1 /*- 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * The Mach Operating System project at Carnegie-Mellon University. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 34 */ 35 36 /*- 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * GENERAL RULES ON VM_PAGE MANIPULATION 65 * 66 * - a pageq mutex is required when adding or removing a page from a 67 * page queue (vm_page_queue[]), regardless of other mutexes or the 68 * busy state of a page. 69 * 70 * - The object mutex is held when inserting or removing 71 * pages from an object (vm_page_insert() or vm_page_remove()). 72 * 73 */ 74 75 /* 76 * Resident memory management module. 77 */ 78 79 #include <sys/cdefs.h> 80 __FBSDID("$FreeBSD$"); 81 82 #include "opt_vm.h" 83 84 #include <sys/param.h> 85 #include <sys/systm.h> 86 #include <sys/lock.h> 87 #include <sys/kernel.h> 88 #include <sys/limits.h> 89 #include <sys/malloc.h> 90 #include <sys/msgbuf.h> 91 #include <sys/mutex.h> 92 #include <sys/proc.h> 93 #include <sys/sysctl.h> 94 #include <sys/vmmeter.h> 95 #include <sys/vnode.h> 96 97 #include <vm/vm.h> 98 #include <vm/pmap.h> 99 #include <vm/vm_param.h> 100 #include <vm/vm_kern.h> 101 #include <vm/vm_object.h> 102 #include <vm/vm_page.h> 103 #include <vm/vm_pageout.h> 104 #include <vm/vm_pager.h> 105 #include <vm/vm_phys.h> 106 #include <vm/vm_reserv.h> 107 #include <vm/vm_extern.h> 108 #include <vm/uma.h> 109 #include <vm/uma_int.h> 110 111 #include <machine/md_var.h> 112 113 /* 114 * Associated with page of user-allocatable memory is a 115 * page structure. 116 */ 117 118 struct vpgqueues vm_page_queues[PQ_COUNT]; 119 struct vpglocks vm_page_queue_lock; 120 struct vpglocks vm_page_queue_free_lock; 121 122 struct vpglocks pa_lock[PA_LOCK_COUNT]; 123 124 vm_page_t vm_page_array = 0; 125 int vm_page_array_size = 0; 126 long first_page = 0; 127 int vm_page_zero_count = 0; 128 129 static int boot_pages = UMA_BOOT_PAGES; 130 TUNABLE_INT("vm.boot_pages", &boot_pages); 131 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0, 132 "number of pages allocated for bootstrapping the VM system"); 133 134 static int pa_tryrelock_restart; 135 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD, 136 &pa_tryrelock_restart, 0, "Number of tryrelock restarts"); 137 138 static uma_zone_t fakepg_zone; 139 140 static void vm_page_clear_dirty_mask(vm_page_t m, int pagebits); 141 static void vm_page_queue_remove(int queue, vm_page_t m); 142 static void vm_page_enqueue(int queue, vm_page_t m); 143 static void vm_page_init_fakepg(void *dummy); 144 145 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL); 146 147 static void 148 vm_page_init_fakepg(void *dummy) 149 { 150 151 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL, 152 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 153 } 154 155 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */ 156 #if PAGE_SIZE == 32768 157 #ifdef CTASSERT 158 CTASSERT(sizeof(u_long) >= 8); 159 #endif 160 #endif 161 162 /* 163 * Try to acquire a physical address lock while a pmap is locked. If we 164 * fail to trylock we unlock and lock the pmap directly and cache the 165 * locked pa in *locked. The caller should then restart their loop in case 166 * the virtual to physical mapping has changed. 167 */ 168 int 169 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked) 170 { 171 vm_paddr_t lockpa; 172 173 lockpa = *locked; 174 *locked = pa; 175 if (lockpa) { 176 PA_LOCK_ASSERT(lockpa, MA_OWNED); 177 if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa)) 178 return (0); 179 PA_UNLOCK(lockpa); 180 } 181 if (PA_TRYLOCK(pa)) 182 return (0); 183 PMAP_UNLOCK(pmap); 184 atomic_add_int(&pa_tryrelock_restart, 1); 185 PA_LOCK(pa); 186 PMAP_LOCK(pmap); 187 return (EAGAIN); 188 } 189 190 /* 191 * vm_set_page_size: 192 * 193 * Sets the page size, perhaps based upon the memory 194 * size. Must be called before any use of page-size 195 * dependent functions. 196 */ 197 void 198 vm_set_page_size(void) 199 { 200 if (cnt.v_page_size == 0) 201 cnt.v_page_size = PAGE_SIZE; 202 if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0) 203 panic("vm_set_page_size: page size not a power of two"); 204 } 205 206 /* 207 * vm_page_blacklist_lookup: 208 * 209 * See if a physical address in this page has been listed 210 * in the blacklist tunable. Entries in the tunable are 211 * separated by spaces or commas. If an invalid integer is 212 * encountered then the rest of the string is skipped. 213 */ 214 static int 215 vm_page_blacklist_lookup(char *list, vm_paddr_t pa) 216 { 217 vm_paddr_t bad; 218 char *cp, *pos; 219 220 for (pos = list; *pos != '\0'; pos = cp) { 221 bad = strtoq(pos, &cp, 0); 222 if (*cp != '\0') { 223 if (*cp == ' ' || *cp == ',') { 224 cp++; 225 if (cp == pos) 226 continue; 227 } else 228 break; 229 } 230 if (pa == trunc_page(bad)) 231 return (1); 232 } 233 return (0); 234 } 235 236 /* 237 * vm_page_startup: 238 * 239 * Initializes the resident memory module. 240 * 241 * Allocates memory for the page cells, and 242 * for the object/offset-to-page hash table headers. 243 * Each page cell is initialized and placed on the free list. 244 */ 245 vm_offset_t 246 vm_page_startup(vm_offset_t vaddr) 247 { 248 vm_offset_t mapped; 249 vm_paddr_t page_range; 250 vm_paddr_t new_end; 251 int i; 252 vm_paddr_t pa; 253 vm_paddr_t last_pa; 254 char *list; 255 256 /* the biggest memory array is the second group of pages */ 257 vm_paddr_t end; 258 vm_paddr_t biggestsize; 259 vm_paddr_t low_water, high_water; 260 int biggestone; 261 262 biggestsize = 0; 263 biggestone = 0; 264 vaddr = round_page(vaddr); 265 266 for (i = 0; phys_avail[i + 1]; i += 2) { 267 phys_avail[i] = round_page(phys_avail[i]); 268 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 269 } 270 271 low_water = phys_avail[0]; 272 high_water = phys_avail[1]; 273 274 for (i = 0; phys_avail[i + 1]; i += 2) { 275 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 276 277 if (size > biggestsize) { 278 biggestone = i; 279 biggestsize = size; 280 } 281 if (phys_avail[i] < low_water) 282 low_water = phys_avail[i]; 283 if (phys_avail[i + 1] > high_water) 284 high_water = phys_avail[i + 1]; 285 } 286 287 #ifdef XEN 288 low_water = 0; 289 #endif 290 291 end = phys_avail[biggestone+1]; 292 293 /* 294 * Initialize the locks. 295 */ 296 mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF | 297 MTX_RECURSE); 298 mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL, 299 MTX_DEF); 300 301 /* Setup page locks. */ 302 for (i = 0; i < PA_LOCK_COUNT; i++) 303 mtx_init(&pa_lock[i].data, "page lock", NULL, MTX_DEF); 304 305 /* 306 * Initialize the queue headers for the hold queue, the active queue, 307 * and the inactive queue. 308 */ 309 for (i = 0; i < PQ_COUNT; i++) 310 TAILQ_INIT(&vm_page_queues[i].pl); 311 vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count; 312 vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count; 313 vm_page_queues[PQ_HOLD].cnt = &cnt.v_active_count; 314 315 /* 316 * Allocate memory for use when boot strapping the kernel memory 317 * allocator. 318 */ 319 new_end = end - (boot_pages * UMA_SLAB_SIZE); 320 new_end = trunc_page(new_end); 321 mapped = pmap_map(&vaddr, new_end, end, 322 VM_PROT_READ | VM_PROT_WRITE); 323 bzero((void *)mapped, end - new_end); 324 uma_startup((void *)mapped, boot_pages); 325 326 #if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \ 327 defined(__mips__) 328 /* 329 * Allocate a bitmap to indicate that a random physical page 330 * needs to be included in a minidump. 331 * 332 * The amd64 port needs this to indicate which direct map pages 333 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 334 * 335 * However, i386 still needs this workspace internally within the 336 * minidump code. In theory, they are not needed on i386, but are 337 * included should the sf_buf code decide to use them. 338 */ 339 last_pa = 0; 340 for (i = 0; dump_avail[i + 1] != 0; i += 2) 341 if (dump_avail[i + 1] > last_pa) 342 last_pa = dump_avail[i + 1]; 343 page_range = last_pa / PAGE_SIZE; 344 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 345 new_end -= vm_page_dump_size; 346 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, 347 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); 348 bzero((void *)vm_page_dump, vm_page_dump_size); 349 #endif 350 #ifdef __amd64__ 351 /* 352 * Request that the physical pages underlying the message buffer be 353 * included in a crash dump. Since the message buffer is accessed 354 * through the direct map, they are not automatically included. 355 */ 356 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr); 357 last_pa = pa + round_page(msgbufsize); 358 while (pa < last_pa) { 359 dump_add_page(pa); 360 pa += PAGE_SIZE; 361 } 362 #endif 363 /* 364 * Compute the number of pages of memory that will be available for 365 * use (taking into account the overhead of a page structure per 366 * page). 367 */ 368 first_page = low_water / PAGE_SIZE; 369 #ifdef VM_PHYSSEG_SPARSE 370 page_range = 0; 371 for (i = 0; phys_avail[i + 1] != 0; i += 2) 372 page_range += atop(phys_avail[i + 1] - phys_avail[i]); 373 #elif defined(VM_PHYSSEG_DENSE) 374 page_range = high_water / PAGE_SIZE - first_page; 375 #else 376 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 377 #endif 378 end = new_end; 379 380 /* 381 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 382 */ 383 vaddr += PAGE_SIZE; 384 385 /* 386 * Initialize the mem entry structures now, and put them in the free 387 * queue. 388 */ 389 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 390 mapped = pmap_map(&vaddr, new_end, end, 391 VM_PROT_READ | VM_PROT_WRITE); 392 vm_page_array = (vm_page_t) mapped; 393 #if VM_NRESERVLEVEL > 0 394 /* 395 * Allocate memory for the reservation management system's data 396 * structures. 397 */ 398 new_end = vm_reserv_startup(&vaddr, new_end, high_water); 399 #endif 400 #if defined(__amd64__) || defined(__mips__) 401 /* 402 * pmap_map on amd64 and mips can come out of the direct-map, not kvm 403 * like i386, so the pages must be tracked for a crashdump to include 404 * this data. This includes the vm_page_array and the early UMA 405 * bootstrap pages. 406 */ 407 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE) 408 dump_add_page(pa); 409 #endif 410 phys_avail[biggestone + 1] = new_end; 411 412 /* 413 * Clear all of the page structures 414 */ 415 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 416 for (i = 0; i < page_range; i++) 417 vm_page_array[i].order = VM_NFREEORDER; 418 vm_page_array_size = page_range; 419 420 /* 421 * Initialize the physical memory allocator. 422 */ 423 vm_phys_init(); 424 425 /* 426 * Add every available physical page that is not blacklisted to 427 * the free lists. 428 */ 429 cnt.v_page_count = 0; 430 cnt.v_free_count = 0; 431 list = getenv("vm.blacklist"); 432 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 433 pa = phys_avail[i]; 434 last_pa = phys_avail[i + 1]; 435 while (pa < last_pa) { 436 if (list != NULL && 437 vm_page_blacklist_lookup(list, pa)) 438 printf("Skipping page with pa 0x%jx\n", 439 (uintmax_t)pa); 440 else 441 vm_phys_add_page(pa); 442 pa += PAGE_SIZE; 443 } 444 } 445 freeenv(list); 446 #if VM_NRESERVLEVEL > 0 447 /* 448 * Initialize the reservation management system. 449 */ 450 vm_reserv_init(); 451 #endif 452 return (vaddr); 453 } 454 455 456 CTASSERT(offsetof(struct vm_page, aflags) % sizeof(uint32_t) == 0); 457 458 void 459 vm_page_aflag_set(vm_page_t m, uint8_t bits) 460 { 461 uint32_t *addr, val; 462 463 /* 464 * The PGA_WRITEABLE flag can only be set if the page is managed and 465 * VPO_BUSY. Currently, this flag is only set by pmap_enter(). 466 */ 467 KASSERT((bits & PGA_WRITEABLE) == 0 || 468 (m->oflags & (VPO_UNMANAGED | VPO_BUSY)) == VPO_BUSY, 469 ("PGA_WRITEABLE and !VPO_BUSY")); 470 471 /* 472 * We want to use atomic updates for m->aflags, which is a 473 * byte wide. Not all architectures provide atomic operations 474 * on the single-byte destination. Punt and access the whole 475 * 4-byte word with an atomic update. Parallel non-atomic 476 * updates to the fields included in the update by proximity 477 * are handled properly by atomics. 478 */ 479 addr = (void *)&m->aflags; 480 MPASS(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0); 481 val = bits; 482 #if BYTE_ORDER == BIG_ENDIAN 483 val <<= 24; 484 #endif 485 atomic_set_32(addr, val); 486 } 487 488 void 489 vm_page_aflag_clear(vm_page_t m, uint8_t bits) 490 { 491 uint32_t *addr, val; 492 493 /* 494 * The PGA_REFERENCED flag can only be cleared if the object 495 * containing the page is locked. 496 */ 497 KASSERT((bits & PGA_REFERENCED) == 0 || VM_OBJECT_LOCKED(m->object), 498 ("PGA_REFERENCED and !VM_OBJECT_LOCKED")); 499 500 /* 501 * See the comment in vm_page_aflag_set(). 502 */ 503 addr = (void *)&m->aflags; 504 MPASS(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0); 505 val = bits; 506 #if BYTE_ORDER == BIG_ENDIAN 507 val <<= 24; 508 #endif 509 atomic_clear_32(addr, val); 510 } 511 512 void 513 vm_page_reference(vm_page_t m) 514 { 515 516 vm_page_aflag_set(m, PGA_REFERENCED); 517 } 518 519 void 520 vm_page_busy(vm_page_t m) 521 { 522 523 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 524 KASSERT((m->oflags & VPO_BUSY) == 0, 525 ("vm_page_busy: page already busy!!!")); 526 m->oflags |= VPO_BUSY; 527 } 528 529 /* 530 * vm_page_flash: 531 * 532 * wakeup anyone waiting for the page. 533 */ 534 void 535 vm_page_flash(vm_page_t m) 536 { 537 538 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 539 if (m->oflags & VPO_WANTED) { 540 m->oflags &= ~VPO_WANTED; 541 wakeup(m); 542 } 543 } 544 545 /* 546 * vm_page_wakeup: 547 * 548 * clear the VPO_BUSY flag and wakeup anyone waiting for the 549 * page. 550 * 551 */ 552 void 553 vm_page_wakeup(vm_page_t m) 554 { 555 556 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 557 KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!")); 558 m->oflags &= ~VPO_BUSY; 559 vm_page_flash(m); 560 } 561 562 void 563 vm_page_io_start(vm_page_t m) 564 { 565 566 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 567 m->busy++; 568 } 569 570 void 571 vm_page_io_finish(vm_page_t m) 572 { 573 574 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 575 KASSERT(m->busy > 0, ("vm_page_io_finish: page %p is not busy", m)); 576 m->busy--; 577 if (m->busy == 0) 578 vm_page_flash(m); 579 } 580 581 /* 582 * Keep page from being freed by the page daemon 583 * much of the same effect as wiring, except much lower 584 * overhead and should be used only for *very* temporary 585 * holding ("wiring"). 586 */ 587 void 588 vm_page_hold(vm_page_t mem) 589 { 590 591 vm_page_lock_assert(mem, MA_OWNED); 592 mem->hold_count++; 593 } 594 595 void 596 vm_page_unhold(vm_page_t mem) 597 { 598 599 vm_page_lock_assert(mem, MA_OWNED); 600 --mem->hold_count; 601 KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!")); 602 if (mem->hold_count == 0 && mem->queue == PQ_HOLD) 603 vm_page_free_toq(mem); 604 } 605 606 /* 607 * vm_page_unhold_pages: 608 * 609 * Unhold each of the pages that is referenced by the given array. 610 */ 611 void 612 vm_page_unhold_pages(vm_page_t *ma, int count) 613 { 614 struct mtx *mtx, *new_mtx; 615 616 mtx = NULL; 617 for (; count != 0; count--) { 618 /* 619 * Avoid releasing and reacquiring the same page lock. 620 */ 621 new_mtx = vm_page_lockptr(*ma); 622 if (mtx != new_mtx) { 623 if (mtx != NULL) 624 mtx_unlock(mtx); 625 mtx = new_mtx; 626 mtx_lock(mtx); 627 } 628 vm_page_unhold(*ma); 629 ma++; 630 } 631 if (mtx != NULL) 632 mtx_unlock(mtx); 633 } 634 635 /* 636 * vm_page_getfake: 637 * 638 * Create a fictitious page with the specified physical address and 639 * memory attribute. The memory attribute is the only the machine- 640 * dependent aspect of a fictitious page that must be initialized. 641 */ 642 vm_page_t 643 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr) 644 { 645 vm_page_t m; 646 647 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO); 648 m->phys_addr = paddr; 649 m->queue = PQ_NONE; 650 /* Fictitious pages don't use "segind". */ 651 m->flags = PG_FICTITIOUS; 652 /* Fictitious pages don't use "order" or "pool". */ 653 m->oflags = VPO_BUSY | VPO_UNMANAGED; 654 m->wire_count = 1; 655 pmap_page_set_memattr(m, memattr); 656 return (m); 657 } 658 659 /* 660 * vm_page_putfake: 661 * 662 * Release a fictitious page. 663 */ 664 void 665 vm_page_putfake(vm_page_t m) 666 { 667 668 KASSERT((m->flags & PG_FICTITIOUS) != 0, 669 ("vm_page_putfake: bad page %p", m)); 670 uma_zfree(fakepg_zone, m); 671 } 672 673 /* 674 * vm_page_updatefake: 675 * 676 * Update the given fictitious page to the specified physical address and 677 * memory attribute. 678 */ 679 void 680 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 681 { 682 683 KASSERT((m->flags & PG_FICTITIOUS) != 0, 684 ("vm_page_updatefake: bad page %p", m)); 685 m->phys_addr = paddr; 686 pmap_page_set_memattr(m, memattr); 687 } 688 689 /* 690 * vm_page_free: 691 * 692 * Free a page. 693 */ 694 void 695 vm_page_free(vm_page_t m) 696 { 697 698 m->flags &= ~PG_ZERO; 699 vm_page_free_toq(m); 700 } 701 702 /* 703 * vm_page_free_zero: 704 * 705 * Free a page to the zerod-pages queue 706 */ 707 void 708 vm_page_free_zero(vm_page_t m) 709 { 710 711 m->flags |= PG_ZERO; 712 vm_page_free_toq(m); 713 } 714 715 /* 716 * vm_page_sleep: 717 * 718 * Sleep and release the page and page queues locks. 719 * 720 * The object containing the given page must be locked. 721 */ 722 void 723 vm_page_sleep(vm_page_t m, const char *msg) 724 { 725 726 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 727 if (mtx_owned(&vm_page_queue_mtx)) 728 vm_page_unlock_queues(); 729 if (mtx_owned(vm_page_lockptr(m))) 730 vm_page_unlock(m); 731 732 /* 733 * It's possible that while we sleep, the page will get 734 * unbusied and freed. If we are holding the object 735 * lock, we will assume we hold a reference to the object 736 * such that even if m->object changes, we can re-lock 737 * it. 738 */ 739 m->oflags |= VPO_WANTED; 740 msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0); 741 } 742 743 /* 744 * vm_page_dirty: 745 * 746 * Set all bits in the page's dirty field. 747 * 748 * The object containing the specified page must be locked if the 749 * call is made from the machine-independent layer. 750 * 751 * See vm_page_clear_dirty_mask(). 752 */ 753 void 754 vm_page_dirty(vm_page_t m) 755 { 756 757 KASSERT((m->flags & PG_CACHED) == 0, 758 ("vm_page_dirty: page in cache!")); 759 KASSERT(!VM_PAGE_IS_FREE(m), 760 ("vm_page_dirty: page is free!")); 761 KASSERT(m->valid == VM_PAGE_BITS_ALL, 762 ("vm_page_dirty: page is invalid!")); 763 m->dirty = VM_PAGE_BITS_ALL; 764 } 765 766 /* 767 * vm_page_splay: 768 * 769 * Implements Sleator and Tarjan's top-down splay algorithm. Returns 770 * the vm_page containing the given pindex. If, however, that 771 * pindex is not found in the vm_object, returns a vm_page that is 772 * adjacent to the pindex, coming before or after it. 773 */ 774 vm_page_t 775 vm_page_splay(vm_pindex_t pindex, vm_page_t root) 776 { 777 struct vm_page dummy; 778 vm_page_t lefttreemax, righttreemin, y; 779 780 if (root == NULL) 781 return (root); 782 lefttreemax = righttreemin = &dummy; 783 for (;; root = y) { 784 if (pindex < root->pindex) { 785 if ((y = root->left) == NULL) 786 break; 787 if (pindex < y->pindex) { 788 /* Rotate right. */ 789 root->left = y->right; 790 y->right = root; 791 root = y; 792 if ((y = root->left) == NULL) 793 break; 794 } 795 /* Link into the new root's right tree. */ 796 righttreemin->left = root; 797 righttreemin = root; 798 } else if (pindex > root->pindex) { 799 if ((y = root->right) == NULL) 800 break; 801 if (pindex > y->pindex) { 802 /* Rotate left. */ 803 root->right = y->left; 804 y->left = root; 805 root = y; 806 if ((y = root->right) == NULL) 807 break; 808 } 809 /* Link into the new root's left tree. */ 810 lefttreemax->right = root; 811 lefttreemax = root; 812 } else 813 break; 814 } 815 /* Assemble the new root. */ 816 lefttreemax->right = root->left; 817 righttreemin->left = root->right; 818 root->left = dummy.right; 819 root->right = dummy.left; 820 return (root); 821 } 822 823 /* 824 * vm_page_insert: [ internal use only ] 825 * 826 * Inserts the given mem entry into the object and object list. 827 * 828 * The pagetables are not updated but will presumably fault the page 829 * in if necessary, or if a kernel page the caller will at some point 830 * enter the page into the kernel's pmap. We are not allowed to block 831 * here so we *can't* do this anyway. 832 * 833 * The object and page must be locked. 834 * This routine may not block. 835 */ 836 void 837 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 838 { 839 vm_page_t root; 840 841 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 842 if (m->object != NULL) 843 panic("vm_page_insert: page already inserted"); 844 845 /* 846 * Record the object/offset pair in this page 847 */ 848 m->object = object; 849 m->pindex = pindex; 850 851 /* 852 * Now link into the object's ordered list of backed pages. 853 */ 854 root = object->root; 855 if (root == NULL) { 856 m->left = NULL; 857 m->right = NULL; 858 TAILQ_INSERT_TAIL(&object->memq, m, listq); 859 } else { 860 root = vm_page_splay(pindex, root); 861 if (pindex < root->pindex) { 862 m->left = root->left; 863 m->right = root; 864 root->left = NULL; 865 TAILQ_INSERT_BEFORE(root, m, listq); 866 } else if (pindex == root->pindex) 867 panic("vm_page_insert: offset already allocated"); 868 else { 869 m->right = root->right; 870 m->left = root; 871 root->right = NULL; 872 TAILQ_INSERT_AFTER(&object->memq, root, m, listq); 873 } 874 } 875 object->root = m; 876 877 /* 878 * show that the object has one more resident page. 879 */ 880 object->resident_page_count++; 881 /* 882 * Hold the vnode until the last page is released. 883 */ 884 if (object->resident_page_count == 1 && object->type == OBJT_VNODE) 885 vhold((struct vnode *)object->handle); 886 887 /* 888 * Since we are inserting a new and possibly dirty page, 889 * update the object's OBJ_MIGHTBEDIRTY flag. 890 */ 891 if (m->aflags & PGA_WRITEABLE) 892 vm_object_set_writeable_dirty(object); 893 } 894 895 /* 896 * vm_page_remove: 897 * NOTE: used by device pager as well -wfj 898 * 899 * Removes the given mem entry from the object/offset-page 900 * table and the object page list, but do not invalidate/terminate 901 * the backing store. 902 * 903 * The object and page must be locked. 904 * The underlying pmap entry (if any) is NOT removed here. 905 * This routine may not block. 906 */ 907 void 908 vm_page_remove(vm_page_t m) 909 { 910 vm_object_t object; 911 vm_page_t next, prev, root; 912 913 if ((m->oflags & VPO_UNMANAGED) == 0) 914 vm_page_lock_assert(m, MA_OWNED); 915 if ((object = m->object) == NULL) 916 return; 917 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 918 if (m->oflags & VPO_BUSY) { 919 m->oflags &= ~VPO_BUSY; 920 vm_page_flash(m); 921 } 922 923 /* 924 * Now remove from the object's list of backed pages. 925 */ 926 if ((next = TAILQ_NEXT(m, listq)) != NULL && next->left == m) { 927 /* 928 * Since the page's successor in the list is also its parent 929 * in the tree, its right subtree must be empty. 930 */ 931 next->left = m->left; 932 KASSERT(m->right == NULL, 933 ("vm_page_remove: page %p has right child", m)); 934 } else if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL && 935 prev->right == m) { 936 /* 937 * Since the page's predecessor in the list is also its parent 938 * in the tree, its left subtree must be empty. 939 */ 940 KASSERT(m->left == NULL, 941 ("vm_page_remove: page %p has left child", m)); 942 prev->right = m->right; 943 } else { 944 if (m != object->root) 945 vm_page_splay(m->pindex, object->root); 946 if (m->left == NULL) 947 root = m->right; 948 else if (m->right == NULL) 949 root = m->left; 950 else { 951 /* 952 * Move the page's successor to the root, because 953 * pages are usually removed in ascending order. 954 */ 955 if (m->right != next) 956 vm_page_splay(m->pindex, m->right); 957 next->left = m->left; 958 root = next; 959 } 960 object->root = root; 961 } 962 TAILQ_REMOVE(&object->memq, m, listq); 963 964 /* 965 * And show that the object has one fewer resident page. 966 */ 967 object->resident_page_count--; 968 /* 969 * The vnode may now be recycled. 970 */ 971 if (object->resident_page_count == 0 && object->type == OBJT_VNODE) 972 vdrop((struct vnode *)object->handle); 973 974 m->object = NULL; 975 } 976 977 /* 978 * vm_page_lookup: 979 * 980 * Returns the page associated with the object/offset 981 * pair specified; if none is found, NULL is returned. 982 * 983 * The object must be locked. 984 * This routine may not block. 985 * This is a critical path routine 986 */ 987 vm_page_t 988 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 989 { 990 vm_page_t m; 991 992 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 993 if ((m = object->root) != NULL && m->pindex != pindex) { 994 m = vm_page_splay(pindex, m); 995 if ((object->root = m)->pindex != pindex) 996 m = NULL; 997 } 998 return (m); 999 } 1000 1001 /* 1002 * vm_page_find_least: 1003 * 1004 * Returns the page associated with the object with least pindex 1005 * greater than or equal to the parameter pindex, or NULL. 1006 * 1007 * The object must be locked. 1008 * The routine may not block. 1009 */ 1010 vm_page_t 1011 vm_page_find_least(vm_object_t object, vm_pindex_t pindex) 1012 { 1013 vm_page_t m; 1014 1015 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1016 if ((m = TAILQ_FIRST(&object->memq)) != NULL) { 1017 if (m->pindex < pindex) { 1018 m = vm_page_splay(pindex, object->root); 1019 if ((object->root = m)->pindex < pindex) 1020 m = TAILQ_NEXT(m, listq); 1021 } 1022 } 1023 return (m); 1024 } 1025 1026 /* 1027 * Returns the given page's successor (by pindex) within the object if it is 1028 * resident; if none is found, NULL is returned. 1029 * 1030 * The object must be locked. 1031 */ 1032 vm_page_t 1033 vm_page_next(vm_page_t m) 1034 { 1035 vm_page_t next; 1036 1037 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1038 if ((next = TAILQ_NEXT(m, listq)) != NULL && 1039 next->pindex != m->pindex + 1) 1040 next = NULL; 1041 return (next); 1042 } 1043 1044 /* 1045 * Returns the given page's predecessor (by pindex) within the object if it is 1046 * resident; if none is found, NULL is returned. 1047 * 1048 * The object must be locked. 1049 */ 1050 vm_page_t 1051 vm_page_prev(vm_page_t m) 1052 { 1053 vm_page_t prev; 1054 1055 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1056 if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL && 1057 prev->pindex != m->pindex - 1) 1058 prev = NULL; 1059 return (prev); 1060 } 1061 1062 /* 1063 * vm_page_rename: 1064 * 1065 * Move the given memory entry from its 1066 * current object to the specified target object/offset. 1067 * 1068 * The object must be locked. 1069 * This routine may not block. 1070 * 1071 * Note: swap associated with the page must be invalidated by the move. We 1072 * have to do this for several reasons: (1) we aren't freeing the 1073 * page, (2) we are dirtying the page, (3) the VM system is probably 1074 * moving the page from object A to B, and will then later move 1075 * the backing store from A to B and we can't have a conflict. 1076 * 1077 * Note: we *always* dirty the page. It is necessary both for the 1078 * fact that we moved it, and because we may be invalidating 1079 * swap. If the page is on the cache, we have to deactivate it 1080 * or vm_page_dirty() will panic. Dirty pages are not allowed 1081 * on the cache. 1082 */ 1083 void 1084 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 1085 { 1086 1087 vm_page_remove(m); 1088 vm_page_insert(m, new_object, new_pindex); 1089 vm_page_dirty(m); 1090 } 1091 1092 /* 1093 * Convert all of the given object's cached pages that have a 1094 * pindex within the given range into free pages. If the value 1095 * zero is given for "end", then the range's upper bound is 1096 * infinity. If the given object is backed by a vnode and it 1097 * transitions from having one or more cached pages to none, the 1098 * vnode's hold count is reduced. 1099 */ 1100 void 1101 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1102 { 1103 vm_page_t m, m_next; 1104 boolean_t empty; 1105 1106 mtx_lock(&vm_page_queue_free_mtx); 1107 if (__predict_false(object->cache == NULL)) { 1108 mtx_unlock(&vm_page_queue_free_mtx); 1109 return; 1110 } 1111 m = object->cache = vm_page_splay(start, object->cache); 1112 if (m->pindex < start) { 1113 if (m->right == NULL) 1114 m = NULL; 1115 else { 1116 m_next = vm_page_splay(start, m->right); 1117 m_next->left = m; 1118 m->right = NULL; 1119 m = object->cache = m_next; 1120 } 1121 } 1122 1123 /* 1124 * At this point, "m" is either (1) a reference to the page 1125 * with the least pindex that is greater than or equal to 1126 * "start" or (2) NULL. 1127 */ 1128 for (; m != NULL && (m->pindex < end || end == 0); m = m_next) { 1129 /* 1130 * Find "m"'s successor and remove "m" from the 1131 * object's cache. 1132 */ 1133 if (m->right == NULL) { 1134 object->cache = m->left; 1135 m_next = NULL; 1136 } else { 1137 m_next = vm_page_splay(start, m->right); 1138 m_next->left = m->left; 1139 object->cache = m_next; 1140 } 1141 /* Convert "m" to a free page. */ 1142 m->object = NULL; 1143 m->valid = 0; 1144 /* Clear PG_CACHED and set PG_FREE. */ 1145 m->flags ^= PG_CACHED | PG_FREE; 1146 KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE, 1147 ("vm_page_cache_free: page %p has inconsistent flags", m)); 1148 cnt.v_cache_count--; 1149 cnt.v_free_count++; 1150 } 1151 empty = object->cache == NULL; 1152 mtx_unlock(&vm_page_queue_free_mtx); 1153 if (object->type == OBJT_VNODE && empty) 1154 vdrop(object->handle); 1155 } 1156 1157 /* 1158 * Returns the cached page that is associated with the given 1159 * object and offset. If, however, none exists, returns NULL. 1160 * 1161 * The free page queue must be locked. 1162 */ 1163 static inline vm_page_t 1164 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex) 1165 { 1166 vm_page_t m; 1167 1168 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1169 if ((m = object->cache) != NULL && m->pindex != pindex) { 1170 m = vm_page_splay(pindex, m); 1171 if ((object->cache = m)->pindex != pindex) 1172 m = NULL; 1173 } 1174 return (m); 1175 } 1176 1177 /* 1178 * Remove the given cached page from its containing object's 1179 * collection of cached pages. 1180 * 1181 * The free page queue must be locked. 1182 */ 1183 void 1184 vm_page_cache_remove(vm_page_t m) 1185 { 1186 vm_object_t object; 1187 vm_page_t root; 1188 1189 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1190 KASSERT((m->flags & PG_CACHED) != 0, 1191 ("vm_page_cache_remove: page %p is not cached", m)); 1192 object = m->object; 1193 if (m != object->cache) { 1194 root = vm_page_splay(m->pindex, object->cache); 1195 KASSERT(root == m, 1196 ("vm_page_cache_remove: page %p is not cached in object %p", 1197 m, object)); 1198 } 1199 if (m->left == NULL) 1200 root = m->right; 1201 else if (m->right == NULL) 1202 root = m->left; 1203 else { 1204 root = vm_page_splay(m->pindex, m->left); 1205 root->right = m->right; 1206 } 1207 object->cache = root; 1208 m->object = NULL; 1209 cnt.v_cache_count--; 1210 } 1211 1212 /* 1213 * Transfer all of the cached pages with offset greater than or 1214 * equal to 'offidxstart' from the original object's cache to the 1215 * new object's cache. However, any cached pages with offset 1216 * greater than or equal to the new object's size are kept in the 1217 * original object. Initially, the new object's cache must be 1218 * empty. Offset 'offidxstart' in the original object must 1219 * correspond to offset zero in the new object. 1220 * 1221 * The new object must be locked. 1222 */ 1223 void 1224 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart, 1225 vm_object_t new_object) 1226 { 1227 vm_page_t m, m_next; 1228 1229 /* 1230 * Insertion into an object's collection of cached pages 1231 * requires the object to be locked. In contrast, removal does 1232 * not. 1233 */ 1234 VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED); 1235 KASSERT(new_object->cache == NULL, 1236 ("vm_page_cache_transfer: object %p has cached pages", 1237 new_object)); 1238 mtx_lock(&vm_page_queue_free_mtx); 1239 if ((m = orig_object->cache) != NULL) { 1240 /* 1241 * Transfer all of the pages with offset greater than or 1242 * equal to 'offidxstart' from the original object's 1243 * cache to the new object's cache. 1244 */ 1245 m = vm_page_splay(offidxstart, m); 1246 if (m->pindex < offidxstart) { 1247 orig_object->cache = m; 1248 new_object->cache = m->right; 1249 m->right = NULL; 1250 } else { 1251 orig_object->cache = m->left; 1252 new_object->cache = m; 1253 m->left = NULL; 1254 } 1255 while ((m = new_object->cache) != NULL) { 1256 if ((m->pindex - offidxstart) >= new_object->size) { 1257 /* 1258 * Return all of the cached pages with 1259 * offset greater than or equal to the 1260 * new object's size to the original 1261 * object's cache. 1262 */ 1263 new_object->cache = m->left; 1264 m->left = orig_object->cache; 1265 orig_object->cache = m; 1266 break; 1267 } 1268 m_next = vm_page_splay(m->pindex, m->right); 1269 /* Update the page's object and offset. */ 1270 m->object = new_object; 1271 m->pindex -= offidxstart; 1272 if (m_next == NULL) 1273 break; 1274 m->right = NULL; 1275 m_next->left = m; 1276 new_object->cache = m_next; 1277 } 1278 KASSERT(new_object->cache == NULL || 1279 new_object->type == OBJT_SWAP, 1280 ("vm_page_cache_transfer: object %p's type is incompatible" 1281 " with cached pages", new_object)); 1282 } 1283 mtx_unlock(&vm_page_queue_free_mtx); 1284 } 1285 1286 /* 1287 * vm_page_alloc: 1288 * 1289 * Allocate and return a page that is associated with the specified 1290 * object and offset pair. By default, this page has the flag VPO_BUSY 1291 * set. 1292 * 1293 * The caller must always specify an allocation class. 1294 * 1295 * allocation classes: 1296 * VM_ALLOC_NORMAL normal process request 1297 * VM_ALLOC_SYSTEM system *really* needs a page 1298 * VM_ALLOC_INTERRUPT interrupt time request 1299 * 1300 * optional allocation flags: 1301 * VM_ALLOC_IFCACHED return page only if it is cached 1302 * VM_ALLOC_IFNOTCACHED return NULL, do not reactivate if the page 1303 * is cached 1304 * VM_ALLOC_NOBUSY do not set the flag VPO_BUSY on the page 1305 * VM_ALLOC_NOOBJ page is not associated with an object and 1306 * should not have the flag VPO_BUSY set 1307 * VM_ALLOC_WIRED wire the allocated page 1308 * VM_ALLOC_ZERO prefer a zeroed page 1309 * 1310 * This routine may not sleep. 1311 */ 1312 vm_page_t 1313 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 1314 { 1315 struct vnode *vp = NULL; 1316 vm_object_t m_object; 1317 vm_page_t m; 1318 int flags, page_req; 1319 1320 if ((req & VM_ALLOC_NOOBJ) == 0) { 1321 KASSERT(object != NULL, 1322 ("vm_page_alloc: NULL object.")); 1323 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1324 } 1325 1326 page_req = req & VM_ALLOC_CLASS_MASK; 1327 1328 /* 1329 * The pager is allowed to eat deeper into the free page list. 1330 */ 1331 if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) 1332 page_req = VM_ALLOC_SYSTEM; 1333 1334 mtx_lock(&vm_page_queue_free_mtx); 1335 if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved || 1336 (page_req == VM_ALLOC_SYSTEM && 1337 cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) || 1338 (page_req == VM_ALLOC_INTERRUPT && 1339 cnt.v_free_count + cnt.v_cache_count > 0)) { 1340 /* 1341 * Allocate from the free queue if the number of free pages 1342 * exceeds the minimum for the request class. 1343 */ 1344 if (object != NULL && 1345 (m = vm_page_cache_lookup(object, pindex)) != NULL) { 1346 if ((req & VM_ALLOC_IFNOTCACHED) != 0) { 1347 mtx_unlock(&vm_page_queue_free_mtx); 1348 return (NULL); 1349 } 1350 if (vm_phys_unfree_page(m)) 1351 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0); 1352 #if VM_NRESERVLEVEL > 0 1353 else if (!vm_reserv_reactivate_page(m)) 1354 #else 1355 else 1356 #endif 1357 panic("vm_page_alloc: cache page %p is missing" 1358 " from the free queue", m); 1359 } else if ((req & VM_ALLOC_IFCACHED) != 0) { 1360 mtx_unlock(&vm_page_queue_free_mtx); 1361 return (NULL); 1362 #if VM_NRESERVLEVEL > 0 1363 } else if (object == NULL || object->type == OBJT_DEVICE || 1364 object->type == OBJT_SG || 1365 (object->flags & OBJ_COLORED) == 0 || 1366 (m = vm_reserv_alloc_page(object, pindex)) == NULL) { 1367 #else 1368 } else { 1369 #endif 1370 m = vm_phys_alloc_pages(object != NULL ? 1371 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0); 1372 #if VM_NRESERVLEVEL > 0 1373 if (m == NULL && vm_reserv_reclaim_inactive()) { 1374 m = vm_phys_alloc_pages(object != NULL ? 1375 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 1376 0); 1377 } 1378 #endif 1379 } 1380 } else { 1381 /* 1382 * Not allocatable, give up. 1383 */ 1384 mtx_unlock(&vm_page_queue_free_mtx); 1385 atomic_add_int(&vm_pageout_deficit, 1386 MAX((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); 1387 pagedaemon_wakeup(); 1388 return (NULL); 1389 } 1390 1391 /* 1392 * At this point we had better have found a good page. 1393 */ 1394 1395 KASSERT(m != NULL, ("vm_page_alloc: missing page")); 1396 KASSERT(m->queue == PQ_NONE, 1397 ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue)); 1398 KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m)); 1399 KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m)); 1400 KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m)); 1401 KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m)); 1402 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, 1403 ("vm_page_alloc: page %p has unexpected memattr %d", m, 1404 pmap_page_get_memattr(m))); 1405 if ((m->flags & PG_CACHED) != 0) { 1406 KASSERT(m->valid != 0, 1407 ("vm_page_alloc: cached page %p is invalid", m)); 1408 if (m->object == object && m->pindex == pindex) 1409 cnt.v_reactivated++; 1410 else 1411 m->valid = 0; 1412 m_object = m->object; 1413 vm_page_cache_remove(m); 1414 if (m_object->type == OBJT_VNODE && m_object->cache == NULL) 1415 vp = m_object->handle; 1416 } else { 1417 KASSERT(VM_PAGE_IS_FREE(m), 1418 ("vm_page_alloc: page %p is not free", m)); 1419 KASSERT(m->valid == 0, 1420 ("vm_page_alloc: free page %p is valid", m)); 1421 cnt.v_free_count--; 1422 } 1423 1424 /* 1425 * Only the PG_ZERO flag is inherited. The PG_CACHED or PG_FREE flag 1426 * must be cleared before the free page queues lock is released. 1427 */ 1428 flags = 0; 1429 if (m->flags & PG_ZERO) { 1430 vm_page_zero_count--; 1431 if (req & VM_ALLOC_ZERO) 1432 flags = PG_ZERO; 1433 } 1434 m->flags = flags; 1435 mtx_unlock(&vm_page_queue_free_mtx); 1436 m->aflags = 0; 1437 if (object == NULL || object->type == OBJT_PHYS) 1438 m->oflags = VPO_UNMANAGED; 1439 else 1440 m->oflags = 0; 1441 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ)) == 0) 1442 m->oflags |= VPO_BUSY; 1443 if (req & VM_ALLOC_WIRED) { 1444 /* 1445 * The page lock is not required for wiring a page until that 1446 * page is inserted into the object. 1447 */ 1448 atomic_add_int(&cnt.v_wire_count, 1); 1449 m->wire_count = 1; 1450 } 1451 m->act_count = 0; 1452 1453 if (object != NULL) { 1454 /* Ignore device objects; the pager sets "memattr" for them. */ 1455 if (object->memattr != VM_MEMATTR_DEFAULT && 1456 object->type != OBJT_DEVICE && object->type != OBJT_SG) 1457 pmap_page_set_memattr(m, object->memattr); 1458 vm_page_insert(m, object, pindex); 1459 } else 1460 m->pindex = pindex; 1461 1462 /* 1463 * The following call to vdrop() must come after the above call 1464 * to vm_page_insert() in case both affect the same object and 1465 * vnode. Otherwise, the affected vnode's hold count could 1466 * temporarily become zero. 1467 */ 1468 if (vp != NULL) 1469 vdrop(vp); 1470 1471 /* 1472 * Don't wakeup too often - wakeup the pageout daemon when 1473 * we would be nearly out of memory. 1474 */ 1475 if (vm_paging_needed()) 1476 pagedaemon_wakeup(); 1477 1478 return (m); 1479 } 1480 1481 /* 1482 * Initialize a page that has been freshly dequeued from a freelist. 1483 * The caller has to drop the vnode returned, if it is not NULL. 1484 * 1485 * This function may only be used to initialize unmanaged pages. 1486 * 1487 * To be called with vm_page_queue_free_mtx held. 1488 */ 1489 struct vnode * 1490 vm_page_alloc_init(vm_page_t m) 1491 { 1492 struct vnode *drop; 1493 vm_object_t m_object; 1494 1495 KASSERT(m->queue == PQ_NONE, 1496 ("vm_page_alloc_init: page %p has unexpected queue %d", 1497 m, m->queue)); 1498 KASSERT(m->wire_count == 0, 1499 ("vm_page_alloc_init: page %p is wired", m)); 1500 KASSERT(m->hold_count == 0, 1501 ("vm_page_alloc_init: page %p is held", m)); 1502 KASSERT(m->busy == 0, 1503 ("vm_page_alloc_init: page %p is busy", m)); 1504 KASSERT(m->dirty == 0, 1505 ("vm_page_alloc_init: page %p is dirty", m)); 1506 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, 1507 ("vm_page_alloc_init: page %p has unexpected memattr %d", 1508 m, pmap_page_get_memattr(m))); 1509 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1510 drop = NULL; 1511 if ((m->flags & PG_CACHED) != 0) { 1512 KASSERT((m->flags & PG_ZERO) == 0, 1513 ("vm_page_alloc_init: cached page %p is PG_ZERO", m)); 1514 m->valid = 0; 1515 m_object = m->object; 1516 vm_page_cache_remove(m); 1517 if (m_object->type == OBJT_VNODE && m_object->cache == NULL) 1518 drop = m_object->handle; 1519 } else { 1520 KASSERT(VM_PAGE_IS_FREE(m), 1521 ("vm_page_alloc_init: page %p is not free", m)); 1522 KASSERT(m->valid == 0, 1523 ("vm_page_alloc_init: free page %p is valid", m)); 1524 cnt.v_free_count--; 1525 if ((m->flags & PG_ZERO) != 0) 1526 vm_page_zero_count--; 1527 } 1528 /* Don't clear the PG_ZERO flag; we'll need it later. */ 1529 m->flags &= PG_ZERO; 1530 m->aflags = 0; 1531 m->oflags = VPO_UNMANAGED; 1532 /* Unmanaged pages don't use "act_count". */ 1533 return (drop); 1534 } 1535 1536 /* 1537 * vm_page_alloc_freelist: 1538 * 1539 * Allocate a physical page from the specified free page list. 1540 * 1541 * The caller must always specify an allocation class. 1542 * 1543 * allocation classes: 1544 * VM_ALLOC_NORMAL normal process request 1545 * VM_ALLOC_SYSTEM system *really* needs a page 1546 * VM_ALLOC_INTERRUPT interrupt time request 1547 * 1548 * optional allocation flags: 1549 * VM_ALLOC_WIRED wire the allocated page 1550 * VM_ALLOC_ZERO prefer a zeroed page 1551 * 1552 * This routine may not sleep. 1553 */ 1554 vm_page_t 1555 vm_page_alloc_freelist(int flind, int req) 1556 { 1557 struct vnode *drop; 1558 vm_page_t m; 1559 u_int flags; 1560 int page_req; 1561 1562 m = NULL; 1563 page_req = req & VM_ALLOC_CLASS_MASK; 1564 mtx_lock(&vm_page_queue_free_mtx); 1565 /* 1566 * Do not allocate reserved pages unless the req has asked for it. 1567 */ 1568 if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved || 1569 (page_req == VM_ALLOC_SYSTEM && 1570 cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) || 1571 (page_req == VM_ALLOC_INTERRUPT && 1572 cnt.v_free_count + cnt.v_cache_count > 0)) { 1573 m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0); 1574 } 1575 if (m == NULL) { 1576 mtx_unlock(&vm_page_queue_free_mtx); 1577 return (NULL); 1578 } 1579 drop = vm_page_alloc_init(m); 1580 mtx_unlock(&vm_page_queue_free_mtx); 1581 1582 /* 1583 * Initialize the page. Only the PG_ZERO flag is inherited. 1584 */ 1585 flags = 0; 1586 if ((req & VM_ALLOC_ZERO) != 0) 1587 flags = PG_ZERO; 1588 m->flags &= flags; 1589 if ((req & VM_ALLOC_WIRED) != 0) { 1590 /* 1591 * The page lock is not required for wiring a page that does 1592 * not belong to an object. 1593 */ 1594 atomic_add_int(&cnt.v_wire_count, 1); 1595 m->wire_count = 1; 1596 } 1597 if (drop != NULL) 1598 vdrop(drop); 1599 if (vm_paging_needed()) 1600 pagedaemon_wakeup(); 1601 return (m); 1602 } 1603 1604 /* 1605 * vm_wait: (also see VM_WAIT macro) 1606 * 1607 * Block until free pages are available for allocation 1608 * - Called in various places before memory allocations. 1609 */ 1610 void 1611 vm_wait(void) 1612 { 1613 1614 mtx_lock(&vm_page_queue_free_mtx); 1615 if (curproc == pageproc) { 1616 vm_pageout_pages_needed = 1; 1617 msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx, 1618 PDROP | PSWP, "VMWait", 0); 1619 } else { 1620 if (!vm_pages_needed) { 1621 vm_pages_needed = 1; 1622 wakeup(&vm_pages_needed); 1623 } 1624 msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM, 1625 "vmwait", 0); 1626 } 1627 } 1628 1629 /* 1630 * vm_waitpfault: (also see VM_WAITPFAULT macro) 1631 * 1632 * Block until free pages are available for allocation 1633 * - Called only in vm_fault so that processes page faulting 1634 * can be easily tracked. 1635 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 1636 * processes will be able to grab memory first. Do not change 1637 * this balance without careful testing first. 1638 */ 1639 void 1640 vm_waitpfault(void) 1641 { 1642 1643 mtx_lock(&vm_page_queue_free_mtx); 1644 if (!vm_pages_needed) { 1645 vm_pages_needed = 1; 1646 wakeup(&vm_pages_needed); 1647 } 1648 msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER, 1649 "pfault", 0); 1650 } 1651 1652 /* 1653 * vm_page_requeue: 1654 * 1655 * Move the given page to the tail of its present page queue. 1656 * 1657 * The page queues must be locked. 1658 */ 1659 void 1660 vm_page_requeue(vm_page_t m) 1661 { 1662 struct vpgqueues *vpq; 1663 int queue; 1664 1665 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1666 queue = m->queue; 1667 KASSERT(queue != PQ_NONE, 1668 ("vm_page_requeue: page %p is not queued", m)); 1669 vpq = &vm_page_queues[queue]; 1670 TAILQ_REMOVE(&vpq->pl, m, pageq); 1671 TAILQ_INSERT_TAIL(&vpq->pl, m, pageq); 1672 } 1673 1674 /* 1675 * vm_page_queue_remove: 1676 * 1677 * Remove the given page from the specified queue. 1678 * 1679 * The page and page queues must be locked. 1680 */ 1681 static __inline void 1682 vm_page_queue_remove(int queue, vm_page_t m) 1683 { 1684 struct vpgqueues *pq; 1685 1686 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1687 vm_page_lock_assert(m, MA_OWNED); 1688 pq = &vm_page_queues[queue]; 1689 TAILQ_REMOVE(&pq->pl, m, pageq); 1690 (*pq->cnt)--; 1691 } 1692 1693 /* 1694 * vm_pageq_remove: 1695 * 1696 * Remove a page from its queue. 1697 * 1698 * The given page must be locked. 1699 * This routine may not block. 1700 */ 1701 void 1702 vm_pageq_remove(vm_page_t m) 1703 { 1704 int queue; 1705 1706 vm_page_lock_assert(m, MA_OWNED); 1707 if ((queue = m->queue) != PQ_NONE) { 1708 vm_page_lock_queues(); 1709 m->queue = PQ_NONE; 1710 vm_page_queue_remove(queue, m); 1711 vm_page_unlock_queues(); 1712 } 1713 } 1714 1715 /* 1716 * vm_page_enqueue: 1717 * 1718 * Add the given page to the specified queue. 1719 * 1720 * The page queues must be locked. 1721 */ 1722 static void 1723 vm_page_enqueue(int queue, vm_page_t m) 1724 { 1725 struct vpgqueues *vpq; 1726 1727 vpq = &vm_page_queues[queue]; 1728 m->queue = queue; 1729 TAILQ_INSERT_TAIL(&vpq->pl, m, pageq); 1730 ++*vpq->cnt; 1731 } 1732 1733 /* 1734 * vm_page_activate: 1735 * 1736 * Put the specified page on the active list (if appropriate). 1737 * Ensure that act_count is at least ACT_INIT but do not otherwise 1738 * mess with it. 1739 * 1740 * The page must be locked. 1741 * This routine may not block. 1742 */ 1743 void 1744 vm_page_activate(vm_page_t m) 1745 { 1746 int queue; 1747 1748 vm_page_lock_assert(m, MA_OWNED); 1749 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1750 if ((queue = m->queue) != PQ_ACTIVE) { 1751 if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) { 1752 if (m->act_count < ACT_INIT) 1753 m->act_count = ACT_INIT; 1754 vm_page_lock_queues(); 1755 if (queue != PQ_NONE) 1756 vm_page_queue_remove(queue, m); 1757 vm_page_enqueue(PQ_ACTIVE, m); 1758 vm_page_unlock_queues(); 1759 } else 1760 KASSERT(queue == PQ_NONE, 1761 ("vm_page_activate: wired page %p is queued", m)); 1762 } else { 1763 if (m->act_count < ACT_INIT) 1764 m->act_count = ACT_INIT; 1765 } 1766 } 1767 1768 /* 1769 * vm_page_free_wakeup: 1770 * 1771 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 1772 * routine is called when a page has been added to the cache or free 1773 * queues. 1774 * 1775 * The page queues must be locked. 1776 * This routine may not block. 1777 */ 1778 static inline void 1779 vm_page_free_wakeup(void) 1780 { 1781 1782 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1783 /* 1784 * if pageout daemon needs pages, then tell it that there are 1785 * some free. 1786 */ 1787 if (vm_pageout_pages_needed && 1788 cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) { 1789 wakeup(&vm_pageout_pages_needed); 1790 vm_pageout_pages_needed = 0; 1791 } 1792 /* 1793 * wakeup processes that are waiting on memory if we hit a 1794 * high water mark. And wakeup scheduler process if we have 1795 * lots of memory. this process will swapin processes. 1796 */ 1797 if (vm_pages_needed && !vm_page_count_min()) { 1798 vm_pages_needed = 0; 1799 wakeup(&cnt.v_free_count); 1800 } 1801 } 1802 1803 /* 1804 * vm_page_free_toq: 1805 * 1806 * Returns the given page to the free list, 1807 * disassociating it with any VM object. 1808 * 1809 * Object and page must be locked prior to entry. 1810 * This routine may not block. 1811 */ 1812 1813 void 1814 vm_page_free_toq(vm_page_t m) 1815 { 1816 1817 if ((m->oflags & VPO_UNMANAGED) == 0) { 1818 vm_page_lock_assert(m, MA_OWNED); 1819 KASSERT(!pmap_page_is_mapped(m), 1820 ("vm_page_free_toq: freeing mapped page %p", m)); 1821 } 1822 PCPU_INC(cnt.v_tfree); 1823 1824 if (VM_PAGE_IS_FREE(m)) 1825 panic("vm_page_free: freeing free page %p", m); 1826 else if (m->busy != 0) 1827 panic("vm_page_free: freeing busy page %p", m); 1828 1829 /* 1830 * unqueue, then remove page. Note that we cannot destroy 1831 * the page here because we do not want to call the pager's 1832 * callback routine until after we've put the page on the 1833 * appropriate free queue. 1834 */ 1835 if ((m->oflags & VPO_UNMANAGED) == 0) 1836 vm_pageq_remove(m); 1837 vm_page_remove(m); 1838 1839 /* 1840 * If fictitious remove object association and 1841 * return, otherwise delay object association removal. 1842 */ 1843 if ((m->flags & PG_FICTITIOUS) != 0) { 1844 return; 1845 } 1846 1847 m->valid = 0; 1848 vm_page_undirty(m); 1849 1850 if (m->wire_count != 0) 1851 panic("vm_page_free: freeing wired page %p", m); 1852 if (m->hold_count != 0) { 1853 m->flags &= ~PG_ZERO; 1854 vm_page_lock_queues(); 1855 vm_page_enqueue(PQ_HOLD, m); 1856 vm_page_unlock_queues(); 1857 } else { 1858 /* 1859 * Restore the default memory attribute to the page. 1860 */ 1861 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) 1862 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); 1863 1864 /* 1865 * Insert the page into the physical memory allocator's 1866 * cache/free page queues. 1867 */ 1868 mtx_lock(&vm_page_queue_free_mtx); 1869 m->flags |= PG_FREE; 1870 cnt.v_free_count++; 1871 #if VM_NRESERVLEVEL > 0 1872 if (!vm_reserv_free_page(m)) 1873 #else 1874 if (TRUE) 1875 #endif 1876 vm_phys_free_pages(m, 0); 1877 if ((m->flags & PG_ZERO) != 0) 1878 ++vm_page_zero_count; 1879 else 1880 vm_page_zero_idle_wakeup(); 1881 vm_page_free_wakeup(); 1882 mtx_unlock(&vm_page_queue_free_mtx); 1883 } 1884 } 1885 1886 /* 1887 * vm_page_wire: 1888 * 1889 * Mark this page as wired down by yet 1890 * another map, removing it from paging queues 1891 * as necessary. 1892 * 1893 * If the page is fictitious, then its wire count must remain one. 1894 * 1895 * The page must be locked. 1896 * This routine may not block. 1897 */ 1898 void 1899 vm_page_wire(vm_page_t m) 1900 { 1901 1902 /* 1903 * Only bump the wire statistics if the page is not already wired, 1904 * and only unqueue the page if it is on some queue (if it is unmanaged 1905 * it is already off the queues). 1906 */ 1907 vm_page_lock_assert(m, MA_OWNED); 1908 if ((m->flags & PG_FICTITIOUS) != 0) { 1909 KASSERT(m->wire_count == 1, 1910 ("vm_page_wire: fictitious page %p's wire count isn't one", 1911 m)); 1912 return; 1913 } 1914 if (m->wire_count == 0) { 1915 if ((m->oflags & VPO_UNMANAGED) == 0) 1916 vm_pageq_remove(m); 1917 atomic_add_int(&cnt.v_wire_count, 1); 1918 } 1919 m->wire_count++; 1920 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 1921 } 1922 1923 /* 1924 * vm_page_unwire: 1925 * 1926 * Release one wiring of the specified page, potentially enabling it to be 1927 * paged again. If paging is enabled, then the value of the parameter 1928 * "activate" determines to which queue the page is added. If "activate" is 1929 * non-zero, then the page is added to the active queue. Otherwise, it is 1930 * added to the inactive queue. 1931 * 1932 * However, unless the page belongs to an object, it is not enqueued because 1933 * it cannot be paged out. 1934 * 1935 * If a page is fictitious, then its wire count must alway be one. 1936 * 1937 * A managed page must be locked. 1938 */ 1939 void 1940 vm_page_unwire(vm_page_t m, int activate) 1941 { 1942 1943 if ((m->oflags & VPO_UNMANAGED) == 0) 1944 vm_page_lock_assert(m, MA_OWNED); 1945 if ((m->flags & PG_FICTITIOUS) != 0) { 1946 KASSERT(m->wire_count == 1, 1947 ("vm_page_unwire: fictitious page %p's wire count isn't one", m)); 1948 return; 1949 } 1950 if (m->wire_count > 0) { 1951 m->wire_count--; 1952 if (m->wire_count == 0) { 1953 atomic_subtract_int(&cnt.v_wire_count, 1); 1954 if ((m->oflags & VPO_UNMANAGED) != 0 || 1955 m->object == NULL) 1956 return; 1957 vm_page_lock_queues(); 1958 if (activate) 1959 vm_page_enqueue(PQ_ACTIVE, m); 1960 else { 1961 m->flags &= ~PG_WINATCFLS; 1962 vm_page_enqueue(PQ_INACTIVE, m); 1963 } 1964 vm_page_unlock_queues(); 1965 } 1966 } else 1967 panic("vm_page_unwire: page %p's wire count is zero", m); 1968 } 1969 1970 /* 1971 * Move the specified page to the inactive queue. 1972 * 1973 * Many pages placed on the inactive queue should actually go 1974 * into the cache, but it is difficult to figure out which. What 1975 * we do instead, if the inactive target is well met, is to put 1976 * clean pages at the head of the inactive queue instead of the tail. 1977 * This will cause them to be moved to the cache more quickly and 1978 * if not actively re-referenced, reclaimed more quickly. If we just 1979 * stick these pages at the end of the inactive queue, heavy filesystem 1980 * meta-data accesses can cause an unnecessary paging load on memory bound 1981 * processes. This optimization causes one-time-use metadata to be 1982 * reused more quickly. 1983 * 1984 * Normally athead is 0 resulting in LRU operation. athead is set 1985 * to 1 if we want this page to be 'as if it were placed in the cache', 1986 * except without unmapping it from the process address space. 1987 * 1988 * This routine may not block. 1989 */ 1990 static inline void 1991 _vm_page_deactivate(vm_page_t m, int athead) 1992 { 1993 int queue; 1994 1995 vm_page_lock_assert(m, MA_OWNED); 1996 1997 /* 1998 * Ignore if already inactive. 1999 */ 2000 if ((queue = m->queue) == PQ_INACTIVE) 2001 return; 2002 if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) { 2003 vm_page_lock_queues(); 2004 m->flags &= ~PG_WINATCFLS; 2005 if (queue != PQ_NONE) 2006 vm_page_queue_remove(queue, m); 2007 if (athead) 2008 TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, 2009 pageq); 2010 else 2011 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, 2012 pageq); 2013 m->queue = PQ_INACTIVE; 2014 cnt.v_inactive_count++; 2015 vm_page_unlock_queues(); 2016 } 2017 } 2018 2019 /* 2020 * Move the specified page to the inactive queue. 2021 * 2022 * The page must be locked. 2023 */ 2024 void 2025 vm_page_deactivate(vm_page_t m) 2026 { 2027 2028 _vm_page_deactivate(m, 0); 2029 } 2030 2031 /* 2032 * vm_page_try_to_cache: 2033 * 2034 * Returns 0 on failure, 1 on success 2035 */ 2036 int 2037 vm_page_try_to_cache(vm_page_t m) 2038 { 2039 2040 vm_page_lock_assert(m, MA_OWNED); 2041 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 2042 if (m->dirty || m->hold_count || m->busy || m->wire_count || 2043 (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0) 2044 return (0); 2045 pmap_remove_all(m); 2046 if (m->dirty) 2047 return (0); 2048 vm_page_cache(m); 2049 return (1); 2050 } 2051 2052 /* 2053 * vm_page_try_to_free() 2054 * 2055 * Attempt to free the page. If we cannot free it, we do nothing. 2056 * 1 is returned on success, 0 on failure. 2057 */ 2058 int 2059 vm_page_try_to_free(vm_page_t m) 2060 { 2061 2062 vm_page_lock_assert(m, MA_OWNED); 2063 if (m->object != NULL) 2064 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 2065 if (m->dirty || m->hold_count || m->busy || m->wire_count || 2066 (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0) 2067 return (0); 2068 pmap_remove_all(m); 2069 if (m->dirty) 2070 return (0); 2071 vm_page_free(m); 2072 return (1); 2073 } 2074 2075 /* 2076 * vm_page_cache 2077 * 2078 * Put the specified page onto the page cache queue (if appropriate). 2079 * 2080 * This routine may not block. 2081 */ 2082 void 2083 vm_page_cache(vm_page_t m) 2084 { 2085 vm_object_t object; 2086 vm_page_t next, prev, root; 2087 2088 vm_page_lock_assert(m, MA_OWNED); 2089 object = m->object; 2090 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 2091 if ((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) || m->busy || 2092 m->hold_count || m->wire_count) 2093 panic("vm_page_cache: attempting to cache busy page"); 2094 pmap_remove_all(m); 2095 if (m->dirty != 0) 2096 panic("vm_page_cache: page %p is dirty", m); 2097 if (m->valid == 0 || object->type == OBJT_DEFAULT || 2098 (object->type == OBJT_SWAP && 2099 !vm_pager_has_page(object, m->pindex, NULL, NULL))) { 2100 /* 2101 * Hypothesis: A cache-elgible page belonging to a 2102 * default object or swap object but without a backing 2103 * store must be zero filled. 2104 */ 2105 vm_page_free(m); 2106 return; 2107 } 2108 KASSERT((m->flags & PG_CACHED) == 0, 2109 ("vm_page_cache: page %p is already cached", m)); 2110 PCPU_INC(cnt.v_tcached); 2111 2112 /* 2113 * Remove the page from the paging queues. 2114 */ 2115 vm_pageq_remove(m); 2116 2117 /* 2118 * Remove the page from the object's collection of resident 2119 * pages. 2120 */ 2121 if ((next = TAILQ_NEXT(m, listq)) != NULL && next->left == m) { 2122 /* 2123 * Since the page's successor in the list is also its parent 2124 * in the tree, its right subtree must be empty. 2125 */ 2126 next->left = m->left; 2127 KASSERT(m->right == NULL, 2128 ("vm_page_cache: page %p has right child", m)); 2129 } else if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL && 2130 prev->right == m) { 2131 /* 2132 * Since the page's predecessor in the list is also its parent 2133 * in the tree, its left subtree must be empty. 2134 */ 2135 KASSERT(m->left == NULL, 2136 ("vm_page_cache: page %p has left child", m)); 2137 prev->right = m->right; 2138 } else { 2139 if (m != object->root) 2140 vm_page_splay(m->pindex, object->root); 2141 if (m->left == NULL) 2142 root = m->right; 2143 else if (m->right == NULL) 2144 root = m->left; 2145 else { 2146 /* 2147 * Move the page's successor to the root, because 2148 * pages are usually removed in ascending order. 2149 */ 2150 if (m->right != next) 2151 vm_page_splay(m->pindex, m->right); 2152 next->left = m->left; 2153 root = next; 2154 } 2155 object->root = root; 2156 } 2157 TAILQ_REMOVE(&object->memq, m, listq); 2158 object->resident_page_count--; 2159 2160 /* 2161 * Restore the default memory attribute to the page. 2162 */ 2163 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) 2164 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); 2165 2166 /* 2167 * Insert the page into the object's collection of cached pages 2168 * and the physical memory allocator's cache/free page queues. 2169 */ 2170 m->flags &= ~PG_ZERO; 2171 mtx_lock(&vm_page_queue_free_mtx); 2172 m->flags |= PG_CACHED; 2173 cnt.v_cache_count++; 2174 root = object->cache; 2175 if (root == NULL) { 2176 m->left = NULL; 2177 m->right = NULL; 2178 } else { 2179 root = vm_page_splay(m->pindex, root); 2180 if (m->pindex < root->pindex) { 2181 m->left = root->left; 2182 m->right = root; 2183 root->left = NULL; 2184 } else if (__predict_false(m->pindex == root->pindex)) 2185 panic("vm_page_cache: offset already cached"); 2186 else { 2187 m->right = root->right; 2188 m->left = root; 2189 root->right = NULL; 2190 } 2191 } 2192 object->cache = m; 2193 #if VM_NRESERVLEVEL > 0 2194 if (!vm_reserv_free_page(m)) { 2195 #else 2196 if (TRUE) { 2197 #endif 2198 vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0); 2199 vm_phys_free_pages(m, 0); 2200 } 2201 vm_page_free_wakeup(); 2202 mtx_unlock(&vm_page_queue_free_mtx); 2203 2204 /* 2205 * Increment the vnode's hold count if this is the object's only 2206 * cached page. Decrement the vnode's hold count if this was 2207 * the object's only resident page. 2208 */ 2209 if (object->type == OBJT_VNODE) { 2210 if (root == NULL && object->resident_page_count != 0) 2211 vhold(object->handle); 2212 else if (root != NULL && object->resident_page_count == 0) 2213 vdrop(object->handle); 2214 } 2215 } 2216 2217 /* 2218 * vm_page_dontneed 2219 * 2220 * Cache, deactivate, or do nothing as appropriate. This routine 2221 * is typically used by madvise() MADV_DONTNEED. 2222 * 2223 * Generally speaking we want to move the page into the cache so 2224 * it gets reused quickly. However, this can result in a silly syndrome 2225 * due to the page recycling too quickly. Small objects will not be 2226 * fully cached. On the otherhand, if we move the page to the inactive 2227 * queue we wind up with a problem whereby very large objects 2228 * unnecessarily blow away our inactive and cache queues. 2229 * 2230 * The solution is to move the pages based on a fixed weighting. We 2231 * either leave them alone, deactivate them, or move them to the cache, 2232 * where moving them to the cache has the highest weighting. 2233 * By forcing some pages into other queues we eventually force the 2234 * system to balance the queues, potentially recovering other unrelated 2235 * space from active. The idea is to not force this to happen too 2236 * often. 2237 */ 2238 void 2239 vm_page_dontneed(vm_page_t m) 2240 { 2241 int dnw; 2242 int head; 2243 2244 vm_page_lock_assert(m, MA_OWNED); 2245 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 2246 dnw = PCPU_GET(dnweight); 2247 PCPU_INC(dnweight); 2248 2249 /* 2250 * Occasionally leave the page alone. 2251 */ 2252 if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) { 2253 if (m->act_count >= ACT_INIT) 2254 --m->act_count; 2255 return; 2256 } 2257 2258 /* 2259 * Clear any references to the page. Otherwise, the page daemon will 2260 * immediately reactivate the page. 2261 * 2262 * Perform the pmap_clear_reference() first. Otherwise, a concurrent 2263 * pmap operation, such as pmap_remove(), could clear a reference in 2264 * the pmap and set PGA_REFERENCED on the page before the 2265 * pmap_clear_reference() had completed. Consequently, the page would 2266 * appear referenced based upon an old reference that occurred before 2267 * this function ran. 2268 */ 2269 pmap_clear_reference(m); 2270 vm_page_aflag_clear(m, PGA_REFERENCED); 2271 2272 if (m->dirty == 0 && pmap_is_modified(m)) 2273 vm_page_dirty(m); 2274 2275 if (m->dirty || (dnw & 0x0070) == 0) { 2276 /* 2277 * Deactivate the page 3 times out of 32. 2278 */ 2279 head = 0; 2280 } else { 2281 /* 2282 * Cache the page 28 times out of every 32. Note that 2283 * the page is deactivated instead of cached, but placed 2284 * at the head of the queue instead of the tail. 2285 */ 2286 head = 1; 2287 } 2288 _vm_page_deactivate(m, head); 2289 } 2290 2291 /* 2292 * Grab a page, waiting until we are waken up due to the page 2293 * changing state. We keep on waiting, if the page continues 2294 * to be in the object. If the page doesn't exist, first allocate it 2295 * and then conditionally zero it. 2296 * 2297 * The caller must always specify the VM_ALLOC_RETRY flag. This is intended 2298 * to facilitate its eventual removal. 2299 * 2300 * This routine may block. 2301 */ 2302 vm_page_t 2303 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 2304 { 2305 vm_page_t m; 2306 2307 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 2308 KASSERT((allocflags & VM_ALLOC_RETRY) != 0, 2309 ("vm_page_grab: VM_ALLOC_RETRY is required")); 2310 retrylookup: 2311 if ((m = vm_page_lookup(object, pindex)) != NULL) { 2312 if ((m->oflags & VPO_BUSY) != 0 || 2313 ((allocflags & VM_ALLOC_IGN_SBUSY) == 0 && m->busy != 0)) { 2314 /* 2315 * Reference the page before unlocking and 2316 * sleeping so that the page daemon is less 2317 * likely to reclaim it. 2318 */ 2319 vm_page_aflag_set(m, PGA_REFERENCED); 2320 vm_page_sleep(m, "pgrbwt"); 2321 goto retrylookup; 2322 } else { 2323 if ((allocflags & VM_ALLOC_WIRED) != 0) { 2324 vm_page_lock(m); 2325 vm_page_wire(m); 2326 vm_page_unlock(m); 2327 } 2328 if ((allocflags & VM_ALLOC_NOBUSY) == 0) 2329 vm_page_busy(m); 2330 return (m); 2331 } 2332 } 2333 m = vm_page_alloc(object, pindex, allocflags & ~(VM_ALLOC_RETRY | 2334 VM_ALLOC_IGN_SBUSY)); 2335 if (m == NULL) { 2336 VM_OBJECT_UNLOCK(object); 2337 VM_WAIT; 2338 VM_OBJECT_LOCK(object); 2339 goto retrylookup; 2340 } else if (m->valid != 0) 2341 return (m); 2342 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 2343 pmap_zero_page(m); 2344 return (m); 2345 } 2346 2347 /* 2348 * Mapping function for valid bits or for dirty bits in 2349 * a page. May not block. 2350 * 2351 * Inputs are required to range within a page. 2352 */ 2353 int 2354 vm_page_bits(int base, int size) 2355 { 2356 int first_bit; 2357 int last_bit; 2358 2359 KASSERT( 2360 base + size <= PAGE_SIZE, 2361 ("vm_page_bits: illegal base/size %d/%d", base, size) 2362 ); 2363 2364 if (size == 0) /* handle degenerate case */ 2365 return (0); 2366 2367 first_bit = base >> DEV_BSHIFT; 2368 last_bit = (base + size - 1) >> DEV_BSHIFT; 2369 2370 return ((2 << last_bit) - (1 << first_bit)); 2371 } 2372 2373 /* 2374 * vm_page_set_valid: 2375 * 2376 * Sets portions of a page valid. The arguments are expected 2377 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 2378 * of any partial chunks touched by the range. The invalid portion of 2379 * such chunks will be zeroed. 2380 * 2381 * (base + size) must be less then or equal to PAGE_SIZE. 2382 */ 2383 void 2384 vm_page_set_valid(vm_page_t m, int base, int size) 2385 { 2386 int endoff, frag; 2387 2388 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 2389 if (size == 0) /* handle degenerate case */ 2390 return; 2391 2392 /* 2393 * If the base is not DEV_BSIZE aligned and the valid 2394 * bit is clear, we have to zero out a portion of the 2395 * first block. 2396 */ 2397 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 2398 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 2399 pmap_zero_page_area(m, frag, base - frag); 2400 2401 /* 2402 * If the ending offset is not DEV_BSIZE aligned and the 2403 * valid bit is clear, we have to zero out a portion of 2404 * the last block. 2405 */ 2406 endoff = base + size; 2407 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 2408 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 2409 pmap_zero_page_area(m, endoff, 2410 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 2411 2412 /* 2413 * Assert that no previously invalid block that is now being validated 2414 * is already dirty. 2415 */ 2416 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0, 2417 ("vm_page_set_valid: page %p is dirty", m)); 2418 2419 /* 2420 * Set valid bits inclusive of any overlap. 2421 */ 2422 m->valid |= vm_page_bits(base, size); 2423 } 2424 2425 /* 2426 * Clear the given bits from the specified page's dirty field. 2427 */ 2428 static __inline void 2429 vm_page_clear_dirty_mask(vm_page_t m, int pagebits) 2430 { 2431 uintptr_t addr; 2432 #if PAGE_SIZE < 16384 2433 int shift; 2434 #endif 2435 2436 /* 2437 * If the object is locked and the page is neither VPO_BUSY nor 2438 * PGA_WRITEABLE, then the page's dirty field cannot possibly be 2439 * set by a concurrent pmap operation. 2440 */ 2441 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 2442 if ((m->oflags & VPO_BUSY) == 0 && (m->aflags & PGA_WRITEABLE) == 0) 2443 m->dirty &= ~pagebits; 2444 else { 2445 /* 2446 * The pmap layer can call vm_page_dirty() without 2447 * holding a distinguished lock. The combination of 2448 * the object's lock and an atomic operation suffice 2449 * to guarantee consistency of the page dirty field. 2450 * 2451 * For PAGE_SIZE == 32768 case, compiler already 2452 * properly aligns the dirty field, so no forcible 2453 * alignment is needed. Only require existence of 2454 * atomic_clear_64 when page size is 32768. 2455 */ 2456 addr = (uintptr_t)&m->dirty; 2457 #if PAGE_SIZE == 32768 2458 #error pagebits too short 2459 atomic_clear_64((uint64_t *)addr, pagebits); 2460 #elif PAGE_SIZE == 16384 2461 atomic_clear_32((uint32_t *)addr, pagebits); 2462 #else /* PAGE_SIZE <= 8192 */ 2463 /* 2464 * Use a trick to perform a 32-bit atomic on the 2465 * containing aligned word, to not depend on the existence 2466 * of atomic_clear_{8, 16}. 2467 */ 2468 shift = addr & (sizeof(uint32_t) - 1); 2469 #if BYTE_ORDER == BIG_ENDIAN 2470 shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY; 2471 #else 2472 shift *= NBBY; 2473 #endif 2474 addr &= ~(sizeof(uint32_t) - 1); 2475 atomic_clear_32((uint32_t *)addr, pagebits << shift); 2476 #endif /* PAGE_SIZE */ 2477 } 2478 } 2479 2480 /* 2481 * vm_page_set_validclean: 2482 * 2483 * Sets portions of a page valid and clean. The arguments are expected 2484 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 2485 * of any partial chunks touched by the range. The invalid portion of 2486 * such chunks will be zero'd. 2487 * 2488 * This routine may not block. 2489 * 2490 * (base + size) must be less then or equal to PAGE_SIZE. 2491 */ 2492 void 2493 vm_page_set_validclean(vm_page_t m, int base, int size) 2494 { 2495 u_long oldvalid; 2496 int endoff, frag, pagebits; 2497 2498 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 2499 if (size == 0) /* handle degenerate case */ 2500 return; 2501 2502 /* 2503 * If the base is not DEV_BSIZE aligned and the valid 2504 * bit is clear, we have to zero out a portion of the 2505 * first block. 2506 */ 2507 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 2508 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 2509 pmap_zero_page_area(m, frag, base - frag); 2510 2511 /* 2512 * If the ending offset is not DEV_BSIZE aligned and the 2513 * valid bit is clear, we have to zero out a portion of 2514 * the last block. 2515 */ 2516 endoff = base + size; 2517 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 2518 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 2519 pmap_zero_page_area(m, endoff, 2520 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 2521 2522 /* 2523 * Set valid, clear dirty bits. If validating the entire 2524 * page we can safely clear the pmap modify bit. We also 2525 * use this opportunity to clear the VPO_NOSYNC flag. If a process 2526 * takes a write fault on a MAP_NOSYNC memory area the flag will 2527 * be set again. 2528 * 2529 * We set valid bits inclusive of any overlap, but we can only 2530 * clear dirty bits for DEV_BSIZE chunks that are fully within 2531 * the range. 2532 */ 2533 oldvalid = m->valid; 2534 pagebits = vm_page_bits(base, size); 2535 m->valid |= pagebits; 2536 #if 0 /* NOT YET */ 2537 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 2538 frag = DEV_BSIZE - frag; 2539 base += frag; 2540 size -= frag; 2541 if (size < 0) 2542 size = 0; 2543 } 2544 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 2545 #endif 2546 if (base == 0 && size == PAGE_SIZE) { 2547 /* 2548 * The page can only be modified within the pmap if it is 2549 * mapped, and it can only be mapped if it was previously 2550 * fully valid. 2551 */ 2552 if (oldvalid == VM_PAGE_BITS_ALL) 2553 /* 2554 * Perform the pmap_clear_modify() first. Otherwise, 2555 * a concurrent pmap operation, such as 2556 * pmap_protect(), could clear a modification in the 2557 * pmap and set the dirty field on the page before 2558 * pmap_clear_modify() had begun and after the dirty 2559 * field was cleared here. 2560 */ 2561 pmap_clear_modify(m); 2562 m->dirty = 0; 2563 m->oflags &= ~VPO_NOSYNC; 2564 } else if (oldvalid != VM_PAGE_BITS_ALL) 2565 m->dirty &= ~pagebits; 2566 else 2567 vm_page_clear_dirty_mask(m, pagebits); 2568 } 2569 2570 void 2571 vm_page_clear_dirty(vm_page_t m, int base, int size) 2572 { 2573 2574 vm_page_clear_dirty_mask(m, vm_page_bits(base, size)); 2575 } 2576 2577 /* 2578 * vm_page_set_invalid: 2579 * 2580 * Invalidates DEV_BSIZE'd chunks within a page. Both the 2581 * valid and dirty bits for the effected areas are cleared. 2582 * 2583 * May not block. 2584 */ 2585 void 2586 vm_page_set_invalid(vm_page_t m, int base, int size) 2587 { 2588 int bits; 2589 2590 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 2591 KASSERT((m->oflags & VPO_BUSY) == 0, 2592 ("vm_page_set_invalid: page %p is busy", m)); 2593 bits = vm_page_bits(base, size); 2594 if (m->valid == VM_PAGE_BITS_ALL && bits != 0) 2595 pmap_remove_all(m); 2596 KASSERT(!pmap_page_is_mapped(m), 2597 ("vm_page_set_invalid: page %p is mapped", m)); 2598 m->valid &= ~bits; 2599 m->dirty &= ~bits; 2600 } 2601 2602 /* 2603 * vm_page_zero_invalid() 2604 * 2605 * The kernel assumes that the invalid portions of a page contain 2606 * garbage, but such pages can be mapped into memory by user code. 2607 * When this occurs, we must zero out the non-valid portions of the 2608 * page so user code sees what it expects. 2609 * 2610 * Pages are most often semi-valid when the end of a file is mapped 2611 * into memory and the file's size is not page aligned. 2612 */ 2613 void 2614 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 2615 { 2616 int b; 2617 int i; 2618 2619 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 2620 /* 2621 * Scan the valid bits looking for invalid sections that 2622 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 2623 * valid bit may be set ) have already been zerod by 2624 * vm_page_set_validclean(). 2625 */ 2626 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 2627 if (i == (PAGE_SIZE / DEV_BSIZE) || 2628 (m->valid & (1 << i)) 2629 ) { 2630 if (i > b) { 2631 pmap_zero_page_area(m, 2632 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 2633 } 2634 b = i + 1; 2635 } 2636 } 2637 2638 /* 2639 * setvalid is TRUE when we can safely set the zero'd areas 2640 * as being valid. We can do this if there are no cache consistancy 2641 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 2642 */ 2643 if (setvalid) 2644 m->valid = VM_PAGE_BITS_ALL; 2645 } 2646 2647 /* 2648 * vm_page_is_valid: 2649 * 2650 * Is (partial) page valid? Note that the case where size == 0 2651 * will return FALSE in the degenerate case where the page is 2652 * entirely invalid, and TRUE otherwise. 2653 * 2654 * May not block. 2655 */ 2656 int 2657 vm_page_is_valid(vm_page_t m, int base, int size) 2658 { 2659 int bits = vm_page_bits(base, size); 2660 2661 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 2662 if (m->valid && ((m->valid & bits) == bits)) 2663 return 1; 2664 else 2665 return 0; 2666 } 2667 2668 /* 2669 * update dirty bits from pmap/mmu. May not block. 2670 */ 2671 void 2672 vm_page_test_dirty(vm_page_t m) 2673 { 2674 2675 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 2676 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m)) 2677 vm_page_dirty(m); 2678 } 2679 2680 int so_zerocp_fullpage = 0; 2681 2682 /* 2683 * Replace the given page with a copy. The copied page assumes 2684 * the portion of the given page's "wire_count" that is not the 2685 * responsibility of this copy-on-write mechanism. 2686 * 2687 * The object containing the given page must have a non-zero 2688 * paging-in-progress count and be locked. 2689 */ 2690 void 2691 vm_page_cowfault(vm_page_t m) 2692 { 2693 vm_page_t mnew; 2694 vm_object_t object; 2695 vm_pindex_t pindex; 2696 2697 mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED); 2698 vm_page_lock_assert(m, MA_OWNED); 2699 object = m->object; 2700 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 2701 KASSERT(object->paging_in_progress != 0, 2702 ("vm_page_cowfault: object %p's paging-in-progress count is zero.", 2703 object)); 2704 pindex = m->pindex; 2705 2706 retry_alloc: 2707 pmap_remove_all(m); 2708 vm_page_remove(m); 2709 mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY); 2710 if (mnew == NULL) { 2711 vm_page_insert(m, object, pindex); 2712 vm_page_unlock(m); 2713 VM_OBJECT_UNLOCK(object); 2714 VM_WAIT; 2715 VM_OBJECT_LOCK(object); 2716 if (m == vm_page_lookup(object, pindex)) { 2717 vm_page_lock(m); 2718 goto retry_alloc; 2719 } else { 2720 /* 2721 * Page disappeared during the wait. 2722 */ 2723 return; 2724 } 2725 } 2726 2727 if (m->cow == 0) { 2728 /* 2729 * check to see if we raced with an xmit complete when 2730 * waiting to allocate a page. If so, put things back 2731 * the way they were 2732 */ 2733 vm_page_unlock(m); 2734 vm_page_lock(mnew); 2735 vm_page_free(mnew); 2736 vm_page_unlock(mnew); 2737 vm_page_insert(m, object, pindex); 2738 } else { /* clear COW & copy page */ 2739 if (!so_zerocp_fullpage) 2740 pmap_copy_page(m, mnew); 2741 mnew->valid = VM_PAGE_BITS_ALL; 2742 vm_page_dirty(mnew); 2743 mnew->wire_count = m->wire_count - m->cow; 2744 m->wire_count = m->cow; 2745 vm_page_unlock(m); 2746 } 2747 } 2748 2749 void 2750 vm_page_cowclear(vm_page_t m) 2751 { 2752 2753 vm_page_lock_assert(m, MA_OWNED); 2754 if (m->cow) { 2755 m->cow--; 2756 /* 2757 * let vm_fault add back write permission lazily 2758 */ 2759 } 2760 /* 2761 * sf_buf_free() will free the page, so we needn't do it here 2762 */ 2763 } 2764 2765 int 2766 vm_page_cowsetup(vm_page_t m) 2767 { 2768 2769 vm_page_lock_assert(m, MA_OWNED); 2770 if ((m->flags & PG_FICTITIOUS) != 0 || 2771 (m->oflags & VPO_UNMANAGED) != 0 || 2772 m->cow == USHRT_MAX - 1 || !VM_OBJECT_TRYLOCK(m->object)) 2773 return (EBUSY); 2774 m->cow++; 2775 pmap_remove_write(m); 2776 VM_OBJECT_UNLOCK(m->object); 2777 return (0); 2778 } 2779 2780 #ifdef INVARIANTS 2781 void 2782 vm_page_object_lock_assert(vm_page_t m) 2783 { 2784 2785 /* 2786 * Certain of the page's fields may only be modified by the 2787 * holder of the containing object's lock or the setter of the 2788 * page's VPO_BUSY flag. Unfortunately, the setter of the 2789 * VPO_BUSY flag is not recorded, and thus cannot be checked 2790 * here. 2791 */ 2792 if (m->object != NULL && (m->oflags & VPO_BUSY) == 0) 2793 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 2794 } 2795 #endif 2796 2797 #include "opt_ddb.h" 2798 #ifdef DDB 2799 #include <sys/kernel.h> 2800 2801 #include <ddb/ddb.h> 2802 2803 DB_SHOW_COMMAND(page, vm_page_print_page_info) 2804 { 2805 db_printf("cnt.v_free_count: %d\n", cnt.v_free_count); 2806 db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count); 2807 db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count); 2808 db_printf("cnt.v_active_count: %d\n", cnt.v_active_count); 2809 db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count); 2810 db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved); 2811 db_printf("cnt.v_free_min: %d\n", cnt.v_free_min); 2812 db_printf("cnt.v_free_target: %d\n", cnt.v_free_target); 2813 db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min); 2814 db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target); 2815 } 2816 2817 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 2818 { 2819 2820 db_printf("PQ_FREE:"); 2821 db_printf(" %d", cnt.v_free_count); 2822 db_printf("\n"); 2823 2824 db_printf("PQ_CACHE:"); 2825 db_printf(" %d", cnt.v_cache_count); 2826 db_printf("\n"); 2827 2828 db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n", 2829 *vm_page_queues[PQ_ACTIVE].cnt, 2830 *vm_page_queues[PQ_INACTIVE].cnt); 2831 } 2832 #endif /* DDB */ 2833