1 /*- 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 33 */ 34 35 /*- 36 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 37 * All rights reserved. 38 * 39 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 40 * 41 * Permission to use, copy, modify and distribute this software and 42 * its documentation is hereby granted, provided that both the copyright 43 * notice and this permission notice appear in all copies of the 44 * software, derivative works or modified versions, and any portions 45 * thereof, and that both notices appear in supporting documentation. 46 * 47 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 48 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 49 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 50 * 51 * Carnegie Mellon requests users of this software to return to 52 * 53 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 54 * School of Computer Science 55 * Carnegie Mellon University 56 * Pittsburgh PA 15213-3890 57 * 58 * any improvements or extensions that they make and grant Carnegie the 59 * rights to redistribute these changes. 60 */ 61 62 /* 63 * GENERAL RULES ON VM_PAGE MANIPULATION 64 * 65 * - a pageq mutex is required when adding or removing a page from a 66 * page queue (vm_page_queue[]), regardless of other mutexes or the 67 * busy state of a page. 68 * 69 * - a hash chain mutex is required when associating or disassociating 70 * a page from the VM PAGE CACHE hash table (vm_page_buckets), 71 * regardless of other mutexes or the busy state of a page. 72 * 73 * - either a hash chain mutex OR a busied page is required in order 74 * to modify the page flags. A hash chain mutex must be obtained in 75 * order to busy a page. A page's flags cannot be modified by a 76 * hash chain mutex if the page is marked busy. 77 * 78 * - The object memq mutex is held when inserting or removing 79 * pages from an object (vm_page_insert() or vm_page_remove()). This 80 * is different from the object's main mutex. 81 * 82 * Generally speaking, you have to be aware of side effects when running 83 * vm_page ops. A vm_page_lookup() will return with the hash chain 84 * locked, whether it was able to lookup the page or not. vm_page_free(), 85 * vm_page_cache(), vm_page_activate(), and a number of other routines 86 * will release the hash chain mutex for you. Intermediate manipulation 87 * routines such as vm_page_flag_set() expect the hash chain to be held 88 * on entry and the hash chain will remain held on return. 89 * 90 * pageq scanning can only occur with the pageq in question locked. 91 * We have a known bottleneck with the active queue, but the cache 92 * and free queues are actually arrays already. 93 */ 94 95 /* 96 * Resident memory management module. 97 */ 98 99 #include <sys/cdefs.h> 100 __FBSDID("$FreeBSD$"); 101 102 #include <sys/param.h> 103 #include <sys/systm.h> 104 #include <sys/lock.h> 105 #include <sys/kernel.h> 106 #include <sys/malloc.h> 107 #include <sys/mutex.h> 108 #include <sys/proc.h> 109 #include <sys/sysctl.h> 110 #include <sys/vmmeter.h> 111 #include <sys/vnode.h> 112 113 #include <vm/vm.h> 114 #include <vm/vm_param.h> 115 #include <vm/vm_kern.h> 116 #include <vm/vm_object.h> 117 #include <vm/vm_page.h> 118 #include <vm/vm_pageout.h> 119 #include <vm/vm_pager.h> 120 #include <vm/vm_extern.h> 121 #include <vm/uma.h> 122 #include <vm/uma_int.h> 123 124 #include <machine/md_var.h> 125 126 /* 127 * Associated with page of user-allocatable memory is a 128 * page structure. 129 */ 130 131 struct mtx vm_page_queue_mtx; 132 struct mtx vm_page_queue_free_mtx; 133 134 vm_page_t vm_page_array = 0; 135 int vm_page_array_size = 0; 136 long first_page = 0; 137 int vm_page_zero_count = 0; 138 139 static int boot_pages = UMA_BOOT_PAGES; 140 TUNABLE_INT("vm.boot_pages", &boot_pages); 141 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0, 142 "number of pages allocated for bootstrapping the VM system"); 143 144 /* 145 * vm_set_page_size: 146 * 147 * Sets the page size, perhaps based upon the memory 148 * size. Must be called before any use of page-size 149 * dependent functions. 150 */ 151 void 152 vm_set_page_size(void) 153 { 154 if (cnt.v_page_size == 0) 155 cnt.v_page_size = PAGE_SIZE; 156 if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0) 157 panic("vm_set_page_size: page size not a power of two"); 158 } 159 160 /* 161 * vm_page_blacklist_lookup: 162 * 163 * See if a physical address in this page has been listed 164 * in the blacklist tunable. Entries in the tunable are 165 * separated by spaces or commas. If an invalid integer is 166 * encountered then the rest of the string is skipped. 167 */ 168 static int 169 vm_page_blacklist_lookup(char *list, vm_paddr_t pa) 170 { 171 vm_paddr_t bad; 172 char *cp, *pos; 173 174 for (pos = list; *pos != '\0'; pos = cp) { 175 bad = strtoq(pos, &cp, 0); 176 if (*cp != '\0') { 177 if (*cp == ' ' || *cp == ',') { 178 cp++; 179 if (cp == pos) 180 continue; 181 } else 182 break; 183 } 184 if (pa == trunc_page(bad)) 185 return (1); 186 } 187 return (0); 188 } 189 190 /* 191 * vm_page_startup: 192 * 193 * Initializes the resident memory module. 194 * 195 * Allocates memory for the page cells, and 196 * for the object/offset-to-page hash table headers. 197 * Each page cell is initialized and placed on the free list. 198 */ 199 vm_offset_t 200 vm_page_startup(vm_offset_t vaddr) 201 { 202 vm_offset_t mapped; 203 vm_size_t npages; 204 vm_paddr_t page_range; 205 vm_paddr_t new_end; 206 int i; 207 vm_paddr_t pa; 208 int nblocks; 209 vm_paddr_t last_pa; 210 char *list; 211 212 /* the biggest memory array is the second group of pages */ 213 vm_paddr_t end; 214 vm_paddr_t biggestsize; 215 vm_paddr_t low_water, high_water; 216 int biggestone; 217 218 vm_paddr_t total; 219 220 total = 0; 221 biggestsize = 0; 222 biggestone = 0; 223 nblocks = 0; 224 vaddr = round_page(vaddr); 225 226 for (i = 0; phys_avail[i + 1]; i += 2) { 227 phys_avail[i] = round_page(phys_avail[i]); 228 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 229 } 230 231 low_water = phys_avail[0]; 232 high_water = phys_avail[1]; 233 234 for (i = 0; phys_avail[i + 1]; i += 2) { 235 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 236 237 if (size > biggestsize) { 238 biggestone = i; 239 biggestsize = size; 240 } 241 if (phys_avail[i] < low_water) 242 low_water = phys_avail[i]; 243 if (phys_avail[i + 1] > high_water) 244 high_water = phys_avail[i + 1]; 245 ++nblocks; 246 total += size; 247 } 248 249 end = phys_avail[biggestone+1]; 250 251 /* 252 * Initialize the locks. 253 */ 254 mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF | 255 MTX_RECURSE); 256 mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL, 257 MTX_DEF); 258 259 /* 260 * Initialize the queue headers for the free queue, the active queue 261 * and the inactive queue. 262 */ 263 vm_pageq_init(); 264 265 /* 266 * Allocate memory for use when boot strapping the kernel memory 267 * allocator. 268 */ 269 new_end = end - (boot_pages * UMA_SLAB_SIZE); 270 new_end = trunc_page(new_end); 271 mapped = pmap_map(&vaddr, new_end, end, 272 VM_PROT_READ | VM_PROT_WRITE); 273 bzero((void *)mapped, end - new_end); 274 uma_startup((void *)mapped, boot_pages); 275 276 #if defined(__amd64__) || defined(__i386__) 277 /* 278 * Allocate a bitmap to indicate that a random physical page 279 * needs to be included in a minidump. 280 * 281 * The amd64 port needs this to indicate which direct map pages 282 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 283 * 284 * However, i386 still needs this workspace internally within the 285 * minidump code. In theory, they are not needed on i386, but are 286 * included should the sf_buf code decide to use them. 287 */ 288 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE; 289 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 290 new_end -= vm_page_dump_size; 291 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, 292 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); 293 bzero((void *)vm_page_dump, vm_page_dump_size); 294 #endif 295 /* 296 * Compute the number of pages of memory that will be available for 297 * use (taking into account the overhead of a page structure per 298 * page). 299 */ 300 first_page = low_water / PAGE_SIZE; 301 #ifdef VM_PHYSSEG_SPARSE 302 page_range = 0; 303 for (i = 0; phys_avail[i + 1] != 0; i += 2) 304 page_range += atop(phys_avail[i + 1] - phys_avail[i]); 305 #elif defined(VM_PHYSSEG_DENSE) 306 page_range = high_water / PAGE_SIZE - first_page; 307 #else 308 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 309 #endif 310 npages = (total - (page_range * sizeof(struct vm_page)) - 311 (end - new_end)) / PAGE_SIZE; 312 end = new_end; 313 314 /* 315 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 316 */ 317 vaddr += PAGE_SIZE; 318 319 /* 320 * Initialize the mem entry structures now, and put them in the free 321 * queue. 322 */ 323 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 324 mapped = pmap_map(&vaddr, new_end, end, 325 VM_PROT_READ | VM_PROT_WRITE); 326 vm_page_array = (vm_page_t) mapped; 327 #ifdef __amd64__ 328 /* 329 * pmap_map on amd64 comes out of the direct-map, not kvm like i386, 330 * so the pages must be tracked for a crashdump to include this data. 331 * This includes the vm_page_array and the early UMA bootstrap pages. 332 */ 333 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE) 334 dump_add_page(pa); 335 #endif 336 phys_avail[biggestone + 1] = new_end; 337 338 /* 339 * Clear all of the page structures 340 */ 341 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 342 vm_page_array_size = page_range; 343 344 /* 345 * This assertion tests the hypothesis that npages and total are 346 * redundant. XXX 347 */ 348 page_range = 0; 349 for (i = 0; phys_avail[i + 1] != 0; i += 2) 350 page_range += atop(phys_avail[i + 1] - phys_avail[i]); 351 KASSERT(page_range == npages, 352 ("vm_page_startup: inconsistent page counts")); 353 354 /* 355 * Construct the free queue(s) in descending order (by physical 356 * address) so that the first 16MB of physical memory is allocated 357 * last rather than first. On large-memory machines, this avoids 358 * the exhaustion of low physical memory before isa_dma_init has run. 359 */ 360 cnt.v_page_count = 0; 361 cnt.v_free_count = 0; 362 list = getenv("vm.blacklist"); 363 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 364 pa = phys_avail[i]; 365 last_pa = phys_avail[i + 1]; 366 while (pa < last_pa) { 367 if (list != NULL && 368 vm_page_blacklist_lookup(list, pa)) 369 printf("Skipping page with pa 0x%jx\n", 370 (uintmax_t)pa); 371 else 372 vm_pageq_add_new_page(pa); 373 pa += PAGE_SIZE; 374 } 375 } 376 freeenv(list); 377 return (vaddr); 378 } 379 380 void 381 vm_page_flag_set(vm_page_t m, unsigned short bits) 382 { 383 384 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 385 m->flags |= bits; 386 } 387 388 void 389 vm_page_flag_clear(vm_page_t m, unsigned short bits) 390 { 391 392 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 393 m->flags &= ~bits; 394 } 395 396 void 397 vm_page_busy(vm_page_t m) 398 { 399 400 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 401 KASSERT((m->oflags & VPO_BUSY) == 0, 402 ("vm_page_busy: page already busy!!!")); 403 m->oflags |= VPO_BUSY; 404 } 405 406 /* 407 * vm_page_flash: 408 * 409 * wakeup anyone waiting for the page. 410 */ 411 void 412 vm_page_flash(vm_page_t m) 413 { 414 415 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 416 if (m->oflags & VPO_WANTED) { 417 m->oflags &= ~VPO_WANTED; 418 wakeup(m); 419 } 420 } 421 422 /* 423 * vm_page_wakeup: 424 * 425 * clear the VPO_BUSY flag and wakeup anyone waiting for the 426 * page. 427 * 428 */ 429 void 430 vm_page_wakeup(vm_page_t m) 431 { 432 433 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 434 KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!")); 435 m->oflags &= ~VPO_BUSY; 436 vm_page_flash(m); 437 } 438 439 void 440 vm_page_io_start(vm_page_t m) 441 { 442 443 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 444 m->busy++; 445 } 446 447 void 448 vm_page_io_finish(vm_page_t m) 449 { 450 451 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 452 m->busy--; 453 if (m->busy == 0) 454 vm_page_flash(m); 455 } 456 457 /* 458 * Keep page from being freed by the page daemon 459 * much of the same effect as wiring, except much lower 460 * overhead and should be used only for *very* temporary 461 * holding ("wiring"). 462 */ 463 void 464 vm_page_hold(vm_page_t mem) 465 { 466 467 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 468 mem->hold_count++; 469 } 470 471 void 472 vm_page_unhold(vm_page_t mem) 473 { 474 475 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 476 --mem->hold_count; 477 KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!")); 478 if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD)) 479 vm_page_free_toq(mem); 480 } 481 482 /* 483 * vm_page_free: 484 * 485 * Free a page. 486 */ 487 void 488 vm_page_free(vm_page_t m) 489 { 490 491 m->flags &= ~PG_ZERO; 492 vm_page_free_toq(m); 493 } 494 495 /* 496 * vm_page_free_zero: 497 * 498 * Free a page to the zerod-pages queue 499 */ 500 void 501 vm_page_free_zero(vm_page_t m) 502 { 503 504 m->flags |= PG_ZERO; 505 vm_page_free_toq(m); 506 } 507 508 /* 509 * vm_page_sleep: 510 * 511 * Sleep and release the page queues lock. 512 * 513 * The object containing the given page must be locked. 514 */ 515 void 516 vm_page_sleep(vm_page_t m, const char *msg) 517 { 518 519 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 520 if (!mtx_owned(&vm_page_queue_mtx)) 521 vm_page_lock_queues(); 522 vm_page_flag_set(m, PG_REFERENCED); 523 vm_page_unlock_queues(); 524 525 /* 526 * It's possible that while we sleep, the page will get 527 * unbusied and freed. If we are holding the object 528 * lock, we will assume we hold a reference to the object 529 * such that even if m->object changes, we can re-lock 530 * it. 531 */ 532 m->oflags |= VPO_WANTED; 533 msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0); 534 } 535 536 /* 537 * vm_page_dirty: 538 * 539 * make page all dirty 540 */ 541 void 542 vm_page_dirty(vm_page_t m) 543 { 544 KASSERT(VM_PAGE_GETKNOWNQUEUE1(m) != PQ_CACHE, 545 ("vm_page_dirty: page in cache!")); 546 KASSERT(VM_PAGE_GETKNOWNQUEUE1(m) != PQ_FREE, 547 ("vm_page_dirty: page is free!")); 548 m->dirty = VM_PAGE_BITS_ALL; 549 } 550 551 /* 552 * vm_page_splay: 553 * 554 * Implements Sleator and Tarjan's top-down splay algorithm. Returns 555 * the vm_page containing the given pindex. If, however, that 556 * pindex is not found in the vm_object, returns a vm_page that is 557 * adjacent to the pindex, coming before or after it. 558 */ 559 vm_page_t 560 vm_page_splay(vm_pindex_t pindex, vm_page_t root) 561 { 562 struct vm_page dummy; 563 vm_page_t lefttreemax, righttreemin, y; 564 565 if (root == NULL) 566 return (root); 567 lefttreemax = righttreemin = &dummy; 568 for (;; root = y) { 569 if (pindex < root->pindex) { 570 if ((y = root->left) == NULL) 571 break; 572 if (pindex < y->pindex) { 573 /* Rotate right. */ 574 root->left = y->right; 575 y->right = root; 576 root = y; 577 if ((y = root->left) == NULL) 578 break; 579 } 580 /* Link into the new root's right tree. */ 581 righttreemin->left = root; 582 righttreemin = root; 583 } else if (pindex > root->pindex) { 584 if ((y = root->right) == NULL) 585 break; 586 if (pindex > y->pindex) { 587 /* Rotate left. */ 588 root->right = y->left; 589 y->left = root; 590 root = y; 591 if ((y = root->right) == NULL) 592 break; 593 } 594 /* Link into the new root's left tree. */ 595 lefttreemax->right = root; 596 lefttreemax = root; 597 } else 598 break; 599 } 600 /* Assemble the new root. */ 601 lefttreemax->right = root->left; 602 righttreemin->left = root->right; 603 root->left = dummy.right; 604 root->right = dummy.left; 605 return (root); 606 } 607 608 /* 609 * vm_page_insert: [ internal use only ] 610 * 611 * Inserts the given mem entry into the object and object list. 612 * 613 * The pagetables are not updated but will presumably fault the page 614 * in if necessary, or if a kernel page the caller will at some point 615 * enter the page into the kernel's pmap. We are not allowed to block 616 * here so we *can't* do this anyway. 617 * 618 * The object and page must be locked. 619 * This routine may not block. 620 */ 621 void 622 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 623 { 624 vm_page_t root; 625 626 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 627 if (m->object != NULL) 628 panic("vm_page_insert: page already inserted"); 629 630 /* 631 * Record the object/offset pair in this page 632 */ 633 m->object = object; 634 m->pindex = pindex; 635 636 /* 637 * Now link into the object's ordered list of backed pages. 638 */ 639 root = object->root; 640 if (root == NULL) { 641 m->left = NULL; 642 m->right = NULL; 643 TAILQ_INSERT_TAIL(&object->memq, m, listq); 644 } else { 645 root = vm_page_splay(pindex, root); 646 if (pindex < root->pindex) { 647 m->left = root->left; 648 m->right = root; 649 root->left = NULL; 650 TAILQ_INSERT_BEFORE(root, m, listq); 651 } else if (pindex == root->pindex) 652 panic("vm_page_insert: offset already allocated"); 653 else { 654 m->right = root->right; 655 m->left = root; 656 root->right = NULL; 657 TAILQ_INSERT_AFTER(&object->memq, root, m, listq); 658 } 659 } 660 object->root = m; 661 object->generation++; 662 663 /* 664 * show that the object has one more resident page. 665 */ 666 object->resident_page_count++; 667 /* 668 * Hold the vnode until the last page is released. 669 */ 670 if (object->resident_page_count == 1 && object->type == OBJT_VNODE) 671 vhold((struct vnode *)object->handle); 672 673 /* 674 * Since we are inserting a new and possibly dirty page, 675 * update the object's OBJ_MIGHTBEDIRTY flag. 676 */ 677 if (m->flags & PG_WRITEABLE) 678 vm_object_set_writeable_dirty(object); 679 } 680 681 /* 682 * vm_page_remove: 683 * NOTE: used by device pager as well -wfj 684 * 685 * Removes the given mem entry from the object/offset-page 686 * table and the object page list, but do not invalidate/terminate 687 * the backing store. 688 * 689 * The object and page must be locked. 690 * The underlying pmap entry (if any) is NOT removed here. 691 * This routine may not block. 692 */ 693 void 694 vm_page_remove(vm_page_t m) 695 { 696 vm_object_t object; 697 vm_page_t root; 698 699 if ((object = m->object) == NULL) 700 return; 701 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 702 if (m->oflags & VPO_BUSY) { 703 m->oflags &= ~VPO_BUSY; 704 vm_page_flash(m); 705 } 706 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 707 708 /* 709 * Now remove from the object's list of backed pages. 710 */ 711 if (m != object->root) 712 vm_page_splay(m->pindex, object->root); 713 if (m->left == NULL) 714 root = m->right; 715 else { 716 root = vm_page_splay(m->pindex, m->left); 717 root->right = m->right; 718 } 719 object->root = root; 720 TAILQ_REMOVE(&object->memq, m, listq); 721 722 /* 723 * And show that the object has one fewer resident page. 724 */ 725 object->resident_page_count--; 726 object->generation++; 727 /* 728 * The vnode may now be recycled. 729 */ 730 if (object->resident_page_count == 0 && object->type == OBJT_VNODE) 731 vdrop((struct vnode *)object->handle); 732 733 m->object = NULL; 734 } 735 736 /* 737 * vm_page_lookup: 738 * 739 * Returns the page associated with the object/offset 740 * pair specified; if none is found, NULL is returned. 741 * 742 * The object must be locked. 743 * This routine may not block. 744 * This is a critical path routine 745 */ 746 vm_page_t 747 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 748 { 749 vm_page_t m; 750 751 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 752 if ((m = object->root) != NULL && m->pindex != pindex) { 753 m = vm_page_splay(pindex, m); 754 if ((object->root = m)->pindex != pindex) 755 m = NULL; 756 } 757 return (m); 758 } 759 760 /* 761 * vm_page_rename: 762 * 763 * Move the given memory entry from its 764 * current object to the specified target object/offset. 765 * 766 * The object must be locked. 767 * This routine may not block. 768 * 769 * Note: swap associated with the page must be invalidated by the move. We 770 * have to do this for several reasons: (1) we aren't freeing the 771 * page, (2) we are dirtying the page, (3) the VM system is probably 772 * moving the page from object A to B, and will then later move 773 * the backing store from A to B and we can't have a conflict. 774 * 775 * Note: we *always* dirty the page. It is necessary both for the 776 * fact that we moved it, and because we may be invalidating 777 * swap. If the page is on the cache, we have to deactivate it 778 * or vm_page_dirty() will panic. Dirty pages are not allowed 779 * on the cache. 780 */ 781 void 782 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 783 { 784 785 vm_page_remove(m); 786 vm_page_insert(m, new_object, new_pindex); 787 if (VM_PAGE_INQUEUE1(m, PQ_CACHE)) 788 vm_page_deactivate(m); 789 vm_page_dirty(m); 790 } 791 792 /* 793 * vm_page_select_cache: 794 * 795 * Move a page of the given color from the cache queue to the free 796 * queue. As pages might be found, but are not applicable, they are 797 * deactivated. 798 * 799 * This routine may not block. 800 */ 801 vm_page_t 802 vm_page_select_cache(int color) 803 { 804 vm_object_t object; 805 vm_page_t m; 806 boolean_t was_trylocked; 807 808 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 809 while ((m = vm_pageq_find(PQ_CACHE, color, FALSE)) != NULL) { 810 KASSERT(m->dirty == 0, ("Found dirty cache page %p", m)); 811 KASSERT(!pmap_page_is_mapped(m), 812 ("Found mapped cache page %p", m)); 813 KASSERT((m->flags & PG_UNMANAGED) == 0, 814 ("Found unmanaged cache page %p", m)); 815 KASSERT(m->wire_count == 0, ("Found wired cache page %p", m)); 816 if (m->hold_count == 0 && (object = m->object, 817 (was_trylocked = VM_OBJECT_TRYLOCK(object)) || 818 VM_OBJECT_LOCKED(object))) { 819 KASSERT((m->oflags & VPO_BUSY) == 0 && m->busy == 0, 820 ("Found busy cache page %p", m)); 821 vm_page_free(m); 822 if (was_trylocked) 823 VM_OBJECT_UNLOCK(object); 824 break; 825 } 826 vm_page_deactivate(m); 827 } 828 return (m); 829 } 830 831 /* 832 * vm_page_alloc: 833 * 834 * Allocate and return a memory cell associated 835 * with this VM object/offset pair. 836 * 837 * page_req classes: 838 * VM_ALLOC_NORMAL normal process request 839 * VM_ALLOC_SYSTEM system *really* needs a page 840 * VM_ALLOC_INTERRUPT interrupt time request 841 * VM_ALLOC_ZERO zero page 842 * 843 * This routine may not block. 844 * 845 * Additional special handling is required when called from an 846 * interrupt (VM_ALLOC_INTERRUPT). We are not allowed to mess with 847 * the page cache in this case. 848 */ 849 vm_page_t 850 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 851 { 852 vm_page_t m = NULL; 853 int color, flags, page_req; 854 855 page_req = req & VM_ALLOC_CLASS_MASK; 856 KASSERT(curthread->td_intr_nesting_level == 0 || 857 page_req == VM_ALLOC_INTERRUPT, 858 ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context")); 859 860 if ((req & VM_ALLOC_NOOBJ) == 0) { 861 KASSERT(object != NULL, 862 ("vm_page_alloc: NULL object.")); 863 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 864 color = (pindex + object->pg_color) & PQ_COLORMASK; 865 } else 866 color = pindex & PQ_COLORMASK; 867 868 /* 869 * The pager is allowed to eat deeper into the free page list. 870 */ 871 if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) { 872 page_req = VM_ALLOC_SYSTEM; 873 }; 874 875 loop: 876 mtx_lock(&vm_page_queue_free_mtx); 877 if (cnt.v_free_count > cnt.v_free_reserved || 878 (page_req == VM_ALLOC_SYSTEM && 879 cnt.v_cache_count == 0 && 880 cnt.v_free_count > cnt.v_interrupt_free_min) || 881 (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) { 882 /* 883 * Allocate from the free queue if the number of free pages 884 * exceeds the minimum for the request class. 885 */ 886 m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0); 887 } else if (page_req != VM_ALLOC_INTERRUPT) { 888 mtx_unlock(&vm_page_queue_free_mtx); 889 /* 890 * Allocatable from cache (non-interrupt only). On success, 891 * we must free the page and try again, thus ensuring that 892 * cnt.v_*_free_min counters are replenished. 893 */ 894 vm_page_lock_queues(); 895 if ((m = vm_page_select_cache(color)) == NULL) { 896 KASSERT(cnt.v_cache_count == 0, 897 ("vm_page_alloc: cache queue is missing %d pages", 898 cnt.v_cache_count)); 899 vm_page_unlock_queues(); 900 atomic_add_int(&vm_pageout_deficit, 1); 901 pagedaemon_wakeup(); 902 903 if (page_req != VM_ALLOC_SYSTEM) 904 return (NULL); 905 906 mtx_lock(&vm_page_queue_free_mtx); 907 if (cnt.v_free_count <= cnt.v_interrupt_free_min) { 908 mtx_unlock(&vm_page_queue_free_mtx); 909 return (NULL); 910 } 911 m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0); 912 } else { 913 vm_page_unlock_queues(); 914 goto loop; 915 } 916 } else { 917 /* 918 * Not allocatable from cache from interrupt, give up. 919 */ 920 mtx_unlock(&vm_page_queue_free_mtx); 921 atomic_add_int(&vm_pageout_deficit, 1); 922 pagedaemon_wakeup(); 923 return (NULL); 924 } 925 926 /* 927 * At this point we had better have found a good page. 928 */ 929 930 KASSERT( 931 m != NULL, 932 ("vm_page_alloc(): missing page on free queue") 933 ); 934 935 /* 936 * Remove from free queue 937 */ 938 vm_pageq_remove_nowakeup(m); 939 940 /* 941 * Initialize structure. Only the PG_ZERO flag is inherited. 942 */ 943 flags = 0; 944 if (m->flags & PG_ZERO) { 945 vm_page_zero_count--; 946 if (req & VM_ALLOC_ZERO) 947 flags = PG_ZERO; 948 } 949 if (object != NULL && object->type == OBJT_PHYS) 950 flags |= PG_UNMANAGED; 951 m->flags = flags; 952 if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ)) 953 m->oflags = 0; 954 else 955 m->oflags = VPO_BUSY; 956 if (req & VM_ALLOC_WIRED) { 957 atomic_add_int(&cnt.v_wire_count, 1); 958 m->wire_count = 1; 959 } else 960 m->wire_count = 0; 961 m->hold_count = 0; 962 m->act_count = 0; 963 m->busy = 0; 964 m->valid = 0; 965 KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m)); 966 mtx_unlock(&vm_page_queue_free_mtx); 967 968 if ((req & VM_ALLOC_NOOBJ) == 0) 969 vm_page_insert(m, object, pindex); 970 else 971 m->pindex = pindex; 972 973 /* 974 * Don't wakeup too often - wakeup the pageout daemon when 975 * we would be nearly out of memory. 976 */ 977 if (vm_paging_needed()) 978 pagedaemon_wakeup(); 979 980 return (m); 981 } 982 983 /* 984 * vm_wait: (also see VM_WAIT macro) 985 * 986 * Block until free pages are available for allocation 987 * - Called in various places before memory allocations. 988 */ 989 void 990 vm_wait(void) 991 { 992 993 mtx_lock(&vm_page_queue_free_mtx); 994 if (curproc == pageproc) { 995 vm_pageout_pages_needed = 1; 996 msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx, 997 PDROP | PSWP, "VMWait", 0); 998 } else { 999 if (!vm_pages_needed) { 1000 vm_pages_needed = 1; 1001 wakeup(&vm_pages_needed); 1002 } 1003 msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM, 1004 "vmwait", 0); 1005 } 1006 } 1007 1008 /* 1009 * vm_waitpfault: (also see VM_WAITPFAULT macro) 1010 * 1011 * Block until free pages are available for allocation 1012 * - Called only in vm_fault so that processes page faulting 1013 * can be easily tracked. 1014 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 1015 * processes will be able to grab memory first. Do not change 1016 * this balance without careful testing first. 1017 */ 1018 void 1019 vm_waitpfault(void) 1020 { 1021 1022 mtx_lock(&vm_page_queue_free_mtx); 1023 if (!vm_pages_needed) { 1024 vm_pages_needed = 1; 1025 wakeup(&vm_pages_needed); 1026 } 1027 msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER, 1028 "pfault", 0); 1029 } 1030 1031 /* 1032 * vm_page_activate: 1033 * 1034 * Put the specified page on the active list (if appropriate). 1035 * Ensure that act_count is at least ACT_INIT but do not otherwise 1036 * mess with it. 1037 * 1038 * The page queues must be locked. 1039 * This routine may not block. 1040 */ 1041 void 1042 vm_page_activate(vm_page_t m) 1043 { 1044 1045 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1046 if (VM_PAGE_GETKNOWNQUEUE2(m) != PQ_ACTIVE) { 1047 if (VM_PAGE_INQUEUE1(m, PQ_CACHE)) 1048 cnt.v_reactivated++; 1049 vm_pageq_remove(m); 1050 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1051 if (m->act_count < ACT_INIT) 1052 m->act_count = ACT_INIT; 1053 vm_pageq_enqueue(PQ_ACTIVE, m); 1054 } 1055 } else { 1056 if (m->act_count < ACT_INIT) 1057 m->act_count = ACT_INIT; 1058 } 1059 } 1060 1061 /* 1062 * vm_page_free_wakeup: 1063 * 1064 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 1065 * routine is called when a page has been added to the cache or free 1066 * queues. 1067 * 1068 * The page queues must be locked. 1069 * This routine may not block. 1070 */ 1071 static inline void 1072 vm_page_free_wakeup(void) 1073 { 1074 1075 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1076 /* 1077 * if pageout daemon needs pages, then tell it that there are 1078 * some free. 1079 */ 1080 if (vm_pageout_pages_needed && 1081 cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) { 1082 wakeup(&vm_pageout_pages_needed); 1083 vm_pageout_pages_needed = 0; 1084 } 1085 /* 1086 * wakeup processes that are waiting on memory if we hit a 1087 * high water mark. And wakeup scheduler process if we have 1088 * lots of memory. this process will swapin processes. 1089 */ 1090 if (vm_pages_needed && !vm_page_count_min()) { 1091 vm_pages_needed = 0; 1092 wakeup(&cnt.v_free_count); 1093 } 1094 } 1095 1096 /* 1097 * vm_page_free_toq: 1098 * 1099 * Returns the given page to the PQ_FREE list, 1100 * disassociating it with any VM object. 1101 * 1102 * Object and page must be locked prior to entry. 1103 * This routine may not block. 1104 */ 1105 1106 void 1107 vm_page_free_toq(vm_page_t m) 1108 { 1109 struct vpgqueues *pq; 1110 1111 if (VM_PAGE_GETQUEUE(m) != PQ_NONE) 1112 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1113 KASSERT(!pmap_page_is_mapped(m), 1114 ("vm_page_free_toq: freeing mapped page %p", m)); 1115 PCPU_INC(cnt.v_tfree); 1116 1117 if (m->busy || VM_PAGE_INQUEUE1(m, PQ_FREE)) { 1118 printf( 1119 "vm_page_free: pindex(%lu), busy(%d), VPO_BUSY(%d), hold(%d)\n", 1120 (u_long)m->pindex, m->busy, (m->oflags & VPO_BUSY) ? 1 : 0, 1121 m->hold_count); 1122 if (VM_PAGE_INQUEUE1(m, PQ_FREE)) 1123 panic("vm_page_free: freeing free page"); 1124 else 1125 panic("vm_page_free: freeing busy page"); 1126 } 1127 1128 /* 1129 * unqueue, then remove page. Note that we cannot destroy 1130 * the page here because we do not want to call the pager's 1131 * callback routine until after we've put the page on the 1132 * appropriate free queue. 1133 */ 1134 vm_pageq_remove_nowakeup(m); 1135 vm_page_remove(m); 1136 1137 /* 1138 * If fictitious remove object association and 1139 * return, otherwise delay object association removal. 1140 */ 1141 if ((m->flags & PG_FICTITIOUS) != 0) { 1142 return; 1143 } 1144 1145 m->valid = 0; 1146 vm_page_undirty(m); 1147 1148 if (m->wire_count != 0) { 1149 if (m->wire_count > 1) { 1150 panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx", 1151 m->wire_count, (long)m->pindex); 1152 } 1153 panic("vm_page_free: freeing wired page"); 1154 } 1155 if (m->hold_count != 0) { 1156 m->flags &= ~PG_ZERO; 1157 vm_pageq_enqueue(PQ_HOLD, m); 1158 return; 1159 } 1160 VM_PAGE_SETQUEUE1(m, PQ_FREE); 1161 mtx_lock(&vm_page_queue_free_mtx); 1162 pq = &vm_page_queues[VM_PAGE_GETQUEUE(m)]; 1163 pq->lcnt++; 1164 ++(*pq->cnt); 1165 1166 /* 1167 * Put zero'd pages on the end ( where we look for zero'd pages 1168 * first ) and non-zerod pages at the head. 1169 */ 1170 if (m->flags & PG_ZERO) { 1171 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 1172 ++vm_page_zero_count; 1173 } else { 1174 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 1175 vm_page_zero_idle_wakeup(); 1176 } 1177 vm_page_free_wakeup(); 1178 mtx_unlock(&vm_page_queue_free_mtx); 1179 } 1180 1181 /* 1182 * vm_page_wire: 1183 * 1184 * Mark this page as wired down by yet 1185 * another map, removing it from paging queues 1186 * as necessary. 1187 * 1188 * The page queues must be locked. 1189 * This routine may not block. 1190 */ 1191 void 1192 vm_page_wire(vm_page_t m) 1193 { 1194 1195 /* 1196 * Only bump the wire statistics if the page is not already wired, 1197 * and only unqueue the page if it is on some queue (if it is unmanaged 1198 * it is already off the queues). 1199 */ 1200 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1201 if (m->flags & PG_FICTITIOUS) 1202 return; 1203 if (m->wire_count == 0) { 1204 if ((m->flags & PG_UNMANAGED) == 0) 1205 vm_pageq_remove(m); 1206 atomic_add_int(&cnt.v_wire_count, 1); 1207 } 1208 m->wire_count++; 1209 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 1210 } 1211 1212 /* 1213 * vm_page_unwire: 1214 * 1215 * Release one wiring of this page, potentially 1216 * enabling it to be paged again. 1217 * 1218 * Many pages placed on the inactive queue should actually go 1219 * into the cache, but it is difficult to figure out which. What 1220 * we do instead, if the inactive target is well met, is to put 1221 * clean pages at the head of the inactive queue instead of the tail. 1222 * This will cause them to be moved to the cache more quickly and 1223 * if not actively re-referenced, freed more quickly. If we just 1224 * stick these pages at the end of the inactive queue, heavy filesystem 1225 * meta-data accesses can cause an unnecessary paging load on memory bound 1226 * processes. This optimization causes one-time-use metadata to be 1227 * reused more quickly. 1228 * 1229 * BUT, if we are in a low-memory situation we have no choice but to 1230 * put clean pages on the cache queue. 1231 * 1232 * A number of routines use vm_page_unwire() to guarantee that the page 1233 * will go into either the inactive or active queues, and will NEVER 1234 * be placed in the cache - for example, just after dirtying a page. 1235 * dirty pages in the cache are not allowed. 1236 * 1237 * The page queues must be locked. 1238 * This routine may not block. 1239 */ 1240 void 1241 vm_page_unwire(vm_page_t m, int activate) 1242 { 1243 1244 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1245 if (m->flags & PG_FICTITIOUS) 1246 return; 1247 if (m->wire_count > 0) { 1248 m->wire_count--; 1249 if (m->wire_count == 0) { 1250 atomic_subtract_int(&cnt.v_wire_count, 1); 1251 if (m->flags & PG_UNMANAGED) { 1252 ; 1253 } else if (activate) 1254 vm_pageq_enqueue(PQ_ACTIVE, m); 1255 else { 1256 vm_page_flag_clear(m, PG_WINATCFLS); 1257 vm_pageq_enqueue(PQ_INACTIVE, m); 1258 } 1259 } 1260 } else { 1261 panic("vm_page_unwire: invalid wire count: %d", m->wire_count); 1262 } 1263 } 1264 1265 1266 /* 1267 * Move the specified page to the inactive queue. If the page has 1268 * any associated swap, the swap is deallocated. 1269 * 1270 * Normally athead is 0 resulting in LRU operation. athead is set 1271 * to 1 if we want this page to be 'as if it were placed in the cache', 1272 * except without unmapping it from the process address space. 1273 * 1274 * This routine may not block. 1275 */ 1276 static inline void 1277 _vm_page_deactivate(vm_page_t m, int athead) 1278 { 1279 1280 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1281 1282 /* 1283 * Ignore if already inactive. 1284 */ 1285 if (VM_PAGE_INQUEUE2(m, PQ_INACTIVE)) 1286 return; 1287 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1288 if (VM_PAGE_INQUEUE1(m, PQ_CACHE)) 1289 cnt.v_reactivated++; 1290 vm_page_flag_clear(m, PG_WINATCFLS); 1291 vm_pageq_remove(m); 1292 if (athead) 1293 TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1294 else 1295 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1296 VM_PAGE_SETQUEUE2(m, PQ_INACTIVE); 1297 vm_page_queues[PQ_INACTIVE].lcnt++; 1298 cnt.v_inactive_count++; 1299 } 1300 } 1301 1302 void 1303 vm_page_deactivate(vm_page_t m) 1304 { 1305 _vm_page_deactivate(m, 0); 1306 } 1307 1308 /* 1309 * vm_page_try_to_cache: 1310 * 1311 * Returns 0 on failure, 1 on success 1312 */ 1313 int 1314 vm_page_try_to_cache(vm_page_t m) 1315 { 1316 1317 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1318 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1319 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1320 (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) { 1321 return (0); 1322 } 1323 pmap_remove_all(m); 1324 if (m->dirty) 1325 return (0); 1326 vm_page_cache(m); 1327 return (1); 1328 } 1329 1330 /* 1331 * vm_page_try_to_free() 1332 * 1333 * Attempt to free the page. If we cannot free it, we do nothing. 1334 * 1 is returned on success, 0 on failure. 1335 */ 1336 int 1337 vm_page_try_to_free(vm_page_t m) 1338 { 1339 1340 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1341 if (m->object != NULL) 1342 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1343 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1344 (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) { 1345 return (0); 1346 } 1347 pmap_remove_all(m); 1348 if (m->dirty) 1349 return (0); 1350 vm_page_free(m); 1351 return (1); 1352 } 1353 1354 /* 1355 * vm_page_cache 1356 * 1357 * Put the specified page onto the page cache queue (if appropriate). 1358 * 1359 * This routine may not block. 1360 */ 1361 void 1362 vm_page_cache(vm_page_t m) 1363 { 1364 1365 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1366 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1367 if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy || 1368 m->hold_count || m->wire_count) { 1369 printf("vm_page_cache: attempting to cache busy page\n"); 1370 return; 1371 } 1372 if (VM_PAGE_INQUEUE1(m, PQ_CACHE)) 1373 return; 1374 1375 /* 1376 * Remove all pmaps and indicate that the page is not 1377 * writeable or mapped. 1378 */ 1379 pmap_remove_all(m); 1380 if (m->dirty != 0) { 1381 panic("vm_page_cache: caching a dirty page, pindex: %ld", 1382 (long)m->pindex); 1383 } 1384 vm_pageq_remove_nowakeup(m); 1385 vm_pageq_enqueue(PQ_CACHE + m->pc, m); 1386 mtx_lock(&vm_page_queue_free_mtx); 1387 vm_page_free_wakeup(); 1388 mtx_unlock(&vm_page_queue_free_mtx); 1389 } 1390 1391 /* 1392 * vm_page_dontneed 1393 * 1394 * Cache, deactivate, or do nothing as appropriate. This routine 1395 * is typically used by madvise() MADV_DONTNEED. 1396 * 1397 * Generally speaking we want to move the page into the cache so 1398 * it gets reused quickly. However, this can result in a silly syndrome 1399 * due to the page recycling too quickly. Small objects will not be 1400 * fully cached. On the otherhand, if we move the page to the inactive 1401 * queue we wind up with a problem whereby very large objects 1402 * unnecessarily blow away our inactive and cache queues. 1403 * 1404 * The solution is to move the pages based on a fixed weighting. We 1405 * either leave them alone, deactivate them, or move them to the cache, 1406 * where moving them to the cache has the highest weighting. 1407 * By forcing some pages into other queues we eventually force the 1408 * system to balance the queues, potentially recovering other unrelated 1409 * space from active. The idea is to not force this to happen too 1410 * often. 1411 */ 1412 void 1413 vm_page_dontneed(vm_page_t m) 1414 { 1415 static int dnweight; 1416 int dnw; 1417 int head; 1418 1419 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1420 dnw = ++dnweight; 1421 1422 /* 1423 * occassionally leave the page alone 1424 */ 1425 if ((dnw & 0x01F0) == 0 || 1426 VM_PAGE_INQUEUE2(m, PQ_INACTIVE) || 1427 VM_PAGE_INQUEUE1(m, PQ_CACHE) 1428 ) { 1429 if (m->act_count >= ACT_INIT) 1430 --m->act_count; 1431 return; 1432 } 1433 1434 if (m->dirty == 0 && pmap_is_modified(m)) 1435 vm_page_dirty(m); 1436 1437 if (m->dirty || (dnw & 0x0070) == 0) { 1438 /* 1439 * Deactivate the page 3 times out of 32. 1440 */ 1441 head = 0; 1442 } else { 1443 /* 1444 * Cache the page 28 times out of every 32. Note that 1445 * the page is deactivated instead of cached, but placed 1446 * at the head of the queue instead of the tail. 1447 */ 1448 head = 1; 1449 } 1450 _vm_page_deactivate(m, head); 1451 } 1452 1453 /* 1454 * Grab a page, waiting until we are waken up due to the page 1455 * changing state. We keep on waiting, if the page continues 1456 * to be in the object. If the page doesn't exist, first allocate it 1457 * and then conditionally zero it. 1458 * 1459 * This routine may block. 1460 */ 1461 vm_page_t 1462 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 1463 { 1464 vm_page_t m; 1465 1466 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1467 retrylookup: 1468 if ((m = vm_page_lookup(object, pindex)) != NULL) { 1469 if (vm_page_sleep_if_busy(m, TRUE, "pgrbwt")) { 1470 if ((allocflags & VM_ALLOC_RETRY) == 0) 1471 return (NULL); 1472 goto retrylookup; 1473 } else { 1474 if ((allocflags & VM_ALLOC_WIRED) != 0) { 1475 vm_page_lock_queues(); 1476 vm_page_wire(m); 1477 vm_page_unlock_queues(); 1478 } 1479 if ((allocflags & VM_ALLOC_NOBUSY) == 0) 1480 vm_page_busy(m); 1481 return (m); 1482 } 1483 } 1484 m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY); 1485 if (m == NULL) { 1486 VM_OBJECT_UNLOCK(object); 1487 VM_WAIT; 1488 VM_OBJECT_LOCK(object); 1489 if ((allocflags & VM_ALLOC_RETRY) == 0) 1490 return (NULL); 1491 goto retrylookup; 1492 } 1493 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 1494 pmap_zero_page(m); 1495 return (m); 1496 } 1497 1498 /* 1499 * Mapping function for valid bits or for dirty bits in 1500 * a page. May not block. 1501 * 1502 * Inputs are required to range within a page. 1503 */ 1504 inline int 1505 vm_page_bits(int base, int size) 1506 { 1507 int first_bit; 1508 int last_bit; 1509 1510 KASSERT( 1511 base + size <= PAGE_SIZE, 1512 ("vm_page_bits: illegal base/size %d/%d", base, size) 1513 ); 1514 1515 if (size == 0) /* handle degenerate case */ 1516 return (0); 1517 1518 first_bit = base >> DEV_BSHIFT; 1519 last_bit = (base + size - 1) >> DEV_BSHIFT; 1520 1521 return ((2 << last_bit) - (1 << first_bit)); 1522 } 1523 1524 /* 1525 * vm_page_set_validclean: 1526 * 1527 * Sets portions of a page valid and clean. The arguments are expected 1528 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 1529 * of any partial chunks touched by the range. The invalid portion of 1530 * such chunks will be zero'd. 1531 * 1532 * This routine may not block. 1533 * 1534 * (base + size) must be less then or equal to PAGE_SIZE. 1535 */ 1536 void 1537 vm_page_set_validclean(vm_page_t m, int base, int size) 1538 { 1539 int pagebits; 1540 int frag; 1541 int endoff; 1542 1543 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1544 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1545 if (size == 0) /* handle degenerate case */ 1546 return; 1547 1548 /* 1549 * If the base is not DEV_BSIZE aligned and the valid 1550 * bit is clear, we have to zero out a portion of the 1551 * first block. 1552 */ 1553 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 1554 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 1555 pmap_zero_page_area(m, frag, base - frag); 1556 1557 /* 1558 * If the ending offset is not DEV_BSIZE aligned and the 1559 * valid bit is clear, we have to zero out a portion of 1560 * the last block. 1561 */ 1562 endoff = base + size; 1563 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 1564 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 1565 pmap_zero_page_area(m, endoff, 1566 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 1567 1568 /* 1569 * Set valid, clear dirty bits. If validating the entire 1570 * page we can safely clear the pmap modify bit. We also 1571 * use this opportunity to clear the VPO_NOSYNC flag. If a process 1572 * takes a write fault on a MAP_NOSYNC memory area the flag will 1573 * be set again. 1574 * 1575 * We set valid bits inclusive of any overlap, but we can only 1576 * clear dirty bits for DEV_BSIZE chunks that are fully within 1577 * the range. 1578 */ 1579 pagebits = vm_page_bits(base, size); 1580 m->valid |= pagebits; 1581 #if 0 /* NOT YET */ 1582 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 1583 frag = DEV_BSIZE - frag; 1584 base += frag; 1585 size -= frag; 1586 if (size < 0) 1587 size = 0; 1588 } 1589 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 1590 #endif 1591 m->dirty &= ~pagebits; 1592 if (base == 0 && size == PAGE_SIZE) { 1593 pmap_clear_modify(m); 1594 m->oflags &= ~VPO_NOSYNC; 1595 } 1596 } 1597 1598 void 1599 vm_page_clear_dirty(vm_page_t m, int base, int size) 1600 { 1601 1602 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1603 m->dirty &= ~vm_page_bits(base, size); 1604 } 1605 1606 /* 1607 * vm_page_set_invalid: 1608 * 1609 * Invalidates DEV_BSIZE'd chunks within a page. Both the 1610 * valid and dirty bits for the effected areas are cleared. 1611 * 1612 * May not block. 1613 */ 1614 void 1615 vm_page_set_invalid(vm_page_t m, int base, int size) 1616 { 1617 int bits; 1618 1619 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1620 bits = vm_page_bits(base, size); 1621 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1622 if (m->valid == VM_PAGE_BITS_ALL && bits != 0) 1623 pmap_remove_all(m); 1624 m->valid &= ~bits; 1625 m->dirty &= ~bits; 1626 m->object->generation++; 1627 } 1628 1629 /* 1630 * vm_page_zero_invalid() 1631 * 1632 * The kernel assumes that the invalid portions of a page contain 1633 * garbage, but such pages can be mapped into memory by user code. 1634 * When this occurs, we must zero out the non-valid portions of the 1635 * page so user code sees what it expects. 1636 * 1637 * Pages are most often semi-valid when the end of a file is mapped 1638 * into memory and the file's size is not page aligned. 1639 */ 1640 void 1641 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 1642 { 1643 int b; 1644 int i; 1645 1646 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1647 /* 1648 * Scan the valid bits looking for invalid sections that 1649 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 1650 * valid bit may be set ) have already been zerod by 1651 * vm_page_set_validclean(). 1652 */ 1653 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 1654 if (i == (PAGE_SIZE / DEV_BSIZE) || 1655 (m->valid & (1 << i)) 1656 ) { 1657 if (i > b) { 1658 pmap_zero_page_area(m, 1659 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 1660 } 1661 b = i + 1; 1662 } 1663 } 1664 1665 /* 1666 * setvalid is TRUE when we can safely set the zero'd areas 1667 * as being valid. We can do this if there are no cache consistancy 1668 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 1669 */ 1670 if (setvalid) 1671 m->valid = VM_PAGE_BITS_ALL; 1672 } 1673 1674 /* 1675 * vm_page_is_valid: 1676 * 1677 * Is (partial) page valid? Note that the case where size == 0 1678 * will return FALSE in the degenerate case where the page is 1679 * entirely invalid, and TRUE otherwise. 1680 * 1681 * May not block. 1682 */ 1683 int 1684 vm_page_is_valid(vm_page_t m, int base, int size) 1685 { 1686 int bits = vm_page_bits(base, size); 1687 1688 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1689 if (m->valid && ((m->valid & bits) == bits)) 1690 return 1; 1691 else 1692 return 0; 1693 } 1694 1695 /* 1696 * update dirty bits from pmap/mmu. May not block. 1697 */ 1698 void 1699 vm_page_test_dirty(vm_page_t m) 1700 { 1701 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) { 1702 vm_page_dirty(m); 1703 } 1704 } 1705 1706 int so_zerocp_fullpage = 0; 1707 1708 void 1709 vm_page_cowfault(vm_page_t m) 1710 { 1711 vm_page_t mnew; 1712 vm_object_t object; 1713 vm_pindex_t pindex; 1714 1715 object = m->object; 1716 pindex = m->pindex; 1717 1718 retry_alloc: 1719 pmap_remove_all(m); 1720 vm_page_remove(m); 1721 mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY); 1722 if (mnew == NULL) { 1723 vm_page_insert(m, object, pindex); 1724 vm_page_unlock_queues(); 1725 VM_OBJECT_UNLOCK(object); 1726 VM_WAIT; 1727 VM_OBJECT_LOCK(object); 1728 vm_page_lock_queues(); 1729 goto retry_alloc; 1730 } 1731 1732 if (m->cow == 0) { 1733 /* 1734 * check to see if we raced with an xmit complete when 1735 * waiting to allocate a page. If so, put things back 1736 * the way they were 1737 */ 1738 vm_page_free(mnew); 1739 vm_page_insert(m, object, pindex); 1740 } else { /* clear COW & copy page */ 1741 if (!so_zerocp_fullpage) 1742 pmap_copy_page(m, mnew); 1743 mnew->valid = VM_PAGE_BITS_ALL; 1744 vm_page_dirty(mnew); 1745 mnew->wire_count = m->wire_count - m->cow; 1746 m->wire_count = m->cow; 1747 } 1748 } 1749 1750 void 1751 vm_page_cowclear(vm_page_t m) 1752 { 1753 1754 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1755 if (m->cow) { 1756 m->cow--; 1757 /* 1758 * let vm_fault add back write permission lazily 1759 */ 1760 } 1761 /* 1762 * sf_buf_free() will free the page, so we needn't do it here 1763 */ 1764 } 1765 1766 void 1767 vm_page_cowsetup(vm_page_t m) 1768 { 1769 1770 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1771 m->cow++; 1772 pmap_remove_write(m); 1773 } 1774 1775 #include "opt_ddb.h" 1776 #ifdef DDB 1777 #include <sys/kernel.h> 1778 1779 #include <ddb/ddb.h> 1780 1781 DB_SHOW_COMMAND(page, vm_page_print_page_info) 1782 { 1783 db_printf("cnt.v_free_count: %d\n", cnt.v_free_count); 1784 db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count); 1785 db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count); 1786 db_printf("cnt.v_active_count: %d\n", cnt.v_active_count); 1787 db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count); 1788 db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved); 1789 db_printf("cnt.v_free_min: %d\n", cnt.v_free_min); 1790 db_printf("cnt.v_free_target: %d\n", cnt.v_free_target); 1791 db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min); 1792 db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target); 1793 } 1794 1795 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 1796 { 1797 int i; 1798 db_printf("PQ_FREE:"); 1799 for (i = 0; i < PQ_NUMCOLORS; i++) { 1800 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt); 1801 } 1802 db_printf("\n"); 1803 1804 db_printf("PQ_CACHE:"); 1805 for (i = 0; i < PQ_NUMCOLORS; i++) { 1806 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt); 1807 } 1808 db_printf("\n"); 1809 1810 db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n", 1811 vm_page_queues[PQ_ACTIVE].lcnt, 1812 vm_page_queues[PQ_INACTIVE].lcnt); 1813 } 1814 #endif /* DDB */ 1815