (next);
940 }
941 
942 /*
943  * Returns the given page's predecessor (by pindex) within the object if it is
944  * resident; if none is found, NULL is returned.
945  *
946  * The object must be locked.
947  */
948 vm_page_t
949 vm_page_prev(vm_page_t m)
950 {
951 	vm_page_t prev;
952 
953 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
954 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
955 	    prev->pindex != m->pindex - 1)
956 		prev = NULL;
957 	return (prev);
958 }
959 
960 /*
961  *	vm_page_rename:
962  *
963  *	Move the given memory entry from its
964  *	current object to the specified target object/offset.
965  *
966  *	The object must be locked.
967  *	This routine may not block.
968  *
969  *	Note: swap associated with the page must be invalidated by the move.  We
970  *	      have to do this for several reasons:  (1) we aren't freeing the
971  *	      page, (2) we are dirtying the page, (3) the VM system is probably
972  *	      moving the page from object A to B, and will then later move
973  *	      the backing store from A to B and we can't have a conflict.
974  *
975  *	Note: we *always* dirty the page.  It is necessary both for the
976  *	      fact that we moved it, and because we may be invalidating
977  *	      swap.  If the page is on the cache, we have to deactivate it
978  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
979  *	      on the cache.
980  */
981 void
982 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
983 {
984 
985 	vm_page_remove(m);
986 	vm_page_insert(m, new_object, new_pindex);
987 	vm_page_dirty(m);
988 }
989 
990 /*
991  *	Convert all of the given object's cached pages that have a
992  *	pindex within the given range into free pages.  If the value
993  *	zero is given for "end", then the range's upper bound is
994  *	infinity.  If the given object is backed by a vnode and it
995  *	transitions from having one or more cached pages to none, the
996  *	vnode's hold count is reduced.
997  */
998 void
999 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1000 {
1001 	vm_page_t m, m_next;
1002 	boolean_t empty;
1003 
1004 	mtx_lock(&vm_page_queue_free_mtx);
1005 	if (__predict_false(object->cache == NULL)) {
1006 		mtx_unlock(&vm_page_queue_free_mtx);
1007 		return;
1008 	}
1009 	m = object->cache = vm_page_splay(start, object->cache);
1010 	if (m->pindex < start) {
1011 		if (m->right == NULL)
1012 			m = NULL;
1013 		else {
1014 			m_next = vm_page_splay(start, m->right);
1015 			m_next->left = m;
1016 			m->right = NULL;
1017 			m = object->cache = m_next;
1018 		}
1019 	}
1020 
1021 	/*
1022 	 * At this point, "m" is either (1) a reference to the page
1023 	 * with the least pindex that is greater than or equal to
1024 	 * "start" or (2) NULL.
1025 	 */
1026 	for (; m != NULL && (m->pindex < end || end == 0); m = m_next) {
1027 		/*
1028 		 * Find "m"'s successor and remove "m" from the
1029 		 * object's cache.
1030 		 */
1031 		if (m->right == NULL) {
1032 			object->cache = m->left;
1033 			m_next = NULL;
1034 		} else {
1035 			m_next = vm_page_splay(start, m->right);
1036 			m_next->left = m->left;
1037 			object->cache = m_next;
1038 		}
1039 		/* Convert "m" to a free page. */
1040 		m->object = NULL;
1041 		m->valid = 0;
1042 		/* Clear PG_CACHED and set PG_FREE. */
1043 		m->flags ^= PG_CACHED | PG_FREE;
1044 		KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
1045 		    ("vm_page_cache_free: page %p has inconsistent flags", m));
1046 		cnt.v_cache_count--;
1047 		cnt.v_free_count++;
1048 	}
1049 	empty = object->cache == NULL;
1050 	mtx_unlock(&vm_page_queue_free_mtx);
1051 	if (object->type == OBJT_VNODE && empty)
1052 		vdrop(object->handle);
1053 }
1054 
1055 /*
1056  *	Returns the cached page that is associated with the given
1057  *	object and offset.  If, however, none exists, returns NULL.
1058  *
1059  *	The free page queue must be locked.
1060  */
1061 static inline vm_page_t
1062 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1063 {
1064 	vm_page_t m;
1065 
1066 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1067 	if ((m = object->cache) != NULL && m->pindex != pindex) {
1068 		m = vm_page_splay(pindex, m);
1069 		if ((object->cache = m)->pindex != pindex)
1070 			m = NULL;
1071 	}
1072 	return (m);
1073 }
1074 
1075 /*
1076  *	Remove the given cached page from its containing object's
1077  *	collection of cached pages.
1078  *
1079  *	The free page queue must be locked.
1080  */
1081 void
1082 vm_page_cache_remove(vm_page_t m)
1083 {
1084 	vm_object_t object;
1085 	vm_page_t root;
1086 
1087 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1088 	KASSERT((m->flags & PG_CACHED) != 0,
1089 	    ("vm_page_cache_remove: page %p is not cached", m));
1090 	object = m->object;
1091 	if (m != object->cache) {
1092 		root = vm_page_splay(m->pindex, object->cache);
1093 		KASSERT(root == m,
1094 		    ("vm_page_cache_remove: page %p is not cached in object %p",
1095 		    m, object));
1096 	}
1097 	if (m->left == NULL)
1098 		root = m->right;
1099 	else if (m->right == NULL)
1100 		root = m->left;
1101 	else {
1102 		root = vm_page_splay(m->pindex, m->left);
1103 		root->right = m->right;
1104 	}
1105 	object->cache = root;
1106 	m->object = NULL;
1107 	cnt.v_cache_count--;
1108 }
1109 
1110 /*
1111  *	Transfer all of the cached pages with offset greater than or
1112  *	equal to 'offidxstart' from the original object's cache to the
1113  *	new object's cache.  However, any cached pages with offset
1114  *	greater than or equal to the new object's size are kept in the
1115  *	original object.  Initially, the new object's cache must be
1116  *	empty.  Offset 'offidxstart' in the original object must
1117  *	correspond to offset zero in the new object.
1118  *
1119  *	The new object must be locked.
1120  */
1121 void
1122 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1123     vm_object_t new_object)
1124 {
1125 	vm_page_t m, m_next;
1126 
1127 	/*
1128 	 * Insertion into an object's collection of cached pages
1129 	 * requires the object to be locked.  In contrast, removal does
1130 	 * not.
1131 	 */
1132 	VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
1133 	KASSERT(new_object->cache == NULL,
1134 	    ("vm_page_cache_transfer: object %p has cached pages",
1135 	    new_object));
1136 	mtx_lock(&vm_page_queue_free_mtx);
1137 	if ((m = orig_object->cache) != NULL) {
1138 		/*
1139 		 * Transfer all of the pages with offset greater than or
1140 		 * equal to 'offidxstart' from the original object's
1141 		 * cache to the new object's cache.
1142 		 */
1143 		m = vm_page_splay(offidxstart, m);
1144 		if (m->pindex < offidxstart) {
1145 			orig_object->cache = m;
1146 			new_object->cache = m->right;
1147 			m->right = NULL;
1148 		} else {
1149 			orig_object->cache = m->left;
1150 			new_object->cache = m;
1151 			m->left = NULL;
1152 		}
1153 		while ((m = new_object->cache) != NULL) {
1154 			if ((m->pindex - offidxstart) >= new_object->size) {
1155 				/*
1156 				 * Return all of the cached pages with
1157 				 * offset greater than or equal to the
1158 				 * new object's size to the original
1159 				 * object's cache.
1160 				 */
1161 				new_object->cache = m->left;
1162 				m->left = orig_object->cache;
1163 				orig_object->cache = m;
1164 				break;
1165 			}
1166 			m_next = vm_page_splay(m->pindex, m->right);
1167 			/* Update the page's object and offset. */
1168 			m->object = new_object;
1169 			m->pindex -= offidxstart;
1170 			if (m_next == NULL)
1171 				break;
1172 			m->right = NULL;
1173 			m_next->left = m;
1174 			new_object->cache = m_next;
1175 		}
1176 		KASSERT(new_object->cache == NULL ||
1177 		    new_object->type == OBJT_SWAP,
1178 		    ("vm_page_cache_transfer: object %p's type is incompatible"
1179 		    " with cached pages", new_object));
1180 	}
1181 	mtx_unlock(&vm_page_queue_free_mtx);
1182 }
1183 
1184 /*
1185  *	vm_page_alloc:
1186  *
1187  *	Allocate and return a memory cell associated
1188  *	with this VM object/offset pair.
1189  *
1190  *	The caller must always specify an allocation class.
1191  *
1192  *	allocation classes:
1193  *	VM_ALLOC_NORMAL		normal process request
1194  *	VM_ALLOC_SYSTEM		system *really* needs a page
1195  *	VM_ALLOC_INTERRUPT	interrupt time request
1196  *
1197  *	optional allocation flags:
1198  *	VM_ALLOC_ZERO		prefer a zeroed page
1199  *	VM_ALLOC_WIRED		wire the allocated page
1200  *	VM_ALLOC_NOOBJ		page is not associated with a vm object
1201  *	VM_ALLOC_NOBUSY		do not set the page busy
1202  *	VM_ALLOC_IFCACHED	return page only if it is cached
1203  *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1204  *				is cached
1205  *
1206  *	This routine may not sleep.
1207  */
1208 vm_page_t
1209 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1210 {
1211 	struct vnode *vp = NULL;
1212 	vm_object_t m_object;
1213 	vm_page_t m;
1214 	int flags, page_req;
1215 
1216 	if ((req & VM_ALLOC_NOOBJ) == 0) {
1217 		KASSERT(object != NULL,
1218 		    ("vm_page_alloc: NULL object."));
1219 		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1220 	}
1221 
1222 	page_req = req & VM_ALLOC_CLASS_MASK;
1223 
1224 	/*
1225 	 * The pager is allowed to eat deeper into the free page list.
1226 	 */
1227 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT))
1228 		page_req = VM_ALLOC_SYSTEM;
1229 
1230 	mtx_lock(&vm_page_queue_free_mtx);
1231 	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1232 	    (page_req == VM_ALLOC_SYSTEM &&
1233 	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1234 	    (page_req == VM_ALLOC_INTERRUPT &&
1235 	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1236 		/*
1237 		 * Allocate from the free queue if the number of free pages
1238 		 * exceeds the minimum for the request class.
1239 		 */
1240 		if (object != NULL &&
1241 		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1242 			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1243 				mtx_unlock(&vm_page_queue_free_mtx);
1244 				return (NULL);
1245 			}
1246 			if (vm_phys_unfree_page(m))
1247 				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1248 #if VM_NRESERVLEVEL > 0
1249 			else if (!vm_reserv_reactivate_page(m))
1250 #else
1251 			else
1252 #endif
1253 				panic("vm_page_alloc: cache page %p is missing"
1254 				    " from the free queue", m);
1255 		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1256 			mtx_unlock(&vm_page_queue_free_mtx);
1257 			return (NULL);
1258 #if VM_NRESERVLEVEL > 0
1259 		} else if (object == NULL || object->type == OBJT_DEVICE ||
1260 		    object->type == OBJT_SG ||
1261 		    (object->flags & OBJ_COLORED) == 0 ||
1262 		    (m = vm_reserv_alloc_page(object, pindex)) == NULL) {
1263 #else
1264 		} else {
1265 #endif
1266 			m = vm_phys_alloc_pages(object != NULL ?
1267 			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1268 #if VM_NRESERVLEVEL > 0
1269 			if (m == NULL && vm_reserv_reclaim_inactive()) {
1270 				m = vm_phys_alloc_pages(object != NULL ?
1271 				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1272 				    0);
1273 			}
1274 #endif
1275 		}
1276 	} else {
1277 		/*
1278 		 * Not allocatable, give up.
1279 		 */
1280 		mtx_unlock(&vm_page_queue_free_mtx);
1281 		atomic_add_int(&vm_pageout_deficit,
1282 		    MAX((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1283 		pagedaemon_wakeup();
1284 		return (NULL);
1285 	}
1286 
1287 	/*
1288 	 *  At this point we had better have found a good page.
1289 	 */
1290 
1291 	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1292 	KASSERT(m->queue == PQ_NONE,
1293 	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1294 	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1295 	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1296 	KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m));
1297 	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1298 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1299 	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1300 	    pmap_page_get_memattr(m)));
1301 	if ((m->flags & PG_CACHED) != 0) {
1302 		KASSERT(m->valid != 0,
1303 		    ("vm_page_alloc: cached page %p is invalid", m));
1304 		if (m->object == object && m->pindex == pindex)
1305 	  		cnt.v_reactivated++;
1306 		else
1307 			m->valid = 0;
1308 		m_object = m->object;
1309 		vm_page_cache_remove(m);
1310 		if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
1311 			vp = m_object->handle;
1312 	} else {
1313 		KASSERT(VM_PAGE_IS_FREE(m),
1314 		    ("vm_page_alloc: page %p is not free", m));
1315 		KASSERT(m->valid == 0,
1316 		    ("vm_page_alloc: free page %p is valid", m));
1317 		cnt.v_free_count--;
1318 	}
1319 
1320 	/*
1321 	 * Only the PG_ZERO flag is inherited.  The PG_CACHED or PG_FREE flag
1322 	 * must be cleared before the free page queues lock is released.
1323 	 */
1324 	flags = 0;
1325 	if (m->flags & PG_ZERO) {
1326 		vm_page_zero_count--;
1327 		if (req & VM_ALLOC_ZERO)
1328 			flags = PG_ZERO;
1329 	}
1330 	if (object == NULL || object->type == OBJT_PHYS)
1331 		flags |= PG_UNMANAGED;
1332 	m->flags = flags;
1333 	mtx_unlock(&vm_page_queue_free_mtx);
1334 	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
1335 		m->oflags = 0;
1336 	else
1337 		m->oflags = VPO_BUSY;
1338 	if (req & VM_ALLOC_WIRED) {
1339 		/*
1340 		 * The page lock is not required for wiring a page until that
1341 		 * page is inserted into the object.
1342 		 */
1343 		atomic_add_int(&cnt.v_wire_count, 1);
1344 		m->wire_count = 1;
1345 	}
1346 	m->act_count = 0;
1347 
1348 	if (object != NULL) {
1349 		/* Ignore device objects; the pager sets "memattr" for them. */
1350 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1351 		    object->type != OBJT_DEVICE && object->type != OBJT_SG)
1352 			pmap_page_set_memattr(m, object->memattr);
1353 		vm_page_insert(m, object, pindex);
1354 	} else
1355 		m->pindex = pindex;
1356 
1357 	/*
1358 	 * The following call to vdrop() must come after the above call
1359 	 * to vm_page_insert() in case both affect the same object and
1360 	 * vnode.  Otherwise, the affected vnode's hold count could
1361 	 * temporarily become zero.
1362 	 */
1363 	if (vp != NULL)
1364 		vdrop(vp);
1365 
1366 	/*
1367 	 * Don't wakeup too often - wakeup the pageout daemon when
1368 	 * we would be nearly out of memory.
1369 	 */
1370 	if (vm_paging_needed())
1371 		pagedaemon_wakeup();
1372 
1373 	return (m);
1374 }
1375 
1376 /*
1377  * Initialize a page that has been freshly dequeued from a freelist.
1378  * The caller has to drop the vnode returned, if it is not NULL.
1379  *
1380  * To be called with vm_page_queue_free_mtx held.
1381  */
1382 struct vnode *
1383 vm_page_alloc_init(vm_page_t m)
1384 {
1385 	struct vnode *drop;
1386 	vm_object_t m_object;
1387 
1388 	KASSERT(m->queue == PQ_NONE,
1389 	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1390 	    m, m->queue));
1391 	KASSERT(m->wire_count == 0,
1392 	    ("vm_page_alloc_init: page %p is wired", m));
1393 	KASSERT(m->hold_count == 0,
1394 	    ("vm_page_alloc_init: page %p is held", m));
1395 	KASSERT(m->busy == 0,
1396 	    ("vm_page_alloc_init: page %p is busy", m));
1397 	KASSERT(m->dirty == 0,
1398 	    ("vm_page_alloc_init: page %p is dirty", m));
1399 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1400 	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
1401 	    m, pmap_page_get_memattr(m)));
1402 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1403 	drop = NULL;
1404 	if ((m->flags & PG_CACHED) != 0) {
1405 		m->valid = 0;
1406 		m_object = m->object;
1407 		vm_page_cache_remove(m);
1408 		if (m_object->type == OBJT_VNODE &&
1409 		    m_object->cache == NULL)
1410 			drop = m_object->handle;
1411 	} else {
1412 		KASSERT(VM_PAGE_IS_FREE(m),
1413 		    ("vm_page_alloc_init: page %p is not free", m));
1414 		KASSERT(m->valid == 0,
1415 		    ("vm_page_alloc_init: free page %p is valid", m));
1416 		cnt.v_free_count--;
1417 	}
1418 	if (m->flags & PG_ZERO)
1419 		vm_page_zero_count--;
1420 	/* Don't clear the PG_ZERO flag; we'll need it later. */
1421 	m->flags = PG_UNMANAGED | (m->flags & PG_ZERO);
1422 	m->oflags = 0;
1423 	/* Unmanaged pages don't use "act_count". */
1424 	return (drop);
1425 }
1426 
1427 /*
1428  * 	vm_page_alloc_freelist:
1429  *
1430  *	Allocate a page from the specified freelist.
1431  *	Only the ALLOC_CLASS values in req are honored, other request flags
1432  *	are ignored.
1433  */
1434 vm_page_t
1435 vm_page_alloc_freelist(int flind, int req)
1436 {
1437 	struct vnode *drop;
1438 	vm_page_t m;
1439 	int page_req;
1440 
1441 	m = NULL;
1442 	page_req = req & VM_ALLOC_CLASS_MASK;
1443 	mtx_lock(&vm_page_queue_free_mtx);
1444 	/*
1445 	 * Do not allocate reserved pages unless the req has asked for it.
1446 	 */
1447 	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1448 	    (page_req == VM_ALLOC_SYSTEM &&
1449 	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1450 	    (page_req == VM_ALLOC_INTERRUPT &&
1451 	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1452 		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
1453 	}
1454 	if (m == NULL) {
1455 		mtx_unlock(&vm_page_queue_free_mtx);
1456 		return (NULL);
1457 	}
1458 	drop = vm_page_alloc_init(m);
1459 	mtx_unlock(&vm_page_queue_free_mtx);
1460 	if (drop)
1461 		vdrop(drop);
1462 	return (m);
1463 }
1464 
1465 /*
1466  *	vm_wait:	(also see VM_WAIT macro)
1467  *
1468  *	Block until free pages are available for allocation
1469  *	- Called in various places before memory allocations.
1470  */
1471 void
1472 vm_wait(void)
1473 {
1474 
1475 	mtx_lock(&vm_page_queue_free_mtx);
1476 	if (curproc == pageproc) {
1477 		vm_pageout_pages_needed = 1;
1478 		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1479 		    PDROP | PSWP, "VMWait", 0);
1480 	} else {
1481 		if (!vm_pages_needed) {
1482 			vm_pages_needed = 1;
1483 			wakeup(&vm_pages_needed);
1484 		}
1485 		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1486 		    "vmwait", 0);
1487 	}
1488 }
1489 
1490 /*
1491  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1492  *
1493  *	Block until free pages are available for allocation
1494  *	- Called only in vm_fault so that processes page faulting
1495  *	  can be easily tracked.
1496  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1497  *	  processes will be able to grab memory first.  Do not change
1498  *	  this balance without careful testing first.
1499  */
1500 void
1501 vm_waitpfault(void)
1502 {
1503 
1504 	mtx_lock(&vm_page_queue_free_mtx);
1505 	if (!vm_pages_needed) {
1506 		vm_pages_needed = 1;
1507 		wakeup(&vm_pages_needed);
1508 	}
1509 	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1510 	    "pfault", 0);
1511 }
1512 
1513 /*
1514  *	vm_page_requeue:
1515  *
1516  *	Move the given page to the tail of its present page queue.
1517  *
1518  *	The page queues must be locked.
1519  */
1520 void
1521 vm_page_requeue(vm_page_t m)
1522 {
1523 	struct vpgqueues *vpq;
1524 	int queue;
1525 
1526 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1527 	queue = m->queue;
1528 	KASSERT(queue != PQ_NONE,
1529 	    ("vm_page_requeue: page %p is not queued", m));
1530 	vpq = &vm_page_queues[queue];
1531 	TAILQ_REMOVE(&vpq->pl, m, pageq);
1532 	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1533 }
1534 
1535 /*
1536  *	vm_page_queue_remove:
1537  *
1538  *	Remove the given page from the specified queue.
1539  *
1540  *	The page and page queues must be locked.
1541  */
1542 static __inline void
1543 vm_page_queue_remove(int queue, vm_page_t m)
1544 {
1545 	struct vpgqueues *pq;
1546 
1547 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1548 	vm_page_lock_assert(m, MA_OWNED);
1549 	pq = &vm_page_queues[queue];
1550 	TAILQ_REMOVE(&pq->pl, m, pageq);
1551 	(*pq->cnt)--;
1552 }
1553 
1554 /*
1555  *	vm_pageq_remove:
1556  *
1557  *	Remove a page from its queue.
1558  *
1559  *	The given page must be locked.
1560  *	This routine may not block.
1561  */
1562 void
1563 vm_pageq_remove(vm_page_t m)
1564 {
1565 	int queue;
1566 
1567 	vm_page_lock_assert(m, MA_OWNED);
1568 	if ((queue = m->queue) != PQ_NONE) {
1569 		vm_page_lock_queues();
1570 		m->queue = PQ_NONE;
1571 		vm_page_queue_remove(queue, m);
1572 		vm_page_unlock_queues();
1573 	}
1574 }
1575 
1576 /*
1577  *	vm_page_enqueue:
1578  *
1579  *	Add the given page to the specified queue.
1580  *
1581  *	The page queues must be locked.
1582  */
1583 static void
1584 vm_page_enqueue(int queue, vm_page_t m)
1585 {
1586 	struct vpgqueues *vpq;
1587 
1588 	vpq = &vm_page_queues[queue];
1589 	m->queue = queue;
1590 	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1591 	++*vpq->cnt;
1592 }
1593 
1594 /*
1595  *	vm_page_activate:
1596  *
1597  *	Put the specified page on the active list (if appropriate).
1598  *	Ensure that act_count is at least ACT_INIT but do not otherwise
1599  *	mess with it.
1600  *
1601  *	The page must be locked.
1602  *	This routine may not block.
1603  */
1604 void
1605 vm_page_activate(vm_page_t m)
1606 {
1607 	int queue;
1608 
1609 	vm_page_lock_assert(m, MA_OWNED);
1610 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1611 	if ((queue = m->queue) != PQ_ACTIVE) {
1612 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1613 			if (m->act_count < ACT_INIT)
1614 				m->act_count = ACT_INIT;
1615 			vm_page_lock_queues();
1616 			if (queue != PQ_NONE)
1617 				vm_page_queue_remove(queue, m);
1618 			vm_page_enqueue(PQ_ACTIVE, m);
1619 			vm_page_unlock_queues();
1620 		} else
1621 			KASSERT(queue == PQ_NONE,
1622 			    ("vm_page_activate: wired page %p is queued", m));
1623 	} else {
1624 		if (m->act_count < ACT_INIT)
1625 			m->act_count = ACT_INIT;
1626 	}
1627 }
1628 
1629 /*
1630  *	vm_page_free_wakeup:
1631  *
1632  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1633  *	routine is called when a page has been added to the cache or free
1634  *	queues.
1635  *
1636  *	The page queues must be locked.
1637  *	This routine may not block.
1638  */
1639 static inline void
1640 vm_page_free_wakeup(void)
1641 {
1642 
1643 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1644 	/*
1645 	 * if pageout daemon needs pages, then tell it that there are
1646 	 * some free.
1647 	 */
1648 	if (vm_pageout_pages_needed &&
1649 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1650 		wakeup(&vm_pageout_pages_needed);
1651 		vm_pageout_pages_needed = 0;
1652 	}
1653 	/*
1654 	 * wakeup processes that are waiting on memory if we hit a
1655 	 * high water mark. And wakeup scheduler process if we have
1656 	 * lots of memory. this process will swapin processes.
1657 	 */
1658 	if (vm_pages_needed && !vm_page_count_min()) {
1659 		vm_pages_needed = 0;
1660 		wakeup(&cnt.v_free_count);
1661 	}
1662 }
1663 
1664 /*
1665  *	vm_page_free_toq:
1666  *
1667  *	Returns the given page to the free list,
1668  *	disassociating it with any VM object.
1669  *
1670  *	Object and page must be locked prior to entry.
1671  *	This routine may not block.
1672  */
1673 
1674 void
1675 vm_page_free_toq(vm_page_t m)
1676 {
1677 
1678 	if ((m->flags & PG_UNMANAGED) == 0) {
1679 		vm_page_lock_assert(m, MA_OWNED);
1680 		KASSERT(!pmap_page_is_mapped(m),
1681 		    ("vm_page_free_toq: freeing mapped page %p", m));
1682 	}
1683 	PCPU_INC(cnt.v_tfree);
1684 
1685 	if (VM_PAGE_IS_FREE(m))
1686 		panic("vm_page_free: freeing free page %p", m);
1687 	else if (m->busy != 0)
1688 		panic("vm_page_free: freeing busy page %p", m);
1689 
1690 	/*
1691 	 * unqueue, then remove page.  Note that we cannot destroy
1692 	 * the page here because we do not want to call the pager's
1693 	 * callback routine until after we've put the page on the
1694 	 * appropriate free queue.
1695 	 */
1696 	if ((m->flags & PG_UNMANAGED) == 0)
1697 		vm_pageq_remove(m);
1698 	vm_page_remove(m);
1699 
1700 	/*
1701 	 * If fictitious remove object association and
1702 	 * return, otherwise delay object association removal.
1703 	 */
1704 	if ((m->flags & PG_FICTITIOUS) != 0) {
1705 		return;
1706 	}
1707 
1708 	m->valid = 0;
1709 	vm_page_undirty(m);
1710 
1711 	if (m->wire_count != 0)
1712 		panic("vm_page_free: freeing wired page %p", m);
1713 	if (m->hold_count != 0) {
1714 		m->flags &= ~PG_ZERO;
1715 		vm_page_lock_queues();
1716 		vm_page_enqueue(PQ_HOLD, m);
1717 		vm_page_unlock_queues();
1718 	} else {
1719 		/*
1720 		 * Restore the default memory attribute to the page.
1721 		 */
1722 		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
1723 			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
1724 
1725 		/*
1726 		 * Insert the page into the physical memory allocator's
1727 		 * cache/free page queues.
1728 		 */
1729 		mtx_lock(&vm_page_queue_free_mtx);
1730 		m->flags |= PG_FREE;
1731 		cnt.v_free_count++;
1732 #if VM_NRESERVLEVEL > 0
1733 		if (!vm_reserv_free_page(m))
1734 #else
1735 		if (TRUE)
1736 #endif
1737 			vm_phys_free_pages(m, 0);
1738 		if ((m->flags & PG_ZERO) != 0)
1739 			++vm_page_zero_count;
1740 		else
1741 			vm_page_zero_idle_wakeup();
1742 		vm_page_free_wakeup();
1743 		mtx_unlock(&vm_page_queue_free_mtx);
1744 	}
1745 }
1746 
1747 /*
1748  *	vm_page_wire:
1749  *
1750  *	Mark this page as wired down by yet
1751  *	another map, removing it from paging queues
1752  *	as necessary.
1753  *
1754  *	If the page is fictitious, then its wire count must remain one.
1755  *
1756  *	The page must be locked.
1757  *	This routine may not block.
1758  */
1759 void
1760 vm_page_wire(vm_page_t m)
1761 {
1762 
1763 	/*
1764 	 * Only bump the wire statistics if the page is not already wired,
1765 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1766 	 * it is already off the queues).
1767 	 */
1768 	vm_page_lock_assert(m, MA_OWNED);
1769 	if ((m->flags & PG_FICTITIOUS) != 0) {
1770 		KASSERT(m->wire_count == 1,
1771 		    ("vm_page_wire: fictitious page %p's wire count isn't one",
1772 		    m));
1773 		return;
1774 	}
1775 	if (m->wire_count == 0) {
1776 		if ((m->flags & PG_UNMANAGED) == 0)
1777 			vm_pageq_remove(m);
1778 		atomic_add_int(&cnt.v_wire_count, 1);
1779 	}
1780 	m->wire_count++;
1781 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1782 }
1783 
1784 /*
1785  * vm_page_unwire:
1786  *
1787  * Release one wiring of the specified page, potentially enabling it to be
1788  * paged again.  If paging is enabled, then the value of the parameter
1789  * "activate" determines to which queue the page is added.  If "activate" is
1790  * non-zero, then the page is added to the active queue.  Otherwise, it is
1791  * added to the inactive queue.
1792  *
1793  * However, unless the page belongs to an object, it is not enqueued because
1794  * it cannot be paged out.
1795  *
1796  * If a page is fictitious, then its wire count must alway be one.
1797  *
1798  * A managed page must be locked.
1799  */
1800 void
1801 vm_page_unwire(vm_page_t m, int activate)
1802 {
1803 
1804 	if ((m->flags & PG_UNMANAGED) == 0)
1805 		vm_page_lock_assert(m, MA_OWNED);
1806 	if ((m->flags & PG_FICTITIOUS) != 0) {
1807 		KASSERT(m->wire_count == 1,
1808 	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
1809 		return;
1810 	}
1811 	if (m->wire_count > 0) {
1812 		m->wire_count--;
1813 		if (m->wire_count == 0) {
1814 			atomic_subtract_int(&cnt.v_wire_count, 1);
1815 			if ((m->flags & PG_UNMANAGED) != 0 ||
1816 			    m->object == NULL)
1817 				return;
1818 			vm_page_lock_queues();
1819 			if (activate)
1820 				vm_page_enqueue(PQ_ACTIVE, m);
1821 			else {
1822 				vm_page_flag_clear(m, PG_WINATCFLS);
1823 				vm_page_enqueue(PQ_INACTIVE, m);
1824 			}
1825 			vm_page_unlock_queues();
1826 		}
1827 	} else
1828 		panic("vm_page_unwire: page %p's wire count is zero", m);
1829 }
1830 
1831 /*
1832  * Move the specified page to the inactive queue.
1833  *
1834  * Many pages placed on the inactive queue should actually go
1835  * into the cache, but it is difficult to figure out which.  What
1836  * we do instead, if the inactive target is well met, is to put
1837  * clean pages at the head of the inactive queue instead of the tail.
1838  * This will cause them to be moved to the cache more quickly and
1839  * if not actively re-referenced, reclaimed more quickly.  If we just
1840  * stick these pages at the end of the inactive queue, heavy filesystem
1841  * meta-data accesses can cause an unnecessary paging load on memory bound
1842  * processes.  This optimization causes one-time-use metadata to be
1843  * reused more quickly.
1844  *
1845  * Normally athead is 0 resulting in LRU operation.  athead is set
1846  * to 1 if we want this page to be 'as if it were placed in the cache',
1847  * except without unmapping it from the process address space.
1848  *
1849  * This routine may not block.
1850  */
1851 static inline void
1852 _vm_page_deactivate(vm_page_t m, int athead)
1853 {
1854 	int queue;
1855 
1856 	vm_page_lock_assert(m, MA_OWNED);
1857 
1858 	/*
1859 	 * Ignore if already inactive.
1860 	 */
1861 	if ((queue = m->queue) == PQ_INACTIVE)
1862 		return;
1863 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1864 		vm_page_lock_queues();
1865 		vm_page_flag_clear(m, PG_WINATCFLS);
1866 		if (queue != PQ_NONE)
1867 			vm_page_queue_remove(queue, m);
1868 		if (athead)
1869 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m,
1870 			    pageq);
1871 		else
1872 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m,
1873 			    pageq);
1874 		m->queue = PQ_INACTIVE;
1875 		cnt.v_inactive_count++;
1876 		vm_page_unlock_queues();
1877 	}
1878 }
1879 
1880 /*
1881  * Move the specified page to the inactive queue.
1882  *
1883  * The page must be locked.
1884  */
1885 void
1886 vm_page_deactivate(vm_page_t m)
1887 {
1888 
1889 	_vm_page_deactivate(m, 0);
1890 }
1891 
1892 /*
1893  * vm_page_try_to_cache:
1894  *
1895  * Returns 0 on failure, 1 on success
1896  */
1897 int
1898 vm_page_try_to_cache(vm_page_t m)
1899 {
1900 
1901 	vm_page_lock_assert(m, MA_OWNED);
1902 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1903 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1904 	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED))
1905 		return (0);
1906 	pmap_remove_all(m);
1907 	if (m->dirty)
1908 		return (0);
1909 	vm_page_cache(m);
1910 	return (1);
1911 }
1912 
1913 /*
1914  * vm_page_try_to_free()
1915  *
1916  *	Attempt to free the page.  If we cannot free it, we do nothing.
1917  *	1 is returned on success, 0 on failure.
1918  */
1919 int
1920 vm_page_try_to_free(vm_page_t m)
1921 {
1922 
1923 	vm_page_lock_assert(m, MA_OWNED);
1924 	if (m->object != NULL)
1925 		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1926 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1927 	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED))
1928 		return (0);
1929 	pmap_remove_all(m);
1930 	if (m->dirty)
1931 		return (0);
1932 	vm_page_free(m);
1933 	return (1);
1934 }
1935 
1936 /*
1937  * vm_page_cache
1938  *
1939  * Put the specified page onto the page cache queue (if appropriate).
1940  *
1941  * This routine may not block.
1942  */
1943 void
1944 vm_page_cache(vm_page_t m)
1945 {
1946 	vm_object_t object;
1947 	vm_page_t root;
1948 
1949 	vm_page_lock_assert(m, MA_OWNED);
1950 	object = m->object;
1951 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1952 	if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy ||
1953 	    m->hold_count || m->wire_count)
1954 		panic("vm_page_cache: attempting to cache busy page");
1955 	pmap_remove_all(m);
1956 	if (m->dirty != 0)
1957 		panic("vm_page_cache: page %p is dirty", m);
1958 	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
1959 	    (object->type == OBJT_SWAP &&
1960 	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
1961 		/*
1962 		 * Hypothesis: A cache-elgible page belonging to a
1963 		 * default object or swap object but without a backing
1964 		 * store must be zero filled.
1965 		 */
1966 		vm_page_free(m);
1967 		return;
1968 	}
1969 	KASSERT((m->flags & PG_CACHED) == 0,
1970 	    ("vm_page_cache: page %p is already cached", m));
1971 	PCPU_INC(cnt.v_tcached);
1972 
1973 	/*
1974 	 * Remove the page from the paging queues.
1975 	 */
1976 	vm_pageq_remove(m);
1977 
1978 	/*
1979 	 * Remove the page from the object's collection of resident
1980 	 * pages.
1981 	 */
1982 	if (m != object->root)
1983 		vm_page_splay(m->pindex, object->root);
1984 	if (m->left == NULL)
1985 		root = m->right;
1986 	else {
1987 		root = vm_page_splay(m->pindex, m->left);
1988 		root->right = m->right;
1989 	}
1990 	object->root = root;
1991 	TAILQ_REMOVE(&object->memq, m, listq);
1992 	object->resident_page_count--;
1993 
1994 	/*
1995 	 * Restore the default memory attribute to the page.
1996 	 */
1997 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
1998 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
1999 
2000 	/*
2001 	 * Insert the page into the object's collection of cached pages
2002 	 * and the physical memory allocator's cache/free page queues.
2003 	 */
2004 	m->flags &= ~PG_ZERO;
2005 	mtx_lock(&vm_page_queue_free_mtx);
2006 	m->flags |= PG_CACHED;
2007 	cnt.v_cache_count++;
2008 	root = object->cache;
2009 	if (root == NULL) {
2010 		m->left = NULL;
2011 		m->right = NULL;
2012 	} else {
2013 		root = vm_page_splay(m->pindex, root);
2014 		if (m->pindex < root->pindex) {
2015 			m->left = root->left;
2016 			m->right = root;
2017 			root->left = NULL;
2018 		} else if (__predict_false(m->pindex == root->pindex))
2019 			panic("vm_page_cache: offset already cached");
2020 		else {
2021 			m->right = root->right;
2022 			m->left = root;
2023 			root->right = NULL;
2024 		}
2025 	}
2026 	object->cache = m;
2027 #if VM_NRESERVLEVEL > 0
2028 	if (!vm_reserv_free_page(m)) {
2029 #else
2030 	if (TRUE) {
2031 #endif
2032 		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
2033 		vm_phys_free_pages(m, 0);
2034 	}
2035 	vm_page_free_wakeup();
2036 	mtx_unlock(&vm_page_queue_free_mtx);
2037 
2038 	/*
2039 	 * Increment the vnode's hold count if this is the object's only
2040 	 * cached page.  Decrement the vnode's hold count if this was
2041 	 * the object's only resident page.
2042 	 */
2043 	if (object->type == OBJT_VNODE) {
2044 		if (root == NULL && object->resident_page_count != 0)
2045 			vhold(object->handle);
2046 		else if (root != NULL && object->resident_page_count == 0)
2047 			vdrop(object->handle);
2048 	}
2049 }
2050 
2051 /*
2052  * vm_page_dontneed
2053  *
2054  *	Cache, deactivate, or do nothing as appropriate.  This routine
2055  *	is typically used by madvise() MADV_DONTNEED.
2056  *
2057  *	Generally speaking we want to move the page into the cache so
2058  *	it gets reused quickly.  However, this can result in a silly syndrome
2059  *	due to the page recycling too quickly.  Small objects will not be
2060  *	fully cached.  On the otherhand, if we move the page to the inactive
2061  *	queue we wind up with a problem whereby very large objects
2062  *	unnecessarily blow away our inactive and cache queues.
2063  *
2064  *	The solution is to move the pages based on a fixed weighting.  We
2065  *	either leave them alone, deactivate them, or move them to the cache,
2066  *	where moving them to the cache has the highest weighting.
2067  *	By forcing some pages into other queues we eventually force the
2068  *	system to balance the queues, potentially recovering other unrelated
2069  *	space from active.  The idea is to not force this to happen too
2070  *	often.
2071  */
2072 void
2073 vm_page_dontneed(vm_page_t m)
2074 {
2075 	int dnw;
2076 	int head;
2077 
2078 	vm_page_lock_assert(m, MA_OWNED);
2079 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2080 	dnw = PCPU_GET(dnweight);
2081 	PCPU_INC(dnweight);
2082 
2083 	/*
2084 	 * Occasionally leave the page alone.
2085 	 */
2086 	if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) {
2087 		if (m->act_count >= ACT_INIT)
2088 			--m->act_count;
2089 		return;
2090 	}
2091 
2092 	/*
2093 	 * Clear any references to the page.  Otherwise, the page daemon will
2094 	 * immediately reactivate the page.
2095 	 *
2096 	 * Perform the pmap_clear_reference() first.  Otherwise, a concurrent
2097 	 * pmap operation, such as pmap_remove(), could clear a reference in
2098 	 * the pmap and set PG_REFERENCED on the page before the
2099 	 * pmap_clear_reference() had completed.  Consequently, the page would
2100 	 * appear referenced based upon an old reference that occurred before
2101 	 * this function ran.
2102 	 */
2103 	pmap_clear_reference(m);
2104 	vm_page_lock_queues();
2105 	vm_page_flag_clear(m, PG_REFERENCED);
2106 	vm_page_unlock_queues();
2107 
2108 	if (m->dirty == 0 && pmap_is_modified(m))
2109 		vm_page_dirty(m);
2110 
2111 	if (m->dirty || (dnw & 0x0070) == 0) {
2112 		/*
2113 		 * Deactivate the page 3 times out of 32.
2114 		 */
2115 		head = 0;
2116 	} else {
2117 		/*
2118 		 * Cache the page 28 times out of every 32.  Note that
2119 		 * the page is deactivated instead of cached, but placed
2120 		 * at the head of the queue instead of the tail.
2121 		 */
2122 		head = 1;
2123 	}
2124 	_vm_page_deactivate(m, head);
2125 }
2126 
2127 /*
2128  * Grab a page, waiting until we are waken up due to the page
2129  * changing state.  We keep on waiting, if the page continues
2130  * to be in the object.  If the page doesn't exist, first allocate it
2131  * and then conditionally zero it.
2132  *
2133  * The caller must always specify the VM_ALLOC_RETRY flag.  This is intended
2134  * to facilitate its eventual removal.
2135  *
2136  * This routine may block.
2137  */
2138 vm_page_t
2139 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2140 {
2141 	vm_page_t m;
2142 
2143 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2144 	KASSERT((allocflags & VM_ALLOC_RETRY) != 0,
2145 	    ("vm_page_grab: VM_ALLOC_RETRY is required"));
2146 retrylookup:
2147 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
2148 		if ((m->oflags & VPO_BUSY) != 0 ||
2149 		    ((allocflags & VM_ALLOC_IGN_SBUSY) == 0 && m->busy != 0)) {
2150 			/*
2151 			 * Reference the page before unlocking and
2152 			 * sleeping so that the page daemon is less
2153 			 * likely to reclaim it.
2154 			 */
2155 			vm_page_lock_queues();
2156 			vm_page_flag_set(m, PG_REFERENCED);
2157 			vm_page_sleep(m, "pgrbwt");
2158 			goto retrylookup;
2159 		} else {
2160 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
2161 				vm_page_lock(m);
2162 				vm_page_wire(m);
2163 				vm_page_unlock(m);
2164 			}
2165 			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
2166 				vm_page_busy(m);
2167 			return (m);
2168 		}
2169 	}
2170 	m = vm_page_alloc(object, pindex, allocflags & ~(VM_ALLOC_RETRY |
2171 	    VM_ALLOC_IGN_SBUSY));
2172 	if (m == NULL) {
2173 		VM_OBJECT_UNLOCK(object);
2174 		VM_WAIT;
2175 		VM_OBJECT_LOCK(object);
2176 		goto retrylookup;
2177 	} else if (m->valid != 0)
2178 		return (m);
2179 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2180 		pmap_zero_page(m);
2181 	return (m);
2182 }
2183 
2184 /*
2185  * Mapping function for valid bits or for dirty bits in
2186  * a page.  May not block.
2187  *
2188  * Inputs are required to range within a page.
2189  */
2190 int
2191 vm_page_bits(int base, int size)
2192 {
2193 	int first_bit;
2194 	int last_bit;
2195 
2196 	KASSERT(
2197 	    base + size <= PAGE_SIZE,
2198 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2199 	);
2200 
2201 	if (size == 0)		/* handle degenerate case */
2202 		return (0);
2203 
2204 	first_bit = base >> DEV_BSHIFT;
2205 	last_bit = (base + size - 1) >> DEV_BSHIFT;
2206 
2207 	return ((2 << last_bit) - (1 << first_bit));
2208 }
2209 
2210 /*
2211  *	vm_page_set_valid:
2212  *
2213  *	Sets portions of a page valid.  The arguments are expected
2214  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2215  *	of any partial chunks touched by the range.  The invalid portion of
2216  *	such chunks will be zeroed.
2217  *
2218  *	(base + size) must be less then or equal to PAGE_SIZE.
2219  */
2220 void
2221 vm_page_set_valid(vm_page_t m, int base, int size)
2222 {
2223 	int endoff, frag;
2224 
2225 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2226 	if (size == 0)	/* handle degenerate case */
2227 		return;
2228 
2229 	/*
2230 	 * If the base is not DEV_BSIZE aligned and the valid
2231 	 * bit is clear, we have to zero out a portion of the
2232 	 * first block.
2233 	 */
2234 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2235 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2236 		pmap_zero_page_area(m, frag, base - frag);
2237 
2238 	/*
2239 	 * If the ending offset is not DEV_BSIZE aligned and the
2240 	 * valid bit is clear, we have to zero out a portion of
2241 	 * the last block.
2242 	 */
2243 	endoff = base + size;
2244 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2245 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2246 		pmap_zero_page_area(m, endoff,
2247 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2248 
2249 	/*
2250 	 * Assert that no previously invalid block that is now being validated
2251 	 * is already dirty.
2252 	 */
2253 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2254 	    ("vm_page_set_valid: page %p is dirty", m));
2255 
2256 	/*
2257 	 * Set valid bits inclusive of any overlap.
2258 	 */
2259 	m->valid |= vm_page_bits(base, size);
2260 }
2261 
2262 /*
2263  * Clear the given bits from the specified page's dirty field.
2264  */
2265 static __inline void
2266 vm_page_clear_dirty_mask(vm_page_t m, int pagebits)
2267 {
2268 
2269 	/*
2270 	 * If the object is locked and the page is neither VPO_BUSY nor
2271 	 * PG_WRITEABLE, then the page's dirty field cannot possibly be
2272 	 * modified by a concurrent pmap operation.
2273 	 */
2274 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2275 	if ((m->oflags & VPO_BUSY) == 0 && (m->flags & PG_WRITEABLE) == 0)
2276 		m->dirty &= ~pagebits;
2277 	else {
2278 		vm_page_lock_queues();
2279 		m->dirty &= ~pagebits;
2280 		vm_page_unlock_queues();
2281 	}
2282 }
2283 
2284 /*
2285  *	vm_page_set_validclean:
2286  *
2287  *	Sets portions of a page valid and clean.  The arguments are expected
2288  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2289  *	of any partial chunks touched by the range.  The invalid portion of
2290  *	such chunks will be zero'd.
2291  *
2292  *	This routine may not block.
2293  *
2294  *	(base + size) must be less then or equal to PAGE_SIZE.
2295  */
2296 void
2297 vm_page_set_validclean(vm_page_t m, int base, int size)
2298 {
2299 	u_long oldvalid;
2300 	int endoff, frag, pagebits;
2301 
2302 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2303 	if (size == 0)	/* handle degenerate case */
2304 		return;
2305 
2306 	/*
2307 	 * If the base is not DEV_BSIZE aligned and the valid
2308 	 * bit is clear, we have to zero out a portion of the
2309 	 * first block.
2310 	 */
2311 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2312 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2313 		pmap_zero_page_area(m, frag, base - frag);
2314 
2315 	/*
2316 	 * If the ending offset is not DEV_BSIZE aligned and the
2317 	 * valid bit is clear, we have to zero out a portion of
2318 	 * the last block.
2319 	 */
2320 	endoff = base + size;
2321 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2322 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2323 		pmap_zero_page_area(m, endoff,
2324 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2325 
2326 	/*
2327 	 * Set valid, clear dirty bits.  If validating the entire
2328 	 * page we can safely clear the pmap modify bit.  We also
2329 	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
2330 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
2331 	 * be set again.
2332 	 *
2333 	 * We set valid bits inclusive of any overlap, but we can only
2334 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
2335 	 * the range.
2336 	 */
2337 	oldvalid = m->valid;
2338 	pagebits = vm_page_bits(base, size);
2339 	m->valid |= pagebits;
2340 #if 0	/* NOT YET */
2341 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2342 		frag = DEV_BSIZE - frag;
2343 		base += frag;
2344 		size -= frag;
2345 		if (size < 0)
2346 			size = 0;
2347 	}
2348 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2349 #endif
2350 	if (base == 0 && size == PAGE_SIZE) {
2351 		/*
2352 		 * The page can only be modified within the pmap if it is
2353 		 * mapped, and it can only be mapped if it was previously
2354 		 * fully valid.
2355 		 */
2356 		if (oldvalid == VM_PAGE_BITS_ALL)
2357 			/*
2358 			 * Perform the pmap_clear_modify() first.  Otherwise,
2359 			 * a concurrent pmap operation, such as
2360 			 * pmap_protect(), could clear a modification in the
2361 			 * pmap and set the dirty field on the page before
2362 			 * pmap_clear_modify() had begun and after the dirty
2363 			 * field was cleared here.
2364 			 */
2365 			pmap_clear_modify(m);
2366 		m->dirty = 0;
2367 		m->oflags &= ~VPO_NOSYNC;
2368 	} else if (oldvalid != VM_PAGE_BITS_ALL)
2369 		m->dirty &= ~pagebits;
2370 	else
2371 		vm_page_clear_dirty_mask(m, pagebits);
2372 }
2373 
2374 void
2375 vm_page_clear_dirty(vm_page_t m, int base, int size)
2376 {
2377 
2378 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
2379 }
2380 
2381 /*
2382  *	vm_page_set_invalid:
2383  *
2384  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
2385  *	valid and dirty bits for the effected areas are cleared.
2386  *
2387  *	May not block.
2388  */
2389 void
2390 vm_page_set_invalid(vm_page_t m, int base, int size)
2391 {
2392 	int bits;
2393 
2394 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2395 	KASSERT((m->oflags & VPO_BUSY) == 0,
2396 	    ("vm_page_set_invalid: page %p is busy", m));
2397 	bits = vm_page_bits(base, size);
2398 	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
2399 		pmap_remove_all(m);
2400 	KASSERT(!pmap_page_is_mapped(m),
2401 	    ("vm_page_set_invalid: page %p is mapped", m));
2402 	m->valid &= ~bits;
2403 	m->dirty &= ~bits;
2404 }
2405 
2406 /*
2407  * vm_page_zero_invalid()
2408  *
2409  *	The kernel assumes that the invalid portions of a page contain
2410  *	garbage, but such pages can be mapped into memory by user code.
2411  *	When this occurs, we must zero out the non-valid portions of the
2412  *	page so user code sees what it expects.
2413  *
2414  *	Pages are most often semi-valid when the end of a file is mapped
2415  *	into memory and the file's size is not page aligned.
2416  */
2417 void
2418 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2419 {
2420 	int b;
2421 	int i;
2422 
2423 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2424 	/*
2425 	 * Scan the valid bits looking for invalid sections that
2426 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
2427 	 * valid bit may be set ) have already been zerod by
2428 	 * vm_page_set_validclean().
2429 	 */
2430 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2431 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
2432 		    (m->valid & (1 << i))
2433 		) {
2434 			if (i > b) {
2435 				pmap_zero_page_area(m,
2436 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
2437 			}
2438 			b = i + 1;
2439 		}
2440 	}
2441 
2442 	/*
2443 	 * setvalid is TRUE when we can safely set the zero'd areas
2444 	 * as being valid.  We can do this if there are no cache consistancy
2445 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
2446 	 */
2447 	if (setvalid)
2448 		m->valid = VM_PAGE_BITS_ALL;
2449 }
2450 
2451 /*
2452  *	vm_page_is_valid:
2453  *
2454  *	Is (partial) page valid?  Note that the case where size == 0
2455  *	will return FALSE in the degenerate case where the page is
2456  *	entirely invalid, and TRUE otherwise.
2457  *
2458  *	May not block.
2459  */
2460 int
2461 vm_page_is_valid(vm_page_t m, int base, int size)
2462 {
2463 	int bits = vm_page_bits(base, size);
2464 
2465 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2466 	if (m->valid && ((m->valid & bits) == bits))
2467 		return 1;
2468 	else
2469 		return 0;
2470 }
2471 
2472 /*
2473  * update dirty bits from pmap/mmu.  May not block.
2474  */
2475 void
2476 vm_page_test_dirty(vm_page_t m)
2477 {
2478 
2479 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2480 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
2481 		vm_page_dirty(m);
2482 }
2483 
2484 int so_zerocp_fullpage = 0;
2485 
2486 /*
2487  *	Replace the given page with a copy.  The copied page assumes
2488  *	the portion of the given page's "wire_count" that is not the
2489  *	responsibility of this copy-on-write mechanism.
2490  *
2491  *	The object containing the given page must have a non-zero
2492  *	paging-in-progress count and be locked.
2493  */
2494 void
2495 vm_page_cowfault(vm_page_t m)
2496 {
2497 	vm_page_t mnew;
2498 	vm_object_t object;
2499 	vm_pindex_t pindex;
2500 
2501 	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
2502 	vm_page_lock_assert(m, MA_OWNED);
2503 	object = m->object;
2504 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2505 	KASSERT(object->paging_in_progress != 0,
2506 	    ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
2507 	    object));
2508 	pindex = m->pindex;
2509 
2510  retry_alloc:
2511 	pmap_remove_all(m);
2512 	vm_page_remove(m);
2513 	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
2514 	if (mnew == NULL) {
2515 		vm_page_insert(m, object, pindex);
2516 		vm_page_unlock(m);
2517 		VM_OBJECT_UNLOCK(object);
2518 		VM_WAIT;
2519 		VM_OBJECT_LOCK(object);
2520 		if (m == vm_page_lookup(object, pindex)) {
2521 			vm_page_lock(m);
2522 			goto retry_alloc;
2523 		} else {
2524 			/*
2525 			 * Page disappeared during the wait.
2526 			 */
2527 			return;
2528 		}
2529 	}
2530 
2531 	if (m->cow == 0) {
2532 		/*
2533 		 * check to see if we raced with an xmit complete when
2534 		 * waiting to allocate a page.  If so, put things back
2535 		 * the way they were
2536 		 */
2537 		vm_page_unlock(m);
2538 		vm_page_lock(mnew);
2539 		vm_page_free(mnew);
2540 		vm_page_unlock(mnew);
2541 		vm_page_insert(m, object, pindex);
2542 	} else { /* clear COW & copy page */
2543 		if (!so_zerocp_fullpage)
2544 			pmap_copy_page(m, mnew);
2545 		mnew->valid = VM_PAGE_BITS_ALL;
2546 		vm_page_dirty(mnew);
2547 		mnew->wire_count = m->wire_count - m->cow;
2548 		m->wire_count = m->cow;
2549 		vm_page_unlock(m);
2550 	}
2551 }
2552 
2553 void
2554 vm_page_cowclear(vm_page_t m)
2555 {
2556 
2557 	vm_page_lock_assert(m, MA_OWNED);
2558 	if (m->cow) {
2559 		m->cow--;
2560 		/*
2561 		 * let vm_fault add back write permission  lazily
2562 		 */
2563 	}
2564 	/*
2565 	 *  sf_buf_free() will free the page, so we needn't do it here
2566 	 */
2567 }
2568 
2569 int
2570 vm_page_cowsetup(vm_page_t m)
2571 {
2572 
2573 	vm_page_lock_assert(m, MA_OWNED);
2574 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
2575 	    m->cow == USHRT_MAX - 1 || !VM_OBJECT_TRYLOCK(m->object))
2576 		return (EBUSY);
2577 	m->cow++;
2578 	pmap_remove_write(m);
2579 	VM_OBJECT_UNLOCK(m->object);
2580 	return (0);
2581 }
2582 
2583 #include "opt_ddb.h"
2584 #ifdef DDB
2585 #include <sys/kernel.h>
2586 
2587 #include <ddb/ddb.h>
2588 
2589 DB_SHOW_COMMAND(page, vm_page_print_page_info)
2590 {
2591 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
2592 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
2593 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
2594 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
2595 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
2596 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
2597 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
2598 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
2599 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
2600 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
2601 }
2602 
2603 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2604 {
2605 
2606 	db_printf("PQ_FREE:");
2607 	db_printf(" %d", cnt.v_free_count);
2608 	db_printf("\n");
2609 
2610 	db_printf("PQ_CACHE:");
2611 	db_printf(" %d", cnt.v_cache_count);
2612 	db_printf("\n");
2613 
2614 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
2615 		*vm_page_queues[PQ_ACTIVE].cnt,
2616 		*vm_page_queues[PQ_INACTIVE].cnt);
2617 }
2618 #endif /* DDB */
2619