xref: /freebsd/sys/vm/vm_page.c (revision 0b87f79976047c8f4332bbf7dc03146f6b0de79f)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37  * $FreeBSD$
38  */
39 
40 /*
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  */
66 
67 /*
68  *			GENERAL RULES ON VM_PAGE MANIPULATION
69  *
70  *	- a pageq mutex is required when adding or removing a page from a
71  *	  page queue (vm_page_queue[]), regardless of other mutexes or the
72  *	  busy state of a page.
73  *
74  *	- a hash chain mutex is required when associating or disassociating
75  *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
76  *	  regardless of other mutexes or the busy state of a page.
77  *
78  *	- either a hash chain mutex OR a busied page is required in order
79  *	  to modify the page flags.  A hash chain mutex must be obtained in
80  *	  order to busy a page.  A page's flags cannot be modified by a
81  *	  hash chain mutex if the page is marked busy.
82  *
83  *	- The object memq mutex is held when inserting or removing
84  *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
85  *	  is different from the object's main mutex.
86  *
87  *	Generally speaking, you have to be aware of side effects when running
88  *	vm_page ops.  A vm_page_lookup() will return with the hash chain
89  *	locked, whether it was able to lookup the page or not.  vm_page_free(),
90  *	vm_page_cache(), vm_page_activate(), and a number of other routines
91  *	will release the hash chain mutex for you.  Intermediate manipulation
92  *	routines such as vm_page_flag_set() expect the hash chain to be held
93  *	on entry and the hash chain will remain held on return.
94  *
95  *	pageq scanning can only occur with the pageq in question locked.
96  *	We have a known bottleneck with the active queue, but the cache
97  *	and free queues are actually arrays already.
98  */
99 
100 /*
101  *	Resident memory management module.
102  */
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/lock.h>
107 #include <sys/malloc.h>
108 #include <sys/mutex.h>
109 #include <sys/proc.h>
110 #include <sys/vmmeter.h>
111 #include <sys/vnode.h>
112 
113 #include <vm/vm.h>
114 #include <vm/vm_param.h>
115 #include <vm/vm_kern.h>
116 #include <vm/vm_object.h>
117 #include <vm/vm_page.h>
118 #include <vm/vm_pageout.h>
119 #include <vm/vm_pager.h>
120 #include <vm/vm_extern.h>
121 #include <vm/uma.h>
122 #include <vm/uma_int.h>
123 
124 /*
125  *	Associated with page of user-allocatable memory is a
126  *	page structure.
127  */
128 static struct mtx vm_page_buckets_mtx;
129 static struct vm_page **vm_page_buckets; /* Array of buckets */
130 static int vm_page_bucket_count;	/* How big is array? */
131 static int vm_page_hash_mask;		/* Mask for hash function */
132 
133 struct mtx vm_page_queue_mtx;
134 struct mtx vm_page_queue_free_mtx;
135 
136 vm_page_t vm_page_array = 0;
137 int vm_page_array_size = 0;
138 long first_page = 0;
139 int vm_page_zero_count = 0;
140 
141 /*
142  *	vm_set_page_size:
143  *
144  *	Sets the page size, perhaps based upon the memory
145  *	size.  Must be called before any use of page-size
146  *	dependent functions.
147  */
148 void
149 vm_set_page_size(void)
150 {
151 	if (cnt.v_page_size == 0)
152 		cnt.v_page_size = PAGE_SIZE;
153 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
154 		panic("vm_set_page_size: page size not a power of two");
155 }
156 
157 /*
158  *	vm_page_startup:
159  *
160  *	Initializes the resident memory module.
161  *
162  *	Allocates memory for the page cells, and
163  *	for the object/offset-to-page hash table headers.
164  *	Each page cell is initialized and placed on the free list.
165  */
166 vm_offset_t
167 vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr)
168 {
169 	vm_offset_t mapped;
170 	struct vm_page **bucket;
171 	vm_size_t npages, page_range;
172 	vm_offset_t new_end;
173 	int i;
174 	vm_offset_t pa;
175 	int nblocks;
176 	vm_offset_t last_pa;
177 
178 	/* the biggest memory array is the second group of pages */
179 	vm_offset_t end;
180 	vm_offset_t biggestone, biggestsize;
181 
182 	vm_offset_t total;
183 	vm_size_t bootpages;
184 
185 	total = 0;
186 	biggestsize = 0;
187 	biggestone = 0;
188 	nblocks = 0;
189 	vaddr = round_page(vaddr);
190 
191 	for (i = 0; phys_avail[i + 1]; i += 2) {
192 		phys_avail[i] = round_page(phys_avail[i]);
193 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
194 	}
195 
196 	for (i = 0; phys_avail[i + 1]; i += 2) {
197 		vm_size_t size = phys_avail[i + 1] - phys_avail[i];
198 
199 		if (size > biggestsize) {
200 			biggestone = i;
201 			biggestsize = size;
202 		}
203 		++nblocks;
204 		total += size;
205 	}
206 
207 	end = phys_avail[biggestone+1];
208 
209 	/*
210 	 * Initialize the locks.
211 	 */
212 	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF);
213 	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
214 	   MTX_SPIN);
215 
216 	/*
217 	 * Initialize the queue headers for the free queue, the active queue
218 	 * and the inactive queue.
219 	 */
220 	vm_pageq_init();
221 
222 	/*
223 	 * Allocate memory for use when boot strapping the kernel memory allocator
224 	 */
225 	bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
226 	new_end = end - bootpages;
227 	new_end = trunc_page(new_end);
228 	mapped = pmap_map(&vaddr, new_end, end,
229 	    VM_PROT_READ | VM_PROT_WRITE);
230 	bzero((caddr_t) mapped, end - new_end);
231 	uma_startup((caddr_t)mapped);
232 
233 	end = new_end;
234 
235 	/*
236 	 * Allocate (and initialize) the hash table buckets.
237 	 *
238 	 * The number of buckets MUST BE a power of 2, and the actual value is
239 	 * the next power of 2 greater than the number of physical pages in
240 	 * the system.
241 	 *
242 	 * We make the hash table approximately 2x the number of pages to
243 	 * reduce the chain length.  This is about the same size using the
244 	 * singly-linked list as the 1x hash table we were using before
245 	 * using TAILQ but the chain length will be smaller.
246 	 *
247 	 * Note: This computation can be tweaked if desired.
248 	 */
249 	if (vm_page_bucket_count == 0) {
250 		vm_page_bucket_count = 1;
251 		while (vm_page_bucket_count < atop(total))
252 			vm_page_bucket_count <<= 1;
253 	}
254 	vm_page_bucket_count <<= 1;
255 	vm_page_hash_mask = vm_page_bucket_count - 1;
256 
257 	/*
258 	 * Validate these addresses.
259 	 */
260 	new_end = end - vm_page_bucket_count * sizeof(struct vm_page *);
261 	new_end = trunc_page(new_end);
262 	mapped = pmap_map(&vaddr, new_end, end,
263 	    VM_PROT_READ | VM_PROT_WRITE);
264 	bzero((caddr_t) mapped, end - new_end);
265 
266 	mtx_init(&vm_page_buckets_mtx, "vm page buckets mutex", NULL, MTX_SPIN);
267 	vm_page_buckets = (struct vm_page **)mapped;
268 	bucket = vm_page_buckets;
269 	for (i = 0; i < vm_page_bucket_count; i++) {
270 		*bucket = NULL;
271 		bucket++;
272 	}
273 
274 	/*
275 	 * Compute the number of pages of memory that will be available for
276 	 * use (taking into account the overhead of a page structure per
277 	 * page).
278 	 */
279 	first_page = phys_avail[0] / PAGE_SIZE;
280 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
281 	npages = (total - (page_range * sizeof(struct vm_page)) -
282 	    (end - new_end)) / PAGE_SIZE;
283 	end = new_end;
284 
285 	/*
286 	 * Initialize the mem entry structures now, and put them in the free
287 	 * queue.
288 	 */
289 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
290 	mapped = pmap_map(&vaddr, new_end, end,
291 	    VM_PROT_READ | VM_PROT_WRITE);
292 	vm_page_array = (vm_page_t) mapped;
293 
294 	/*
295 	 * Clear all of the page structures
296 	 */
297 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
298 	vm_page_array_size = page_range;
299 
300 	/*
301 	 * Construct the free queue(s) in descending order (by physical
302 	 * address) so that the first 16MB of physical memory is allocated
303 	 * last rather than first.  On large-memory machines, this avoids
304 	 * the exhaustion of low physical memory before isa_dmainit has run.
305 	 */
306 	cnt.v_page_count = 0;
307 	cnt.v_free_count = 0;
308 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
309 		pa = phys_avail[i];
310 		if (i == biggestone)
311 			last_pa = new_end;
312 		else
313 			last_pa = phys_avail[i + 1];
314 		while (pa < last_pa && npages-- > 0) {
315 			vm_pageq_add_new_page(pa);
316 			pa += PAGE_SIZE;
317 		}
318 	}
319 	return (vaddr);
320 }
321 
322 /*
323  *	vm_page_hash:
324  *
325  *	Distributes the object/offset key pair among hash buckets.
326  *
327  *	NOTE:  This macro depends on vm_page_bucket_count being a power of 2.
328  *	This routine may not block.
329  *
330  *	We try to randomize the hash based on the object to spread the pages
331  *	out in the hash table without it costing us too much.
332  */
333 static __inline int
334 vm_page_hash(vm_object_t object, vm_pindex_t pindex)
335 {
336 	int i = ((uintptr_t)object + pindex) ^ object->hash_rand;
337 
338 	return (i & vm_page_hash_mask);
339 }
340 
341 void
342 vm_page_flag_set(vm_page_t m, unsigned short bits)
343 {
344 	GIANT_REQUIRED;
345 	m->flags |= bits;
346 }
347 
348 void
349 vm_page_flag_clear(vm_page_t m, unsigned short bits)
350 {
351 	GIANT_REQUIRED;
352 	m->flags &= ~bits;
353 }
354 
355 void
356 vm_page_busy(vm_page_t m)
357 {
358 	KASSERT((m->flags & PG_BUSY) == 0,
359 	    ("vm_page_busy: page already busy!!!"));
360 	vm_page_flag_set(m, PG_BUSY);
361 }
362 
363 /*
364  *      vm_page_flash:
365  *
366  *      wakeup anyone waiting for the page.
367  */
368 void
369 vm_page_flash(vm_page_t m)
370 {
371 	if (m->flags & PG_WANTED) {
372 		vm_page_flag_clear(m, PG_WANTED);
373 		wakeup(m);
374 	}
375 }
376 
377 /*
378  *      vm_page_wakeup:
379  *
380  *      clear the PG_BUSY flag and wakeup anyone waiting for the
381  *      page.
382  *
383  */
384 void
385 vm_page_wakeup(vm_page_t m)
386 {
387 	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
388 	vm_page_flag_clear(m, PG_BUSY);
389 	vm_page_flash(m);
390 }
391 
392 /*
393  *
394  *
395  */
396 void
397 vm_page_io_start(vm_page_t m)
398 {
399 	GIANT_REQUIRED;
400 	m->busy++;
401 }
402 
403 void
404 vm_page_io_finish(vm_page_t m)
405 {
406 	GIANT_REQUIRED;
407 	m->busy--;
408 	if (m->busy == 0)
409 		vm_page_flash(m);
410 }
411 
412 /*
413  * Keep page from being freed by the page daemon
414  * much of the same effect as wiring, except much lower
415  * overhead and should be used only for *very* temporary
416  * holding ("wiring").
417  */
418 void
419 vm_page_hold(vm_page_t mem)
420 {
421         GIANT_REQUIRED;
422         mem->hold_count++;
423 }
424 
425 void
426 vm_page_unhold(vm_page_t mem)
427 {
428 	GIANT_REQUIRED;
429 	--mem->hold_count;
430 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
431 	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
432 		vm_page_free_toq(mem);
433 }
434 
435 /*
436  *	vm_page_protect:
437  *
438  *	Reduce the protection of a page.  This routine never raises the
439  *	protection and therefore can be safely called if the page is already
440  *	at VM_PROT_NONE (it will be a NOP effectively ).
441  */
442 void
443 vm_page_protect(vm_page_t mem, int prot)
444 {
445 	if (prot == VM_PROT_NONE) {
446 		if (mem->flags & (PG_WRITEABLE|PG_MAPPED)) {
447 			pmap_page_protect(mem, VM_PROT_NONE);
448 			vm_page_flag_clear(mem, PG_WRITEABLE|PG_MAPPED);
449 		}
450 	} else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) {
451 		pmap_page_protect(mem, VM_PROT_READ);
452 		vm_page_flag_clear(mem, PG_WRITEABLE);
453 	}
454 }
455 /*
456  *	vm_page_zero_fill:
457  *
458  *	Zero-fill the specified page.
459  *	Written as a standard pagein routine, to
460  *	be used by the zero-fill object.
461  */
462 boolean_t
463 vm_page_zero_fill(vm_page_t m)
464 {
465 	pmap_zero_page(m);
466 	return (TRUE);
467 }
468 
469 /*
470  *	vm_page_zero_fill_area:
471  *
472  *	Like vm_page_zero_fill but only fill the specified area.
473  */
474 boolean_t
475 vm_page_zero_fill_area(vm_page_t m, int off, int size)
476 {
477 	pmap_zero_page_area(m, off, size);
478 	return (TRUE);
479 }
480 
481 /*
482  *	vm_page_copy:
483  *
484  *	Copy one page to another
485  */
486 void
487 vm_page_copy(vm_page_t src_m, vm_page_t dest_m)
488 {
489 	pmap_copy_page(src_m, dest_m);
490 	dest_m->valid = VM_PAGE_BITS_ALL;
491 }
492 
493 /*
494  *	vm_page_free:
495  *
496  *	Free a page
497  *
498  *	The clearing of PG_ZERO is a temporary safety until the code can be
499  *	reviewed to determine that PG_ZERO is being properly cleared on
500  *	write faults or maps.  PG_ZERO was previously cleared in
501  *	vm_page_alloc().
502  */
503 void
504 vm_page_free(vm_page_t m)
505 {
506 	vm_page_flag_clear(m, PG_ZERO);
507 	vm_page_free_toq(m);
508 	vm_page_zero_idle_wakeup();
509 }
510 
511 /*
512  *	vm_page_free_zero:
513  *
514  *	Free a page to the zerod-pages queue
515  */
516 void
517 vm_page_free_zero(vm_page_t m)
518 {
519 	vm_page_flag_set(m, PG_ZERO);
520 	vm_page_free_toq(m);
521 }
522 
523 /*
524  *	vm_page_sleep_busy:
525  *
526  *	Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
527  *	m->busy is zero.  Returns TRUE if it had to sleep ( including if
528  *	it almost had to sleep and made temporary spl*() mods), FALSE
529  *	otherwise.
530  *
531  *	This routine assumes that interrupts can only remove the busy
532  *	status from a page, not set the busy status or change it from
533  *	PG_BUSY to m->busy or vise versa (which would create a timing
534  *	window).
535  */
536 int
537 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
538 {
539 	GIANT_REQUIRED;
540 	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy))  {
541 		int s = splvm();
542 		if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
543 			/*
544 			 * Page is busy. Wait and retry.
545 			 */
546 			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
547 			tsleep(m, PVM, msg, 0);
548 		}
549 		splx(s);
550 		return (TRUE);
551 		/* not reached */
552 	}
553 	return (FALSE);
554 }
555 /*
556  *	vm_page_dirty:
557  *
558  *	make page all dirty
559  */
560 void
561 vm_page_dirty(vm_page_t m)
562 {
563 	KASSERT(m->queue - m->pc != PQ_CACHE,
564 	    ("vm_page_dirty: page in cache!"));
565 	m->dirty = VM_PAGE_BITS_ALL;
566 }
567 
568 /*
569  *	vm_page_undirty:
570  *
571  *	Set page to not be dirty.  Note: does not clear pmap modify bits
572  */
573 void
574 vm_page_undirty(vm_page_t m)
575 {
576 	m->dirty = 0;
577 }
578 
579 /*
580  *	vm_page_insert:		[ internal use only ]
581  *
582  *	Inserts the given mem entry into the object and object list.
583  *
584  *	The pagetables are not updated but will presumably fault the page
585  *	in if necessary, or if a kernel page the caller will at some point
586  *	enter the page into the kernel's pmap.  We are not allowed to block
587  *	here so we *can't* do this anyway.
588  *
589  *	The object and page must be locked, and must be splhigh.
590  *	This routine may not block.
591  */
592 void
593 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
594 {
595 	struct vm_page **bucket;
596 
597 	GIANT_REQUIRED;
598 
599 	if (m->object != NULL)
600 		panic("vm_page_insert: already inserted");
601 
602 	/*
603 	 * Record the object/offset pair in this page
604 	 */
605 	m->object = object;
606 	m->pindex = pindex;
607 
608 	/*
609 	 * Insert it into the object_object/offset hash table
610 	 */
611 	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
612 	mtx_lock_spin(&vm_page_buckets_mtx);
613 	m->hnext = *bucket;
614 	*bucket = m;
615 	mtx_unlock_spin(&vm_page_buckets_mtx);
616 
617 	/*
618 	 * Now link into the object's list of backed pages.
619 	 */
620 	TAILQ_INSERT_TAIL(&object->memq, m, listq);
621 	object->generation++;
622 
623 	/*
624 	 * show that the object has one more resident page.
625 	 */
626 	object->resident_page_count++;
627 
628 	/*
629 	 * Since we are inserting a new and possibly dirty page,
630 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
631 	 */
632 	if (m->flags & PG_WRITEABLE)
633 		vm_object_set_writeable_dirty(object);
634 }
635 
636 /*
637  *	vm_page_remove:
638  *				NOTE: used by device pager as well -wfj
639  *
640  *	Removes the given mem entry from the object/offset-page
641  *	table and the object page list, but do not invalidate/terminate
642  *	the backing store.
643  *
644  *	The object and page must be locked, and at splhigh.
645  *	The underlying pmap entry (if any) is NOT removed here.
646  *	This routine may not block.
647  */
648 void
649 vm_page_remove(vm_page_t m)
650 {
651 	vm_object_t object;
652 	vm_page_t *bucket;
653 
654 	GIANT_REQUIRED;
655 
656 	if (m->object == NULL)
657 		return;
658 
659 	if ((m->flags & PG_BUSY) == 0) {
660 		panic("vm_page_remove: page not busy");
661 	}
662 
663 	/*
664 	 * Basically destroy the page.
665 	 */
666 	vm_page_wakeup(m);
667 
668 	object = m->object;
669 
670 	/*
671 	 * Remove from the object_object/offset hash table.  The object
672 	 * must be on the hash queue, we will panic if it isn't
673 	 */
674 	bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)];
675 	mtx_lock_spin(&vm_page_buckets_mtx);
676 	while (*bucket != m) {
677 		if (*bucket == NULL)
678 			panic("vm_page_remove(): page not found in hash");
679 		bucket = &(*bucket)->hnext;
680 	}
681 	*bucket = m->hnext;
682 	m->hnext = NULL;
683 	mtx_unlock_spin(&vm_page_buckets_mtx);
684 
685 	/*
686 	 * Now remove from the object's list of backed pages.
687 	 */
688 	TAILQ_REMOVE(&object->memq, m, listq);
689 
690 	/*
691 	 * And show that the object has one fewer resident page.
692 	 */
693 	object->resident_page_count--;
694 	object->generation++;
695 
696 	m->object = NULL;
697 }
698 
699 /*
700  *	vm_page_lookup:
701  *
702  *	Returns the page associated with the object/offset
703  *	pair specified; if none is found, NULL is returned.
704  *
705  *	The object must be locked.  No side effects.
706  *	This routine may not block.
707  *	This is a critical path routine
708  */
709 vm_page_t
710 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
711 {
712 	vm_page_t m;
713 	struct vm_page **bucket;
714 
715 	/*
716 	 * Search the hash table for this object/offset pair
717 	 */
718 	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
719 	mtx_lock_spin(&vm_page_buckets_mtx);
720 	for (m = *bucket; m != NULL; m = m->hnext)
721 		if (m->object == object && m->pindex == pindex)
722 			break;
723 	mtx_unlock_spin(&vm_page_buckets_mtx);
724 	return (m);
725 }
726 
727 /*
728  *	vm_page_rename:
729  *
730  *	Move the given memory entry from its
731  *	current object to the specified target object/offset.
732  *
733  *	The object must be locked.
734  *	This routine may not block.
735  *
736  *	Note: this routine will raise itself to splvm(), the caller need not.
737  *
738  *	Note: swap associated with the page must be invalidated by the move.  We
739  *	      have to do this for several reasons:  (1) we aren't freeing the
740  *	      page, (2) we are dirtying the page, (3) the VM system is probably
741  *	      moving the page from object A to B, and will then later move
742  *	      the backing store from A to B and we can't have a conflict.
743  *
744  *	Note: we *always* dirty the page.  It is necessary both for the
745  *	      fact that we moved it, and because we may be invalidating
746  *	      swap.  If the page is on the cache, we have to deactivate it
747  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
748  *	      on the cache.
749  */
750 void
751 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
752 {
753 	int s;
754 
755 	s = splvm();
756 	vm_page_lock_queues();
757 	vm_page_remove(m);
758 	vm_page_insert(m, new_object, new_pindex);
759 	if (m->queue - m->pc == PQ_CACHE)
760 		vm_page_deactivate(m);
761 	vm_page_dirty(m);
762 	vm_page_unlock_queues();
763 	splx(s);
764 }
765 
766 /*
767  *	vm_page_select_cache:
768  *
769  *	Find a page on the cache queue with color optimization.  As pages
770  *	might be found, but not applicable, they are deactivated.  This
771  *	keeps us from using potentially busy cached pages.
772  *
773  *	This routine must be called at splvm().
774  *	This routine may not block.
775  */
776 static vm_page_t
777 vm_page_select_cache(vm_object_t object, vm_pindex_t pindex)
778 {
779 	vm_page_t m;
780 
781 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
782 	while (TRUE) {
783 		m = vm_pageq_find(
784 		    PQ_CACHE,
785 		    (pindex + object->pg_color) & PQ_L2_MASK,
786 		    FALSE
787 		);
788 		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
789 			       m->hold_count || m->wire_count)) {
790 			vm_page_deactivate(m);
791 			continue;
792 		}
793 		return m;
794 	}
795 }
796 
797 /*
798  *	vm_page_select_free:
799  *
800  *	Find a free or zero page, with specified preference.
801  *
802  *	This routine must be called at splvm().
803  *	This routine may not block.
804  */
805 static __inline vm_page_t
806 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
807 {
808 	vm_page_t m;
809 
810 	m = vm_pageq_find(
811 		PQ_FREE,
812 		(pindex + object->pg_color) & PQ_L2_MASK,
813 		prefer_zero
814 	);
815 	return (m);
816 }
817 
818 /*
819  *	vm_page_alloc:
820  *
821  *	Allocate and return a memory cell associated
822  *	with this VM object/offset pair.
823  *
824  *	page_req classes:
825  *	VM_ALLOC_NORMAL		normal process request
826  *	VM_ALLOC_SYSTEM		system *really* needs a page
827  *	VM_ALLOC_INTERRUPT	interrupt time request
828  *	VM_ALLOC_ZERO		zero page
829  *
830  *	This routine may not block.
831  *
832  *	Additional special handling is required when called from an
833  *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
834  *	the page cache in this case.
835  */
836 vm_page_t
837 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
838 {
839 	vm_page_t m = NULL;
840 	int page_req, s;
841 
842 	GIANT_REQUIRED;
843 
844 	KASSERT(!vm_page_lookup(object, pindex),
845 		("vm_page_alloc: page already allocated"));
846 
847 	page_req = req & VM_ALLOC_CLASS_MASK;
848 
849 	/*
850 	 * The pager is allowed to eat deeper into the free page list.
851 	 */
852 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
853 		page_req = VM_ALLOC_SYSTEM;
854 	};
855 
856 	s = splvm();
857 loop:
858 	mtx_lock_spin(&vm_page_queue_free_mtx);
859 	if (cnt.v_free_count > cnt.v_free_reserved) {
860 		/*
861 		 * Allocate from the free queue if there are plenty of pages
862 		 * in it.
863 		 */
864 		m = vm_page_select_free(object, pindex,
865 					(req & VM_ALLOC_ZERO) != 0);
866 	} else if (
867 	    (page_req == VM_ALLOC_SYSTEM &&
868 	     cnt.v_cache_count == 0 &&
869 	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
870 	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)
871 	) {
872 		/*
873 		 * Interrupt or system, dig deeper into the free list.
874 		 */
875 		m = vm_page_select_free(object, pindex, FALSE);
876 	} else if (page_req != VM_ALLOC_INTERRUPT) {
877 		mtx_unlock_spin(&vm_page_queue_free_mtx);
878 		/*
879 		 * Allocatable from cache (non-interrupt only).  On success,
880 		 * we must free the page and try again, thus ensuring that
881 		 * cnt.v_*_free_min counters are replenished.
882 		 */
883 		vm_page_lock_queues();
884 		if ((m = vm_page_select_cache(object, pindex)) == NULL) {
885 			vm_page_unlock_queues();
886 			splx(s);
887 #if defined(DIAGNOSTIC)
888 			if (cnt.v_cache_count > 0)
889 				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
890 #endif
891 			vm_pageout_deficit++;
892 			pagedaemon_wakeup();
893 			return (NULL);
894 		}
895 		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
896 		vm_page_busy(m);
897 		vm_page_protect(m, VM_PROT_NONE);
898 		vm_page_free(m);
899 		vm_page_unlock_queues();
900 		goto loop;
901 	} else {
902 		/*
903 		 * Not allocatable from cache from interrupt, give up.
904 		 */
905 		mtx_unlock_spin(&vm_page_queue_free_mtx);
906 		splx(s);
907 		vm_pageout_deficit++;
908 		pagedaemon_wakeup();
909 		return (NULL);
910 	}
911 
912 	/*
913 	 *  At this point we had better have found a good page.
914 	 */
915 
916 	KASSERT(
917 	    m != NULL,
918 	    ("vm_page_alloc(): missing page on free queue\n")
919 	);
920 
921 	/*
922 	 * Remove from free queue
923 	 */
924 
925 	vm_pageq_remove_nowakeup(m);
926 
927 	/*
928 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
929 	 */
930 	if (m->flags & PG_ZERO) {
931 		vm_page_zero_count--;
932 		m->flags = PG_ZERO | PG_BUSY;
933 	} else {
934 		m->flags = PG_BUSY;
935 	}
936 	if (req & VM_ALLOC_WIRED) {
937 		cnt.v_wire_count++;
938 		m->wire_count = 1;
939 	} else
940 		m->wire_count = 0;
941 	m->hold_count = 0;
942 	m->act_count = 0;
943 	m->busy = 0;
944 	m->valid = 0;
945 	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
946 	mtx_unlock_spin(&vm_page_queue_free_mtx);
947 
948 	/*
949 	 * vm_page_insert() is safe prior to the splx().  Note also that
950 	 * inserting a page here does not insert it into the pmap (which
951 	 * could cause us to block allocating memory).  We cannot block
952 	 * anywhere.
953 	 */
954 	vm_page_insert(m, object, pindex);
955 
956 	/*
957 	 * Don't wakeup too often - wakeup the pageout daemon when
958 	 * we would be nearly out of memory.
959 	 */
960 	if (vm_paging_needed())
961 		pagedaemon_wakeup();
962 
963 	splx(s);
964 	return (m);
965 }
966 
967 /*
968  *	vm_wait:	(also see VM_WAIT macro)
969  *
970  *	Block until free pages are available for allocation
971  *	- Called in various places before memory allocations.
972  */
973 void
974 vm_wait(void)
975 {
976 	int s;
977 
978 	s = splvm();
979 	if (curproc == pageproc) {
980 		vm_pageout_pages_needed = 1;
981 		tsleep(&vm_pageout_pages_needed, PSWP, "VMWait", 0);
982 	} else {
983 		if (!vm_pages_needed) {
984 			vm_pages_needed = 1;
985 			wakeup(&vm_pages_needed);
986 		}
987 		tsleep(&cnt.v_free_count, PVM, "vmwait", 0);
988 	}
989 	splx(s);
990 }
991 
992 /*
993  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
994  *
995  *	Block until free pages are available for allocation
996  *	- Called only in vm_fault so that processes page faulting
997  *	  can be easily tracked.
998  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
999  *	  processes will be able to grab memory first.  Do not change
1000  *	  this balance without careful testing first.
1001  */
1002 void
1003 vm_waitpfault(void)
1004 {
1005 	int s;
1006 
1007 	s = splvm();
1008 	if (!vm_pages_needed) {
1009 		vm_pages_needed = 1;
1010 		wakeup(&vm_pages_needed);
1011 	}
1012 	tsleep(&cnt.v_free_count, PUSER, "pfault", 0);
1013 	splx(s);
1014 }
1015 
1016 /*
1017  *	vm_page_activate:
1018  *
1019  *	Put the specified page on the active list (if appropriate).
1020  *	Ensure that act_count is at least ACT_INIT but do not otherwise
1021  *	mess with it.
1022  *
1023  *	The page queues must be locked.
1024  *	This routine may not block.
1025  */
1026 void
1027 vm_page_activate(vm_page_t m)
1028 {
1029 	int s;
1030 
1031 	GIANT_REQUIRED;
1032 	s = splvm();
1033 	if (m->queue != PQ_ACTIVE) {
1034 		if ((m->queue - m->pc) == PQ_CACHE)
1035 			cnt.v_reactivated++;
1036 		vm_pageq_remove(m);
1037 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1038 			if (m->act_count < ACT_INIT)
1039 				m->act_count = ACT_INIT;
1040 			vm_pageq_enqueue(PQ_ACTIVE, m);
1041 		}
1042 	} else {
1043 		if (m->act_count < ACT_INIT)
1044 			m->act_count = ACT_INIT;
1045 	}
1046 	splx(s);
1047 }
1048 
1049 /*
1050  *	vm_page_free_wakeup:
1051  *
1052  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1053  *	routine is called when a page has been added to the cache or free
1054  *	queues.
1055  *
1056  *	This routine may not block.
1057  *	This routine must be called at splvm()
1058  */
1059 static __inline void
1060 vm_page_free_wakeup(void)
1061 {
1062 	/*
1063 	 * if pageout daemon needs pages, then tell it that there are
1064 	 * some free.
1065 	 */
1066 	if (vm_pageout_pages_needed &&
1067 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1068 		wakeup(&vm_pageout_pages_needed);
1069 		vm_pageout_pages_needed = 0;
1070 	}
1071 	/*
1072 	 * wakeup processes that are waiting on memory if we hit a
1073 	 * high water mark. And wakeup scheduler process if we have
1074 	 * lots of memory. this process will swapin processes.
1075 	 */
1076 	if (vm_pages_needed && !vm_page_count_min()) {
1077 		vm_pages_needed = 0;
1078 		wakeup(&cnt.v_free_count);
1079 	}
1080 }
1081 
1082 /*
1083  *	vm_page_free_toq:
1084  *
1085  *	Returns the given page to the PQ_FREE list,
1086  *	disassociating it with any VM object.
1087  *
1088  *	Object and page must be locked prior to entry.
1089  *	This routine may not block.
1090  */
1091 
1092 void
1093 vm_page_free_toq(vm_page_t m)
1094 {
1095 	int s;
1096 	struct vpgqueues *pq;
1097 	vm_object_t object = m->object;
1098 
1099 	GIANT_REQUIRED;
1100 	s = splvm();
1101 	cnt.v_tfree++;
1102 
1103 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1104 		printf(
1105 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1106 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1107 		    m->hold_count);
1108 		if ((m->queue - m->pc) == PQ_FREE)
1109 			panic("vm_page_free: freeing free page");
1110 		else
1111 			panic("vm_page_free: freeing busy page");
1112 	}
1113 
1114 	/*
1115 	 * unqueue, then remove page.  Note that we cannot destroy
1116 	 * the page here because we do not want to call the pager's
1117 	 * callback routine until after we've put the page on the
1118 	 * appropriate free queue.
1119 	 */
1120 	vm_pageq_remove_nowakeup(m);
1121 	vm_page_remove(m);
1122 
1123 	/*
1124 	 * If fictitious remove object association and
1125 	 * return, otherwise delay object association removal.
1126 	 */
1127 	if ((m->flags & PG_FICTITIOUS) != 0) {
1128 		splx(s);
1129 		return;
1130 	}
1131 
1132 	m->valid = 0;
1133 	vm_page_undirty(m);
1134 
1135 	if (m->wire_count != 0) {
1136 		if (m->wire_count > 1) {
1137 			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1138 				m->wire_count, (long)m->pindex);
1139 		}
1140 		panic("vm_page_free: freeing wired page\n");
1141 	}
1142 
1143 	/*
1144 	 * If we've exhausted the object's resident pages we want to free
1145 	 * it up.
1146 	 */
1147 	if (object &&
1148 	    (object->type == OBJT_VNODE) &&
1149 	    ((object->flags & OBJ_DEAD) == 0)
1150 	) {
1151 		struct vnode *vp = (struct vnode *)object->handle;
1152 
1153 		if (vp && VSHOULDFREE(vp))
1154 			vfree(vp);
1155 	}
1156 
1157 	/*
1158 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1159 	 */
1160 	if (m->flags & PG_UNMANAGED) {
1161 		m->flags &= ~PG_UNMANAGED;
1162 	} else {
1163 #ifdef __alpha__
1164 		pmap_page_is_free(m);
1165 #endif
1166 	}
1167 
1168 	if (m->hold_count != 0) {
1169 		m->flags &= ~PG_ZERO;
1170 		m->queue = PQ_HOLD;
1171 	} else
1172 		m->queue = PQ_FREE + m->pc;
1173 	pq = &vm_page_queues[m->queue];
1174 	mtx_lock_spin(&vm_page_queue_free_mtx);
1175 	pq->lcnt++;
1176 	++(*pq->cnt);
1177 
1178 	/*
1179 	 * Put zero'd pages on the end ( where we look for zero'd pages
1180 	 * first ) and non-zerod pages at the head.
1181 	 */
1182 	if (m->flags & PG_ZERO) {
1183 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1184 		++vm_page_zero_count;
1185 	} else {
1186 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1187 	}
1188 	mtx_unlock_spin(&vm_page_queue_free_mtx);
1189 	vm_page_free_wakeup();
1190 	splx(s);
1191 }
1192 
1193 /*
1194  *	vm_page_unmanage:
1195  *
1196  * 	Prevent PV management from being done on the page.  The page is
1197  *	removed from the paging queues as if it were wired, and as a
1198  *	consequence of no longer being managed the pageout daemon will not
1199  *	touch it (since there is no way to locate the pte mappings for the
1200  *	page).  madvise() calls that mess with the pmap will also no longer
1201  *	operate on the page.
1202  *
1203  *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1204  *	will clear the flag.
1205  *
1206  *	This routine is used by OBJT_PHYS objects - objects using unswappable
1207  *	physical memory as backing store rather then swap-backed memory and
1208  *	will eventually be extended to support 4MB unmanaged physical
1209  *	mappings.
1210  */
1211 void
1212 vm_page_unmanage(vm_page_t m)
1213 {
1214 	int s;
1215 
1216 	s = splvm();
1217 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1218 	if ((m->flags & PG_UNMANAGED) == 0) {
1219 		if (m->wire_count == 0)
1220 			vm_pageq_remove(m);
1221 	}
1222 	vm_page_flag_set(m, PG_UNMANAGED);
1223 	splx(s);
1224 }
1225 
1226 /*
1227  *	vm_page_wire:
1228  *
1229  *	Mark this page as wired down by yet
1230  *	another map, removing it from paging queues
1231  *	as necessary.
1232  *
1233  *	The page queues must be locked.
1234  *	This routine may not block.
1235  */
1236 void
1237 vm_page_wire(vm_page_t m)
1238 {
1239 	int s;
1240 
1241 	/*
1242 	 * Only bump the wire statistics if the page is not already wired,
1243 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1244 	 * it is already off the queues).
1245 	 */
1246 	s = splvm();
1247 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1248 	if (m->wire_count == 0) {
1249 		if ((m->flags & PG_UNMANAGED) == 0)
1250 			vm_pageq_remove(m);
1251 		cnt.v_wire_count++;
1252 	}
1253 	m->wire_count++;
1254 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1255 	splx(s);
1256 	vm_page_flag_set(m, PG_MAPPED);
1257 }
1258 
1259 /*
1260  *	vm_page_unwire:
1261  *
1262  *	Release one wiring of this page, potentially
1263  *	enabling it to be paged again.
1264  *
1265  *	Many pages placed on the inactive queue should actually go
1266  *	into the cache, but it is difficult to figure out which.  What
1267  *	we do instead, if the inactive target is well met, is to put
1268  *	clean pages at the head of the inactive queue instead of the tail.
1269  *	This will cause them to be moved to the cache more quickly and
1270  *	if not actively re-referenced, freed more quickly.  If we just
1271  *	stick these pages at the end of the inactive queue, heavy filesystem
1272  *	meta-data accesses can cause an unnecessary paging load on memory bound
1273  *	processes.  This optimization causes one-time-use metadata to be
1274  *	reused more quickly.
1275  *
1276  *	BUT, if we are in a low-memory situation we have no choice but to
1277  *	put clean pages on the cache queue.
1278  *
1279  *	A number of routines use vm_page_unwire() to guarantee that the page
1280  *	will go into either the inactive or active queues, and will NEVER
1281  *	be placed in the cache - for example, just after dirtying a page.
1282  *	dirty pages in the cache are not allowed.
1283  *
1284  *	The page queues must be locked.
1285  *	This routine may not block.
1286  */
1287 void
1288 vm_page_unwire(vm_page_t m, int activate)
1289 {
1290 	int s;
1291 
1292 	s = splvm();
1293 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1294 	if (m->wire_count > 0) {
1295 		m->wire_count--;
1296 		if (m->wire_count == 0) {
1297 			cnt.v_wire_count--;
1298 			if (m->flags & PG_UNMANAGED) {
1299 				;
1300 			} else if (activate)
1301 				vm_pageq_enqueue(PQ_ACTIVE, m);
1302 			else {
1303 				vm_page_flag_clear(m, PG_WINATCFLS);
1304 				vm_pageq_enqueue(PQ_INACTIVE, m);
1305 			}
1306 		}
1307 	} else {
1308 		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1309 	}
1310 	splx(s);
1311 }
1312 
1313 
1314 /*
1315  * Move the specified page to the inactive queue.  If the page has
1316  * any associated swap, the swap is deallocated.
1317  *
1318  * Normally athead is 0 resulting in LRU operation.  athead is set
1319  * to 1 if we want this page to be 'as if it were placed in the cache',
1320  * except without unmapping it from the process address space.
1321  *
1322  * This routine may not block.
1323  */
1324 static __inline void
1325 _vm_page_deactivate(vm_page_t m, int athead)
1326 {
1327 	int s;
1328 
1329 	GIANT_REQUIRED;
1330 	/*
1331 	 * Ignore if already inactive.
1332 	 */
1333 	if (m->queue == PQ_INACTIVE)
1334 		return;
1335 
1336 	s = splvm();
1337 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1338 		if ((m->queue - m->pc) == PQ_CACHE)
1339 			cnt.v_reactivated++;
1340 		vm_page_flag_clear(m, PG_WINATCFLS);
1341 		vm_pageq_remove(m);
1342 		if (athead)
1343 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1344 		else
1345 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1346 		m->queue = PQ_INACTIVE;
1347 		vm_page_queues[PQ_INACTIVE].lcnt++;
1348 		cnt.v_inactive_count++;
1349 	}
1350 	splx(s);
1351 }
1352 
1353 void
1354 vm_page_deactivate(vm_page_t m)
1355 {
1356     _vm_page_deactivate(m, 0);
1357 }
1358 
1359 /*
1360  * vm_page_try_to_cache:
1361  *
1362  * Returns 0 on failure, 1 on success
1363  */
1364 int
1365 vm_page_try_to_cache(vm_page_t m)
1366 {
1367 	GIANT_REQUIRED;
1368 
1369 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1370 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1371 		return (0);
1372 	}
1373 	vm_page_test_dirty(m);
1374 	if (m->dirty)
1375 		return (0);
1376 	vm_page_cache(m);
1377 	return (1);
1378 }
1379 
1380 /*
1381  * vm_page_try_to_free()
1382  *
1383  *	Attempt to free the page.  If we cannot free it, we do nothing.
1384  *	1 is returned on success, 0 on failure.
1385  */
1386 int
1387 vm_page_try_to_free(vm_page_t m)
1388 {
1389 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1390 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1391 		return (0);
1392 	}
1393 	vm_page_test_dirty(m);
1394 	if (m->dirty)
1395 		return (0);
1396 	vm_page_busy(m);
1397 	vm_page_protect(m, VM_PROT_NONE);
1398 	vm_page_free(m);
1399 	return (1);
1400 }
1401 
1402 /*
1403  * vm_page_cache
1404  *
1405  * Put the specified page onto the page cache queue (if appropriate).
1406  *
1407  * This routine may not block.
1408  */
1409 void
1410 vm_page_cache(vm_page_t m)
1411 {
1412 	int s;
1413 
1414 	GIANT_REQUIRED;
1415 	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) {
1416 		printf("vm_page_cache: attempting to cache busy page\n");
1417 		return;
1418 	}
1419 	if ((m->queue - m->pc) == PQ_CACHE)
1420 		return;
1421 
1422 	/*
1423 	 * Remove all pmaps and indicate that the page is not
1424 	 * writeable or mapped.
1425 	 */
1426 	vm_page_protect(m, VM_PROT_NONE);
1427 	if (m->dirty != 0) {
1428 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1429 			(long)m->pindex);
1430 	}
1431 	s = splvm();
1432 	vm_pageq_remove_nowakeup(m);
1433 	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1434 	vm_page_free_wakeup();
1435 	splx(s);
1436 }
1437 
1438 /*
1439  * vm_page_dontneed
1440  *
1441  *	Cache, deactivate, or do nothing as appropriate.  This routine
1442  *	is typically used by madvise() MADV_DONTNEED.
1443  *
1444  *	Generally speaking we want to move the page into the cache so
1445  *	it gets reused quickly.  However, this can result in a silly syndrome
1446  *	due to the page recycling too quickly.  Small objects will not be
1447  *	fully cached.  On the otherhand, if we move the page to the inactive
1448  *	queue we wind up with a problem whereby very large objects
1449  *	unnecessarily blow away our inactive and cache queues.
1450  *
1451  *	The solution is to move the pages based on a fixed weighting.  We
1452  *	either leave them alone, deactivate them, or move them to the cache,
1453  *	where moving them to the cache has the highest weighting.
1454  *	By forcing some pages into other queues we eventually force the
1455  *	system to balance the queues, potentially recovering other unrelated
1456  *	space from active.  The idea is to not force this to happen too
1457  *	often.
1458  */
1459 void
1460 vm_page_dontneed(vm_page_t m)
1461 {
1462 	static int dnweight;
1463 	int dnw;
1464 	int head;
1465 
1466 	GIANT_REQUIRED;
1467 	dnw = ++dnweight;
1468 
1469 	/*
1470 	 * occassionally leave the page alone
1471 	 */
1472 	if ((dnw & 0x01F0) == 0 ||
1473 	    m->queue == PQ_INACTIVE ||
1474 	    m->queue - m->pc == PQ_CACHE
1475 	) {
1476 		if (m->act_count >= ACT_INIT)
1477 			--m->act_count;
1478 		return;
1479 	}
1480 
1481 	if (m->dirty == 0)
1482 		vm_page_test_dirty(m);
1483 
1484 	if (m->dirty || (dnw & 0x0070) == 0) {
1485 		/*
1486 		 * Deactivate the page 3 times out of 32.
1487 		 */
1488 		head = 0;
1489 	} else {
1490 		/*
1491 		 * Cache the page 28 times out of every 32.  Note that
1492 		 * the page is deactivated instead of cached, but placed
1493 		 * at the head of the queue instead of the tail.
1494 		 */
1495 		head = 1;
1496 	}
1497 	_vm_page_deactivate(m, head);
1498 }
1499 
1500 /*
1501  * Grab a page, waiting until we are waken up due to the page
1502  * changing state.  We keep on waiting, if the page continues
1503  * to be in the object.  If the page doesn't exist, allocate it.
1504  *
1505  * This routine may block.
1506  */
1507 vm_page_t
1508 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1509 {
1510 	vm_page_t m;
1511 	int s, generation;
1512 
1513 	GIANT_REQUIRED;
1514 retrylookup:
1515 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1516 		if (m->busy || (m->flags & PG_BUSY)) {
1517 			generation = object->generation;
1518 
1519 			s = splvm();
1520 			while ((object->generation == generation) &&
1521 					(m->busy || (m->flags & PG_BUSY))) {
1522 				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1523 				tsleep(m, PVM, "pgrbwt", 0);
1524 				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1525 					splx(s);
1526 					return NULL;
1527 				}
1528 			}
1529 			splx(s);
1530 			goto retrylookup;
1531 		} else {
1532 			vm_page_busy(m);
1533 			return m;
1534 		}
1535 	}
1536 
1537 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1538 	if (m == NULL) {
1539 		VM_WAIT;
1540 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1541 			return NULL;
1542 		goto retrylookup;
1543 	}
1544 
1545 	return m;
1546 }
1547 
1548 /*
1549  * Mapping function for valid bits or for dirty bits in
1550  * a page.  May not block.
1551  *
1552  * Inputs are required to range within a page.
1553  */
1554 __inline int
1555 vm_page_bits(int base, int size)
1556 {
1557 	int first_bit;
1558 	int last_bit;
1559 
1560 	KASSERT(
1561 	    base + size <= PAGE_SIZE,
1562 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1563 	);
1564 
1565 	if (size == 0)		/* handle degenerate case */
1566 		return (0);
1567 
1568 	first_bit = base >> DEV_BSHIFT;
1569 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1570 
1571 	return ((2 << last_bit) - (1 << first_bit));
1572 }
1573 
1574 /*
1575  *	vm_page_set_validclean:
1576  *
1577  *	Sets portions of a page valid and clean.  The arguments are expected
1578  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1579  *	of any partial chunks touched by the range.  The invalid portion of
1580  *	such chunks will be zero'd.
1581  *
1582  *	This routine may not block.
1583  *
1584  *	(base + size) must be less then or equal to PAGE_SIZE.
1585  */
1586 void
1587 vm_page_set_validclean(vm_page_t m, int base, int size)
1588 {
1589 	int pagebits;
1590 	int frag;
1591 	int endoff;
1592 
1593 	GIANT_REQUIRED;
1594 	if (size == 0)	/* handle degenerate case */
1595 		return;
1596 
1597 	/*
1598 	 * If the base is not DEV_BSIZE aligned and the valid
1599 	 * bit is clear, we have to zero out a portion of the
1600 	 * first block.
1601 	 */
1602 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1603 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1604 		pmap_zero_page_area(m, frag, base - frag);
1605 
1606 	/*
1607 	 * If the ending offset is not DEV_BSIZE aligned and the
1608 	 * valid bit is clear, we have to zero out a portion of
1609 	 * the last block.
1610 	 */
1611 	endoff = base + size;
1612 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1613 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1614 		pmap_zero_page_area(m, endoff,
1615 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1616 
1617 	/*
1618 	 * Set valid, clear dirty bits.  If validating the entire
1619 	 * page we can safely clear the pmap modify bit.  We also
1620 	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1621 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1622 	 * be set again.
1623 	 *
1624 	 * We set valid bits inclusive of any overlap, but we can only
1625 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1626 	 * the range.
1627 	 */
1628 	pagebits = vm_page_bits(base, size);
1629 	m->valid |= pagebits;
1630 #if 0	/* NOT YET */
1631 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1632 		frag = DEV_BSIZE - frag;
1633 		base += frag;
1634 		size -= frag;
1635 		if (size < 0)
1636 			size = 0;
1637 	}
1638 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1639 #endif
1640 	m->dirty &= ~pagebits;
1641 	if (base == 0 && size == PAGE_SIZE) {
1642 		pmap_clear_modify(m);
1643 		vm_page_flag_clear(m, PG_NOSYNC);
1644 	}
1645 }
1646 
1647 #if 0
1648 
1649 void
1650 vm_page_set_dirty(vm_page_t m, int base, int size)
1651 {
1652 	m->dirty |= vm_page_bits(base, size);
1653 }
1654 
1655 #endif
1656 
1657 void
1658 vm_page_clear_dirty(vm_page_t m, int base, int size)
1659 {
1660 	GIANT_REQUIRED;
1661 	m->dirty &= ~vm_page_bits(base, size);
1662 }
1663 
1664 /*
1665  *	vm_page_set_invalid:
1666  *
1667  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1668  *	valid and dirty bits for the effected areas are cleared.
1669  *
1670  *	May not block.
1671  */
1672 void
1673 vm_page_set_invalid(vm_page_t m, int base, int size)
1674 {
1675 	int bits;
1676 
1677 	GIANT_REQUIRED;
1678 	bits = vm_page_bits(base, size);
1679 	m->valid &= ~bits;
1680 	m->dirty &= ~bits;
1681 	m->object->generation++;
1682 }
1683 
1684 /*
1685  * vm_page_zero_invalid()
1686  *
1687  *	The kernel assumes that the invalid portions of a page contain
1688  *	garbage, but such pages can be mapped into memory by user code.
1689  *	When this occurs, we must zero out the non-valid portions of the
1690  *	page so user code sees what it expects.
1691  *
1692  *	Pages are most often semi-valid when the end of a file is mapped
1693  *	into memory and the file's size is not page aligned.
1694  */
1695 void
1696 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1697 {
1698 	int b;
1699 	int i;
1700 
1701 	/*
1702 	 * Scan the valid bits looking for invalid sections that
1703 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1704 	 * valid bit may be set ) have already been zerod by
1705 	 * vm_page_set_validclean().
1706 	 */
1707 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1708 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1709 		    (m->valid & (1 << i))
1710 		) {
1711 			if (i > b) {
1712 				pmap_zero_page_area(m,
1713 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1714 			}
1715 			b = i + 1;
1716 		}
1717 	}
1718 
1719 	/*
1720 	 * setvalid is TRUE when we can safely set the zero'd areas
1721 	 * as being valid.  We can do this if there are no cache consistancy
1722 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1723 	 */
1724 	if (setvalid)
1725 		m->valid = VM_PAGE_BITS_ALL;
1726 }
1727 
1728 /*
1729  *	vm_page_is_valid:
1730  *
1731  *	Is (partial) page valid?  Note that the case where size == 0
1732  *	will return FALSE in the degenerate case where the page is
1733  *	entirely invalid, and TRUE otherwise.
1734  *
1735  *	May not block.
1736  */
1737 int
1738 vm_page_is_valid(vm_page_t m, int base, int size)
1739 {
1740 	int bits = vm_page_bits(base, size);
1741 
1742 	if (m->valid && ((m->valid & bits) == bits))
1743 		return 1;
1744 	else
1745 		return 0;
1746 }
1747 
1748 /*
1749  * update dirty bits from pmap/mmu.  May not block.
1750  */
1751 void
1752 vm_page_test_dirty(vm_page_t m)
1753 {
1754 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1755 		vm_page_dirty(m);
1756 	}
1757 }
1758 
1759 int so_zerocp_fullpage = 0;
1760 
1761 void
1762 vm_page_cowfault(vm_page_t m)
1763 {
1764 	vm_page_t mnew;
1765 	vm_object_t object;
1766 	vm_pindex_t pindex;
1767 
1768 	object = m->object;
1769 	pindex = m->pindex;
1770 	vm_page_busy(m);
1771 
1772  retry_alloc:
1773 	vm_page_remove(m);
1774 	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
1775 	if (mnew == NULL) {
1776 		vm_page_insert(m, object, pindex);
1777 		VM_WAIT;
1778 		goto retry_alloc;
1779 	}
1780 
1781 	if (m->cow == 0) {
1782 		/*
1783 		 * check to see if we raced with an xmit complete when
1784 		 * waiting to allocate a page.  If so, put things back
1785 		 * the way they were
1786 		 */
1787 		vm_page_busy(mnew);
1788 		vm_page_free(mnew);
1789 		vm_page_insert(m, object, pindex);
1790 	} else { /* clear COW & copy page */
1791 		if (so_zerocp_fullpage) {
1792 			mnew->valid = VM_PAGE_BITS_ALL;
1793 		} else {
1794 			vm_page_copy(m, mnew);
1795 		}
1796 		vm_page_dirty(mnew);
1797 		vm_page_flag_clear(mnew, PG_BUSY);
1798 	}
1799 }
1800 
1801 void
1802 vm_page_cowclear(vm_page_t m)
1803 {
1804 
1805 	/* XXX KDM find out if giant is required here. */
1806 	GIANT_REQUIRED;
1807 	if (m->cow) {
1808 		atomic_subtract_int(&m->cow, 1);
1809 		/*
1810 		 * let vm_fault add back write permission  lazily
1811 		 */
1812 	}
1813 	/*
1814 	 *  sf_buf_free() will free the page, so we needn't do it here
1815 	 */
1816 }
1817 
1818 void
1819 vm_page_cowsetup(vm_page_t m)
1820 {
1821 	/* XXX KDM find out if giant is required here */
1822 	GIANT_REQUIRED;
1823 	atomic_add_int(&m->cow, 1);
1824 	vm_page_protect(m, VM_PROT_READ);
1825 }
1826 
1827 #include "opt_ddb.h"
1828 #ifdef DDB
1829 #include <sys/kernel.h>
1830 
1831 #include <ddb/ddb.h>
1832 
1833 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1834 {
1835 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1836 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1837 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1838 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1839 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1840 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1841 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1842 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1843 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1844 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1845 }
1846 
1847 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1848 {
1849 	int i;
1850 	db_printf("PQ_FREE:");
1851 	for (i = 0; i < PQ_L2_SIZE; i++) {
1852 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1853 	}
1854 	db_printf("\n");
1855 
1856 	db_printf("PQ_CACHE:");
1857 	for (i = 0; i < PQ_L2_SIZE; i++) {
1858 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1859 	}
1860 	db_printf("\n");
1861 
1862 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1863 		vm_page_queues[PQ_ACTIVE].lcnt,
1864 		vm_page_queues[PQ_INACTIVE].lcnt);
1865 }
1866 #endif /* DDB */
1867