1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * The Mach Operating System project at Carnegie-Mellon University. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 */ 35 36 /*- 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Resident memory management module. 65 */ 66 67 #include <sys/cdefs.h> 68 #include "opt_vm.h" 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/counter.h> 73 #include <sys/domainset.h> 74 #include <sys/kernel.h> 75 #include <sys/limits.h> 76 #include <sys/linker.h> 77 #include <sys/lock.h> 78 #include <sys/malloc.h> 79 #include <sys/mman.h> 80 #include <sys/msgbuf.h> 81 #include <sys/mutex.h> 82 #include <sys/proc.h> 83 #include <sys/rwlock.h> 84 #include <sys/sleepqueue.h> 85 #include <sys/sbuf.h> 86 #include <sys/sched.h> 87 #include <sys/smp.h> 88 #include <sys/sysctl.h> 89 #include <sys/vmmeter.h> 90 #include <sys/vnode.h> 91 92 #include <vm/vm.h> 93 #include <vm/pmap.h> 94 #include <vm/vm_param.h> 95 #include <vm/vm_domainset.h> 96 #include <vm/vm_kern.h> 97 #include <vm/vm_map.h> 98 #include <vm/vm_object.h> 99 #include <vm/vm_page.h> 100 #include <vm/vm_pageout.h> 101 #include <vm/vm_phys.h> 102 #include <vm/vm_pagequeue.h> 103 #include <vm/vm_pager.h> 104 #include <vm/vm_radix.h> 105 #include <vm/vm_reserv.h> 106 #include <vm/vm_extern.h> 107 #include <vm/vm_dumpset.h> 108 #include <vm/uma.h> 109 #include <vm/uma_int.h> 110 111 #include <machine/md_var.h> 112 113 struct vm_domain vm_dom[MAXMEMDOM]; 114 115 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]); 116 117 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT]; 118 119 struct mtx_padalign __exclusive_cache_line vm_domainset_lock; 120 /* The following fields are protected by the domainset lock. */ 121 domainset_t __exclusive_cache_line vm_min_domains; 122 domainset_t __exclusive_cache_line vm_severe_domains; 123 static int vm_min_waiters; 124 static int vm_severe_waiters; 125 static int vm_pageproc_waiters; 126 127 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 128 "VM page statistics"); 129 130 static COUNTER_U64_DEFINE_EARLY(pqstate_commit_retries); 131 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries, 132 CTLFLAG_RD, &pqstate_commit_retries, 133 "Number of failed per-page atomic queue state updates"); 134 135 static COUNTER_U64_DEFINE_EARLY(queue_ops); 136 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops, 137 CTLFLAG_RD, &queue_ops, 138 "Number of batched queue operations"); 139 140 static COUNTER_U64_DEFINE_EARLY(queue_nops); 141 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops, 142 CTLFLAG_RD, &queue_nops, 143 "Number of batched queue operations with no effects"); 144 145 /* 146 * bogus page -- for I/O to/from partially complete buffers, 147 * or for paging into sparsely invalid regions. 148 */ 149 vm_page_t bogus_page; 150 151 vm_page_t vm_page_array; 152 long vm_page_array_size; 153 long first_page; 154 155 struct bitset *vm_page_dump; 156 long vm_page_dump_pages; 157 158 static TAILQ_HEAD(, vm_page) blacklist_head; 159 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS); 160 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD | 161 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages"); 162 163 static uma_zone_t fakepg_zone; 164 165 static void vm_page_alloc_check(vm_page_t m); 166 static vm_page_t vm_page_alloc_nofree_domain(int domain, int req); 167 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, 168 vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked); 169 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits); 170 static void vm_page_enqueue(vm_page_t m, uint8_t queue); 171 static bool vm_page_free_prep(vm_page_t m); 172 static void vm_page_free_toq(vm_page_t m); 173 static void vm_page_init(void *dummy); 174 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object); 175 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue, 176 const uint16_t nflag); 177 static int vm_page_reclaim_run(int req_class, int domain, u_long npages, 178 vm_page_t m_run, vm_paddr_t high); 179 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse); 180 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, 181 int req); 182 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain, 183 int flags); 184 static void vm_page_zone_release(void *arg, void **store, int cnt); 185 186 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL); 187 188 static void 189 vm_page_init(void *dummy) 190 { 191 192 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL, 193 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 194 bogus_page = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_NOFREE); 195 } 196 197 static int pgcache_zone_max_pcpu; 198 SYSCTL_INT(_vm, OID_AUTO, pgcache_zone_max_pcpu, 199 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pgcache_zone_max_pcpu, 0, 200 "Per-CPU page cache size"); 201 202 /* 203 * The cache page zone is initialized later since we need to be able to allocate 204 * pages before UMA is fully initialized. 205 */ 206 static void 207 vm_page_init_cache_zones(void *dummy __unused) 208 { 209 struct vm_domain *vmd; 210 struct vm_pgcache *pgcache; 211 int cache, domain, maxcache, pool; 212 213 TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &pgcache_zone_max_pcpu); 214 maxcache = pgcache_zone_max_pcpu * mp_ncpus; 215 for (domain = 0; domain < vm_ndomains; domain++) { 216 vmd = VM_DOMAIN(domain); 217 for (pool = 0; pool < VM_NFREEPOOL; pool++) { 218 #ifdef VM_FREEPOOL_LAZYINIT 219 if (pool == VM_FREEPOOL_LAZYINIT) 220 continue; 221 #endif 222 pgcache = &vmd->vmd_pgcache[pool]; 223 pgcache->domain = domain; 224 pgcache->pool = pool; 225 pgcache->zone = uma_zcache_create("vm pgcache", 226 PAGE_SIZE, NULL, NULL, NULL, NULL, 227 vm_page_zone_import, vm_page_zone_release, pgcache, 228 UMA_ZONE_VM); 229 230 /* 231 * Limit each pool's zone to 0.1% of the pages in the 232 * domain. 233 */ 234 cache = maxcache != 0 ? maxcache : 235 vmd->vmd_page_count / 1000; 236 uma_zone_set_maxcache(pgcache->zone, cache); 237 } 238 } 239 } 240 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL); 241 242 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */ 243 #if PAGE_SIZE == 32768 244 #ifdef CTASSERT 245 CTASSERT(sizeof(u_long) >= 8); 246 #endif 247 #endif 248 249 /* 250 * vm_set_page_size: 251 * 252 * Sets the page size, perhaps based upon the memory 253 * size. Must be called before any use of page-size 254 * dependent functions. 255 */ 256 void 257 vm_set_page_size(void) 258 { 259 if (vm_cnt.v_page_size == 0) 260 vm_cnt.v_page_size = PAGE_SIZE; 261 if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0) 262 panic("vm_set_page_size: page size not a power of two"); 263 } 264 265 /* 266 * vm_page_blacklist_next: 267 * 268 * Find the next entry in the provided string of blacklist 269 * addresses. Entries are separated by space, comma, or newline. 270 * If an invalid integer is encountered then the rest of the 271 * string is skipped. Updates the list pointer to the next 272 * character, or NULL if the string is exhausted or invalid. 273 */ 274 static vm_paddr_t 275 vm_page_blacklist_next(char **list, char *end) 276 { 277 vm_paddr_t bad; 278 char *cp, *pos; 279 280 if (list == NULL || *list == NULL) 281 return (0); 282 if (**list =='\0') { 283 *list = NULL; 284 return (0); 285 } 286 287 /* 288 * If there's no end pointer then the buffer is coming from 289 * the kenv and we know it's null-terminated. 290 */ 291 if (end == NULL) 292 end = *list + strlen(*list); 293 294 /* Ensure that strtoq() won't walk off the end */ 295 if (*end != '\0') { 296 if (*end == '\n' || *end == ' ' || *end == ',') 297 *end = '\0'; 298 else { 299 printf("Blacklist not terminated, skipping\n"); 300 *list = NULL; 301 return (0); 302 } 303 } 304 305 for (pos = *list; *pos != '\0'; pos = cp) { 306 bad = strtoq(pos, &cp, 0); 307 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') { 308 if (bad == 0) { 309 if (++cp < end) 310 continue; 311 else 312 break; 313 } 314 } else 315 break; 316 if (*cp == '\0' || ++cp >= end) 317 *list = NULL; 318 else 319 *list = cp; 320 return (trunc_page(bad)); 321 } 322 printf("Garbage in RAM blacklist, skipping\n"); 323 *list = NULL; 324 return (0); 325 } 326 327 bool 328 vm_page_blacklist_add(vm_paddr_t pa, bool verbose) 329 { 330 struct vm_domain *vmd; 331 vm_page_t m; 332 bool found; 333 334 m = vm_phys_paddr_to_vm_page(pa); 335 if (m == NULL) 336 return (true); /* page does not exist, no failure */ 337 338 vmd = VM_DOMAIN(vm_phys_domain(pa)); 339 vm_domain_free_lock(vmd); 340 found = vm_phys_unfree_page(pa); 341 vm_domain_free_unlock(vmd); 342 if (found) { 343 vm_domain_freecnt_inc(vmd, -1); 344 TAILQ_INSERT_TAIL(&blacklist_head, m, listq); 345 if (verbose) 346 printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa); 347 } 348 return (found); 349 } 350 351 /* 352 * vm_page_blacklist_check: 353 * 354 * Iterate through the provided string of blacklist addresses, pulling 355 * each entry out of the physical allocator free list and putting it 356 * onto a list for reporting via the vm.page_blacklist sysctl. 357 */ 358 static void 359 vm_page_blacklist_check(char *list, char *end) 360 { 361 vm_paddr_t pa; 362 char *next; 363 364 next = list; 365 while (next != NULL) { 366 if ((pa = vm_page_blacklist_next(&next, end)) == 0) 367 continue; 368 vm_page_blacklist_add(pa, bootverbose); 369 } 370 } 371 372 /* 373 * vm_page_blacklist_load: 374 * 375 * Search for a special module named "ram_blacklist". It'll be a 376 * plain text file provided by the user via the loader directive 377 * of the same name. 378 */ 379 static void 380 vm_page_blacklist_load(char **list, char **end) 381 { 382 void *mod; 383 u_char *ptr; 384 u_int len; 385 386 mod = NULL; 387 ptr = NULL; 388 389 mod = preload_search_by_type("ram_blacklist"); 390 if (mod != NULL) { 391 ptr = preload_fetch_addr(mod); 392 len = preload_fetch_size(mod); 393 } 394 *list = ptr; 395 if (ptr != NULL) 396 *end = ptr + len; 397 else 398 *end = NULL; 399 return; 400 } 401 402 static int 403 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS) 404 { 405 vm_page_t m; 406 struct sbuf sbuf; 407 int error, first; 408 409 first = 1; 410 error = sysctl_wire_old_buffer(req, 0); 411 if (error != 0) 412 return (error); 413 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 414 TAILQ_FOREACH(m, &blacklist_head, listq) { 415 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",", 416 (uintmax_t)m->phys_addr); 417 first = 0; 418 } 419 error = sbuf_finish(&sbuf); 420 sbuf_delete(&sbuf); 421 return (error); 422 } 423 424 /* 425 * Initialize a dummy page for use in scans of the specified paging queue. 426 * In principle, this function only needs to set the flag PG_MARKER. 427 * Nonetheless, it write busies the page as a safety precaution. 428 */ 429 void 430 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags) 431 { 432 433 bzero(marker, sizeof(*marker)); 434 marker->flags = PG_MARKER; 435 marker->a.flags = aflags; 436 marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE; 437 marker->a.queue = queue; 438 } 439 440 static void 441 vm_page_domain_init(int domain) 442 { 443 struct vm_domain *vmd; 444 struct vm_pagequeue *pq; 445 int i; 446 447 vmd = VM_DOMAIN(domain); 448 bzero(vmd, sizeof(*vmd)); 449 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) = 450 "vm inactive pagequeue"; 451 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) = 452 "vm active pagequeue"; 453 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) = 454 "vm laundry pagequeue"; 455 *__DECONST(const char **, 456 &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) = 457 "vm unswappable pagequeue"; 458 vmd->vmd_domain = domain; 459 vmd->vmd_page_count = 0; 460 vmd->vmd_free_count = 0; 461 vmd->vmd_segs = 0; 462 vmd->vmd_oom = false; 463 vmd->vmd_helper_threads_enabled = true; 464 for (i = 0; i < PQ_COUNT; i++) { 465 pq = &vmd->vmd_pagequeues[i]; 466 TAILQ_INIT(&pq->pq_pl); 467 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue", 468 MTX_DEF | MTX_DUPOK); 469 pq->pq_pdpages = 0; 470 vm_page_init_marker(&vmd->vmd_markers[i], i, 0); 471 } 472 mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF); 473 mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF); 474 snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain); 475 476 /* 477 * inacthead is used to provide FIFO ordering for LRU-bypassing 478 * insertions. 479 */ 480 vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED); 481 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl, 482 &vmd->vmd_inacthead, plinks.q); 483 484 /* 485 * The clock pages are used to implement active queue scanning without 486 * requeues. Scans start at clock[0], which is advanced after the scan 487 * ends. When the two clock hands meet, they are reset and scanning 488 * resumes from the head of the queue. 489 */ 490 vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED); 491 vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED); 492 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl, 493 &vmd->vmd_clock[0], plinks.q); 494 TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl, 495 &vmd->vmd_clock[1], plinks.q); 496 } 497 498 /* 499 * Initialize a physical page in preparation for adding it to the free 500 * lists. 501 */ 502 void 503 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind, int pool) 504 { 505 m->object = NULL; 506 m->ref_count = 0; 507 m->busy_lock = VPB_FREED; 508 m->flags = m->a.flags = 0; 509 m->phys_addr = pa; 510 m->a.queue = PQ_NONE; 511 m->psind = 0; 512 m->segind = segind; 513 m->order = VM_NFREEORDER; 514 m->pool = pool; 515 m->valid = m->dirty = 0; 516 pmap_page_init(m); 517 } 518 519 #ifndef PMAP_HAS_PAGE_ARRAY 520 static vm_paddr_t 521 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range) 522 { 523 vm_paddr_t new_end; 524 525 /* 526 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 527 * However, because this page is allocated from KVM, out-of-bounds 528 * accesses using the direct map will not be trapped. 529 */ 530 *vaddr += PAGE_SIZE; 531 532 /* 533 * Allocate physical memory for the page structures, and map it. 534 */ 535 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 536 vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end, 537 VM_PROT_READ | VM_PROT_WRITE); 538 vm_page_array_size = page_range; 539 540 return (new_end); 541 } 542 #endif 543 544 /* 545 * vm_page_startup: 546 * 547 * Initializes the resident memory module. Allocates physical memory for 548 * bootstrapping UMA and some data structures that are used to manage 549 * physical pages. Initializes these structures, and populates the free 550 * page queues. 551 */ 552 vm_offset_t 553 vm_page_startup(vm_offset_t vaddr) 554 { 555 struct vm_phys_seg *seg; 556 struct vm_domain *vmd; 557 vm_page_t m; 558 char *list, *listend; 559 vm_paddr_t end, high_avail, low_avail, new_end, size; 560 vm_paddr_t page_range __unused; 561 vm_paddr_t last_pa, pa, startp, endp; 562 u_long pagecount; 563 #if MINIDUMP_PAGE_TRACKING 564 u_long vm_page_dump_size; 565 #endif 566 int biggestone, i, segind; 567 #ifdef WITNESS 568 vm_offset_t mapped; 569 int witness_size; 570 #endif 571 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE) 572 long ii; 573 #endif 574 int pool; 575 #ifdef VM_FREEPOOL_LAZYINIT 576 int lazyinit; 577 #endif 578 579 vaddr = round_page(vaddr); 580 581 vm_phys_early_startup(); 582 biggestone = vm_phys_avail_largest(); 583 end = phys_avail[biggestone+1]; 584 585 /* 586 * Initialize the page and queue locks. 587 */ 588 mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF); 589 for (i = 0; i < PA_LOCK_COUNT; i++) 590 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF); 591 for (i = 0; i < vm_ndomains; i++) 592 vm_page_domain_init(i); 593 594 new_end = end; 595 #ifdef WITNESS 596 witness_size = round_page(witness_startup_count()); 597 new_end -= witness_size; 598 mapped = pmap_map(&vaddr, new_end, new_end + witness_size, 599 VM_PROT_READ | VM_PROT_WRITE); 600 bzero((void *)mapped, witness_size); 601 witness_startup((void *)mapped); 602 #endif 603 604 #if MINIDUMP_PAGE_TRACKING 605 /* 606 * Allocate a bitmap to indicate that a random physical page 607 * needs to be included in a minidump. 608 * 609 * The amd64 port needs this to indicate which direct map pages 610 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 611 * 612 * However, i386 still needs this workspace internally within the 613 * minidump code. In theory, they are not needed on i386, but are 614 * included should the sf_buf code decide to use them. 615 */ 616 last_pa = 0; 617 vm_page_dump_pages = 0; 618 for (i = 0; dump_avail[i + 1] != 0; i += 2) { 619 vm_page_dump_pages += howmany(dump_avail[i + 1], PAGE_SIZE) - 620 dump_avail[i] / PAGE_SIZE; 621 if (dump_avail[i + 1] > last_pa) 622 last_pa = dump_avail[i + 1]; 623 } 624 vm_page_dump_size = round_page(BITSET_SIZE(vm_page_dump_pages)); 625 new_end -= vm_page_dump_size; 626 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, 627 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); 628 bzero((void *)vm_page_dump, vm_page_dump_size); 629 #if MINIDUMP_STARTUP_PAGE_TRACKING 630 /* 631 * Include the UMA bootstrap pages, witness pages and vm_page_dump 632 * in a crash dump. When pmap_map() uses the direct map, they are 633 * not automatically included. 634 */ 635 for (pa = new_end; pa < end; pa += PAGE_SIZE) 636 dump_add_page(pa); 637 #endif 638 #else 639 (void)last_pa; 640 #endif 641 phys_avail[biggestone + 1] = new_end; 642 #ifdef __amd64__ 643 /* 644 * Request that the physical pages underlying the message buffer be 645 * included in a crash dump. Since the message buffer is accessed 646 * through the direct map, they are not automatically included. 647 */ 648 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr); 649 last_pa = pa + round_page(msgbufsize); 650 while (pa < last_pa) { 651 dump_add_page(pa); 652 pa += PAGE_SIZE; 653 } 654 #else 655 (void)pa; 656 #endif 657 658 /* 659 * Determine the lowest and highest physical addresses and, in the case 660 * of VM_PHYSSEG_SPARSE, the exact size of the available physical 661 * memory. vm_phys_early_startup() already checked that phys_avail[] 662 * has at least one element. 663 */ 664 #ifdef VM_PHYSSEG_SPARSE 665 size = phys_avail[1] - phys_avail[0]; 666 #endif 667 low_avail = phys_avail[0]; 668 high_avail = phys_avail[1]; 669 for (i = 2; phys_avail[i + 1] != 0; i += 2) { 670 #ifdef VM_PHYSSEG_SPARSE 671 size += phys_avail[i + 1] - phys_avail[i]; 672 #endif 673 if (phys_avail[i] < low_avail) 674 low_avail = phys_avail[i]; 675 if (phys_avail[i + 1] > high_avail) 676 high_avail = phys_avail[i + 1]; 677 } 678 for (i = 0; i < vm_phys_nsegs; i++) { 679 #ifdef VM_PHYSSEG_SPARSE 680 size += vm_phys_segs[i].end - vm_phys_segs[i].start; 681 #endif 682 if (vm_phys_segs[i].start < low_avail) 683 low_avail = vm_phys_segs[i].start; 684 if (vm_phys_segs[i].end > high_avail) 685 high_avail = vm_phys_segs[i].end; 686 } 687 first_page = low_avail / PAGE_SIZE; 688 #ifdef VM_PHYSSEG_DENSE 689 size = high_avail - low_avail; 690 #endif 691 692 #ifdef PMAP_HAS_PAGE_ARRAY 693 pmap_page_array_startup(size / PAGE_SIZE); 694 biggestone = vm_phys_avail_largest(); 695 end = new_end = phys_avail[biggestone + 1]; 696 #else 697 #ifdef VM_PHYSSEG_DENSE 698 /* 699 * In the VM_PHYSSEG_DENSE case, the number of pages can account for 700 * the overhead of a page structure per page only if vm_page_array is 701 * allocated from the last physical memory chunk. Otherwise, we must 702 * allocate page structures representing the physical memory 703 * underlying vm_page_array, even though they will not be used. 704 */ 705 if (new_end != high_avail) 706 page_range = size / PAGE_SIZE; 707 else 708 #endif 709 { 710 page_range = size / (PAGE_SIZE + sizeof(struct vm_page)); 711 712 /* 713 * If the partial bytes remaining are large enough for 714 * a page (PAGE_SIZE) without a corresponding 715 * 'struct vm_page', then new_end will contain an 716 * extra page after subtracting the length of the VM 717 * page array. Compensate by subtracting an extra 718 * page from new_end. 719 */ 720 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) { 721 if (new_end == high_avail) 722 high_avail -= PAGE_SIZE; 723 new_end -= PAGE_SIZE; 724 } 725 } 726 end = new_end; 727 new_end = vm_page_array_alloc(&vaddr, end, page_range); 728 #endif 729 730 #if VM_NRESERVLEVEL > 0 731 /* 732 * Allocate physical memory for the reservation management system's 733 * data structures, and map it. 734 */ 735 new_end = vm_reserv_startup(&vaddr, new_end); 736 #endif 737 #if MINIDUMP_PAGE_TRACKING && MINIDUMP_STARTUP_PAGE_TRACKING 738 /* 739 * Include vm_page_array and vm_reserv_array in a crash dump. 740 */ 741 for (pa = new_end; pa < end; pa += PAGE_SIZE) 742 dump_add_page(pa); 743 #endif 744 phys_avail[biggestone + 1] = new_end; 745 746 /* 747 * Add physical memory segments corresponding to the available 748 * physical pages. 749 */ 750 for (i = 0; phys_avail[i + 1] != 0; i += 2) 751 vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]); 752 753 /* 754 * Initialize the physical memory allocator. 755 */ 756 vm_phys_init(); 757 758 pool = VM_FREEPOOL_DEFAULT; 759 #ifdef VM_FREEPOOL_LAZYINIT 760 lazyinit = 1; 761 TUNABLE_INT_FETCH("debug.vm.lazy_page_init", &lazyinit); 762 if (lazyinit) 763 pool = VM_FREEPOOL_LAZYINIT; 764 #endif 765 766 /* 767 * Initialize the page structures and add every available page to the 768 * physical memory allocator's free lists. 769 */ 770 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE) 771 for (ii = 0; ii < vm_page_array_size; ii++) { 772 m = &vm_page_array[ii]; 773 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0, 774 VM_FREEPOOL_DEFAULT); 775 m->flags = PG_FICTITIOUS; 776 } 777 #endif 778 vm_cnt.v_page_count = 0; 779 for (segind = 0; segind < vm_phys_nsegs; segind++) { 780 seg = &vm_phys_segs[segind]; 781 782 /* 783 * Initialize pages not covered by phys_avail[], since they 784 * might be freed to the allocator at some future point, e.g., 785 * by kmem_bootstrap_free(). 786 */ 787 startp = seg->start; 788 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 789 if (startp >= seg->end) 790 break; 791 if (phys_avail[i + 1] < startp) 792 continue; 793 if (phys_avail[i] <= startp) { 794 startp = phys_avail[i + 1]; 795 continue; 796 } 797 m = vm_phys_seg_paddr_to_vm_page(seg, startp); 798 for (endp = MIN(phys_avail[i], seg->end); 799 startp < endp; startp += PAGE_SIZE, m++) { 800 vm_page_init_page(m, startp, segind, 801 VM_FREEPOOL_DEFAULT); 802 } 803 } 804 805 /* 806 * Add the segment's pages that are covered by one of 807 * phys_avail's ranges to the free lists. 808 */ 809 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 810 if (seg->end <= phys_avail[i] || 811 seg->start >= phys_avail[i + 1]) 812 continue; 813 814 startp = MAX(seg->start, phys_avail[i]); 815 endp = MIN(seg->end, phys_avail[i + 1]); 816 pagecount = (u_long)atop(endp - startp); 817 if (pagecount == 0) 818 continue; 819 820 /* 821 * If lazy vm_page initialization is not enabled, simply 822 * initialize all of the pages in the segment covered by 823 * phys_avail. Otherwise, initialize only the first 824 * page of each run of free pages handed to the vm_phys 825 * allocator, which in turn defers initialization of 826 * pages until they are needed. 827 * 828 * This avoids blocking the boot process for long 829 * periods, which may be relevant for VMs (which ought 830 * to boot as quickly as possible) and/or systems with 831 * large amounts of physical memory. 832 */ 833 m = vm_phys_seg_paddr_to_vm_page(seg, startp); 834 vm_page_init_page(m, startp, segind, pool); 835 if (pool == VM_FREEPOOL_DEFAULT) { 836 for (u_long j = 1; j < pagecount; j++) { 837 vm_page_init_page(&m[j], 838 startp + ptoa((vm_paddr_t)j), 839 segind, pool); 840 } 841 } 842 vmd = VM_DOMAIN(seg->domain); 843 vm_domain_free_lock(vmd); 844 vm_phys_enqueue_contig(m, pool, pagecount); 845 vm_domain_free_unlock(vmd); 846 vm_domain_freecnt_inc(vmd, pagecount); 847 vm_cnt.v_page_count += (u_int)pagecount; 848 vmd->vmd_page_count += (u_int)pagecount; 849 vmd->vmd_segs |= 1UL << segind; 850 } 851 } 852 853 /* 854 * Remove blacklisted pages from the physical memory allocator. 855 */ 856 TAILQ_INIT(&blacklist_head); 857 vm_page_blacklist_load(&list, &listend); 858 vm_page_blacklist_check(list, listend); 859 860 list = kern_getenv("vm.blacklist"); 861 vm_page_blacklist_check(list, NULL); 862 863 freeenv(list); 864 #if VM_NRESERVLEVEL > 0 865 /* 866 * Initialize the reservation management system. 867 */ 868 vm_reserv_init(); 869 #endif 870 871 return (vaddr); 872 } 873 874 void 875 vm_page_reference(vm_page_t m) 876 { 877 878 vm_page_aflag_set(m, PGA_REFERENCED); 879 } 880 881 /* 882 * vm_page_trybusy 883 * 884 * Helper routine for grab functions to trylock busy. 885 * 886 * Returns true on success and false on failure. 887 */ 888 static bool 889 vm_page_trybusy(vm_page_t m, int allocflags) 890 { 891 892 if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0) 893 return (vm_page_trysbusy(m)); 894 else 895 return (vm_page_tryxbusy(m)); 896 } 897 898 /* 899 * vm_page_tryacquire 900 * 901 * Helper routine for grab functions to trylock busy and wire. 902 * 903 * Returns true on success and false on failure. 904 */ 905 static inline bool 906 vm_page_tryacquire(vm_page_t m, int allocflags) 907 { 908 bool locked; 909 910 locked = vm_page_trybusy(m, allocflags); 911 if (locked && (allocflags & VM_ALLOC_WIRED) != 0) 912 vm_page_wire(m); 913 return (locked); 914 } 915 916 /* 917 * vm_page_busy_acquire: 918 * 919 * Acquire the busy lock as described by VM_ALLOC_* flags. Will loop 920 * and drop the object lock if necessary. 921 */ 922 bool 923 vm_page_busy_acquire(vm_page_t m, int allocflags) 924 { 925 vm_object_t obj; 926 bool locked; 927 928 /* 929 * The page-specific object must be cached because page 930 * identity can change during the sleep, causing the 931 * re-lock of a different object. 932 * It is assumed that a reference to the object is already 933 * held by the callers. 934 */ 935 obj = atomic_load_ptr(&m->object); 936 for (;;) { 937 if (vm_page_tryacquire(m, allocflags)) 938 return (true); 939 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 940 return (false); 941 if (obj != NULL) 942 locked = VM_OBJECT_WOWNED(obj); 943 else 944 locked = false; 945 MPASS(locked || vm_page_wired(m)); 946 if (_vm_page_busy_sleep(obj, m, m->pindex, "vmpba", allocflags, 947 locked) && locked) 948 VM_OBJECT_WLOCK(obj); 949 if ((allocflags & VM_ALLOC_WAITFAIL) != 0) 950 return (false); 951 KASSERT(m->object == obj || m->object == NULL, 952 ("vm_page_busy_acquire: page %p does not belong to %p", 953 m, obj)); 954 } 955 } 956 957 /* 958 * vm_page_busy_downgrade: 959 * 960 * Downgrade an exclusive busy page into a single shared busy page. 961 */ 962 void 963 vm_page_busy_downgrade(vm_page_t m) 964 { 965 u_int x; 966 967 vm_page_assert_xbusied(m); 968 969 x = vm_page_busy_fetch(m); 970 for (;;) { 971 if (atomic_fcmpset_rel_int(&m->busy_lock, 972 &x, VPB_SHARERS_WORD(1))) 973 break; 974 } 975 if ((x & VPB_BIT_WAITERS) != 0) 976 wakeup(m); 977 } 978 979 /* 980 * 981 * vm_page_busy_tryupgrade: 982 * 983 * Attempt to upgrade a single shared busy into an exclusive busy. 984 */ 985 int 986 vm_page_busy_tryupgrade(vm_page_t m) 987 { 988 u_int ce, x; 989 990 vm_page_assert_sbusied(m); 991 992 x = vm_page_busy_fetch(m); 993 ce = VPB_CURTHREAD_EXCLUSIVE; 994 for (;;) { 995 if (VPB_SHARERS(x) > 1) 996 return (0); 997 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1), 998 ("vm_page_busy_tryupgrade: invalid lock state")); 999 if (!atomic_fcmpset_acq_int(&m->busy_lock, &x, 1000 ce | (x & VPB_BIT_WAITERS))) 1001 continue; 1002 return (1); 1003 } 1004 } 1005 1006 /* 1007 * vm_page_sbusied: 1008 * 1009 * Return a positive value if the page is shared busied, 0 otherwise. 1010 */ 1011 int 1012 vm_page_sbusied(vm_page_t m) 1013 { 1014 u_int x; 1015 1016 x = vm_page_busy_fetch(m); 1017 return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED); 1018 } 1019 1020 /* 1021 * vm_page_sunbusy: 1022 * 1023 * Shared unbusy a page. 1024 */ 1025 void 1026 vm_page_sunbusy(vm_page_t m) 1027 { 1028 u_int x; 1029 1030 vm_page_assert_sbusied(m); 1031 1032 x = vm_page_busy_fetch(m); 1033 for (;;) { 1034 KASSERT(x != VPB_FREED, 1035 ("vm_page_sunbusy: Unlocking freed page.")); 1036 if (VPB_SHARERS(x) > 1) { 1037 if (atomic_fcmpset_int(&m->busy_lock, &x, 1038 x - VPB_ONE_SHARER)) 1039 break; 1040 continue; 1041 } 1042 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1), 1043 ("vm_page_sunbusy: invalid lock state")); 1044 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED)) 1045 continue; 1046 if ((x & VPB_BIT_WAITERS) == 0) 1047 break; 1048 wakeup(m); 1049 break; 1050 } 1051 } 1052 1053 /* 1054 * vm_page_busy_sleep: 1055 * 1056 * Sleep if the page is busy, using the page pointer as wchan. 1057 * This is used to implement the hard-path of the busying mechanism. 1058 * 1059 * If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function 1060 * will not sleep if the page is shared-busy. 1061 * 1062 * The object lock must be held on entry. 1063 * 1064 * Returns true if it slept and dropped the object lock, or false 1065 * if there was no sleep and the lock is still held. 1066 */ 1067 bool 1068 vm_page_busy_sleep(vm_page_t m, const char *wmesg, int allocflags) 1069 { 1070 vm_object_t obj; 1071 1072 obj = m->object; 1073 VM_OBJECT_ASSERT_LOCKED(obj); 1074 1075 return (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, allocflags, 1076 true)); 1077 } 1078 1079 /* 1080 * vm_page_busy_sleep_unlocked: 1081 * 1082 * Sleep if the page is busy, using the page pointer as wchan. 1083 * This is used to implement the hard-path of busying mechanism. 1084 * 1085 * If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function 1086 * will not sleep if the page is shared-busy. 1087 * 1088 * The object lock must not be held on entry. The operation will 1089 * return if the page changes identity. 1090 */ 1091 void 1092 vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, vm_pindex_t pindex, 1093 const char *wmesg, int allocflags) 1094 { 1095 VM_OBJECT_ASSERT_UNLOCKED(obj); 1096 1097 (void)_vm_page_busy_sleep(obj, m, pindex, wmesg, allocflags, false); 1098 } 1099 1100 /* 1101 * _vm_page_busy_sleep: 1102 * 1103 * Internal busy sleep function. Verifies the page identity and 1104 * lockstate against parameters. Returns true if it sleeps and 1105 * false otherwise. 1106 * 1107 * allocflags uses VM_ALLOC_* flags to specify the lock required. 1108 * 1109 * If locked is true the lock will be dropped for any true returns 1110 * and held for any false returns. 1111 */ 1112 static bool 1113 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, vm_pindex_t pindex, 1114 const char *wmesg, int allocflags, bool locked) 1115 { 1116 bool xsleep; 1117 u_int x; 1118 1119 /* 1120 * If the object is busy we must wait for that to drain to zero 1121 * before trying the page again. 1122 */ 1123 if (obj != NULL && vm_object_busied(obj)) { 1124 if (locked) 1125 VM_OBJECT_DROP(obj); 1126 vm_object_busy_wait(obj, wmesg); 1127 return (true); 1128 } 1129 1130 if (!vm_page_busied(m)) 1131 return (false); 1132 1133 xsleep = (allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0; 1134 sleepq_lock(m); 1135 x = vm_page_busy_fetch(m); 1136 do { 1137 /* 1138 * If the page changes objects or becomes unlocked we can 1139 * simply return. 1140 */ 1141 if (x == VPB_UNBUSIED || 1142 (xsleep && (x & VPB_BIT_SHARED) != 0) || 1143 m->object != obj || m->pindex != pindex) { 1144 sleepq_release(m); 1145 return (false); 1146 } 1147 if ((x & VPB_BIT_WAITERS) != 0) 1148 break; 1149 } while (!atomic_fcmpset_int(&m->busy_lock, &x, x | VPB_BIT_WAITERS)); 1150 if (locked) 1151 VM_OBJECT_DROP(obj); 1152 DROP_GIANT(); 1153 sleepq_add(m, NULL, wmesg, 0, 0); 1154 sleepq_wait(m, PVM); 1155 PICKUP_GIANT(); 1156 return (true); 1157 } 1158 1159 /* 1160 * vm_page_trysbusy: 1161 * 1162 * Try to shared busy a page. 1163 * If the operation succeeds 1 is returned otherwise 0. 1164 * The operation never sleeps. 1165 */ 1166 int 1167 vm_page_trysbusy(vm_page_t m) 1168 { 1169 vm_object_t obj; 1170 u_int x; 1171 1172 obj = m->object; 1173 x = vm_page_busy_fetch(m); 1174 for (;;) { 1175 if ((x & VPB_BIT_SHARED) == 0) 1176 return (0); 1177 /* 1178 * Reduce the window for transient busies that will trigger 1179 * false negatives in vm_page_ps_test(). 1180 */ 1181 if (obj != NULL && vm_object_busied(obj)) 1182 return (0); 1183 if (atomic_fcmpset_acq_int(&m->busy_lock, &x, 1184 x + VPB_ONE_SHARER)) 1185 break; 1186 } 1187 1188 /* Refetch the object now that we're guaranteed that it is stable. */ 1189 obj = m->object; 1190 if (obj != NULL && vm_object_busied(obj)) { 1191 vm_page_sunbusy(m); 1192 return (0); 1193 } 1194 return (1); 1195 } 1196 1197 /* 1198 * vm_page_tryxbusy: 1199 * 1200 * Try to exclusive busy a page. 1201 * If the operation succeeds 1 is returned otherwise 0. 1202 * The operation never sleeps. 1203 */ 1204 int 1205 vm_page_tryxbusy(vm_page_t m) 1206 { 1207 vm_object_t obj; 1208 1209 if (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED, 1210 VPB_CURTHREAD_EXCLUSIVE) == 0) 1211 return (0); 1212 1213 obj = m->object; 1214 if (obj != NULL && vm_object_busied(obj)) { 1215 vm_page_xunbusy(m); 1216 return (0); 1217 } 1218 return (1); 1219 } 1220 1221 static void 1222 vm_page_xunbusy_hard_tail(vm_page_t m) 1223 { 1224 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED); 1225 /* Wake the waiter. */ 1226 wakeup(m); 1227 } 1228 1229 /* 1230 * vm_page_xunbusy_hard: 1231 * 1232 * Called when unbusy has failed because there is a waiter. 1233 */ 1234 void 1235 vm_page_xunbusy_hard(vm_page_t m) 1236 { 1237 vm_page_assert_xbusied(m); 1238 vm_page_xunbusy_hard_tail(m); 1239 } 1240 1241 void 1242 vm_page_xunbusy_hard_unchecked(vm_page_t m) 1243 { 1244 vm_page_assert_xbusied_unchecked(m); 1245 vm_page_xunbusy_hard_tail(m); 1246 } 1247 1248 static void 1249 vm_page_busy_free(vm_page_t m) 1250 { 1251 u_int x; 1252 1253 atomic_thread_fence_rel(); 1254 x = atomic_swap_int(&m->busy_lock, VPB_FREED); 1255 if ((x & VPB_BIT_WAITERS) != 0) 1256 wakeup(m); 1257 } 1258 1259 /* 1260 * vm_page_unhold_pages: 1261 * 1262 * Unhold each of the pages that is referenced by the given array. 1263 */ 1264 void 1265 vm_page_unhold_pages(vm_page_t *ma, int count) 1266 { 1267 1268 for (; count != 0; count--) { 1269 vm_page_unwire(*ma, PQ_ACTIVE); 1270 ma++; 1271 } 1272 } 1273 1274 vm_page_t 1275 PHYS_TO_VM_PAGE(vm_paddr_t pa) 1276 { 1277 vm_page_t m; 1278 1279 #ifdef VM_PHYSSEG_SPARSE 1280 m = vm_phys_paddr_to_vm_page(pa); 1281 if (m == NULL) 1282 m = vm_phys_fictitious_to_vm_page(pa); 1283 return (m); 1284 #elif defined(VM_PHYSSEG_DENSE) 1285 long pi; 1286 1287 pi = atop(pa); 1288 if (pi >= first_page && (pi - first_page) < vm_page_array_size) { 1289 m = &vm_page_array[pi - first_page]; 1290 return (m); 1291 } 1292 return (vm_phys_fictitious_to_vm_page(pa)); 1293 #else 1294 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 1295 #endif 1296 } 1297 1298 /* 1299 * vm_page_getfake: 1300 * 1301 * Create a fictitious page with the specified physical address and 1302 * memory attribute. The memory attribute is the only the machine- 1303 * dependent aspect of a fictitious page that must be initialized. 1304 */ 1305 vm_page_t 1306 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr) 1307 { 1308 vm_page_t m; 1309 1310 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO); 1311 vm_page_initfake(m, paddr, memattr); 1312 return (m); 1313 } 1314 1315 void 1316 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 1317 { 1318 1319 if ((m->flags & PG_FICTITIOUS) != 0) { 1320 /* 1321 * The page's memattr might have changed since the 1322 * previous initialization. Update the pmap to the 1323 * new memattr. 1324 */ 1325 goto memattr; 1326 } 1327 m->phys_addr = paddr; 1328 m->a.queue = PQ_NONE; 1329 /* Fictitious pages don't use "segind". */ 1330 m->flags = PG_FICTITIOUS; 1331 /* Fictitious pages don't use "order" or "pool". */ 1332 m->oflags = VPO_UNMANAGED; 1333 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE; 1334 /* Fictitious pages are unevictable. */ 1335 m->ref_count = 1; 1336 pmap_page_init(m); 1337 memattr: 1338 pmap_page_set_memattr(m, memattr); 1339 } 1340 1341 /* 1342 * vm_page_putfake: 1343 * 1344 * Release a fictitious page. 1345 */ 1346 void 1347 vm_page_putfake(vm_page_t m) 1348 { 1349 1350 KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m)); 1351 KASSERT((m->flags & PG_FICTITIOUS) != 0, 1352 ("vm_page_putfake: bad page %p", m)); 1353 vm_page_assert_xbusied(m); 1354 vm_page_busy_free(m); 1355 uma_zfree(fakepg_zone, m); 1356 } 1357 1358 /* 1359 * vm_page_updatefake: 1360 * 1361 * Update the given fictitious page to the specified physical address and 1362 * memory attribute. 1363 */ 1364 void 1365 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 1366 { 1367 1368 KASSERT((m->flags & PG_FICTITIOUS) != 0, 1369 ("vm_page_updatefake: bad page %p", m)); 1370 m->phys_addr = paddr; 1371 pmap_page_set_memattr(m, memattr); 1372 } 1373 1374 /* 1375 * vm_page_free: 1376 * 1377 * Free a page. 1378 */ 1379 void 1380 vm_page_free(vm_page_t m) 1381 { 1382 1383 m->flags &= ~PG_ZERO; 1384 vm_page_free_toq(m); 1385 } 1386 1387 /* 1388 * vm_page_free_zero: 1389 * 1390 * Free a page to the zerod-pages queue 1391 */ 1392 void 1393 vm_page_free_zero(vm_page_t m) 1394 { 1395 1396 m->flags |= PG_ZERO; 1397 vm_page_free_toq(m); 1398 } 1399 1400 /* 1401 * Unbusy and handle the page queueing for a page from a getpages request that 1402 * was optionally read ahead or behind. 1403 */ 1404 void 1405 vm_page_readahead_finish(vm_page_t m) 1406 { 1407 1408 /* We shouldn't put invalid pages on queues. */ 1409 KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m)); 1410 1411 /* 1412 * Since the page is not the actually needed one, whether it should 1413 * be activated or deactivated is not obvious. Empirical results 1414 * have shown that deactivating the page is usually the best choice, 1415 * unless the page is wanted by another thread. 1416 */ 1417 if ((vm_page_busy_fetch(m) & VPB_BIT_WAITERS) != 0) 1418 vm_page_activate(m); 1419 else 1420 vm_page_deactivate(m); 1421 vm_page_xunbusy_unchecked(m); 1422 } 1423 1424 /* 1425 * Destroy the identity of an invalid page and free it if possible. 1426 * This is intended to be used when reading a page from backing store fails. 1427 */ 1428 void 1429 vm_page_free_invalid(vm_page_t m) 1430 { 1431 1432 KASSERT(vm_page_none_valid(m), ("page %p is valid", m)); 1433 KASSERT(!pmap_page_is_mapped(m), ("page %p is mapped", m)); 1434 KASSERT(m->object != NULL, ("page %p has no object", m)); 1435 VM_OBJECT_ASSERT_WLOCKED(m->object); 1436 1437 /* 1438 * We may be attempting to free the page as part of the handling for an 1439 * I/O error, in which case the page was xbusied by a different thread. 1440 */ 1441 vm_page_xbusy_claim(m); 1442 1443 /* 1444 * If someone has wired this page while the object lock 1445 * was not held, then the thread that unwires is responsible 1446 * for freeing the page. Otherwise just free the page now. 1447 * The wire count of this unmapped page cannot change while 1448 * we have the page xbusy and the page's object wlocked. 1449 */ 1450 if (vm_page_remove(m)) 1451 vm_page_free(m); 1452 } 1453 1454 /* 1455 * vm_page_dirty_KBI: [ internal use only ] 1456 * 1457 * Set all bits in the page's dirty field. 1458 * 1459 * The object containing the specified page must be locked if the 1460 * call is made from the machine-independent layer. 1461 * 1462 * See vm_page_clear_dirty_mask(). 1463 * 1464 * This function should only be called by vm_page_dirty(). 1465 */ 1466 void 1467 vm_page_dirty_KBI(vm_page_t m) 1468 { 1469 1470 /* Refer to this operation by its public name. */ 1471 KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!")); 1472 m->dirty = VM_PAGE_BITS_ALL; 1473 } 1474 1475 /* 1476 * Insert the given page into the given object at the given pindex. 1477 * 1478 * The procedure is marked __always_inline to suggest to the compiler to 1479 * eliminate the iter parameter and the associated alternate branch. 1480 */ 1481 static __always_inline int 1482 vm_page_insert_lookup(vm_page_t m, vm_object_t object, vm_pindex_t pindex, 1483 bool iter, struct pctrie_iter *pages) 1484 { 1485 int error; 1486 1487 VM_OBJECT_ASSERT_WLOCKED(object); 1488 KASSERT(m->object == NULL, 1489 ("vm_page_insert: page %p already inserted", m)); 1490 1491 /* 1492 * Record the object/offset pair in this page. 1493 */ 1494 m->object = object; 1495 m->pindex = pindex; 1496 m->ref_count |= VPRC_OBJREF; 1497 1498 /* 1499 * Add this page to the object's radix tree. 1500 */ 1501 if (iter) 1502 error = vm_radix_iter_insert(pages, m); 1503 else 1504 error = vm_radix_insert(&object->rtree, m); 1505 if (__predict_false(error != 0)) { 1506 m->object = NULL; 1507 m->pindex = 0; 1508 m->ref_count &= ~VPRC_OBJREF; 1509 return (1); 1510 } 1511 1512 vm_page_insert_radixdone(m, object); 1513 vm_pager_page_inserted(object, m); 1514 return (0); 1515 } 1516 1517 /* 1518 * vm_page_insert: [ internal use only ] 1519 * 1520 * Inserts the given mem entry into the object and object list. 1521 * 1522 * The object must be locked. 1523 */ 1524 int 1525 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 1526 { 1527 return (vm_page_insert_lookup(m, object, pindex, false, NULL)); 1528 } 1529 1530 /* 1531 * vm_page_iter_insert: 1532 * 1533 * Tries to insert the page "m" into the specified object at offset 1534 * "pindex" using the iterator "pages". Returns 0 if the insertion was 1535 * successful. 1536 * 1537 * The object must be locked. 1538 */ 1539 int 1540 vm_page_iter_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex, 1541 struct pctrie_iter *pages) 1542 { 1543 return (vm_page_insert_lookup(m, object, pindex, true, pages)); 1544 } 1545 1546 /* 1547 * vm_page_insert_radixdone: 1548 * 1549 * Complete page "m" insertion into the specified object after the 1550 * radix trie hooking. 1551 * 1552 * The object must be locked. 1553 */ 1554 static void 1555 vm_page_insert_radixdone(vm_page_t m, vm_object_t object) 1556 { 1557 1558 VM_OBJECT_ASSERT_WLOCKED(object); 1559 KASSERT(object != NULL && m->object == object, 1560 ("vm_page_insert_radixdone: page %p has inconsistent object", m)); 1561 KASSERT((m->ref_count & VPRC_OBJREF) != 0, 1562 ("vm_page_insert_radixdone: page %p is missing object ref", m)); 1563 1564 /* 1565 * Show that the object has one more resident page. 1566 */ 1567 object->resident_page_count++; 1568 1569 /* 1570 * Hold the vnode until the last page is released. 1571 */ 1572 if (object->resident_page_count == 1 && object->type == OBJT_VNODE) 1573 vhold(object->handle); 1574 1575 /* 1576 * Since we are inserting a new and possibly dirty page, 1577 * update the object's generation count. 1578 */ 1579 if (pmap_page_is_write_mapped(m)) 1580 vm_object_set_writeable_dirty(object); 1581 } 1582 1583 /* 1584 * vm_page_remove_radixdone 1585 * 1586 * Complete page "m" removal from the specified object after the radix trie 1587 * unhooking. 1588 * 1589 * The caller is responsible for updating the page's fields to reflect this 1590 * removal. 1591 */ 1592 static void 1593 vm_page_remove_radixdone(vm_page_t m) 1594 { 1595 vm_object_t object; 1596 1597 vm_page_assert_xbusied(m); 1598 object = m->object; 1599 VM_OBJECT_ASSERT_WLOCKED(object); 1600 KASSERT((m->ref_count & VPRC_OBJREF) != 0, 1601 ("page %p is missing its object ref", m)); 1602 1603 /* Deferred free of swap space. */ 1604 if ((m->a.flags & PGA_SWAP_FREE) != 0) 1605 vm_pager_page_unswapped(m); 1606 1607 vm_pager_page_removed(object, m); 1608 m->object = NULL; 1609 1610 /* 1611 * And show that the object has one fewer resident page. 1612 */ 1613 object->resident_page_count--; 1614 1615 /* 1616 * The vnode may now be recycled. 1617 */ 1618 if (object->resident_page_count == 0 && object->type == OBJT_VNODE) 1619 vdrop(object->handle); 1620 } 1621 1622 /* 1623 * vm_page_free_object_prep: 1624 * 1625 * Disassociates the given page from its VM object. 1626 * 1627 * The object must be locked, and the page must be xbusy. 1628 */ 1629 static void 1630 vm_page_free_object_prep(vm_page_t m) 1631 { 1632 KASSERT(((m->oflags & VPO_UNMANAGED) != 0) == 1633 ((m->object->flags & OBJ_UNMANAGED) != 0), 1634 ("%s: managed flag mismatch for page %p", 1635 __func__, m)); 1636 vm_page_assert_xbusied(m); 1637 1638 /* 1639 * The object reference can be released without an atomic 1640 * operation. 1641 */ 1642 KASSERT((m->flags & PG_FICTITIOUS) != 0 || 1643 m->ref_count == VPRC_OBJREF, 1644 ("%s: page %p has unexpected ref_count %u", 1645 __func__, m, m->ref_count)); 1646 vm_page_remove_radixdone(m); 1647 m->ref_count -= VPRC_OBJREF; 1648 } 1649 1650 /* 1651 * vm_page_iter_free: 1652 * 1653 * Free the given page, and use the iterator to remove it from the radix 1654 * tree. 1655 */ 1656 void 1657 vm_page_iter_free(struct pctrie_iter *pages, vm_page_t m) 1658 { 1659 vm_radix_iter_remove(pages); 1660 vm_page_free_object_prep(m); 1661 vm_page_xunbusy(m); 1662 m->flags &= ~PG_ZERO; 1663 vm_page_free_toq(m); 1664 } 1665 1666 /* 1667 * vm_page_remove: 1668 * 1669 * Removes the specified page from its containing object, but does not 1670 * invalidate any backing storage. Returns true if the object's reference 1671 * was the last reference to the page, and false otherwise. 1672 * 1673 * The object must be locked and the page must be exclusively busied. 1674 * The exclusive busy will be released on return. If this is not the 1675 * final ref and the caller does not hold a wire reference it may not 1676 * continue to access the page. 1677 */ 1678 bool 1679 vm_page_remove(vm_page_t m) 1680 { 1681 bool dropped; 1682 1683 dropped = vm_page_remove_xbusy(m); 1684 vm_page_xunbusy(m); 1685 1686 return (dropped); 1687 } 1688 1689 /* 1690 * vm_page_iter_remove: 1691 * 1692 * Remove the current page, and use the iterator to remove it from the 1693 * radix tree. 1694 */ 1695 bool 1696 vm_page_iter_remove(struct pctrie_iter *pages, vm_page_t m) 1697 { 1698 bool dropped; 1699 1700 vm_radix_iter_remove(pages); 1701 vm_page_remove_radixdone(m); 1702 dropped = (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF); 1703 vm_page_xunbusy(m); 1704 1705 return (dropped); 1706 } 1707 1708 /* 1709 * vm_page_radix_remove 1710 * 1711 * Removes the specified page from the radix tree. 1712 */ 1713 static void 1714 vm_page_radix_remove(vm_page_t m) 1715 { 1716 vm_page_t mrem __diagused; 1717 1718 mrem = vm_radix_remove(&m->object->rtree, m->pindex); 1719 KASSERT(mrem == m, 1720 ("removed page %p, expected page %p", mrem, m)); 1721 } 1722 1723 /* 1724 * vm_page_remove_xbusy 1725 * 1726 * Removes the page but leaves the xbusy held. Returns true if this 1727 * removed the final ref and false otherwise. 1728 */ 1729 bool 1730 vm_page_remove_xbusy(vm_page_t m) 1731 { 1732 1733 vm_page_radix_remove(m); 1734 vm_page_remove_radixdone(m); 1735 return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF); 1736 } 1737 1738 /* 1739 * vm_page_lookup: 1740 * 1741 * Returns the page associated with the object/offset 1742 * pair specified; if none is found, NULL is returned. 1743 * 1744 * The object must be locked. 1745 */ 1746 vm_page_t 1747 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 1748 { 1749 1750 VM_OBJECT_ASSERT_LOCKED(object); 1751 return (vm_radix_lookup(&object->rtree, pindex)); 1752 } 1753 1754 /* 1755 * vm_page_iter_init: 1756 * 1757 * Initialize iterator for vm pages. 1758 */ 1759 void 1760 vm_page_iter_init(struct pctrie_iter *pages, vm_object_t object) 1761 { 1762 1763 vm_radix_iter_init(pages, &object->rtree); 1764 } 1765 1766 /* 1767 * vm_page_iter_init: 1768 * 1769 * Initialize iterator for vm pages. 1770 */ 1771 void 1772 vm_page_iter_limit_init(struct pctrie_iter *pages, vm_object_t object, 1773 vm_pindex_t limit) 1774 { 1775 1776 vm_radix_iter_limit_init(pages, &object->rtree, limit); 1777 } 1778 1779 /* 1780 * vm_page_lookup_unlocked: 1781 * 1782 * Returns the page associated with the object/offset pair specified; 1783 * if none is found, NULL is returned. The page may be no longer be 1784 * present in the object at the time that this function returns. Only 1785 * useful for opportunistic checks such as inmem(). 1786 */ 1787 vm_page_t 1788 vm_page_lookup_unlocked(vm_object_t object, vm_pindex_t pindex) 1789 { 1790 1791 return (vm_radix_lookup_unlocked(&object->rtree, pindex)); 1792 } 1793 1794 /* 1795 * vm_page_relookup: 1796 * 1797 * Returns a page that must already have been busied by 1798 * the caller. Used for bogus page replacement. 1799 */ 1800 vm_page_t 1801 vm_page_relookup(vm_object_t object, vm_pindex_t pindex) 1802 { 1803 vm_page_t m; 1804 1805 m = vm_page_lookup_unlocked(object, pindex); 1806 KASSERT(m != NULL && (vm_page_busied(m) || vm_page_wired(m)) && 1807 m->object == object && m->pindex == pindex, 1808 ("vm_page_relookup: Invalid page %p", m)); 1809 return (m); 1810 } 1811 1812 /* 1813 * This should only be used by lockless functions for releasing transient 1814 * incorrect acquires. The page may have been freed after we acquired a 1815 * busy lock. In this case busy_lock == VPB_FREED and we have nothing 1816 * further to do. 1817 */ 1818 static void 1819 vm_page_busy_release(vm_page_t m) 1820 { 1821 u_int x; 1822 1823 x = vm_page_busy_fetch(m); 1824 for (;;) { 1825 if (x == VPB_FREED) 1826 break; 1827 if ((x & VPB_BIT_SHARED) != 0 && VPB_SHARERS(x) > 1) { 1828 if (atomic_fcmpset_int(&m->busy_lock, &x, 1829 x - VPB_ONE_SHARER)) 1830 break; 1831 continue; 1832 } 1833 KASSERT((x & VPB_BIT_SHARED) != 0 || 1834 (x & ~VPB_BIT_WAITERS) == VPB_CURTHREAD_EXCLUSIVE, 1835 ("vm_page_busy_release: %p xbusy not owned.", m)); 1836 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED)) 1837 continue; 1838 if ((x & VPB_BIT_WAITERS) != 0) 1839 wakeup(m); 1840 break; 1841 } 1842 } 1843 1844 /* 1845 * Uses the page mnew as a replacement for an existing page at index 1846 * pindex which must be already present in the object. 1847 * 1848 * Both pages must be exclusively busied on enter. The old page is 1849 * unbusied on exit. 1850 * 1851 * A return value of true means mold is now free. If this is not the 1852 * final ref and the caller does not hold a wire reference it may not 1853 * continue to access the page. 1854 */ 1855 static bool 1856 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex, 1857 vm_page_t mold) 1858 { 1859 vm_page_t mret __diagused; 1860 bool dropped; 1861 1862 VM_OBJECT_ASSERT_WLOCKED(object); 1863 vm_page_assert_xbusied(mold); 1864 KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0, 1865 ("vm_page_replace: page %p already in object", mnew)); 1866 1867 /* 1868 * This function mostly follows vm_page_insert() and 1869 * vm_page_remove() without the radix, object count and vnode 1870 * dance. Double check such functions for more comments. 1871 */ 1872 1873 mnew->object = object; 1874 mnew->pindex = pindex; 1875 atomic_set_int(&mnew->ref_count, VPRC_OBJREF); 1876 mret = vm_radix_replace(&object->rtree, mnew); 1877 KASSERT(mret == mold, 1878 ("invalid page replacement, mold=%p, mret=%p", mold, mret)); 1879 KASSERT((mold->oflags & VPO_UNMANAGED) == 1880 (mnew->oflags & VPO_UNMANAGED), 1881 ("vm_page_replace: mismatched VPO_UNMANAGED")); 1882 1883 mold->object = NULL; 1884 1885 /* 1886 * The object's resident_page_count does not change because we have 1887 * swapped one page for another, but the generation count should 1888 * change if the page is dirty. 1889 */ 1890 if (pmap_page_is_write_mapped(mnew)) 1891 vm_object_set_writeable_dirty(object); 1892 dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF; 1893 vm_page_xunbusy(mold); 1894 1895 return (dropped); 1896 } 1897 1898 void 1899 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex, 1900 vm_page_t mold) 1901 { 1902 1903 vm_page_assert_xbusied(mnew); 1904 1905 if (vm_page_replace_hold(mnew, object, pindex, mold)) 1906 vm_page_free(mold); 1907 } 1908 1909 /* 1910 * vm_page_iter_rename: 1911 * 1912 * Tries to move the specified page from its current object to a new object 1913 * and pindex, using the given iterator to remove the page from its current 1914 * object. Returns true if the move was successful, and false if the move 1915 * was aborted due to a failed memory allocation. 1916 * 1917 * Panics if a page already resides in the new object at the new pindex. 1918 * 1919 * This routine dirties the page if it is valid, as callers are expected to 1920 * transfer backing storage only after moving the page. Dirtying the page 1921 * ensures that the destination object retains the most recent copy of the 1922 * page. 1923 * 1924 * The objects must be locked. 1925 */ 1926 bool 1927 vm_page_iter_rename(struct pctrie_iter *old_pages, vm_page_t m, 1928 vm_object_t new_object, vm_pindex_t new_pindex) 1929 { 1930 vm_pindex_t opidx; 1931 1932 KASSERT((m->ref_count & VPRC_OBJREF) != 0, 1933 ("%s: page %p is missing object ref", __func__, m)); 1934 VM_OBJECT_ASSERT_WLOCKED(m->object); 1935 VM_OBJECT_ASSERT_WLOCKED(new_object); 1936 1937 /* 1938 * Create a custom version of vm_page_insert() which does not depend 1939 * by m_prev and can cheat on the implementation aspects of the 1940 * function. 1941 */ 1942 opidx = m->pindex; 1943 m->pindex = new_pindex; 1944 if (vm_radix_insert(&new_object->rtree, m) != 0) { 1945 m->pindex = opidx; 1946 return (false); 1947 } 1948 1949 /* 1950 * The operation cannot fail anymore. 1951 */ 1952 m->pindex = opidx; 1953 vm_radix_iter_remove(old_pages); 1954 vm_page_remove_radixdone(m); 1955 1956 /* Return back to the new pindex to complete vm_page_insert(). */ 1957 m->pindex = new_pindex; 1958 m->object = new_object; 1959 1960 vm_page_insert_radixdone(m, new_object); 1961 if (vm_page_any_valid(m)) 1962 vm_page_dirty(m); 1963 vm_pager_page_inserted(new_object, m); 1964 return (true); 1965 } 1966 1967 /* 1968 * vm_page_alloc: 1969 * 1970 * Allocate and return a page that is associated with the specified 1971 * object and offset pair. By default, this page is exclusive busied. 1972 * 1973 * The caller must always specify an allocation class. 1974 * 1975 * allocation classes: 1976 * VM_ALLOC_NORMAL normal process request 1977 * VM_ALLOC_SYSTEM system *really* needs a page 1978 * VM_ALLOC_INTERRUPT interrupt time request 1979 * 1980 * optional allocation flags: 1981 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 1982 * intends to allocate 1983 * VM_ALLOC_NOBUSY do not exclusive busy the page 1984 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 1985 * VM_ALLOC_SBUSY shared busy the allocated page 1986 * VM_ALLOC_WIRED wire the allocated page 1987 * VM_ALLOC_ZERO prefer a zeroed page 1988 */ 1989 vm_page_t 1990 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 1991 { 1992 struct pctrie_iter pages; 1993 1994 vm_page_iter_init(&pages, object); 1995 return (vm_page_alloc_iter(object, pindex, req, &pages)); 1996 } 1997 1998 /* 1999 * Allocate a page in the specified object with the given page index. If the 2000 * object lock is dropped and regained, the pages iter is reset. 2001 */ 2002 vm_page_t 2003 vm_page_alloc_iter(vm_object_t object, vm_pindex_t pindex, int req, 2004 struct pctrie_iter *pages) 2005 { 2006 struct vm_domainset_iter di; 2007 vm_page_t m; 2008 int domain; 2009 2010 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req, 2011 pages); 2012 do { 2013 m = vm_page_alloc_domain_iter(object, pindex, domain, req, 2014 pages); 2015 if (m != NULL) 2016 break; 2017 } while (vm_domainset_iter_page(&di, object, &domain, pages) == 0); 2018 2019 return (m); 2020 } 2021 2022 /* 2023 * Returns true if the number of free pages exceeds the minimum 2024 * for the request class and false otherwise. 2025 */ 2026 static int 2027 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages) 2028 { 2029 u_int limit, old, new; 2030 2031 if (req_class == VM_ALLOC_INTERRUPT) 2032 limit = 0; 2033 else if (req_class == VM_ALLOC_SYSTEM) 2034 limit = vmd->vmd_interrupt_free_min; 2035 else 2036 limit = vmd->vmd_free_reserved; 2037 2038 /* 2039 * Attempt to reserve the pages. Fail if we're below the limit. 2040 */ 2041 limit += npages; 2042 old = atomic_load_int(&vmd->vmd_free_count); 2043 do { 2044 if (old < limit) 2045 return (0); 2046 new = old - npages; 2047 } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0); 2048 2049 /* Wake the page daemon if we've crossed the threshold. */ 2050 if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old)) 2051 pagedaemon_wakeup(vmd->vmd_domain); 2052 2053 /* Only update bitsets on transitions. */ 2054 if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) || 2055 (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe)) 2056 vm_domain_set(vmd); 2057 2058 return (1); 2059 } 2060 2061 int 2062 vm_domain_allocate(struct vm_domain *vmd, int req, int npages) 2063 { 2064 int req_class; 2065 2066 /* 2067 * The page daemon is allowed to dig deeper into the free page list. 2068 */ 2069 req_class = req & VM_ALLOC_CLASS_MASK; 2070 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 2071 req_class = VM_ALLOC_SYSTEM; 2072 return (_vm_domain_allocate(vmd, req_class, npages)); 2073 } 2074 2075 vm_page_t 2076 vm_page_alloc_domain_iter(vm_object_t object, vm_pindex_t pindex, int domain, 2077 int req, struct pctrie_iter *pages) 2078 { 2079 struct vm_domain *vmd; 2080 vm_page_t m; 2081 int flags; 2082 2083 #define VPA_FLAGS (VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL | \ 2084 VM_ALLOC_NOWAIT | VM_ALLOC_NOBUSY | \ 2085 VM_ALLOC_SBUSY | VM_ALLOC_WIRED | \ 2086 VM_ALLOC_NODUMP | VM_ALLOC_ZERO | \ 2087 VM_ALLOC_NOFREE | VM_ALLOC_COUNT_MASK) 2088 KASSERT((req & ~VPA_FLAGS) == 0, 2089 ("invalid request %#x", req)); 2090 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 2091 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 2092 ("invalid request %#x", req)); 2093 VM_OBJECT_ASSERT_WLOCKED(object); 2094 2095 flags = 0; 2096 m = NULL; 2097 if (!vm_pager_can_alloc_page(object, pindex)) 2098 return (NULL); 2099 #if VM_NRESERVLEVEL > 0 2100 again: 2101 #endif 2102 if (__predict_false((req & VM_ALLOC_NOFREE) != 0)) { 2103 m = vm_page_alloc_nofree_domain(domain, req); 2104 if (m != NULL) 2105 goto found; 2106 } 2107 #if VM_NRESERVLEVEL > 0 2108 /* 2109 * Can we allocate the page from a reservation? 2110 */ 2111 if (vm_object_reserv(object) && 2112 (m = vm_reserv_alloc_page(object, pindex, domain, req, pages)) != 2113 NULL) { 2114 goto found; 2115 } 2116 #endif 2117 vmd = VM_DOMAIN(domain); 2118 if (vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone != NULL) { 2119 m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone, 2120 M_NOWAIT | M_NOVM); 2121 if (m != NULL) { 2122 flags |= PG_PCPU_CACHE; 2123 goto found; 2124 } 2125 } 2126 if (vm_domain_allocate(vmd, req, 1)) { 2127 /* 2128 * If not, allocate it from the free page queues. 2129 */ 2130 vm_domain_free_lock(vmd); 2131 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, 0); 2132 vm_domain_free_unlock(vmd); 2133 if (m == NULL) { 2134 vm_domain_freecnt_inc(vmd, 1); 2135 #if VM_NRESERVLEVEL > 0 2136 if (vm_reserv_reclaim_inactive(domain)) 2137 goto again; 2138 #endif 2139 } 2140 } 2141 if (m == NULL) { 2142 /* 2143 * Not allocatable, give up. 2144 */ 2145 (void)vm_domain_alloc_fail(vmd, object, req); 2146 if ((req & VM_ALLOC_WAITFAIL) != 0) 2147 pctrie_iter_reset(pages); 2148 return (NULL); 2149 } 2150 2151 /* 2152 * At this point we had better have found a good page. 2153 */ 2154 found: 2155 vm_page_dequeue(m); 2156 vm_page_alloc_check(m); 2157 2158 /* 2159 * Initialize the page. Only the PG_ZERO flag is inherited. 2160 */ 2161 flags |= m->flags & PG_ZERO; 2162 if ((req & VM_ALLOC_NODUMP) != 0) 2163 flags |= PG_NODUMP; 2164 if ((req & VM_ALLOC_NOFREE) != 0) 2165 flags |= PG_NOFREE; 2166 m->flags = flags; 2167 m->a.flags = 0; 2168 m->oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0; 2169 m->pool = VM_FREEPOOL_DEFAULT; 2170 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0) 2171 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE; 2172 else if ((req & VM_ALLOC_SBUSY) != 0) 2173 m->busy_lock = VPB_SHARERS_WORD(1); 2174 else 2175 m->busy_lock = VPB_UNBUSIED; 2176 if (req & VM_ALLOC_WIRED) { 2177 vm_wire_add(1); 2178 m->ref_count = 1; 2179 } 2180 m->a.act_count = 0; 2181 2182 if (vm_page_iter_insert(m, object, pindex, pages)) { 2183 if (req & VM_ALLOC_WIRED) { 2184 vm_wire_sub(1); 2185 m->ref_count = 0; 2186 } 2187 KASSERT(m->object == NULL, ("page %p has object", m)); 2188 m->oflags = VPO_UNMANAGED; 2189 m->busy_lock = VPB_UNBUSIED; 2190 /* Don't change PG_ZERO. */ 2191 vm_page_free_toq(m); 2192 if (req & VM_ALLOC_WAITFAIL) { 2193 VM_OBJECT_WUNLOCK(object); 2194 vm_radix_wait(); 2195 pctrie_iter_reset(pages); 2196 VM_OBJECT_WLOCK(object); 2197 } 2198 return (NULL); 2199 } 2200 2201 /* Ignore device objects; the pager sets "memattr" for them. */ 2202 if (object->memattr != VM_MEMATTR_DEFAULT && 2203 (object->flags & OBJ_FICTITIOUS) == 0) 2204 pmap_page_set_memattr(m, object->memattr); 2205 2206 return (m); 2207 } 2208 2209 /* 2210 * vm_page_alloc_contig: 2211 * 2212 * Allocate a contiguous set of physical pages of the given size "npages" 2213 * from the free lists. All of the physical pages must be at or above 2214 * the given physical address "low" and below the given physical address 2215 * "high". The given value "alignment" determines the alignment of the 2216 * first physical page in the set. If the given value "boundary" is 2217 * non-zero, then the set of physical pages cannot cross any physical 2218 * address boundary that is a multiple of that value. Both "alignment" 2219 * and "boundary" must be a power of two. 2220 * 2221 * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT, 2222 * then the memory attribute setting for the physical pages is configured 2223 * to the object's memory attribute setting. Otherwise, the memory 2224 * attribute setting for the physical pages is configured to "memattr", 2225 * overriding the object's memory attribute setting. However, if the 2226 * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the 2227 * memory attribute setting for the physical pages cannot be configured 2228 * to VM_MEMATTR_DEFAULT. 2229 * 2230 * The specified object may not contain fictitious pages. 2231 * 2232 * The caller must always specify an allocation class. 2233 * 2234 * allocation classes: 2235 * VM_ALLOC_NORMAL normal process request 2236 * VM_ALLOC_SYSTEM system *really* needs a page 2237 * VM_ALLOC_INTERRUPT interrupt time request 2238 * 2239 * optional allocation flags: 2240 * VM_ALLOC_NOBUSY do not exclusive busy the page 2241 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 2242 * VM_ALLOC_SBUSY shared busy the allocated page 2243 * VM_ALLOC_WIRED wire the allocated page 2244 * VM_ALLOC_ZERO prefer a zeroed page 2245 */ 2246 vm_page_t 2247 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req, 2248 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 2249 vm_paddr_t boundary, vm_memattr_t memattr) 2250 { 2251 struct vm_domainset_iter di; 2252 vm_page_t bounds[2]; 2253 vm_page_t m; 2254 int domain; 2255 int start_segind; 2256 2257 start_segind = -1; 2258 2259 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req, NULL); 2260 do { 2261 m = vm_page_alloc_contig_domain(object, pindex, domain, req, 2262 npages, low, high, alignment, boundary, memattr); 2263 if (m != NULL) 2264 break; 2265 if (start_segind == -1) 2266 start_segind = vm_phys_lookup_segind(low); 2267 if (vm_phys_find_range(bounds, start_segind, domain, 2268 npages, low, high) == -1) { 2269 vm_domainset_iter_ignore(&di, domain); 2270 } 2271 } while (vm_domainset_iter_page(&di, object, &domain, NULL) == 0); 2272 2273 return (m); 2274 } 2275 2276 static vm_page_t 2277 vm_page_find_contig_domain(int domain, int req, u_long npages, vm_paddr_t low, 2278 vm_paddr_t high, u_long alignment, vm_paddr_t boundary) 2279 { 2280 struct vm_domain *vmd; 2281 vm_page_t m_ret; 2282 2283 /* 2284 * Can we allocate the pages without the number of free pages falling 2285 * below the lower bound for the allocation class? 2286 */ 2287 vmd = VM_DOMAIN(domain); 2288 if (!vm_domain_allocate(vmd, req, npages)) 2289 return (NULL); 2290 /* 2291 * Try to allocate the pages from the free page queues. 2292 */ 2293 vm_domain_free_lock(vmd); 2294 m_ret = vm_phys_alloc_contig(domain, npages, low, high, 2295 alignment, boundary); 2296 vm_domain_free_unlock(vmd); 2297 if (m_ret != NULL) 2298 return (m_ret); 2299 #if VM_NRESERVLEVEL > 0 2300 /* 2301 * Try to break a reservation to allocate the pages. 2302 */ 2303 if ((req & VM_ALLOC_NORECLAIM) == 0) { 2304 m_ret = vm_reserv_reclaim_contig(domain, npages, low, 2305 high, alignment, boundary); 2306 if (m_ret != NULL) 2307 return (m_ret); 2308 } 2309 #endif 2310 vm_domain_freecnt_inc(vmd, npages); 2311 return (NULL); 2312 } 2313 2314 vm_page_t 2315 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain, 2316 int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 2317 vm_paddr_t boundary, vm_memattr_t memattr) 2318 { 2319 struct pctrie_iter pages; 2320 vm_page_t m, m_ret, mpred; 2321 u_int busy_lock, flags, oflags; 2322 2323 #define VPAC_FLAGS (VPA_FLAGS | VM_ALLOC_NORECLAIM) 2324 KASSERT((req & ~VPAC_FLAGS) == 0, 2325 ("invalid request %#x", req)); 2326 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 2327 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 2328 ("invalid request %#x", req)); 2329 KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) != 2330 (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM), 2331 ("invalid request %#x", req)); 2332 VM_OBJECT_ASSERT_WLOCKED(object); 2333 KASSERT((object->flags & OBJ_FICTITIOUS) == 0, 2334 ("vm_page_alloc_contig: object %p has fictitious pages", 2335 object)); 2336 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero")); 2337 2338 vm_page_iter_init(&pages, object); 2339 m_ret = NULL; 2340 #if VM_NRESERVLEVEL > 0 2341 /* 2342 * Can we allocate the pages from a reservation? 2343 */ 2344 if (vm_object_reserv(object)) { 2345 m_ret = vm_reserv_alloc_contig(object, pindex, domain, 2346 req, npages, low, high, alignment, boundary, &pages); 2347 } 2348 #endif 2349 if (m_ret == NULL) { 2350 m_ret = vm_page_find_contig_domain(domain, req, npages, 2351 low, high, alignment, boundary); 2352 } 2353 if (m_ret == NULL) { 2354 (void)vm_domain_alloc_fail(VM_DOMAIN(domain), object, req); 2355 return (NULL); 2356 } 2357 2358 /* 2359 * Initialize the pages. Only the PG_ZERO flag is inherited. 2360 */ 2361 flags = PG_ZERO; 2362 if ((req & VM_ALLOC_NODUMP) != 0) 2363 flags |= PG_NODUMP; 2364 oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0; 2365 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0) 2366 busy_lock = VPB_CURTHREAD_EXCLUSIVE; 2367 else if ((req & VM_ALLOC_SBUSY) != 0) 2368 busy_lock = VPB_SHARERS_WORD(1); 2369 else 2370 busy_lock = VPB_UNBUSIED; 2371 if ((req & VM_ALLOC_WIRED) != 0) 2372 vm_wire_add(npages); 2373 if (object->memattr != VM_MEMATTR_DEFAULT && 2374 memattr == VM_MEMATTR_DEFAULT) 2375 memattr = object->memattr; 2376 for (m = m_ret; m < &m_ret[npages]; m++) { 2377 vm_page_dequeue(m); 2378 vm_page_alloc_check(m); 2379 m->a.flags = 0; 2380 m->flags = (m->flags | PG_NODUMP) & flags; 2381 m->busy_lock = busy_lock; 2382 if ((req & VM_ALLOC_WIRED) != 0) 2383 m->ref_count = 1; 2384 m->a.act_count = 0; 2385 m->oflags = oflags; 2386 m->pool = VM_FREEPOOL_DEFAULT; 2387 if (vm_page_iter_insert(m, object, pindex, &pages)) { 2388 if ((req & VM_ALLOC_WIRED) != 0) 2389 vm_wire_sub(npages); 2390 KASSERT(m->object == NULL, 2391 ("page %p has object", m)); 2392 mpred = m; 2393 for (m = m_ret; m < &m_ret[npages]; m++) { 2394 if (m <= mpred && 2395 (req & VM_ALLOC_WIRED) != 0) 2396 m->ref_count = 0; 2397 m->oflags = VPO_UNMANAGED; 2398 m->busy_lock = VPB_UNBUSIED; 2399 /* Don't change PG_ZERO. */ 2400 vm_page_free_toq(m); 2401 } 2402 if (req & VM_ALLOC_WAITFAIL) { 2403 VM_OBJECT_WUNLOCK(object); 2404 vm_radix_wait(); 2405 VM_OBJECT_WLOCK(object); 2406 } 2407 return (NULL); 2408 } 2409 if (memattr != VM_MEMATTR_DEFAULT) 2410 pmap_page_set_memattr(m, memattr); 2411 pindex++; 2412 } 2413 return (m_ret); 2414 } 2415 2416 /* 2417 * Allocate a physical page that is not intended to be inserted into a VM 2418 * object. 2419 */ 2420 vm_page_t 2421 vm_page_alloc_noobj_domain(int domain, int req) 2422 { 2423 struct vm_domain *vmd; 2424 vm_page_t m; 2425 int flags; 2426 2427 #define VPAN_FLAGS (VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL | \ 2428 VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | \ 2429 VM_ALLOC_NOBUSY | VM_ALLOC_WIRED | \ 2430 VM_ALLOC_NODUMP | VM_ALLOC_ZERO | \ 2431 VM_ALLOC_NOFREE | VM_ALLOC_COUNT_MASK) 2432 KASSERT((req & ~VPAN_FLAGS) == 0, 2433 ("invalid request %#x", req)); 2434 2435 flags = ((req & VM_ALLOC_NODUMP) != 0 ? PG_NODUMP : 0) | 2436 ((req & VM_ALLOC_NOFREE) != 0 ? PG_NOFREE : 0); 2437 vmd = VM_DOMAIN(domain); 2438 again: 2439 if (__predict_false((req & VM_ALLOC_NOFREE) != 0)) { 2440 m = vm_page_alloc_nofree_domain(domain, req); 2441 if (m != NULL) 2442 goto found; 2443 } 2444 2445 if (vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone != NULL) { 2446 m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone, 2447 M_NOWAIT | M_NOVM); 2448 if (m != NULL) { 2449 flags |= PG_PCPU_CACHE; 2450 goto found; 2451 } 2452 } 2453 2454 if (vm_domain_allocate(vmd, req, 1)) { 2455 vm_domain_free_lock(vmd); 2456 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DIRECT, 0); 2457 vm_domain_free_unlock(vmd); 2458 if (m == NULL) { 2459 vm_domain_freecnt_inc(vmd, 1); 2460 #if VM_NRESERVLEVEL > 0 2461 if (vm_reserv_reclaim_inactive(domain)) 2462 goto again; 2463 #endif 2464 } 2465 } 2466 if (m == NULL) { 2467 if (!vm_domain_alloc_fail(vmd, NULL, req)) 2468 return (NULL); 2469 goto again; 2470 } 2471 2472 found: 2473 vm_page_dequeue(m); 2474 vm_page_alloc_check(m); 2475 2476 /* 2477 * Consumers should not rely on a useful default pindex value. 2478 */ 2479 m->pindex = 0xdeadc0dedeadc0de; 2480 m->flags = (m->flags & PG_ZERO) | flags; 2481 m->a.flags = 0; 2482 m->oflags = VPO_UNMANAGED; 2483 m->pool = VM_FREEPOOL_DIRECT; 2484 m->busy_lock = VPB_UNBUSIED; 2485 if ((req & VM_ALLOC_WIRED) != 0) { 2486 vm_wire_add(1); 2487 m->ref_count = 1; 2488 } 2489 2490 if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0) 2491 pmap_zero_page(m); 2492 2493 return (m); 2494 } 2495 2496 #if VM_NRESERVLEVEL > 1 2497 #define VM_NOFREE_IMPORT_ORDER (VM_LEVEL_1_ORDER + VM_LEVEL_0_ORDER) 2498 #elif VM_NRESERVLEVEL > 0 2499 #define VM_NOFREE_IMPORT_ORDER VM_LEVEL_0_ORDER 2500 #else 2501 #define VM_NOFREE_IMPORT_ORDER 8 2502 #endif 2503 2504 /* 2505 * Allocate a single NOFREE page. 2506 * 2507 * This routine hands out NOFREE pages from higher-order 2508 * physical memory blocks in order to reduce memory fragmentation. 2509 * When a NOFREE for a given domain chunk is used up, 2510 * the routine will try to fetch a new one from the freelists 2511 * and discard the old one. 2512 */ 2513 static vm_page_t __noinline 2514 vm_page_alloc_nofree_domain(int domain, int req) 2515 { 2516 vm_page_t m; 2517 struct vm_domain *vmd; 2518 2519 KASSERT((req & VM_ALLOC_NOFREE) != 0, ("invalid request %#x", req)); 2520 2521 vmd = VM_DOMAIN(domain); 2522 vm_domain_free_lock(vmd); 2523 if (TAILQ_EMPTY(&vmd->vmd_nofreeq)) { 2524 int count; 2525 2526 count = 1 << VM_NOFREE_IMPORT_ORDER; 2527 if (!vm_domain_allocate(vmd, req, count)) { 2528 vm_domain_free_unlock(vmd); 2529 return (NULL); 2530 } 2531 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, 2532 VM_NOFREE_IMPORT_ORDER); 2533 if (m == NULL) { 2534 vm_domain_freecnt_inc(vmd, count); 2535 vm_domain_free_unlock(vmd); 2536 return (NULL); 2537 } 2538 m->ref_count = count - 1; 2539 TAILQ_INSERT_HEAD(&vmd->vmd_nofreeq, m, listq); 2540 VM_CNT_ADD(v_nofree_count, count); 2541 } 2542 m = TAILQ_FIRST(&vmd->vmd_nofreeq); 2543 TAILQ_REMOVE(&vmd->vmd_nofreeq, m, listq); 2544 if (m->ref_count > 0) { 2545 vm_page_t m_next; 2546 2547 m_next = &m[1]; 2548 m_next->ref_count = m->ref_count - 1; 2549 TAILQ_INSERT_HEAD(&vmd->vmd_nofreeq, m_next, listq); 2550 m->ref_count = 0; 2551 } 2552 vm_domain_free_unlock(vmd); 2553 VM_CNT_ADD(v_nofree_count, -1); 2554 2555 return (m); 2556 } 2557 2558 /* 2559 * Though a NOFREE page by definition should not be freed, we support putting 2560 * them aside for future NOFREE allocations. This enables code which allocates 2561 * NOFREE pages for some purpose but then encounters an error and releases 2562 * resources. 2563 */ 2564 static void __noinline 2565 vm_page_free_nofree(struct vm_domain *vmd, vm_page_t m) 2566 { 2567 vm_domain_free_lock(vmd); 2568 MPASS(m->ref_count == 0); 2569 TAILQ_INSERT_HEAD(&vmd->vmd_nofreeq, m, listq); 2570 vm_domain_free_unlock(vmd); 2571 VM_CNT_ADD(v_nofree_count, 1); 2572 } 2573 2574 vm_page_t 2575 vm_page_alloc_noobj(int req) 2576 { 2577 struct vm_domainset_iter di; 2578 vm_page_t m; 2579 int domain; 2580 2581 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req, NULL); 2582 do { 2583 m = vm_page_alloc_noobj_domain(domain, req); 2584 if (m != NULL) 2585 break; 2586 } while (vm_domainset_iter_page(&di, NULL, &domain, NULL) == 0); 2587 2588 return (m); 2589 } 2590 2591 vm_page_t 2592 vm_page_alloc_noobj_contig(int req, u_long npages, vm_paddr_t low, 2593 vm_paddr_t high, u_long alignment, vm_paddr_t boundary, 2594 vm_memattr_t memattr) 2595 { 2596 struct vm_domainset_iter di; 2597 vm_page_t m; 2598 int domain; 2599 2600 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req, NULL); 2601 do { 2602 m = vm_page_alloc_noobj_contig_domain(domain, req, npages, low, 2603 high, alignment, boundary, memattr); 2604 if (m != NULL) 2605 break; 2606 } while (vm_domainset_iter_page(&di, NULL, &domain, NULL) == 0); 2607 2608 return (m); 2609 } 2610 2611 vm_page_t 2612 vm_page_alloc_noobj_contig_domain(int domain, int req, u_long npages, 2613 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, 2614 vm_memattr_t memattr) 2615 { 2616 vm_page_t m, m_ret; 2617 u_int flags; 2618 2619 #define VPANC_FLAGS (VPAN_FLAGS | VM_ALLOC_NORECLAIM) 2620 KASSERT((req & ~VPANC_FLAGS) == 0, 2621 ("invalid request %#x", req)); 2622 KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) != 2623 (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM), 2624 ("invalid request %#x", req)); 2625 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 2626 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 2627 ("invalid request %#x", req)); 2628 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero")); 2629 2630 while ((m_ret = vm_page_find_contig_domain(domain, req, npages, 2631 low, high, alignment, boundary)) == NULL) { 2632 if (!vm_domain_alloc_fail(VM_DOMAIN(domain), NULL, req)) 2633 return (NULL); 2634 } 2635 2636 /* 2637 * Initialize the pages. Only the PG_ZERO flag is inherited. 2638 */ 2639 flags = PG_ZERO; 2640 if ((req & VM_ALLOC_NODUMP) != 0) 2641 flags |= PG_NODUMP; 2642 if ((req & VM_ALLOC_WIRED) != 0) 2643 vm_wire_add(npages); 2644 for (m = m_ret; m < &m_ret[npages]; m++) { 2645 vm_page_dequeue(m); 2646 vm_page_alloc_check(m); 2647 2648 /* 2649 * Consumers should not rely on a useful default pindex value. 2650 */ 2651 m->pindex = 0xdeadc0dedeadc0de; 2652 m->a.flags = 0; 2653 m->flags = (m->flags | PG_NODUMP) & flags; 2654 m->busy_lock = VPB_UNBUSIED; 2655 if ((req & VM_ALLOC_WIRED) != 0) 2656 m->ref_count = 1; 2657 m->a.act_count = 0; 2658 m->oflags = VPO_UNMANAGED; 2659 m->pool = VM_FREEPOOL_DIRECT; 2660 2661 /* 2662 * Zero the page before updating any mappings since the page is 2663 * not yet shared with any devices which might require the 2664 * non-default memory attribute. pmap_page_set_memattr() 2665 * flushes data caches before returning. 2666 */ 2667 if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0) 2668 pmap_zero_page(m); 2669 if (memattr != VM_MEMATTR_DEFAULT) 2670 pmap_page_set_memattr(m, memattr); 2671 } 2672 return (m_ret); 2673 } 2674 2675 /* 2676 * Check a page that has been freshly dequeued from a freelist. 2677 */ 2678 static void 2679 vm_page_alloc_check(vm_page_t m) 2680 { 2681 2682 KASSERT(m->object == NULL, ("page %p has object", m)); 2683 KASSERT(m->a.queue == PQ_NONE && 2684 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0, 2685 ("page %p has unexpected queue %d, flags %#x", 2686 m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK))); 2687 KASSERT(m->ref_count == 0, ("page %p has references", m)); 2688 KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m)); 2689 KASSERT(m->dirty == 0, ("page %p is dirty", m)); 2690 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, 2691 ("page %p has unexpected memattr %d", 2692 m, pmap_page_get_memattr(m))); 2693 KASSERT(vm_page_none_valid(m), ("free page %p is valid", m)); 2694 pmap_vm_page_alloc_check(m); 2695 } 2696 2697 static int 2698 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags) 2699 { 2700 struct vm_domain *vmd; 2701 struct vm_pgcache *pgcache; 2702 int i; 2703 2704 pgcache = arg; 2705 vmd = VM_DOMAIN(pgcache->domain); 2706 2707 /* 2708 * The page daemon should avoid creating extra memory pressure since its 2709 * main purpose is to replenish the store of free pages. 2710 */ 2711 if (vmd->vmd_severeset || curproc == pageproc || 2712 !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt)) 2713 return (0); 2714 domain = vmd->vmd_domain; 2715 vm_domain_free_lock(vmd); 2716 i = vm_phys_alloc_npages(domain, pgcache->pool, cnt, 2717 (vm_page_t *)store); 2718 vm_domain_free_unlock(vmd); 2719 if (cnt != i) 2720 vm_domain_freecnt_inc(vmd, cnt - i); 2721 2722 return (i); 2723 } 2724 2725 static void 2726 vm_page_zone_release(void *arg, void **store, int cnt) 2727 { 2728 struct vm_domain *vmd; 2729 struct vm_pgcache *pgcache; 2730 vm_page_t m; 2731 int i; 2732 2733 pgcache = arg; 2734 vmd = VM_DOMAIN(pgcache->domain); 2735 vm_domain_free_lock(vmd); 2736 for (i = 0; i < cnt; i++) { 2737 m = (vm_page_t)store[i]; 2738 vm_phys_free_pages(m, pgcache->pool, 0); 2739 } 2740 vm_domain_free_unlock(vmd); 2741 vm_domain_freecnt_inc(vmd, cnt); 2742 } 2743 2744 #define VPSC_ANY 0 /* No restrictions. */ 2745 #define VPSC_NORESERV 1 /* Skip reservations; implies VPSC_NOSUPER. */ 2746 #define VPSC_NOSUPER 2 /* Skip superpages. */ 2747 2748 /* 2749 * vm_page_scan_contig: 2750 * 2751 * Scan vm_page_array[] between the specified entries "m_start" and 2752 * "m_end" for a run of contiguous physical pages that satisfy the 2753 * specified conditions, and return the lowest page in the run. The 2754 * specified "alignment" determines the alignment of the lowest physical 2755 * page in the run. If the specified "boundary" is non-zero, then the 2756 * run of physical pages cannot span a physical address that is a 2757 * multiple of "boundary". 2758 * 2759 * "m_end" is never dereferenced, so it need not point to a vm_page 2760 * structure within vm_page_array[]. 2761 * 2762 * "npages" must be greater than zero. "m_start" and "m_end" must not 2763 * span a hole (or discontiguity) in the physical address space. Both 2764 * "alignment" and "boundary" must be a power of two. 2765 */ 2766 static vm_page_t 2767 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end, 2768 u_long alignment, vm_paddr_t boundary, int options) 2769 { 2770 vm_object_t object; 2771 vm_paddr_t pa; 2772 vm_page_t m, m_run; 2773 #if VM_NRESERVLEVEL > 0 2774 int level; 2775 #endif 2776 int m_inc, order, run_ext, run_len; 2777 2778 KASSERT(npages > 0, ("npages is 0")); 2779 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 2780 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 2781 m_run = NULL; 2782 run_len = 0; 2783 for (m = m_start; m < m_end && run_len < npages; m += m_inc) { 2784 KASSERT((m->flags & PG_MARKER) == 0, 2785 ("page %p is PG_MARKER", m)); 2786 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1, 2787 ("fictitious page %p has invalid ref count", m)); 2788 2789 /* 2790 * If the current page would be the start of a run, check its 2791 * physical address against the end, alignment, and boundary 2792 * conditions. If it doesn't satisfy these conditions, either 2793 * terminate the scan or advance to the next page that 2794 * satisfies the failed condition. 2795 */ 2796 if (run_len == 0) { 2797 KASSERT(m_run == NULL, ("m_run != NULL")); 2798 if (m + npages > m_end) 2799 break; 2800 pa = VM_PAGE_TO_PHYS(m); 2801 if (!vm_addr_align_ok(pa, alignment)) { 2802 m_inc = atop(roundup2(pa, alignment) - pa); 2803 continue; 2804 } 2805 if (!vm_addr_bound_ok(pa, ptoa(npages), boundary)) { 2806 m_inc = atop(roundup2(pa, boundary) - pa); 2807 continue; 2808 } 2809 } else 2810 KASSERT(m_run != NULL, ("m_run == NULL")); 2811 2812 retry: 2813 m_inc = 1; 2814 if (vm_page_wired(m)) 2815 run_ext = 0; 2816 #if VM_NRESERVLEVEL > 0 2817 else if ((level = vm_reserv_level(m)) >= 0 && 2818 (options & VPSC_NORESERV) != 0) { 2819 run_ext = 0; 2820 /* Advance to the end of the reservation. */ 2821 pa = VM_PAGE_TO_PHYS(m); 2822 m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) - 2823 pa); 2824 } 2825 #endif 2826 else if ((object = atomic_load_ptr(&m->object)) != NULL) { 2827 /* 2828 * The page is considered eligible for relocation if 2829 * and only if it could be laundered or reclaimed by 2830 * the page daemon. 2831 */ 2832 VM_OBJECT_RLOCK(object); 2833 if (object != m->object) { 2834 VM_OBJECT_RUNLOCK(object); 2835 goto retry; 2836 } 2837 /* Don't care: PG_NODUMP, PG_ZERO. */ 2838 if ((object->flags & OBJ_SWAP) == 0 && 2839 object->type != OBJT_VNODE) { 2840 run_ext = 0; 2841 #if VM_NRESERVLEVEL > 0 2842 } else if ((options & VPSC_NOSUPER) != 0 && 2843 (level = vm_reserv_level_iffullpop(m)) >= 0) { 2844 run_ext = 0; 2845 /* Advance to the end of the superpage. */ 2846 pa = VM_PAGE_TO_PHYS(m); 2847 m_inc = atop(roundup2(pa + 1, 2848 vm_reserv_size(level)) - pa); 2849 #endif 2850 } else if (object->memattr == VM_MEMATTR_DEFAULT && 2851 vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) { 2852 /* 2853 * The page is allocated but eligible for 2854 * relocation. Extend the current run by one 2855 * page. 2856 */ 2857 KASSERT(pmap_page_get_memattr(m) == 2858 VM_MEMATTR_DEFAULT, 2859 ("page %p has an unexpected memattr", m)); 2860 KASSERT((m->oflags & (VPO_SWAPINPROG | 2861 VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0, 2862 ("page %p has unexpected oflags", m)); 2863 /* Don't care: PGA_NOSYNC. */ 2864 run_ext = 1; 2865 } else 2866 run_ext = 0; 2867 VM_OBJECT_RUNLOCK(object); 2868 #if VM_NRESERVLEVEL > 0 2869 } else if (level >= 0) { 2870 /* 2871 * The page is reserved but not yet allocated. In 2872 * other words, it is still free. Extend the current 2873 * run by one page. 2874 */ 2875 run_ext = 1; 2876 #endif 2877 } else if ((order = m->order) < VM_NFREEORDER) { 2878 /* 2879 * The page is enqueued in the physical memory 2880 * allocator's free page queues. Moreover, it is the 2881 * first page in a power-of-two-sized run of 2882 * contiguous free pages. Add these pages to the end 2883 * of the current run, and jump ahead. 2884 */ 2885 run_ext = 1 << order; 2886 m_inc = 1 << order; 2887 } else { 2888 /* 2889 * Skip the page for one of the following reasons: (1) 2890 * It is enqueued in the physical memory allocator's 2891 * free page queues. However, it is not the first 2892 * page in a run of contiguous free pages. (This case 2893 * rarely occurs because the scan is performed in 2894 * ascending order.) (2) It is not reserved, and it is 2895 * transitioning from free to allocated. (Conversely, 2896 * the transition from allocated to free for managed 2897 * pages is blocked by the page busy lock.) (3) It is 2898 * allocated but not contained by an object and not 2899 * wired, e.g., allocated by Xen's balloon driver. 2900 */ 2901 run_ext = 0; 2902 } 2903 2904 /* 2905 * Extend or reset the current run of pages. 2906 */ 2907 if (run_ext > 0) { 2908 if (run_len == 0) 2909 m_run = m; 2910 run_len += run_ext; 2911 } else { 2912 if (run_len > 0) { 2913 m_run = NULL; 2914 run_len = 0; 2915 } 2916 } 2917 } 2918 if (run_len >= npages) 2919 return (m_run); 2920 return (NULL); 2921 } 2922 2923 /* 2924 * vm_page_reclaim_run: 2925 * 2926 * Try to relocate each of the allocated virtual pages within the 2927 * specified run of physical pages to a new physical address. Free the 2928 * physical pages underlying the relocated virtual pages. A virtual page 2929 * is relocatable if and only if it could be laundered or reclaimed by 2930 * the page daemon. Whenever possible, a virtual page is relocated to a 2931 * physical address above "high". 2932 * 2933 * Returns 0 if every physical page within the run was already free or 2934 * just freed by a successful relocation. Otherwise, returns a non-zero 2935 * value indicating why the last attempt to relocate a virtual page was 2936 * unsuccessful. 2937 * 2938 * "req_class" must be an allocation class. 2939 */ 2940 static int 2941 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run, 2942 vm_paddr_t high) 2943 { 2944 struct vm_domain *vmd; 2945 struct spglist free; 2946 vm_object_t object; 2947 vm_paddr_t pa; 2948 vm_page_t m, m_end, m_new; 2949 int error, order, req; 2950 2951 KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class, 2952 ("req_class is not an allocation class")); 2953 SLIST_INIT(&free); 2954 error = 0; 2955 m = m_run; 2956 m_end = m_run + npages; 2957 for (; error == 0 && m < m_end; m++) { 2958 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0, 2959 ("page %p is PG_FICTITIOUS or PG_MARKER", m)); 2960 2961 /* 2962 * Racily check for wirings. Races are handled once the object 2963 * lock is held and the page is unmapped. 2964 */ 2965 if (vm_page_wired(m)) 2966 error = EBUSY; 2967 else if ((object = atomic_load_ptr(&m->object)) != NULL) { 2968 /* 2969 * The page is relocated if and only if it could be 2970 * laundered or reclaimed by the page daemon. 2971 */ 2972 VM_OBJECT_WLOCK(object); 2973 /* Don't care: PG_NODUMP, PG_ZERO. */ 2974 if (m->object != object || 2975 ((object->flags & OBJ_SWAP) == 0 && 2976 object->type != OBJT_VNODE)) 2977 error = EINVAL; 2978 else if (object->memattr != VM_MEMATTR_DEFAULT) 2979 error = EINVAL; 2980 else if (vm_page_queue(m) != PQ_NONE && 2981 vm_page_tryxbusy(m) != 0) { 2982 if (vm_page_wired(m)) { 2983 vm_page_xunbusy(m); 2984 error = EBUSY; 2985 goto unlock; 2986 } 2987 KASSERT(pmap_page_get_memattr(m) == 2988 VM_MEMATTR_DEFAULT, 2989 ("page %p has an unexpected memattr", m)); 2990 KASSERT(m->oflags == 0, 2991 ("page %p has unexpected oflags", m)); 2992 /* Don't care: PGA_NOSYNC. */ 2993 if (!vm_page_none_valid(m)) { 2994 /* 2995 * First, try to allocate a new page 2996 * that is above "high". Failing 2997 * that, try to allocate a new page 2998 * that is below "m_run". Allocate 2999 * the new page between the end of 3000 * "m_run" and "high" only as a last 3001 * resort. 3002 */ 3003 req = req_class; 3004 if ((m->flags & PG_NODUMP) != 0) 3005 req |= VM_ALLOC_NODUMP; 3006 if (trunc_page(high) != 3007 ~(vm_paddr_t)PAGE_MASK) { 3008 m_new = 3009 vm_page_alloc_noobj_contig( 3010 req, 1, round_page(high), 3011 ~(vm_paddr_t)0, PAGE_SIZE, 3012 0, VM_MEMATTR_DEFAULT); 3013 } else 3014 m_new = NULL; 3015 if (m_new == NULL) { 3016 pa = VM_PAGE_TO_PHYS(m_run); 3017 m_new = 3018 vm_page_alloc_noobj_contig( 3019 req, 1, 0, pa - 1, 3020 PAGE_SIZE, 0, 3021 VM_MEMATTR_DEFAULT); 3022 } 3023 if (m_new == NULL) { 3024 pa += ptoa(npages); 3025 m_new = 3026 vm_page_alloc_noobj_contig( 3027 req, 1, pa, high, PAGE_SIZE, 3028 0, VM_MEMATTR_DEFAULT); 3029 } 3030 if (m_new == NULL) { 3031 vm_page_xunbusy(m); 3032 error = ENOMEM; 3033 goto unlock; 3034 } 3035 3036 /* 3037 * Unmap the page and check for new 3038 * wirings that may have been acquired 3039 * through a pmap lookup. 3040 */ 3041 if (object->ref_count != 0 && 3042 !vm_page_try_remove_all(m)) { 3043 vm_page_xunbusy(m); 3044 vm_page_free(m_new); 3045 error = EBUSY; 3046 goto unlock; 3047 } 3048 3049 /* 3050 * Replace "m" with the new page. For 3051 * vm_page_replace(), "m" must be busy 3052 * and dequeued. Finally, change "m" 3053 * as if vm_page_free() was called. 3054 */ 3055 m_new->a.flags = m->a.flags & 3056 ~PGA_QUEUE_STATE_MASK; 3057 KASSERT(m_new->oflags == VPO_UNMANAGED, 3058 ("page %p is managed", m_new)); 3059 m_new->oflags = 0; 3060 pmap_copy_page(m, m_new); 3061 m_new->valid = m->valid; 3062 m_new->dirty = m->dirty; 3063 m->flags &= ~PG_ZERO; 3064 vm_page_dequeue(m); 3065 if (vm_page_replace_hold(m_new, object, 3066 m->pindex, m) && 3067 vm_page_free_prep(m)) 3068 SLIST_INSERT_HEAD(&free, m, 3069 plinks.s.ss); 3070 3071 /* 3072 * The new page must be deactivated 3073 * before the object is unlocked. 3074 */ 3075 vm_page_deactivate(m_new); 3076 } else { 3077 m->flags &= ~PG_ZERO; 3078 vm_page_dequeue(m); 3079 if (vm_page_free_prep(m)) 3080 SLIST_INSERT_HEAD(&free, m, 3081 plinks.s.ss); 3082 KASSERT(m->dirty == 0, 3083 ("page %p is dirty", m)); 3084 } 3085 } else 3086 error = EBUSY; 3087 unlock: 3088 VM_OBJECT_WUNLOCK(object); 3089 } else { 3090 MPASS(vm_page_domain(m) == domain); 3091 vmd = VM_DOMAIN(domain); 3092 vm_domain_free_lock(vmd); 3093 order = m->order; 3094 if (order < VM_NFREEORDER) { 3095 /* 3096 * The page is enqueued in the physical memory 3097 * allocator's free page queues. Moreover, it 3098 * is the first page in a power-of-two-sized 3099 * run of contiguous free pages. Jump ahead 3100 * to the last page within that run, and 3101 * continue from there. 3102 */ 3103 m += (1 << order) - 1; 3104 } 3105 #if VM_NRESERVLEVEL > 0 3106 else if (vm_reserv_is_page_free(m)) 3107 order = 0; 3108 #endif 3109 vm_domain_free_unlock(vmd); 3110 if (order == VM_NFREEORDER) 3111 error = EINVAL; 3112 } 3113 } 3114 if ((m = SLIST_FIRST(&free)) != NULL) { 3115 int cnt; 3116 3117 vmd = VM_DOMAIN(domain); 3118 cnt = 0; 3119 vm_domain_free_lock(vmd); 3120 do { 3121 MPASS(vm_page_domain(m) == domain); 3122 SLIST_REMOVE_HEAD(&free, plinks.s.ss); 3123 vm_phys_free_pages(m, m->pool, 0); 3124 cnt++; 3125 } while ((m = SLIST_FIRST(&free)) != NULL); 3126 vm_domain_free_unlock(vmd); 3127 vm_domain_freecnt_inc(vmd, cnt); 3128 } 3129 return (error); 3130 } 3131 3132 #define NRUNS 16 3133 3134 #define RUN_INDEX(count, nruns) ((count) % (nruns)) 3135 3136 #define MIN_RECLAIM 8 3137 3138 /* 3139 * vm_page_reclaim_contig: 3140 * 3141 * Reclaim allocated, contiguous physical memory satisfying the specified 3142 * conditions by relocating the virtual pages using that physical memory. 3143 * Returns 0 if reclamation is successful, ERANGE if the specified domain 3144 * can't possibly satisfy the reclamation request, or ENOMEM if not 3145 * currently able to reclaim the requested number of pages. Since 3146 * relocation requires the allocation of physical pages, reclamation may 3147 * fail with ENOMEM due to a shortage of free pages. When reclamation 3148 * fails in this manner, callers are expected to perform vm_wait() before 3149 * retrying a failed allocation operation, e.g., vm_page_alloc_contig(). 3150 * 3151 * The caller must always specify an allocation class through "req". 3152 * 3153 * allocation classes: 3154 * VM_ALLOC_NORMAL normal process request 3155 * VM_ALLOC_SYSTEM system *really* needs a page 3156 * VM_ALLOC_INTERRUPT interrupt time request 3157 * 3158 * The optional allocation flags are ignored. 3159 * 3160 * "npages" must be greater than zero. Both "alignment" and "boundary" 3161 * must be a power of two. 3162 */ 3163 int 3164 vm_page_reclaim_contig_domain_ext(int domain, int req, u_long npages, 3165 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, 3166 int desired_runs) 3167 { 3168 struct vm_domain *vmd; 3169 vm_page_t bounds[2], m_run, _m_runs[NRUNS], *m_runs; 3170 u_long count, minalign, reclaimed; 3171 int error, i, min_reclaim, nruns, options, req_class; 3172 int segind, start_segind; 3173 int ret; 3174 3175 KASSERT(npages > 0, ("npages is 0")); 3176 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 3177 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 3178 3179 ret = ENOMEM; 3180 3181 /* 3182 * If the caller wants to reclaim multiple runs, try to allocate 3183 * space to store the runs. If that fails, fall back to the old 3184 * behavior of just reclaiming MIN_RECLAIM pages. 3185 */ 3186 if (desired_runs > 1) 3187 m_runs = malloc((NRUNS + desired_runs) * sizeof(*m_runs), 3188 M_TEMP, M_NOWAIT); 3189 else 3190 m_runs = NULL; 3191 3192 if (m_runs == NULL) { 3193 m_runs = _m_runs; 3194 nruns = NRUNS; 3195 } else { 3196 nruns = NRUNS + desired_runs - 1; 3197 } 3198 min_reclaim = MAX(desired_runs * npages, MIN_RECLAIM); 3199 3200 /* 3201 * The caller will attempt an allocation after some runs have been 3202 * reclaimed and added to the vm_phys buddy lists. Due to limitations 3203 * of vm_phys_alloc_contig(), round up the requested length to the next 3204 * power of two or maximum chunk size, and ensure that each run is 3205 * suitably aligned. 3206 */ 3207 minalign = 1ul << imin(flsl(npages - 1), VM_NFREEORDER - 1); 3208 npages = roundup2(npages, minalign); 3209 if (alignment < ptoa(minalign)) 3210 alignment = ptoa(minalign); 3211 3212 /* 3213 * The page daemon is allowed to dig deeper into the free page list. 3214 */ 3215 req_class = req & VM_ALLOC_CLASS_MASK; 3216 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 3217 req_class = VM_ALLOC_SYSTEM; 3218 3219 start_segind = vm_phys_lookup_segind(low); 3220 3221 /* 3222 * Return if the number of free pages cannot satisfy the requested 3223 * allocation. 3224 */ 3225 vmd = VM_DOMAIN(domain); 3226 count = vmd->vmd_free_count; 3227 if (count < npages + vmd->vmd_free_reserved || (count < npages + 3228 vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) || 3229 (count < npages && req_class == VM_ALLOC_INTERRUPT)) 3230 goto done; 3231 3232 /* 3233 * Scan up to three times, relaxing the restrictions ("options") on 3234 * the reclamation of reservations and superpages each time. 3235 */ 3236 for (options = VPSC_NORESERV;;) { 3237 bool phys_range_exists = false; 3238 3239 /* 3240 * Find the highest runs that satisfy the given constraints 3241 * and restrictions, and record them in "m_runs". 3242 */ 3243 count = 0; 3244 segind = start_segind; 3245 while ((segind = vm_phys_find_range(bounds, segind, domain, 3246 npages, low, high)) != -1) { 3247 phys_range_exists = true; 3248 while ((m_run = vm_page_scan_contig(npages, bounds[0], 3249 bounds[1], alignment, boundary, options))) { 3250 bounds[0] = m_run + npages; 3251 m_runs[RUN_INDEX(count, nruns)] = m_run; 3252 count++; 3253 } 3254 segind++; 3255 } 3256 3257 if (!phys_range_exists) { 3258 ret = ERANGE; 3259 goto done; 3260 } 3261 3262 /* 3263 * Reclaim the highest runs in LIFO (descending) order until 3264 * the number of reclaimed pages, "reclaimed", is at least 3265 * "min_reclaim". Reset "reclaimed" each time because each 3266 * reclamation is idempotent, and runs will (likely) recur 3267 * from one scan to the next as restrictions are relaxed. 3268 */ 3269 reclaimed = 0; 3270 for (i = 0; count > 0 && i < nruns; i++) { 3271 count--; 3272 m_run = m_runs[RUN_INDEX(count, nruns)]; 3273 error = vm_page_reclaim_run(req_class, domain, npages, 3274 m_run, high); 3275 if (error == 0) { 3276 reclaimed += npages; 3277 if (reclaimed >= min_reclaim) { 3278 ret = 0; 3279 goto done; 3280 } 3281 } 3282 } 3283 3284 /* 3285 * Either relax the restrictions on the next scan or return if 3286 * the last scan had no restrictions. 3287 */ 3288 if (options == VPSC_NORESERV) 3289 options = VPSC_NOSUPER; 3290 else if (options == VPSC_NOSUPER) 3291 options = VPSC_ANY; 3292 else if (options == VPSC_ANY) { 3293 if (reclaimed != 0) 3294 ret = 0; 3295 goto done; 3296 } 3297 } 3298 done: 3299 if (m_runs != _m_runs) 3300 free(m_runs, M_TEMP); 3301 return (ret); 3302 } 3303 3304 int 3305 vm_page_reclaim_contig_domain(int domain, int req, u_long npages, 3306 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary) 3307 { 3308 return (vm_page_reclaim_contig_domain_ext(domain, req, npages, low, 3309 high, alignment, boundary, 1)); 3310 } 3311 3312 int 3313 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high, 3314 u_long alignment, vm_paddr_t boundary) 3315 { 3316 struct vm_domainset_iter di; 3317 int domain, ret, status; 3318 3319 ret = ERANGE; 3320 3321 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req, NULL); 3322 do { 3323 status = vm_page_reclaim_contig_domain(domain, req, npages, low, 3324 high, alignment, boundary); 3325 if (status == 0) 3326 return (0); 3327 else if (status == ERANGE) 3328 vm_domainset_iter_ignore(&di, domain); 3329 else { 3330 KASSERT(status == ENOMEM, ("Unrecognized error %d " 3331 "from vm_page_reclaim_contig_domain()", status)); 3332 ret = ENOMEM; 3333 } 3334 } while (vm_domainset_iter_page(&di, NULL, &domain, NULL) == 0); 3335 3336 return (ret); 3337 } 3338 3339 /* 3340 * Set the domain in the appropriate page level domainset. 3341 */ 3342 void 3343 vm_domain_set(struct vm_domain *vmd) 3344 { 3345 3346 mtx_lock(&vm_domainset_lock); 3347 if (!vmd->vmd_minset && vm_paging_min(vmd)) { 3348 vmd->vmd_minset = 1; 3349 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains); 3350 } 3351 if (!vmd->vmd_severeset && vm_paging_severe(vmd)) { 3352 vmd->vmd_severeset = 1; 3353 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains); 3354 } 3355 mtx_unlock(&vm_domainset_lock); 3356 } 3357 3358 /* 3359 * Clear the domain from the appropriate page level domainset. 3360 */ 3361 void 3362 vm_domain_clear(struct vm_domain *vmd) 3363 { 3364 3365 mtx_lock(&vm_domainset_lock); 3366 if (vmd->vmd_minset && !vm_paging_min(vmd)) { 3367 vmd->vmd_minset = 0; 3368 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains); 3369 if (vm_min_waiters != 0) { 3370 vm_min_waiters = 0; 3371 wakeup(&vm_min_domains); 3372 } 3373 } 3374 if (vmd->vmd_severeset && !vm_paging_severe(vmd)) { 3375 vmd->vmd_severeset = 0; 3376 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains); 3377 if (vm_severe_waiters != 0) { 3378 vm_severe_waiters = 0; 3379 wakeup(&vm_severe_domains); 3380 } 3381 } 3382 3383 /* 3384 * If pageout daemon needs pages, then tell it that there are 3385 * some free. 3386 */ 3387 if (vmd->vmd_pageout_pages_needed && 3388 vmd->vmd_free_count >= vmd->vmd_pageout_free_min) { 3389 wakeup(&vmd->vmd_pageout_pages_needed); 3390 vmd->vmd_pageout_pages_needed = 0; 3391 } 3392 3393 /* See comments in vm_wait_doms(). */ 3394 if (vm_pageproc_waiters) { 3395 vm_pageproc_waiters = 0; 3396 wakeup(&vm_pageproc_waiters); 3397 } 3398 mtx_unlock(&vm_domainset_lock); 3399 } 3400 3401 /* 3402 * Wait for free pages to exceed the min threshold globally. 3403 */ 3404 void 3405 vm_wait_min(void) 3406 { 3407 3408 mtx_lock(&vm_domainset_lock); 3409 while (vm_page_count_min()) { 3410 vm_min_waiters++; 3411 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0); 3412 } 3413 mtx_unlock(&vm_domainset_lock); 3414 } 3415 3416 /* 3417 * Wait for free pages to exceed the severe threshold globally. 3418 */ 3419 void 3420 vm_wait_severe(void) 3421 { 3422 3423 mtx_lock(&vm_domainset_lock); 3424 while (vm_page_count_severe()) { 3425 vm_severe_waiters++; 3426 msleep(&vm_severe_domains, &vm_domainset_lock, PVM, 3427 "vmwait", 0); 3428 } 3429 mtx_unlock(&vm_domainset_lock); 3430 } 3431 3432 u_int 3433 vm_wait_count(void) 3434 { 3435 3436 return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters); 3437 } 3438 3439 int 3440 vm_wait_doms(const domainset_t *wdoms, int mflags) 3441 { 3442 int error; 3443 3444 error = 0; 3445 3446 /* 3447 * We use racey wakeup synchronization to avoid expensive global 3448 * locking for the pageproc when sleeping with a non-specific vm_wait. 3449 * To handle this, we only sleep for one tick in this instance. It 3450 * is expected that most allocations for the pageproc will come from 3451 * kmem or vm_page_grab* which will use the more specific and 3452 * race-free vm_wait_domain(). 3453 */ 3454 if (curproc == pageproc) { 3455 mtx_lock(&vm_domainset_lock); 3456 vm_pageproc_waiters++; 3457 error = msleep(&vm_pageproc_waiters, &vm_domainset_lock, 3458 PVM | PDROP | mflags, "pageprocwait", 1); 3459 } else { 3460 /* 3461 * XXX Ideally we would wait only until the allocation could 3462 * be satisfied. This condition can cause new allocators to 3463 * consume all freed pages while old allocators wait. 3464 */ 3465 mtx_lock(&vm_domainset_lock); 3466 if (vm_page_count_min_set(wdoms)) { 3467 if (pageproc == NULL) 3468 panic("vm_wait in early boot"); 3469 vm_min_waiters++; 3470 error = msleep(&vm_min_domains, &vm_domainset_lock, 3471 PVM | PDROP | mflags, "vmwait", 0); 3472 } else 3473 mtx_unlock(&vm_domainset_lock); 3474 } 3475 return (error); 3476 } 3477 3478 /* 3479 * vm_wait_domain: 3480 * 3481 * Sleep until free pages are available for allocation. 3482 * - Called in various places after failed memory allocations. 3483 */ 3484 void 3485 vm_wait_domain(int domain) 3486 { 3487 struct vm_domain *vmd; 3488 domainset_t wdom; 3489 3490 vmd = VM_DOMAIN(domain); 3491 vm_domain_free_assert_unlocked(vmd); 3492 3493 if (curproc == pageproc) { 3494 mtx_lock(&vm_domainset_lock); 3495 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) { 3496 vmd->vmd_pageout_pages_needed = 1; 3497 msleep(&vmd->vmd_pageout_pages_needed, 3498 &vm_domainset_lock, PDROP | PSWP, "VMWait", 0); 3499 } else 3500 mtx_unlock(&vm_domainset_lock); 3501 } else { 3502 DOMAINSET_ZERO(&wdom); 3503 DOMAINSET_SET(vmd->vmd_domain, &wdom); 3504 vm_wait_doms(&wdom, 0); 3505 } 3506 } 3507 3508 static int 3509 vm_wait_flags(vm_object_t obj, int mflags) 3510 { 3511 struct domainset *d; 3512 3513 d = NULL; 3514 3515 /* 3516 * Carefully fetch pointers only once: the struct domainset 3517 * itself is ummutable but the pointer might change. 3518 */ 3519 if (obj != NULL) 3520 d = obj->domain.dr_policy; 3521 if (d == NULL) 3522 d = curthread->td_domain.dr_policy; 3523 3524 return (vm_wait_doms(&d->ds_mask, mflags)); 3525 } 3526 3527 /* 3528 * vm_wait: 3529 * 3530 * Sleep until free pages are available for allocation in the 3531 * affinity domains of the obj. If obj is NULL, the domain set 3532 * for the calling thread is used. 3533 * Called in various places after failed memory allocations. 3534 */ 3535 void 3536 vm_wait(vm_object_t obj) 3537 { 3538 (void)vm_wait_flags(obj, 0); 3539 } 3540 3541 int 3542 vm_wait_intr(vm_object_t obj) 3543 { 3544 return (vm_wait_flags(obj, PCATCH)); 3545 } 3546 3547 /* 3548 * vm_domain_alloc_fail: 3549 * 3550 * Called when a page allocation function fails. Informs the 3551 * pagedaemon and performs the requested wait. Requires the 3552 * domain_free and object lock on entry. Returns with the 3553 * object lock held and free lock released. Returns an error when 3554 * retry is necessary. 3555 * 3556 */ 3557 static int 3558 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req) 3559 { 3560 3561 vm_domain_free_assert_unlocked(vmd); 3562 3563 atomic_add_int(&vmd->vmd_pageout_deficit, 3564 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); 3565 if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) { 3566 if (object != NULL) 3567 VM_OBJECT_WUNLOCK(object); 3568 vm_wait_domain(vmd->vmd_domain); 3569 if (object != NULL) 3570 VM_OBJECT_WLOCK(object); 3571 if (req & VM_ALLOC_WAITOK) 3572 return (EAGAIN); 3573 } 3574 3575 return (0); 3576 } 3577 3578 /* 3579 * vm_waitpfault: 3580 * 3581 * Sleep until free pages are available for allocation. 3582 * - Called only in vm_fault so that processes page faulting 3583 * can be easily tracked. 3584 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 3585 * processes will be able to grab memory first. Do not change 3586 * this balance without careful testing first. 3587 */ 3588 void 3589 vm_waitpfault(struct domainset *dset, int timo) 3590 { 3591 3592 /* 3593 * XXX Ideally we would wait only until the allocation could 3594 * be satisfied. This condition can cause new allocators to 3595 * consume all freed pages while old allocators wait. 3596 */ 3597 mtx_lock(&vm_domainset_lock); 3598 if (vm_page_count_min_set(&dset->ds_mask)) { 3599 vm_min_waiters++; 3600 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP, 3601 "pfault", timo); 3602 } else 3603 mtx_unlock(&vm_domainset_lock); 3604 } 3605 3606 static struct vm_pagequeue * 3607 _vm_page_pagequeue(vm_page_t m, uint8_t queue) 3608 { 3609 3610 return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]); 3611 } 3612 3613 #ifdef INVARIANTS 3614 static struct vm_pagequeue * 3615 vm_page_pagequeue(vm_page_t m) 3616 { 3617 3618 return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue)); 3619 } 3620 #endif 3621 3622 static __always_inline bool 3623 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old, 3624 vm_page_astate_t new) 3625 { 3626 vm_page_astate_t tmp; 3627 3628 tmp = *old; 3629 do { 3630 if (__predict_true(vm_page_astate_fcmpset(m, old, new))) 3631 return (true); 3632 counter_u64_add(pqstate_commit_retries, 1); 3633 } while (old->_bits == tmp._bits); 3634 3635 return (false); 3636 } 3637 3638 /* 3639 * Do the work of committing a queue state update that moves the page out of 3640 * its current queue. 3641 */ 3642 static bool 3643 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m, 3644 vm_page_astate_t *old, vm_page_astate_t new) 3645 { 3646 vm_page_t next; 3647 3648 vm_pagequeue_assert_locked(pq); 3649 KASSERT(vm_page_pagequeue(m) == pq, 3650 ("%s: queue %p does not match page %p", __func__, pq, m)); 3651 KASSERT(old->queue != PQ_NONE && new.queue != old->queue, 3652 ("%s: invalid queue indices %d %d", 3653 __func__, old->queue, new.queue)); 3654 3655 /* 3656 * Once the queue index of the page changes there is nothing 3657 * synchronizing with further updates to the page's physical 3658 * queue state. Therefore we must speculatively remove the page 3659 * from the queue now and be prepared to roll back if the queue 3660 * state update fails. If the page is not physically enqueued then 3661 * we just update its queue index. 3662 */ 3663 if ((old->flags & PGA_ENQUEUED) != 0) { 3664 new.flags &= ~PGA_ENQUEUED; 3665 next = TAILQ_NEXT(m, plinks.q); 3666 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 3667 vm_pagequeue_cnt_dec(pq); 3668 if (!vm_page_pqstate_fcmpset(m, old, new)) { 3669 if (next == NULL) 3670 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 3671 else 3672 TAILQ_INSERT_BEFORE(next, m, plinks.q); 3673 vm_pagequeue_cnt_inc(pq); 3674 return (false); 3675 } else { 3676 return (true); 3677 } 3678 } else { 3679 return (vm_page_pqstate_fcmpset(m, old, new)); 3680 } 3681 } 3682 3683 static bool 3684 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old, 3685 vm_page_astate_t new) 3686 { 3687 struct vm_pagequeue *pq; 3688 vm_page_astate_t as; 3689 bool ret; 3690 3691 pq = _vm_page_pagequeue(m, old->queue); 3692 3693 /* 3694 * The queue field and PGA_ENQUEUED flag are stable only so long as the 3695 * corresponding page queue lock is held. 3696 */ 3697 vm_pagequeue_lock(pq); 3698 as = vm_page_astate_load(m); 3699 if (__predict_false(as._bits != old->_bits)) { 3700 *old = as; 3701 ret = false; 3702 } else { 3703 ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new); 3704 } 3705 vm_pagequeue_unlock(pq); 3706 return (ret); 3707 } 3708 3709 /* 3710 * Commit a queue state update that enqueues or requeues a page. 3711 */ 3712 static bool 3713 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m, 3714 vm_page_astate_t *old, vm_page_astate_t new) 3715 { 3716 struct vm_domain *vmd; 3717 3718 vm_pagequeue_assert_locked(pq); 3719 KASSERT(old->queue != PQ_NONE && new.queue == old->queue, 3720 ("%s: invalid queue indices %d %d", 3721 __func__, old->queue, new.queue)); 3722 3723 new.flags |= PGA_ENQUEUED; 3724 if (!vm_page_pqstate_fcmpset(m, old, new)) 3725 return (false); 3726 3727 if ((old->flags & PGA_ENQUEUED) != 0) 3728 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 3729 else 3730 vm_pagequeue_cnt_inc(pq); 3731 3732 /* 3733 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE. In particular, if 3734 * both flags are set in close succession, only PGA_REQUEUE_HEAD will be 3735 * applied, even if it was set first. 3736 */ 3737 if ((old->flags & PGA_REQUEUE_HEAD) != 0) { 3738 vmd = vm_pagequeue_domain(m); 3739 KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE], 3740 ("%s: invalid page queue for page %p", __func__, m)); 3741 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q); 3742 } else { 3743 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 3744 } 3745 return (true); 3746 } 3747 3748 /* 3749 * Commit a queue state update that encodes a request for a deferred queue 3750 * operation. 3751 */ 3752 static bool 3753 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old, 3754 vm_page_astate_t new) 3755 { 3756 3757 KASSERT(old->queue == new.queue || new.queue != PQ_NONE, 3758 ("%s: invalid state, queue %d flags %x", 3759 __func__, new.queue, new.flags)); 3760 3761 if (old->_bits != new._bits && 3762 !vm_page_pqstate_fcmpset(m, old, new)) 3763 return (false); 3764 vm_page_pqbatch_submit(m, new.queue); 3765 return (true); 3766 } 3767 3768 /* 3769 * A generic queue state update function. This handles more cases than the 3770 * specialized functions above. 3771 */ 3772 bool 3773 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new) 3774 { 3775 3776 if (old->_bits == new._bits) 3777 return (true); 3778 3779 if (old->queue != PQ_NONE && new.queue != old->queue) { 3780 if (!vm_page_pqstate_commit_dequeue(m, old, new)) 3781 return (false); 3782 if (new.queue != PQ_NONE) 3783 vm_page_pqbatch_submit(m, new.queue); 3784 } else { 3785 if (!vm_page_pqstate_fcmpset(m, old, new)) 3786 return (false); 3787 if (new.queue != PQ_NONE && 3788 ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0) 3789 vm_page_pqbatch_submit(m, new.queue); 3790 } 3791 return (true); 3792 } 3793 3794 /* 3795 * Apply deferred queue state updates to a page. 3796 */ 3797 static inline void 3798 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue) 3799 { 3800 vm_page_astate_t new, old; 3801 3802 CRITICAL_ASSERT(curthread); 3803 vm_pagequeue_assert_locked(pq); 3804 KASSERT(queue < PQ_COUNT, 3805 ("%s: invalid queue index %d", __func__, queue)); 3806 KASSERT(pq == _vm_page_pagequeue(m, queue), 3807 ("%s: page %p does not belong to queue %p", __func__, m, pq)); 3808 3809 for (old = vm_page_astate_load(m);;) { 3810 if (__predict_false(old.queue != queue || 3811 (old.flags & PGA_QUEUE_OP_MASK) == 0)) { 3812 counter_u64_add(queue_nops, 1); 3813 break; 3814 } 3815 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 3816 ("%s: page %p is unmanaged", __func__, m)); 3817 3818 new = old; 3819 if ((old.flags & PGA_DEQUEUE) != 0) { 3820 new.flags &= ~PGA_QUEUE_OP_MASK; 3821 new.queue = PQ_NONE; 3822 if (__predict_true(_vm_page_pqstate_commit_dequeue(pq, 3823 m, &old, new))) { 3824 counter_u64_add(queue_ops, 1); 3825 break; 3826 } 3827 } else { 3828 new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD); 3829 if (__predict_true(_vm_page_pqstate_commit_requeue(pq, 3830 m, &old, new))) { 3831 counter_u64_add(queue_ops, 1); 3832 break; 3833 } 3834 } 3835 } 3836 } 3837 3838 static void 3839 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq, 3840 uint8_t queue) 3841 { 3842 int i; 3843 3844 for (i = 0; i < bq->bq_cnt; i++) 3845 vm_pqbatch_process_page(pq, bq->bq_pa[i], queue); 3846 vm_batchqueue_init(bq); 3847 } 3848 3849 /* 3850 * vm_page_pqbatch_submit: [ internal use only ] 3851 * 3852 * Enqueue a page in the specified page queue's batched work queue. 3853 * The caller must have encoded the requested operation in the page 3854 * structure's a.flags field. 3855 */ 3856 void 3857 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue) 3858 { 3859 struct vm_batchqueue *bq; 3860 struct vm_pagequeue *pq; 3861 int domain, slots_remaining; 3862 3863 KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue)); 3864 3865 domain = vm_page_domain(m); 3866 critical_enter(); 3867 bq = DPCPU_PTR(pqbatch[domain][queue]); 3868 slots_remaining = vm_batchqueue_insert(bq, m); 3869 if (slots_remaining > (VM_BATCHQUEUE_SIZE >> 1)) { 3870 /* keep building the bq */ 3871 critical_exit(); 3872 return; 3873 } else if (slots_remaining > 0 ) { 3874 /* Try to process the bq if we can get the lock */ 3875 pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue]; 3876 if (vm_pagequeue_trylock(pq)) { 3877 vm_pqbatch_process(pq, bq, queue); 3878 vm_pagequeue_unlock(pq); 3879 } 3880 critical_exit(); 3881 return; 3882 } 3883 critical_exit(); 3884 3885 /* if we make it here, the bq is full so wait for the lock */ 3886 3887 pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue]; 3888 vm_pagequeue_lock(pq); 3889 critical_enter(); 3890 bq = DPCPU_PTR(pqbatch[domain][queue]); 3891 vm_pqbatch_process(pq, bq, queue); 3892 vm_pqbatch_process_page(pq, m, queue); 3893 vm_pagequeue_unlock(pq); 3894 critical_exit(); 3895 } 3896 3897 /* 3898 * vm_page_pqbatch_drain: [ internal use only ] 3899 * 3900 * Force all per-CPU page queue batch queues to be drained. This is 3901 * intended for use in severe memory shortages, to ensure that pages 3902 * do not remain stuck in the batch queues. 3903 */ 3904 void 3905 vm_page_pqbatch_drain(void) 3906 { 3907 struct thread *td; 3908 struct vm_domain *vmd; 3909 struct vm_pagequeue *pq; 3910 int cpu, domain, queue; 3911 3912 td = curthread; 3913 CPU_FOREACH(cpu) { 3914 thread_lock(td); 3915 sched_bind(td, cpu); 3916 thread_unlock(td); 3917 3918 for (domain = 0; domain < vm_ndomains; domain++) { 3919 vmd = VM_DOMAIN(domain); 3920 for (queue = 0; queue < PQ_COUNT; queue++) { 3921 pq = &vmd->vmd_pagequeues[queue]; 3922 vm_pagequeue_lock(pq); 3923 critical_enter(); 3924 vm_pqbatch_process(pq, 3925 DPCPU_PTR(pqbatch[domain][queue]), queue); 3926 critical_exit(); 3927 vm_pagequeue_unlock(pq); 3928 } 3929 } 3930 } 3931 thread_lock(td); 3932 sched_unbind(td); 3933 thread_unlock(td); 3934 } 3935 3936 /* 3937 * vm_page_dequeue_deferred: [ internal use only ] 3938 * 3939 * Request removal of the given page from its current page 3940 * queue. Physical removal from the queue may be deferred 3941 * indefinitely. 3942 */ 3943 void 3944 vm_page_dequeue_deferred(vm_page_t m) 3945 { 3946 vm_page_astate_t new, old; 3947 3948 old = vm_page_astate_load(m); 3949 do { 3950 if (old.queue == PQ_NONE) { 3951 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0, 3952 ("%s: page %p has unexpected queue state", 3953 __func__, m)); 3954 break; 3955 } 3956 new = old; 3957 new.flags |= PGA_DEQUEUE; 3958 } while (!vm_page_pqstate_commit_request(m, &old, new)); 3959 } 3960 3961 /* 3962 * vm_page_dequeue: 3963 * 3964 * Remove the page from whichever page queue it's in, if any, before 3965 * returning. 3966 */ 3967 void 3968 vm_page_dequeue(vm_page_t m) 3969 { 3970 vm_page_astate_t new, old; 3971 3972 old = vm_page_astate_load(m); 3973 do { 3974 if (old.queue == PQ_NONE) { 3975 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0, 3976 ("%s: page %p has unexpected queue state", 3977 __func__, m)); 3978 break; 3979 } 3980 new = old; 3981 new.flags &= ~PGA_QUEUE_OP_MASK; 3982 new.queue = PQ_NONE; 3983 } while (!vm_page_pqstate_commit_dequeue(m, &old, new)); 3984 3985 } 3986 3987 /* 3988 * Schedule the given page for insertion into the specified page queue. 3989 * Physical insertion of the page may be deferred indefinitely. 3990 */ 3991 static void 3992 vm_page_enqueue(vm_page_t m, uint8_t queue) 3993 { 3994 3995 KASSERT(m->a.queue == PQ_NONE && 3996 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0, 3997 ("%s: page %p is already enqueued", __func__, m)); 3998 KASSERT(m->ref_count > 0, 3999 ("%s: page %p does not carry any references", __func__, m)); 4000 4001 m->a.queue = queue; 4002 if ((m->a.flags & PGA_REQUEUE) == 0) 4003 vm_page_aflag_set(m, PGA_REQUEUE); 4004 vm_page_pqbatch_submit(m, queue); 4005 } 4006 4007 /* 4008 * vm_page_free_prep: 4009 * 4010 * Prepares the given page to be put on the free list, 4011 * disassociating it from any VM object. The caller may return 4012 * the page to the free list only if this function returns true. 4013 * 4014 * The object, if it exists, must be locked, and then the page must 4015 * be xbusy. Otherwise the page must be not busied. A managed 4016 * page must be unmapped. 4017 */ 4018 static bool 4019 vm_page_free_prep(vm_page_t m) 4020 { 4021 4022 /* 4023 * Synchronize with threads that have dropped a reference to this 4024 * page. 4025 */ 4026 atomic_thread_fence_acq(); 4027 4028 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP) 4029 if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) { 4030 uint64_t *p; 4031 int i; 4032 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 4033 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++) 4034 KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx", 4035 m, i, (uintmax_t)*p)); 4036 } 4037 #endif 4038 if ((m->oflags & VPO_UNMANAGED) == 0) { 4039 KASSERT(!pmap_page_is_mapped(m), 4040 ("vm_page_free_prep: freeing mapped page %p", m)); 4041 KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0, 4042 ("vm_page_free_prep: mapping flags set in page %p", m)); 4043 } else { 4044 KASSERT(m->a.queue == PQ_NONE, 4045 ("vm_page_free_prep: unmanaged page %p is queued", m)); 4046 } 4047 VM_CNT_INC(v_tfree); 4048 4049 if (m->object != NULL) { 4050 vm_page_radix_remove(m); 4051 vm_page_free_object_prep(m); 4052 } else 4053 vm_page_assert_unbusied(m); 4054 4055 vm_page_busy_free(m); 4056 4057 /* 4058 * If fictitious remove object association and 4059 * return. 4060 */ 4061 if ((m->flags & PG_FICTITIOUS) != 0) { 4062 KASSERT(m->ref_count == 1, 4063 ("fictitious page %p is referenced", m)); 4064 KASSERT(m->a.queue == PQ_NONE, 4065 ("fictitious page %p is queued", m)); 4066 return (false); 4067 } 4068 4069 /* 4070 * Pages need not be dequeued before they are returned to the physical 4071 * memory allocator, but they must at least be marked for a deferred 4072 * dequeue. 4073 */ 4074 if ((m->oflags & VPO_UNMANAGED) == 0) 4075 vm_page_dequeue_deferred(m); 4076 4077 m->valid = 0; 4078 vm_page_undirty(m); 4079 4080 if (m->ref_count != 0) 4081 panic("vm_page_free_prep: page %p has references", m); 4082 4083 /* 4084 * Restore the default memory attribute to the page. 4085 */ 4086 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) 4087 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); 4088 4089 #if VM_NRESERVLEVEL > 0 4090 /* 4091 * Determine whether the page belongs to a reservation. If the page was 4092 * allocated from a per-CPU cache, it cannot belong to a reservation, so 4093 * as an optimization, we avoid the check in that case. 4094 */ 4095 if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m)) 4096 return (false); 4097 #endif 4098 4099 return (true); 4100 } 4101 4102 /* 4103 * vm_page_free_toq: 4104 * 4105 * Returns the given page to the free list, disassociating it 4106 * from any VM object. 4107 * 4108 * The object must be locked. The page must be exclusively busied if it 4109 * belongs to an object. 4110 */ 4111 static void 4112 vm_page_free_toq(vm_page_t m) 4113 { 4114 struct vm_domain *vmd; 4115 uma_zone_t zone; 4116 4117 if (!vm_page_free_prep(m)) 4118 return; 4119 4120 vmd = vm_pagequeue_domain(m); 4121 if (__predict_false((m->flags & PG_NOFREE) != 0)) { 4122 vm_page_free_nofree(vmd, m); 4123 return; 4124 } 4125 zone = vmd->vmd_pgcache[m->pool].zone; 4126 if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) { 4127 uma_zfree(zone, m); 4128 return; 4129 } 4130 vm_domain_free_lock(vmd); 4131 vm_phys_free_pages(m, m->pool, 0); 4132 vm_domain_free_unlock(vmd); 4133 vm_domain_freecnt_inc(vmd, 1); 4134 } 4135 4136 /* 4137 * vm_page_free_pages_toq: 4138 * 4139 * Returns a list of pages to the free list, disassociating it 4140 * from any VM object. In other words, this is equivalent to 4141 * calling vm_page_free_toq() for each page of a list of VM objects. 4142 */ 4143 int 4144 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count) 4145 { 4146 vm_page_t m; 4147 int count; 4148 4149 if (SLIST_EMPTY(free)) 4150 return (0); 4151 4152 count = 0; 4153 while ((m = SLIST_FIRST(free)) != NULL) { 4154 count++; 4155 SLIST_REMOVE_HEAD(free, plinks.s.ss); 4156 vm_page_free_toq(m); 4157 } 4158 4159 if (update_wire_count) 4160 vm_wire_sub(count); 4161 return (count); 4162 } 4163 4164 /* 4165 * Mark this page as wired down. For managed pages, this prevents reclamation 4166 * by the page daemon, or when the containing object, if any, is destroyed. 4167 */ 4168 void 4169 vm_page_wire(vm_page_t m) 4170 { 4171 u_int old; 4172 4173 #ifdef INVARIANTS 4174 if (m->object != NULL && !vm_page_busied(m) && 4175 !vm_object_busied(m->object)) 4176 VM_OBJECT_ASSERT_LOCKED(m->object); 4177 #endif 4178 KASSERT((m->flags & PG_FICTITIOUS) == 0 || 4179 VPRC_WIRE_COUNT(m->ref_count) >= 1, 4180 ("vm_page_wire: fictitious page %p has zero wirings", m)); 4181 4182 old = atomic_fetchadd_int(&m->ref_count, 1); 4183 KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX, 4184 ("vm_page_wire: counter overflow for page %p", m)); 4185 if (VPRC_WIRE_COUNT(old) == 0) { 4186 if ((m->oflags & VPO_UNMANAGED) == 0) 4187 vm_page_aflag_set(m, PGA_DEQUEUE); 4188 vm_wire_add(1); 4189 } 4190 } 4191 4192 /* 4193 * Attempt to wire a mapped page following a pmap lookup of that page. 4194 * This may fail if a thread is concurrently tearing down mappings of the page. 4195 * The transient failure is acceptable because it translates to the 4196 * failure of the caller pmap_extract_and_hold(), which should be then 4197 * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages(). 4198 */ 4199 bool 4200 vm_page_wire_mapped(vm_page_t m) 4201 { 4202 u_int old; 4203 4204 old = atomic_load_int(&m->ref_count); 4205 do { 4206 KASSERT(old > 0, 4207 ("vm_page_wire_mapped: wiring unreferenced page %p", m)); 4208 if ((old & VPRC_BLOCKED) != 0) 4209 return (false); 4210 } while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1)); 4211 4212 if (VPRC_WIRE_COUNT(old) == 0) { 4213 if ((m->oflags & VPO_UNMANAGED) == 0) 4214 vm_page_aflag_set(m, PGA_DEQUEUE); 4215 vm_wire_add(1); 4216 } 4217 return (true); 4218 } 4219 4220 /* 4221 * Release a wiring reference to a managed page. If the page still belongs to 4222 * an object, update its position in the page queues to reflect the reference. 4223 * If the wiring was the last reference to the page, free the page. 4224 */ 4225 static void 4226 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse) 4227 { 4228 u_int old; 4229 4230 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4231 ("%s: page %p is unmanaged", __func__, m)); 4232 4233 /* 4234 * Update LRU state before releasing the wiring reference. 4235 * Use a release store when updating the reference count to 4236 * synchronize with vm_page_free_prep(). 4237 */ 4238 old = atomic_load_int(&m->ref_count); 4239 do { 4240 u_int count; 4241 4242 KASSERT(VPRC_WIRE_COUNT(old) > 0, 4243 ("vm_page_unwire: wire count underflow for page %p", m)); 4244 4245 count = old & ~VPRC_BLOCKED; 4246 if (count > VPRC_OBJREF + 1) { 4247 /* 4248 * The page has at least one other wiring reference. An 4249 * earlier iteration of this loop may have called 4250 * vm_page_release_toq() and cleared PGA_DEQUEUE, so 4251 * re-set it if necessary. 4252 */ 4253 if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0) 4254 vm_page_aflag_set(m, PGA_DEQUEUE); 4255 } else if (count == VPRC_OBJREF + 1) { 4256 /* 4257 * This is the last wiring. Clear PGA_DEQUEUE and 4258 * update the page's queue state to reflect the 4259 * reference. If the page does not belong to an object 4260 * (i.e., the VPRC_OBJREF bit is clear), we only need to 4261 * clear leftover queue state. 4262 */ 4263 vm_page_release_toq(m, nqueue, noreuse); 4264 } else if (count == 1) { 4265 vm_page_aflag_clear(m, PGA_DEQUEUE); 4266 } 4267 } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1)); 4268 4269 if (VPRC_WIRE_COUNT(old) == 1) { 4270 vm_wire_sub(1); 4271 if (old == 1) 4272 vm_page_free(m); 4273 } 4274 } 4275 4276 /* 4277 * Release one wiring of the specified page, potentially allowing it to be 4278 * paged out. 4279 * 4280 * Only managed pages belonging to an object can be paged out. If the number 4281 * of wirings transitions to zero and the page is eligible for page out, then 4282 * the page is added to the specified paging queue. If the released wiring 4283 * represented the last reference to the page, the page is freed. 4284 */ 4285 void 4286 vm_page_unwire(vm_page_t m, uint8_t nqueue) 4287 { 4288 4289 KASSERT(nqueue < PQ_COUNT, 4290 ("vm_page_unwire: invalid queue %u request for page %p", 4291 nqueue, m)); 4292 4293 if ((m->oflags & VPO_UNMANAGED) != 0) { 4294 if (vm_page_unwire_noq(m) && m->ref_count == 0) 4295 vm_page_free(m); 4296 return; 4297 } 4298 vm_page_unwire_managed(m, nqueue, false); 4299 } 4300 4301 /* 4302 * Unwire a page without (re-)inserting it into a page queue. It is up 4303 * to the caller to enqueue, requeue, or free the page as appropriate. 4304 * In most cases involving managed pages, vm_page_unwire() should be used 4305 * instead. 4306 */ 4307 bool 4308 vm_page_unwire_noq(vm_page_t m) 4309 { 4310 u_int old; 4311 4312 old = vm_page_drop(m, 1); 4313 KASSERT(VPRC_WIRE_COUNT(old) != 0, 4314 ("%s: counter underflow for page %p", __func__, m)); 4315 KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1, 4316 ("%s: missing ref on fictitious page %p", __func__, m)); 4317 4318 if (VPRC_WIRE_COUNT(old) > 1) 4319 return (false); 4320 if ((m->oflags & VPO_UNMANAGED) == 0) 4321 vm_page_aflag_clear(m, PGA_DEQUEUE); 4322 vm_wire_sub(1); 4323 return (true); 4324 } 4325 4326 /* 4327 * Ensure that the page ends up in the specified page queue. If the page is 4328 * active or being moved to the active queue, ensure that its act_count is 4329 * at least ACT_INIT but do not otherwise mess with it. 4330 */ 4331 static __always_inline void 4332 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag) 4333 { 4334 vm_page_astate_t old, new; 4335 4336 KASSERT(m->ref_count > 0, 4337 ("%s: page %p does not carry any references", __func__, m)); 4338 KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD, 4339 ("%s: invalid flags %x", __func__, nflag)); 4340 4341 if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m)) 4342 return; 4343 4344 old = vm_page_astate_load(m); 4345 do { 4346 if ((old.flags & PGA_DEQUEUE) != 0) 4347 break; 4348 new = old; 4349 new.flags &= ~PGA_QUEUE_OP_MASK; 4350 if (nqueue == PQ_ACTIVE) 4351 new.act_count = max(old.act_count, ACT_INIT); 4352 if (old.queue == nqueue) { 4353 /* 4354 * There is no need to requeue pages already in the 4355 * active queue. 4356 */ 4357 if (nqueue != PQ_ACTIVE || 4358 (old.flags & PGA_ENQUEUED) == 0) 4359 new.flags |= nflag; 4360 } else { 4361 new.flags |= nflag; 4362 new.queue = nqueue; 4363 } 4364 } while (!vm_page_pqstate_commit(m, &old, new)); 4365 } 4366 4367 /* 4368 * Put the specified page on the active list (if appropriate). 4369 */ 4370 void 4371 vm_page_activate(vm_page_t m) 4372 { 4373 4374 vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE); 4375 } 4376 4377 /* 4378 * Move the specified page to the tail of the inactive queue, or requeue 4379 * the page if it is already in the inactive queue. 4380 */ 4381 void 4382 vm_page_deactivate(vm_page_t m) 4383 { 4384 4385 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE); 4386 } 4387 4388 void 4389 vm_page_deactivate_noreuse(vm_page_t m) 4390 { 4391 4392 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD); 4393 } 4394 4395 /* 4396 * Put a page in the laundry, or requeue it if it is already there. 4397 */ 4398 void 4399 vm_page_launder(vm_page_t m) 4400 { 4401 4402 vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE); 4403 } 4404 4405 /* 4406 * Put a page in the PQ_UNSWAPPABLE holding queue. 4407 */ 4408 void 4409 vm_page_unswappable(vm_page_t m) 4410 { 4411 4412 VM_OBJECT_ASSERT_LOCKED(m->object); 4413 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4414 ("page %p already unswappable", m)); 4415 4416 vm_page_dequeue(m); 4417 vm_page_enqueue(m, PQ_UNSWAPPABLE); 4418 } 4419 4420 /* 4421 * Release a page back to the page queues in preparation for unwiring. 4422 */ 4423 static void 4424 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse) 4425 { 4426 vm_page_astate_t old, new; 4427 uint16_t nflag; 4428 4429 /* 4430 * Use a check of the valid bits to determine whether we should 4431 * accelerate reclamation of the page. The object lock might not be 4432 * held here, in which case the check is racy. At worst we will either 4433 * accelerate reclamation of a valid page and violate LRU, or 4434 * unnecessarily defer reclamation of an invalid page. 4435 * 4436 * If we were asked to not cache the page, place it near the head of the 4437 * inactive queue so that is reclaimed sooner. 4438 */ 4439 if (noreuse || vm_page_none_valid(m)) { 4440 nqueue = PQ_INACTIVE; 4441 nflag = PGA_REQUEUE_HEAD; 4442 } else { 4443 nflag = PGA_REQUEUE; 4444 } 4445 4446 old = vm_page_astate_load(m); 4447 do { 4448 new = old; 4449 4450 /* 4451 * If the page is already in the active queue and we are not 4452 * trying to accelerate reclamation, simply mark it as 4453 * referenced and avoid any queue operations. 4454 */ 4455 new.flags &= ~PGA_QUEUE_OP_MASK; 4456 if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE && 4457 (old.flags & PGA_ENQUEUED) != 0) 4458 new.flags |= PGA_REFERENCED; 4459 else { 4460 new.flags |= nflag; 4461 new.queue = nqueue; 4462 } 4463 } while (!vm_page_pqstate_commit(m, &old, new)); 4464 } 4465 4466 /* 4467 * Unwire a page and either attempt to free it or re-add it to the page queues. 4468 */ 4469 void 4470 vm_page_release(vm_page_t m, int flags) 4471 { 4472 vm_object_t object; 4473 4474 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4475 ("vm_page_release: page %p is unmanaged", m)); 4476 4477 if ((flags & VPR_TRYFREE) != 0) { 4478 for (;;) { 4479 object = atomic_load_ptr(&m->object); 4480 if (object == NULL) 4481 break; 4482 /* Depends on type-stability. */ 4483 if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object)) 4484 break; 4485 if (object == m->object) { 4486 vm_page_release_locked(m, flags); 4487 VM_OBJECT_WUNLOCK(object); 4488 return; 4489 } 4490 VM_OBJECT_WUNLOCK(object); 4491 } 4492 } 4493 vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0); 4494 } 4495 4496 /* See vm_page_release(). */ 4497 void 4498 vm_page_release_locked(vm_page_t m, int flags) 4499 { 4500 4501 VM_OBJECT_ASSERT_WLOCKED(m->object); 4502 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4503 ("vm_page_release_locked: page %p is unmanaged", m)); 4504 4505 if (vm_page_unwire_noq(m)) { 4506 if ((flags & VPR_TRYFREE) != 0 && 4507 (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) && 4508 m->dirty == 0 && vm_page_tryxbusy(m)) { 4509 /* 4510 * An unlocked lookup may have wired the page before the 4511 * busy lock was acquired, in which case the page must 4512 * not be freed. 4513 */ 4514 if (__predict_true(!vm_page_wired(m))) { 4515 vm_page_free(m); 4516 return; 4517 } 4518 vm_page_xunbusy(m); 4519 } else { 4520 vm_page_release_toq(m, PQ_INACTIVE, flags != 0); 4521 } 4522 } 4523 } 4524 4525 static bool 4526 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t)) 4527 { 4528 u_int old; 4529 4530 KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0, 4531 ("vm_page_try_blocked_op: page %p has no object", m)); 4532 KASSERT(vm_page_busied(m), 4533 ("vm_page_try_blocked_op: page %p is not busy", m)); 4534 VM_OBJECT_ASSERT_LOCKED(m->object); 4535 4536 old = atomic_load_int(&m->ref_count); 4537 do { 4538 KASSERT(old != 0, 4539 ("vm_page_try_blocked_op: page %p has no references", m)); 4540 KASSERT((old & VPRC_BLOCKED) == 0, 4541 ("vm_page_try_blocked_op: page %p blocks wirings", m)); 4542 if (VPRC_WIRE_COUNT(old) != 0) 4543 return (false); 4544 } while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED)); 4545 4546 (op)(m); 4547 4548 /* 4549 * If the object is read-locked, new wirings may be created via an 4550 * object lookup. 4551 */ 4552 old = vm_page_drop(m, VPRC_BLOCKED); 4553 KASSERT(!VM_OBJECT_WOWNED(m->object) || 4554 old == (VPRC_BLOCKED | VPRC_OBJREF), 4555 ("vm_page_try_blocked_op: unexpected refcount value %u for %p", 4556 old, m)); 4557 return (true); 4558 } 4559 4560 /* 4561 * Atomically check for wirings and remove all mappings of the page. 4562 */ 4563 bool 4564 vm_page_try_remove_all(vm_page_t m) 4565 { 4566 4567 return (vm_page_try_blocked_op(m, pmap_remove_all)); 4568 } 4569 4570 /* 4571 * Atomically check for wirings and remove all writeable mappings of the page. 4572 */ 4573 bool 4574 vm_page_try_remove_write(vm_page_t m) 4575 { 4576 4577 return (vm_page_try_blocked_op(m, pmap_remove_write)); 4578 } 4579 4580 /* 4581 * vm_page_advise 4582 * 4583 * Apply the specified advice to the given page. 4584 */ 4585 void 4586 vm_page_advise(vm_page_t m, int advice) 4587 { 4588 4589 VM_OBJECT_ASSERT_WLOCKED(m->object); 4590 vm_page_assert_xbusied(m); 4591 4592 if (advice == MADV_FREE) 4593 /* 4594 * Mark the page clean. This will allow the page to be freed 4595 * without first paging it out. MADV_FREE pages are often 4596 * quickly reused by malloc(3), so we do not do anything that 4597 * would result in a page fault on a later access. 4598 */ 4599 vm_page_undirty(m); 4600 else if (advice != MADV_DONTNEED) { 4601 if (advice == MADV_WILLNEED) 4602 vm_page_activate(m); 4603 return; 4604 } 4605 4606 if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m)) 4607 vm_page_dirty(m); 4608 4609 /* 4610 * Clear any references to the page. Otherwise, the page daemon will 4611 * immediately reactivate the page. 4612 */ 4613 vm_page_aflag_clear(m, PGA_REFERENCED); 4614 4615 /* 4616 * Place clean pages near the head of the inactive queue rather than 4617 * the tail, thus defeating the queue's LRU operation and ensuring that 4618 * the page will be reused quickly. Dirty pages not already in the 4619 * laundry are moved there. 4620 */ 4621 if (m->dirty == 0) 4622 vm_page_deactivate_noreuse(m); 4623 else if (!vm_page_in_laundry(m)) 4624 vm_page_launder(m); 4625 } 4626 4627 /* 4628 * vm_page_grab_release 4629 * 4630 * Helper routine for grab functions to release busy on return. 4631 */ 4632 static inline void 4633 vm_page_grab_release(vm_page_t m, int allocflags) 4634 { 4635 4636 if ((allocflags & VM_ALLOC_NOBUSY) != 0) { 4637 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0) 4638 vm_page_sunbusy(m); 4639 else 4640 vm_page_xunbusy(m); 4641 } 4642 } 4643 4644 /* 4645 * vm_page_grab_sleep 4646 * 4647 * Sleep for busy according to VM_ALLOC_ parameters. Returns true 4648 * if the caller should retry and false otherwise. 4649 * 4650 * If the object is locked on entry the object will be unlocked with 4651 * false returns and still locked but possibly having been dropped 4652 * with true returns. 4653 */ 4654 static bool 4655 vm_page_grab_sleep(vm_object_t object, vm_page_t m, vm_pindex_t pindex, 4656 const char *wmesg, int allocflags, bool locked) 4657 { 4658 4659 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 4660 return (false); 4661 4662 /* 4663 * Reference the page before unlocking and sleeping so that 4664 * the page daemon is less likely to reclaim it. 4665 */ 4666 if (locked && (allocflags & VM_ALLOC_NOCREAT) == 0) 4667 vm_page_reference(m); 4668 4669 if (_vm_page_busy_sleep(object, m, pindex, wmesg, allocflags, locked) && 4670 locked) 4671 VM_OBJECT_WLOCK(object); 4672 if ((allocflags & VM_ALLOC_WAITFAIL) != 0) 4673 return (false); 4674 4675 return (true); 4676 } 4677 4678 /* 4679 * Assert that the grab flags are valid. 4680 */ 4681 static inline void 4682 vm_page_grab_check(int allocflags) 4683 { 4684 4685 KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 || 4686 (allocflags & VM_ALLOC_WIRED) != 0, 4687 ("vm_page_grab*: the pages must be busied or wired")); 4688 4689 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 4690 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 4691 ("vm_page_grab*: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch")); 4692 } 4693 4694 /* 4695 * Calculate the page allocation flags for grab. 4696 */ 4697 static inline int 4698 vm_page_grab_pflags(int allocflags) 4699 { 4700 int pflags; 4701 4702 pflags = allocflags & 4703 ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL | 4704 VM_ALLOC_NOBUSY | VM_ALLOC_IGN_SBUSY); 4705 if ((allocflags & VM_ALLOC_NOWAIT) == 0) 4706 pflags |= VM_ALLOC_WAITFAIL; 4707 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0) 4708 pflags |= VM_ALLOC_SBUSY; 4709 4710 return (pflags); 4711 } 4712 4713 /* 4714 * Grab a page, waiting until we are woken up due to the page changing state. 4715 * We keep on waiting, if the page continues to be in the object, unless 4716 * allocflags forbid waiting. 4717 * 4718 * The object must be locked on entry. This routine may sleep. The lock will, 4719 * however, be released and reacquired if the routine sleeps. 4720 * 4721 * Return a grabbed page, or NULL. Set *found if a page was found, whether or 4722 * not it was grabbed. 4723 */ 4724 static inline vm_page_t 4725 vm_page_grab_lookup(vm_object_t object, vm_pindex_t pindex, int allocflags, 4726 bool *found, struct pctrie_iter *pages) 4727 { 4728 vm_page_t m; 4729 4730 while ((*found = (m = vm_radix_iter_lookup(pages, pindex)) != NULL) && 4731 !vm_page_tryacquire(m, allocflags)) { 4732 if (!vm_page_grab_sleep(object, m, pindex, "pgrbwt", 4733 allocflags, true)) 4734 return (NULL); 4735 pctrie_iter_reset(pages); 4736 } 4737 return (m); 4738 } 4739 4740 /* 4741 * Grab a page. Use an iterator parameter. Keep on waiting, as long as the page 4742 * exists in the object. If the page doesn't exist, first allocate it and then 4743 * conditionally zero it. 4744 * 4745 * The object must be locked on entry. This routine may sleep. The lock will, 4746 * however, be released and reacquired if the routine sleeps. 4747 */ 4748 vm_page_t 4749 vm_page_grab_iter(vm_object_t object, vm_pindex_t pindex, int allocflags, 4750 struct pctrie_iter *pages) 4751 { 4752 vm_page_t m; 4753 bool found; 4754 4755 VM_OBJECT_ASSERT_WLOCKED(object); 4756 vm_page_grab_check(allocflags); 4757 4758 while ((m = vm_page_grab_lookup( 4759 object, pindex, allocflags, &found, pages)) == NULL) { 4760 if ((allocflags & VM_ALLOC_NOCREAT) != 0) 4761 return (NULL); 4762 if (found && 4763 (allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0) 4764 return (NULL); 4765 m = vm_page_alloc_iter(object, pindex, 4766 vm_page_grab_pflags(allocflags), pages); 4767 if (m != NULL) { 4768 if ((allocflags & VM_ALLOC_ZERO) != 0 && 4769 (m->flags & PG_ZERO) == 0) 4770 pmap_zero_page(m); 4771 break; 4772 } 4773 if ((allocflags & 4774 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0) 4775 return (NULL); 4776 } 4777 vm_page_grab_release(m, allocflags); 4778 4779 return (m); 4780 } 4781 4782 /* 4783 * Grab a page. Keep on waiting, as long as the page exists in the object. If 4784 * the page doesn't exist, first allocate it and then conditionally zero it. 4785 * 4786 * The object must be locked on entry. This routine may sleep. The lock will, 4787 * however, be released and reacquired if the routine sleeps. 4788 */ 4789 vm_page_t 4790 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 4791 { 4792 struct pctrie_iter pages; 4793 4794 VM_OBJECT_ASSERT_WLOCKED(object); 4795 vm_page_iter_init(&pages, object); 4796 return (vm_page_grab_iter(object, pindex, allocflags, &pages)); 4797 } 4798 4799 /* 4800 * Attempt to validate a page, locklessly acquiring it if necessary, given a 4801 * (object, pindex) tuple and either an invalided page or NULL. The resulting 4802 * page will be validated against the identity tuple, and busied or wired as 4803 * requested. A NULL page returned guarantees that the page was not in radix at 4804 * the time of the call but callers must perform higher level synchronization or 4805 * retry the operation under a lock if they require an atomic answer. This is 4806 * the only lock free validation routine, other routines can depend on the 4807 * resulting page state. 4808 * 4809 * The return value PAGE_NOT_ACQUIRED indicates that the operation failed due to 4810 * caller flags. 4811 */ 4812 #define PAGE_NOT_ACQUIRED ((vm_page_t)1) 4813 static vm_page_t 4814 vm_page_acquire_unlocked(vm_object_t object, vm_pindex_t pindex, vm_page_t m, 4815 int allocflags) 4816 { 4817 if (m == NULL) 4818 m = vm_page_lookup_unlocked(object, pindex); 4819 for (; m != NULL; m = vm_page_lookup_unlocked(object, pindex)) { 4820 if (vm_page_trybusy(m, allocflags)) { 4821 if (m->object == object && m->pindex == pindex) { 4822 if ((allocflags & VM_ALLOC_WIRED) != 0) 4823 vm_page_wire(m); 4824 vm_page_grab_release(m, allocflags); 4825 break; 4826 } 4827 /* relookup. */ 4828 vm_page_busy_release(m); 4829 cpu_spinwait(); 4830 continue; 4831 } 4832 if (!vm_page_grab_sleep(object, m, pindex, "pgnslp", 4833 allocflags, false)) 4834 return (PAGE_NOT_ACQUIRED); 4835 } 4836 return (m); 4837 } 4838 4839 /* 4840 * Try to locklessly grab a page and fall back to the object lock if NOCREAT 4841 * is not set. 4842 */ 4843 vm_page_t 4844 vm_page_grab_unlocked(vm_object_t object, vm_pindex_t pindex, int allocflags) 4845 { 4846 vm_page_t m; 4847 4848 vm_page_grab_check(allocflags); 4849 m = vm_page_acquire_unlocked(object, pindex, NULL, allocflags); 4850 if (m == PAGE_NOT_ACQUIRED) 4851 return (NULL); 4852 if (m != NULL) 4853 return (m); 4854 4855 /* 4856 * The radix lockless lookup should never return a false negative 4857 * errors. If the user specifies NOCREAT they are guaranteed there 4858 * was no page present at the instant of the call. A NOCREAT caller 4859 * must handle create races gracefully. 4860 */ 4861 if ((allocflags & VM_ALLOC_NOCREAT) != 0) 4862 return (NULL); 4863 4864 VM_OBJECT_WLOCK(object); 4865 m = vm_page_grab(object, pindex, allocflags); 4866 VM_OBJECT_WUNLOCK(object); 4867 4868 return (m); 4869 } 4870 4871 /* 4872 * Grab a page and make it valid, paging in if necessary. Use an iterator 4873 * parameter. Pages missing from their pager are zero filled and validated. If 4874 * a VM_ALLOC_COUNT is supplied and the page is not valid as many as 4875 * VM_INITIAL_PAGEIN pages can be brought in simultaneously. Additional pages 4876 * will be left on a paging queue but will neither be wired nor busy regardless 4877 * of allocflags. 4878 */ 4879 int 4880 vm_page_grab_valid_iter(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, 4881 int allocflags, struct pctrie_iter *pages) 4882 { 4883 vm_page_t m; 4884 vm_page_t ma[VM_INITIAL_PAGEIN]; 4885 int after, i, pflags, rv; 4886 4887 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 4888 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 4889 ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch")); 4890 KASSERT((allocflags & 4891 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0, 4892 ("vm_page_grab_valid: Invalid flags 0x%X", allocflags)); 4893 VM_OBJECT_ASSERT_WLOCKED(object); 4894 pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY | 4895 VM_ALLOC_WIRED | VM_ALLOC_IGN_SBUSY); 4896 pflags |= VM_ALLOC_WAITFAIL; 4897 4898 retrylookup: 4899 if ((m = vm_radix_iter_lookup(pages, pindex)) != NULL) { 4900 /* 4901 * If the page is fully valid it can only become invalid 4902 * with the object lock held. If it is not valid it can 4903 * become valid with the busy lock held. Therefore, we 4904 * may unnecessarily lock the exclusive busy here if we 4905 * race with I/O completion not using the object lock. 4906 * However, we will not end up with an invalid page and a 4907 * shared lock. 4908 */ 4909 if (!vm_page_trybusy(m, 4910 vm_page_all_valid(m) ? allocflags : 0)) { 4911 (void)vm_page_grab_sleep(object, m, pindex, "pgrbwt", 4912 allocflags, true); 4913 pctrie_iter_reset(pages); 4914 goto retrylookup; 4915 } 4916 if (vm_page_all_valid(m)) 4917 goto out; 4918 if ((allocflags & VM_ALLOC_NOCREAT) != 0) { 4919 vm_page_busy_release(m); 4920 *mp = NULL; 4921 return (VM_PAGER_FAIL); 4922 } 4923 } else if ((allocflags & VM_ALLOC_NOCREAT) != 0) { 4924 *mp = NULL; 4925 return (VM_PAGER_FAIL); 4926 } else { 4927 m = vm_page_alloc_iter(object, pindex, pflags, pages); 4928 if (m == NULL) { 4929 if (!vm_pager_can_alloc_page(object, pindex)) { 4930 *mp = NULL; 4931 return (VM_PAGER_AGAIN); 4932 } 4933 goto retrylookup; 4934 } 4935 } 4936 4937 vm_page_assert_xbusied(m); 4938 if (vm_pager_has_page(object, pindex, NULL, &after)) { 4939 after = MIN(after, VM_INITIAL_PAGEIN); 4940 after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT); 4941 after = MAX(after, 1); 4942 ma[0] = m; 4943 pctrie_iter_reset(pages); 4944 for (i = 1; i < after; i++) { 4945 m = vm_radix_iter_lookup(pages, pindex + i); 4946 if (m == NULL) { 4947 m = vm_page_alloc_iter(object, pindex + i, 4948 VM_ALLOC_NORMAL, pages); 4949 if (m == NULL) 4950 break; 4951 } else if (vm_page_any_valid(m) || !vm_page_tryxbusy(m)) 4952 break; 4953 ma[i] = m; 4954 } 4955 after = i; 4956 vm_object_pip_add(object, after); 4957 VM_OBJECT_WUNLOCK(object); 4958 rv = vm_pager_get_pages(object, ma, after, NULL, NULL); 4959 VM_OBJECT_WLOCK(object); 4960 vm_object_pip_wakeupn(object, after); 4961 /* Pager may have replaced a page. */ 4962 m = ma[0]; 4963 if (rv != VM_PAGER_OK) { 4964 for (i = 0; i < after; i++) { 4965 if (!vm_page_wired(ma[i])) 4966 vm_page_free(ma[i]); 4967 else 4968 vm_page_xunbusy(ma[i]); 4969 } 4970 *mp = NULL; 4971 return (rv); 4972 } 4973 for (i = 1; i < after; i++) 4974 vm_page_readahead_finish(ma[i]); 4975 MPASS(vm_page_all_valid(m)); 4976 } else { 4977 vm_page_zero_invalid(m, TRUE); 4978 } 4979 pctrie_iter_reset(pages); 4980 out: 4981 if ((allocflags & VM_ALLOC_WIRED) != 0) 4982 vm_page_wire(m); 4983 if ((allocflags & VM_ALLOC_SBUSY) != 0 && vm_page_xbusied(m)) 4984 vm_page_busy_downgrade(m); 4985 else if ((allocflags & VM_ALLOC_NOBUSY) != 0) 4986 vm_page_busy_release(m); 4987 *mp = m; 4988 return (VM_PAGER_OK); 4989 } 4990 4991 /* 4992 * Grab a page and make it valid, paging in if necessary. Pages missing from 4993 * their pager are zero filled and validated. If a VM_ALLOC_COUNT is supplied 4994 * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought 4995 * in simultaneously. Additional pages will be left on a paging queue but 4996 * will neither be wired nor busy regardless of allocflags. 4997 */ 4998 int 4999 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, 5000 int allocflags) 5001 { 5002 struct pctrie_iter pages; 5003 5004 VM_OBJECT_ASSERT_WLOCKED(object); 5005 vm_page_iter_init(&pages, object); 5006 return (vm_page_grab_valid_iter(mp, object, pindex, allocflags, 5007 &pages)); 5008 } 5009 5010 /* 5011 * Grab a page. Keep on waiting, as long as the page exists in the object. If 5012 * the page doesn't exist, and the pager has it, allocate it and zero part of 5013 * it. 5014 * 5015 * The object must be locked on entry. This routine may sleep. The lock will, 5016 * however, be released and reacquired if the routine sleeps. 5017 */ 5018 int 5019 vm_page_grab_zero_partial(vm_object_t object, vm_pindex_t pindex, int base, 5020 int end) 5021 { 5022 struct pctrie_iter pages; 5023 vm_page_t m; 5024 int allocflags, rv; 5025 bool found; 5026 5027 VM_OBJECT_ASSERT_WLOCKED(object); 5028 KASSERT(base >= 0, ("%s: base %d", __func__, base)); 5029 KASSERT(end - base <= PAGE_SIZE, ("%s: base %d end %d", __func__, base, 5030 end)); 5031 5032 allocflags = VM_ALLOC_NOCREAT | VM_ALLOC_NORMAL | VM_ALLOC_WAITFAIL; 5033 vm_page_iter_init(&pages, object); 5034 while ((m = vm_page_grab_lookup( 5035 object, pindex, allocflags, &found, &pages)) == NULL) { 5036 if (!vm_pager_has_page(object, pindex, NULL, NULL)) 5037 return (0); 5038 m = vm_page_alloc_iter(object, pindex, 5039 vm_page_grab_pflags(allocflags), &pages); 5040 if (m != NULL) { 5041 vm_object_pip_add(object, 1); 5042 VM_OBJECT_WUNLOCK(object); 5043 rv = vm_pager_get_pages(object, &m, 1, NULL, NULL); 5044 VM_OBJECT_WLOCK(object); 5045 vm_object_pip_wakeup(object); 5046 if (rv != VM_PAGER_OK) { 5047 vm_page_free(m); 5048 return (EIO); 5049 } 5050 5051 /* 5052 * Since the page was not resident, and therefore not 5053 * recently accessed, immediately enqueue it for 5054 * asynchronous laundering. The current operation is 5055 * not regarded as an access. 5056 */ 5057 vm_page_launder(m); 5058 break; 5059 } 5060 } 5061 5062 pmap_zero_page_area(m, base, end - base); 5063 KASSERT(vm_page_all_valid(m), ("%s: page %p is invalid", __func__, m)); 5064 vm_page_set_dirty(m); 5065 vm_page_xunbusy(m); 5066 return (0); 5067 } 5068 5069 /* 5070 * Locklessly grab a valid page. If the page is not valid or not yet 5071 * allocated this will fall back to the object lock method. 5072 */ 5073 int 5074 vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object, 5075 vm_pindex_t pindex, int allocflags) 5076 { 5077 vm_page_t m; 5078 int flags; 5079 int error; 5080 5081 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 5082 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 5083 ("vm_page_grab_valid_unlocked: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY " 5084 "mismatch")); 5085 KASSERT((allocflags & 5086 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0, 5087 ("vm_page_grab_valid_unlocked: Invalid flags 0x%X", allocflags)); 5088 5089 /* 5090 * Attempt a lockless lookup and busy. We need at least an sbusy 5091 * before we can inspect the valid field and return a wired page. 5092 */ 5093 flags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_WIRED); 5094 vm_page_grab_check(flags); 5095 m = vm_page_acquire_unlocked(object, pindex, NULL, flags); 5096 if (m == PAGE_NOT_ACQUIRED) 5097 return (VM_PAGER_FAIL); 5098 if (m != NULL) { 5099 if (vm_page_all_valid(m)) { 5100 if ((allocflags & VM_ALLOC_WIRED) != 0) 5101 vm_page_wire(m); 5102 vm_page_grab_release(m, allocflags); 5103 *mp = m; 5104 return (VM_PAGER_OK); 5105 } 5106 vm_page_busy_release(m); 5107 } 5108 if ((allocflags & VM_ALLOC_NOCREAT) != 0) { 5109 *mp = NULL; 5110 return (VM_PAGER_FAIL); 5111 } 5112 VM_OBJECT_WLOCK(object); 5113 error = vm_page_grab_valid(mp, object, pindex, allocflags); 5114 VM_OBJECT_WUNLOCK(object); 5115 5116 return (error); 5117 } 5118 5119 /* 5120 * Return the specified range of pages from the given object. For each 5121 * page offset within the range, if a page already exists within the object 5122 * at that offset and it is busy, then wait for it to change state. If, 5123 * instead, the page doesn't exist, then allocate it. 5124 * 5125 * The caller must always specify an allocation class. 5126 * 5127 * allocation classes: 5128 * VM_ALLOC_NORMAL normal process request 5129 * VM_ALLOC_SYSTEM system *really* needs the pages 5130 * 5131 * The caller must always specify that the pages are to be busied and/or 5132 * wired. 5133 * 5134 * optional allocation flags: 5135 * VM_ALLOC_IGN_SBUSY do not sleep on soft busy pages 5136 * VM_ALLOC_NOBUSY do not exclusive busy the page 5137 * VM_ALLOC_NOWAIT do not sleep 5138 * VM_ALLOC_SBUSY set page to sbusy state 5139 * VM_ALLOC_WIRED wire the pages 5140 * VM_ALLOC_ZERO zero and validate any invalid pages 5141 * 5142 * If VM_ALLOC_NOWAIT is not specified, this routine may sleep. Otherwise, it 5143 * may return a partial prefix of the requested range. 5144 */ 5145 int 5146 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags, 5147 vm_page_t *ma, int count) 5148 { 5149 struct pctrie_iter pages; 5150 vm_page_t m; 5151 int pflags; 5152 int ahead, i; 5153 5154 VM_OBJECT_ASSERT_WLOCKED(object); 5155 KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0, 5156 ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed")); 5157 KASSERT(count > 0, 5158 ("vm_page_grab_pages: invalid page count %d", count)); 5159 vm_page_grab_check(allocflags); 5160 5161 pflags = vm_page_grab_pflags(allocflags); 5162 i = 0; 5163 vm_page_iter_init(&pages, object); 5164 retrylookup: 5165 ahead = -1; 5166 for (; i < count; i++) { 5167 if (ahead < 0) { 5168 ahead = vm_radix_iter_lookup_range( 5169 &pages, pindex + i, &ma[i], count - i); 5170 } 5171 if (ahead-- > 0) { 5172 m = ma[i]; 5173 if (!vm_page_tryacquire(m, allocflags)) { 5174 if (vm_page_grab_sleep(object, m, pindex + i, 5175 "grbmaw", allocflags, true)) { 5176 pctrie_iter_reset(&pages); 5177 goto retrylookup; 5178 } 5179 break; 5180 } 5181 } else { 5182 if ((allocflags & VM_ALLOC_NOCREAT) != 0) 5183 break; 5184 m = vm_page_alloc_iter(object, pindex + i, 5185 pflags | VM_ALLOC_COUNT(count - i), &pages); 5186 /* pages was reset if alloc_iter lost the lock. */ 5187 if (m == NULL) { 5188 if ((allocflags & (VM_ALLOC_NOWAIT | 5189 VM_ALLOC_WAITFAIL)) != 0) 5190 break; 5191 goto retrylookup; 5192 } 5193 ma[i] = m; 5194 } 5195 if (vm_page_none_valid(m) && 5196 (allocflags & VM_ALLOC_ZERO) != 0) { 5197 if ((m->flags & PG_ZERO) == 0) 5198 pmap_zero_page(m); 5199 vm_page_valid(m); 5200 } 5201 vm_page_grab_release(m, allocflags); 5202 } 5203 return (i); 5204 } 5205 5206 /* 5207 * Unlocked variant of vm_page_grab_pages(). This accepts the same flags 5208 * and will fall back to the locked variant to handle allocation. 5209 */ 5210 int 5211 vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex, 5212 int allocflags, vm_page_t *ma, int count) 5213 { 5214 vm_page_t m; 5215 int flags; 5216 int i, num_fetched; 5217 5218 KASSERT(count > 0, 5219 ("vm_page_grab_pages_unlocked: invalid page count %d", count)); 5220 vm_page_grab_check(allocflags); 5221 5222 /* 5223 * Modify flags for lockless acquire to hold the page until we 5224 * set it valid if necessary. 5225 */ 5226 flags = allocflags & ~VM_ALLOC_NOBUSY; 5227 vm_page_grab_check(flags); 5228 num_fetched = vm_radix_lookup_range_unlocked(&object->rtree, pindex, 5229 ma, count); 5230 for (i = 0; i < num_fetched; i++, pindex++) { 5231 m = vm_page_acquire_unlocked(object, pindex, ma[i], flags); 5232 if (m == PAGE_NOT_ACQUIRED) 5233 return (i); 5234 if (m == NULL) 5235 break; 5236 if ((flags & VM_ALLOC_ZERO) != 0 && vm_page_none_valid(m)) { 5237 if ((m->flags & PG_ZERO) == 0) 5238 pmap_zero_page(m); 5239 vm_page_valid(m); 5240 } 5241 /* m will still be wired or busy according to flags. */ 5242 vm_page_grab_release(m, allocflags); 5243 /* vm_page_acquire_unlocked() may not return ma[i]. */ 5244 ma[i] = m; 5245 } 5246 if (i == count || (allocflags & VM_ALLOC_NOCREAT) != 0) 5247 return (i); 5248 count -= i; 5249 VM_OBJECT_WLOCK(object); 5250 i += vm_page_grab_pages(object, pindex, allocflags, &ma[i], count); 5251 VM_OBJECT_WUNLOCK(object); 5252 5253 return (i); 5254 } 5255 5256 /* 5257 * Mapping function for valid or dirty bits in a page. 5258 * 5259 * Inputs are required to range within a page. 5260 */ 5261 vm_page_bits_t 5262 vm_page_bits(int base, int size) 5263 { 5264 int first_bit; 5265 int last_bit; 5266 5267 KASSERT( 5268 base + size <= PAGE_SIZE, 5269 ("vm_page_bits: illegal base/size %d/%d", base, size) 5270 ); 5271 5272 if (size == 0) /* handle degenerate case */ 5273 return (0); 5274 5275 first_bit = base >> DEV_BSHIFT; 5276 last_bit = (base + size - 1) >> DEV_BSHIFT; 5277 5278 return (((vm_page_bits_t)2 << last_bit) - 5279 ((vm_page_bits_t)1 << first_bit)); 5280 } 5281 5282 void 5283 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set) 5284 { 5285 5286 #if PAGE_SIZE == 32768 5287 atomic_set_64((uint64_t *)bits, set); 5288 #elif PAGE_SIZE == 16384 5289 atomic_set_32((uint32_t *)bits, set); 5290 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16) 5291 atomic_set_16((uint16_t *)bits, set); 5292 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8) 5293 atomic_set_8((uint8_t *)bits, set); 5294 #else /* PAGE_SIZE <= 8192 */ 5295 uintptr_t addr; 5296 int shift; 5297 5298 addr = (uintptr_t)bits; 5299 /* 5300 * Use a trick to perform a 32-bit atomic on the 5301 * containing aligned word, to not depend on the existence 5302 * of atomic_{set, clear}_{8, 16}. 5303 */ 5304 shift = addr & (sizeof(uint32_t) - 1); 5305 #if BYTE_ORDER == BIG_ENDIAN 5306 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY; 5307 #else 5308 shift *= NBBY; 5309 #endif 5310 addr &= ~(sizeof(uint32_t) - 1); 5311 atomic_set_32((uint32_t *)addr, set << shift); 5312 #endif /* PAGE_SIZE */ 5313 } 5314 5315 static inline void 5316 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear) 5317 { 5318 5319 #if PAGE_SIZE == 32768 5320 atomic_clear_64((uint64_t *)bits, clear); 5321 #elif PAGE_SIZE == 16384 5322 atomic_clear_32((uint32_t *)bits, clear); 5323 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16) 5324 atomic_clear_16((uint16_t *)bits, clear); 5325 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8) 5326 atomic_clear_8((uint8_t *)bits, clear); 5327 #else /* PAGE_SIZE <= 8192 */ 5328 uintptr_t addr; 5329 int shift; 5330 5331 addr = (uintptr_t)bits; 5332 /* 5333 * Use a trick to perform a 32-bit atomic on the 5334 * containing aligned word, to not depend on the existence 5335 * of atomic_{set, clear}_{8, 16}. 5336 */ 5337 shift = addr & (sizeof(uint32_t) - 1); 5338 #if BYTE_ORDER == BIG_ENDIAN 5339 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY; 5340 #else 5341 shift *= NBBY; 5342 #endif 5343 addr &= ~(sizeof(uint32_t) - 1); 5344 atomic_clear_32((uint32_t *)addr, clear << shift); 5345 #endif /* PAGE_SIZE */ 5346 } 5347 5348 static inline vm_page_bits_t 5349 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits) 5350 { 5351 #if PAGE_SIZE == 32768 5352 uint64_t old; 5353 5354 old = *bits; 5355 while (atomic_fcmpset_64(bits, &old, newbits) == 0); 5356 return (old); 5357 #elif PAGE_SIZE == 16384 5358 uint32_t old; 5359 5360 old = *bits; 5361 while (atomic_fcmpset_32(bits, &old, newbits) == 0); 5362 return (old); 5363 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16) 5364 uint16_t old; 5365 5366 old = *bits; 5367 while (atomic_fcmpset_16(bits, &old, newbits) == 0); 5368 return (old); 5369 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8) 5370 uint8_t old; 5371 5372 old = *bits; 5373 while (atomic_fcmpset_8(bits, &old, newbits) == 0); 5374 return (old); 5375 #else /* PAGE_SIZE <= 4096*/ 5376 uintptr_t addr; 5377 uint32_t old, new, mask; 5378 int shift; 5379 5380 addr = (uintptr_t)bits; 5381 /* 5382 * Use a trick to perform a 32-bit atomic on the 5383 * containing aligned word, to not depend on the existence 5384 * of atomic_{set, swap, clear}_{8, 16}. 5385 */ 5386 shift = addr & (sizeof(uint32_t) - 1); 5387 #if BYTE_ORDER == BIG_ENDIAN 5388 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY; 5389 #else 5390 shift *= NBBY; 5391 #endif 5392 addr &= ~(sizeof(uint32_t) - 1); 5393 mask = VM_PAGE_BITS_ALL << shift; 5394 5395 old = *bits; 5396 do { 5397 new = old & ~mask; 5398 new |= newbits << shift; 5399 } while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0); 5400 return (old >> shift); 5401 #endif /* PAGE_SIZE */ 5402 } 5403 5404 /* 5405 * vm_page_set_valid_range: 5406 * 5407 * Sets portions of a page valid. The arguments are expected 5408 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 5409 * of any partial chunks touched by the range. The invalid portion of 5410 * such chunks will be zeroed. 5411 * 5412 * (base + size) must be less then or equal to PAGE_SIZE. 5413 */ 5414 void 5415 vm_page_set_valid_range(vm_page_t m, int base, int size) 5416 { 5417 int endoff, frag; 5418 vm_page_bits_t pagebits; 5419 5420 vm_page_assert_busied(m); 5421 if (size == 0) /* handle degenerate case */ 5422 return; 5423 5424 /* 5425 * If the base is not DEV_BSIZE aligned and the valid 5426 * bit is clear, we have to zero out a portion of the 5427 * first block. 5428 */ 5429 if ((frag = rounddown2(base, DEV_BSIZE)) != base && 5430 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 5431 pmap_zero_page_area(m, frag, base - frag); 5432 5433 /* 5434 * If the ending offset is not DEV_BSIZE aligned and the 5435 * valid bit is clear, we have to zero out a portion of 5436 * the last block. 5437 */ 5438 endoff = base + size; 5439 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && 5440 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 5441 pmap_zero_page_area(m, endoff, 5442 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 5443 5444 /* 5445 * Assert that no previously invalid block that is now being validated 5446 * is already dirty. 5447 */ 5448 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0, 5449 ("vm_page_set_valid_range: page %p is dirty", m)); 5450 5451 /* 5452 * Set valid bits inclusive of any overlap. 5453 */ 5454 pagebits = vm_page_bits(base, size); 5455 if (vm_page_xbusied(m)) 5456 m->valid |= pagebits; 5457 else 5458 vm_page_bits_set(m, &m->valid, pagebits); 5459 } 5460 5461 /* 5462 * Set the page dirty bits and free the invalid swap space if 5463 * present. Returns the previous dirty bits. 5464 */ 5465 vm_page_bits_t 5466 vm_page_set_dirty(vm_page_t m) 5467 { 5468 vm_page_bits_t old; 5469 5470 VM_PAGE_OBJECT_BUSY_ASSERT(m); 5471 5472 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) { 5473 old = m->dirty; 5474 m->dirty = VM_PAGE_BITS_ALL; 5475 } else 5476 old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL); 5477 if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0) 5478 vm_pager_page_unswapped(m); 5479 5480 return (old); 5481 } 5482 5483 /* 5484 * Clear the given bits from the specified page's dirty field. 5485 */ 5486 static __inline void 5487 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits) 5488 { 5489 5490 vm_page_assert_busied(m); 5491 5492 /* 5493 * If the page is xbusied and not write mapped we are the 5494 * only thread that can modify dirty bits. Otherwise, The pmap 5495 * layer can call vm_page_dirty() without holding a distinguished 5496 * lock. The combination of page busy and atomic operations 5497 * suffice to guarantee consistency of the page dirty field. 5498 */ 5499 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) 5500 m->dirty &= ~pagebits; 5501 else 5502 vm_page_bits_clear(m, &m->dirty, pagebits); 5503 } 5504 5505 /* 5506 * vm_page_set_validclean: 5507 * 5508 * Sets portions of a page valid and clean. The arguments are expected 5509 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 5510 * of any partial chunks touched by the range. The invalid portion of 5511 * such chunks will be zero'd. 5512 * 5513 * (base + size) must be less then or equal to PAGE_SIZE. 5514 */ 5515 void 5516 vm_page_set_validclean(vm_page_t m, int base, int size) 5517 { 5518 vm_page_bits_t oldvalid, pagebits; 5519 int endoff, frag; 5520 5521 vm_page_assert_busied(m); 5522 if (size == 0) /* handle degenerate case */ 5523 return; 5524 5525 /* 5526 * If the base is not DEV_BSIZE aligned and the valid 5527 * bit is clear, we have to zero out a portion of the 5528 * first block. 5529 */ 5530 if ((frag = rounddown2(base, DEV_BSIZE)) != base && 5531 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0) 5532 pmap_zero_page_area(m, frag, base - frag); 5533 5534 /* 5535 * If the ending offset is not DEV_BSIZE aligned and the 5536 * valid bit is clear, we have to zero out a portion of 5537 * the last block. 5538 */ 5539 endoff = base + size; 5540 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && 5541 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0) 5542 pmap_zero_page_area(m, endoff, 5543 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 5544 5545 /* 5546 * Set valid, clear dirty bits. If validating the entire 5547 * page we can safely clear the pmap modify bit. We also 5548 * use this opportunity to clear the PGA_NOSYNC flag. If a process 5549 * takes a write fault on a MAP_NOSYNC memory area the flag will 5550 * be set again. 5551 * 5552 * We set valid bits inclusive of any overlap, but we can only 5553 * clear dirty bits for DEV_BSIZE chunks that are fully within 5554 * the range. 5555 */ 5556 oldvalid = m->valid; 5557 pagebits = vm_page_bits(base, size); 5558 if (vm_page_xbusied(m)) 5559 m->valid |= pagebits; 5560 else 5561 vm_page_bits_set(m, &m->valid, pagebits); 5562 #if 0 /* NOT YET */ 5563 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 5564 frag = DEV_BSIZE - frag; 5565 base += frag; 5566 size -= frag; 5567 if (size < 0) 5568 size = 0; 5569 } 5570 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 5571 #endif 5572 if (base == 0 && size == PAGE_SIZE) { 5573 /* 5574 * The page can only be modified within the pmap if it is 5575 * mapped, and it can only be mapped if it was previously 5576 * fully valid. 5577 */ 5578 if (oldvalid == VM_PAGE_BITS_ALL) 5579 /* 5580 * Perform the pmap_clear_modify() first. Otherwise, 5581 * a concurrent pmap operation, such as 5582 * pmap_protect(), could clear a modification in the 5583 * pmap and set the dirty field on the page before 5584 * pmap_clear_modify() had begun and after the dirty 5585 * field was cleared here. 5586 */ 5587 pmap_clear_modify(m); 5588 m->dirty = 0; 5589 vm_page_aflag_clear(m, PGA_NOSYNC); 5590 } else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m)) 5591 m->dirty &= ~pagebits; 5592 else 5593 vm_page_clear_dirty_mask(m, pagebits); 5594 } 5595 5596 void 5597 vm_page_clear_dirty(vm_page_t m, int base, int size) 5598 { 5599 5600 vm_page_clear_dirty_mask(m, vm_page_bits(base, size)); 5601 } 5602 5603 /* 5604 * vm_page_set_invalid: 5605 * 5606 * Invalidates DEV_BSIZE'd chunks within a page. Both the 5607 * valid and dirty bits for the effected areas are cleared. 5608 */ 5609 void 5610 vm_page_set_invalid(vm_page_t m, int base, int size) 5611 { 5612 vm_page_bits_t bits; 5613 vm_object_t object; 5614 5615 /* 5616 * The object lock is required so that pages can't be mapped 5617 * read-only while we're in the process of invalidating them. 5618 */ 5619 object = m->object; 5620 VM_OBJECT_ASSERT_WLOCKED(object); 5621 vm_page_assert_busied(m); 5622 5623 if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) + 5624 size >= object->un_pager.vnp.vnp_size) 5625 bits = VM_PAGE_BITS_ALL; 5626 else 5627 bits = vm_page_bits(base, size); 5628 if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0) 5629 pmap_remove_all(m); 5630 KASSERT((bits == 0 && vm_page_all_valid(m)) || 5631 !pmap_page_is_mapped(m), 5632 ("vm_page_set_invalid: page %p is mapped", m)); 5633 if (vm_page_xbusied(m)) { 5634 m->valid &= ~bits; 5635 m->dirty &= ~bits; 5636 } else { 5637 vm_page_bits_clear(m, &m->valid, bits); 5638 vm_page_bits_clear(m, &m->dirty, bits); 5639 } 5640 } 5641 5642 /* 5643 * vm_page_invalid: 5644 * 5645 * Invalidates the entire page. The page must be busy, unmapped, and 5646 * the enclosing object must be locked. The object locks protects 5647 * against concurrent read-only pmap enter which is done without 5648 * busy. 5649 */ 5650 void 5651 vm_page_invalid(vm_page_t m) 5652 { 5653 5654 vm_page_assert_busied(m); 5655 VM_OBJECT_ASSERT_WLOCKED(m->object); 5656 MPASS(!pmap_page_is_mapped(m)); 5657 5658 if (vm_page_xbusied(m)) 5659 m->valid = 0; 5660 else 5661 vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL); 5662 } 5663 5664 /* 5665 * vm_page_zero_invalid() 5666 * 5667 * The kernel assumes that the invalid portions of a page contain 5668 * garbage, but such pages can be mapped into memory by user code. 5669 * When this occurs, we must zero out the non-valid portions of the 5670 * page so user code sees what it expects. 5671 * 5672 * Pages are most often semi-valid when the end of a file is mapped 5673 * into memory and the file's size is not page aligned. 5674 */ 5675 void 5676 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 5677 { 5678 int b; 5679 int i; 5680 5681 /* 5682 * Scan the valid bits looking for invalid sections that 5683 * must be zeroed. Invalid sub-DEV_BSIZE'd areas ( where the 5684 * valid bit may be set ) have already been zeroed by 5685 * vm_page_set_validclean(). 5686 */ 5687 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 5688 if (i == (PAGE_SIZE / DEV_BSIZE) || 5689 (m->valid & ((vm_page_bits_t)1 << i))) { 5690 if (i > b) { 5691 pmap_zero_page_area(m, 5692 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 5693 } 5694 b = i + 1; 5695 } 5696 } 5697 5698 /* 5699 * setvalid is TRUE when we can safely set the zero'd areas 5700 * as being valid. We can do this if there are no cache consistency 5701 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 5702 */ 5703 if (setvalid) 5704 vm_page_valid(m); 5705 } 5706 5707 /* 5708 * vm_page_is_valid: 5709 * 5710 * Is (partial) page valid? Note that the case where size == 0 5711 * will return FALSE in the degenerate case where the page is 5712 * entirely invalid, and TRUE otherwise. 5713 * 5714 * Some callers envoke this routine without the busy lock held and 5715 * handle races via higher level locks. Typical callers should 5716 * hold a busy lock to prevent invalidation. 5717 */ 5718 int 5719 vm_page_is_valid(vm_page_t m, int base, int size) 5720 { 5721 vm_page_bits_t bits; 5722 5723 bits = vm_page_bits(base, size); 5724 return (vm_page_any_valid(m) && (m->valid & bits) == bits); 5725 } 5726 5727 /* 5728 * Returns true if all of the specified predicates are true for the entire 5729 * (super)page and false otherwise. 5730 */ 5731 bool 5732 vm_page_ps_test(vm_page_t m, int psind, int flags, vm_page_t skip_m) 5733 { 5734 vm_object_t object; 5735 int i, npages; 5736 5737 object = m->object; 5738 if (skip_m != NULL && skip_m->object != object) 5739 return (false); 5740 VM_OBJECT_ASSERT_LOCKED(object); 5741 KASSERT(psind <= m->psind, 5742 ("psind %d > psind %d of m %p", psind, m->psind, m)); 5743 npages = atop(pagesizes[psind]); 5744 5745 /* 5746 * The physically contiguous pages that make up a superpage, i.e., a 5747 * page with a page size index ("psind") greater than zero, will 5748 * occupy adjacent entries in vm_page_array[]. 5749 */ 5750 for (i = 0; i < npages; i++) { 5751 /* Always test object consistency, including "skip_m". */ 5752 if (m[i].object != object) 5753 return (false); 5754 if (&m[i] == skip_m) 5755 continue; 5756 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i])) 5757 return (false); 5758 if ((flags & PS_ALL_DIRTY) != 0) { 5759 /* 5760 * Calling vm_page_test_dirty() or pmap_is_modified() 5761 * might stop this case from spuriously returning 5762 * "false". However, that would require a write lock 5763 * on the object containing "m[i]". 5764 */ 5765 if (m[i].dirty != VM_PAGE_BITS_ALL) 5766 return (false); 5767 } 5768 if ((flags & PS_ALL_VALID) != 0 && 5769 m[i].valid != VM_PAGE_BITS_ALL) 5770 return (false); 5771 } 5772 return (true); 5773 } 5774 5775 /* 5776 * Set the page's dirty bits if the page is modified. 5777 */ 5778 void 5779 vm_page_test_dirty(vm_page_t m) 5780 { 5781 5782 vm_page_assert_busied(m); 5783 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m)) 5784 vm_page_dirty(m); 5785 } 5786 5787 void 5788 vm_page_valid(vm_page_t m) 5789 { 5790 5791 vm_page_assert_busied(m); 5792 if (vm_page_xbusied(m)) 5793 m->valid = VM_PAGE_BITS_ALL; 5794 else 5795 vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL); 5796 } 5797 5798 void 5799 vm_page_lock_KBI(vm_page_t m, const char *file, int line) 5800 { 5801 5802 mtx_lock_flags_(vm_page_lockptr(m), 0, file, line); 5803 } 5804 5805 void 5806 vm_page_unlock_KBI(vm_page_t m, const char *file, int line) 5807 { 5808 5809 mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line); 5810 } 5811 5812 int 5813 vm_page_trylock_KBI(vm_page_t m, const char *file, int line) 5814 { 5815 5816 return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line)); 5817 } 5818 5819 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT) 5820 void 5821 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line) 5822 { 5823 5824 vm_page_lock_assert_KBI(m, MA_OWNED, file, line); 5825 } 5826 5827 void 5828 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line) 5829 { 5830 5831 mtx_assert_(vm_page_lockptr(m), a, file, line); 5832 } 5833 #endif 5834 5835 #ifdef INVARIANTS 5836 void 5837 vm_page_object_busy_assert(vm_page_t m) 5838 { 5839 5840 /* 5841 * Certain of the page's fields may only be modified by the 5842 * holder of a page or object busy. 5843 */ 5844 if (m->object != NULL && !vm_page_busied(m)) 5845 VM_OBJECT_ASSERT_BUSY(m->object); 5846 } 5847 5848 void 5849 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits) 5850 { 5851 5852 if ((bits & PGA_WRITEABLE) == 0) 5853 return; 5854 5855 /* 5856 * The PGA_WRITEABLE flag can only be set if the page is 5857 * managed, is exclusively busied or the object is locked. 5858 * Currently, this flag is only set by pmap_enter(). 5859 */ 5860 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 5861 ("PGA_WRITEABLE on unmanaged page")); 5862 if (!vm_page_xbusied(m)) 5863 VM_OBJECT_ASSERT_BUSY(m->object); 5864 } 5865 #endif 5866 5867 #include "opt_ddb.h" 5868 #ifdef DDB 5869 #include <sys/kernel.h> 5870 5871 #include <ddb/ddb.h> 5872 5873 DB_SHOW_COMMAND_FLAGS(page, vm_page_print_page_info, DB_CMD_MEMSAFE) 5874 { 5875 5876 db_printf("vm_cnt.v_free_count: %d\n", vm_free_count()); 5877 db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count()); 5878 db_printf("vm_cnt.v_active_count: %d\n", vm_active_count()); 5879 db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count()); 5880 db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count()); 5881 db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved); 5882 db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min); 5883 db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target); 5884 db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target); 5885 } 5886 5887 DB_SHOW_COMMAND_FLAGS(pageq, vm_page_print_pageq_info, DB_CMD_MEMSAFE) 5888 { 5889 int dom; 5890 5891 db_printf("pq_free %d\n", vm_free_count()); 5892 for (dom = 0; dom < vm_ndomains; dom++) { 5893 db_printf( 5894 "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n", 5895 dom, 5896 vm_dom[dom].vmd_page_count, 5897 vm_dom[dom].vmd_free_count, 5898 vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt, 5899 vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt, 5900 vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt, 5901 vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt); 5902 } 5903 } 5904 5905 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo) 5906 { 5907 vm_page_t m; 5908 boolean_t phys, virt; 5909 5910 if (!have_addr) { 5911 db_printf("show pginfo addr\n"); 5912 return; 5913 } 5914 5915 phys = strchr(modif, 'p') != NULL; 5916 virt = strchr(modif, 'v') != NULL; 5917 if (virt) 5918 m = PHYS_TO_VM_PAGE(pmap_kextract(addr)); 5919 else if (phys) 5920 m = PHYS_TO_VM_PAGE(addr); 5921 else 5922 m = (vm_page_t)addr; 5923 db_printf( 5924 "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref 0x%x\n" 5925 " af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n", 5926 m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr, 5927 m->a.queue, m->ref_count, m->a.flags, m->oflags, 5928 m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty); 5929 } 5930 #endif /* DDB */ 5931