xref: /freebsd/sys/vm/vm_page.c (revision 098ca2bda93c701c5331d4e6aace072495b4caaa)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
33  */
34 
35 /*
36  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
37  * All rights reserved.
38  *
39  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
40  *
41  * Permission to use, copy, modify and distribute this software and
42  * its documentation is hereby granted, provided that both the copyright
43  * notice and this permission notice appear in all copies of the
44  * software, derivative works or modified versions, and any portions
45  * thereof, and that both notices appear in supporting documentation.
46  *
47  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
48  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
49  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
50  *
51  * Carnegie Mellon requests users of this software to return to
52  *
53  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
54  *  School of Computer Science
55  *  Carnegie Mellon University
56  *  Pittsburgh PA 15213-3890
57  *
58  * any improvements or extensions that they make and grant Carnegie the
59  * rights to redistribute these changes.
60  */
61 
62 /*
63  *			GENERAL RULES ON VM_PAGE MANIPULATION
64  *
65  *	- a pageq mutex is required when adding or removing a page from a
66  *	  page queue (vm_page_queue[]), regardless of other mutexes or the
67  *	  busy state of a page.
68  *
69  *	- a hash chain mutex is required when associating or disassociating
70  *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
71  *	  regardless of other mutexes or the busy state of a page.
72  *
73  *	- either a hash chain mutex OR a busied page is required in order
74  *	  to modify the page flags.  A hash chain mutex must be obtained in
75  *	  order to busy a page.  A page's flags cannot be modified by a
76  *	  hash chain mutex if the page is marked busy.
77  *
78  *	- The object memq mutex is held when inserting or removing
79  *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
80  *	  is different from the object's main mutex.
81  *
82  *	Generally speaking, you have to be aware of side effects when running
83  *	vm_page ops.  A vm_page_lookup() will return with the hash chain
84  *	locked, whether it was able to lookup the page or not.  vm_page_free(),
85  *	vm_page_cache(), vm_page_activate(), and a number of other routines
86  *	will release the hash chain mutex for you.  Intermediate manipulation
87  *	routines such as vm_page_flag_set() expect the hash chain to be held
88  *	on entry and the hash chain will remain held on return.
89  *
90  *	pageq scanning can only occur with the pageq in question locked.
91  *	We have a known bottleneck with the active queue, but the cache
92  *	and free queues are actually arrays already.
93  */
94 
95 /*
96  *	Resident memory management module.
97  */
98 
99 #include <sys/cdefs.h>
100 __FBSDID("$FreeBSD$");
101 
102 #include <sys/param.h>
103 #include <sys/systm.h>
104 #include <sys/lock.h>
105 #include <sys/malloc.h>
106 #include <sys/mutex.h>
107 #include <sys/proc.h>
108 #include <sys/vmmeter.h>
109 #include <sys/vnode.h>
110 
111 #include <vm/vm.h>
112 #include <vm/vm_param.h>
113 #include <vm/vm_kern.h>
114 #include <vm/vm_object.h>
115 #include <vm/vm_page.h>
116 #include <vm/vm_pageout.h>
117 #include <vm/vm_pager.h>
118 #include <vm/vm_extern.h>
119 #include <vm/uma.h>
120 #include <vm/uma_int.h>
121 
122 /*
123  *	Associated with page of user-allocatable memory is a
124  *	page structure.
125  */
126 
127 struct mtx vm_page_queue_mtx;
128 struct mtx vm_page_queue_free_mtx;
129 
130 vm_page_t vm_page_array = 0;
131 int vm_page_array_size = 0;
132 long first_page = 0;
133 int vm_page_zero_count = 0;
134 
135 /*
136  *	vm_set_page_size:
137  *
138  *	Sets the page size, perhaps based upon the memory
139  *	size.  Must be called before any use of page-size
140  *	dependent functions.
141  */
142 void
143 vm_set_page_size(void)
144 {
145 	if (cnt.v_page_size == 0)
146 		cnt.v_page_size = PAGE_SIZE;
147 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
148 		panic("vm_set_page_size: page size not a power of two");
149 }
150 
151 /*
152  *	vm_page_startup:
153  *
154  *	Initializes the resident memory module.
155  *
156  *	Allocates memory for the page cells, and
157  *	for the object/offset-to-page hash table headers.
158  *	Each page cell is initialized and placed on the free list.
159  */
160 vm_offset_t
161 vm_page_startup(vm_offset_t vaddr)
162 {
163 	vm_offset_t mapped;
164 	vm_size_t npages;
165 	vm_paddr_t page_range;
166 	vm_paddr_t new_end;
167 	int i;
168 	vm_paddr_t pa;
169 	int nblocks;
170 	vm_paddr_t last_pa;
171 
172 	/* the biggest memory array is the second group of pages */
173 	vm_paddr_t end;
174 	vm_paddr_t biggestsize;
175 	int biggestone;
176 
177 	vm_paddr_t total;
178 	vm_size_t bootpages;
179 
180 	total = 0;
181 	biggestsize = 0;
182 	biggestone = 0;
183 	nblocks = 0;
184 	vaddr = round_page(vaddr);
185 
186 	for (i = 0; phys_avail[i + 1]; i += 2) {
187 		phys_avail[i] = round_page(phys_avail[i]);
188 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
189 	}
190 
191 	for (i = 0; phys_avail[i + 1]; i += 2) {
192 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
193 
194 		if (size > biggestsize) {
195 			biggestone = i;
196 			biggestsize = size;
197 		}
198 		++nblocks;
199 		total += size;
200 	}
201 
202 	end = phys_avail[biggestone+1];
203 
204 	/*
205 	 * Initialize the locks.
206 	 */
207 	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
208 	    MTX_RECURSE);
209 	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
210 	    MTX_SPIN);
211 
212 	/*
213 	 * Initialize the queue headers for the free queue, the active queue
214 	 * and the inactive queue.
215 	 */
216 	vm_pageq_init();
217 
218 	/*
219 	 * Allocate memory for use when boot strapping the kernel memory
220 	 * allocator.
221 	 */
222 	bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
223 	new_end = end - bootpages;
224 	new_end = trunc_page(new_end);
225 	mapped = pmap_map(&vaddr, new_end, end,
226 	    VM_PROT_READ | VM_PROT_WRITE);
227 	bzero((caddr_t) mapped, end - new_end);
228 	uma_startup((caddr_t)mapped);
229 
230 	/*
231 	 * Compute the number of pages of memory that will be available for
232 	 * use (taking into account the overhead of a page structure per
233 	 * page).
234 	 */
235 	first_page = phys_avail[0] / PAGE_SIZE;
236 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
237 	npages = (total - (page_range * sizeof(struct vm_page)) -
238 	    (end - new_end)) / PAGE_SIZE;
239 	end = new_end;
240 
241 	/*
242 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
243 	 */
244 	vaddr += PAGE_SIZE;
245 
246 	/*
247 	 * Initialize the mem entry structures now, and put them in the free
248 	 * queue.
249 	 */
250 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
251 	mapped = pmap_map(&vaddr, new_end, end,
252 	    VM_PROT_READ | VM_PROT_WRITE);
253 	vm_page_array = (vm_page_t) mapped;
254 	phys_avail[biggestone + 1] = new_end;
255 
256 	/*
257 	 * Clear all of the page structures
258 	 */
259 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
260 	vm_page_array_size = page_range;
261 
262 	/*
263 	 * Construct the free queue(s) in descending order (by physical
264 	 * address) so that the first 16MB of physical memory is allocated
265 	 * last rather than first.  On large-memory machines, this avoids
266 	 * the exhaustion of low physical memory before isa_dma_init has run.
267 	 */
268 	cnt.v_page_count = 0;
269 	cnt.v_free_count = 0;
270 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
271 		pa = phys_avail[i];
272 		last_pa = phys_avail[i + 1];
273 		while (pa < last_pa && npages-- > 0) {
274 			vm_pageq_add_new_page(pa);
275 			pa += PAGE_SIZE;
276 		}
277 	}
278 	return (vaddr);
279 }
280 
281 void
282 vm_page_flag_set(vm_page_t m, unsigned short bits)
283 {
284 
285 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
286 	m->flags |= bits;
287 }
288 
289 void
290 vm_page_flag_clear(vm_page_t m, unsigned short bits)
291 {
292 
293 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
294 	m->flags &= ~bits;
295 }
296 
297 void
298 vm_page_busy(vm_page_t m)
299 {
300 
301 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
302 	KASSERT((m->flags & PG_BUSY) == 0,
303 	    ("vm_page_busy: page already busy!!!"));
304 	vm_page_flag_set(m, PG_BUSY);
305 }
306 
307 /*
308  *      vm_page_flash:
309  *
310  *      wakeup anyone waiting for the page.
311  */
312 void
313 vm_page_flash(vm_page_t m)
314 {
315 
316 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
317 	if (m->flags & PG_WANTED) {
318 		vm_page_flag_clear(m, PG_WANTED);
319 		wakeup(m);
320 	}
321 }
322 
323 /*
324  *      vm_page_wakeup:
325  *
326  *      clear the PG_BUSY flag and wakeup anyone waiting for the
327  *      page.
328  *
329  */
330 void
331 vm_page_wakeup(vm_page_t m)
332 {
333 
334 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
335 	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
336 	vm_page_flag_clear(m, PG_BUSY);
337 	vm_page_flash(m);
338 }
339 
340 void
341 vm_page_io_start(vm_page_t m)
342 {
343 
344 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
345 	m->busy++;
346 }
347 
348 void
349 vm_page_io_finish(vm_page_t m)
350 {
351 
352 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
353 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
354 	m->busy--;
355 	if (m->busy == 0)
356 		vm_page_flash(m);
357 }
358 
359 /*
360  * Keep page from being freed by the page daemon
361  * much of the same effect as wiring, except much lower
362  * overhead and should be used only for *very* temporary
363  * holding ("wiring").
364  */
365 void
366 vm_page_hold(vm_page_t mem)
367 {
368 
369 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
370         mem->hold_count++;
371 }
372 
373 void
374 vm_page_unhold(vm_page_t mem)
375 {
376 
377 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
378 	--mem->hold_count;
379 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
380 	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
381 		vm_page_free_toq(mem);
382 }
383 
384 /*
385  *	vm_page_free:
386  *
387  *	Free a page
388  *
389  *	The clearing of PG_ZERO is a temporary safety until the code can be
390  *	reviewed to determine that PG_ZERO is being properly cleared on
391  *	write faults or maps.  PG_ZERO was previously cleared in
392  *	vm_page_alloc().
393  */
394 void
395 vm_page_free(vm_page_t m)
396 {
397 	vm_page_flag_clear(m, PG_ZERO);
398 	vm_page_free_toq(m);
399 	vm_page_zero_idle_wakeup();
400 }
401 
402 /*
403  *	vm_page_free_zero:
404  *
405  *	Free a page to the zerod-pages queue
406  */
407 void
408 vm_page_free_zero(vm_page_t m)
409 {
410 	vm_page_flag_set(m, PG_ZERO);
411 	vm_page_free_toq(m);
412 }
413 
414 /*
415  *	vm_page_sleep_if_busy:
416  *
417  *	Sleep and release the page queues lock if PG_BUSY is set or,
418  *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
419  *	thread slept and the page queues lock was released.
420  *	Otherwise, retains the page queues lock and returns FALSE.
421  */
422 int
423 vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
424 {
425 	vm_object_t object;
426 
427 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
428 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
429 	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
430 		vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
431 		/*
432 		 * It's possible that while we sleep, the page will get
433 		 * unbusied and freed.  If we are holding the object
434 		 * lock, we will assume we hold a reference to the object
435 		 * such that even if m->object changes, we can re-lock
436 		 * it.
437 		 */
438 		object = m->object;
439 		VM_OBJECT_UNLOCK(object);
440 		msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
441 		VM_OBJECT_LOCK(object);
442 		return (TRUE);
443 	}
444 	return (FALSE);
445 }
446 
447 /*
448  *	vm_page_dirty:
449  *
450  *	make page all dirty
451  */
452 void
453 vm_page_dirty(vm_page_t m)
454 {
455 	KASSERT(m->queue - m->pc != PQ_CACHE,
456 	    ("vm_page_dirty: page in cache!"));
457 	KASSERT(m->queue - m->pc != PQ_FREE,
458 	    ("vm_page_dirty: page is free!"));
459 	m->dirty = VM_PAGE_BITS_ALL;
460 }
461 
462 /*
463  *	vm_page_splay:
464  *
465  *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
466  *	the vm_page containing the given pindex.  If, however, that
467  *	pindex is not found in the vm_object, returns a vm_page that is
468  *	adjacent to the pindex, coming before or after it.
469  */
470 vm_page_t
471 vm_page_splay(vm_pindex_t pindex, vm_page_t root)
472 {
473 	struct vm_page dummy;
474 	vm_page_t lefttreemax, righttreemin, y;
475 
476 	if (root == NULL)
477 		return (root);
478 	lefttreemax = righttreemin = &dummy;
479 	for (;; root = y) {
480 		if (pindex < root->pindex) {
481 			if ((y = root->left) == NULL)
482 				break;
483 			if (pindex < y->pindex) {
484 				/* Rotate right. */
485 				root->left = y->right;
486 				y->right = root;
487 				root = y;
488 				if ((y = root->left) == NULL)
489 					break;
490 			}
491 			/* Link into the new root's right tree. */
492 			righttreemin->left = root;
493 			righttreemin = root;
494 		} else if (pindex > root->pindex) {
495 			if ((y = root->right) == NULL)
496 				break;
497 			if (pindex > y->pindex) {
498 				/* Rotate left. */
499 				root->right = y->left;
500 				y->left = root;
501 				root = y;
502 				if ((y = root->right) == NULL)
503 					break;
504 			}
505 			/* Link into the new root's left tree. */
506 			lefttreemax->right = root;
507 			lefttreemax = root;
508 		} else
509 			break;
510 	}
511 	/* Assemble the new root. */
512 	lefttreemax->right = root->left;
513 	righttreemin->left = root->right;
514 	root->left = dummy.right;
515 	root->right = dummy.left;
516 	return (root);
517 }
518 
519 /*
520  *	vm_page_insert:		[ internal use only ]
521  *
522  *	Inserts the given mem entry into the object and object list.
523  *
524  *	The pagetables are not updated but will presumably fault the page
525  *	in if necessary, or if a kernel page the caller will at some point
526  *	enter the page into the kernel's pmap.  We are not allowed to block
527  *	here so we *can't* do this anyway.
528  *
529  *	The object and page must be locked.
530  *	This routine may not block.
531  */
532 void
533 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
534 {
535 	vm_page_t root;
536 
537 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
538 	if (m->object != NULL)
539 		panic("vm_page_insert: page already inserted");
540 
541 	/*
542 	 * Record the object/offset pair in this page
543 	 */
544 	m->object = object;
545 	m->pindex = pindex;
546 
547 	/*
548 	 * Now link into the object's ordered list of backed pages.
549 	 */
550 	root = object->root;
551 	if (root == NULL) {
552 		m->left = NULL;
553 		m->right = NULL;
554 		TAILQ_INSERT_TAIL(&object->memq, m, listq);
555 	} else {
556 		root = vm_page_splay(pindex, root);
557 		if (pindex < root->pindex) {
558 			m->left = root->left;
559 			m->right = root;
560 			root->left = NULL;
561 			TAILQ_INSERT_BEFORE(root, m, listq);
562 		} else if (pindex == root->pindex)
563 			panic("vm_page_insert: offset already allocated");
564 		else {
565 			m->right = root->right;
566 			m->left = root;
567 			root->right = NULL;
568 			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
569 		}
570 	}
571 	object->root = m;
572 	object->generation++;
573 
574 	/*
575 	 * show that the object has one more resident page.
576 	 */
577 	object->resident_page_count++;
578 
579 	/*
580 	 * Since we are inserting a new and possibly dirty page,
581 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
582 	 */
583 	if (m->flags & PG_WRITEABLE)
584 		vm_object_set_writeable_dirty(object);
585 }
586 
587 /*
588  *	vm_page_remove:
589  *				NOTE: used by device pager as well -wfj
590  *
591  *	Removes the given mem entry from the object/offset-page
592  *	table and the object page list, but do not invalidate/terminate
593  *	the backing store.
594  *
595  *	The object and page must be locked.
596  *	The underlying pmap entry (if any) is NOT removed here.
597  *	This routine may not block.
598  */
599 void
600 vm_page_remove(vm_page_t m)
601 {
602 	vm_object_t object;
603 	vm_page_t root;
604 
605 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
606 	if ((object = m->object) == NULL)
607 		return;
608 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
609 	if (m->flags & PG_BUSY) {
610 		vm_page_flag_clear(m, PG_BUSY);
611 		vm_page_flash(m);
612 	}
613 
614 	/*
615 	 * Now remove from the object's list of backed pages.
616 	 */
617 	if (m != object->root)
618 		vm_page_splay(m->pindex, object->root);
619 	if (m->left == NULL)
620 		root = m->right;
621 	else {
622 		root = vm_page_splay(m->pindex, m->left);
623 		root->right = m->right;
624 	}
625 	object->root = root;
626 	TAILQ_REMOVE(&object->memq, m, listq);
627 
628 	/*
629 	 * And show that the object has one fewer resident page.
630 	 */
631 	object->resident_page_count--;
632 	object->generation++;
633 
634 	m->object = NULL;
635 }
636 
637 /*
638  *	vm_page_lookup:
639  *
640  *	Returns the page associated with the object/offset
641  *	pair specified; if none is found, NULL is returned.
642  *
643  *	The object must be locked.
644  *	This routine may not block.
645  *	This is a critical path routine
646  */
647 vm_page_t
648 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
649 {
650 	vm_page_t m;
651 
652 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
653 	if ((m = object->root) != NULL && m->pindex != pindex) {
654 		m = vm_page_splay(pindex, m);
655 		if ((object->root = m)->pindex != pindex)
656 			m = NULL;
657 	}
658 	return (m);
659 }
660 
661 /*
662  *	vm_page_rename:
663  *
664  *	Move the given memory entry from its
665  *	current object to the specified target object/offset.
666  *
667  *	The object must be locked.
668  *	This routine may not block.
669  *
670  *	Note: swap associated with the page must be invalidated by the move.  We
671  *	      have to do this for several reasons:  (1) we aren't freeing the
672  *	      page, (2) we are dirtying the page, (3) the VM system is probably
673  *	      moving the page from object A to B, and will then later move
674  *	      the backing store from A to B and we can't have a conflict.
675  *
676  *	Note: we *always* dirty the page.  It is necessary both for the
677  *	      fact that we moved it, and because we may be invalidating
678  *	      swap.  If the page is on the cache, we have to deactivate it
679  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
680  *	      on the cache.
681  */
682 void
683 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
684 {
685 
686 	vm_page_remove(m);
687 	vm_page_insert(m, new_object, new_pindex);
688 	if (m->queue - m->pc == PQ_CACHE)
689 		vm_page_deactivate(m);
690 	vm_page_dirty(m);
691 }
692 
693 /*
694  *	vm_page_select_cache:
695  *
696  *	Find a page on the cache queue with color optimization.  As pages
697  *	might be found, but not applicable, they are deactivated.  This
698  *	keeps us from using potentially busy cached pages.
699  *
700  *	This routine may not block.
701  */
702 vm_page_t
703 vm_page_select_cache(int color)
704 {
705 	vm_page_t m;
706 
707 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
708 	while ((m = vm_pageq_find(PQ_CACHE, color, FALSE)) != NULL) {
709 		if (m->hold_count == 0 && (VM_OBJECT_TRYLOCK(m->object) ||
710 		    VM_OBJECT_LOCKED(m->object))) {
711 			KASSERT((m->flags & PG_BUSY) == 0 && m->busy == 0,
712 			    ("Found busy cache page %p", m));
713 			KASSERT(m->dirty == 0,
714 			    ("Found dirty cache page %p", m));
715 			KASSERT(!pmap_page_is_mapped(m),
716 			    ("Found mapped cache page %p", m));
717 			KASSERT((m->flags & PG_UNMANAGED) == 0,
718 			    ("Found unmanaged cache page %p", m));
719 			KASSERT(m->wire_count == 0,
720 			    ("Found wired cache page %p", m));
721 			break;
722 		}
723 		vm_page_deactivate(m);
724 	}
725 	return (m);
726 }
727 
728 /*
729  *	vm_page_alloc:
730  *
731  *	Allocate and return a memory cell associated
732  *	with this VM object/offset pair.
733  *
734  *	page_req classes:
735  *	VM_ALLOC_NORMAL		normal process request
736  *	VM_ALLOC_SYSTEM		system *really* needs a page
737  *	VM_ALLOC_INTERRUPT	interrupt time request
738  *	VM_ALLOC_ZERO		zero page
739  *
740  *	This routine may not block.
741  *
742  *	Additional special handling is required when called from an
743  *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
744  *	the page cache in this case.
745  */
746 vm_page_t
747 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
748 {
749 	vm_object_t m_object;
750 	vm_page_t m = NULL;
751 	int color, flags, page_req;
752 
753 	page_req = req & VM_ALLOC_CLASS_MASK;
754 	KASSERT(curthread->td_intr_nesting_level == 0 ||
755 	    page_req == VM_ALLOC_INTERRUPT,
756 	    ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
757 
758 	if ((req & VM_ALLOC_NOOBJ) == 0) {
759 		KASSERT(object != NULL,
760 		    ("vm_page_alloc: NULL object."));
761 		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
762 		color = (pindex + object->pg_color) & PQ_L2_MASK;
763 	} else
764 		color = pindex & PQ_L2_MASK;
765 
766 	/*
767 	 * The pager is allowed to eat deeper into the free page list.
768 	 */
769 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
770 		page_req = VM_ALLOC_SYSTEM;
771 	};
772 
773 loop:
774 	mtx_lock_spin(&vm_page_queue_free_mtx);
775 	if (cnt.v_free_count > cnt.v_free_reserved ||
776 	    (page_req == VM_ALLOC_SYSTEM &&
777 	     cnt.v_cache_count == 0 &&
778 	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
779 	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
780 		/*
781 		 * Allocate from the free queue if the number of free pages
782 		 * exceeds the minimum for the request class.
783 		 */
784 		m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
785 	} else if (page_req != VM_ALLOC_INTERRUPT) {
786 		mtx_unlock_spin(&vm_page_queue_free_mtx);
787 		/*
788 		 * Allocatable from cache (non-interrupt only).  On success,
789 		 * we must free the page and try again, thus ensuring that
790 		 * cnt.v_*_free_min counters are replenished.
791 		 */
792 		vm_page_lock_queues();
793 		if ((m = vm_page_select_cache(color)) == NULL) {
794 #if defined(DIAGNOSTIC)
795 			if (cnt.v_cache_count > 0)
796 				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
797 #endif
798 			vm_page_unlock_queues();
799 			atomic_add_int(&vm_pageout_deficit, 1);
800 			pagedaemon_wakeup();
801 			return (NULL);
802 		}
803 		m_object = m->object;
804 		VM_OBJECT_LOCK_ASSERT(m_object, MA_OWNED);
805 		vm_page_free(m);
806 		vm_page_unlock_queues();
807 		if (m_object != object)
808 			VM_OBJECT_UNLOCK(m_object);
809 		goto loop;
810 	} else {
811 		/*
812 		 * Not allocatable from cache from interrupt, give up.
813 		 */
814 		mtx_unlock_spin(&vm_page_queue_free_mtx);
815 		atomic_add_int(&vm_pageout_deficit, 1);
816 		pagedaemon_wakeup();
817 		return (NULL);
818 	}
819 
820 	/*
821 	 *  At this point we had better have found a good page.
822 	 */
823 
824 	KASSERT(
825 	    m != NULL,
826 	    ("vm_page_alloc(): missing page on free queue")
827 	);
828 
829 	/*
830 	 * Remove from free queue
831 	 */
832 	vm_pageq_remove_nowakeup(m);
833 
834 	/*
835 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
836 	 */
837 	flags = PG_BUSY;
838 	if (m->flags & PG_ZERO) {
839 		vm_page_zero_count--;
840 		if (req & VM_ALLOC_ZERO)
841 			flags = PG_ZERO | PG_BUSY;
842 	}
843 	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
844 		flags &= ~PG_BUSY;
845 	m->flags = flags;
846 	if (req & VM_ALLOC_WIRED) {
847 		atomic_add_int(&cnt.v_wire_count, 1);
848 		m->wire_count = 1;
849 	} else
850 		m->wire_count = 0;
851 	m->hold_count = 0;
852 	m->act_count = 0;
853 	m->busy = 0;
854 	m->valid = 0;
855 	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
856 	mtx_unlock_spin(&vm_page_queue_free_mtx);
857 
858 	if ((req & VM_ALLOC_NOOBJ) == 0)
859 		vm_page_insert(m, object, pindex);
860 	else
861 		m->pindex = pindex;
862 
863 	/*
864 	 * Don't wakeup too often - wakeup the pageout daemon when
865 	 * we would be nearly out of memory.
866 	 */
867 	if (vm_paging_needed())
868 		pagedaemon_wakeup();
869 
870 	return (m);
871 }
872 
873 /*
874  *	vm_wait:	(also see VM_WAIT macro)
875  *
876  *	Block until free pages are available for allocation
877  *	- Called in various places before memory allocations.
878  */
879 void
880 vm_wait(void)
881 {
882 
883 	vm_page_lock_queues();
884 	if (curproc == pageproc) {
885 		vm_pageout_pages_needed = 1;
886 		msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx,
887 		    PDROP | PSWP, "VMWait", 0);
888 	} else {
889 		if (!vm_pages_needed) {
890 			vm_pages_needed = 1;
891 			wakeup(&vm_pages_needed);
892 		}
893 		msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM,
894 		    "vmwait", 0);
895 	}
896 }
897 
898 /*
899  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
900  *
901  *	Block until free pages are available for allocation
902  *	- Called only in vm_fault so that processes page faulting
903  *	  can be easily tracked.
904  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
905  *	  processes will be able to grab memory first.  Do not change
906  *	  this balance without careful testing first.
907  */
908 void
909 vm_waitpfault(void)
910 {
911 
912 	vm_page_lock_queues();
913 	if (!vm_pages_needed) {
914 		vm_pages_needed = 1;
915 		wakeup(&vm_pages_needed);
916 	}
917 	msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER,
918 	    "pfault", 0);
919 }
920 
921 /*
922  *	vm_page_activate:
923  *
924  *	Put the specified page on the active list (if appropriate).
925  *	Ensure that act_count is at least ACT_INIT but do not otherwise
926  *	mess with it.
927  *
928  *	The page queues must be locked.
929  *	This routine may not block.
930  */
931 void
932 vm_page_activate(vm_page_t m)
933 {
934 
935 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
936 	if (m->queue != PQ_ACTIVE) {
937 		if ((m->queue - m->pc) == PQ_CACHE)
938 			cnt.v_reactivated++;
939 		vm_pageq_remove(m);
940 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
941 			if (m->act_count < ACT_INIT)
942 				m->act_count = ACT_INIT;
943 			vm_pageq_enqueue(PQ_ACTIVE, m);
944 		}
945 	} else {
946 		if (m->act_count < ACT_INIT)
947 			m->act_count = ACT_INIT;
948 	}
949 }
950 
951 /*
952  *	vm_page_free_wakeup:
953  *
954  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
955  *	routine is called when a page has been added to the cache or free
956  *	queues.
957  *
958  *	The page queues must be locked.
959  *	This routine may not block.
960  */
961 static __inline void
962 vm_page_free_wakeup(void)
963 {
964 
965 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
966 	/*
967 	 * if pageout daemon needs pages, then tell it that there are
968 	 * some free.
969 	 */
970 	if (vm_pageout_pages_needed &&
971 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
972 		wakeup(&vm_pageout_pages_needed);
973 		vm_pageout_pages_needed = 0;
974 	}
975 	/*
976 	 * wakeup processes that are waiting on memory if we hit a
977 	 * high water mark. And wakeup scheduler process if we have
978 	 * lots of memory. this process will swapin processes.
979 	 */
980 	if (vm_pages_needed && !vm_page_count_min()) {
981 		vm_pages_needed = 0;
982 		wakeup(&cnt.v_free_count);
983 	}
984 }
985 
986 /*
987  *	vm_page_free_toq:
988  *
989  *	Returns the given page to the PQ_FREE list,
990  *	disassociating it with any VM object.
991  *
992  *	Object and page must be locked prior to entry.
993  *	This routine may not block.
994  */
995 
996 void
997 vm_page_free_toq(vm_page_t m)
998 {
999 	struct vpgqueues *pq;
1000 	vm_object_t object = m->object;
1001 
1002 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1003 	cnt.v_tfree++;
1004 
1005 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1006 		printf(
1007 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1008 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1009 		    m->hold_count);
1010 		if ((m->queue - m->pc) == PQ_FREE)
1011 			panic("vm_page_free: freeing free page");
1012 		else
1013 			panic("vm_page_free: freeing busy page");
1014 	}
1015 
1016 	/*
1017 	 * unqueue, then remove page.  Note that we cannot destroy
1018 	 * the page here because we do not want to call the pager's
1019 	 * callback routine until after we've put the page on the
1020 	 * appropriate free queue.
1021 	 */
1022 	vm_pageq_remove_nowakeup(m);
1023 	vm_page_remove(m);
1024 
1025 	/*
1026 	 * If fictitious remove object association and
1027 	 * return, otherwise delay object association removal.
1028 	 */
1029 	if ((m->flags & PG_FICTITIOUS) != 0) {
1030 		return;
1031 	}
1032 
1033 	m->valid = 0;
1034 	vm_page_undirty(m);
1035 
1036 	if (m->wire_count != 0) {
1037 		if (m->wire_count > 1) {
1038 			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1039 				m->wire_count, (long)m->pindex);
1040 		}
1041 		panic("vm_page_free: freeing wired page");
1042 	}
1043 
1044 	/*
1045 	 * If we've exhausted the object's resident pages we want to free
1046 	 * it up.
1047 	 */
1048 	if (object &&
1049 	    (object->type == OBJT_VNODE) &&
1050 	    ((object->flags & OBJ_DEAD) == 0)
1051 	) {
1052 		struct vnode *vp = (struct vnode *)object->handle;
1053 
1054 		if (vp) {
1055 			VI_LOCK(vp);
1056 			if (VSHOULDFREE(vp))
1057 				vfree(vp);
1058 			VI_UNLOCK(vp);
1059 		}
1060 	}
1061 
1062 	/*
1063 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1064 	 */
1065 	if (m->flags & PG_UNMANAGED) {
1066 		m->flags &= ~PG_UNMANAGED;
1067 	}
1068 
1069 	if (m->hold_count != 0) {
1070 		m->flags &= ~PG_ZERO;
1071 		m->queue = PQ_HOLD;
1072 	} else
1073 		m->queue = PQ_FREE + m->pc;
1074 	pq = &vm_page_queues[m->queue];
1075 	mtx_lock_spin(&vm_page_queue_free_mtx);
1076 	pq->lcnt++;
1077 	++(*pq->cnt);
1078 
1079 	/*
1080 	 * Put zero'd pages on the end ( where we look for zero'd pages
1081 	 * first ) and non-zerod pages at the head.
1082 	 */
1083 	if (m->flags & PG_ZERO) {
1084 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1085 		++vm_page_zero_count;
1086 	} else {
1087 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1088 	}
1089 	mtx_unlock_spin(&vm_page_queue_free_mtx);
1090 	vm_page_free_wakeup();
1091 }
1092 
1093 /*
1094  *	vm_page_unmanage:
1095  *
1096  * 	Prevent PV management from being done on the page.  The page is
1097  *	removed from the paging queues as if it were wired, and as a
1098  *	consequence of no longer being managed the pageout daemon will not
1099  *	touch it (since there is no way to locate the pte mappings for the
1100  *	page).  madvise() calls that mess with the pmap will also no longer
1101  *	operate on the page.
1102  *
1103  *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1104  *	will clear the flag.
1105  *
1106  *	This routine is used by OBJT_PHYS objects - objects using unswappable
1107  *	physical memory as backing store rather then swap-backed memory and
1108  *	will eventually be extended to support 4MB unmanaged physical
1109  *	mappings.
1110  */
1111 void
1112 vm_page_unmanage(vm_page_t m)
1113 {
1114 
1115 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1116 	if ((m->flags & PG_UNMANAGED) == 0) {
1117 		if (m->wire_count == 0)
1118 			vm_pageq_remove(m);
1119 	}
1120 	vm_page_flag_set(m, PG_UNMANAGED);
1121 }
1122 
1123 /*
1124  *	vm_page_wire:
1125  *
1126  *	Mark this page as wired down by yet
1127  *	another map, removing it from paging queues
1128  *	as necessary.
1129  *
1130  *	The page queues must be locked.
1131  *	This routine may not block.
1132  */
1133 void
1134 vm_page_wire(vm_page_t m)
1135 {
1136 
1137 	/*
1138 	 * Only bump the wire statistics if the page is not already wired,
1139 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1140 	 * it is already off the queues).
1141 	 */
1142 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1143 	if (m->flags & PG_FICTITIOUS)
1144 		return;
1145 	if (m->wire_count == 0) {
1146 		if ((m->flags & PG_UNMANAGED) == 0)
1147 			vm_pageq_remove(m);
1148 		atomic_add_int(&cnt.v_wire_count, 1);
1149 	}
1150 	m->wire_count++;
1151 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1152 }
1153 
1154 /*
1155  *	vm_page_unwire:
1156  *
1157  *	Release one wiring of this page, potentially
1158  *	enabling it to be paged again.
1159  *
1160  *	Many pages placed on the inactive queue should actually go
1161  *	into the cache, but it is difficult to figure out which.  What
1162  *	we do instead, if the inactive target is well met, is to put
1163  *	clean pages at the head of the inactive queue instead of the tail.
1164  *	This will cause them to be moved to the cache more quickly and
1165  *	if not actively re-referenced, freed more quickly.  If we just
1166  *	stick these pages at the end of the inactive queue, heavy filesystem
1167  *	meta-data accesses can cause an unnecessary paging load on memory bound
1168  *	processes.  This optimization causes one-time-use metadata to be
1169  *	reused more quickly.
1170  *
1171  *	BUT, if we are in a low-memory situation we have no choice but to
1172  *	put clean pages on the cache queue.
1173  *
1174  *	A number of routines use vm_page_unwire() to guarantee that the page
1175  *	will go into either the inactive or active queues, and will NEVER
1176  *	be placed in the cache - for example, just after dirtying a page.
1177  *	dirty pages in the cache are not allowed.
1178  *
1179  *	The page queues must be locked.
1180  *	This routine may not block.
1181  */
1182 void
1183 vm_page_unwire(vm_page_t m, int activate)
1184 {
1185 
1186 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1187 	if (m->flags & PG_FICTITIOUS)
1188 		return;
1189 	if (m->wire_count > 0) {
1190 		m->wire_count--;
1191 		if (m->wire_count == 0) {
1192 			atomic_subtract_int(&cnt.v_wire_count, 1);
1193 			if (m->flags & PG_UNMANAGED) {
1194 				;
1195 			} else if (activate)
1196 				vm_pageq_enqueue(PQ_ACTIVE, m);
1197 			else {
1198 				vm_page_flag_clear(m, PG_WINATCFLS);
1199 				vm_pageq_enqueue(PQ_INACTIVE, m);
1200 			}
1201 		}
1202 	} else {
1203 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1204 	}
1205 }
1206 
1207 
1208 /*
1209  * Move the specified page to the inactive queue.  If the page has
1210  * any associated swap, the swap is deallocated.
1211  *
1212  * Normally athead is 0 resulting in LRU operation.  athead is set
1213  * to 1 if we want this page to be 'as if it were placed in the cache',
1214  * except without unmapping it from the process address space.
1215  *
1216  * This routine may not block.
1217  */
1218 static __inline void
1219 _vm_page_deactivate(vm_page_t m, int athead)
1220 {
1221 
1222 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1223 
1224 	/*
1225 	 * Ignore if already inactive.
1226 	 */
1227 	if (m->queue == PQ_INACTIVE)
1228 		return;
1229 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1230 		if ((m->queue - m->pc) == PQ_CACHE)
1231 			cnt.v_reactivated++;
1232 		vm_page_flag_clear(m, PG_WINATCFLS);
1233 		vm_pageq_remove(m);
1234 		if (athead)
1235 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1236 		else
1237 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1238 		m->queue = PQ_INACTIVE;
1239 		vm_page_queues[PQ_INACTIVE].lcnt++;
1240 		cnt.v_inactive_count++;
1241 	}
1242 }
1243 
1244 void
1245 vm_page_deactivate(vm_page_t m)
1246 {
1247     _vm_page_deactivate(m, 0);
1248 }
1249 
1250 /*
1251  * vm_page_try_to_cache:
1252  *
1253  * Returns 0 on failure, 1 on success
1254  */
1255 int
1256 vm_page_try_to_cache(vm_page_t m)
1257 {
1258 
1259 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1260 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1261 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1262 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1263 		return (0);
1264 	}
1265 	pmap_remove_all(m);
1266 	if (m->dirty)
1267 		return (0);
1268 	vm_page_cache(m);
1269 	return (1);
1270 }
1271 
1272 /*
1273  * vm_page_try_to_free()
1274  *
1275  *	Attempt to free the page.  If we cannot free it, we do nothing.
1276  *	1 is returned on success, 0 on failure.
1277  */
1278 int
1279 vm_page_try_to_free(vm_page_t m)
1280 {
1281 
1282 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1283 	if (m->object != NULL)
1284 		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1285 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1286 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1287 		return (0);
1288 	}
1289 	pmap_remove_all(m);
1290 	if (m->dirty)
1291 		return (0);
1292 	vm_page_free(m);
1293 	return (1);
1294 }
1295 
1296 /*
1297  * vm_page_cache
1298  *
1299  * Put the specified page onto the page cache queue (if appropriate).
1300  *
1301  * This routine may not block.
1302  */
1303 void
1304 vm_page_cache(vm_page_t m)
1305 {
1306 
1307 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1308 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1309 	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1310 	    m->hold_count || m->wire_count) {
1311 		printf("vm_page_cache: attempting to cache busy page\n");
1312 		return;
1313 	}
1314 	if ((m->queue - m->pc) == PQ_CACHE)
1315 		return;
1316 
1317 	/*
1318 	 * Remove all pmaps and indicate that the page is not
1319 	 * writeable or mapped.
1320 	 */
1321 	pmap_remove_all(m);
1322 	if (m->dirty != 0) {
1323 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1324 			(long)m->pindex);
1325 	}
1326 	vm_pageq_remove_nowakeup(m);
1327 	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1328 	vm_page_free_wakeup();
1329 }
1330 
1331 /*
1332  * vm_page_dontneed
1333  *
1334  *	Cache, deactivate, or do nothing as appropriate.  This routine
1335  *	is typically used by madvise() MADV_DONTNEED.
1336  *
1337  *	Generally speaking we want to move the page into the cache so
1338  *	it gets reused quickly.  However, this can result in a silly syndrome
1339  *	due to the page recycling too quickly.  Small objects will not be
1340  *	fully cached.  On the otherhand, if we move the page to the inactive
1341  *	queue we wind up with a problem whereby very large objects
1342  *	unnecessarily blow away our inactive and cache queues.
1343  *
1344  *	The solution is to move the pages based on a fixed weighting.  We
1345  *	either leave them alone, deactivate them, or move them to the cache,
1346  *	where moving them to the cache has the highest weighting.
1347  *	By forcing some pages into other queues we eventually force the
1348  *	system to balance the queues, potentially recovering other unrelated
1349  *	space from active.  The idea is to not force this to happen too
1350  *	often.
1351  */
1352 void
1353 vm_page_dontneed(vm_page_t m)
1354 {
1355 	static int dnweight;
1356 	int dnw;
1357 	int head;
1358 
1359 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1360 	dnw = ++dnweight;
1361 
1362 	/*
1363 	 * occassionally leave the page alone
1364 	 */
1365 	if ((dnw & 0x01F0) == 0 ||
1366 	    m->queue == PQ_INACTIVE ||
1367 	    m->queue - m->pc == PQ_CACHE
1368 	) {
1369 		if (m->act_count >= ACT_INIT)
1370 			--m->act_count;
1371 		return;
1372 	}
1373 
1374 	if (m->dirty == 0 && pmap_is_modified(m))
1375 		vm_page_dirty(m);
1376 
1377 	if (m->dirty || (dnw & 0x0070) == 0) {
1378 		/*
1379 		 * Deactivate the page 3 times out of 32.
1380 		 */
1381 		head = 0;
1382 	} else {
1383 		/*
1384 		 * Cache the page 28 times out of every 32.  Note that
1385 		 * the page is deactivated instead of cached, but placed
1386 		 * at the head of the queue instead of the tail.
1387 		 */
1388 		head = 1;
1389 	}
1390 	_vm_page_deactivate(m, head);
1391 }
1392 
1393 /*
1394  * Grab a page, waiting until we are waken up due to the page
1395  * changing state.  We keep on waiting, if the page continues
1396  * to be in the object.  If the page doesn't exist, first allocate it
1397  * and then conditionally zero it.
1398  *
1399  * This routine may block.
1400  */
1401 vm_page_t
1402 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1403 {
1404 	vm_page_t m;
1405 
1406 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1407 retrylookup:
1408 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1409 		vm_page_lock_queues();
1410 		if (m->busy || (m->flags & PG_BUSY)) {
1411 			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1412 			VM_OBJECT_UNLOCK(object);
1413 			msleep(m, &vm_page_queue_mtx, PDROP | PVM, "pgrbwt", 0);
1414 			VM_OBJECT_LOCK(object);
1415 			if ((allocflags & VM_ALLOC_RETRY) == 0)
1416 				return (NULL);
1417 			goto retrylookup;
1418 		} else {
1419 			if (allocflags & VM_ALLOC_WIRED)
1420 				vm_page_wire(m);
1421 			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
1422 				vm_page_busy(m);
1423 			vm_page_unlock_queues();
1424 			return (m);
1425 		}
1426 	}
1427 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1428 	if (m == NULL) {
1429 		VM_OBJECT_UNLOCK(object);
1430 		VM_WAIT;
1431 		VM_OBJECT_LOCK(object);
1432 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1433 			return (NULL);
1434 		goto retrylookup;
1435 	}
1436 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1437 		pmap_zero_page(m);
1438 	return (m);
1439 }
1440 
1441 /*
1442  * Mapping function for valid bits or for dirty bits in
1443  * a page.  May not block.
1444  *
1445  * Inputs are required to range within a page.
1446  */
1447 __inline int
1448 vm_page_bits(int base, int size)
1449 {
1450 	int first_bit;
1451 	int last_bit;
1452 
1453 	KASSERT(
1454 	    base + size <= PAGE_SIZE,
1455 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1456 	);
1457 
1458 	if (size == 0)		/* handle degenerate case */
1459 		return (0);
1460 
1461 	first_bit = base >> DEV_BSHIFT;
1462 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1463 
1464 	return ((2 << last_bit) - (1 << first_bit));
1465 }
1466 
1467 /*
1468  *	vm_page_set_validclean:
1469  *
1470  *	Sets portions of a page valid and clean.  The arguments are expected
1471  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1472  *	of any partial chunks touched by the range.  The invalid portion of
1473  *	such chunks will be zero'd.
1474  *
1475  *	This routine may not block.
1476  *
1477  *	(base + size) must be less then or equal to PAGE_SIZE.
1478  */
1479 void
1480 vm_page_set_validclean(vm_page_t m, int base, int size)
1481 {
1482 	int pagebits;
1483 	int frag;
1484 	int endoff;
1485 
1486 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1487 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1488 	if (size == 0)	/* handle degenerate case */
1489 		return;
1490 
1491 	/*
1492 	 * If the base is not DEV_BSIZE aligned and the valid
1493 	 * bit is clear, we have to zero out a portion of the
1494 	 * first block.
1495 	 */
1496 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1497 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1498 		pmap_zero_page_area(m, frag, base - frag);
1499 
1500 	/*
1501 	 * If the ending offset is not DEV_BSIZE aligned and the
1502 	 * valid bit is clear, we have to zero out a portion of
1503 	 * the last block.
1504 	 */
1505 	endoff = base + size;
1506 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1507 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1508 		pmap_zero_page_area(m, endoff,
1509 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1510 
1511 	/*
1512 	 * Set valid, clear dirty bits.  If validating the entire
1513 	 * page we can safely clear the pmap modify bit.  We also
1514 	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1515 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1516 	 * be set again.
1517 	 *
1518 	 * We set valid bits inclusive of any overlap, but we can only
1519 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1520 	 * the range.
1521 	 */
1522 	pagebits = vm_page_bits(base, size);
1523 	m->valid |= pagebits;
1524 #if 0	/* NOT YET */
1525 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1526 		frag = DEV_BSIZE - frag;
1527 		base += frag;
1528 		size -= frag;
1529 		if (size < 0)
1530 			size = 0;
1531 	}
1532 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1533 #endif
1534 	m->dirty &= ~pagebits;
1535 	if (base == 0 && size == PAGE_SIZE) {
1536 		pmap_clear_modify(m);
1537 		vm_page_flag_clear(m, PG_NOSYNC);
1538 	}
1539 }
1540 
1541 void
1542 vm_page_clear_dirty(vm_page_t m, int base, int size)
1543 {
1544 
1545 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1546 	m->dirty &= ~vm_page_bits(base, size);
1547 }
1548 
1549 /*
1550  *	vm_page_set_invalid:
1551  *
1552  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1553  *	valid and dirty bits for the effected areas are cleared.
1554  *
1555  *	May not block.
1556  */
1557 void
1558 vm_page_set_invalid(vm_page_t m, int base, int size)
1559 {
1560 	int bits;
1561 
1562 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1563 	bits = vm_page_bits(base, size);
1564 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1565 	m->valid &= ~bits;
1566 	m->dirty &= ~bits;
1567 	m->object->generation++;
1568 }
1569 
1570 /*
1571  * vm_page_zero_invalid()
1572  *
1573  *	The kernel assumes that the invalid portions of a page contain
1574  *	garbage, but such pages can be mapped into memory by user code.
1575  *	When this occurs, we must zero out the non-valid portions of the
1576  *	page so user code sees what it expects.
1577  *
1578  *	Pages are most often semi-valid when the end of a file is mapped
1579  *	into memory and the file's size is not page aligned.
1580  */
1581 void
1582 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1583 {
1584 	int b;
1585 	int i;
1586 
1587 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1588 	/*
1589 	 * Scan the valid bits looking for invalid sections that
1590 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1591 	 * valid bit may be set ) have already been zerod by
1592 	 * vm_page_set_validclean().
1593 	 */
1594 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1595 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1596 		    (m->valid & (1 << i))
1597 		) {
1598 			if (i > b) {
1599 				pmap_zero_page_area(m,
1600 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1601 			}
1602 			b = i + 1;
1603 		}
1604 	}
1605 
1606 	/*
1607 	 * setvalid is TRUE when we can safely set the zero'd areas
1608 	 * as being valid.  We can do this if there are no cache consistancy
1609 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1610 	 */
1611 	if (setvalid)
1612 		m->valid = VM_PAGE_BITS_ALL;
1613 }
1614 
1615 /*
1616  *	vm_page_is_valid:
1617  *
1618  *	Is (partial) page valid?  Note that the case where size == 0
1619  *	will return FALSE in the degenerate case where the page is
1620  *	entirely invalid, and TRUE otherwise.
1621  *
1622  *	May not block.
1623  */
1624 int
1625 vm_page_is_valid(vm_page_t m, int base, int size)
1626 {
1627 	int bits = vm_page_bits(base, size);
1628 
1629 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1630 	if (m->valid && ((m->valid & bits) == bits))
1631 		return 1;
1632 	else
1633 		return 0;
1634 }
1635 
1636 /*
1637  * update dirty bits from pmap/mmu.  May not block.
1638  */
1639 void
1640 vm_page_test_dirty(vm_page_t m)
1641 {
1642 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1643 		vm_page_dirty(m);
1644 	}
1645 }
1646 
1647 int so_zerocp_fullpage = 0;
1648 
1649 void
1650 vm_page_cowfault(vm_page_t m)
1651 {
1652 	vm_page_t mnew;
1653 	vm_object_t object;
1654 	vm_pindex_t pindex;
1655 
1656 	object = m->object;
1657 	pindex = m->pindex;
1658 
1659  retry_alloc:
1660 	vm_page_remove(m);
1661 	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
1662 	if (mnew == NULL) {
1663 		vm_page_insert(m, object, pindex);
1664 		vm_page_unlock_queues();
1665 		VM_OBJECT_UNLOCK(object);
1666 		VM_WAIT;
1667 		VM_OBJECT_LOCK(object);
1668 		vm_page_lock_queues();
1669 		goto retry_alloc;
1670 	}
1671 
1672 	if (m->cow == 0) {
1673 		/*
1674 		 * check to see if we raced with an xmit complete when
1675 		 * waiting to allocate a page.  If so, put things back
1676 		 * the way they were
1677 		 */
1678 		vm_page_free(mnew);
1679 		vm_page_insert(m, object, pindex);
1680 	} else { /* clear COW & copy page */
1681 		if (!so_zerocp_fullpage)
1682 			pmap_copy_page(m, mnew);
1683 		mnew->valid = VM_PAGE_BITS_ALL;
1684 		vm_page_dirty(mnew);
1685 		vm_page_flag_clear(mnew, PG_BUSY);
1686 	}
1687 }
1688 
1689 void
1690 vm_page_cowclear(vm_page_t m)
1691 {
1692 
1693 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1694 	if (m->cow) {
1695 		m->cow--;
1696 		/*
1697 		 * let vm_fault add back write permission  lazily
1698 		 */
1699 	}
1700 	/*
1701 	 *  sf_buf_free() will free the page, so we needn't do it here
1702 	 */
1703 }
1704 
1705 void
1706 vm_page_cowsetup(vm_page_t m)
1707 {
1708 
1709 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1710 	m->cow++;
1711 	pmap_page_protect(m, VM_PROT_READ);
1712 }
1713 
1714 #include "opt_ddb.h"
1715 #ifdef DDB
1716 #include <sys/kernel.h>
1717 
1718 #include <ddb/ddb.h>
1719 
1720 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1721 {
1722 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1723 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1724 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1725 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1726 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1727 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1728 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1729 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1730 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1731 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1732 }
1733 
1734 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1735 {
1736 	int i;
1737 	db_printf("PQ_FREE:");
1738 	for (i = 0; i < PQ_L2_SIZE; i++) {
1739 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1740 	}
1741 	db_printf("\n");
1742 
1743 	db_printf("PQ_CACHE:");
1744 	for (i = 0; i < PQ_L2_SIZE; i++) {
1745 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1746 	}
1747 	db_printf("\n");
1748 
1749 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1750 		vm_page_queues[PQ_ACTIVE].lcnt,
1751 		vm_page_queues[PQ_INACTIVE].lcnt);
1752 }
1753 #endif /* DDB */
1754