xref: /freebsd/sys/vm/vm_page.c (revision 0e1497aefd602cea581d2380d22e67dfdcac6b4e)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * The Mach Operating System project at Carnegie-Mellon University.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34  */
35 
36 /*-
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *			GENERAL RULES ON VM_PAGE MANIPULATION
65  *
66  *	- a pageq mutex is required when adding or removing a page from a
67  *	  page queue (vm_page_queue[]), regardless of other mutexes or the
68  *	  busy state of a page.
69  *
70  *	- a hash chain mutex is required when associating or disassociating
71  *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
72  *	  regardless of other mutexes or the busy state of a page.
73  *
74  *	- either a hash chain mutex OR a busied page is required in order
75  *	  to modify the page flags.  A hash chain mutex must be obtained in
76  *	  order to busy a page.  A page's flags cannot be modified by a
77  *	  hash chain mutex if the page is marked busy.
78  *
79  *	- The object memq mutex is held when inserting or removing
80  *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
81  *	  is different from the object's main mutex.
82  *
83  *	Generally speaking, you have to be aware of side effects when running
84  *	vm_page ops.  A vm_page_lookup() will return with the hash chain
85  *	locked, whether it was able to lookup the page or not.  vm_page_free(),
86  *	vm_page_cache(), vm_page_activate(), and a number of other routines
87  *	will release the hash chain mutex for you.  Intermediate manipulation
88  *	routines such as vm_page_flag_set() expect the hash chain to be held
89  *	on entry and the hash chain will remain held on return.
90  *
91  *	pageq scanning can only occur with the pageq in question locked.
92  *	We have a known bottleneck with the active queue, but the cache
93  *	and free queues are actually arrays already.
94  */
95 
96 /*
97  *	Resident memory management module.
98  */
99 
100 #include <sys/cdefs.h>
101 __FBSDID("$FreeBSD$");
102 
103 #include "opt_msgbuf.h"
104 #include "opt_vm.h"
105 
106 #include <sys/param.h>
107 #include <sys/systm.h>
108 #include <sys/lock.h>
109 #include <sys/kernel.h>
110 #include <sys/limits.h>
111 #include <sys/malloc.h>
112 #include <sys/msgbuf.h>
113 #include <sys/mutex.h>
114 #include <sys/proc.h>
115 #include <sys/sysctl.h>
116 #include <sys/vmmeter.h>
117 #include <sys/vnode.h>
118 
119 #include <vm/vm.h>
120 #include <vm/pmap.h>
121 #include <vm/vm_param.h>
122 #include <vm/vm_kern.h>
123 #include <vm/vm_object.h>
124 #include <vm/vm_page.h>
125 #include <vm/vm_pageout.h>
126 #include <vm/vm_pager.h>
127 #include <vm/vm_phys.h>
128 #include <vm/vm_reserv.h>
129 #include <vm/vm_extern.h>
130 #include <vm/uma.h>
131 #include <vm/uma_int.h>
132 
133 #include <machine/md_var.h>
134 
135 #if defined(__amd64__) || defined (__i386__)
136 extern struct sysctl_oid_list sysctl__vm_pmap_children;
137 #else
138 SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
139 #endif
140 
141 static uint64_t pmap_tryrelock_calls;
142 SYSCTL_QUAD(_vm_pmap, OID_AUTO, tryrelock_calls, CTLFLAG_RD,
143     &pmap_tryrelock_calls, 0, "Number of tryrelock calls");
144 
145 static int pmap_tryrelock_restart;
146 SYSCTL_INT(_vm_pmap, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
147     &pmap_tryrelock_restart, 0, "Number of tryrelock restarts");
148 
149 static int pmap_tryrelock_race;
150 SYSCTL_INT(_vm_pmap, OID_AUTO, tryrelock_race, CTLFLAG_RD,
151     &pmap_tryrelock_race, 0, "Number of tryrelock pmap race cases");
152 
153 /*
154  *	Associated with page of user-allocatable memory is a
155  *	page structure.
156  */
157 
158 struct vpgqueues vm_page_queues[PQ_COUNT];
159 struct vpglocks vm_page_queue_lock;
160 struct vpglocks vm_page_queue_free_lock;
161 
162 struct vpglocks	pa_lock[PA_LOCK_COUNT] __aligned(CACHE_LINE_SIZE);
163 
164 vm_page_t vm_page_array = 0;
165 int vm_page_array_size = 0;
166 long first_page = 0;
167 int vm_page_zero_count = 0;
168 
169 static int boot_pages = UMA_BOOT_PAGES;
170 TUNABLE_INT("vm.boot_pages", &boot_pages);
171 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
172 	"number of pages allocated for bootstrapping the VM system");
173 
174 static void vm_page_clear_dirty_mask(vm_page_t m, int pagebits);
175 static void vm_page_queue_remove(int queue, vm_page_t m);
176 static void vm_page_enqueue(int queue, vm_page_t m);
177 
178 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
179 #if PAGE_SIZE == 32768
180 #ifdef CTASSERT
181 CTASSERT(sizeof(u_long) >= 8);
182 #endif
183 #endif
184 
185 /*
186  * Try to acquire a physical address lock while a pmap is locked.  If we
187  * fail to trylock we unlock and lock the pmap directly and cache the
188  * locked pa in *locked.  The caller should then restart their loop in case
189  * the virtual to physical mapping has changed.
190  */
191 int
192 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
193 {
194 	vm_paddr_t lockpa;
195 	uint32_t gen_count;
196 
197 	gen_count = pmap->pm_gen_count;
198 	atomic_add_long((volatile long *)&pmap_tryrelock_calls, 1);
199 	lockpa = *locked;
200 	*locked = pa;
201 	if (lockpa) {
202 		PA_LOCK_ASSERT(lockpa, MA_OWNED);
203 		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
204 			return (0);
205 		PA_UNLOCK(lockpa);
206 	}
207 	if (PA_TRYLOCK(pa))
208 		return (0);
209 	PMAP_UNLOCK(pmap);
210 	atomic_add_int((volatile int *)&pmap_tryrelock_restart, 1);
211 	PA_LOCK(pa);
212 	PMAP_LOCK(pmap);
213 
214 	if (pmap->pm_gen_count != gen_count + 1) {
215 		pmap->pm_retries++;
216 		atomic_add_int((volatile int *)&pmap_tryrelock_race, 1);
217 		return (EAGAIN);
218 	}
219 	return (0);
220 }
221 
222 /*
223  *	vm_set_page_size:
224  *
225  *	Sets the page size, perhaps based upon the memory
226  *	size.  Must be called before any use of page-size
227  *	dependent functions.
228  */
229 void
230 vm_set_page_size(void)
231 {
232 	if (cnt.v_page_size == 0)
233 		cnt.v_page_size = PAGE_SIZE;
234 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
235 		panic("vm_set_page_size: page size not a power of two");
236 }
237 
238 /*
239  *	vm_page_blacklist_lookup:
240  *
241  *	See if a physical address in this page has been listed
242  *	in the blacklist tunable.  Entries in the tunable are
243  *	separated by spaces or commas.  If an invalid integer is
244  *	encountered then the rest of the string is skipped.
245  */
246 static int
247 vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
248 {
249 	vm_paddr_t bad;
250 	char *cp, *pos;
251 
252 	for (pos = list; *pos != '\0'; pos = cp) {
253 		bad = strtoq(pos, &cp, 0);
254 		if (*cp != '\0') {
255 			if (*cp == ' ' || *cp == ',') {
256 				cp++;
257 				if (cp == pos)
258 					continue;
259 			} else
260 				break;
261 		}
262 		if (pa == trunc_page(bad))
263 			return (1);
264 	}
265 	return (0);
266 }
267 
268 /*
269  *	vm_page_startup:
270  *
271  *	Initializes the resident memory module.
272  *
273  *	Allocates memory for the page cells, and
274  *	for the object/offset-to-page hash table headers.
275  *	Each page cell is initialized and placed on the free list.
276  */
277 vm_offset_t
278 vm_page_startup(vm_offset_t vaddr)
279 {
280 	vm_offset_t mapped;
281 	vm_paddr_t page_range;
282 	vm_paddr_t new_end;
283 	int i;
284 	vm_paddr_t pa;
285 	vm_paddr_t last_pa;
286 	char *list;
287 
288 	/* the biggest memory array is the second group of pages */
289 	vm_paddr_t end;
290 	vm_paddr_t biggestsize;
291 	vm_paddr_t low_water, high_water;
292 	int biggestone;
293 
294 	biggestsize = 0;
295 	biggestone = 0;
296 	vaddr = round_page(vaddr);
297 
298 	for (i = 0; phys_avail[i + 1]; i += 2) {
299 		phys_avail[i] = round_page(phys_avail[i]);
300 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
301 	}
302 
303 	low_water = phys_avail[0];
304 	high_water = phys_avail[1];
305 
306 	for (i = 0; phys_avail[i + 1]; i += 2) {
307 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
308 
309 		if (size > biggestsize) {
310 			biggestone = i;
311 			biggestsize = size;
312 		}
313 		if (phys_avail[i] < low_water)
314 			low_water = phys_avail[i];
315 		if (phys_avail[i + 1] > high_water)
316 			high_water = phys_avail[i + 1];
317 	}
318 
319 #ifdef XEN
320 	low_water = 0;
321 #endif
322 
323 	end = phys_avail[biggestone+1];
324 
325 	/*
326 	 * Initialize the locks.
327 	 */
328 	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
329 	    MTX_RECURSE);
330 	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
331 	    MTX_DEF);
332 
333 	/* Setup page locks. */
334 	for (i = 0; i < PA_LOCK_COUNT; i++)
335 		mtx_init(&pa_lock[i].data, "page lock", NULL,
336 		    MTX_DEF | MTX_RECURSE | MTX_DUPOK);
337 
338 	/*
339 	 * Initialize the queue headers for the hold queue, the active queue,
340 	 * and the inactive queue.
341 	 */
342 	for (i = 0; i < PQ_COUNT; i++)
343 		TAILQ_INIT(&vm_page_queues[i].pl);
344 	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
345 	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
346 	vm_page_queues[PQ_HOLD].cnt = &cnt.v_active_count;
347 
348 	/*
349 	 * Allocate memory for use when boot strapping the kernel memory
350 	 * allocator.
351 	 */
352 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
353 	new_end = trunc_page(new_end);
354 	mapped = pmap_map(&vaddr, new_end, end,
355 	    VM_PROT_READ | VM_PROT_WRITE);
356 	bzero((void *)mapped, end - new_end);
357 	uma_startup((void *)mapped, boot_pages);
358 
359 #if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \
360     defined(__mips__)
361 	/*
362 	 * Allocate a bitmap to indicate that a random physical page
363 	 * needs to be included in a minidump.
364 	 *
365 	 * The amd64 port needs this to indicate which direct map pages
366 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
367 	 *
368 	 * However, i386 still needs this workspace internally within the
369 	 * minidump code.  In theory, they are not needed on i386, but are
370 	 * included should the sf_buf code decide to use them.
371 	 */
372 	last_pa = 0;
373 	for (i = 0; dump_avail[i + 1] != 0; i += 2)
374 		if (dump_avail[i + 1] > last_pa)
375 			last_pa = dump_avail[i + 1];
376 	page_range = last_pa / PAGE_SIZE;
377 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
378 	new_end -= vm_page_dump_size;
379 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
380 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
381 	bzero((void *)vm_page_dump, vm_page_dump_size);
382 #endif
383 #ifdef __amd64__
384 	/*
385 	 * Request that the physical pages underlying the message buffer be
386 	 * included in a crash dump.  Since the message buffer is accessed
387 	 * through the direct map, they are not automatically included.
388 	 */
389 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
390 	last_pa = pa + round_page(MSGBUF_SIZE);
391 	while (pa < last_pa) {
392 		dump_add_page(pa);
393 		pa += PAGE_SIZE;
394 	}
395 #endif
396 	/*
397 	 * Compute the number of pages of memory that will be available for
398 	 * use (taking into account the overhead of a page structure per
399 	 * page).
400 	 */
401 	first_page = low_water / PAGE_SIZE;
402 #ifdef VM_PHYSSEG_SPARSE
403 	page_range = 0;
404 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
405 		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
406 #elif defined(VM_PHYSSEG_DENSE)
407 	page_range = high_water / PAGE_SIZE - first_page;
408 #else
409 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
410 #endif
411 	end = new_end;
412 
413 	/*
414 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
415 	 */
416 	vaddr += PAGE_SIZE;
417 
418 	/*
419 	 * Initialize the mem entry structures now, and put them in the free
420 	 * queue.
421 	 */
422 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
423 	mapped = pmap_map(&vaddr, new_end, end,
424 	    VM_PROT_READ | VM_PROT_WRITE);
425 	vm_page_array = (vm_page_t) mapped;
426 #if VM_NRESERVLEVEL > 0
427 	/*
428 	 * Allocate memory for the reservation management system's data
429 	 * structures.
430 	 */
431 	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
432 #endif
433 #if defined(__amd64__) || defined(__mips__)
434 	/*
435 	 * pmap_map on amd64 and mips can come out of the direct-map, not kvm
436 	 * like i386, so the pages must be tracked for a crashdump to include
437 	 * this data.  This includes the vm_page_array and the early UMA
438 	 * bootstrap pages.
439 	 */
440 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
441 		dump_add_page(pa);
442 #endif
443 	phys_avail[biggestone + 1] = new_end;
444 
445 	/*
446 	 * Clear all of the page structures
447 	 */
448 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
449 	for (i = 0; i < page_range; i++)
450 		vm_page_array[i].order = VM_NFREEORDER;
451 	vm_page_array_size = page_range;
452 
453 	/*
454 	 * Initialize the physical memory allocator.
455 	 */
456 	vm_phys_init();
457 
458 	/*
459 	 * Add every available physical page that is not blacklisted to
460 	 * the free lists.
461 	 */
462 	cnt.v_page_count = 0;
463 	cnt.v_free_count = 0;
464 	list = getenv("vm.blacklist");
465 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
466 		pa = phys_avail[i];
467 		last_pa = phys_avail[i + 1];
468 		while (pa < last_pa) {
469 			if (list != NULL &&
470 			    vm_page_blacklist_lookup(list, pa))
471 				printf("Skipping page with pa 0x%jx\n",
472 				    (uintmax_t)pa);
473 			else
474 				vm_phys_add_page(pa);
475 			pa += PAGE_SIZE;
476 		}
477 	}
478 	freeenv(list);
479 #if VM_NRESERVLEVEL > 0
480 	/*
481 	 * Initialize the reservation management system.
482 	 */
483 	vm_reserv_init();
484 #endif
485 	return (vaddr);
486 }
487 
488 void
489 vm_page_flag_set(vm_page_t m, unsigned short bits)
490 {
491 
492 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
493 	/*
494 	 * The PG_WRITEABLE flag can only be set if the page is managed and
495 	 * VPO_BUSY.  Currently, this flag is only set by pmap_enter().
496 	 */
497 	KASSERT((bits & PG_WRITEABLE) == 0 ||
498 	    ((m->flags & (PG_UNMANAGED | PG_FICTITIOUS)) == 0 &&
499 	    (m->oflags & VPO_BUSY) != 0), ("PG_WRITEABLE and !VPO_BUSY"));
500 	m->flags |= bits;
501 }
502 
503 void
504 vm_page_flag_clear(vm_page_t m, unsigned short bits)
505 {
506 
507 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
508 	/*
509 	 * The PG_REFERENCED flag can only be cleared if the object
510 	 * containing the page is locked.
511 	 */
512 	KASSERT((bits & PG_REFERENCED) == 0 || VM_OBJECT_LOCKED(m->object),
513 	    ("PG_REFERENCED and !VM_OBJECT_LOCKED"));
514 	m->flags &= ~bits;
515 }
516 
517 void
518 vm_page_busy(vm_page_t m)
519 {
520 
521 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
522 	KASSERT((m->oflags & VPO_BUSY) == 0,
523 	    ("vm_page_busy: page already busy!!!"));
524 	m->oflags |= VPO_BUSY;
525 }
526 
527 /*
528  *      vm_page_flash:
529  *
530  *      wakeup anyone waiting for the page.
531  */
532 void
533 vm_page_flash(vm_page_t m)
534 {
535 
536 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
537 	if (m->oflags & VPO_WANTED) {
538 		m->oflags &= ~VPO_WANTED;
539 		wakeup(m);
540 	}
541 }
542 
543 /*
544  *      vm_page_wakeup:
545  *
546  *      clear the VPO_BUSY flag and wakeup anyone waiting for the
547  *      page.
548  *
549  */
550 void
551 vm_page_wakeup(vm_page_t m)
552 {
553 
554 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
555 	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
556 	m->oflags &= ~VPO_BUSY;
557 	vm_page_flash(m);
558 }
559 
560 void
561 vm_page_io_start(vm_page_t m)
562 {
563 
564 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
565 	m->busy++;
566 }
567 
568 void
569 vm_page_io_finish(vm_page_t m)
570 {
571 
572 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
573 	m->busy--;
574 	if (m->busy == 0)
575 		vm_page_flash(m);
576 }
577 
578 /*
579  * Keep page from being freed by the page daemon
580  * much of the same effect as wiring, except much lower
581  * overhead and should be used only for *very* temporary
582  * holding ("wiring").
583  */
584 void
585 vm_page_hold(vm_page_t mem)
586 {
587 
588 	vm_page_lock_assert(mem, MA_OWNED);
589         mem->hold_count++;
590 }
591 
592 void
593 vm_page_unhold(vm_page_t mem)
594 {
595 
596 	vm_page_lock_assert(mem, MA_OWNED);
597 	--mem->hold_count;
598 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
599 	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
600 		vm_page_free_toq(mem);
601 }
602 
603 /*
604  *	vm_page_unhold_pages:
605  *
606  *	Unhold each of the pages that is referenced by the given array.
607  */
608 void
609 vm_page_unhold_pages(vm_page_t *ma, int count)
610 {
611 	struct mtx *mtx, *new_mtx;
612 
613 	mtx = NULL;
614 	for (; count != 0; count--) {
615 		/*
616 		 * Avoid releasing and reacquiring the same page lock.
617 		 */
618 		new_mtx = vm_page_lockptr(*ma);
619 		if (mtx != new_mtx) {
620 			if (mtx != NULL)
621 				mtx_unlock(mtx);
622 			mtx = new_mtx;
623 			mtx_lock(mtx);
624 		}
625 		vm_page_unhold(*ma);
626 		ma++;
627 	}
628 	if (mtx != NULL)
629 		mtx_unlock(mtx);
630 }
631 
632 /*
633  *	vm_page_free:
634  *
635  *	Free a page.
636  */
637 void
638 vm_page_free(vm_page_t m)
639 {
640 
641 	m->flags &= ~PG_ZERO;
642 	vm_page_free_toq(m);
643 }
644 
645 /*
646  *	vm_page_free_zero:
647  *
648  *	Free a page to the zerod-pages queue
649  */
650 void
651 vm_page_free_zero(vm_page_t m)
652 {
653 
654 	m->flags |= PG_ZERO;
655 	vm_page_free_toq(m);
656 }
657 
658 /*
659  *	vm_page_sleep:
660  *
661  *	Sleep and release the page and page queues locks.
662  *
663  *	The object containing the given page must be locked.
664  */
665 void
666 vm_page_sleep(vm_page_t m, const char *msg)
667 {
668 
669 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
670 	if (mtx_owned(&vm_page_queue_mtx))
671 		vm_page_unlock_queues();
672 	if (mtx_owned(vm_page_lockptr(m)))
673 		vm_page_unlock(m);
674 
675 	/*
676 	 * It's possible that while we sleep, the page will get
677 	 * unbusied and freed.  If we are holding the object
678 	 * lock, we will assume we hold a reference to the object
679 	 * such that even if m->object changes, we can re-lock
680 	 * it.
681 	 */
682 	m->oflags |= VPO_WANTED;
683 	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
684 }
685 
686 /*
687  *	vm_page_dirty:
688  *
689  *	make page all dirty
690  */
691 void
692 vm_page_dirty(vm_page_t m)
693 {
694 
695 	KASSERT((m->flags & PG_CACHED) == 0,
696 	    ("vm_page_dirty: page in cache!"));
697 	KASSERT(!VM_PAGE_IS_FREE(m),
698 	    ("vm_page_dirty: page is free!"));
699 	KASSERT(m->valid == VM_PAGE_BITS_ALL,
700 	    ("vm_page_dirty: page is invalid!"));
701 	m->dirty = VM_PAGE_BITS_ALL;
702 }
703 
704 /*
705  *	vm_page_splay:
706  *
707  *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
708  *	the vm_page containing the given pindex.  If, however, that
709  *	pindex is not found in the vm_object, returns a vm_page that is
710  *	adjacent to the pindex, coming before or after it.
711  */
712 vm_page_t
713 vm_page_splay(vm_pindex_t pindex, vm_page_t root)
714 {
715 	struct vm_page dummy;
716 	vm_page_t lefttreemax, righttreemin, y;
717 
718 	if (root == NULL)
719 		return (root);
720 	lefttreemax = righttreemin = &dummy;
721 	for (;; root = y) {
722 		if (pindex < root->pindex) {
723 			if ((y = root->left) == NULL)
724 				break;
725 			if (pindex < y->pindex) {
726 				/* Rotate right. */
727 				root->left = y->right;
728 				y->right = root;
729 				root = y;
730 				if ((y = root->left) == NULL)
731 					break;
732 			}
733 			/* Link into the new root's right tree. */
734 			righttreemin->left = root;
735 			righttreemin = root;
736 		} else if (pindex > root->pindex) {
737 			if ((y = root->right) == NULL)
738 				break;
739 			if (pindex > y->pindex) {
740 				/* Rotate left. */
741 				root->right = y->left;
742 				y->left = root;
743 				root = y;
744 				if ((y = root->right) == NULL)
745 					break;
746 			}
747 			/* Link into the new root's left tree. */
748 			lefttreemax->right = root;
749 			lefttreemax = root;
750 		} else
751 			break;
752 	}
753 	/* Assemble the new root. */
754 	lefttreemax->right = root->left;
755 	righttreemin->left = root->right;
756 	root->left = dummy.right;
757 	root->right = dummy.left;
758 	return (root);
759 }
760 
761 /*
762  *	vm_page_insert:		[ internal use only ]
763  *
764  *	Inserts the given mem entry into the object and object list.
765  *
766  *	The pagetables are not updated but will presumably fault the page
767  *	in if necessary, or if a kernel page the caller will at some point
768  *	enter the page into the kernel's pmap.  We are not allowed to block
769  *	here so we *can't* do this anyway.
770  *
771  *	The object and page must be locked.
772  *	This routine may not block.
773  */
774 void
775 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
776 {
777 	vm_page_t root;
778 
779 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
780 	if (m->object != NULL)
781 		panic("vm_page_insert: page already inserted");
782 
783 	/*
784 	 * Record the object/offset pair in this page
785 	 */
786 	m->object = object;
787 	m->pindex = pindex;
788 
789 	/*
790 	 * Now link into the object's ordered list of backed pages.
791 	 */
792 	root = object->root;
793 	if (root == NULL) {
794 		m->left = NULL;
795 		m->right = NULL;
796 		TAILQ_INSERT_TAIL(&object->memq, m, listq);
797 	} else {
798 		root = vm_page_splay(pindex, root);
799 		if (pindex < root->pindex) {
800 			m->left = root->left;
801 			m->right = root;
802 			root->left = NULL;
803 			TAILQ_INSERT_BEFORE(root, m, listq);
804 		} else if (pindex == root->pindex)
805 			panic("vm_page_insert: offset already allocated");
806 		else {
807 			m->right = root->right;
808 			m->left = root;
809 			root->right = NULL;
810 			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
811 		}
812 	}
813 	object->root = m;
814 	object->generation++;
815 
816 	/*
817 	 * show that the object has one more resident page.
818 	 */
819 	object->resident_page_count++;
820 	/*
821 	 * Hold the vnode until the last page is released.
822 	 */
823 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
824 		vhold((struct vnode *)object->handle);
825 
826 	/*
827 	 * Since we are inserting a new and possibly dirty page,
828 	 * update the object's OBJ_MIGHTBEDIRTY flag.
829 	 */
830 	if (m->flags & PG_WRITEABLE)
831 		vm_object_set_writeable_dirty(object);
832 }
833 
834 /*
835  *	vm_page_remove:
836  *				NOTE: used by device pager as well -wfj
837  *
838  *	Removes the given mem entry from the object/offset-page
839  *	table and the object page list, but do not invalidate/terminate
840  *	the backing store.
841  *
842  *	The object and page must be locked.
843  *	The underlying pmap entry (if any) is NOT removed here.
844  *	This routine may not block.
845  */
846 void
847 vm_page_remove(vm_page_t m)
848 {
849 	vm_object_t object;
850 	vm_page_t root;
851 
852 	if ((m->flags & PG_UNMANAGED) == 0)
853 		vm_page_lock_assert(m, MA_OWNED);
854 	if ((object = m->object) == NULL)
855 		return;
856 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
857 	if (m->oflags & VPO_BUSY) {
858 		m->oflags &= ~VPO_BUSY;
859 		vm_page_flash(m);
860 	}
861 
862 	/*
863 	 * Now remove from the object's list of backed pages.
864 	 */
865 	if (m != object->root)
866 		vm_page_splay(m->pindex, object->root);
867 	if (m->left == NULL)
868 		root = m->right;
869 	else {
870 		root = vm_page_splay(m->pindex, m->left);
871 		root->right = m->right;
872 	}
873 	object->root = root;
874 	TAILQ_REMOVE(&object->memq, m, listq);
875 
876 	/*
877 	 * And show that the object has one fewer resident page.
878 	 */
879 	object->resident_page_count--;
880 	/*
881 	 * The vnode may now be recycled.
882 	 */
883 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
884 		vdrop((struct vnode *)object->handle);
885 
886 	m->object = NULL;
887 }
888 
889 /*
890  *	vm_page_lookup:
891  *
892  *	Returns the page associated with the object/offset
893  *	pair specified; if none is found, NULL is returned.
894  *
895  *	The object must be locked.
896  *	This routine may not block.
897  *	This is a critical path routine
898  */
899 vm_page_t
900 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
901 {
902 	vm_page_t m;
903 
904 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
905 	if ((m = object->root) != NULL && m->pindex != pindex) {
906 		m = vm_page_splay(pindex, m);
907 		if ((object->root = m)->pindex != pindex)
908 			m = NULL;
909 	}
910 	return (m);
911 }
912 
913 /*
914  *	vm_page_find_least:
915  *
916  *	Returns the page associated with the object with least pindex
917  *	greater than or equal to the parameter pindex, or NULL.
918  *
919  *	The object must be locked.
920  *	The routine may not block.
921  */
922 vm_page_t
923 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
924 {
925 	vm_page_t m;
926 
927 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
928 	if ((m = TAILQ_FIRST(&object->memq)) != NULL) {
929 		if (m->pindex < pindex) {
930 			m = vm_page_splay(pindex, object->root);
931 			if ((object->root = m)->pindex < pindex)
932 				m = TAILQ_NEXT(m, listq);
933 		}
934 	}
935 	return (m);
936 }
937 
938 /*
939  * Returns the given page's successor (by pindex) within the object if it is
940  * resident; if none is found, NULL is returned.
941  *
942  * The object must be locked.
943  */
944 vm_page_t
945 vm_page_next(vm_page_t m)
946 {
947 	vm_page_t next;
948 
949 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
950 	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
951 	    next->pindex != m->pindex + 1)
952 		next = NULL;
953 	return (next);
954 }
955 
956 /*
957  * Returns the given page's predecessor (by pindex) within the object if it is
958  * resident; if none is found, NULL is returned.
959  *
960  * The object must be locked.
961  */
962 vm_page_t
963 vm_page_prev(vm_page_t m)
964 {
965 	vm_page_t prev;
966 
967 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
968 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
969 	    prev->pindex != m->pindex - 1)
970 		prev = NULL;
971 	return (prev);
972 }
973 
974 /*
975  *	vm_page_rename:
976  *
977  *	Move the given memory entry from its
978  *	current object to the specified target object/offset.
979  *
980  *	The object must be locked.
981  *	This routine may not block.
982  *
983  *	Note: swap associated with the page must be invalidated by the move.  We
984  *	      have to do this for several reasons:  (1) we aren't freeing the
985  *	      page, (2) we are dirtying the page, (3) the VM system is probably
986  *	      moving the page from object A to B, and will then later move
987  *	      the backing store from A to B and we can't have a conflict.
988  *
989  *	Note: we *always* dirty the page.  It is necessary both for the
990  *	      fact that we moved it, and because we may be invalidating
991  *	      swap.  If the page is on the cache, we have to deactivate it
992  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
993  *	      on the cache.
994  */
995 void
996 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
997 {
998 
999 	vm_page_remove(m);
1000 	vm_page_insert(m, new_object, new_pindex);
1001 	vm_page_dirty(m);
1002 }
1003 
1004 /*
1005  *	Convert all of the given object's cached pages that have a
1006  *	pindex within the given range into free pages.  If the value
1007  *	zero is given for "end", then the range's upper bound is
1008  *	infinity.  If the given object is backed by a vnode and it
1009  *	transitions from having one or more cached pages to none, the
1010  *	vnode's hold count is reduced.
1011  */
1012 void
1013 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1014 {
1015 	vm_page_t m, m_next;
1016 	boolean_t empty;
1017 
1018 	mtx_lock(&vm_page_queue_free_mtx);
1019 	if (__predict_false(object->cache == NULL)) {
1020 		mtx_unlock(&vm_page_queue_free_mtx);
1021 		return;
1022 	}
1023 	m = object->cache = vm_page_splay(start, object->cache);
1024 	if (m->pindex < start) {
1025 		if (m->right == NULL)
1026 			m = NULL;
1027 		else {
1028 			m_next = vm_page_splay(start, m->right);
1029 			m_next->left = m;
1030 			m->right = NULL;
1031 			m = object->cache = m_next;
1032 		}
1033 	}
1034 
1035 	/*
1036 	 * At this point, "m" is either (1) a reference to the page
1037 	 * with the least pindex that is greater than or equal to
1038 	 * "start" or (2) NULL.
1039 	 */
1040 	for (; m != NULL && (m->pindex < end || end == 0); m = m_next) {
1041 		/*
1042 		 * Find "m"'s successor and remove "m" from the
1043 		 * object's cache.
1044 		 */
1045 		if (m->right == NULL) {
1046 			object->cache = m->left;
1047 			m_next = NULL;
1048 		} else {
1049 			m_next = vm_page_splay(start, m->right);
1050 			m_next->left = m->left;
1051 			object->cache = m_next;
1052 		}
1053 		/* Convert "m" to a free page. */
1054 		m->object = NULL;
1055 		m->valid = 0;
1056 		/* Clear PG_CACHED and set PG_FREE. */
1057 		m->flags ^= PG_CACHED | PG_FREE;
1058 		KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
1059 		    ("vm_page_cache_free: page %p has inconsistent flags", m));
1060 		cnt.v_cache_count--;
1061 		cnt.v_free_count++;
1062 	}
1063 	empty = object->cache == NULL;
1064 	mtx_unlock(&vm_page_queue_free_mtx);
1065 	if (object->type == OBJT_VNODE && empty)
1066 		vdrop(object->handle);
1067 }
1068 
1069 /*
1070  *	Returns the cached page that is associated with the given
1071  *	object and offset.  If, however, none exists, returns NULL.
1072  *
1073  *	The free page queue must be locked.
1074  */
1075 static inline vm_page_t
1076 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1077 {
1078 	vm_page_t m;
1079 
1080 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1081 	if ((m = object->cache) != NULL && m->pindex != pindex) {
1082 		m = vm_page_splay(pindex, m);
1083 		if ((object->cache = m)->pindex != pindex)
1084 			m = NULL;
1085 	}
1086 	return (m);
1087 }
1088 
1089 /*
1090  *	Remove the given cached page from its containing object's
1091  *	collection of cached pages.
1092  *
1093  *	The free page queue must be locked.
1094  */
1095 void
1096 vm_page_cache_remove(vm_page_t m)
1097 {
1098 	vm_object_t object;
1099 	vm_page_t root;
1100 
1101 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1102 	KASSERT((m->flags & PG_CACHED) != 0,
1103 	    ("vm_page_cache_remove: page %p is not cached", m));
1104 	object = m->object;
1105 	if (m != object->cache) {
1106 		root = vm_page_splay(m->pindex, object->cache);
1107 		KASSERT(root == m,
1108 		    ("vm_page_cache_remove: page %p is not cached in object %p",
1109 		    m, object));
1110 	}
1111 	if (m->left == NULL)
1112 		root = m->right;
1113 	else if (m->right == NULL)
1114 		root = m->left;
1115 	else {
1116 		root = vm_page_splay(m->pindex, m->left);
1117 		root->right = m->right;
1118 	}
1119 	object->cache = root;
1120 	m->object = NULL;
1121 	cnt.v_cache_count--;
1122 }
1123 
1124 /*
1125  *	Transfer all of the cached pages with offset greater than or
1126  *	equal to 'offidxstart' from the original object's cache to the
1127  *	new object's cache.  However, any cached pages with offset
1128  *	greater than or equal to the new object's size are kept in the
1129  *	original object.  Initially, the new object's cache must be
1130  *	empty.  Offset 'offidxstart' in the original object must
1131  *	correspond to offset zero in the new object.
1132  *
1133  *	The new object must be locked.
1134  */
1135 void
1136 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1137     vm_object_t new_object)
1138 {
1139 	vm_page_t m, m_next;
1140 
1141 	/*
1142 	 * Insertion into an object's collection of cached pages
1143 	 * requires the object to be locked.  In contrast, removal does
1144 	 * not.
1145 	 */
1146 	VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
1147 	KASSERT(new_object->cache == NULL,
1148 	    ("vm_page_cache_transfer: object %p has cached pages",
1149 	    new_object));
1150 	mtx_lock(&vm_page_queue_free_mtx);
1151 	if ((m = orig_object->cache) != NULL) {
1152 		/*
1153 		 * Transfer all of the pages with offset greater than or
1154 		 * equal to 'offidxstart' from the original object's
1155 		 * cache to the new object's cache.
1156 		 */
1157 		m = vm_page_splay(offidxstart, m);
1158 		if (m->pindex < offidxstart) {
1159 			orig_object->cache = m;
1160 			new_object->cache = m->right;
1161 			m->right = NULL;
1162 		} else {
1163 			orig_object->cache = m->left;
1164 			new_object->cache = m;
1165 			m->left = NULL;
1166 		}
1167 		while ((m = new_object->cache) != NULL) {
1168 			if ((m->pindex - offidxstart) >= new_object->size) {
1169 				/*
1170 				 * Return all of the cached pages with
1171 				 * offset greater than or equal to the
1172 				 * new object's size to the original
1173 				 * object's cache.
1174 				 */
1175 				new_object->cache = m->left;
1176 				m->left = orig_object->cache;
1177 				orig_object->cache = m;
1178 				break;
1179 			}
1180 			m_next = vm_page_splay(m->pindex, m->right);
1181 			/* Update the page's object and offset. */
1182 			m->object = new_object;
1183 			m->pindex -= offidxstart;
1184 			if (m_next == NULL)
1185 				break;
1186 			m->right = NULL;
1187 			m_next->left = m;
1188 			new_object->cache = m_next;
1189 		}
1190 		KASSERT(new_object->cache == NULL ||
1191 		    new_object->type == OBJT_SWAP,
1192 		    ("vm_page_cache_transfer: object %p's type is incompatible"
1193 		    " with cached pages", new_object));
1194 	}
1195 	mtx_unlock(&vm_page_queue_free_mtx);
1196 }
1197 
1198 /*
1199  *	vm_page_alloc:
1200  *
1201  *	Allocate and return a memory cell associated
1202  *	with this VM object/offset pair.
1203  *
1204  *	The caller must always specify an allocation class.
1205  *
1206  *	allocation classes:
1207  *	VM_ALLOC_NORMAL		normal process request
1208  *	VM_ALLOC_SYSTEM		system *really* needs a page
1209  *	VM_ALLOC_INTERRUPT	interrupt time request
1210  *
1211  *	optional allocation flags:
1212  *	VM_ALLOC_ZERO		prefer a zeroed page
1213  *	VM_ALLOC_WIRED		wire the allocated page
1214  *	VM_ALLOC_NOOBJ		page is not associated with a vm object
1215  *	VM_ALLOC_NOBUSY		do not set the page busy
1216  *	VM_ALLOC_IFCACHED	return page only if it is cached
1217  *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1218  *				is cached
1219  *
1220  *	This routine may not sleep.
1221  */
1222 vm_page_t
1223 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1224 {
1225 	struct vnode *vp = NULL;
1226 	vm_object_t m_object;
1227 	vm_page_t m;
1228 	int flags, page_req;
1229 
1230 	page_req = req & VM_ALLOC_CLASS_MASK;
1231 	KASSERT(curthread->td_intr_nesting_level == 0 ||
1232 	    page_req == VM_ALLOC_INTERRUPT,
1233 	    ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
1234 
1235 	if ((req & VM_ALLOC_NOOBJ) == 0) {
1236 		KASSERT(object != NULL,
1237 		    ("vm_page_alloc: NULL object."));
1238 		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1239 	}
1240 
1241 	/*
1242 	 * The pager is allowed to eat deeper into the free page list.
1243 	 */
1244 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
1245 		page_req = VM_ALLOC_SYSTEM;
1246 	};
1247 
1248 	mtx_lock(&vm_page_queue_free_mtx);
1249 	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1250 	    (page_req == VM_ALLOC_SYSTEM &&
1251 	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1252 	    (page_req == VM_ALLOC_INTERRUPT &&
1253 	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1254 		/*
1255 		 * Allocate from the free queue if the number of free pages
1256 		 * exceeds the minimum for the request class.
1257 		 */
1258 		if (object != NULL &&
1259 		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1260 			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1261 				mtx_unlock(&vm_page_queue_free_mtx);
1262 				return (NULL);
1263 			}
1264 			if (vm_phys_unfree_page(m))
1265 				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1266 #if VM_NRESERVLEVEL > 0
1267 			else if (!vm_reserv_reactivate_page(m))
1268 #else
1269 			else
1270 #endif
1271 				panic("vm_page_alloc: cache page %p is missing"
1272 				    " from the free queue", m);
1273 		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1274 			mtx_unlock(&vm_page_queue_free_mtx);
1275 			return (NULL);
1276 #if VM_NRESERVLEVEL > 0
1277 		} else if (object == NULL || object->type == OBJT_DEVICE ||
1278 		    object->type == OBJT_SG ||
1279 		    (object->flags & OBJ_COLORED) == 0 ||
1280 		    (m = vm_reserv_alloc_page(object, pindex)) == NULL) {
1281 #else
1282 		} else {
1283 #endif
1284 			m = vm_phys_alloc_pages(object != NULL ?
1285 			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1286 #if VM_NRESERVLEVEL > 0
1287 			if (m == NULL && vm_reserv_reclaim_inactive()) {
1288 				m = vm_phys_alloc_pages(object != NULL ?
1289 				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1290 				    0);
1291 			}
1292 #endif
1293 		}
1294 	} else {
1295 		/*
1296 		 * Not allocatable, give up.
1297 		 */
1298 		mtx_unlock(&vm_page_queue_free_mtx);
1299 		atomic_add_int(&vm_pageout_deficit,
1300 		    MAX((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1301 		pagedaemon_wakeup();
1302 		return (NULL);
1303 	}
1304 
1305 	/*
1306 	 *  At this point we had better have found a good page.
1307 	 */
1308 
1309 	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1310 	KASSERT(m->queue == PQ_NONE,
1311 	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1312 	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1313 	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1314 	KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m));
1315 	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1316 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1317 	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1318 	    pmap_page_get_memattr(m)));
1319 	if ((m->flags & PG_CACHED) != 0) {
1320 		KASSERT(m->valid != 0,
1321 		    ("vm_page_alloc: cached page %p is invalid", m));
1322 		if (m->object == object && m->pindex == pindex)
1323 	  		cnt.v_reactivated++;
1324 		else
1325 			m->valid = 0;
1326 		m_object = m->object;
1327 		vm_page_cache_remove(m);
1328 		if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
1329 			vp = m_object->handle;
1330 	} else {
1331 		KASSERT(VM_PAGE_IS_FREE(m),
1332 		    ("vm_page_alloc: page %p is not free", m));
1333 		KASSERT(m->valid == 0,
1334 		    ("vm_page_alloc: free page %p is valid", m));
1335 		cnt.v_free_count--;
1336 	}
1337 
1338 	/*
1339 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
1340 	 */
1341 	flags = 0;
1342 	if (m->flags & PG_ZERO) {
1343 		vm_page_zero_count--;
1344 		if (req & VM_ALLOC_ZERO)
1345 			flags = PG_ZERO;
1346 	}
1347 	if (object == NULL || object->type == OBJT_PHYS)
1348 		flags |= PG_UNMANAGED;
1349 	m->flags = flags;
1350 	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
1351 		m->oflags = 0;
1352 	else
1353 		m->oflags = VPO_BUSY;
1354 	if (req & VM_ALLOC_WIRED) {
1355 		atomic_add_int(&cnt.v_wire_count, 1);
1356 		m->wire_count = 1;
1357 	}
1358 	m->act_count = 0;
1359 	mtx_unlock(&vm_page_queue_free_mtx);
1360 
1361 	if (object != NULL) {
1362 		/* Ignore device objects; the pager sets "memattr" for them. */
1363 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1364 		    object->type != OBJT_DEVICE && object->type != OBJT_SG)
1365 			pmap_page_set_memattr(m, object->memattr);
1366 		vm_page_insert(m, object, pindex);
1367 	} else
1368 		m->pindex = pindex;
1369 
1370 	/*
1371 	 * The following call to vdrop() must come after the above call
1372 	 * to vm_page_insert() in case both affect the same object and
1373 	 * vnode.  Otherwise, the affected vnode's hold count could
1374 	 * temporarily become zero.
1375 	 */
1376 	if (vp != NULL)
1377 		vdrop(vp);
1378 
1379 	/*
1380 	 * Don't wakeup too often - wakeup the pageout daemon when
1381 	 * we would be nearly out of memory.
1382 	 */
1383 	if (vm_paging_needed())
1384 		pagedaemon_wakeup();
1385 
1386 	return (m);
1387 }
1388 
1389 /*
1390  * Initialize a page that has been freshly dequeued from a freelist.
1391  * The caller has to drop the vnode returned, if it is not NULL.
1392  *
1393  * To be called with vm_page_queue_free_mtx held.
1394  */
1395 struct vnode *
1396 vm_page_alloc_init(vm_page_t m)
1397 {
1398 	struct vnode *drop;
1399 	vm_object_t m_object;
1400 
1401 	KASSERT(m->queue == PQ_NONE,
1402 	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1403 	    m, m->queue));
1404 	KASSERT(m->wire_count == 0,
1405 	    ("vm_page_alloc_init: page %p is wired", m));
1406 	KASSERT(m->hold_count == 0,
1407 	    ("vm_page_alloc_init: page %p is held", m));
1408 	KASSERT(m->busy == 0,
1409 	    ("vm_page_alloc_init: page %p is busy", m));
1410 	KASSERT(m->dirty == 0,
1411 	    ("vm_page_alloc_init: page %p is dirty", m));
1412 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1413 	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
1414 	    m, pmap_page_get_memattr(m)));
1415 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1416 	drop = NULL;
1417 	if ((m->flags & PG_CACHED) != 0) {
1418 		m->valid = 0;
1419 		m_object = m->object;
1420 		vm_page_cache_remove(m);
1421 		if (m_object->type == OBJT_VNODE &&
1422 		    m_object->cache == NULL)
1423 			drop = m_object->handle;
1424 	} else {
1425 		KASSERT(VM_PAGE_IS_FREE(m),
1426 		    ("vm_page_alloc_init: page %p is not free", m));
1427 		KASSERT(m->valid == 0,
1428 		    ("vm_page_alloc_init: free page %p is valid", m));
1429 		cnt.v_free_count--;
1430 	}
1431 	if (m->flags & PG_ZERO)
1432 		vm_page_zero_count--;
1433 	/* Don't clear the PG_ZERO flag; we'll need it later. */
1434 	m->flags = PG_UNMANAGED | (m->flags & PG_ZERO);
1435 	m->oflags = 0;
1436 	/* Unmanaged pages don't use "act_count". */
1437 	return (drop);
1438 }
1439 
1440 /*
1441  * 	vm_page_alloc_freelist:
1442  *
1443  *	Allocate a page from the specified freelist.
1444  *	Only the ALLOC_CLASS values in req are honored, other request flags
1445  *	are ignored.
1446  */
1447 vm_page_t
1448 vm_page_alloc_freelist(int flind, int req)
1449 {
1450 	struct vnode *drop;
1451 	vm_page_t m;
1452 	int page_req;
1453 
1454 	m = NULL;
1455 	page_req = req & VM_ALLOC_CLASS_MASK;
1456 	mtx_lock(&vm_page_queue_free_mtx);
1457 	/*
1458 	 * Do not allocate reserved pages unless the req has asked for it.
1459 	 */
1460 	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1461 	    (page_req == VM_ALLOC_SYSTEM &&
1462 	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1463 	    (page_req == VM_ALLOC_INTERRUPT &&
1464 	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1465 		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
1466 	}
1467 	if (m == NULL) {
1468 		mtx_unlock(&vm_page_queue_free_mtx);
1469 		return (NULL);
1470 	}
1471 	drop = vm_page_alloc_init(m);
1472 	mtx_unlock(&vm_page_queue_free_mtx);
1473 	if (drop)
1474 		vdrop(drop);
1475 	return (m);
1476 }
1477 
1478 /*
1479  *	vm_wait:	(also see VM_WAIT macro)
1480  *
1481  *	Block until free pages are available for allocation
1482  *	- Called in various places before memory allocations.
1483  */
1484 void
1485 vm_wait(void)
1486 {
1487 
1488 	mtx_lock(&vm_page_queue_free_mtx);
1489 	if (curproc == pageproc) {
1490 		vm_pageout_pages_needed = 1;
1491 		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1492 		    PDROP | PSWP, "VMWait", 0);
1493 	} else {
1494 		if (!vm_pages_needed) {
1495 			vm_pages_needed = 1;
1496 			wakeup(&vm_pages_needed);
1497 		}
1498 		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1499 		    "vmwait", 0);
1500 	}
1501 }
1502 
1503 /*
1504  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1505  *
1506  *	Block until free pages are available for allocation
1507  *	- Called only in vm_fault so that processes page faulting
1508  *	  can be easily tracked.
1509  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1510  *	  processes will be able to grab memory first.  Do not change
1511  *	  this balance without careful testing first.
1512  */
1513 void
1514 vm_waitpfault(void)
1515 {
1516 
1517 	mtx_lock(&vm_page_queue_free_mtx);
1518 	if (!vm_pages_needed) {
1519 		vm_pages_needed = 1;
1520 		wakeup(&vm_pages_needed);
1521 	}
1522 	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1523 	    "pfault", 0);
1524 }
1525 
1526 /*
1527  *	vm_page_requeue:
1528  *
1529  *	Move the given page to the tail of its present page queue.
1530  *
1531  *	The page queues must be locked.
1532  */
1533 void
1534 vm_page_requeue(vm_page_t m)
1535 {
1536 	struct vpgqueues *vpq;
1537 	int queue;
1538 
1539 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1540 	queue = m->queue;
1541 	KASSERT(queue != PQ_NONE,
1542 	    ("vm_page_requeue: page %p is not queued", m));
1543 	vpq = &vm_page_queues[queue];
1544 	TAILQ_REMOVE(&vpq->pl, m, pageq);
1545 	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1546 }
1547 
1548 /*
1549  *	vm_page_queue_remove:
1550  *
1551  *	Remove the given page from the specified queue.
1552  *
1553  *	The page and page queues must be locked.
1554  */
1555 static __inline void
1556 vm_page_queue_remove(int queue, vm_page_t m)
1557 {
1558 	struct vpgqueues *pq;
1559 
1560 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1561 	vm_page_lock_assert(m, MA_OWNED);
1562 	pq = &vm_page_queues[queue];
1563 	TAILQ_REMOVE(&pq->pl, m, pageq);
1564 	(*pq->cnt)--;
1565 }
1566 
1567 /*
1568  *	vm_pageq_remove:
1569  *
1570  *	Remove a page from its queue.
1571  *
1572  *	The given page must be locked.
1573  *	This routine may not block.
1574  */
1575 void
1576 vm_pageq_remove(vm_page_t m)
1577 {
1578 	int queue;
1579 
1580 	vm_page_lock_assert(m, MA_OWNED);
1581 	if ((queue = m->queue) != PQ_NONE) {
1582 		vm_page_lock_queues();
1583 		m->queue = PQ_NONE;
1584 		vm_page_queue_remove(queue, m);
1585 		vm_page_unlock_queues();
1586 	}
1587 }
1588 
1589 /*
1590  *	vm_page_enqueue:
1591  *
1592  *	Add the given page to the specified queue.
1593  *
1594  *	The page queues must be locked.
1595  */
1596 static void
1597 vm_page_enqueue(int queue, vm_page_t m)
1598 {
1599 	struct vpgqueues *vpq;
1600 
1601 	vpq = &vm_page_queues[queue];
1602 	m->queue = queue;
1603 	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1604 	++*vpq->cnt;
1605 }
1606 
1607 /*
1608  *	vm_page_activate:
1609  *
1610  *	Put the specified page on the active list (if appropriate).
1611  *	Ensure that act_count is at least ACT_INIT but do not otherwise
1612  *	mess with it.
1613  *
1614  *	The page must be locked.
1615  *	This routine may not block.
1616  */
1617 void
1618 vm_page_activate(vm_page_t m)
1619 {
1620 	int queue;
1621 
1622 	vm_page_lock_assert(m, MA_OWNED);
1623 	if ((queue = m->queue) != PQ_ACTIVE) {
1624 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1625 			if (m->act_count < ACT_INIT)
1626 				m->act_count = ACT_INIT;
1627 			vm_page_lock_queues();
1628 			if (queue != PQ_NONE)
1629 				vm_page_queue_remove(queue, m);
1630 			vm_page_enqueue(PQ_ACTIVE, m);
1631 			vm_page_unlock_queues();
1632 		} else
1633 			KASSERT(queue == PQ_NONE,
1634 			    ("vm_page_activate: wired page %p is queued", m));
1635 	} else {
1636 		if (m->act_count < ACT_INIT)
1637 			m->act_count = ACT_INIT;
1638 	}
1639 }
1640 
1641 /*
1642  *	vm_page_free_wakeup:
1643  *
1644  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1645  *	routine is called when a page has been added to the cache or free
1646  *	queues.
1647  *
1648  *	The page queues must be locked.
1649  *	This routine may not block.
1650  */
1651 static inline void
1652 vm_page_free_wakeup(void)
1653 {
1654 
1655 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1656 	/*
1657 	 * if pageout daemon needs pages, then tell it that there are
1658 	 * some free.
1659 	 */
1660 	if (vm_pageout_pages_needed &&
1661 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1662 		wakeup(&vm_pageout_pages_needed);
1663 		vm_pageout_pages_needed = 0;
1664 	}
1665 	/*
1666 	 * wakeup processes that are waiting on memory if we hit a
1667 	 * high water mark. And wakeup scheduler process if we have
1668 	 * lots of memory. this process will swapin processes.
1669 	 */
1670 	if (vm_pages_needed && !vm_page_count_min()) {
1671 		vm_pages_needed = 0;
1672 		wakeup(&cnt.v_free_count);
1673 	}
1674 }
1675 
1676 /*
1677  *	vm_page_free_toq:
1678  *
1679  *	Returns the given page to the free list,
1680  *	disassociating it with any VM object.
1681  *
1682  *	Object and page must be locked prior to entry.
1683  *	This routine may not block.
1684  */
1685 
1686 void
1687 vm_page_free_toq(vm_page_t m)
1688 {
1689 
1690 	if ((m->flags & PG_UNMANAGED) == 0) {
1691 		vm_page_lock_assert(m, MA_OWNED);
1692 		KASSERT(!pmap_page_is_mapped(m),
1693 		    ("vm_page_free_toq: freeing mapped page %p", m));
1694 	}
1695 	PCPU_INC(cnt.v_tfree);
1696 
1697 	if (VM_PAGE_IS_FREE(m))
1698 		panic("vm_page_free: freeing free page %p", m);
1699 	else if (m->busy != 0)
1700 		panic("vm_page_free: freeing busy page %p", m);
1701 
1702 	/*
1703 	 * unqueue, then remove page.  Note that we cannot destroy
1704 	 * the page here because we do not want to call the pager's
1705 	 * callback routine until after we've put the page on the
1706 	 * appropriate free queue.
1707 	 */
1708 	if ((m->flags & PG_UNMANAGED) == 0)
1709 		vm_pageq_remove(m);
1710 	vm_page_remove(m);
1711 
1712 	/*
1713 	 * If fictitious remove object association and
1714 	 * return, otherwise delay object association removal.
1715 	 */
1716 	if ((m->flags & PG_FICTITIOUS) != 0) {
1717 		return;
1718 	}
1719 
1720 	m->valid = 0;
1721 	vm_page_undirty(m);
1722 
1723 	if (m->wire_count != 0)
1724 		panic("vm_page_free: freeing wired page %p", m);
1725 	if (m->hold_count != 0) {
1726 		m->flags &= ~PG_ZERO;
1727 		vm_page_lock_queues();
1728 		vm_page_enqueue(PQ_HOLD, m);
1729 		vm_page_unlock_queues();
1730 	} else {
1731 		/*
1732 		 * Restore the default memory attribute to the page.
1733 		 */
1734 		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
1735 			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
1736 
1737 		/*
1738 		 * Insert the page into the physical memory allocator's
1739 		 * cache/free page queues.
1740 		 */
1741 		mtx_lock(&vm_page_queue_free_mtx);
1742 		m->flags |= PG_FREE;
1743 		cnt.v_free_count++;
1744 #if VM_NRESERVLEVEL > 0
1745 		if (!vm_reserv_free_page(m))
1746 #else
1747 		if (TRUE)
1748 #endif
1749 			vm_phys_free_pages(m, 0);
1750 		if ((m->flags & PG_ZERO) != 0)
1751 			++vm_page_zero_count;
1752 		else
1753 			vm_page_zero_idle_wakeup();
1754 		vm_page_free_wakeup();
1755 		mtx_unlock(&vm_page_queue_free_mtx);
1756 	}
1757 }
1758 
1759 /*
1760  *	vm_page_wire:
1761  *
1762  *	Mark this page as wired down by yet
1763  *	another map, removing it from paging queues
1764  *	as necessary.
1765  *
1766  *	If the page is fictitious, then its wire count must remain one.
1767  *
1768  *	The page must be locked.
1769  *	This routine may not block.
1770  */
1771 void
1772 vm_page_wire(vm_page_t m)
1773 {
1774 
1775 	/*
1776 	 * Only bump the wire statistics if the page is not already wired,
1777 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1778 	 * it is already off the queues).
1779 	 */
1780 	vm_page_lock_assert(m, MA_OWNED);
1781 	if ((m->flags & PG_FICTITIOUS) != 0) {
1782 		KASSERT(m->wire_count == 1,
1783 		    ("vm_page_wire: fictitious page %p's wire count isn't one",
1784 		    m));
1785 		return;
1786 	}
1787 	if (m->wire_count == 0) {
1788 		if ((m->flags & PG_UNMANAGED) == 0)
1789 			vm_pageq_remove(m);
1790 		atomic_add_int(&cnt.v_wire_count, 1);
1791 	}
1792 	m->wire_count++;
1793 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1794 }
1795 
1796 /*
1797  * vm_page_unwire:
1798  *
1799  * Release one wiring of the specified page, potentially enabling it to be
1800  * paged again.  If paging is enabled, then the value of the parameter
1801  * "activate" determines to which queue the page is added.  If "activate" is
1802  * non-zero, then the page is added to the active queue.  Otherwise, it is
1803  * added to the inactive queue.
1804  *
1805  * However, unless the page belongs to an object, it is not enqueued because
1806  * it cannot be paged out.
1807  *
1808  * If a page is fictitious, then its wire count must alway be one.
1809  *
1810  * A managed page must be locked.
1811  */
1812 void
1813 vm_page_unwire(vm_page_t m, int activate)
1814 {
1815 
1816 	if ((m->flags & PG_UNMANAGED) == 0)
1817 		vm_page_lock_assert(m, MA_OWNED);
1818 	if ((m->flags & PG_FICTITIOUS) != 0) {
1819 		KASSERT(m->wire_count == 1,
1820 	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
1821 		return;
1822 	}
1823 	if (m->wire_count > 0) {
1824 		m->wire_count--;
1825 		if (m->wire_count == 0) {
1826 			atomic_subtract_int(&cnt.v_wire_count, 1);
1827 			if ((m->flags & PG_UNMANAGED) != 0 ||
1828 			    m->object == NULL)
1829 				return;
1830 			vm_page_lock_queues();
1831 			if (activate)
1832 				vm_page_enqueue(PQ_ACTIVE, m);
1833 			else {
1834 				vm_page_flag_clear(m, PG_WINATCFLS);
1835 				vm_page_enqueue(PQ_INACTIVE, m);
1836 			}
1837 			vm_page_unlock_queues();
1838 		}
1839 	} else
1840 		panic("vm_page_unwire: page %p's wire count is zero", m);
1841 }
1842 
1843 /*
1844  * Move the specified page to the inactive queue.
1845  *
1846  * Many pages placed on the inactive queue should actually go
1847  * into the cache, but it is difficult to figure out which.  What
1848  * we do instead, if the inactive target is well met, is to put
1849  * clean pages at the head of the inactive queue instead of the tail.
1850  * This will cause them to be moved to the cache more quickly and
1851  * if not actively re-referenced, reclaimed more quickly.  If we just
1852  * stick these pages at the end of the inactive queue, heavy filesystem
1853  * meta-data accesses can cause an unnecessary paging load on memory bound
1854  * processes.  This optimization causes one-time-use metadata to be
1855  * reused more quickly.
1856  *
1857  * Normally athead is 0 resulting in LRU operation.  athead is set
1858  * to 1 if we want this page to be 'as if it were placed in the cache',
1859  * except without unmapping it from the process address space.
1860  *
1861  * This routine may not block.
1862  */
1863 static inline void
1864 _vm_page_deactivate(vm_page_t m, int athead)
1865 {
1866 	int queue;
1867 
1868 	vm_page_lock_assert(m, MA_OWNED);
1869 
1870 	/*
1871 	 * Ignore if already inactive.
1872 	 */
1873 	if ((queue = m->queue) == PQ_INACTIVE)
1874 		return;
1875 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1876 		vm_page_lock_queues();
1877 		vm_page_flag_clear(m, PG_WINATCFLS);
1878 		if (queue != PQ_NONE)
1879 			vm_page_queue_remove(queue, m);
1880 		if (athead)
1881 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m,
1882 			    pageq);
1883 		else
1884 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m,
1885 			    pageq);
1886 		m->queue = PQ_INACTIVE;
1887 		cnt.v_inactive_count++;
1888 		vm_page_unlock_queues();
1889 	}
1890 }
1891 
1892 /*
1893  * Move the specified page to the inactive queue.
1894  *
1895  * The page must be locked.
1896  */
1897 void
1898 vm_page_deactivate(vm_page_t m)
1899 {
1900 
1901 	_vm_page_deactivate(m, 0);
1902 }
1903 
1904 /*
1905  * vm_page_try_to_cache:
1906  *
1907  * Returns 0 on failure, 1 on success
1908  */
1909 int
1910 vm_page_try_to_cache(vm_page_t m)
1911 {
1912 
1913 	vm_page_lock_assert(m, MA_OWNED);
1914 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1915 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1916 	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED))
1917 		return (0);
1918 	pmap_remove_all(m);
1919 	if (m->dirty)
1920 		return (0);
1921 	vm_page_cache(m);
1922 	return (1);
1923 }
1924 
1925 /*
1926  * vm_page_try_to_free()
1927  *
1928  *	Attempt to free the page.  If we cannot free it, we do nothing.
1929  *	1 is returned on success, 0 on failure.
1930  */
1931 int
1932 vm_page_try_to_free(vm_page_t m)
1933 {
1934 
1935 	vm_page_lock_assert(m, MA_OWNED);
1936 	if (m->object != NULL)
1937 		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1938 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1939 	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED))
1940 		return (0);
1941 	pmap_remove_all(m);
1942 	if (m->dirty)
1943 		return (0);
1944 	vm_page_free(m);
1945 	return (1);
1946 }
1947 
1948 /*
1949  * vm_page_cache
1950  *
1951  * Put the specified page onto the page cache queue (if appropriate).
1952  *
1953  * This routine may not block.
1954  */
1955 void
1956 vm_page_cache(vm_page_t m)
1957 {
1958 	vm_object_t object;
1959 	vm_page_t root;
1960 
1961 	vm_page_lock_assert(m, MA_OWNED);
1962 	object = m->object;
1963 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1964 	if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy ||
1965 	    m->hold_count || m->wire_count)
1966 		panic("vm_page_cache: attempting to cache busy page");
1967 	pmap_remove_all(m);
1968 	if (m->dirty != 0)
1969 		panic("vm_page_cache: page %p is dirty", m);
1970 	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
1971 	    (object->type == OBJT_SWAP &&
1972 	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
1973 		/*
1974 		 * Hypothesis: A cache-elgible page belonging to a
1975 		 * default object or swap object but without a backing
1976 		 * store must be zero filled.
1977 		 */
1978 		vm_page_free(m);
1979 		return;
1980 	}
1981 	KASSERT((m->flags & PG_CACHED) == 0,
1982 	    ("vm_page_cache: page %p is already cached", m));
1983 	PCPU_INC(cnt.v_tcached);
1984 
1985 	/*
1986 	 * Remove the page from the paging queues.
1987 	 */
1988 	vm_pageq_remove(m);
1989 
1990 	/*
1991 	 * Remove the page from the object's collection of resident
1992 	 * pages.
1993 	 */
1994 	if (m != object->root)
1995 		vm_page_splay(m->pindex, object->root);
1996 	if (m->left == NULL)
1997 		root = m->right;
1998 	else {
1999 		root = vm_page_splay(m->pindex, m->left);
2000 		root->right = m->right;
2001 	}
2002 	object->root = root;
2003 	TAILQ_REMOVE(&object->memq, m, listq);
2004 	object->resident_page_count--;
2005 
2006 	/*
2007 	 * Restore the default memory attribute to the page.
2008 	 */
2009 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2010 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2011 
2012 	/*
2013 	 * Insert the page into the object's collection of cached pages
2014 	 * and the physical memory allocator's cache/free page queues.
2015 	 */
2016 	m->flags &= ~PG_ZERO;
2017 	mtx_lock(&vm_page_queue_free_mtx);
2018 	m->flags |= PG_CACHED;
2019 	cnt.v_cache_count++;
2020 	root = object->cache;
2021 	if (root == NULL) {
2022 		m->left = NULL;
2023 		m->right = NULL;
2024 	} else {
2025 		root = vm_page_splay(m->pindex, root);
2026 		if (m->pindex < root->pindex) {
2027 			m->left = root->left;
2028 			m->right = root;
2029 			root->left = NULL;
2030 		} else if (__predict_false(m->pindex == root->pindex))
2031 			panic("vm_page_cache: offset already cached");
2032 		else {
2033 			m->right = root->right;
2034 			m->left = root;
2035 			root->right = NULL;
2036 		}
2037 	}
2038 	object->cache = m;
2039 #if VM_NRESERVLEVEL > 0
2040 	if (!vm_reserv_free_page(m)) {
2041 #else
2042 	if (TRUE) {
2043 #endif
2044 		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
2045 		vm_phys_free_pages(m, 0);
2046 	}
2047 	vm_page_free_wakeup();
2048 	mtx_unlock(&vm_page_queue_free_mtx);
2049 
2050 	/*
2051 	 * Increment the vnode's hold count if this is the object's only
2052 	 * cached page.  Decrement the vnode's hold count if this was
2053 	 * the object's only resident page.
2054 	 */
2055 	if (object->type == OBJT_VNODE) {
2056 		if (root == NULL && object->resident_page_count != 0)
2057 			vhold(object->handle);
2058 		else if (root != NULL && object->resident_page_count == 0)
2059 			vdrop(object->handle);
2060 	}
2061 }
2062 
2063 /*
2064  * vm_page_dontneed
2065  *
2066  *	Cache, deactivate, or do nothing as appropriate.  This routine
2067  *	is typically used by madvise() MADV_DONTNEED.
2068  *
2069  *	Generally speaking we want to move the page into the cache so
2070  *	it gets reused quickly.  However, this can result in a silly syndrome
2071  *	due to the page recycling too quickly.  Small objects will not be
2072  *	fully cached.  On the otherhand, if we move the page to the inactive
2073  *	queue we wind up with a problem whereby very large objects
2074  *	unnecessarily blow away our inactive and cache queues.
2075  *
2076  *	The solution is to move the pages based on a fixed weighting.  We
2077  *	either leave them alone, deactivate them, or move them to the cache,
2078  *	where moving them to the cache has the highest weighting.
2079  *	By forcing some pages into other queues we eventually force the
2080  *	system to balance the queues, potentially recovering other unrelated
2081  *	space from active.  The idea is to not force this to happen too
2082  *	often.
2083  */
2084 void
2085 vm_page_dontneed(vm_page_t m)
2086 {
2087 	int dnw;
2088 	int head;
2089 
2090 	vm_page_lock_assert(m, MA_OWNED);
2091 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2092 	dnw = PCPU_GET(dnweight);
2093 	PCPU_INC(dnweight);
2094 
2095 	/*
2096 	 * Occasionally leave the page alone.
2097 	 */
2098 	if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) {
2099 		if (m->act_count >= ACT_INIT)
2100 			--m->act_count;
2101 		return;
2102 	}
2103 
2104 	/*
2105 	 * Clear any references to the page.  Otherwise, the page daemon will
2106 	 * immediately reactivate the page.
2107 	 *
2108 	 * Perform the pmap_clear_reference() first.  Otherwise, a concurrent
2109 	 * pmap operation, such as pmap_remove(), could clear a reference in
2110 	 * the pmap and set PG_REFERENCED on the page before the
2111 	 * pmap_clear_reference() had completed.  Consequently, the page would
2112 	 * appear referenced based upon an old reference that occurred before
2113 	 * this function ran.
2114 	 */
2115 	pmap_clear_reference(m);
2116 	vm_page_lock_queues();
2117 	vm_page_flag_clear(m, PG_REFERENCED);
2118 	vm_page_unlock_queues();
2119 
2120 	if (m->dirty == 0 && pmap_is_modified(m))
2121 		vm_page_dirty(m);
2122 
2123 	if (m->dirty || (dnw & 0x0070) == 0) {
2124 		/*
2125 		 * Deactivate the page 3 times out of 32.
2126 		 */
2127 		head = 0;
2128 	} else {
2129 		/*
2130 		 * Cache the page 28 times out of every 32.  Note that
2131 		 * the page is deactivated instead of cached, but placed
2132 		 * at the head of the queue instead of the tail.
2133 		 */
2134 		head = 1;
2135 	}
2136 	_vm_page_deactivate(m, head);
2137 }
2138 
2139 /*
2140  * Grab a page, waiting until we are waken up due to the page
2141  * changing state.  We keep on waiting, if the page continues
2142  * to be in the object.  If the page doesn't exist, first allocate it
2143  * and then conditionally zero it.
2144  *
2145  * The caller must always specify the VM_ALLOC_RETRY flag.  This is intended
2146  * to facilitate its eventual removal.
2147  *
2148  * This routine may block.
2149  */
2150 vm_page_t
2151 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2152 {
2153 	vm_page_t m;
2154 
2155 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2156 	KASSERT((allocflags & VM_ALLOC_RETRY) != 0,
2157 	    ("vm_page_grab: VM_ALLOC_RETRY is required"));
2158 retrylookup:
2159 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
2160 		if ((m->oflags & VPO_BUSY) != 0 ||
2161 		    ((allocflags & VM_ALLOC_IGN_SBUSY) == 0 && m->busy != 0)) {
2162 			/*
2163 			 * Reference the page before unlocking and
2164 			 * sleeping so that the page daemon is less
2165 			 * likely to reclaim it.
2166 			 */
2167 			vm_page_lock_queues();
2168 			vm_page_flag_set(m, PG_REFERENCED);
2169 			vm_page_sleep(m, "pgrbwt");
2170 			goto retrylookup;
2171 		} else {
2172 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
2173 				vm_page_lock(m);
2174 				vm_page_wire(m);
2175 				vm_page_unlock(m);
2176 			}
2177 			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
2178 				vm_page_busy(m);
2179 			return (m);
2180 		}
2181 	}
2182 	m = vm_page_alloc(object, pindex, allocflags & ~(VM_ALLOC_RETRY |
2183 	    VM_ALLOC_IGN_SBUSY));
2184 	if (m == NULL) {
2185 		VM_OBJECT_UNLOCK(object);
2186 		VM_WAIT;
2187 		VM_OBJECT_LOCK(object);
2188 		goto retrylookup;
2189 	} else if (m->valid != 0)
2190 		return (m);
2191 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2192 		pmap_zero_page(m);
2193 	return (m);
2194 }
2195 
2196 /*
2197  * Mapping function for valid bits or for dirty bits in
2198  * a page.  May not block.
2199  *
2200  * Inputs are required to range within a page.
2201  */
2202 int
2203 vm_page_bits(int base, int size)
2204 {
2205 	int first_bit;
2206 	int last_bit;
2207 
2208 	KASSERT(
2209 	    base + size <= PAGE_SIZE,
2210 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2211 	);
2212 
2213 	if (size == 0)		/* handle degenerate case */
2214 		return (0);
2215 
2216 	first_bit = base >> DEV_BSHIFT;
2217 	last_bit = (base + size - 1) >> DEV_BSHIFT;
2218 
2219 	return ((2 << last_bit) - (1 << first_bit));
2220 }
2221 
2222 /*
2223  *	vm_page_set_valid:
2224  *
2225  *	Sets portions of a page valid.  The arguments are expected
2226  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2227  *	of any partial chunks touched by the range.  The invalid portion of
2228  *	such chunks will be zeroed.
2229  *
2230  *	(base + size) must be less then or equal to PAGE_SIZE.
2231  */
2232 void
2233 vm_page_set_valid(vm_page_t m, int base, int size)
2234 {
2235 	int endoff, frag;
2236 
2237 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2238 	if (size == 0)	/* handle degenerate case */
2239 		return;
2240 
2241 	/*
2242 	 * If the base is not DEV_BSIZE aligned and the valid
2243 	 * bit is clear, we have to zero out a portion of the
2244 	 * first block.
2245 	 */
2246 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2247 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2248 		pmap_zero_page_area(m, frag, base - frag);
2249 
2250 	/*
2251 	 * If the ending offset is not DEV_BSIZE aligned and the
2252 	 * valid bit is clear, we have to zero out a portion of
2253 	 * the last block.
2254 	 */
2255 	endoff = base + size;
2256 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2257 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2258 		pmap_zero_page_area(m, endoff,
2259 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2260 
2261 	/*
2262 	 * Assert that no previously invalid block that is now being validated
2263 	 * is already dirty.
2264 	 */
2265 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2266 	    ("vm_page_set_valid: page %p is dirty", m));
2267 
2268 	/*
2269 	 * Set valid bits inclusive of any overlap.
2270 	 */
2271 	m->valid |= vm_page_bits(base, size);
2272 }
2273 
2274 /*
2275  * Clear the given bits from the specified page's dirty field.
2276  */
2277 static __inline void
2278 vm_page_clear_dirty_mask(vm_page_t m, int pagebits)
2279 {
2280 
2281 	/*
2282 	 * If the object is locked and the page is neither VPO_BUSY nor
2283 	 * PG_WRITEABLE, then the page's dirty field cannot possibly be
2284 	 * modified by a concurrent pmap operation.
2285 	 */
2286 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2287 	if ((m->oflags & VPO_BUSY) == 0 && (m->flags & PG_WRITEABLE) == 0)
2288 		m->dirty &= ~pagebits;
2289 	else {
2290 		vm_page_lock_queues();
2291 		m->dirty &= ~pagebits;
2292 		vm_page_unlock_queues();
2293 	}
2294 }
2295 
2296 /*
2297  *	vm_page_set_validclean:
2298  *
2299  *	Sets portions of a page valid and clean.  The arguments are expected
2300  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2301  *	of any partial chunks touched by the range.  The invalid portion of
2302  *	such chunks will be zero'd.
2303  *
2304  *	This routine may not block.
2305  *
2306  *	(base + size) must be less then or equal to PAGE_SIZE.
2307  */
2308 void
2309 vm_page_set_validclean(vm_page_t m, int base, int size)
2310 {
2311 	u_long oldvalid;
2312 	int endoff, frag, pagebits;
2313 
2314 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2315 	if (size == 0)	/* handle degenerate case */
2316 		return;
2317 
2318 	/*
2319 	 * If the base is not DEV_BSIZE aligned and the valid
2320 	 * bit is clear, we have to zero out a portion of the
2321 	 * first block.
2322 	 */
2323 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2324 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2325 		pmap_zero_page_area(m, frag, base - frag);
2326 
2327 	/*
2328 	 * If the ending offset is not DEV_BSIZE aligned and the
2329 	 * valid bit is clear, we have to zero out a portion of
2330 	 * the last block.
2331 	 */
2332 	endoff = base + size;
2333 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2334 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2335 		pmap_zero_page_area(m, endoff,
2336 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2337 
2338 	/*
2339 	 * Set valid, clear dirty bits.  If validating the entire
2340 	 * page we can safely clear the pmap modify bit.  We also
2341 	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
2342 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
2343 	 * be set again.
2344 	 *
2345 	 * We set valid bits inclusive of any overlap, but we can only
2346 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
2347 	 * the range.
2348 	 */
2349 	oldvalid = m->valid;
2350 	pagebits = vm_page_bits(base, size);
2351 	m->valid |= pagebits;
2352 #if 0	/* NOT YET */
2353 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2354 		frag = DEV_BSIZE - frag;
2355 		base += frag;
2356 		size -= frag;
2357 		if (size < 0)
2358 			size = 0;
2359 	}
2360 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2361 #endif
2362 	if (base == 0 && size == PAGE_SIZE) {
2363 		/*
2364 		 * The page can only be modified within the pmap if it is
2365 		 * mapped, and it can only be mapped if it was previously
2366 		 * fully valid.
2367 		 */
2368 		if (oldvalid == VM_PAGE_BITS_ALL)
2369 			/*
2370 			 * Perform the pmap_clear_modify() first.  Otherwise,
2371 			 * a concurrent pmap operation, such as
2372 			 * pmap_protect(), could clear a modification in the
2373 			 * pmap and set the dirty field on the page before
2374 			 * pmap_clear_modify() had begun and after the dirty
2375 			 * field was cleared here.
2376 			 */
2377 			pmap_clear_modify(m);
2378 		m->dirty = 0;
2379 		m->oflags &= ~VPO_NOSYNC;
2380 	} else if (oldvalid != VM_PAGE_BITS_ALL)
2381 		m->dirty &= ~pagebits;
2382 	else
2383 		vm_page_clear_dirty_mask(m, pagebits);
2384 }
2385 
2386 void
2387 vm_page_clear_dirty(vm_page_t m, int base, int size)
2388 {
2389 
2390 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
2391 }
2392 
2393 /*
2394  *	vm_page_set_invalid:
2395  *
2396  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
2397  *	valid and dirty bits for the effected areas are cleared.
2398  *
2399  *	May not block.
2400  */
2401 void
2402 vm_page_set_invalid(vm_page_t m, int base, int size)
2403 {
2404 	int bits;
2405 
2406 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2407 	KASSERT((m->oflags & VPO_BUSY) == 0,
2408 	    ("vm_page_set_invalid: page %p is busy", m));
2409 	bits = vm_page_bits(base, size);
2410 	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
2411 		pmap_remove_all(m);
2412 	KASSERT(!pmap_page_is_mapped(m),
2413 	    ("vm_page_set_invalid: page %p is mapped", m));
2414 	m->valid &= ~bits;
2415 	m->dirty &= ~bits;
2416 }
2417 
2418 /*
2419  * vm_page_zero_invalid()
2420  *
2421  *	The kernel assumes that the invalid portions of a page contain
2422  *	garbage, but such pages can be mapped into memory by user code.
2423  *	When this occurs, we must zero out the non-valid portions of the
2424  *	page so user code sees what it expects.
2425  *
2426  *	Pages are most often semi-valid when the end of a file is mapped
2427  *	into memory and the file's size is not page aligned.
2428  */
2429 void
2430 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2431 {
2432 	int b;
2433 	int i;
2434 
2435 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2436 	/*
2437 	 * Scan the valid bits looking for invalid sections that
2438 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
2439 	 * valid bit may be set ) have already been zerod by
2440 	 * vm_page_set_validclean().
2441 	 */
2442 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2443 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
2444 		    (m->valid & (1 << i))
2445 		) {
2446 			if (i > b) {
2447 				pmap_zero_page_area(m,
2448 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
2449 			}
2450 			b = i + 1;
2451 		}
2452 	}
2453 
2454 	/*
2455 	 * setvalid is TRUE when we can safely set the zero'd areas
2456 	 * as being valid.  We can do this if there are no cache consistancy
2457 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
2458 	 */
2459 	if (setvalid)
2460 		m->valid = VM_PAGE_BITS_ALL;
2461 }
2462 
2463 /*
2464  *	vm_page_is_valid:
2465  *
2466  *	Is (partial) page valid?  Note that the case where size == 0
2467  *	will return FALSE in the degenerate case where the page is
2468  *	entirely invalid, and TRUE otherwise.
2469  *
2470  *	May not block.
2471  */
2472 int
2473 vm_page_is_valid(vm_page_t m, int base, int size)
2474 {
2475 	int bits = vm_page_bits(base, size);
2476 
2477 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2478 	if (m->valid && ((m->valid & bits) == bits))
2479 		return 1;
2480 	else
2481 		return 0;
2482 }
2483 
2484 /*
2485  * update dirty bits from pmap/mmu.  May not block.
2486  */
2487 void
2488 vm_page_test_dirty(vm_page_t m)
2489 {
2490 
2491 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2492 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
2493 		vm_page_dirty(m);
2494 }
2495 
2496 int so_zerocp_fullpage = 0;
2497 
2498 /*
2499  *	Replace the given page with a copy.  The copied page assumes
2500  *	the portion of the given page's "wire_count" that is not the
2501  *	responsibility of this copy-on-write mechanism.
2502  *
2503  *	The object containing the given page must have a non-zero
2504  *	paging-in-progress count and be locked.
2505  */
2506 void
2507 vm_page_cowfault(vm_page_t m)
2508 {
2509 	vm_page_t mnew;
2510 	vm_object_t object;
2511 	vm_pindex_t pindex;
2512 
2513 	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
2514 	vm_page_lock_assert(m, MA_OWNED);
2515 	object = m->object;
2516 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2517 	KASSERT(object->paging_in_progress != 0,
2518 	    ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
2519 	    object));
2520 	pindex = m->pindex;
2521 
2522  retry_alloc:
2523 	pmap_remove_all(m);
2524 	vm_page_remove(m);
2525 	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
2526 	if (mnew == NULL) {
2527 		vm_page_insert(m, object, pindex);
2528 		vm_page_unlock(m);
2529 		VM_OBJECT_UNLOCK(object);
2530 		VM_WAIT;
2531 		VM_OBJECT_LOCK(object);
2532 		if (m == vm_page_lookup(object, pindex)) {
2533 			vm_page_lock(m);
2534 			goto retry_alloc;
2535 		} else {
2536 			/*
2537 			 * Page disappeared during the wait.
2538 			 */
2539 			return;
2540 		}
2541 	}
2542 
2543 	if (m->cow == 0) {
2544 		/*
2545 		 * check to see if we raced with an xmit complete when
2546 		 * waiting to allocate a page.  If so, put things back
2547 		 * the way they were
2548 		 */
2549 		vm_page_unlock(m);
2550 		vm_page_lock(mnew);
2551 		vm_page_free(mnew);
2552 		vm_page_unlock(mnew);
2553 		vm_page_insert(m, object, pindex);
2554 	} else { /* clear COW & copy page */
2555 		if (!so_zerocp_fullpage)
2556 			pmap_copy_page(m, mnew);
2557 		mnew->valid = VM_PAGE_BITS_ALL;
2558 		vm_page_dirty(mnew);
2559 		mnew->wire_count = m->wire_count - m->cow;
2560 		m->wire_count = m->cow;
2561 		vm_page_unlock(m);
2562 	}
2563 }
2564 
2565 void
2566 vm_page_cowclear(vm_page_t m)
2567 {
2568 
2569 	vm_page_lock_assert(m, MA_OWNED);
2570 	if (m->cow) {
2571 		m->cow--;
2572 		/*
2573 		 * let vm_fault add back write permission  lazily
2574 		 */
2575 	}
2576 	/*
2577 	 *  sf_buf_free() will free the page, so we needn't do it here
2578 	 */
2579 }
2580 
2581 int
2582 vm_page_cowsetup(vm_page_t m)
2583 {
2584 
2585 	vm_page_lock_assert(m, MA_OWNED);
2586 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
2587 	    m->cow == USHRT_MAX - 1 || !VM_OBJECT_TRYLOCK(m->object))
2588 		return (EBUSY);
2589 	m->cow++;
2590 	pmap_remove_write(m);
2591 	VM_OBJECT_UNLOCK(m->object);
2592 	return (0);
2593 }
2594 
2595 #include "opt_ddb.h"
2596 #ifdef DDB
2597 #include <sys/kernel.h>
2598 
2599 #include <ddb/ddb.h>
2600 
2601 DB_SHOW_COMMAND(page, vm_page_print_page_info)
2602 {
2603 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
2604 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
2605 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
2606 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
2607 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
2608 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
2609 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
2610 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
2611 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
2612 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
2613 }
2614 
2615 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2616 {
2617 
2618 	db_printf("PQ_FREE:");
2619 	db_printf(" %d", cnt.v_free_count);
2620 	db_printf("\n");
2621 
2622 	db_printf("PQ_CACHE:");
2623 	db_printf(" %d", cnt.v_cache_count);
2624 	db_printf("\n");
2625 
2626 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
2627 		*vm_page_queues[PQ_ACTIVE].cnt,
2628 		*vm_page_queues[PQ_INACTIVE].cnt);
2629 }
2630 #endif /* DDB */
2631