xref: /freebsd/sys/vm/vm_page.c (revision 09e8dea79366f1e5b3a73e8a271b26e4b6bf2e6a)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37  * $FreeBSD$
38  */
39 
40 /*
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  */
66 
67 /*
68  *			GENERAL RULES ON VM_PAGE MANIPULATION
69  *
70  *	- a pageq mutex is required when adding or removing a page from a
71  *	  page queue (vm_page_queue[]), regardless of other mutexes or the
72  *	  busy state of a page.
73  *
74  *	- a hash chain mutex is required when associating or disassociating
75  *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
76  *	  regardless of other mutexes or the busy state of a page.
77  *
78  *	- either a hash chain mutex OR a busied page is required in order
79  *	  to modify the page flags.  A hash chain mutex must be obtained in
80  *	  order to busy a page.  A page's flags cannot be modified by a
81  *	  hash chain mutex if the page is marked busy.
82  *
83  *	- The object memq mutex is held when inserting or removing
84  *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
85  *	  is different from the object's main mutex.
86  *
87  *	Generally speaking, you have to be aware of side effects when running
88  *	vm_page ops.  A vm_page_lookup() will return with the hash chain
89  *	locked, whether it was able to lookup the page or not.  vm_page_free(),
90  *	vm_page_cache(), vm_page_activate(), and a number of other routines
91  *	will release the hash chain mutex for you.  Intermediate manipulation
92  *	routines such as vm_page_flag_set() expect the hash chain to be held
93  *	on entry and the hash chain will remain held on return.
94  *
95  *	pageq scanning can only occur with the pageq in question locked.
96  *	We have a known bottleneck with the active queue, but the cache
97  *	and free queues are actually arrays already.
98  */
99 
100 /*
101  *	Resident memory management module.
102  */
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/lock.h>
107 #include <sys/malloc.h>
108 #include <sys/mutex.h>
109 #include <sys/proc.h>
110 #include <sys/vmmeter.h>
111 #include <sys/vnode.h>
112 
113 #include <vm/vm.h>
114 #include <vm/vm_param.h>
115 #include <vm/vm_kern.h>
116 #include <vm/vm_object.h>
117 #include <vm/vm_page.h>
118 #include <vm/vm_pageout.h>
119 #include <vm/vm_pager.h>
120 #include <vm/vm_extern.h>
121 #include <vm/uma.h>
122 #include <vm/uma_int.h>
123 
124 /*
125  *	Associated with page of user-allocatable memory is a
126  *	page structure.
127  */
128 static struct mtx vm_page_buckets_mtx;
129 static struct vm_page **vm_page_buckets; /* Array of buckets */
130 static int vm_page_bucket_count;	/* How big is array? */
131 static int vm_page_hash_mask;		/* Mask for hash function */
132 
133 vm_page_t vm_page_array = 0;
134 int vm_page_array_size = 0;
135 long first_page = 0;
136 int vm_page_zero_count = 0;
137 
138 /*
139  *	vm_set_page_size:
140  *
141  *	Sets the page size, perhaps based upon the memory
142  *	size.  Must be called before any use of page-size
143  *	dependent functions.
144  */
145 void
146 vm_set_page_size(void)
147 {
148 	if (cnt.v_page_size == 0)
149 		cnt.v_page_size = PAGE_SIZE;
150 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
151 		panic("vm_set_page_size: page size not a power of two");
152 }
153 
154 /*
155  *	vm_page_startup:
156  *
157  *	Initializes the resident memory module.
158  *
159  *	Allocates memory for the page cells, and
160  *	for the object/offset-to-page hash table headers.
161  *	Each page cell is initialized and placed on the free list.
162  */
163 vm_offset_t
164 vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr)
165 {
166 	vm_offset_t mapped;
167 	struct vm_page **bucket;
168 	vm_size_t npages, page_range;
169 	vm_offset_t new_end;
170 	int i;
171 	vm_offset_t pa;
172 	int nblocks;
173 	vm_offset_t last_pa;
174 
175 	/* the biggest memory array is the second group of pages */
176 	vm_offset_t end;
177 	vm_offset_t biggestone, biggestsize;
178 
179 	vm_offset_t total;
180 	vm_size_t bootpages;
181 
182 	total = 0;
183 	biggestsize = 0;
184 	biggestone = 0;
185 	nblocks = 0;
186 	vaddr = round_page(vaddr);
187 
188 	for (i = 0; phys_avail[i + 1]; i += 2) {
189 		phys_avail[i] = round_page(phys_avail[i]);
190 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
191 	}
192 
193 	for (i = 0; phys_avail[i + 1]; i += 2) {
194 		vm_size_t size = phys_avail[i + 1] - phys_avail[i];
195 
196 		if (size > biggestsize) {
197 			biggestone = i;
198 			biggestsize = size;
199 		}
200 		++nblocks;
201 		total += size;
202 	}
203 
204 	end = phys_avail[biggestone+1];
205 
206 	/*
207 	 * Initialize the queue headers for the free queue, the active queue
208 	 * and the inactive queue.
209 	 */
210 	vm_pageq_init();
211 
212 	/*
213 	 * Allocate memory for use when boot strapping the kernel memory allocator
214 	 */
215 	bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
216 	new_end = end - bootpages;
217 	new_end = trunc_page(new_end);
218 	mapped = pmap_map(&vaddr, new_end, end,
219 	    VM_PROT_READ | VM_PROT_WRITE);
220 	bzero((caddr_t) mapped, end - new_end);
221 	uma_startup((caddr_t)mapped);
222 
223 	end = new_end;
224 
225 	/*
226 	 * Allocate (and initialize) the hash table buckets.
227 	 *
228 	 * The number of buckets MUST BE a power of 2, and the actual value is
229 	 * the next power of 2 greater than the number of physical pages in
230 	 * the system.
231 	 *
232 	 * We make the hash table approximately 2x the number of pages to
233 	 * reduce the chain length.  This is about the same size using the
234 	 * singly-linked list as the 1x hash table we were using before
235 	 * using TAILQ but the chain length will be smaller.
236 	 *
237 	 * Note: This computation can be tweaked if desired.
238 	 */
239 	if (vm_page_bucket_count == 0) {
240 		vm_page_bucket_count = 1;
241 		while (vm_page_bucket_count < atop(total))
242 			vm_page_bucket_count <<= 1;
243 	}
244 	vm_page_bucket_count <<= 1;
245 	vm_page_hash_mask = vm_page_bucket_count - 1;
246 
247 	/*
248 	 * Validate these addresses.
249 	 */
250 	new_end = end - vm_page_bucket_count * sizeof(struct vm_page *);
251 	new_end = trunc_page(new_end);
252 	mapped = pmap_map(&vaddr, new_end, end,
253 	    VM_PROT_READ | VM_PROT_WRITE);
254 	bzero((caddr_t) mapped, end - new_end);
255 
256 	mtx_init(&vm_page_buckets_mtx, "vm page buckets mutex", NULL, MTX_SPIN);
257 	vm_page_buckets = (struct vm_page **)mapped;
258 	bucket = vm_page_buckets;
259 	for (i = 0; i < vm_page_bucket_count; i++) {
260 		*bucket = NULL;
261 		bucket++;
262 	}
263 
264 	/*
265 	 * Compute the number of pages of memory that will be available for
266 	 * use (taking into account the overhead of a page structure per
267 	 * page).
268 	 */
269 	first_page = phys_avail[0] / PAGE_SIZE;
270 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
271 	npages = (total - (page_range * sizeof(struct vm_page)) -
272 	    (end - new_end)) / PAGE_SIZE;
273 	end = new_end;
274 
275 	/*
276 	 * Initialize the mem entry structures now, and put them in the free
277 	 * queue.
278 	 */
279 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
280 	mapped = pmap_map(&vaddr, new_end, end,
281 	    VM_PROT_READ | VM_PROT_WRITE);
282 	vm_page_array = (vm_page_t) mapped;
283 
284 	/*
285 	 * Clear all of the page structures
286 	 */
287 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
288 	vm_page_array_size = page_range;
289 
290 	/*
291 	 * Construct the free queue(s) in descending order (by physical
292 	 * address) so that the first 16MB of physical memory is allocated
293 	 * last rather than first.  On large-memory machines, this avoids
294 	 * the exhaustion of low physical memory before isa_dmainit has run.
295 	 */
296 	cnt.v_page_count = 0;
297 	cnt.v_free_count = 0;
298 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
299 		pa = phys_avail[i];
300 		if (i == biggestone)
301 			last_pa = new_end;
302 		else
303 			last_pa = phys_avail[i + 1];
304 		while (pa < last_pa && npages-- > 0) {
305 			vm_pageq_add_new_page(pa);
306 			pa += PAGE_SIZE;
307 		}
308 	}
309 	return (vaddr);
310 }
311 
312 /*
313  *	vm_page_hash:
314  *
315  *	Distributes the object/offset key pair among hash buckets.
316  *
317  *	NOTE:  This macro depends on vm_page_bucket_count being a power of 2.
318  *	This routine may not block.
319  *
320  *	We try to randomize the hash based on the object to spread the pages
321  *	out in the hash table without it costing us too much.
322  */
323 static __inline int
324 vm_page_hash(vm_object_t object, vm_pindex_t pindex)
325 {
326 	int i = ((uintptr_t)object + pindex) ^ object->hash_rand;
327 
328 	return (i & vm_page_hash_mask);
329 }
330 
331 void
332 vm_page_flag_set(vm_page_t m, unsigned short bits)
333 {
334 	GIANT_REQUIRED;
335 	m->flags |= bits;
336 }
337 
338 void
339 vm_page_flag_clear(vm_page_t m, unsigned short bits)
340 {
341 	GIANT_REQUIRED;
342 	m->flags &= ~bits;
343 }
344 
345 void
346 vm_page_busy(vm_page_t m)
347 {
348 	KASSERT((m->flags & PG_BUSY) == 0,
349 	    ("vm_page_busy: page already busy!!!"));
350 	vm_page_flag_set(m, PG_BUSY);
351 }
352 
353 /*
354  *      vm_page_flash:
355  *
356  *      wakeup anyone waiting for the page.
357  */
358 void
359 vm_page_flash(vm_page_t m)
360 {
361 	if (m->flags & PG_WANTED) {
362 		vm_page_flag_clear(m, PG_WANTED);
363 		wakeup(m);
364 	}
365 }
366 
367 /*
368  *      vm_page_wakeup:
369  *
370  *      clear the PG_BUSY flag and wakeup anyone waiting for the
371  *      page.
372  *
373  */
374 void
375 vm_page_wakeup(vm_page_t m)
376 {
377 	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
378 	vm_page_flag_clear(m, PG_BUSY);
379 	vm_page_flash(m);
380 }
381 
382 /*
383  *
384  *
385  */
386 void
387 vm_page_io_start(vm_page_t m)
388 {
389 	GIANT_REQUIRED;
390 	m->busy++;
391 }
392 
393 void
394 vm_page_io_finish(vm_page_t m)
395 {
396 	GIANT_REQUIRED;
397 	m->busy--;
398 	if (m->busy == 0)
399 		vm_page_flash(m);
400 }
401 
402 /*
403  * Keep page from being freed by the page daemon
404  * much of the same effect as wiring, except much lower
405  * overhead and should be used only for *very* temporary
406  * holding ("wiring").
407  */
408 void
409 vm_page_hold(vm_page_t mem)
410 {
411         GIANT_REQUIRED;
412         mem->hold_count++;
413 }
414 
415 void
416 vm_page_unhold(vm_page_t mem)
417 {
418 	GIANT_REQUIRED;
419 	--mem->hold_count;
420 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
421 	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
422 		vm_page_free_toq(mem);
423 }
424 
425 /*
426  *	vm_page_protect:
427  *
428  *	Reduce the protection of a page.  This routine never raises the
429  *	protection and therefore can be safely called if the page is already
430  *	at VM_PROT_NONE (it will be a NOP effectively ).
431  */
432 void
433 vm_page_protect(vm_page_t mem, int prot)
434 {
435 	if (prot == VM_PROT_NONE) {
436 		if (mem->flags & (PG_WRITEABLE|PG_MAPPED)) {
437 			pmap_page_protect(mem, VM_PROT_NONE);
438 			vm_page_flag_clear(mem, PG_WRITEABLE|PG_MAPPED);
439 		}
440 	} else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) {
441 		pmap_page_protect(mem, VM_PROT_READ);
442 		vm_page_flag_clear(mem, PG_WRITEABLE);
443 	}
444 }
445 /*
446  *	vm_page_zero_fill:
447  *
448  *	Zero-fill the specified page.
449  *	Written as a standard pagein routine, to
450  *	be used by the zero-fill object.
451  */
452 boolean_t
453 vm_page_zero_fill(vm_page_t m)
454 {
455 	pmap_zero_page(m);
456 	return (TRUE);
457 }
458 
459 /*
460  *	vm_page_zero_fill_area:
461  *
462  *	Like vm_page_zero_fill but only fill the specified area.
463  */
464 boolean_t
465 vm_page_zero_fill_area(vm_page_t m, int off, int size)
466 {
467 	pmap_zero_page_area(m, off, size);
468 	return (TRUE);
469 }
470 
471 /*
472  *	vm_page_copy:
473  *
474  *	Copy one page to another
475  */
476 void
477 vm_page_copy(vm_page_t src_m, vm_page_t dest_m)
478 {
479 	pmap_copy_page(src_m, dest_m);
480 	dest_m->valid = VM_PAGE_BITS_ALL;
481 }
482 
483 /*
484  *	vm_page_free:
485  *
486  *	Free a page
487  *
488  *	The clearing of PG_ZERO is a temporary safety until the code can be
489  *	reviewed to determine that PG_ZERO is being properly cleared on
490  *	write faults or maps.  PG_ZERO was previously cleared in
491  *	vm_page_alloc().
492  */
493 void
494 vm_page_free(vm_page_t m)
495 {
496 	vm_page_flag_clear(m, PG_ZERO);
497 	vm_page_free_toq(m);
498 	vm_page_zero_idle_wakeup();
499 }
500 
501 /*
502  *	vm_page_free_zero:
503  *
504  *	Free a page to the zerod-pages queue
505  */
506 void
507 vm_page_free_zero(vm_page_t m)
508 {
509 	vm_page_flag_set(m, PG_ZERO);
510 	vm_page_free_toq(m);
511 }
512 
513 /*
514  *	vm_page_sleep_busy:
515  *
516  *	Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
517  *	m->busy is zero.  Returns TRUE if it had to sleep ( including if
518  *	it almost had to sleep and made temporary spl*() mods), FALSE
519  *	otherwise.
520  *
521  *	This routine assumes that interrupts can only remove the busy
522  *	status from a page, not set the busy status or change it from
523  *	PG_BUSY to m->busy or vise versa (which would create a timing
524  *	window).
525  */
526 int
527 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
528 {
529 	GIANT_REQUIRED;
530 	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy))  {
531 		int s = splvm();
532 		if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
533 			/*
534 			 * Page is busy. Wait and retry.
535 			 */
536 			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
537 			tsleep(m, PVM, msg, 0);
538 		}
539 		splx(s);
540 		return (TRUE);
541 		/* not reached */
542 	}
543 	return (FALSE);
544 }
545 /*
546  *	vm_page_dirty:
547  *
548  *	make page all dirty
549  */
550 void
551 vm_page_dirty(vm_page_t m)
552 {
553 	KASSERT(m->queue - m->pc != PQ_CACHE,
554 	    ("vm_page_dirty: page in cache!"));
555 	m->dirty = VM_PAGE_BITS_ALL;
556 }
557 
558 /*
559  *	vm_page_undirty:
560  *
561  *	Set page to not be dirty.  Note: does not clear pmap modify bits
562  */
563 void
564 vm_page_undirty(vm_page_t m)
565 {
566 	m->dirty = 0;
567 }
568 
569 /*
570  *	vm_page_insert:		[ internal use only ]
571  *
572  *	Inserts the given mem entry into the object and object list.
573  *
574  *	The pagetables are not updated but will presumably fault the page
575  *	in if necessary, or if a kernel page the caller will at some point
576  *	enter the page into the kernel's pmap.  We are not allowed to block
577  *	here so we *can't* do this anyway.
578  *
579  *	The object and page must be locked, and must be splhigh.
580  *	This routine may not block.
581  */
582 void
583 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
584 {
585 	struct vm_page **bucket;
586 
587 	GIANT_REQUIRED;
588 
589 	if (m->object != NULL)
590 		panic("vm_page_insert: already inserted");
591 
592 	/*
593 	 * Record the object/offset pair in this page
594 	 */
595 	m->object = object;
596 	m->pindex = pindex;
597 
598 	/*
599 	 * Insert it into the object_object/offset hash table
600 	 */
601 	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
602 	mtx_lock_spin(&vm_page_buckets_mtx);
603 	m->hnext = *bucket;
604 	*bucket = m;
605 	mtx_unlock_spin(&vm_page_buckets_mtx);
606 
607 	/*
608 	 * Now link into the object's list of backed pages.
609 	 */
610 	TAILQ_INSERT_TAIL(&object->memq, m, listq);
611 	object->generation++;
612 
613 	/*
614 	 * show that the object has one more resident page.
615 	 */
616 	object->resident_page_count++;
617 
618 	/*
619 	 * Since we are inserting a new and possibly dirty page,
620 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
621 	 */
622 	if (m->flags & PG_WRITEABLE)
623 		vm_object_set_writeable_dirty(object);
624 }
625 
626 /*
627  *	vm_page_remove:
628  *				NOTE: used by device pager as well -wfj
629  *
630  *	Removes the given mem entry from the object/offset-page
631  *	table and the object page list, but do not invalidate/terminate
632  *	the backing store.
633  *
634  *	The object and page must be locked, and at splhigh.
635  *	The underlying pmap entry (if any) is NOT removed here.
636  *	This routine may not block.
637  */
638 void
639 vm_page_remove(vm_page_t m)
640 {
641 	vm_object_t object;
642 	vm_page_t *bucket;
643 
644 	GIANT_REQUIRED;
645 
646 	if (m->object == NULL)
647 		return;
648 
649 	if ((m->flags & PG_BUSY) == 0) {
650 		panic("vm_page_remove: page not busy");
651 	}
652 
653 	/*
654 	 * Basically destroy the page.
655 	 */
656 	vm_page_wakeup(m);
657 
658 	object = m->object;
659 
660 	/*
661 	 * Remove from the object_object/offset hash table.  The object
662 	 * must be on the hash queue, we will panic if it isn't
663 	 */
664 	bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)];
665 	mtx_lock_spin(&vm_page_buckets_mtx);
666 	while (*bucket != m) {
667 		if (*bucket == NULL)
668 			panic("vm_page_remove(): page not found in hash");
669 		bucket = &(*bucket)->hnext;
670 	}
671 	*bucket = m->hnext;
672 	m->hnext = NULL;
673 	mtx_unlock_spin(&vm_page_buckets_mtx);
674 
675 	/*
676 	 * Now remove from the object's list of backed pages.
677 	 */
678 	TAILQ_REMOVE(&object->memq, m, listq);
679 
680 	/*
681 	 * And show that the object has one fewer resident page.
682 	 */
683 	object->resident_page_count--;
684 	object->generation++;
685 
686 	m->object = NULL;
687 }
688 
689 /*
690  *	vm_page_lookup:
691  *
692  *	Returns the page associated with the object/offset
693  *	pair specified; if none is found, NULL is returned.
694  *
695  *	The object must be locked.  No side effects.
696  *	This routine may not block.
697  *	This is a critical path routine
698  */
699 vm_page_t
700 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
701 {
702 	vm_page_t m;
703 	struct vm_page **bucket;
704 
705 	/*
706 	 * Search the hash table for this object/offset pair
707 	 */
708 	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
709 	mtx_lock_spin(&vm_page_buckets_mtx);
710 	for (m = *bucket; m != NULL; m = m->hnext)
711 		if (m->object == object && m->pindex == pindex)
712 			break;
713 	mtx_unlock_spin(&vm_page_buckets_mtx);
714 	return (m);
715 }
716 
717 /*
718  *	vm_page_rename:
719  *
720  *	Move the given memory entry from its
721  *	current object to the specified target object/offset.
722  *
723  *	The object must be locked.
724  *	This routine may not block.
725  *
726  *	Note: this routine will raise itself to splvm(), the caller need not.
727  *
728  *	Note: swap associated with the page must be invalidated by the move.  We
729  *	      have to do this for several reasons:  (1) we aren't freeing the
730  *	      page, (2) we are dirtying the page, (3) the VM system is probably
731  *	      moving the page from object A to B, and will then later move
732  *	      the backing store from A to B and we can't have a conflict.
733  *
734  *	Note: we *always* dirty the page.  It is necessary both for the
735  *	      fact that we moved it, and because we may be invalidating
736  *	      swap.  If the page is on the cache, we have to deactivate it
737  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
738  *	      on the cache.
739  */
740 void
741 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
742 {
743 	int s;
744 
745 	s = splvm();
746 	vm_page_remove(m);
747 	vm_page_insert(m, new_object, new_pindex);
748 	if (m->queue - m->pc == PQ_CACHE)
749 		vm_page_deactivate(m);
750 	vm_page_dirty(m);
751 	splx(s);
752 }
753 
754 /*
755  *	vm_page_select_cache:
756  *
757  *	Find a page on the cache queue with color optimization.  As pages
758  *	might be found, but not applicable, they are deactivated.  This
759  *	keeps us from using potentially busy cached pages.
760  *
761  *	This routine must be called at splvm().
762  *	This routine may not block.
763  */
764 static vm_page_t
765 vm_page_select_cache(vm_object_t object, vm_pindex_t pindex)
766 {
767 	vm_page_t m;
768 
769 	GIANT_REQUIRED;
770 	while (TRUE) {
771 		m = vm_pageq_find(
772 		    PQ_CACHE,
773 		    (pindex + object->pg_color) & PQ_L2_MASK,
774 		    FALSE
775 		);
776 		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
777 			       m->hold_count || m->wire_count)) {
778 			vm_page_deactivate(m);
779 			continue;
780 		}
781 		return m;
782 	}
783 }
784 
785 /*
786  *	vm_page_select_free:
787  *
788  *	Find a free or zero page, with specified preference.
789  *
790  *	This routine must be called at splvm().
791  *	This routine may not block.
792  */
793 static __inline vm_page_t
794 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
795 {
796 	vm_page_t m;
797 
798 	m = vm_pageq_find(
799 		PQ_FREE,
800 		(pindex + object->pg_color) & PQ_L2_MASK,
801 		prefer_zero
802 	);
803 	return (m);
804 }
805 
806 /*
807  *	vm_page_alloc:
808  *
809  *	Allocate and return a memory cell associated
810  *	with this VM object/offset pair.
811  *
812  *	page_req classes:
813  *	VM_ALLOC_NORMAL		normal process request
814  *	VM_ALLOC_SYSTEM		system *really* needs a page
815  *	VM_ALLOC_INTERRUPT	interrupt time request
816  *	VM_ALLOC_ZERO		zero page
817  *
818  *	This routine may not block.
819  *
820  *	Additional special handling is required when called from an
821  *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
822  *	the page cache in this case.
823  */
824 vm_page_t
825 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
826 {
827 	vm_page_t m = NULL;
828 	boolean_t prefer_zero;
829 	int s;
830 
831 	GIANT_REQUIRED;
832 
833 	KASSERT(!vm_page_lookup(object, pindex),
834 		("vm_page_alloc: page already allocated"));
835 
836 	prefer_zero = (page_req & VM_ALLOC_ZERO) != 0 ? TRUE : FALSE;
837 	page_req &= ~VM_ALLOC_ZERO;
838 
839 	/*
840 	 * The pager is allowed to eat deeper into the free page list.
841 	 */
842 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
843 		page_req = VM_ALLOC_SYSTEM;
844 	};
845 
846 	s = splvm();
847 
848 loop:
849 	if (cnt.v_free_count > cnt.v_free_reserved) {
850 		/*
851 		 * Allocate from the free queue if there are plenty of pages
852 		 * in it.
853 		 */
854 
855 		m = vm_page_select_free(object, pindex, prefer_zero);
856 	} else if (
857 	    (page_req == VM_ALLOC_SYSTEM &&
858 	     cnt.v_cache_count == 0 &&
859 	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
860 	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)
861 	) {
862 		/*
863 		 * Interrupt or system, dig deeper into the free list.
864 		 */
865 		m = vm_page_select_free(object, pindex, FALSE);
866 	} else if (page_req != VM_ALLOC_INTERRUPT) {
867 		/*
868 		 * Allocatable from cache (non-interrupt only).  On success,
869 		 * we must free the page and try again, thus ensuring that
870 		 * cnt.v_*_free_min counters are replenished.
871 		 */
872 		m = vm_page_select_cache(object, pindex);
873 		if (m == NULL) {
874 			splx(s);
875 #if defined(DIAGNOSTIC)
876 			if (cnt.v_cache_count > 0)
877 				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
878 #endif
879 			vm_pageout_deficit++;
880 			pagedaemon_wakeup();
881 			return (NULL);
882 		}
883 		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
884 		vm_page_busy(m);
885 		vm_page_protect(m, VM_PROT_NONE);
886 		vm_page_free(m);
887 		goto loop;
888 	} else {
889 		/*
890 		 * Not allocatable from cache from interrupt, give up.
891 		 */
892 		splx(s);
893 		vm_pageout_deficit++;
894 		pagedaemon_wakeup();
895 		return (NULL);
896 	}
897 
898 	/*
899 	 *  At this point we had better have found a good page.
900 	 */
901 
902 	KASSERT(
903 	    m != NULL,
904 	    ("vm_page_alloc(): missing page on free queue\n")
905 	);
906 
907 	/*
908 	 * Remove from free queue
909 	 */
910 
911 	vm_pageq_remove_nowakeup(m);
912 
913 	/*
914 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
915 	 */
916 	if (m->flags & PG_ZERO) {
917 		vm_page_zero_count--;
918 		m->flags = PG_ZERO | PG_BUSY;
919 	} else {
920 		m->flags = PG_BUSY;
921 	}
922 	m->wire_count = 0;
923 	m->hold_count = 0;
924 	m->act_count = 0;
925 	m->busy = 0;
926 	m->valid = 0;
927 	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
928 
929 	/*
930 	 * vm_page_insert() is safe prior to the splx().  Note also that
931 	 * inserting a page here does not insert it into the pmap (which
932 	 * could cause us to block allocating memory).  We cannot block
933 	 * anywhere.
934 	 */
935 	vm_page_insert(m, object, pindex);
936 
937 	/*
938 	 * Don't wakeup too often - wakeup the pageout daemon when
939 	 * we would be nearly out of memory.
940 	 */
941 	if (vm_paging_needed())
942 		pagedaemon_wakeup();
943 
944 	splx(s);
945 	return (m);
946 }
947 
948 /*
949  *	vm_wait:	(also see VM_WAIT macro)
950  *
951  *	Block until free pages are available for allocation
952  *	- Called in various places before memory allocations.
953  */
954 void
955 vm_wait(void)
956 {
957 	int s;
958 
959 	s = splvm();
960 	if (curproc == pageproc) {
961 		vm_pageout_pages_needed = 1;
962 		tsleep(&vm_pageout_pages_needed, PSWP, "VMWait", 0);
963 	} else {
964 		if (!vm_pages_needed) {
965 			vm_pages_needed = 1;
966 			wakeup(&vm_pages_needed);
967 		}
968 		tsleep(&cnt.v_free_count, PVM, "vmwait", 0);
969 	}
970 	splx(s);
971 }
972 
973 /*
974  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
975  *
976  *	Block until free pages are available for allocation
977  *	- Called only in vm_fault so that processes page faulting
978  *	  can be easily tracked.
979  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
980  *	  processes will be able to grab memory first.  Do not change
981  *	  this balance without careful testing first.
982  */
983 void
984 vm_waitpfault(void)
985 {
986 	int s;
987 
988 	s = splvm();
989 	if (!vm_pages_needed) {
990 		vm_pages_needed = 1;
991 		wakeup(&vm_pages_needed);
992 	}
993 	tsleep(&cnt.v_free_count, PUSER, "pfault", 0);
994 	splx(s);
995 }
996 
997 /*
998  *	vm_page_activate:
999  *
1000  *	Put the specified page on the active list (if appropriate).
1001  *	Ensure that act_count is at least ACT_INIT but do not otherwise
1002  *	mess with it.
1003  *
1004  *	The page queues must be locked.
1005  *	This routine may not block.
1006  */
1007 void
1008 vm_page_activate(vm_page_t m)
1009 {
1010 	int s;
1011 
1012 	GIANT_REQUIRED;
1013 	s = splvm();
1014 	if (m->queue != PQ_ACTIVE) {
1015 		if ((m->queue - m->pc) == PQ_CACHE)
1016 			cnt.v_reactivated++;
1017 		vm_pageq_remove(m);
1018 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1019 			if (m->act_count < ACT_INIT)
1020 				m->act_count = ACT_INIT;
1021 			vm_pageq_enqueue(PQ_ACTIVE, m);
1022 		}
1023 	} else {
1024 		if (m->act_count < ACT_INIT)
1025 			m->act_count = ACT_INIT;
1026 	}
1027 	splx(s);
1028 }
1029 
1030 /*
1031  *	vm_page_free_wakeup:
1032  *
1033  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1034  *	routine is called when a page has been added to the cache or free
1035  *	queues.
1036  *
1037  *	This routine may not block.
1038  *	This routine must be called at splvm()
1039  */
1040 static __inline void
1041 vm_page_free_wakeup(void)
1042 {
1043 	/*
1044 	 * if pageout daemon needs pages, then tell it that there are
1045 	 * some free.
1046 	 */
1047 	if (vm_pageout_pages_needed &&
1048 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1049 		wakeup(&vm_pageout_pages_needed);
1050 		vm_pageout_pages_needed = 0;
1051 	}
1052 	/*
1053 	 * wakeup processes that are waiting on memory if we hit a
1054 	 * high water mark. And wakeup scheduler process if we have
1055 	 * lots of memory. this process will swapin processes.
1056 	 */
1057 	if (vm_pages_needed && !vm_page_count_min()) {
1058 		vm_pages_needed = 0;
1059 		wakeup(&cnt.v_free_count);
1060 	}
1061 }
1062 
1063 /*
1064  *	vm_page_free_toq:
1065  *
1066  *	Returns the given page to the PQ_FREE list,
1067  *	disassociating it with any VM object.
1068  *
1069  *	Object and page must be locked prior to entry.
1070  *	This routine may not block.
1071  */
1072 
1073 void
1074 vm_page_free_toq(vm_page_t m)
1075 {
1076 	int s;
1077 	struct vpgqueues *pq;
1078 	vm_object_t object = m->object;
1079 
1080 	GIANT_REQUIRED;
1081 	s = splvm();
1082 	cnt.v_tfree++;
1083 
1084 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1085 		printf(
1086 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1087 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1088 		    m->hold_count);
1089 		if ((m->queue - m->pc) == PQ_FREE)
1090 			panic("vm_page_free: freeing free page");
1091 		else
1092 			panic("vm_page_free: freeing busy page");
1093 	}
1094 
1095 	/*
1096 	 * unqueue, then remove page.  Note that we cannot destroy
1097 	 * the page here because we do not want to call the pager's
1098 	 * callback routine until after we've put the page on the
1099 	 * appropriate free queue.
1100 	 */
1101 	vm_pageq_remove_nowakeup(m);
1102 	vm_page_remove(m);
1103 
1104 	/*
1105 	 * If fictitious remove object association and
1106 	 * return, otherwise delay object association removal.
1107 	 */
1108 	if ((m->flags & PG_FICTITIOUS) != 0) {
1109 		splx(s);
1110 		return;
1111 	}
1112 
1113 	m->valid = 0;
1114 	vm_page_undirty(m);
1115 
1116 	if (m->wire_count != 0) {
1117 		if (m->wire_count > 1) {
1118 			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1119 				m->wire_count, (long)m->pindex);
1120 		}
1121 		panic("vm_page_free: freeing wired page\n");
1122 	}
1123 
1124 	/*
1125 	 * If we've exhausted the object's resident pages we want to free
1126 	 * it up.
1127 	 */
1128 	if (object &&
1129 	    (object->type == OBJT_VNODE) &&
1130 	    ((object->flags & OBJ_DEAD) == 0)
1131 	) {
1132 		struct vnode *vp = (struct vnode *)object->handle;
1133 
1134 		if (vp && VSHOULDFREE(vp))
1135 			vfree(vp);
1136 	}
1137 
1138 	/*
1139 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1140 	 */
1141 	if (m->flags & PG_UNMANAGED) {
1142 		m->flags &= ~PG_UNMANAGED;
1143 	} else {
1144 #ifdef __alpha__
1145 		pmap_page_is_free(m);
1146 #endif
1147 	}
1148 
1149 	if (m->hold_count != 0) {
1150 		m->flags &= ~PG_ZERO;
1151 		m->queue = PQ_HOLD;
1152 	} else
1153 		m->queue = PQ_FREE + m->pc;
1154 	pq = &vm_page_queues[m->queue];
1155 	pq->lcnt++;
1156 	++(*pq->cnt);
1157 
1158 	/*
1159 	 * Put zero'd pages on the end ( where we look for zero'd pages
1160 	 * first ) and non-zerod pages at the head.
1161 	 */
1162 	if (m->flags & PG_ZERO) {
1163 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1164 		++vm_page_zero_count;
1165 	} else {
1166 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1167 	}
1168 	vm_page_free_wakeup();
1169 	splx(s);
1170 }
1171 
1172 /*
1173  *	vm_page_unmanage:
1174  *
1175  * 	Prevent PV management from being done on the page.  The page is
1176  *	removed from the paging queues as if it were wired, and as a
1177  *	consequence of no longer being managed the pageout daemon will not
1178  *	touch it (since there is no way to locate the pte mappings for the
1179  *	page).  madvise() calls that mess with the pmap will also no longer
1180  *	operate on the page.
1181  *
1182  *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1183  *	will clear the flag.
1184  *
1185  *	This routine is used by OBJT_PHYS objects - objects using unswappable
1186  *	physical memory as backing store rather then swap-backed memory and
1187  *	will eventually be extended to support 4MB unmanaged physical
1188  *	mappings.
1189  */
1190 void
1191 vm_page_unmanage(vm_page_t m)
1192 {
1193 	int s;
1194 
1195 	s = splvm();
1196 	if ((m->flags & PG_UNMANAGED) == 0) {
1197 		if (m->wire_count == 0)
1198 			vm_pageq_remove(m);
1199 	}
1200 	vm_page_flag_set(m, PG_UNMANAGED);
1201 	splx(s);
1202 }
1203 
1204 /*
1205  *	vm_page_wire:
1206  *
1207  *	Mark this page as wired down by yet
1208  *	another map, removing it from paging queues
1209  *	as necessary.
1210  *
1211  *	The page queues must be locked.
1212  *	This routine may not block.
1213  */
1214 void
1215 vm_page_wire(vm_page_t m)
1216 {
1217 	int s;
1218 
1219 	/*
1220 	 * Only bump the wire statistics if the page is not already wired,
1221 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1222 	 * it is already off the queues).
1223 	 */
1224 	s = splvm();
1225 	if (m->wire_count == 0) {
1226 		if ((m->flags & PG_UNMANAGED) == 0)
1227 			vm_pageq_remove(m);
1228 		cnt.v_wire_count++;
1229 	}
1230 	m->wire_count++;
1231 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1232 	splx(s);
1233 	vm_page_flag_set(m, PG_MAPPED);
1234 }
1235 
1236 /*
1237  *	vm_page_unwire:
1238  *
1239  *	Release one wiring of this page, potentially
1240  *	enabling it to be paged again.
1241  *
1242  *	Many pages placed on the inactive queue should actually go
1243  *	into the cache, but it is difficult to figure out which.  What
1244  *	we do instead, if the inactive target is well met, is to put
1245  *	clean pages at the head of the inactive queue instead of the tail.
1246  *	This will cause them to be moved to the cache more quickly and
1247  *	if not actively re-referenced, freed more quickly.  If we just
1248  *	stick these pages at the end of the inactive queue, heavy filesystem
1249  *	meta-data accesses can cause an unnecessary paging load on memory bound
1250  *	processes.  This optimization causes one-time-use metadata to be
1251  *	reused more quickly.
1252  *
1253  *	BUT, if we are in a low-memory situation we have no choice but to
1254  *	put clean pages on the cache queue.
1255  *
1256  *	A number of routines use vm_page_unwire() to guarantee that the page
1257  *	will go into either the inactive or active queues, and will NEVER
1258  *	be placed in the cache - for example, just after dirtying a page.
1259  *	dirty pages in the cache are not allowed.
1260  *
1261  *	The page queues must be locked.
1262  *	This routine may not block.
1263  */
1264 void
1265 vm_page_unwire(vm_page_t m, int activate)
1266 {
1267 	int s;
1268 
1269 	s = splvm();
1270 
1271 	if (m->wire_count > 0) {
1272 		m->wire_count--;
1273 		if (m->wire_count == 0) {
1274 			cnt.v_wire_count--;
1275 			if (m->flags & PG_UNMANAGED) {
1276 				;
1277 			} else if (activate)
1278 				vm_pageq_enqueue(PQ_ACTIVE, m);
1279 			else {
1280 				vm_page_flag_clear(m, PG_WINATCFLS);
1281 				vm_pageq_enqueue(PQ_INACTIVE, m);
1282 			}
1283 		}
1284 	} else {
1285 		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1286 	}
1287 	splx(s);
1288 }
1289 
1290 
1291 /*
1292  * Move the specified page to the inactive queue.  If the page has
1293  * any associated swap, the swap is deallocated.
1294  *
1295  * Normally athead is 0 resulting in LRU operation.  athead is set
1296  * to 1 if we want this page to be 'as if it were placed in the cache',
1297  * except without unmapping it from the process address space.
1298  *
1299  * This routine may not block.
1300  */
1301 static __inline void
1302 _vm_page_deactivate(vm_page_t m, int athead)
1303 {
1304 	int s;
1305 
1306 	GIANT_REQUIRED;
1307 	/*
1308 	 * Ignore if already inactive.
1309 	 */
1310 	if (m->queue == PQ_INACTIVE)
1311 		return;
1312 
1313 	s = splvm();
1314 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1315 		if ((m->queue - m->pc) == PQ_CACHE)
1316 			cnt.v_reactivated++;
1317 		vm_page_flag_clear(m, PG_WINATCFLS);
1318 		vm_pageq_remove(m);
1319 		if (athead)
1320 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1321 		else
1322 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1323 		m->queue = PQ_INACTIVE;
1324 		vm_page_queues[PQ_INACTIVE].lcnt++;
1325 		cnt.v_inactive_count++;
1326 	}
1327 	splx(s);
1328 }
1329 
1330 void
1331 vm_page_deactivate(vm_page_t m)
1332 {
1333     _vm_page_deactivate(m, 0);
1334 }
1335 
1336 /*
1337  * vm_page_try_to_cache:
1338  *
1339  * Returns 0 on failure, 1 on success
1340  */
1341 int
1342 vm_page_try_to_cache(vm_page_t m)
1343 {
1344 	GIANT_REQUIRED;
1345 
1346 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1347 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1348 		return (0);
1349 	}
1350 	vm_page_test_dirty(m);
1351 	if (m->dirty)
1352 		return (0);
1353 	vm_page_cache(m);
1354 	return (1);
1355 }
1356 
1357 /*
1358  * vm_page_try_to_free()
1359  *
1360  *	Attempt to free the page.  If we cannot free it, we do nothing.
1361  *	1 is returned on success, 0 on failure.
1362  */
1363 int
1364 vm_page_try_to_free(vm_page_t m)
1365 {
1366 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1367 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1368 		return (0);
1369 	}
1370 	vm_page_test_dirty(m);
1371 	if (m->dirty)
1372 		return (0);
1373 	vm_page_busy(m);
1374 	vm_page_protect(m, VM_PROT_NONE);
1375 	vm_page_free(m);
1376 	return (1);
1377 }
1378 
1379 /*
1380  * vm_page_cache
1381  *
1382  * Put the specified page onto the page cache queue (if appropriate).
1383  *
1384  * This routine may not block.
1385  */
1386 void
1387 vm_page_cache(vm_page_t m)
1388 {
1389 	int s;
1390 
1391 	GIANT_REQUIRED;
1392 	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) {
1393 		printf("vm_page_cache: attempting to cache busy page\n");
1394 		return;
1395 	}
1396 	if ((m->queue - m->pc) == PQ_CACHE)
1397 		return;
1398 
1399 	/*
1400 	 * Remove all pmaps and indicate that the page is not
1401 	 * writeable or mapped.
1402 	 */
1403 	vm_page_protect(m, VM_PROT_NONE);
1404 	if (m->dirty != 0) {
1405 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1406 			(long)m->pindex);
1407 	}
1408 	s = splvm();
1409 	vm_pageq_remove_nowakeup(m);
1410 	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1411 	vm_page_free_wakeup();
1412 	splx(s);
1413 }
1414 
1415 /*
1416  * vm_page_dontneed
1417  *
1418  *	Cache, deactivate, or do nothing as appropriate.  This routine
1419  *	is typically used by madvise() MADV_DONTNEED.
1420  *
1421  *	Generally speaking we want to move the page into the cache so
1422  *	it gets reused quickly.  However, this can result in a silly syndrome
1423  *	due to the page recycling too quickly.  Small objects will not be
1424  *	fully cached.  On the otherhand, if we move the page to the inactive
1425  *	queue we wind up with a problem whereby very large objects
1426  *	unnecessarily blow away our inactive and cache queues.
1427  *
1428  *	The solution is to move the pages based on a fixed weighting.  We
1429  *	either leave them alone, deactivate them, or move them to the cache,
1430  *	where moving them to the cache has the highest weighting.
1431  *	By forcing some pages into other queues we eventually force the
1432  *	system to balance the queues, potentially recovering other unrelated
1433  *	space from active.  The idea is to not force this to happen too
1434  *	often.
1435  */
1436 void
1437 vm_page_dontneed(vm_page_t m)
1438 {
1439 	static int dnweight;
1440 	int dnw;
1441 	int head;
1442 
1443 	GIANT_REQUIRED;
1444 	dnw = ++dnweight;
1445 
1446 	/*
1447 	 * occassionally leave the page alone
1448 	 */
1449 	if ((dnw & 0x01F0) == 0 ||
1450 	    m->queue == PQ_INACTIVE ||
1451 	    m->queue - m->pc == PQ_CACHE
1452 	) {
1453 		if (m->act_count >= ACT_INIT)
1454 			--m->act_count;
1455 		return;
1456 	}
1457 
1458 	if (m->dirty == 0)
1459 		vm_page_test_dirty(m);
1460 
1461 	if (m->dirty || (dnw & 0x0070) == 0) {
1462 		/*
1463 		 * Deactivate the page 3 times out of 32.
1464 		 */
1465 		head = 0;
1466 	} else {
1467 		/*
1468 		 * Cache the page 28 times out of every 32.  Note that
1469 		 * the page is deactivated instead of cached, but placed
1470 		 * at the head of the queue instead of the tail.
1471 		 */
1472 		head = 1;
1473 	}
1474 	_vm_page_deactivate(m, head);
1475 }
1476 
1477 /*
1478  * Grab a page, waiting until we are waken up due to the page
1479  * changing state.  We keep on waiting, if the page continues
1480  * to be in the object.  If the page doesn't exist, allocate it.
1481  *
1482  * This routine may block.
1483  */
1484 vm_page_t
1485 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1486 {
1487 	vm_page_t m;
1488 	int s, generation;
1489 
1490 	GIANT_REQUIRED;
1491 retrylookup:
1492 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1493 		if (m->busy || (m->flags & PG_BUSY)) {
1494 			generation = object->generation;
1495 
1496 			s = splvm();
1497 			while ((object->generation == generation) &&
1498 					(m->busy || (m->flags & PG_BUSY))) {
1499 				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1500 				tsleep(m, PVM, "pgrbwt", 0);
1501 				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1502 					splx(s);
1503 					return NULL;
1504 				}
1505 			}
1506 			splx(s);
1507 			goto retrylookup;
1508 		} else {
1509 			vm_page_busy(m);
1510 			return m;
1511 		}
1512 	}
1513 
1514 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1515 	if (m == NULL) {
1516 		VM_WAIT;
1517 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1518 			return NULL;
1519 		goto retrylookup;
1520 	}
1521 
1522 	return m;
1523 }
1524 
1525 /*
1526  * Mapping function for valid bits or for dirty bits in
1527  * a page.  May not block.
1528  *
1529  * Inputs are required to range within a page.
1530  */
1531 __inline int
1532 vm_page_bits(int base, int size)
1533 {
1534 	int first_bit;
1535 	int last_bit;
1536 
1537 	KASSERT(
1538 	    base + size <= PAGE_SIZE,
1539 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1540 	);
1541 
1542 	if (size == 0)		/* handle degenerate case */
1543 		return (0);
1544 
1545 	first_bit = base >> DEV_BSHIFT;
1546 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1547 
1548 	return ((2 << last_bit) - (1 << first_bit));
1549 }
1550 
1551 /*
1552  *	vm_page_set_validclean:
1553  *
1554  *	Sets portions of a page valid and clean.  The arguments are expected
1555  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1556  *	of any partial chunks touched by the range.  The invalid portion of
1557  *	such chunks will be zero'd.
1558  *
1559  *	This routine may not block.
1560  *
1561  *	(base + size) must be less then or equal to PAGE_SIZE.
1562  */
1563 void
1564 vm_page_set_validclean(vm_page_t m, int base, int size)
1565 {
1566 	int pagebits;
1567 	int frag;
1568 	int endoff;
1569 
1570 	GIANT_REQUIRED;
1571 	if (size == 0)	/* handle degenerate case */
1572 		return;
1573 
1574 	/*
1575 	 * If the base is not DEV_BSIZE aligned and the valid
1576 	 * bit is clear, we have to zero out a portion of the
1577 	 * first block.
1578 	 */
1579 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1580 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1581 		pmap_zero_page_area(m, frag, base - frag);
1582 
1583 	/*
1584 	 * If the ending offset is not DEV_BSIZE aligned and the
1585 	 * valid bit is clear, we have to zero out a portion of
1586 	 * the last block.
1587 	 */
1588 	endoff = base + size;
1589 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1590 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1591 		pmap_zero_page_area(m, endoff,
1592 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1593 
1594 	/*
1595 	 * Set valid, clear dirty bits.  If validating the entire
1596 	 * page we can safely clear the pmap modify bit.  We also
1597 	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1598 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1599 	 * be set again.
1600 	 *
1601 	 * We set valid bits inclusive of any overlap, but we can only
1602 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1603 	 * the range.
1604 	 */
1605 	pagebits = vm_page_bits(base, size);
1606 	m->valid |= pagebits;
1607 #if 0	/* NOT YET */
1608 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1609 		frag = DEV_BSIZE - frag;
1610 		base += frag;
1611 		size -= frag;
1612 		if (size < 0)
1613 			size = 0;
1614 	}
1615 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1616 #endif
1617 	m->dirty &= ~pagebits;
1618 	if (base == 0 && size == PAGE_SIZE) {
1619 		pmap_clear_modify(m);
1620 		vm_page_flag_clear(m, PG_NOSYNC);
1621 	}
1622 }
1623 
1624 #if 0
1625 
1626 void
1627 vm_page_set_dirty(vm_page_t m, int base, int size)
1628 {
1629 	m->dirty |= vm_page_bits(base, size);
1630 }
1631 
1632 #endif
1633 
1634 void
1635 vm_page_clear_dirty(vm_page_t m, int base, int size)
1636 {
1637 	GIANT_REQUIRED;
1638 	m->dirty &= ~vm_page_bits(base, size);
1639 }
1640 
1641 /*
1642  *	vm_page_set_invalid:
1643  *
1644  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1645  *	valid and dirty bits for the effected areas are cleared.
1646  *
1647  *	May not block.
1648  */
1649 void
1650 vm_page_set_invalid(vm_page_t m, int base, int size)
1651 {
1652 	int bits;
1653 
1654 	GIANT_REQUIRED;
1655 	bits = vm_page_bits(base, size);
1656 	m->valid &= ~bits;
1657 	m->dirty &= ~bits;
1658 	m->object->generation++;
1659 }
1660 
1661 /*
1662  * vm_page_zero_invalid()
1663  *
1664  *	The kernel assumes that the invalid portions of a page contain
1665  *	garbage, but such pages can be mapped into memory by user code.
1666  *	When this occurs, we must zero out the non-valid portions of the
1667  *	page so user code sees what it expects.
1668  *
1669  *	Pages are most often semi-valid when the end of a file is mapped
1670  *	into memory and the file's size is not page aligned.
1671  */
1672 void
1673 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1674 {
1675 	int b;
1676 	int i;
1677 
1678 	/*
1679 	 * Scan the valid bits looking for invalid sections that
1680 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1681 	 * valid bit may be set ) have already been zerod by
1682 	 * vm_page_set_validclean().
1683 	 */
1684 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1685 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1686 		    (m->valid & (1 << i))
1687 		) {
1688 			if (i > b) {
1689 				pmap_zero_page_area(m,
1690 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1691 			}
1692 			b = i + 1;
1693 		}
1694 	}
1695 
1696 	/*
1697 	 * setvalid is TRUE when we can safely set the zero'd areas
1698 	 * as being valid.  We can do this if there are no cache consistancy
1699 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1700 	 */
1701 	if (setvalid)
1702 		m->valid = VM_PAGE_BITS_ALL;
1703 }
1704 
1705 /*
1706  *	vm_page_is_valid:
1707  *
1708  *	Is (partial) page valid?  Note that the case where size == 0
1709  *	will return FALSE in the degenerate case where the page is
1710  *	entirely invalid, and TRUE otherwise.
1711  *
1712  *	May not block.
1713  */
1714 int
1715 vm_page_is_valid(vm_page_t m, int base, int size)
1716 {
1717 	int bits = vm_page_bits(base, size);
1718 
1719 	if (m->valid && ((m->valid & bits) == bits))
1720 		return 1;
1721 	else
1722 		return 0;
1723 }
1724 
1725 /*
1726  * update dirty bits from pmap/mmu.  May not block.
1727  */
1728 void
1729 vm_page_test_dirty(vm_page_t m)
1730 {
1731 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1732 		vm_page_dirty(m);
1733 	}
1734 }
1735 
1736 int so_zerocp_fullpage = 0;
1737 
1738 void
1739 vm_page_cowfault(vm_page_t m)
1740 {
1741 	vm_page_t mnew;
1742 	vm_object_t object;
1743 	vm_pindex_t pindex;
1744 
1745 	object = m->object;
1746 	pindex = m->pindex;
1747 	vm_page_busy(m);
1748 
1749  retry_alloc:
1750 	vm_page_remove(m);
1751 	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
1752 	if (mnew == NULL) {
1753 		vm_page_insert(m, object, pindex);
1754 		VM_WAIT;
1755 		goto retry_alloc;
1756 	}
1757 
1758 	if (m->cow == 0) {
1759 		/*
1760 		 * check to see if we raced with an xmit complete when
1761 		 * waiting to allocate a page.  If so, put things back
1762 		 * the way they were
1763 		 */
1764 		vm_page_busy(mnew);
1765 		vm_page_free(mnew);
1766 		vm_page_insert(m, object, pindex);
1767 	} else { /* clear COW & copy page */
1768 		if (so_zerocp_fullpage) {
1769 			mnew->valid = VM_PAGE_BITS_ALL;
1770 		} else {
1771 			vm_page_copy(m, mnew);
1772 		}
1773 		vm_page_dirty(mnew);
1774 		vm_page_flag_clear(mnew, PG_BUSY);
1775 	}
1776 	vm_page_wakeup(m); /*unbusy the page */
1777 }
1778 
1779 void
1780 vm_page_cowclear(vm_page_t m)
1781 {
1782 
1783 	/* XXX KDM find out if giant is required here. */
1784 	GIANT_REQUIRED;
1785 	if (m->cow) {
1786 		atomic_subtract_int(&m->cow, 1);
1787 		/*
1788 		 * let vm_fault add back write permission  lazily
1789 		 */
1790 	}
1791 	/*
1792 	 *  sf_buf_free() will free the page, so we needn't do it here
1793 	 */
1794 }
1795 
1796 void
1797 vm_page_cowsetup(vm_page_t m)
1798 {
1799 	/* XXX KDM find out if giant is required here */
1800 	GIANT_REQUIRED;
1801 	atomic_add_int(&m->cow, 1);
1802 	vm_page_protect(m, VM_PROT_READ);
1803 }
1804 
1805 #include "opt_ddb.h"
1806 #ifdef DDB
1807 #include <sys/kernel.h>
1808 
1809 #include <ddb/ddb.h>
1810 
1811 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1812 {
1813 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1814 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1815 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1816 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1817 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1818 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1819 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1820 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1821 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1822 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1823 }
1824 
1825 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1826 {
1827 	int i;
1828 	db_printf("PQ_FREE:");
1829 	for (i = 0; i < PQ_L2_SIZE; i++) {
1830 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1831 	}
1832 	db_printf("\n");
1833 
1834 	db_printf("PQ_CACHE:");
1835 	for (i = 0; i < PQ_L2_SIZE; i++) {
1836 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1837 	}
1838 	db_printf("\n");
1839 
1840 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1841 		vm_page_queues[PQ_ACTIVE].lcnt,
1842 		vm_page_queues[PQ_INACTIVE].lcnt);
1843 }
1844 #endif /* DDB */
1845