1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * The Mach Operating System project at Carnegie-Mellon University. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 36 */ 37 38 /*- 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 */ 64 65 /* 66 * GENERAL RULES ON VM_PAGE MANIPULATION 67 * 68 * - A page queue lock is required when adding or removing a page from a 69 * page queue regardless of other locks or the busy state of a page. 70 * 71 * * In general, no thread besides the page daemon can acquire or 72 * hold more than one page queue lock at a time. 73 * 74 * * The page daemon can acquire and hold any pair of page queue 75 * locks in any order. 76 * 77 * - The object lock is required when inserting or removing 78 * pages from an object (vm_page_insert() or vm_page_remove()). 79 * 80 */ 81 82 /* 83 * Resident memory management module. 84 */ 85 86 #include <sys/cdefs.h> 87 __FBSDID("$FreeBSD$"); 88 89 #include "opt_vm.h" 90 91 #include <sys/param.h> 92 #include <sys/systm.h> 93 #include <sys/lock.h> 94 #include <sys/domainset.h> 95 #include <sys/kernel.h> 96 #include <sys/limits.h> 97 #include <sys/linker.h> 98 #include <sys/malloc.h> 99 #include <sys/mman.h> 100 #include <sys/msgbuf.h> 101 #include <sys/mutex.h> 102 #include <sys/proc.h> 103 #include <sys/rwlock.h> 104 #include <sys/sbuf.h> 105 #include <sys/sched.h> 106 #include <sys/smp.h> 107 #include <sys/sysctl.h> 108 #include <sys/vmmeter.h> 109 #include <sys/vnode.h> 110 111 #include <vm/vm.h> 112 #include <vm/pmap.h> 113 #include <vm/vm_param.h> 114 #include <vm/vm_domainset.h> 115 #include <vm/vm_kern.h> 116 #include <vm/vm_map.h> 117 #include <vm/vm_object.h> 118 #include <vm/vm_page.h> 119 #include <vm/vm_pageout.h> 120 #include <vm/vm_phys.h> 121 #include <vm/vm_pagequeue.h> 122 #include <vm/vm_pager.h> 123 #include <vm/vm_radix.h> 124 #include <vm/vm_reserv.h> 125 #include <vm/vm_extern.h> 126 #include <vm/uma.h> 127 #include <vm/uma_int.h> 128 129 #include <machine/md_var.h> 130 131 extern int uma_startup_count(int); 132 extern void uma_startup(void *, int); 133 extern int vmem_startup_count(void); 134 135 struct vm_domain vm_dom[MAXMEMDOM]; 136 137 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]); 138 139 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT]; 140 141 struct mtx_padalign __exclusive_cache_line vm_domainset_lock; 142 /* The following fields are protected by the domainset lock. */ 143 domainset_t __exclusive_cache_line vm_min_domains; 144 domainset_t __exclusive_cache_line vm_severe_domains; 145 static int vm_min_waiters; 146 static int vm_severe_waiters; 147 static int vm_pageproc_waiters; 148 149 /* 150 * bogus page -- for I/O to/from partially complete buffers, 151 * or for paging into sparsely invalid regions. 152 */ 153 vm_page_t bogus_page; 154 155 vm_page_t vm_page_array; 156 long vm_page_array_size; 157 long first_page; 158 159 static int boot_pages; 160 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 161 &boot_pages, 0, 162 "number of pages allocated for bootstrapping the VM system"); 163 164 static int pa_tryrelock_restart; 165 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD, 166 &pa_tryrelock_restart, 0, "Number of tryrelock restarts"); 167 168 static TAILQ_HEAD(, vm_page) blacklist_head; 169 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS); 170 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD | 171 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages"); 172 173 static uma_zone_t fakepg_zone; 174 175 static void vm_page_alloc_check(vm_page_t m); 176 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits); 177 static void vm_page_dequeue_complete(vm_page_t m); 178 static void vm_page_enqueue(vm_page_t m, uint8_t queue); 179 static void vm_page_init(void *dummy); 180 static int vm_page_insert_after(vm_page_t m, vm_object_t object, 181 vm_pindex_t pindex, vm_page_t mpred); 182 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object, 183 vm_page_t mpred); 184 static int vm_page_reclaim_run(int req_class, int domain, u_long npages, 185 vm_page_t m_run, vm_paddr_t high); 186 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, 187 int req); 188 static int vm_page_import(void *arg, void **store, int cnt, int domain, 189 int flags); 190 static void vm_page_release(void *arg, void **store, int cnt); 191 192 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL); 193 194 static void 195 vm_page_init(void *dummy) 196 { 197 198 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL, 199 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 200 bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | 201 VM_ALLOC_NORMAL | VM_ALLOC_WIRED); 202 } 203 204 /* 205 * The cache page zone is initialized later since we need to be able to allocate 206 * pages before UMA is fully initialized. 207 */ 208 static void 209 vm_page_init_cache_zones(void *dummy __unused) 210 { 211 struct vm_domain *vmd; 212 int i; 213 214 for (i = 0; i < vm_ndomains; i++) { 215 vmd = VM_DOMAIN(i); 216 /* 217 * Don't allow the page cache to take up more than .25% of 218 * memory. 219 */ 220 if (vmd->vmd_page_count / 400 < 256 * mp_ncpus) 221 continue; 222 vmd->vmd_pgcache = uma_zcache_create("vm pgcache", 223 sizeof(struct vm_page), NULL, NULL, NULL, NULL, 224 vm_page_import, vm_page_release, vmd, 225 UMA_ZONE_NOBUCKETCACHE | UMA_ZONE_MAXBUCKET | UMA_ZONE_VM); 226 } 227 } 228 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL); 229 230 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */ 231 #if PAGE_SIZE == 32768 232 #ifdef CTASSERT 233 CTASSERT(sizeof(u_long) >= 8); 234 #endif 235 #endif 236 237 /* 238 * Try to acquire a physical address lock while a pmap is locked. If we 239 * fail to trylock we unlock and lock the pmap directly and cache the 240 * locked pa in *locked. The caller should then restart their loop in case 241 * the virtual to physical mapping has changed. 242 */ 243 int 244 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked) 245 { 246 vm_paddr_t lockpa; 247 248 lockpa = *locked; 249 *locked = pa; 250 if (lockpa) { 251 PA_LOCK_ASSERT(lockpa, MA_OWNED); 252 if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa)) 253 return (0); 254 PA_UNLOCK(lockpa); 255 } 256 if (PA_TRYLOCK(pa)) 257 return (0); 258 PMAP_UNLOCK(pmap); 259 atomic_add_int(&pa_tryrelock_restart, 1); 260 PA_LOCK(pa); 261 PMAP_LOCK(pmap); 262 return (EAGAIN); 263 } 264 265 /* 266 * vm_set_page_size: 267 * 268 * Sets the page size, perhaps based upon the memory 269 * size. Must be called before any use of page-size 270 * dependent functions. 271 */ 272 void 273 vm_set_page_size(void) 274 { 275 if (vm_cnt.v_page_size == 0) 276 vm_cnt.v_page_size = PAGE_SIZE; 277 if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0) 278 panic("vm_set_page_size: page size not a power of two"); 279 } 280 281 /* 282 * vm_page_blacklist_next: 283 * 284 * Find the next entry in the provided string of blacklist 285 * addresses. Entries are separated by space, comma, or newline. 286 * If an invalid integer is encountered then the rest of the 287 * string is skipped. Updates the list pointer to the next 288 * character, or NULL if the string is exhausted or invalid. 289 */ 290 static vm_paddr_t 291 vm_page_blacklist_next(char **list, char *end) 292 { 293 vm_paddr_t bad; 294 char *cp, *pos; 295 296 if (list == NULL || *list == NULL) 297 return (0); 298 if (**list =='\0') { 299 *list = NULL; 300 return (0); 301 } 302 303 /* 304 * If there's no end pointer then the buffer is coming from 305 * the kenv and we know it's null-terminated. 306 */ 307 if (end == NULL) 308 end = *list + strlen(*list); 309 310 /* Ensure that strtoq() won't walk off the end */ 311 if (*end != '\0') { 312 if (*end == '\n' || *end == ' ' || *end == ',') 313 *end = '\0'; 314 else { 315 printf("Blacklist not terminated, skipping\n"); 316 *list = NULL; 317 return (0); 318 } 319 } 320 321 for (pos = *list; *pos != '\0'; pos = cp) { 322 bad = strtoq(pos, &cp, 0); 323 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') { 324 if (bad == 0) { 325 if (++cp < end) 326 continue; 327 else 328 break; 329 } 330 } else 331 break; 332 if (*cp == '\0' || ++cp >= end) 333 *list = NULL; 334 else 335 *list = cp; 336 return (trunc_page(bad)); 337 } 338 printf("Garbage in RAM blacklist, skipping\n"); 339 *list = NULL; 340 return (0); 341 } 342 343 bool 344 vm_page_blacklist_add(vm_paddr_t pa, bool verbose) 345 { 346 struct vm_domain *vmd; 347 vm_page_t m; 348 int ret; 349 350 m = vm_phys_paddr_to_vm_page(pa); 351 if (m == NULL) 352 return (true); /* page does not exist, no failure */ 353 354 vmd = vm_pagequeue_domain(m); 355 vm_domain_free_lock(vmd); 356 ret = vm_phys_unfree_page(m); 357 vm_domain_free_unlock(vmd); 358 if (ret != 0) { 359 vm_domain_freecnt_inc(vmd, -1); 360 TAILQ_INSERT_TAIL(&blacklist_head, m, listq); 361 if (verbose) 362 printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa); 363 } 364 return (ret); 365 } 366 367 /* 368 * vm_page_blacklist_check: 369 * 370 * Iterate through the provided string of blacklist addresses, pulling 371 * each entry out of the physical allocator free list and putting it 372 * onto a list for reporting via the vm.page_blacklist sysctl. 373 */ 374 static void 375 vm_page_blacklist_check(char *list, char *end) 376 { 377 vm_paddr_t pa; 378 char *next; 379 380 next = list; 381 while (next != NULL) { 382 if ((pa = vm_page_blacklist_next(&next, end)) == 0) 383 continue; 384 vm_page_blacklist_add(pa, bootverbose); 385 } 386 } 387 388 /* 389 * vm_page_blacklist_load: 390 * 391 * Search for a special module named "ram_blacklist". It'll be a 392 * plain text file provided by the user via the loader directive 393 * of the same name. 394 */ 395 static void 396 vm_page_blacklist_load(char **list, char **end) 397 { 398 void *mod; 399 u_char *ptr; 400 u_int len; 401 402 mod = NULL; 403 ptr = NULL; 404 405 mod = preload_search_by_type("ram_blacklist"); 406 if (mod != NULL) { 407 ptr = preload_fetch_addr(mod); 408 len = preload_fetch_size(mod); 409 } 410 *list = ptr; 411 if (ptr != NULL) 412 *end = ptr + len; 413 else 414 *end = NULL; 415 return; 416 } 417 418 static int 419 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS) 420 { 421 vm_page_t m; 422 struct sbuf sbuf; 423 int error, first; 424 425 first = 1; 426 error = sysctl_wire_old_buffer(req, 0); 427 if (error != 0) 428 return (error); 429 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 430 TAILQ_FOREACH(m, &blacklist_head, listq) { 431 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",", 432 (uintmax_t)m->phys_addr); 433 first = 0; 434 } 435 error = sbuf_finish(&sbuf); 436 sbuf_delete(&sbuf); 437 return (error); 438 } 439 440 /* 441 * Initialize a dummy page for use in scans of the specified paging queue. 442 * In principle, this function only needs to set the flag PG_MARKER. 443 * Nonetheless, it write busies and initializes the hold count to one as 444 * safety precautions. 445 */ 446 static void 447 vm_page_init_marker(vm_page_t marker, int queue, uint8_t aflags) 448 { 449 450 bzero(marker, sizeof(*marker)); 451 marker->flags = PG_MARKER; 452 marker->aflags = aflags; 453 marker->busy_lock = VPB_SINGLE_EXCLUSIVER; 454 marker->queue = queue; 455 marker->hold_count = 1; 456 } 457 458 static void 459 vm_page_domain_init(int domain) 460 { 461 struct vm_domain *vmd; 462 struct vm_pagequeue *pq; 463 int i; 464 465 vmd = VM_DOMAIN(domain); 466 bzero(vmd, sizeof(*vmd)); 467 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) = 468 "vm inactive pagequeue"; 469 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) = 470 "vm active pagequeue"; 471 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) = 472 "vm laundry pagequeue"; 473 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) = 474 "vm unswappable pagequeue"; 475 vmd->vmd_domain = domain; 476 vmd->vmd_page_count = 0; 477 vmd->vmd_free_count = 0; 478 vmd->vmd_segs = 0; 479 vmd->vmd_oom = FALSE; 480 for (i = 0; i < PQ_COUNT; i++) { 481 pq = &vmd->vmd_pagequeues[i]; 482 TAILQ_INIT(&pq->pq_pl); 483 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue", 484 MTX_DEF | MTX_DUPOK); 485 pq->pq_pdpages = 0; 486 vm_page_init_marker(&vmd->vmd_markers[i], i, 0); 487 } 488 mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF); 489 mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF); 490 snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain); 491 492 /* 493 * inacthead is used to provide FIFO ordering for LRU-bypassing 494 * insertions. 495 */ 496 vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED); 497 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl, 498 &vmd->vmd_inacthead, plinks.q); 499 500 /* 501 * The clock pages are used to implement active queue scanning without 502 * requeues. Scans start at clock[0], which is advanced after the scan 503 * ends. When the two clock hands meet, they are reset and scanning 504 * resumes from the head of the queue. 505 */ 506 vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED); 507 vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED); 508 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl, 509 &vmd->vmd_clock[0], plinks.q); 510 TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl, 511 &vmd->vmd_clock[1], plinks.q); 512 } 513 514 /* 515 * Initialize a physical page in preparation for adding it to the free 516 * lists. 517 */ 518 static void 519 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind) 520 { 521 522 m->object = NULL; 523 m->wire_count = 0; 524 m->busy_lock = VPB_UNBUSIED; 525 m->hold_count = 0; 526 m->flags = m->aflags = 0; 527 m->phys_addr = pa; 528 m->queue = PQ_NONE; 529 m->psind = 0; 530 m->segind = segind; 531 m->order = VM_NFREEORDER; 532 m->pool = VM_FREEPOOL_DEFAULT; 533 m->valid = m->dirty = 0; 534 pmap_page_init(m); 535 } 536 537 /* 538 * vm_page_startup: 539 * 540 * Initializes the resident memory module. Allocates physical memory for 541 * bootstrapping UMA and some data structures that are used to manage 542 * physical pages. Initializes these structures, and populates the free 543 * page queues. 544 */ 545 vm_offset_t 546 vm_page_startup(vm_offset_t vaddr) 547 { 548 struct vm_phys_seg *seg; 549 vm_page_t m; 550 char *list, *listend; 551 vm_offset_t mapped; 552 vm_paddr_t end, high_avail, low_avail, new_end, page_range, size; 553 vm_paddr_t biggestsize, last_pa, pa; 554 u_long pagecount; 555 int biggestone, i, segind; 556 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE) 557 long ii; 558 #endif 559 560 biggestsize = 0; 561 biggestone = 0; 562 vaddr = round_page(vaddr); 563 564 for (i = 0; phys_avail[i + 1]; i += 2) { 565 phys_avail[i] = round_page(phys_avail[i]); 566 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 567 } 568 for (i = 0; phys_avail[i + 1]; i += 2) { 569 size = phys_avail[i + 1] - phys_avail[i]; 570 if (size > biggestsize) { 571 biggestone = i; 572 biggestsize = size; 573 } 574 } 575 576 end = phys_avail[biggestone+1]; 577 578 /* 579 * Initialize the page and queue locks. 580 */ 581 mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF); 582 for (i = 0; i < PA_LOCK_COUNT; i++) 583 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF); 584 for (i = 0; i < vm_ndomains; i++) 585 vm_page_domain_init(i); 586 587 /* 588 * Allocate memory for use when boot strapping the kernel memory 589 * allocator. Tell UMA how many zones we are going to create 590 * before going fully functional. UMA will add its zones. 591 * 592 * VM startup zones: vmem, vmem_btag, VM OBJECT, RADIX NODE, MAP, 593 * KMAP ENTRY, MAP ENTRY, VMSPACE. 594 */ 595 boot_pages = uma_startup_count(8); 596 597 #ifndef UMA_MD_SMALL_ALLOC 598 /* vmem_startup() calls uma_prealloc(). */ 599 boot_pages += vmem_startup_count(); 600 /* vm_map_startup() calls uma_prealloc(). */ 601 boot_pages += howmany(MAX_KMAP, 602 UMA_SLAB_SPACE / sizeof(struct vm_map)); 603 604 /* 605 * Before going fully functional kmem_init() does allocation 606 * from "KMAP ENTRY" and vmem_create() does allocation from "vmem". 607 */ 608 boot_pages += 2; 609 #endif 610 /* 611 * CTFLAG_RDTUN doesn't work during the early boot process, so we must 612 * manually fetch the value. 613 */ 614 TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages); 615 new_end = end - (boot_pages * UMA_SLAB_SIZE); 616 new_end = trunc_page(new_end); 617 mapped = pmap_map(&vaddr, new_end, end, 618 VM_PROT_READ | VM_PROT_WRITE); 619 bzero((void *)mapped, end - new_end); 620 uma_startup((void *)mapped, boot_pages); 621 622 #ifdef WITNESS 623 end = new_end; 624 new_end = end - round_page(witness_startup_count()); 625 mapped = pmap_map(&vaddr, new_end, end, 626 VM_PROT_READ | VM_PROT_WRITE); 627 bzero((void *)mapped, end - new_end); 628 witness_startup((void *)mapped); 629 #endif 630 631 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \ 632 defined(__i386__) || defined(__mips__) 633 /* 634 * Allocate a bitmap to indicate that a random physical page 635 * needs to be included in a minidump. 636 * 637 * The amd64 port needs this to indicate which direct map pages 638 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 639 * 640 * However, i386 still needs this workspace internally within the 641 * minidump code. In theory, they are not needed on i386, but are 642 * included should the sf_buf code decide to use them. 643 */ 644 last_pa = 0; 645 for (i = 0; dump_avail[i + 1] != 0; i += 2) 646 if (dump_avail[i + 1] > last_pa) 647 last_pa = dump_avail[i + 1]; 648 page_range = last_pa / PAGE_SIZE; 649 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 650 new_end -= vm_page_dump_size; 651 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, 652 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); 653 bzero((void *)vm_page_dump, vm_page_dump_size); 654 #else 655 (void)last_pa; 656 #endif 657 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) 658 /* 659 * Include the UMA bootstrap pages and vm_page_dump in a crash dump. 660 * When pmap_map() uses the direct map, they are not automatically 661 * included. 662 */ 663 for (pa = new_end; pa < end; pa += PAGE_SIZE) 664 dump_add_page(pa); 665 #endif 666 phys_avail[biggestone + 1] = new_end; 667 #ifdef __amd64__ 668 /* 669 * Request that the physical pages underlying the message buffer be 670 * included in a crash dump. Since the message buffer is accessed 671 * through the direct map, they are not automatically included. 672 */ 673 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr); 674 last_pa = pa + round_page(msgbufsize); 675 while (pa < last_pa) { 676 dump_add_page(pa); 677 pa += PAGE_SIZE; 678 } 679 #endif 680 /* 681 * Compute the number of pages of memory that will be available for 682 * use, taking into account the overhead of a page structure per page. 683 * In other words, solve 684 * "available physical memory" - round_page(page_range * 685 * sizeof(struct vm_page)) = page_range * PAGE_SIZE 686 * for page_range. 687 */ 688 low_avail = phys_avail[0]; 689 high_avail = phys_avail[1]; 690 for (i = 0; i < vm_phys_nsegs; i++) { 691 if (vm_phys_segs[i].start < low_avail) 692 low_avail = vm_phys_segs[i].start; 693 if (vm_phys_segs[i].end > high_avail) 694 high_avail = vm_phys_segs[i].end; 695 } 696 /* Skip the first chunk. It is already accounted for. */ 697 for (i = 2; phys_avail[i + 1] != 0; i += 2) { 698 if (phys_avail[i] < low_avail) 699 low_avail = phys_avail[i]; 700 if (phys_avail[i + 1] > high_avail) 701 high_avail = phys_avail[i + 1]; 702 } 703 first_page = low_avail / PAGE_SIZE; 704 #ifdef VM_PHYSSEG_SPARSE 705 size = 0; 706 for (i = 0; i < vm_phys_nsegs; i++) 707 size += vm_phys_segs[i].end - vm_phys_segs[i].start; 708 for (i = 0; phys_avail[i + 1] != 0; i += 2) 709 size += phys_avail[i + 1] - phys_avail[i]; 710 #elif defined(VM_PHYSSEG_DENSE) 711 size = high_avail - low_avail; 712 #else 713 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 714 #endif 715 716 #ifdef VM_PHYSSEG_DENSE 717 /* 718 * In the VM_PHYSSEG_DENSE case, the number of pages can account for 719 * the overhead of a page structure per page only if vm_page_array is 720 * allocated from the last physical memory chunk. Otherwise, we must 721 * allocate page structures representing the physical memory 722 * underlying vm_page_array, even though they will not be used. 723 */ 724 if (new_end != high_avail) 725 page_range = size / PAGE_SIZE; 726 else 727 #endif 728 { 729 page_range = size / (PAGE_SIZE + sizeof(struct vm_page)); 730 731 /* 732 * If the partial bytes remaining are large enough for 733 * a page (PAGE_SIZE) without a corresponding 734 * 'struct vm_page', then new_end will contain an 735 * extra page after subtracting the length of the VM 736 * page array. Compensate by subtracting an extra 737 * page from new_end. 738 */ 739 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) { 740 if (new_end == high_avail) 741 high_avail -= PAGE_SIZE; 742 new_end -= PAGE_SIZE; 743 } 744 } 745 end = new_end; 746 747 /* 748 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 749 * However, because this page is allocated from KVM, out-of-bounds 750 * accesses using the direct map will not be trapped. 751 */ 752 vaddr += PAGE_SIZE; 753 754 /* 755 * Allocate physical memory for the page structures, and map it. 756 */ 757 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 758 mapped = pmap_map(&vaddr, new_end, end, 759 VM_PROT_READ | VM_PROT_WRITE); 760 vm_page_array = (vm_page_t)mapped; 761 vm_page_array_size = page_range; 762 763 #if VM_NRESERVLEVEL > 0 764 /* 765 * Allocate physical memory for the reservation management system's 766 * data structures, and map it. 767 */ 768 if (high_avail == end) 769 high_avail = new_end; 770 new_end = vm_reserv_startup(&vaddr, new_end, high_avail); 771 #endif 772 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) 773 /* 774 * Include vm_page_array and vm_reserv_array in a crash dump. 775 */ 776 for (pa = new_end; pa < end; pa += PAGE_SIZE) 777 dump_add_page(pa); 778 #endif 779 phys_avail[biggestone + 1] = new_end; 780 781 /* 782 * Add physical memory segments corresponding to the available 783 * physical pages. 784 */ 785 for (i = 0; phys_avail[i + 1] != 0; i += 2) 786 vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]); 787 788 /* 789 * Initialize the physical memory allocator. 790 */ 791 vm_phys_init(); 792 793 /* 794 * Initialize the page structures and add every available page to the 795 * physical memory allocator's free lists. 796 */ 797 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE) 798 for (ii = 0; ii < vm_page_array_size; ii++) { 799 m = &vm_page_array[ii]; 800 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0); 801 m->flags = PG_FICTITIOUS; 802 } 803 #endif 804 vm_cnt.v_page_count = 0; 805 for (segind = 0; segind < vm_phys_nsegs; segind++) { 806 seg = &vm_phys_segs[segind]; 807 for (m = seg->first_page, pa = seg->start; pa < seg->end; 808 m++, pa += PAGE_SIZE) 809 vm_page_init_page(m, pa, segind); 810 811 /* 812 * Add the segment to the free lists only if it is covered by 813 * one of the ranges in phys_avail. Because we've added the 814 * ranges to the vm_phys_segs array, we can assume that each 815 * segment is either entirely contained in one of the ranges, 816 * or doesn't overlap any of them. 817 */ 818 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 819 struct vm_domain *vmd; 820 821 if (seg->start < phys_avail[i] || 822 seg->end > phys_avail[i + 1]) 823 continue; 824 825 m = seg->first_page; 826 pagecount = (u_long)atop(seg->end - seg->start); 827 828 vmd = VM_DOMAIN(seg->domain); 829 vm_domain_free_lock(vmd); 830 vm_phys_free_contig(m, pagecount); 831 vm_domain_free_unlock(vmd); 832 vm_domain_freecnt_inc(vmd, pagecount); 833 vm_cnt.v_page_count += (u_int)pagecount; 834 835 vmd = VM_DOMAIN(seg->domain); 836 vmd->vmd_page_count += (u_int)pagecount; 837 vmd->vmd_segs |= 1UL << m->segind; 838 break; 839 } 840 } 841 842 /* 843 * Remove blacklisted pages from the physical memory allocator. 844 */ 845 TAILQ_INIT(&blacklist_head); 846 vm_page_blacklist_load(&list, &listend); 847 vm_page_blacklist_check(list, listend); 848 849 list = kern_getenv("vm.blacklist"); 850 vm_page_blacklist_check(list, NULL); 851 852 freeenv(list); 853 #if VM_NRESERVLEVEL > 0 854 /* 855 * Initialize the reservation management system. 856 */ 857 vm_reserv_init(); 858 #endif 859 860 return (vaddr); 861 } 862 863 void 864 vm_page_reference(vm_page_t m) 865 { 866 867 vm_page_aflag_set(m, PGA_REFERENCED); 868 } 869 870 /* 871 * vm_page_busy_downgrade: 872 * 873 * Downgrade an exclusive busy page into a single shared busy page. 874 */ 875 void 876 vm_page_busy_downgrade(vm_page_t m) 877 { 878 u_int x; 879 bool locked; 880 881 vm_page_assert_xbusied(m); 882 locked = mtx_owned(vm_page_lockptr(m)); 883 884 for (;;) { 885 x = m->busy_lock; 886 x &= VPB_BIT_WAITERS; 887 if (x != 0 && !locked) 888 vm_page_lock(m); 889 if (atomic_cmpset_rel_int(&m->busy_lock, 890 VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1))) 891 break; 892 if (x != 0 && !locked) 893 vm_page_unlock(m); 894 } 895 if (x != 0) { 896 wakeup(m); 897 if (!locked) 898 vm_page_unlock(m); 899 } 900 } 901 902 /* 903 * vm_page_sbusied: 904 * 905 * Return a positive value if the page is shared busied, 0 otherwise. 906 */ 907 int 908 vm_page_sbusied(vm_page_t m) 909 { 910 u_int x; 911 912 x = m->busy_lock; 913 return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED); 914 } 915 916 /* 917 * vm_page_sunbusy: 918 * 919 * Shared unbusy a page. 920 */ 921 void 922 vm_page_sunbusy(vm_page_t m) 923 { 924 u_int x; 925 926 vm_page_lock_assert(m, MA_NOTOWNED); 927 vm_page_assert_sbusied(m); 928 929 for (;;) { 930 x = m->busy_lock; 931 if (VPB_SHARERS(x) > 1) { 932 if (atomic_cmpset_int(&m->busy_lock, x, 933 x - VPB_ONE_SHARER)) 934 break; 935 continue; 936 } 937 if ((x & VPB_BIT_WAITERS) == 0) { 938 KASSERT(x == VPB_SHARERS_WORD(1), 939 ("vm_page_sunbusy: invalid lock state")); 940 if (atomic_cmpset_int(&m->busy_lock, 941 VPB_SHARERS_WORD(1), VPB_UNBUSIED)) 942 break; 943 continue; 944 } 945 KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS), 946 ("vm_page_sunbusy: invalid lock state for waiters")); 947 948 vm_page_lock(m); 949 if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) { 950 vm_page_unlock(m); 951 continue; 952 } 953 wakeup(m); 954 vm_page_unlock(m); 955 break; 956 } 957 } 958 959 /* 960 * vm_page_busy_sleep: 961 * 962 * Sleep and release the page lock, using the page pointer as wchan. 963 * This is used to implement the hard-path of busying mechanism. 964 * 965 * The given page must be locked. 966 * 967 * If nonshared is true, sleep only if the page is xbusy. 968 */ 969 void 970 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared) 971 { 972 u_int x; 973 974 vm_page_assert_locked(m); 975 976 x = m->busy_lock; 977 if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) || 978 ((x & VPB_BIT_WAITERS) == 0 && 979 !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) { 980 vm_page_unlock(m); 981 return; 982 } 983 msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0); 984 } 985 986 /* 987 * vm_page_trysbusy: 988 * 989 * Try to shared busy a page. 990 * If the operation succeeds 1 is returned otherwise 0. 991 * The operation never sleeps. 992 */ 993 int 994 vm_page_trysbusy(vm_page_t m) 995 { 996 u_int x; 997 998 for (;;) { 999 x = m->busy_lock; 1000 if ((x & VPB_BIT_SHARED) == 0) 1001 return (0); 1002 if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER)) 1003 return (1); 1004 } 1005 } 1006 1007 static void 1008 vm_page_xunbusy_locked(vm_page_t m) 1009 { 1010 1011 vm_page_assert_xbusied(m); 1012 vm_page_assert_locked(m); 1013 1014 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED); 1015 /* There is a waiter, do wakeup() instead of vm_page_flash(). */ 1016 wakeup(m); 1017 } 1018 1019 void 1020 vm_page_xunbusy_maybelocked(vm_page_t m) 1021 { 1022 bool lockacq; 1023 1024 vm_page_assert_xbusied(m); 1025 1026 /* 1027 * Fast path for unbusy. If it succeeds, we know that there 1028 * are no waiters, so we do not need a wakeup. 1029 */ 1030 if (atomic_cmpset_rel_int(&m->busy_lock, VPB_SINGLE_EXCLUSIVER, 1031 VPB_UNBUSIED)) 1032 return; 1033 1034 lockacq = !mtx_owned(vm_page_lockptr(m)); 1035 if (lockacq) 1036 vm_page_lock(m); 1037 vm_page_xunbusy_locked(m); 1038 if (lockacq) 1039 vm_page_unlock(m); 1040 } 1041 1042 /* 1043 * vm_page_xunbusy_hard: 1044 * 1045 * Called after the first try the exclusive unbusy of a page failed. 1046 * It is assumed that the waiters bit is on. 1047 */ 1048 void 1049 vm_page_xunbusy_hard(vm_page_t m) 1050 { 1051 1052 vm_page_assert_xbusied(m); 1053 1054 vm_page_lock(m); 1055 vm_page_xunbusy_locked(m); 1056 vm_page_unlock(m); 1057 } 1058 1059 /* 1060 * vm_page_flash: 1061 * 1062 * Wakeup anyone waiting for the page. 1063 * The ownership bits do not change. 1064 * 1065 * The given page must be locked. 1066 */ 1067 void 1068 vm_page_flash(vm_page_t m) 1069 { 1070 u_int x; 1071 1072 vm_page_lock_assert(m, MA_OWNED); 1073 1074 for (;;) { 1075 x = m->busy_lock; 1076 if ((x & VPB_BIT_WAITERS) == 0) 1077 return; 1078 if (atomic_cmpset_int(&m->busy_lock, x, 1079 x & (~VPB_BIT_WAITERS))) 1080 break; 1081 } 1082 wakeup(m); 1083 } 1084 1085 /* 1086 * Avoid releasing and reacquiring the same page lock. 1087 */ 1088 void 1089 vm_page_change_lock(vm_page_t m, struct mtx **mtx) 1090 { 1091 struct mtx *mtx1; 1092 1093 mtx1 = vm_page_lockptr(m); 1094 if (*mtx == mtx1) 1095 return; 1096 if (*mtx != NULL) 1097 mtx_unlock(*mtx); 1098 *mtx = mtx1; 1099 mtx_lock(mtx1); 1100 } 1101 1102 /* 1103 * Keep page from being freed by the page daemon 1104 * much of the same effect as wiring, except much lower 1105 * overhead and should be used only for *very* temporary 1106 * holding ("wiring"). 1107 */ 1108 void 1109 vm_page_hold(vm_page_t mem) 1110 { 1111 1112 vm_page_lock_assert(mem, MA_OWNED); 1113 mem->hold_count++; 1114 } 1115 1116 void 1117 vm_page_unhold(vm_page_t mem) 1118 { 1119 1120 vm_page_lock_assert(mem, MA_OWNED); 1121 KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!")); 1122 --mem->hold_count; 1123 if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0) 1124 vm_page_free_toq(mem); 1125 } 1126 1127 /* 1128 * vm_page_unhold_pages: 1129 * 1130 * Unhold each of the pages that is referenced by the given array. 1131 */ 1132 void 1133 vm_page_unhold_pages(vm_page_t *ma, int count) 1134 { 1135 struct mtx *mtx; 1136 1137 mtx = NULL; 1138 for (; count != 0; count--) { 1139 vm_page_change_lock(*ma, &mtx); 1140 vm_page_unhold(*ma); 1141 ma++; 1142 } 1143 if (mtx != NULL) 1144 mtx_unlock(mtx); 1145 } 1146 1147 vm_page_t 1148 PHYS_TO_VM_PAGE(vm_paddr_t pa) 1149 { 1150 vm_page_t m; 1151 1152 #ifdef VM_PHYSSEG_SPARSE 1153 m = vm_phys_paddr_to_vm_page(pa); 1154 if (m == NULL) 1155 m = vm_phys_fictitious_to_vm_page(pa); 1156 return (m); 1157 #elif defined(VM_PHYSSEG_DENSE) 1158 long pi; 1159 1160 pi = atop(pa); 1161 if (pi >= first_page && (pi - first_page) < vm_page_array_size) { 1162 m = &vm_page_array[pi - first_page]; 1163 return (m); 1164 } 1165 return (vm_phys_fictitious_to_vm_page(pa)); 1166 #else 1167 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 1168 #endif 1169 } 1170 1171 /* 1172 * vm_page_getfake: 1173 * 1174 * Create a fictitious page with the specified physical address and 1175 * memory attribute. The memory attribute is the only the machine- 1176 * dependent aspect of a fictitious page that must be initialized. 1177 */ 1178 vm_page_t 1179 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr) 1180 { 1181 vm_page_t m; 1182 1183 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO); 1184 vm_page_initfake(m, paddr, memattr); 1185 return (m); 1186 } 1187 1188 void 1189 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 1190 { 1191 1192 if ((m->flags & PG_FICTITIOUS) != 0) { 1193 /* 1194 * The page's memattr might have changed since the 1195 * previous initialization. Update the pmap to the 1196 * new memattr. 1197 */ 1198 goto memattr; 1199 } 1200 m->phys_addr = paddr; 1201 m->queue = PQ_NONE; 1202 /* Fictitious pages don't use "segind". */ 1203 m->flags = PG_FICTITIOUS; 1204 /* Fictitious pages don't use "order" or "pool". */ 1205 m->oflags = VPO_UNMANAGED; 1206 m->busy_lock = VPB_SINGLE_EXCLUSIVER; 1207 m->wire_count = 1; 1208 pmap_page_init(m); 1209 memattr: 1210 pmap_page_set_memattr(m, memattr); 1211 } 1212 1213 /* 1214 * vm_page_putfake: 1215 * 1216 * Release a fictitious page. 1217 */ 1218 void 1219 vm_page_putfake(vm_page_t m) 1220 { 1221 1222 KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m)); 1223 KASSERT((m->flags & PG_FICTITIOUS) != 0, 1224 ("vm_page_putfake: bad page %p", m)); 1225 uma_zfree(fakepg_zone, m); 1226 } 1227 1228 /* 1229 * vm_page_updatefake: 1230 * 1231 * Update the given fictitious page to the specified physical address and 1232 * memory attribute. 1233 */ 1234 void 1235 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 1236 { 1237 1238 KASSERT((m->flags & PG_FICTITIOUS) != 0, 1239 ("vm_page_updatefake: bad page %p", m)); 1240 m->phys_addr = paddr; 1241 pmap_page_set_memattr(m, memattr); 1242 } 1243 1244 /* 1245 * vm_page_free: 1246 * 1247 * Free a page. 1248 */ 1249 void 1250 vm_page_free(vm_page_t m) 1251 { 1252 1253 m->flags &= ~PG_ZERO; 1254 vm_page_free_toq(m); 1255 } 1256 1257 /* 1258 * vm_page_free_zero: 1259 * 1260 * Free a page to the zerod-pages queue 1261 */ 1262 void 1263 vm_page_free_zero(vm_page_t m) 1264 { 1265 1266 m->flags |= PG_ZERO; 1267 vm_page_free_toq(m); 1268 } 1269 1270 /* 1271 * Unbusy and handle the page queueing for a page from a getpages request that 1272 * was optionally read ahead or behind. 1273 */ 1274 void 1275 vm_page_readahead_finish(vm_page_t m) 1276 { 1277 1278 /* We shouldn't put invalid pages on queues. */ 1279 KASSERT(m->valid != 0, ("%s: %p is invalid", __func__, m)); 1280 1281 /* 1282 * Since the page is not the actually needed one, whether it should 1283 * be activated or deactivated is not obvious. Empirical results 1284 * have shown that deactivating the page is usually the best choice, 1285 * unless the page is wanted by another thread. 1286 */ 1287 vm_page_lock(m); 1288 if ((m->busy_lock & VPB_BIT_WAITERS) != 0) 1289 vm_page_activate(m); 1290 else 1291 vm_page_deactivate(m); 1292 vm_page_unlock(m); 1293 vm_page_xunbusy(m); 1294 } 1295 1296 /* 1297 * vm_page_sleep_if_busy: 1298 * 1299 * Sleep and release the page queues lock if the page is busied. 1300 * Returns TRUE if the thread slept. 1301 * 1302 * The given page must be unlocked and object containing it must 1303 * be locked. 1304 */ 1305 int 1306 vm_page_sleep_if_busy(vm_page_t m, const char *msg) 1307 { 1308 vm_object_t obj; 1309 1310 vm_page_lock_assert(m, MA_NOTOWNED); 1311 VM_OBJECT_ASSERT_WLOCKED(m->object); 1312 1313 if (vm_page_busied(m)) { 1314 /* 1315 * The page-specific object must be cached because page 1316 * identity can change during the sleep, causing the 1317 * re-lock of a different object. 1318 * It is assumed that a reference to the object is already 1319 * held by the callers. 1320 */ 1321 obj = m->object; 1322 vm_page_lock(m); 1323 VM_OBJECT_WUNLOCK(obj); 1324 vm_page_busy_sleep(m, msg, false); 1325 VM_OBJECT_WLOCK(obj); 1326 return (TRUE); 1327 } 1328 return (FALSE); 1329 } 1330 1331 /* 1332 * vm_page_dirty_KBI: [ internal use only ] 1333 * 1334 * Set all bits in the page's dirty field. 1335 * 1336 * The object containing the specified page must be locked if the 1337 * call is made from the machine-independent layer. 1338 * 1339 * See vm_page_clear_dirty_mask(). 1340 * 1341 * This function should only be called by vm_page_dirty(). 1342 */ 1343 void 1344 vm_page_dirty_KBI(vm_page_t m) 1345 { 1346 1347 /* Refer to this operation by its public name. */ 1348 KASSERT(m->valid == VM_PAGE_BITS_ALL, 1349 ("vm_page_dirty: page is invalid!")); 1350 m->dirty = VM_PAGE_BITS_ALL; 1351 } 1352 1353 /* 1354 * vm_page_insert: [ internal use only ] 1355 * 1356 * Inserts the given mem entry into the object and object list. 1357 * 1358 * The object must be locked. 1359 */ 1360 int 1361 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 1362 { 1363 vm_page_t mpred; 1364 1365 VM_OBJECT_ASSERT_WLOCKED(object); 1366 mpred = vm_radix_lookup_le(&object->rtree, pindex); 1367 return (vm_page_insert_after(m, object, pindex, mpred)); 1368 } 1369 1370 /* 1371 * vm_page_insert_after: 1372 * 1373 * Inserts the page "m" into the specified object at offset "pindex". 1374 * 1375 * The page "mpred" must immediately precede the offset "pindex" within 1376 * the specified object. 1377 * 1378 * The object must be locked. 1379 */ 1380 static int 1381 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex, 1382 vm_page_t mpred) 1383 { 1384 vm_page_t msucc; 1385 1386 VM_OBJECT_ASSERT_WLOCKED(object); 1387 KASSERT(m->object == NULL, 1388 ("vm_page_insert_after: page already inserted")); 1389 if (mpred != NULL) { 1390 KASSERT(mpred->object == object, 1391 ("vm_page_insert_after: object doesn't contain mpred")); 1392 KASSERT(mpred->pindex < pindex, 1393 ("vm_page_insert_after: mpred doesn't precede pindex")); 1394 msucc = TAILQ_NEXT(mpred, listq); 1395 } else 1396 msucc = TAILQ_FIRST(&object->memq); 1397 if (msucc != NULL) 1398 KASSERT(msucc->pindex > pindex, 1399 ("vm_page_insert_after: msucc doesn't succeed pindex")); 1400 1401 /* 1402 * Record the object/offset pair in this page 1403 */ 1404 m->object = object; 1405 m->pindex = pindex; 1406 1407 /* 1408 * Now link into the object's ordered list of backed pages. 1409 */ 1410 if (vm_radix_insert(&object->rtree, m)) { 1411 m->object = NULL; 1412 m->pindex = 0; 1413 return (1); 1414 } 1415 vm_page_insert_radixdone(m, object, mpred); 1416 return (0); 1417 } 1418 1419 /* 1420 * vm_page_insert_radixdone: 1421 * 1422 * Complete page "m" insertion into the specified object after the 1423 * radix trie hooking. 1424 * 1425 * The page "mpred" must precede the offset "m->pindex" within the 1426 * specified object. 1427 * 1428 * The object must be locked. 1429 */ 1430 static void 1431 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred) 1432 { 1433 1434 VM_OBJECT_ASSERT_WLOCKED(object); 1435 KASSERT(object != NULL && m->object == object, 1436 ("vm_page_insert_radixdone: page %p has inconsistent object", m)); 1437 if (mpred != NULL) { 1438 KASSERT(mpred->object == object, 1439 ("vm_page_insert_after: object doesn't contain mpred")); 1440 KASSERT(mpred->pindex < m->pindex, 1441 ("vm_page_insert_after: mpred doesn't precede pindex")); 1442 } 1443 1444 if (mpred != NULL) 1445 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq); 1446 else 1447 TAILQ_INSERT_HEAD(&object->memq, m, listq); 1448 1449 /* 1450 * Show that the object has one more resident page. 1451 */ 1452 object->resident_page_count++; 1453 1454 /* 1455 * Hold the vnode until the last page is released. 1456 */ 1457 if (object->resident_page_count == 1 && object->type == OBJT_VNODE) 1458 vhold(object->handle); 1459 1460 /* 1461 * Since we are inserting a new and possibly dirty page, 1462 * update the object's OBJ_MIGHTBEDIRTY flag. 1463 */ 1464 if (pmap_page_is_write_mapped(m)) 1465 vm_object_set_writeable_dirty(object); 1466 } 1467 1468 /* 1469 * vm_page_remove: 1470 * 1471 * Removes the specified page from its containing object, but does not 1472 * invalidate any backing storage. 1473 * 1474 * The object must be locked. The page must be locked if it is managed. 1475 */ 1476 void 1477 vm_page_remove(vm_page_t m) 1478 { 1479 vm_object_t object; 1480 vm_page_t mrem; 1481 1482 if ((m->oflags & VPO_UNMANAGED) == 0) 1483 vm_page_assert_locked(m); 1484 if ((object = m->object) == NULL) 1485 return; 1486 VM_OBJECT_ASSERT_WLOCKED(object); 1487 if (vm_page_xbusied(m)) 1488 vm_page_xunbusy_maybelocked(m); 1489 mrem = vm_radix_remove(&object->rtree, m->pindex); 1490 KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m)); 1491 1492 /* 1493 * Now remove from the object's list of backed pages. 1494 */ 1495 TAILQ_REMOVE(&object->memq, m, listq); 1496 1497 /* 1498 * And show that the object has one fewer resident page. 1499 */ 1500 object->resident_page_count--; 1501 1502 /* 1503 * The vnode may now be recycled. 1504 */ 1505 if (object->resident_page_count == 0 && object->type == OBJT_VNODE) 1506 vdrop(object->handle); 1507 1508 m->object = NULL; 1509 } 1510 1511 /* 1512 * vm_page_lookup: 1513 * 1514 * Returns the page associated with the object/offset 1515 * pair specified; if none is found, NULL is returned. 1516 * 1517 * The object must be locked. 1518 */ 1519 vm_page_t 1520 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 1521 { 1522 1523 VM_OBJECT_ASSERT_LOCKED(object); 1524 return (vm_radix_lookup(&object->rtree, pindex)); 1525 } 1526 1527 /* 1528 * vm_page_find_least: 1529 * 1530 * Returns the page associated with the object with least pindex 1531 * greater than or equal to the parameter pindex, or NULL. 1532 * 1533 * The object must be locked. 1534 */ 1535 vm_page_t 1536 vm_page_find_least(vm_object_t object, vm_pindex_t pindex) 1537 { 1538 vm_page_t m; 1539 1540 VM_OBJECT_ASSERT_LOCKED(object); 1541 if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex) 1542 m = vm_radix_lookup_ge(&object->rtree, pindex); 1543 return (m); 1544 } 1545 1546 /* 1547 * Returns the given page's successor (by pindex) within the object if it is 1548 * resident; if none is found, NULL is returned. 1549 * 1550 * The object must be locked. 1551 */ 1552 vm_page_t 1553 vm_page_next(vm_page_t m) 1554 { 1555 vm_page_t next; 1556 1557 VM_OBJECT_ASSERT_LOCKED(m->object); 1558 if ((next = TAILQ_NEXT(m, listq)) != NULL) { 1559 MPASS(next->object == m->object); 1560 if (next->pindex != m->pindex + 1) 1561 next = NULL; 1562 } 1563 return (next); 1564 } 1565 1566 /* 1567 * Returns the given page's predecessor (by pindex) within the object if it is 1568 * resident; if none is found, NULL is returned. 1569 * 1570 * The object must be locked. 1571 */ 1572 vm_page_t 1573 vm_page_prev(vm_page_t m) 1574 { 1575 vm_page_t prev; 1576 1577 VM_OBJECT_ASSERT_LOCKED(m->object); 1578 if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) { 1579 MPASS(prev->object == m->object); 1580 if (prev->pindex != m->pindex - 1) 1581 prev = NULL; 1582 } 1583 return (prev); 1584 } 1585 1586 /* 1587 * Uses the page mnew as a replacement for an existing page at index 1588 * pindex which must be already present in the object. 1589 * 1590 * The existing page must not be on a paging queue. 1591 */ 1592 vm_page_t 1593 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex) 1594 { 1595 vm_page_t mold; 1596 1597 VM_OBJECT_ASSERT_WLOCKED(object); 1598 KASSERT(mnew->object == NULL, 1599 ("vm_page_replace: page %p already in object", mnew)); 1600 KASSERT(mnew->queue == PQ_NONE, 1601 ("vm_page_replace: new page %p is on a paging queue", mnew)); 1602 1603 /* 1604 * This function mostly follows vm_page_insert() and 1605 * vm_page_remove() without the radix, object count and vnode 1606 * dance. Double check such functions for more comments. 1607 */ 1608 1609 mnew->object = object; 1610 mnew->pindex = pindex; 1611 mold = vm_radix_replace(&object->rtree, mnew); 1612 KASSERT(mold->queue == PQ_NONE, 1613 ("vm_page_replace: old page %p is on a paging queue", mold)); 1614 1615 /* Keep the resident page list in sorted order. */ 1616 TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq); 1617 TAILQ_REMOVE(&object->memq, mold, listq); 1618 1619 mold->object = NULL; 1620 vm_page_xunbusy_maybelocked(mold); 1621 1622 /* 1623 * The object's resident_page_count does not change because we have 1624 * swapped one page for another, but OBJ_MIGHTBEDIRTY. 1625 */ 1626 if (pmap_page_is_write_mapped(mnew)) 1627 vm_object_set_writeable_dirty(object); 1628 return (mold); 1629 } 1630 1631 /* 1632 * vm_page_rename: 1633 * 1634 * Move the given memory entry from its 1635 * current object to the specified target object/offset. 1636 * 1637 * Note: swap associated with the page must be invalidated by the move. We 1638 * have to do this for several reasons: (1) we aren't freeing the 1639 * page, (2) we are dirtying the page, (3) the VM system is probably 1640 * moving the page from object A to B, and will then later move 1641 * the backing store from A to B and we can't have a conflict. 1642 * 1643 * Note: we *always* dirty the page. It is necessary both for the 1644 * fact that we moved it, and because we may be invalidating 1645 * swap. 1646 * 1647 * The objects must be locked. 1648 */ 1649 int 1650 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 1651 { 1652 vm_page_t mpred; 1653 vm_pindex_t opidx; 1654 1655 VM_OBJECT_ASSERT_WLOCKED(new_object); 1656 1657 mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex); 1658 KASSERT(mpred == NULL || mpred->pindex != new_pindex, 1659 ("vm_page_rename: pindex already renamed")); 1660 1661 /* 1662 * Create a custom version of vm_page_insert() which does not depend 1663 * by m_prev and can cheat on the implementation aspects of the 1664 * function. 1665 */ 1666 opidx = m->pindex; 1667 m->pindex = new_pindex; 1668 if (vm_radix_insert(&new_object->rtree, m)) { 1669 m->pindex = opidx; 1670 return (1); 1671 } 1672 1673 /* 1674 * The operation cannot fail anymore. The removal must happen before 1675 * the listq iterator is tainted. 1676 */ 1677 m->pindex = opidx; 1678 vm_page_lock(m); 1679 vm_page_remove(m); 1680 1681 /* Return back to the new pindex to complete vm_page_insert(). */ 1682 m->pindex = new_pindex; 1683 m->object = new_object; 1684 vm_page_unlock(m); 1685 vm_page_insert_radixdone(m, new_object, mpred); 1686 vm_page_dirty(m); 1687 return (0); 1688 } 1689 1690 /* 1691 * vm_page_alloc: 1692 * 1693 * Allocate and return a page that is associated with the specified 1694 * object and offset pair. By default, this page is exclusive busied. 1695 * 1696 * The caller must always specify an allocation class. 1697 * 1698 * allocation classes: 1699 * VM_ALLOC_NORMAL normal process request 1700 * VM_ALLOC_SYSTEM system *really* needs a page 1701 * VM_ALLOC_INTERRUPT interrupt time request 1702 * 1703 * optional allocation flags: 1704 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 1705 * intends to allocate 1706 * VM_ALLOC_NOBUSY do not exclusive busy the page 1707 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 1708 * VM_ALLOC_NOOBJ page is not associated with an object and 1709 * should not be exclusive busy 1710 * VM_ALLOC_SBUSY shared busy the allocated page 1711 * VM_ALLOC_WIRED wire the allocated page 1712 * VM_ALLOC_ZERO prefer a zeroed page 1713 */ 1714 vm_page_t 1715 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 1716 { 1717 1718 return (vm_page_alloc_after(object, pindex, req, object != NULL ? 1719 vm_radix_lookup_le(&object->rtree, pindex) : NULL)); 1720 } 1721 1722 vm_page_t 1723 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain, 1724 int req) 1725 { 1726 1727 return (vm_page_alloc_domain_after(object, pindex, domain, req, 1728 object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) : 1729 NULL)); 1730 } 1731 1732 /* 1733 * Allocate a page in the specified object with the given page index. To 1734 * optimize insertion of the page into the object, the caller must also specifiy 1735 * the resident page in the object with largest index smaller than the given 1736 * page index, or NULL if no such page exists. 1737 */ 1738 vm_page_t 1739 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex, 1740 int req, vm_page_t mpred) 1741 { 1742 struct vm_domainset_iter di; 1743 vm_page_t m; 1744 int domain; 1745 1746 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req); 1747 do { 1748 m = vm_page_alloc_domain_after(object, pindex, domain, req, 1749 mpred); 1750 if (m != NULL) 1751 break; 1752 } while (vm_domainset_iter_page(&di, object, &domain) == 0); 1753 1754 return (m); 1755 } 1756 1757 /* 1758 * Returns true if the number of free pages exceeds the minimum 1759 * for the request class and false otherwise. 1760 */ 1761 int 1762 vm_domain_allocate(struct vm_domain *vmd, int req, int npages) 1763 { 1764 u_int limit, old, new; 1765 1766 req = req & VM_ALLOC_CLASS_MASK; 1767 1768 /* 1769 * The page daemon is allowed to dig deeper into the free page list. 1770 */ 1771 if (curproc == pageproc && req != VM_ALLOC_INTERRUPT) 1772 req = VM_ALLOC_SYSTEM; 1773 if (req == VM_ALLOC_INTERRUPT) 1774 limit = 0; 1775 else if (req == VM_ALLOC_SYSTEM) 1776 limit = vmd->vmd_interrupt_free_min; 1777 else 1778 limit = vmd->vmd_free_reserved; 1779 1780 /* 1781 * Attempt to reserve the pages. Fail if we're below the limit. 1782 */ 1783 limit += npages; 1784 old = vmd->vmd_free_count; 1785 do { 1786 if (old < limit) 1787 return (0); 1788 new = old - npages; 1789 } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0); 1790 1791 /* Wake the page daemon if we've crossed the threshold. */ 1792 if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old)) 1793 pagedaemon_wakeup(vmd->vmd_domain); 1794 1795 /* Only update bitsets on transitions. */ 1796 if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) || 1797 (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe)) 1798 vm_domain_set(vmd); 1799 1800 return (1); 1801 } 1802 1803 vm_page_t 1804 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain, 1805 int req, vm_page_t mpred) 1806 { 1807 struct vm_domain *vmd; 1808 vm_page_t m; 1809 int flags; 1810 1811 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) && 1812 (object != NULL || (req & VM_ALLOC_SBUSY) == 0) && 1813 ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 1814 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 1815 ("inconsistent object(%p)/req(%x)", object, req)); 1816 KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0, 1817 ("Can't sleep and retry object insertion.")); 1818 KASSERT(mpred == NULL || mpred->pindex < pindex, 1819 ("mpred %p doesn't precede pindex 0x%jx", mpred, 1820 (uintmax_t)pindex)); 1821 if (object != NULL) 1822 VM_OBJECT_ASSERT_WLOCKED(object); 1823 1824 again: 1825 m = NULL; 1826 #if VM_NRESERVLEVEL > 0 1827 /* 1828 * Can we allocate the page from a reservation? 1829 */ 1830 if (vm_object_reserv(object) && 1831 ((m = vm_reserv_extend(req, object, pindex, domain, mpred)) != NULL || 1832 (m = vm_reserv_alloc_page(req, object, pindex, domain, mpred)) != NULL)) { 1833 domain = vm_phys_domain(m); 1834 vmd = VM_DOMAIN(domain); 1835 goto found; 1836 } 1837 #endif 1838 vmd = VM_DOMAIN(domain); 1839 if (object != NULL && vmd->vmd_pgcache != NULL) { 1840 m = uma_zalloc(vmd->vmd_pgcache, M_NOWAIT); 1841 if (m != NULL) 1842 goto found; 1843 } 1844 if (vm_domain_allocate(vmd, req, 1)) { 1845 /* 1846 * If not, allocate it from the free page queues. 1847 */ 1848 vm_domain_free_lock(vmd); 1849 m = vm_phys_alloc_pages(domain, object != NULL ? 1850 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0); 1851 vm_domain_free_unlock(vmd); 1852 if (m == NULL) { 1853 vm_domain_freecnt_inc(vmd, 1); 1854 #if VM_NRESERVLEVEL > 0 1855 if (vm_reserv_reclaim_inactive(domain)) 1856 goto again; 1857 #endif 1858 } 1859 } 1860 if (m == NULL) { 1861 /* 1862 * Not allocatable, give up. 1863 */ 1864 if (vm_domain_alloc_fail(vmd, object, req)) 1865 goto again; 1866 return (NULL); 1867 } 1868 1869 /* 1870 * At this point we had better have found a good page. 1871 */ 1872 KASSERT(m != NULL, ("missing page")); 1873 1874 found: 1875 vm_page_dequeue(m); 1876 vm_page_alloc_check(m); 1877 1878 /* 1879 * Initialize the page. Only the PG_ZERO flag is inherited. 1880 */ 1881 flags = 0; 1882 if ((req & VM_ALLOC_ZERO) != 0) 1883 flags = PG_ZERO; 1884 flags &= m->flags; 1885 if ((req & VM_ALLOC_NODUMP) != 0) 1886 flags |= PG_NODUMP; 1887 m->flags = flags; 1888 m->aflags = 0; 1889 m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ? 1890 VPO_UNMANAGED : 0; 1891 m->busy_lock = VPB_UNBUSIED; 1892 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0) 1893 m->busy_lock = VPB_SINGLE_EXCLUSIVER; 1894 if ((req & VM_ALLOC_SBUSY) != 0) 1895 m->busy_lock = VPB_SHARERS_WORD(1); 1896 if (req & VM_ALLOC_WIRED) { 1897 /* 1898 * The page lock is not required for wiring a page until that 1899 * page is inserted into the object. 1900 */ 1901 vm_wire_add(1); 1902 m->wire_count = 1; 1903 } 1904 m->act_count = 0; 1905 1906 if (object != NULL) { 1907 if (vm_page_insert_after(m, object, pindex, mpred)) { 1908 if (req & VM_ALLOC_WIRED) { 1909 vm_wire_sub(1); 1910 m->wire_count = 0; 1911 } 1912 KASSERT(m->object == NULL, ("page %p has object", m)); 1913 m->oflags = VPO_UNMANAGED; 1914 m->busy_lock = VPB_UNBUSIED; 1915 /* Don't change PG_ZERO. */ 1916 vm_page_free_toq(m); 1917 if (req & VM_ALLOC_WAITFAIL) { 1918 VM_OBJECT_WUNLOCK(object); 1919 vm_radix_wait(); 1920 VM_OBJECT_WLOCK(object); 1921 } 1922 return (NULL); 1923 } 1924 1925 /* Ignore device objects; the pager sets "memattr" for them. */ 1926 if (object->memattr != VM_MEMATTR_DEFAULT && 1927 (object->flags & OBJ_FICTITIOUS) == 0) 1928 pmap_page_set_memattr(m, object->memattr); 1929 } else 1930 m->pindex = pindex; 1931 1932 return (m); 1933 } 1934 1935 /* 1936 * vm_page_alloc_contig: 1937 * 1938 * Allocate a contiguous set of physical pages of the given size "npages" 1939 * from the free lists. All of the physical pages must be at or above 1940 * the given physical address "low" and below the given physical address 1941 * "high". The given value "alignment" determines the alignment of the 1942 * first physical page in the set. If the given value "boundary" is 1943 * non-zero, then the set of physical pages cannot cross any physical 1944 * address boundary that is a multiple of that value. Both "alignment" 1945 * and "boundary" must be a power of two. 1946 * 1947 * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT, 1948 * then the memory attribute setting for the physical pages is configured 1949 * to the object's memory attribute setting. Otherwise, the memory 1950 * attribute setting for the physical pages is configured to "memattr", 1951 * overriding the object's memory attribute setting. However, if the 1952 * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the 1953 * memory attribute setting for the physical pages cannot be configured 1954 * to VM_MEMATTR_DEFAULT. 1955 * 1956 * The specified object may not contain fictitious pages. 1957 * 1958 * The caller must always specify an allocation class. 1959 * 1960 * allocation classes: 1961 * VM_ALLOC_NORMAL normal process request 1962 * VM_ALLOC_SYSTEM system *really* needs a page 1963 * VM_ALLOC_INTERRUPT interrupt time request 1964 * 1965 * optional allocation flags: 1966 * VM_ALLOC_NOBUSY do not exclusive busy the page 1967 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 1968 * VM_ALLOC_NOOBJ page is not associated with an object and 1969 * should not be exclusive busy 1970 * VM_ALLOC_SBUSY shared busy the allocated page 1971 * VM_ALLOC_WIRED wire the allocated page 1972 * VM_ALLOC_ZERO prefer a zeroed page 1973 */ 1974 vm_page_t 1975 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req, 1976 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 1977 vm_paddr_t boundary, vm_memattr_t memattr) 1978 { 1979 struct vm_domainset_iter di; 1980 vm_page_t m; 1981 int domain; 1982 1983 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req); 1984 do { 1985 m = vm_page_alloc_contig_domain(object, pindex, domain, req, 1986 npages, low, high, alignment, boundary, memattr); 1987 if (m != NULL) 1988 break; 1989 } while (vm_domainset_iter_page(&di, object, &domain) == 0); 1990 1991 return (m); 1992 } 1993 1994 vm_page_t 1995 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain, 1996 int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 1997 vm_paddr_t boundary, vm_memattr_t memattr) 1998 { 1999 struct vm_domain *vmd; 2000 vm_page_t m, m_ret, mpred; 2001 u_int busy_lock, flags, oflags; 2002 2003 mpred = NULL; /* XXX: pacify gcc */ 2004 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) && 2005 (object != NULL || (req & VM_ALLOC_SBUSY) == 0) && 2006 ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 2007 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 2008 ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object, 2009 req)); 2010 KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0, 2011 ("Can't sleep and retry object insertion.")); 2012 if (object != NULL) { 2013 VM_OBJECT_ASSERT_WLOCKED(object); 2014 KASSERT((object->flags & OBJ_FICTITIOUS) == 0, 2015 ("vm_page_alloc_contig: object %p has fictitious pages", 2016 object)); 2017 } 2018 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero")); 2019 2020 if (object != NULL) { 2021 mpred = vm_radix_lookup_le(&object->rtree, pindex); 2022 KASSERT(mpred == NULL || mpred->pindex != pindex, 2023 ("vm_page_alloc_contig: pindex already allocated")); 2024 } 2025 2026 /* 2027 * Can we allocate the pages without the number of free pages falling 2028 * below the lower bound for the allocation class? 2029 */ 2030 again: 2031 #if VM_NRESERVLEVEL > 0 2032 /* 2033 * Can we allocate the pages from a reservation? 2034 */ 2035 if (vm_object_reserv(object) && 2036 ((m_ret = vm_reserv_extend_contig(req, object, pindex, domain, 2037 npages, low, high, alignment, boundary, mpred)) != NULL || 2038 (m_ret = vm_reserv_alloc_contig(req, object, pindex, domain, 2039 npages, low, high, alignment, boundary, mpred)) != NULL)) { 2040 domain = vm_phys_domain(m_ret); 2041 vmd = VM_DOMAIN(domain); 2042 goto found; 2043 } 2044 #endif 2045 m_ret = NULL; 2046 vmd = VM_DOMAIN(domain); 2047 if (vm_domain_allocate(vmd, req, npages)) { 2048 /* 2049 * allocate them from the free page queues. 2050 */ 2051 vm_domain_free_lock(vmd); 2052 m_ret = vm_phys_alloc_contig(domain, npages, low, high, 2053 alignment, boundary); 2054 vm_domain_free_unlock(vmd); 2055 if (m_ret == NULL) { 2056 vm_domain_freecnt_inc(vmd, npages); 2057 #if VM_NRESERVLEVEL > 0 2058 if (vm_reserv_reclaim_contig(domain, npages, low, 2059 high, alignment, boundary)) 2060 goto again; 2061 #endif 2062 } 2063 } 2064 if (m_ret == NULL) { 2065 if (vm_domain_alloc_fail(vmd, object, req)) 2066 goto again; 2067 return (NULL); 2068 } 2069 #if VM_NRESERVLEVEL > 0 2070 found: 2071 #endif 2072 for (m = m_ret; m < &m_ret[npages]; m++) { 2073 vm_page_dequeue(m); 2074 vm_page_alloc_check(m); 2075 } 2076 2077 /* 2078 * Initialize the pages. Only the PG_ZERO flag is inherited. 2079 */ 2080 flags = 0; 2081 if ((req & VM_ALLOC_ZERO) != 0) 2082 flags = PG_ZERO; 2083 if ((req & VM_ALLOC_NODUMP) != 0) 2084 flags |= PG_NODUMP; 2085 oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ? 2086 VPO_UNMANAGED : 0; 2087 busy_lock = VPB_UNBUSIED; 2088 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0) 2089 busy_lock = VPB_SINGLE_EXCLUSIVER; 2090 if ((req & VM_ALLOC_SBUSY) != 0) 2091 busy_lock = VPB_SHARERS_WORD(1); 2092 if ((req & VM_ALLOC_WIRED) != 0) 2093 vm_wire_add(npages); 2094 if (object != NULL) { 2095 if (object->memattr != VM_MEMATTR_DEFAULT && 2096 memattr == VM_MEMATTR_DEFAULT) 2097 memattr = object->memattr; 2098 } 2099 for (m = m_ret; m < &m_ret[npages]; m++) { 2100 m->aflags = 0; 2101 m->flags = (m->flags | PG_NODUMP) & flags; 2102 m->busy_lock = busy_lock; 2103 if ((req & VM_ALLOC_WIRED) != 0) 2104 m->wire_count = 1; 2105 m->act_count = 0; 2106 m->oflags = oflags; 2107 if (object != NULL) { 2108 if (vm_page_insert_after(m, object, pindex, mpred)) { 2109 if ((req & VM_ALLOC_WIRED) != 0) 2110 vm_wire_sub(npages); 2111 KASSERT(m->object == NULL, 2112 ("page %p has object", m)); 2113 mpred = m; 2114 for (m = m_ret; m < &m_ret[npages]; m++) { 2115 if (m <= mpred && 2116 (req & VM_ALLOC_WIRED) != 0) 2117 m->wire_count = 0; 2118 m->oflags = VPO_UNMANAGED; 2119 m->busy_lock = VPB_UNBUSIED; 2120 /* Don't change PG_ZERO. */ 2121 vm_page_free_toq(m); 2122 } 2123 if (req & VM_ALLOC_WAITFAIL) { 2124 VM_OBJECT_WUNLOCK(object); 2125 vm_radix_wait(); 2126 VM_OBJECT_WLOCK(object); 2127 } 2128 return (NULL); 2129 } 2130 mpred = m; 2131 } else 2132 m->pindex = pindex; 2133 if (memattr != VM_MEMATTR_DEFAULT) 2134 pmap_page_set_memattr(m, memattr); 2135 pindex++; 2136 } 2137 return (m_ret); 2138 } 2139 2140 /* 2141 * Check a page that has been freshly dequeued from a freelist. 2142 */ 2143 static void 2144 vm_page_alloc_check(vm_page_t m) 2145 { 2146 2147 KASSERT(m->object == NULL, ("page %p has object", m)); 2148 KASSERT(m->queue == PQ_NONE && (m->aflags & PGA_QUEUE_STATE_MASK) == 0, 2149 ("page %p has unexpected queue %d, flags %#x", 2150 m, m->queue, (m->aflags & PGA_QUEUE_STATE_MASK))); 2151 KASSERT(!vm_page_held(m), ("page %p is held", m)); 2152 KASSERT(!vm_page_busied(m), ("page %p is busy", m)); 2153 KASSERT(m->dirty == 0, ("page %p is dirty", m)); 2154 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, 2155 ("page %p has unexpected memattr %d", 2156 m, pmap_page_get_memattr(m))); 2157 KASSERT(m->valid == 0, ("free page %p is valid", m)); 2158 } 2159 2160 /* 2161 * vm_page_alloc_freelist: 2162 * 2163 * Allocate a physical page from the specified free page list. 2164 * 2165 * The caller must always specify an allocation class. 2166 * 2167 * allocation classes: 2168 * VM_ALLOC_NORMAL normal process request 2169 * VM_ALLOC_SYSTEM system *really* needs a page 2170 * VM_ALLOC_INTERRUPT interrupt time request 2171 * 2172 * optional allocation flags: 2173 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 2174 * intends to allocate 2175 * VM_ALLOC_WIRED wire the allocated page 2176 * VM_ALLOC_ZERO prefer a zeroed page 2177 */ 2178 vm_page_t 2179 vm_page_alloc_freelist(int freelist, int req) 2180 { 2181 struct vm_domainset_iter di; 2182 vm_page_t m; 2183 int domain; 2184 2185 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req); 2186 do { 2187 m = vm_page_alloc_freelist_domain(domain, freelist, req); 2188 if (m != NULL) 2189 break; 2190 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0); 2191 2192 return (m); 2193 } 2194 2195 vm_page_t 2196 vm_page_alloc_freelist_domain(int domain, int freelist, int req) 2197 { 2198 struct vm_domain *vmd; 2199 vm_page_t m; 2200 u_int flags; 2201 2202 m = NULL; 2203 vmd = VM_DOMAIN(domain); 2204 again: 2205 if (vm_domain_allocate(vmd, req, 1)) { 2206 vm_domain_free_lock(vmd); 2207 m = vm_phys_alloc_freelist_pages(domain, freelist, 2208 VM_FREEPOOL_DIRECT, 0); 2209 vm_domain_free_unlock(vmd); 2210 if (m == NULL) 2211 vm_domain_freecnt_inc(vmd, 1); 2212 } 2213 if (m == NULL) { 2214 if (vm_domain_alloc_fail(vmd, NULL, req)) 2215 goto again; 2216 return (NULL); 2217 } 2218 vm_page_dequeue(m); 2219 vm_page_alloc_check(m); 2220 2221 /* 2222 * Initialize the page. Only the PG_ZERO flag is inherited. 2223 */ 2224 m->aflags = 0; 2225 flags = 0; 2226 if ((req & VM_ALLOC_ZERO) != 0) 2227 flags = PG_ZERO; 2228 m->flags &= flags; 2229 if ((req & VM_ALLOC_WIRED) != 0) { 2230 /* 2231 * The page lock is not required for wiring a page that does 2232 * not belong to an object. 2233 */ 2234 vm_wire_add(1); 2235 m->wire_count = 1; 2236 } 2237 /* Unmanaged pages don't use "act_count". */ 2238 m->oflags = VPO_UNMANAGED; 2239 return (m); 2240 } 2241 2242 static int 2243 vm_page_import(void *arg, void **store, int cnt, int domain, int flags) 2244 { 2245 struct vm_domain *vmd; 2246 int i; 2247 2248 vmd = arg; 2249 /* Only import if we can bring in a full bucket. */ 2250 if (cnt == 1 || !vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt)) 2251 return (0); 2252 domain = vmd->vmd_domain; 2253 vm_domain_free_lock(vmd); 2254 i = vm_phys_alloc_npages(domain, VM_FREEPOOL_DEFAULT, cnt, 2255 (vm_page_t *)store); 2256 vm_domain_free_unlock(vmd); 2257 if (cnt != i) 2258 vm_domain_freecnt_inc(vmd, cnt - i); 2259 2260 return (i); 2261 } 2262 2263 static void 2264 vm_page_release(void *arg, void **store, int cnt) 2265 { 2266 struct vm_domain *vmd; 2267 vm_page_t m; 2268 int i; 2269 2270 vmd = arg; 2271 vm_domain_free_lock(vmd); 2272 for (i = 0; i < cnt; i++) { 2273 m = (vm_page_t)store[i]; 2274 vm_phys_free_pages(m, 0); 2275 } 2276 vm_domain_free_unlock(vmd); 2277 vm_domain_freecnt_inc(vmd, cnt); 2278 } 2279 2280 #define VPSC_ANY 0 /* No restrictions. */ 2281 #define VPSC_NORESERV 1 /* Skip reservations; implies VPSC_NOSUPER. */ 2282 #define VPSC_NOSUPER 2 /* Skip superpages. */ 2283 2284 /* 2285 * vm_page_scan_contig: 2286 * 2287 * Scan vm_page_array[] between the specified entries "m_start" and 2288 * "m_end" for a run of contiguous physical pages that satisfy the 2289 * specified conditions, and return the lowest page in the run. The 2290 * specified "alignment" determines the alignment of the lowest physical 2291 * page in the run. If the specified "boundary" is non-zero, then the 2292 * run of physical pages cannot span a physical address that is a 2293 * multiple of "boundary". 2294 * 2295 * "m_end" is never dereferenced, so it need not point to a vm_page 2296 * structure within vm_page_array[]. 2297 * 2298 * "npages" must be greater than zero. "m_start" and "m_end" must not 2299 * span a hole (or discontiguity) in the physical address space. Both 2300 * "alignment" and "boundary" must be a power of two. 2301 */ 2302 vm_page_t 2303 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end, 2304 u_long alignment, vm_paddr_t boundary, int options) 2305 { 2306 struct mtx *m_mtx; 2307 vm_object_t object; 2308 vm_paddr_t pa; 2309 vm_page_t m, m_run; 2310 #if VM_NRESERVLEVEL > 0 2311 int level; 2312 #endif 2313 int m_inc, order, run_ext, run_len; 2314 2315 KASSERT(npages > 0, ("npages is 0")); 2316 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 2317 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 2318 m_run = NULL; 2319 run_len = 0; 2320 m_mtx = NULL; 2321 for (m = m_start; m < m_end && run_len < npages; m += m_inc) { 2322 KASSERT((m->flags & PG_MARKER) == 0, 2323 ("page %p is PG_MARKER", m)); 2324 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->wire_count == 1, 2325 ("fictitious page %p has invalid wire count", m)); 2326 2327 /* 2328 * If the current page would be the start of a run, check its 2329 * physical address against the end, alignment, and boundary 2330 * conditions. If it doesn't satisfy these conditions, either 2331 * terminate the scan or advance to the next page that 2332 * satisfies the failed condition. 2333 */ 2334 if (run_len == 0) { 2335 KASSERT(m_run == NULL, ("m_run != NULL")); 2336 if (m + npages > m_end) 2337 break; 2338 pa = VM_PAGE_TO_PHYS(m); 2339 if ((pa & (alignment - 1)) != 0) { 2340 m_inc = atop(roundup2(pa, alignment) - pa); 2341 continue; 2342 } 2343 if (rounddown2(pa ^ (pa + ptoa(npages) - 1), 2344 boundary) != 0) { 2345 m_inc = atop(roundup2(pa, boundary) - pa); 2346 continue; 2347 } 2348 } else 2349 KASSERT(m_run != NULL, ("m_run == NULL")); 2350 2351 vm_page_change_lock(m, &m_mtx); 2352 m_inc = 1; 2353 retry: 2354 if (vm_page_held(m)) 2355 run_ext = 0; 2356 #if VM_NRESERVLEVEL > 0 2357 else if ((level = vm_reserv_level(m)) >= 0 && 2358 (options & VPSC_NORESERV) != 0) { 2359 run_ext = 0; 2360 /* Advance to the end of the reservation. */ 2361 pa = VM_PAGE_TO_PHYS(m); 2362 m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) - 2363 pa); 2364 } 2365 #endif 2366 else if ((object = m->object) != NULL) { 2367 /* 2368 * The page is considered eligible for relocation if 2369 * and only if it could be laundered or reclaimed by 2370 * the page daemon. 2371 */ 2372 if (!VM_OBJECT_TRYRLOCK(object)) { 2373 mtx_unlock(m_mtx); 2374 VM_OBJECT_RLOCK(object); 2375 mtx_lock(m_mtx); 2376 if (m->object != object) { 2377 /* 2378 * The page may have been freed. 2379 */ 2380 VM_OBJECT_RUNLOCK(object); 2381 goto retry; 2382 } else if (vm_page_held(m)) { 2383 run_ext = 0; 2384 goto unlock; 2385 } 2386 } 2387 KASSERT((m->flags & PG_UNHOLDFREE) == 0, 2388 ("page %p is PG_UNHOLDFREE", m)); 2389 /* Don't care: PG_NODUMP, PG_ZERO. */ 2390 if (object->type != OBJT_DEFAULT && 2391 object->type != OBJT_SWAP && 2392 object->type != OBJT_VNODE) { 2393 run_ext = 0; 2394 #if VM_NRESERVLEVEL > 0 2395 } else if ((options & VPSC_NOSUPER) != 0 && 2396 (level = vm_reserv_level_iffullpop(m)) >= 0) { 2397 run_ext = 0; 2398 /* Advance to the end of the superpage. */ 2399 pa = VM_PAGE_TO_PHYS(m); 2400 m_inc = atop(roundup2(pa + 1, 2401 vm_reserv_size(level)) - pa); 2402 #endif 2403 } else if (object->memattr == VM_MEMATTR_DEFAULT && 2404 vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) { 2405 /* 2406 * The page is allocated but eligible for 2407 * relocation. Extend the current run by one 2408 * page. 2409 */ 2410 KASSERT(pmap_page_get_memattr(m) == 2411 VM_MEMATTR_DEFAULT, 2412 ("page %p has an unexpected memattr", m)); 2413 KASSERT((m->oflags & (VPO_SWAPINPROG | 2414 VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0, 2415 ("page %p has unexpected oflags", m)); 2416 /* Don't care: VPO_NOSYNC. */ 2417 run_ext = 1; 2418 } else 2419 run_ext = 0; 2420 unlock: 2421 VM_OBJECT_RUNLOCK(object); 2422 #if VM_NRESERVLEVEL > 0 2423 } else if (level >= 0) { 2424 /* 2425 * The page is reserved but not yet allocated. In 2426 * other words, it is still free. Extend the current 2427 * run by one page. 2428 */ 2429 run_ext = 1; 2430 #endif 2431 } else if ((order = m->order) < VM_NFREEORDER) { 2432 /* 2433 * The page is enqueued in the physical memory 2434 * allocator's free page queues. Moreover, it is the 2435 * first page in a power-of-two-sized run of 2436 * contiguous free pages. Add these pages to the end 2437 * of the current run, and jump ahead. 2438 */ 2439 run_ext = 1 << order; 2440 m_inc = 1 << order; 2441 } else { 2442 /* 2443 * Skip the page for one of the following reasons: (1) 2444 * It is enqueued in the physical memory allocator's 2445 * free page queues. However, it is not the first 2446 * page in a run of contiguous free pages. (This case 2447 * rarely occurs because the scan is performed in 2448 * ascending order.) (2) It is not reserved, and it is 2449 * transitioning from free to allocated. (Conversely, 2450 * the transition from allocated to free for managed 2451 * pages is blocked by the page lock.) (3) It is 2452 * allocated but not contained by an object and not 2453 * wired, e.g., allocated by Xen's balloon driver. 2454 */ 2455 run_ext = 0; 2456 } 2457 2458 /* 2459 * Extend or reset the current run of pages. 2460 */ 2461 if (run_ext > 0) { 2462 if (run_len == 0) 2463 m_run = m; 2464 run_len += run_ext; 2465 } else { 2466 if (run_len > 0) { 2467 m_run = NULL; 2468 run_len = 0; 2469 } 2470 } 2471 } 2472 if (m_mtx != NULL) 2473 mtx_unlock(m_mtx); 2474 if (run_len >= npages) 2475 return (m_run); 2476 return (NULL); 2477 } 2478 2479 /* 2480 * vm_page_reclaim_run: 2481 * 2482 * Try to relocate each of the allocated virtual pages within the 2483 * specified run of physical pages to a new physical address. Free the 2484 * physical pages underlying the relocated virtual pages. A virtual page 2485 * is relocatable if and only if it could be laundered or reclaimed by 2486 * the page daemon. Whenever possible, a virtual page is relocated to a 2487 * physical address above "high". 2488 * 2489 * Returns 0 if every physical page within the run was already free or 2490 * just freed by a successful relocation. Otherwise, returns a non-zero 2491 * value indicating why the last attempt to relocate a virtual page was 2492 * unsuccessful. 2493 * 2494 * "req_class" must be an allocation class. 2495 */ 2496 static int 2497 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run, 2498 vm_paddr_t high) 2499 { 2500 struct vm_domain *vmd; 2501 struct mtx *m_mtx; 2502 struct spglist free; 2503 vm_object_t object; 2504 vm_paddr_t pa; 2505 vm_page_t m, m_end, m_new; 2506 int error, order, req; 2507 2508 KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class, 2509 ("req_class is not an allocation class")); 2510 SLIST_INIT(&free); 2511 error = 0; 2512 m = m_run; 2513 m_end = m_run + npages; 2514 m_mtx = NULL; 2515 for (; error == 0 && m < m_end; m++) { 2516 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0, 2517 ("page %p is PG_FICTITIOUS or PG_MARKER", m)); 2518 2519 /* 2520 * Avoid releasing and reacquiring the same page lock. 2521 */ 2522 vm_page_change_lock(m, &m_mtx); 2523 retry: 2524 if (vm_page_held(m)) 2525 error = EBUSY; 2526 else if ((object = m->object) != NULL) { 2527 /* 2528 * The page is relocated if and only if it could be 2529 * laundered or reclaimed by the page daemon. 2530 */ 2531 if (!VM_OBJECT_TRYWLOCK(object)) { 2532 mtx_unlock(m_mtx); 2533 VM_OBJECT_WLOCK(object); 2534 mtx_lock(m_mtx); 2535 if (m->object != object) { 2536 /* 2537 * The page may have been freed. 2538 */ 2539 VM_OBJECT_WUNLOCK(object); 2540 goto retry; 2541 } else if (vm_page_held(m)) { 2542 error = EBUSY; 2543 goto unlock; 2544 } 2545 } 2546 KASSERT((m->flags & PG_UNHOLDFREE) == 0, 2547 ("page %p is PG_UNHOLDFREE", m)); 2548 /* Don't care: PG_NODUMP, PG_ZERO. */ 2549 if (object->type != OBJT_DEFAULT && 2550 object->type != OBJT_SWAP && 2551 object->type != OBJT_VNODE) 2552 error = EINVAL; 2553 else if (object->memattr != VM_MEMATTR_DEFAULT) 2554 error = EINVAL; 2555 else if (vm_page_queue(m) != PQ_NONE && 2556 !vm_page_busied(m)) { 2557 KASSERT(pmap_page_get_memattr(m) == 2558 VM_MEMATTR_DEFAULT, 2559 ("page %p has an unexpected memattr", m)); 2560 KASSERT((m->oflags & (VPO_SWAPINPROG | 2561 VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0, 2562 ("page %p has unexpected oflags", m)); 2563 /* Don't care: VPO_NOSYNC. */ 2564 if (m->valid != 0) { 2565 /* 2566 * First, try to allocate a new page 2567 * that is above "high". Failing 2568 * that, try to allocate a new page 2569 * that is below "m_run". Allocate 2570 * the new page between the end of 2571 * "m_run" and "high" only as a last 2572 * resort. 2573 */ 2574 req = req_class | VM_ALLOC_NOOBJ; 2575 if ((m->flags & PG_NODUMP) != 0) 2576 req |= VM_ALLOC_NODUMP; 2577 if (trunc_page(high) != 2578 ~(vm_paddr_t)PAGE_MASK) { 2579 m_new = vm_page_alloc_contig( 2580 NULL, 0, req, 1, 2581 round_page(high), 2582 ~(vm_paddr_t)0, 2583 PAGE_SIZE, 0, 2584 VM_MEMATTR_DEFAULT); 2585 } else 2586 m_new = NULL; 2587 if (m_new == NULL) { 2588 pa = VM_PAGE_TO_PHYS(m_run); 2589 m_new = vm_page_alloc_contig( 2590 NULL, 0, req, 1, 2591 0, pa - 1, PAGE_SIZE, 0, 2592 VM_MEMATTR_DEFAULT); 2593 } 2594 if (m_new == NULL) { 2595 pa += ptoa(npages); 2596 m_new = vm_page_alloc_contig( 2597 NULL, 0, req, 1, 2598 pa, high, PAGE_SIZE, 0, 2599 VM_MEMATTR_DEFAULT); 2600 } 2601 if (m_new == NULL) { 2602 error = ENOMEM; 2603 goto unlock; 2604 } 2605 KASSERT(m_new->wire_count == 0, 2606 ("page %p is wired", m_new)); 2607 2608 /* 2609 * Replace "m" with the new page. For 2610 * vm_page_replace(), "m" must be busy 2611 * and dequeued. Finally, change "m" 2612 * as if vm_page_free() was called. 2613 */ 2614 if (object->ref_count != 0) 2615 pmap_remove_all(m); 2616 m_new->aflags = m->aflags & 2617 ~PGA_QUEUE_STATE_MASK; 2618 KASSERT(m_new->oflags == VPO_UNMANAGED, 2619 ("page %p is managed", m_new)); 2620 m_new->oflags = m->oflags & VPO_NOSYNC; 2621 pmap_copy_page(m, m_new); 2622 m_new->valid = m->valid; 2623 m_new->dirty = m->dirty; 2624 m->flags &= ~PG_ZERO; 2625 vm_page_xbusy(m); 2626 vm_page_dequeue(m); 2627 vm_page_replace_checked(m_new, object, 2628 m->pindex, m); 2629 if (vm_page_free_prep(m)) 2630 SLIST_INSERT_HEAD(&free, m, 2631 plinks.s.ss); 2632 2633 /* 2634 * The new page must be deactivated 2635 * before the object is unlocked. 2636 */ 2637 vm_page_change_lock(m_new, &m_mtx); 2638 vm_page_deactivate(m_new); 2639 } else { 2640 m->flags &= ~PG_ZERO; 2641 vm_page_dequeue(m); 2642 vm_page_remove(m); 2643 if (vm_page_free_prep(m)) 2644 SLIST_INSERT_HEAD(&free, m, 2645 plinks.s.ss); 2646 KASSERT(m->dirty == 0, 2647 ("page %p is dirty", m)); 2648 } 2649 } else 2650 error = EBUSY; 2651 unlock: 2652 VM_OBJECT_WUNLOCK(object); 2653 } else { 2654 MPASS(vm_phys_domain(m) == domain); 2655 vmd = VM_DOMAIN(domain); 2656 vm_domain_free_lock(vmd); 2657 order = m->order; 2658 if (order < VM_NFREEORDER) { 2659 /* 2660 * The page is enqueued in the physical memory 2661 * allocator's free page queues. Moreover, it 2662 * is the first page in a power-of-two-sized 2663 * run of contiguous free pages. Jump ahead 2664 * to the last page within that run, and 2665 * continue from there. 2666 */ 2667 m += (1 << order) - 1; 2668 } 2669 #if VM_NRESERVLEVEL > 0 2670 else if (vm_reserv_is_page_free(m)) 2671 order = 0; 2672 #endif 2673 vm_domain_free_unlock(vmd); 2674 if (order == VM_NFREEORDER) 2675 error = EINVAL; 2676 } 2677 } 2678 if (m_mtx != NULL) 2679 mtx_unlock(m_mtx); 2680 if ((m = SLIST_FIRST(&free)) != NULL) { 2681 int cnt; 2682 2683 vmd = VM_DOMAIN(domain); 2684 cnt = 0; 2685 vm_domain_free_lock(vmd); 2686 do { 2687 MPASS(vm_phys_domain(m) == domain); 2688 SLIST_REMOVE_HEAD(&free, plinks.s.ss); 2689 vm_phys_free_pages(m, 0); 2690 cnt++; 2691 } while ((m = SLIST_FIRST(&free)) != NULL); 2692 vm_domain_free_unlock(vmd); 2693 vm_domain_freecnt_inc(vmd, cnt); 2694 } 2695 return (error); 2696 } 2697 2698 #define NRUNS 16 2699 2700 CTASSERT(powerof2(NRUNS)); 2701 2702 #define RUN_INDEX(count) ((count) & (NRUNS - 1)) 2703 2704 #define MIN_RECLAIM 8 2705 2706 /* 2707 * vm_page_reclaim_contig: 2708 * 2709 * Reclaim allocated, contiguous physical memory satisfying the specified 2710 * conditions by relocating the virtual pages using that physical memory. 2711 * Returns true if reclamation is successful and false otherwise. Since 2712 * relocation requires the allocation of physical pages, reclamation may 2713 * fail due to a shortage of free pages. When reclamation fails, callers 2714 * are expected to perform vm_wait() before retrying a failed allocation 2715 * operation, e.g., vm_page_alloc_contig(). 2716 * 2717 * The caller must always specify an allocation class through "req". 2718 * 2719 * allocation classes: 2720 * VM_ALLOC_NORMAL normal process request 2721 * VM_ALLOC_SYSTEM system *really* needs a page 2722 * VM_ALLOC_INTERRUPT interrupt time request 2723 * 2724 * The optional allocation flags are ignored. 2725 * 2726 * "npages" must be greater than zero. Both "alignment" and "boundary" 2727 * must be a power of two. 2728 */ 2729 bool 2730 vm_page_reclaim_contig_domain(int domain, int req, u_long npages, 2731 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary) 2732 { 2733 struct vm_domain *vmd; 2734 vm_paddr_t curr_low; 2735 vm_page_t m_run, m_runs[NRUNS]; 2736 u_long count, reclaimed; 2737 int error, i, options, req_class; 2738 2739 KASSERT(npages > 0, ("npages is 0")); 2740 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 2741 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 2742 req_class = req & VM_ALLOC_CLASS_MASK; 2743 2744 /* 2745 * The page daemon is allowed to dig deeper into the free page list. 2746 */ 2747 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 2748 req_class = VM_ALLOC_SYSTEM; 2749 2750 /* 2751 * Return if the number of free pages cannot satisfy the requested 2752 * allocation. 2753 */ 2754 vmd = VM_DOMAIN(domain); 2755 count = vmd->vmd_free_count; 2756 if (count < npages + vmd->vmd_free_reserved || (count < npages + 2757 vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) || 2758 (count < npages && req_class == VM_ALLOC_INTERRUPT)) 2759 return (false); 2760 2761 /* 2762 * Scan up to three times, relaxing the restrictions ("options") on 2763 * the reclamation of reservations and superpages each time. 2764 */ 2765 for (options = VPSC_NORESERV;;) { 2766 /* 2767 * Find the highest runs that satisfy the given constraints 2768 * and restrictions, and record them in "m_runs". 2769 */ 2770 curr_low = low; 2771 count = 0; 2772 for (;;) { 2773 m_run = vm_phys_scan_contig(domain, npages, curr_low, 2774 high, alignment, boundary, options); 2775 if (m_run == NULL) 2776 break; 2777 curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages); 2778 m_runs[RUN_INDEX(count)] = m_run; 2779 count++; 2780 } 2781 2782 /* 2783 * Reclaim the highest runs in LIFO (descending) order until 2784 * the number of reclaimed pages, "reclaimed", is at least 2785 * MIN_RECLAIM. Reset "reclaimed" each time because each 2786 * reclamation is idempotent, and runs will (likely) recur 2787 * from one scan to the next as restrictions are relaxed. 2788 */ 2789 reclaimed = 0; 2790 for (i = 0; count > 0 && i < NRUNS; i++) { 2791 count--; 2792 m_run = m_runs[RUN_INDEX(count)]; 2793 error = vm_page_reclaim_run(req_class, domain, npages, 2794 m_run, high); 2795 if (error == 0) { 2796 reclaimed += npages; 2797 if (reclaimed >= MIN_RECLAIM) 2798 return (true); 2799 } 2800 } 2801 2802 /* 2803 * Either relax the restrictions on the next scan or return if 2804 * the last scan had no restrictions. 2805 */ 2806 if (options == VPSC_NORESERV) 2807 options = VPSC_NOSUPER; 2808 else if (options == VPSC_NOSUPER) 2809 options = VPSC_ANY; 2810 else if (options == VPSC_ANY) 2811 return (reclaimed != 0); 2812 } 2813 } 2814 2815 bool 2816 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high, 2817 u_long alignment, vm_paddr_t boundary) 2818 { 2819 struct vm_domainset_iter di; 2820 int domain; 2821 bool ret; 2822 2823 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req); 2824 do { 2825 ret = vm_page_reclaim_contig_domain(domain, req, npages, low, 2826 high, alignment, boundary); 2827 if (ret) 2828 break; 2829 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0); 2830 2831 return (ret); 2832 } 2833 2834 /* 2835 * Set the domain in the appropriate page level domainset. 2836 */ 2837 void 2838 vm_domain_set(struct vm_domain *vmd) 2839 { 2840 2841 mtx_lock(&vm_domainset_lock); 2842 if (!vmd->vmd_minset && vm_paging_min(vmd)) { 2843 vmd->vmd_minset = 1; 2844 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains); 2845 } 2846 if (!vmd->vmd_severeset && vm_paging_severe(vmd)) { 2847 vmd->vmd_severeset = 1; 2848 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains); 2849 } 2850 mtx_unlock(&vm_domainset_lock); 2851 } 2852 2853 /* 2854 * Clear the domain from the appropriate page level domainset. 2855 */ 2856 void 2857 vm_domain_clear(struct vm_domain *vmd) 2858 { 2859 2860 mtx_lock(&vm_domainset_lock); 2861 if (vmd->vmd_minset && !vm_paging_min(vmd)) { 2862 vmd->vmd_minset = 0; 2863 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains); 2864 if (vm_min_waiters != 0) { 2865 vm_min_waiters = 0; 2866 wakeup(&vm_min_domains); 2867 } 2868 } 2869 if (vmd->vmd_severeset && !vm_paging_severe(vmd)) { 2870 vmd->vmd_severeset = 0; 2871 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains); 2872 if (vm_severe_waiters != 0) { 2873 vm_severe_waiters = 0; 2874 wakeup(&vm_severe_domains); 2875 } 2876 } 2877 2878 /* 2879 * If pageout daemon needs pages, then tell it that there are 2880 * some free. 2881 */ 2882 if (vmd->vmd_pageout_pages_needed && 2883 vmd->vmd_free_count >= vmd->vmd_pageout_free_min) { 2884 wakeup(&vmd->vmd_pageout_pages_needed); 2885 vmd->vmd_pageout_pages_needed = 0; 2886 } 2887 2888 /* See comments in vm_wait_doms(). */ 2889 if (vm_pageproc_waiters) { 2890 vm_pageproc_waiters = 0; 2891 wakeup(&vm_pageproc_waiters); 2892 } 2893 mtx_unlock(&vm_domainset_lock); 2894 } 2895 2896 /* 2897 * Wait for free pages to exceed the min threshold globally. 2898 */ 2899 void 2900 vm_wait_min(void) 2901 { 2902 2903 mtx_lock(&vm_domainset_lock); 2904 while (vm_page_count_min()) { 2905 vm_min_waiters++; 2906 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0); 2907 } 2908 mtx_unlock(&vm_domainset_lock); 2909 } 2910 2911 /* 2912 * Wait for free pages to exceed the severe threshold globally. 2913 */ 2914 void 2915 vm_wait_severe(void) 2916 { 2917 2918 mtx_lock(&vm_domainset_lock); 2919 while (vm_page_count_severe()) { 2920 vm_severe_waiters++; 2921 msleep(&vm_severe_domains, &vm_domainset_lock, PVM, 2922 "vmwait", 0); 2923 } 2924 mtx_unlock(&vm_domainset_lock); 2925 } 2926 2927 u_int 2928 vm_wait_count(void) 2929 { 2930 2931 return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters); 2932 } 2933 2934 void 2935 vm_wait_doms(const domainset_t *wdoms) 2936 { 2937 2938 /* 2939 * We use racey wakeup synchronization to avoid expensive global 2940 * locking for the pageproc when sleeping with a non-specific vm_wait. 2941 * To handle this, we only sleep for one tick in this instance. It 2942 * is expected that most allocations for the pageproc will come from 2943 * kmem or vm_page_grab* which will use the more specific and 2944 * race-free vm_wait_domain(). 2945 */ 2946 if (curproc == pageproc) { 2947 mtx_lock(&vm_domainset_lock); 2948 vm_pageproc_waiters++; 2949 msleep(&vm_pageproc_waiters, &vm_domainset_lock, PVM | PDROP, 2950 "pageprocwait", 1); 2951 } else { 2952 /* 2953 * XXX Ideally we would wait only until the allocation could 2954 * be satisfied. This condition can cause new allocators to 2955 * consume all freed pages while old allocators wait. 2956 */ 2957 mtx_lock(&vm_domainset_lock); 2958 if (vm_page_count_min_set(wdoms)) { 2959 vm_min_waiters++; 2960 msleep(&vm_min_domains, &vm_domainset_lock, 2961 PVM | PDROP, "vmwait", 0); 2962 } else 2963 mtx_unlock(&vm_domainset_lock); 2964 } 2965 } 2966 2967 /* 2968 * vm_wait_domain: 2969 * 2970 * Sleep until free pages are available for allocation. 2971 * - Called in various places after failed memory allocations. 2972 */ 2973 void 2974 vm_wait_domain(int domain) 2975 { 2976 struct vm_domain *vmd; 2977 domainset_t wdom; 2978 2979 vmd = VM_DOMAIN(domain); 2980 vm_domain_free_assert_unlocked(vmd); 2981 2982 if (curproc == pageproc) { 2983 mtx_lock(&vm_domainset_lock); 2984 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) { 2985 vmd->vmd_pageout_pages_needed = 1; 2986 msleep(&vmd->vmd_pageout_pages_needed, 2987 &vm_domainset_lock, PDROP | PSWP, "VMWait", 0); 2988 } else 2989 mtx_unlock(&vm_domainset_lock); 2990 } else { 2991 if (pageproc == NULL) 2992 panic("vm_wait in early boot"); 2993 DOMAINSET_ZERO(&wdom); 2994 DOMAINSET_SET(vmd->vmd_domain, &wdom); 2995 vm_wait_doms(&wdom); 2996 } 2997 } 2998 2999 /* 3000 * vm_wait: 3001 * 3002 * Sleep until free pages are available for allocation in the 3003 * affinity domains of the obj. If obj is NULL, the domain set 3004 * for the calling thread is used. 3005 * Called in various places after failed memory allocations. 3006 */ 3007 void 3008 vm_wait(vm_object_t obj) 3009 { 3010 struct domainset *d; 3011 3012 d = NULL; 3013 3014 /* 3015 * Carefully fetch pointers only once: the struct domainset 3016 * itself is ummutable but the pointer might change. 3017 */ 3018 if (obj != NULL) 3019 d = obj->domain.dr_policy; 3020 if (d == NULL) 3021 d = curthread->td_domain.dr_policy; 3022 3023 vm_wait_doms(&d->ds_mask); 3024 } 3025 3026 /* 3027 * vm_domain_alloc_fail: 3028 * 3029 * Called when a page allocation function fails. Informs the 3030 * pagedaemon and performs the requested wait. Requires the 3031 * domain_free and object lock on entry. Returns with the 3032 * object lock held and free lock released. Returns an error when 3033 * retry is necessary. 3034 * 3035 */ 3036 static int 3037 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req) 3038 { 3039 3040 vm_domain_free_assert_unlocked(vmd); 3041 3042 atomic_add_int(&vmd->vmd_pageout_deficit, 3043 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); 3044 if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) { 3045 if (object != NULL) 3046 VM_OBJECT_WUNLOCK(object); 3047 vm_wait_domain(vmd->vmd_domain); 3048 if (object != NULL) 3049 VM_OBJECT_WLOCK(object); 3050 if (req & VM_ALLOC_WAITOK) 3051 return (EAGAIN); 3052 } 3053 3054 return (0); 3055 } 3056 3057 /* 3058 * vm_waitpfault: 3059 * 3060 * Sleep until free pages are available for allocation. 3061 * - Called only in vm_fault so that processes page faulting 3062 * can be easily tracked. 3063 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 3064 * processes will be able to grab memory first. Do not change 3065 * this balance without careful testing first. 3066 */ 3067 void 3068 vm_waitpfault(struct domainset *dset) 3069 { 3070 3071 /* 3072 * XXX Ideally we would wait only until the allocation could 3073 * be satisfied. This condition can cause new allocators to 3074 * consume all freed pages while old allocators wait. 3075 */ 3076 mtx_lock(&vm_domainset_lock); 3077 if (vm_page_count_min_set(&dset->ds_mask)) { 3078 vm_min_waiters++; 3079 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP, 3080 "pfault", 0); 3081 } else 3082 mtx_unlock(&vm_domainset_lock); 3083 } 3084 3085 struct vm_pagequeue * 3086 vm_page_pagequeue(vm_page_t m) 3087 { 3088 3089 return (&vm_pagequeue_domain(m)->vmd_pagequeues[m->queue]); 3090 } 3091 3092 static struct mtx * 3093 vm_page_pagequeue_lockptr(vm_page_t m) 3094 { 3095 uint8_t queue; 3096 3097 if ((queue = atomic_load_8(&m->queue)) == PQ_NONE) 3098 return (NULL); 3099 return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue].pq_mutex); 3100 } 3101 3102 static inline void 3103 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m) 3104 { 3105 struct vm_domain *vmd; 3106 uint8_t qflags; 3107 3108 CRITICAL_ASSERT(curthread); 3109 vm_pagequeue_assert_locked(pq); 3110 3111 /* 3112 * The page daemon is allowed to set m->queue = PQ_NONE without 3113 * the page queue lock held. In this case it is about to free the page, 3114 * which must not have any queue state. 3115 */ 3116 qflags = atomic_load_8(&m->aflags) & PGA_QUEUE_STATE_MASK; 3117 KASSERT(pq == vm_page_pagequeue(m) || qflags == 0, 3118 ("page %p doesn't belong to queue %p but has queue state %#x", 3119 m, pq, qflags)); 3120 3121 if ((qflags & PGA_DEQUEUE) != 0) { 3122 if (__predict_true((qflags & PGA_ENQUEUED) != 0)) { 3123 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 3124 vm_pagequeue_cnt_dec(pq); 3125 } 3126 vm_page_dequeue_complete(m); 3127 } else if ((qflags & (PGA_REQUEUE | PGA_REQUEUE_HEAD)) != 0) { 3128 if ((qflags & PGA_ENQUEUED) != 0) 3129 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 3130 else { 3131 vm_pagequeue_cnt_inc(pq); 3132 vm_page_aflag_set(m, PGA_ENQUEUED); 3133 } 3134 if ((qflags & PGA_REQUEUE_HEAD) != 0) { 3135 KASSERT(m->queue == PQ_INACTIVE, 3136 ("head enqueue not supported for page %p", m)); 3137 vmd = vm_pagequeue_domain(m); 3138 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q); 3139 } else 3140 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 3141 3142 /* 3143 * PGA_REQUEUE and PGA_REQUEUE_HEAD must be cleared after 3144 * setting PGA_ENQUEUED in order to synchronize with the 3145 * page daemon. 3146 */ 3147 vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD); 3148 } 3149 } 3150 3151 static void 3152 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq, 3153 uint8_t queue) 3154 { 3155 vm_page_t m; 3156 int i; 3157 3158 for (i = 0; i < bq->bq_cnt; i++) { 3159 m = bq->bq_pa[i]; 3160 if (__predict_false(m->queue != queue)) 3161 continue; 3162 vm_pqbatch_process_page(pq, m); 3163 } 3164 vm_batchqueue_init(bq); 3165 } 3166 3167 static void 3168 vm_pqbatch_submit_page(vm_page_t m, uint8_t queue) 3169 { 3170 struct vm_batchqueue *bq; 3171 struct vm_pagequeue *pq; 3172 int domain; 3173 3174 vm_page_assert_locked(m); 3175 KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue)); 3176 3177 domain = vm_phys_domain(m); 3178 pq = &vm_pagequeue_domain(m)->vmd_pagequeues[queue]; 3179 3180 critical_enter(); 3181 bq = DPCPU_PTR(pqbatch[domain][queue]); 3182 if (vm_batchqueue_insert(bq, m)) { 3183 critical_exit(); 3184 return; 3185 } 3186 if (!vm_pagequeue_trylock(pq)) { 3187 critical_exit(); 3188 vm_pagequeue_lock(pq); 3189 critical_enter(); 3190 bq = DPCPU_PTR(pqbatch[domain][queue]); 3191 } 3192 vm_pqbatch_process(pq, bq, queue); 3193 3194 /* 3195 * The page may have been logically dequeued before we acquired the 3196 * page queue lock. In this case, the page lock prevents the page 3197 * from being logically enqueued elsewhere. 3198 */ 3199 if (__predict_true(m->queue == queue)) 3200 vm_pqbatch_process_page(pq, m); 3201 else { 3202 KASSERT(m->queue == PQ_NONE, 3203 ("invalid queue transition for page %p", m)); 3204 KASSERT((m->aflags & PGA_ENQUEUED) == 0, 3205 ("page %p is enqueued with invalid queue index", m)); 3206 vm_page_aflag_clear(m, PGA_QUEUE_STATE_MASK); 3207 } 3208 vm_pagequeue_unlock(pq); 3209 critical_exit(); 3210 } 3211 3212 /* 3213 * vm_page_drain_pqbatch: [ internal use only ] 3214 * 3215 * Force all per-CPU page queue batch queues to be drained. This is 3216 * intended for use in severe memory shortages, to ensure that pages 3217 * do not remain stuck in the batch queues. 3218 */ 3219 void 3220 vm_page_drain_pqbatch(void) 3221 { 3222 struct thread *td; 3223 struct vm_domain *vmd; 3224 struct vm_pagequeue *pq; 3225 int cpu, domain, queue; 3226 3227 td = curthread; 3228 CPU_FOREACH(cpu) { 3229 thread_lock(td); 3230 sched_bind(td, cpu); 3231 thread_unlock(td); 3232 3233 for (domain = 0; domain < vm_ndomains; domain++) { 3234 vmd = VM_DOMAIN(domain); 3235 for (queue = 0; queue < PQ_COUNT; queue++) { 3236 pq = &vmd->vmd_pagequeues[queue]; 3237 vm_pagequeue_lock(pq); 3238 critical_enter(); 3239 vm_pqbatch_process(pq, 3240 DPCPU_PTR(pqbatch[domain][queue]), queue); 3241 critical_exit(); 3242 vm_pagequeue_unlock(pq); 3243 } 3244 } 3245 } 3246 thread_lock(td); 3247 sched_unbind(td); 3248 thread_unlock(td); 3249 } 3250 3251 /* 3252 * Complete the logical removal of a page from a page queue. We must be 3253 * careful to synchronize with the page daemon, which may be concurrently 3254 * examining the page with only the page lock held. The page must not be 3255 * in a state where it appears to be logically enqueued. 3256 */ 3257 static void 3258 vm_page_dequeue_complete(vm_page_t m) 3259 { 3260 3261 m->queue = PQ_NONE; 3262 atomic_thread_fence_rel(); 3263 vm_page_aflag_clear(m, PGA_QUEUE_STATE_MASK); 3264 } 3265 3266 /* 3267 * vm_page_dequeue_deferred: [ internal use only ] 3268 * 3269 * Request removal of the given page from its current page 3270 * queue. Physical removal from the queue may be deferred 3271 * indefinitely. 3272 * 3273 * The page must be locked. 3274 */ 3275 void 3276 vm_page_dequeue_deferred(vm_page_t m) 3277 { 3278 int queue; 3279 3280 vm_page_assert_locked(m); 3281 3282 queue = atomic_load_8(&m->queue); 3283 if (queue == PQ_NONE) { 3284 KASSERT((m->aflags & PGA_QUEUE_STATE_MASK) == 0, 3285 ("page %p has queue state", m)); 3286 return; 3287 } 3288 if ((m->aflags & PGA_DEQUEUE) == 0) 3289 vm_page_aflag_set(m, PGA_DEQUEUE); 3290 vm_pqbatch_submit_page(m, queue); 3291 } 3292 3293 /* 3294 * vm_page_dequeue: 3295 * 3296 * Remove the page from whichever page queue it's in, if any. 3297 * The page must either be locked or unallocated. This constraint 3298 * ensures that the queue state of the page will remain consistent 3299 * after this function returns. 3300 */ 3301 void 3302 vm_page_dequeue(vm_page_t m) 3303 { 3304 struct mtx *lock, *lock1; 3305 struct vm_pagequeue *pq; 3306 uint8_t aflags; 3307 3308 KASSERT(mtx_owned(vm_page_lockptr(m)) || m->order == VM_NFREEORDER, 3309 ("page %p is allocated and unlocked", m)); 3310 3311 for (;;) { 3312 lock = vm_page_pagequeue_lockptr(m); 3313 if (lock == NULL) { 3314 /* 3315 * A thread may be concurrently executing 3316 * vm_page_dequeue_complete(). Ensure that all queue 3317 * state is cleared before we return. 3318 */ 3319 aflags = atomic_load_8(&m->aflags); 3320 if ((aflags & PGA_QUEUE_STATE_MASK) == 0) 3321 return; 3322 KASSERT((aflags & PGA_DEQUEUE) != 0, 3323 ("page %p has unexpected queue state flags %#x", 3324 m, aflags)); 3325 3326 /* 3327 * Busy wait until the thread updating queue state is 3328 * finished. Such a thread must be executing in a 3329 * critical section. 3330 */ 3331 cpu_spinwait(); 3332 continue; 3333 } 3334 mtx_lock(lock); 3335 if ((lock1 = vm_page_pagequeue_lockptr(m)) == lock) 3336 break; 3337 mtx_unlock(lock); 3338 lock = lock1; 3339 } 3340 KASSERT(lock == vm_page_pagequeue_lockptr(m), 3341 ("%s: page %p migrated directly between queues", __func__, m)); 3342 KASSERT((m->aflags & PGA_DEQUEUE) != 0 || 3343 mtx_owned(vm_page_lockptr(m)), 3344 ("%s: queued unlocked page %p", __func__, m)); 3345 3346 if ((m->aflags & PGA_ENQUEUED) != 0) { 3347 pq = vm_page_pagequeue(m); 3348 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 3349 vm_pagequeue_cnt_dec(pq); 3350 } 3351 vm_page_dequeue_complete(m); 3352 mtx_unlock(lock); 3353 } 3354 3355 /* 3356 * Schedule the given page for insertion into the specified page queue. 3357 * Physical insertion of the page may be deferred indefinitely. 3358 */ 3359 static void 3360 vm_page_enqueue(vm_page_t m, uint8_t queue) 3361 { 3362 3363 vm_page_assert_locked(m); 3364 KASSERT(m->queue == PQ_NONE && (m->aflags & PGA_QUEUE_STATE_MASK) == 0, 3365 ("%s: page %p is already enqueued", __func__, m)); 3366 3367 m->queue = queue; 3368 if ((m->aflags & PGA_REQUEUE) == 0) 3369 vm_page_aflag_set(m, PGA_REQUEUE); 3370 vm_pqbatch_submit_page(m, queue); 3371 } 3372 3373 /* 3374 * vm_page_requeue: [ internal use only ] 3375 * 3376 * Schedule a requeue of the given page. 3377 * 3378 * The page must be locked. 3379 */ 3380 void 3381 vm_page_requeue(vm_page_t m) 3382 { 3383 3384 vm_page_assert_locked(m); 3385 KASSERT(m->queue != PQ_NONE, 3386 ("%s: page %p is not logically enqueued", __func__, m)); 3387 3388 if ((m->aflags & PGA_REQUEUE) == 0) 3389 vm_page_aflag_set(m, PGA_REQUEUE); 3390 vm_pqbatch_submit_page(m, atomic_load_8(&m->queue)); 3391 } 3392 3393 /* 3394 * vm_page_activate: 3395 * 3396 * Put the specified page on the active list (if appropriate). 3397 * Ensure that act_count is at least ACT_INIT but do not otherwise 3398 * mess with it. 3399 * 3400 * The page must be locked. 3401 */ 3402 void 3403 vm_page_activate(vm_page_t m) 3404 { 3405 3406 vm_page_assert_locked(m); 3407 3408 if (m->wire_count > 0 || (m->oflags & VPO_UNMANAGED) != 0) 3409 return; 3410 if (vm_page_queue(m) == PQ_ACTIVE) { 3411 if (m->act_count < ACT_INIT) 3412 m->act_count = ACT_INIT; 3413 return; 3414 } 3415 3416 vm_page_dequeue(m); 3417 if (m->act_count < ACT_INIT) 3418 m->act_count = ACT_INIT; 3419 vm_page_enqueue(m, PQ_ACTIVE); 3420 } 3421 3422 /* 3423 * vm_page_free_prep: 3424 * 3425 * Prepares the given page to be put on the free list, 3426 * disassociating it from any VM object. The caller may return 3427 * the page to the free list only if this function returns true. 3428 * 3429 * The object must be locked. The page must be locked if it is 3430 * managed. 3431 */ 3432 bool 3433 vm_page_free_prep(vm_page_t m) 3434 { 3435 3436 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP) 3437 if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) { 3438 uint64_t *p; 3439 int i; 3440 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 3441 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++) 3442 KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx", 3443 m, i, (uintmax_t)*p)); 3444 } 3445 #endif 3446 if ((m->oflags & VPO_UNMANAGED) == 0) { 3447 vm_page_lock_assert(m, MA_OWNED); 3448 KASSERT(!pmap_page_is_mapped(m), 3449 ("vm_page_free_prep: freeing mapped page %p", m)); 3450 } else 3451 KASSERT(m->queue == PQ_NONE, 3452 ("vm_page_free_prep: unmanaged page %p is queued", m)); 3453 VM_CNT_INC(v_tfree); 3454 3455 if (vm_page_sbusied(m)) 3456 panic("vm_page_free_prep: freeing busy page %p", m); 3457 3458 vm_page_remove(m); 3459 3460 /* 3461 * If fictitious remove object association and 3462 * return. 3463 */ 3464 if ((m->flags & PG_FICTITIOUS) != 0) { 3465 KASSERT(m->wire_count == 1, 3466 ("fictitious page %p is not wired", m)); 3467 KASSERT(m->queue == PQ_NONE, 3468 ("fictitious page %p is queued", m)); 3469 return (false); 3470 } 3471 3472 /* 3473 * Pages need not be dequeued before they are returned to the physical 3474 * memory allocator, but they must at least be marked for a deferred 3475 * dequeue. 3476 */ 3477 if ((m->oflags & VPO_UNMANAGED) == 0) 3478 vm_page_dequeue_deferred(m); 3479 3480 m->valid = 0; 3481 vm_page_undirty(m); 3482 3483 if (m->wire_count != 0) 3484 panic("vm_page_free_prep: freeing wired page %p", m); 3485 if (m->hold_count != 0) { 3486 m->flags &= ~PG_ZERO; 3487 KASSERT((m->flags & PG_UNHOLDFREE) == 0, 3488 ("vm_page_free_prep: freeing PG_UNHOLDFREE page %p", m)); 3489 m->flags |= PG_UNHOLDFREE; 3490 return (false); 3491 } 3492 3493 /* 3494 * Restore the default memory attribute to the page. 3495 */ 3496 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) 3497 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); 3498 3499 #if VM_NRESERVLEVEL > 0 3500 if (vm_reserv_free_page(m)) 3501 return (false); 3502 #endif 3503 3504 return (true); 3505 } 3506 3507 /* 3508 * vm_page_free_toq: 3509 * 3510 * Returns the given page to the free list, disassociating it 3511 * from any VM object. 3512 * 3513 * The object must be locked. The page must be locked if it is 3514 * managed. 3515 */ 3516 void 3517 vm_page_free_toq(vm_page_t m) 3518 { 3519 struct vm_domain *vmd; 3520 3521 if (!vm_page_free_prep(m)) 3522 return; 3523 3524 vmd = vm_pagequeue_domain(m); 3525 if (m->pool == VM_FREEPOOL_DEFAULT && vmd->vmd_pgcache != NULL) { 3526 uma_zfree(vmd->vmd_pgcache, m); 3527 return; 3528 } 3529 vm_domain_free_lock(vmd); 3530 vm_phys_free_pages(m, 0); 3531 vm_domain_free_unlock(vmd); 3532 vm_domain_freecnt_inc(vmd, 1); 3533 } 3534 3535 /* 3536 * vm_page_free_pages_toq: 3537 * 3538 * Returns a list of pages to the free list, disassociating it 3539 * from any VM object. In other words, this is equivalent to 3540 * calling vm_page_free_toq() for each page of a list of VM objects. 3541 * 3542 * The objects must be locked. The pages must be locked if it is 3543 * managed. 3544 */ 3545 void 3546 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count) 3547 { 3548 vm_page_t m; 3549 int count; 3550 3551 if (SLIST_EMPTY(free)) 3552 return; 3553 3554 count = 0; 3555 while ((m = SLIST_FIRST(free)) != NULL) { 3556 count++; 3557 SLIST_REMOVE_HEAD(free, plinks.s.ss); 3558 vm_page_free_toq(m); 3559 } 3560 3561 if (update_wire_count) 3562 vm_wire_sub(count); 3563 } 3564 3565 /* 3566 * vm_page_wire: 3567 * 3568 * Mark this page as wired down. If the page is fictitious, then 3569 * its wire count must remain one. 3570 * 3571 * The page must be locked. 3572 */ 3573 void 3574 vm_page_wire(vm_page_t m) 3575 { 3576 3577 vm_page_assert_locked(m); 3578 if ((m->flags & PG_FICTITIOUS) != 0) { 3579 KASSERT(m->wire_count == 1, 3580 ("vm_page_wire: fictitious page %p's wire count isn't one", 3581 m)); 3582 return; 3583 } 3584 if (m->wire_count == 0) { 3585 KASSERT((m->oflags & VPO_UNMANAGED) == 0 || 3586 m->queue == PQ_NONE, 3587 ("vm_page_wire: unmanaged page %p is queued", m)); 3588 vm_wire_add(1); 3589 } 3590 m->wire_count++; 3591 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 3592 } 3593 3594 /* 3595 * vm_page_unwire: 3596 * 3597 * Release one wiring of the specified page, potentially allowing it to be 3598 * paged out. Returns TRUE if the number of wirings transitions to zero and 3599 * FALSE otherwise. 3600 * 3601 * Only managed pages belonging to an object can be paged out. If the number 3602 * of wirings transitions to zero and the page is eligible for page out, then 3603 * the page is added to the specified paging queue (unless PQ_NONE is 3604 * specified, in which case the page is dequeued if it belongs to a paging 3605 * queue). 3606 * 3607 * If a page is fictitious, then its wire count must always be one. 3608 * 3609 * A managed page must be locked. 3610 */ 3611 bool 3612 vm_page_unwire(vm_page_t m, uint8_t queue) 3613 { 3614 bool unwired; 3615 3616 KASSERT(queue < PQ_COUNT || queue == PQ_NONE, 3617 ("vm_page_unwire: invalid queue %u request for page %p", 3618 queue, m)); 3619 if ((m->oflags & VPO_UNMANAGED) == 0) 3620 vm_page_assert_locked(m); 3621 3622 unwired = vm_page_unwire_noq(m); 3623 if (!unwired || (m->oflags & VPO_UNMANAGED) != 0 || m->object == NULL) 3624 return (unwired); 3625 3626 if (vm_page_queue(m) == queue) { 3627 if (queue == PQ_ACTIVE) 3628 vm_page_reference(m); 3629 else if (queue != PQ_NONE) 3630 vm_page_requeue(m); 3631 } else { 3632 vm_page_dequeue(m); 3633 if (queue != PQ_NONE) { 3634 vm_page_enqueue(m, queue); 3635 if (queue == PQ_ACTIVE) 3636 /* Initialize act_count. */ 3637 vm_page_activate(m); 3638 } 3639 } 3640 return (unwired); 3641 } 3642 3643 /* 3644 * 3645 * vm_page_unwire_noq: 3646 * 3647 * Unwire a page without (re-)inserting it into a page queue. It is up 3648 * to the caller to enqueue, requeue, or free the page as appropriate. 3649 * In most cases, vm_page_unwire() should be used instead. 3650 */ 3651 bool 3652 vm_page_unwire_noq(vm_page_t m) 3653 { 3654 3655 if ((m->oflags & VPO_UNMANAGED) == 0) 3656 vm_page_assert_locked(m); 3657 if ((m->flags & PG_FICTITIOUS) != 0) { 3658 KASSERT(m->wire_count == 1, 3659 ("vm_page_unwire: fictitious page %p's wire count isn't one", m)); 3660 return (false); 3661 } 3662 if (m->wire_count == 0) 3663 panic("vm_page_unwire: page %p's wire count is zero", m); 3664 m->wire_count--; 3665 if (m->wire_count == 0) { 3666 vm_wire_sub(1); 3667 return (true); 3668 } else 3669 return (false); 3670 } 3671 3672 /* 3673 * Move the specified page to the tail of the inactive queue, or requeue 3674 * the page if it is already in the inactive queue. 3675 * 3676 * The page must be locked. 3677 */ 3678 void 3679 vm_page_deactivate(vm_page_t m) 3680 { 3681 3682 vm_page_assert_locked(m); 3683 3684 if (m->wire_count > 0 || (m->oflags & VPO_UNMANAGED) != 0) 3685 return; 3686 3687 if (!vm_page_inactive(m)) { 3688 vm_page_dequeue(m); 3689 vm_page_enqueue(m, PQ_INACTIVE); 3690 } else 3691 vm_page_requeue(m); 3692 } 3693 3694 /* 3695 * Move the specified page close to the head of the inactive queue, 3696 * bypassing LRU. A marker page is used to maintain FIFO ordering. 3697 * As with regular enqueues, we use a per-CPU batch queue to reduce 3698 * contention on the page queue lock. 3699 * 3700 * The page must be locked. 3701 */ 3702 void 3703 vm_page_deactivate_noreuse(vm_page_t m) 3704 { 3705 3706 vm_page_assert_locked(m); 3707 3708 if (m->wire_count > 0 || (m->oflags & VPO_UNMANAGED) != 0) 3709 return; 3710 3711 if (!vm_page_inactive(m)) { 3712 vm_page_dequeue(m); 3713 m->queue = PQ_INACTIVE; 3714 } 3715 if ((m->aflags & PGA_REQUEUE_HEAD) == 0) 3716 vm_page_aflag_set(m, PGA_REQUEUE_HEAD); 3717 vm_pqbatch_submit_page(m, PQ_INACTIVE); 3718 } 3719 3720 /* 3721 * vm_page_launder 3722 * 3723 * Put a page in the laundry, or requeue it if it is already there. 3724 */ 3725 void 3726 vm_page_launder(vm_page_t m) 3727 { 3728 3729 vm_page_assert_locked(m); 3730 if (m->wire_count > 0 || (m->oflags & VPO_UNMANAGED) != 0) 3731 return; 3732 3733 if (vm_page_in_laundry(m)) 3734 vm_page_requeue(m); 3735 else { 3736 vm_page_dequeue(m); 3737 vm_page_enqueue(m, PQ_LAUNDRY); 3738 } 3739 } 3740 3741 /* 3742 * vm_page_unswappable 3743 * 3744 * Put a page in the PQ_UNSWAPPABLE holding queue. 3745 */ 3746 void 3747 vm_page_unswappable(vm_page_t m) 3748 { 3749 3750 vm_page_assert_locked(m); 3751 KASSERT(m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0, 3752 ("page %p already unswappable", m)); 3753 3754 vm_page_dequeue(m); 3755 vm_page_enqueue(m, PQ_UNSWAPPABLE); 3756 } 3757 3758 /* 3759 * Attempt to free the page. If it cannot be freed, do nothing. Returns true 3760 * if the page is freed and false otherwise. 3761 * 3762 * The page must be managed. The page and its containing object must be 3763 * locked. 3764 */ 3765 bool 3766 vm_page_try_to_free(vm_page_t m) 3767 { 3768 3769 vm_page_assert_locked(m); 3770 VM_OBJECT_ASSERT_WLOCKED(m->object); 3771 KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("page %p is unmanaged", m)); 3772 if (m->dirty != 0 || vm_page_held(m) || vm_page_busied(m)) 3773 return (false); 3774 if (m->object->ref_count != 0) { 3775 pmap_remove_all(m); 3776 if (m->dirty != 0) 3777 return (false); 3778 } 3779 vm_page_free(m); 3780 return (true); 3781 } 3782 3783 /* 3784 * vm_page_advise 3785 * 3786 * Apply the specified advice to the given page. 3787 * 3788 * The object and page must be locked. 3789 */ 3790 void 3791 vm_page_advise(vm_page_t m, int advice) 3792 { 3793 3794 vm_page_assert_locked(m); 3795 VM_OBJECT_ASSERT_WLOCKED(m->object); 3796 if (advice == MADV_FREE) 3797 /* 3798 * Mark the page clean. This will allow the page to be freed 3799 * without first paging it out. MADV_FREE pages are often 3800 * quickly reused by malloc(3), so we do not do anything that 3801 * would result in a page fault on a later access. 3802 */ 3803 vm_page_undirty(m); 3804 else if (advice != MADV_DONTNEED) { 3805 if (advice == MADV_WILLNEED) 3806 vm_page_activate(m); 3807 return; 3808 } 3809 3810 /* 3811 * Clear any references to the page. Otherwise, the page daemon will 3812 * immediately reactivate the page. 3813 */ 3814 vm_page_aflag_clear(m, PGA_REFERENCED); 3815 3816 if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m)) 3817 vm_page_dirty(m); 3818 3819 /* 3820 * Place clean pages near the head of the inactive queue rather than 3821 * the tail, thus defeating the queue's LRU operation and ensuring that 3822 * the page will be reused quickly. Dirty pages not already in the 3823 * laundry are moved there. 3824 */ 3825 if (m->dirty == 0) 3826 vm_page_deactivate_noreuse(m); 3827 else if (!vm_page_in_laundry(m)) 3828 vm_page_launder(m); 3829 } 3830 3831 /* 3832 * Grab a page, waiting until we are waken up due to the page 3833 * changing state. We keep on waiting, if the page continues 3834 * to be in the object. If the page doesn't exist, first allocate it 3835 * and then conditionally zero it. 3836 * 3837 * This routine may sleep. 3838 * 3839 * The object must be locked on entry. The lock will, however, be released 3840 * and reacquired if the routine sleeps. 3841 */ 3842 vm_page_t 3843 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 3844 { 3845 vm_page_t m; 3846 int sleep; 3847 int pflags; 3848 3849 VM_OBJECT_ASSERT_WLOCKED(object); 3850 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 3851 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 3852 ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch")); 3853 pflags = allocflags & 3854 ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL); 3855 if ((allocflags & VM_ALLOC_NOWAIT) == 0) 3856 pflags |= VM_ALLOC_WAITFAIL; 3857 retrylookup: 3858 if ((m = vm_page_lookup(object, pindex)) != NULL) { 3859 sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ? 3860 vm_page_xbusied(m) : vm_page_busied(m); 3861 if (sleep) { 3862 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 3863 return (NULL); 3864 /* 3865 * Reference the page before unlocking and 3866 * sleeping so that the page daemon is less 3867 * likely to reclaim it. 3868 */ 3869 vm_page_aflag_set(m, PGA_REFERENCED); 3870 vm_page_lock(m); 3871 VM_OBJECT_WUNLOCK(object); 3872 vm_page_busy_sleep(m, "pgrbwt", (allocflags & 3873 VM_ALLOC_IGN_SBUSY) != 0); 3874 VM_OBJECT_WLOCK(object); 3875 goto retrylookup; 3876 } else { 3877 if ((allocflags & VM_ALLOC_WIRED) != 0) { 3878 vm_page_lock(m); 3879 vm_page_wire(m); 3880 vm_page_unlock(m); 3881 } 3882 if ((allocflags & 3883 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0) 3884 vm_page_xbusy(m); 3885 if ((allocflags & VM_ALLOC_SBUSY) != 0) 3886 vm_page_sbusy(m); 3887 return (m); 3888 } 3889 } 3890 m = vm_page_alloc(object, pindex, pflags); 3891 if (m == NULL) { 3892 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 3893 return (NULL); 3894 goto retrylookup; 3895 } 3896 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 3897 pmap_zero_page(m); 3898 return (m); 3899 } 3900 3901 /* 3902 * Return the specified range of pages from the given object. For each 3903 * page offset within the range, if a page already exists within the object 3904 * at that offset and it is busy, then wait for it to change state. If, 3905 * instead, the page doesn't exist, then allocate it. 3906 * 3907 * The caller must always specify an allocation class. 3908 * 3909 * allocation classes: 3910 * VM_ALLOC_NORMAL normal process request 3911 * VM_ALLOC_SYSTEM system *really* needs the pages 3912 * 3913 * The caller must always specify that the pages are to be busied and/or 3914 * wired. 3915 * 3916 * optional allocation flags: 3917 * VM_ALLOC_IGN_SBUSY do not sleep on soft busy pages 3918 * VM_ALLOC_NOBUSY do not exclusive busy the page 3919 * VM_ALLOC_NOWAIT do not sleep 3920 * VM_ALLOC_SBUSY set page to sbusy state 3921 * VM_ALLOC_WIRED wire the pages 3922 * VM_ALLOC_ZERO zero and validate any invalid pages 3923 * 3924 * If VM_ALLOC_NOWAIT is not specified, this routine may sleep. Otherwise, it 3925 * may return a partial prefix of the requested range. 3926 */ 3927 int 3928 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags, 3929 vm_page_t *ma, int count) 3930 { 3931 vm_page_t m, mpred; 3932 int pflags; 3933 int i; 3934 bool sleep; 3935 3936 VM_OBJECT_ASSERT_WLOCKED(object); 3937 KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0, 3938 ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed")); 3939 KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 || 3940 (allocflags & VM_ALLOC_WIRED) != 0, 3941 ("vm_page_grab_pages: the pages must be busied or wired")); 3942 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 3943 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 3944 ("vm_page_grab_pages: VM_ALLOC_SBUSY/IGN_SBUSY mismatch")); 3945 if (count == 0) 3946 return (0); 3947 pflags = allocflags & ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | 3948 VM_ALLOC_WAITFAIL | VM_ALLOC_IGN_SBUSY); 3949 if ((allocflags & VM_ALLOC_NOWAIT) == 0) 3950 pflags |= VM_ALLOC_WAITFAIL; 3951 i = 0; 3952 retrylookup: 3953 m = vm_radix_lookup_le(&object->rtree, pindex + i); 3954 if (m == NULL || m->pindex != pindex + i) { 3955 mpred = m; 3956 m = NULL; 3957 } else 3958 mpred = TAILQ_PREV(m, pglist, listq); 3959 for (; i < count; i++) { 3960 if (m != NULL) { 3961 sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ? 3962 vm_page_xbusied(m) : vm_page_busied(m); 3963 if (sleep) { 3964 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 3965 break; 3966 /* 3967 * Reference the page before unlocking and 3968 * sleeping so that the page daemon is less 3969 * likely to reclaim it. 3970 */ 3971 vm_page_aflag_set(m, PGA_REFERENCED); 3972 vm_page_lock(m); 3973 VM_OBJECT_WUNLOCK(object); 3974 vm_page_busy_sleep(m, "grbmaw", (allocflags & 3975 VM_ALLOC_IGN_SBUSY) != 0); 3976 VM_OBJECT_WLOCK(object); 3977 goto retrylookup; 3978 } 3979 if ((allocflags & VM_ALLOC_WIRED) != 0) { 3980 vm_page_lock(m); 3981 vm_page_wire(m); 3982 vm_page_unlock(m); 3983 } 3984 if ((allocflags & (VM_ALLOC_NOBUSY | 3985 VM_ALLOC_SBUSY)) == 0) 3986 vm_page_xbusy(m); 3987 if ((allocflags & VM_ALLOC_SBUSY) != 0) 3988 vm_page_sbusy(m); 3989 } else { 3990 m = vm_page_alloc_after(object, pindex + i, 3991 pflags | VM_ALLOC_COUNT(count - i), mpred); 3992 if (m == NULL) { 3993 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 3994 break; 3995 goto retrylookup; 3996 } 3997 } 3998 if (m->valid == 0 && (allocflags & VM_ALLOC_ZERO) != 0) { 3999 if ((m->flags & PG_ZERO) == 0) 4000 pmap_zero_page(m); 4001 m->valid = VM_PAGE_BITS_ALL; 4002 } 4003 ma[i] = mpred = m; 4004 m = vm_page_next(m); 4005 } 4006 return (i); 4007 } 4008 4009 /* 4010 * Mapping function for valid or dirty bits in a page. 4011 * 4012 * Inputs are required to range within a page. 4013 */ 4014 vm_page_bits_t 4015 vm_page_bits(int base, int size) 4016 { 4017 int first_bit; 4018 int last_bit; 4019 4020 KASSERT( 4021 base + size <= PAGE_SIZE, 4022 ("vm_page_bits: illegal base/size %d/%d", base, size) 4023 ); 4024 4025 if (size == 0) /* handle degenerate case */ 4026 return (0); 4027 4028 first_bit = base >> DEV_BSHIFT; 4029 last_bit = (base + size - 1) >> DEV_BSHIFT; 4030 4031 return (((vm_page_bits_t)2 << last_bit) - 4032 ((vm_page_bits_t)1 << first_bit)); 4033 } 4034 4035 /* 4036 * vm_page_set_valid_range: 4037 * 4038 * Sets portions of a page valid. The arguments are expected 4039 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 4040 * of any partial chunks touched by the range. The invalid portion of 4041 * such chunks will be zeroed. 4042 * 4043 * (base + size) must be less then or equal to PAGE_SIZE. 4044 */ 4045 void 4046 vm_page_set_valid_range(vm_page_t m, int base, int size) 4047 { 4048 int endoff, frag; 4049 4050 VM_OBJECT_ASSERT_WLOCKED(m->object); 4051 if (size == 0) /* handle degenerate case */ 4052 return; 4053 4054 /* 4055 * If the base is not DEV_BSIZE aligned and the valid 4056 * bit is clear, we have to zero out a portion of the 4057 * first block. 4058 */ 4059 if ((frag = rounddown2(base, DEV_BSIZE)) != base && 4060 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 4061 pmap_zero_page_area(m, frag, base - frag); 4062 4063 /* 4064 * If the ending offset is not DEV_BSIZE aligned and the 4065 * valid bit is clear, we have to zero out a portion of 4066 * the last block. 4067 */ 4068 endoff = base + size; 4069 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && 4070 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 4071 pmap_zero_page_area(m, endoff, 4072 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 4073 4074 /* 4075 * Assert that no previously invalid block that is now being validated 4076 * is already dirty. 4077 */ 4078 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0, 4079 ("vm_page_set_valid_range: page %p is dirty", m)); 4080 4081 /* 4082 * Set valid bits inclusive of any overlap. 4083 */ 4084 m->valid |= vm_page_bits(base, size); 4085 } 4086 4087 /* 4088 * Clear the given bits from the specified page's dirty field. 4089 */ 4090 static __inline void 4091 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits) 4092 { 4093 uintptr_t addr; 4094 #if PAGE_SIZE < 16384 4095 int shift; 4096 #endif 4097 4098 /* 4099 * If the object is locked and the page is neither exclusive busy nor 4100 * write mapped, then the page's dirty field cannot possibly be 4101 * set by a concurrent pmap operation. 4102 */ 4103 VM_OBJECT_ASSERT_WLOCKED(m->object); 4104 if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) 4105 m->dirty &= ~pagebits; 4106 else { 4107 /* 4108 * The pmap layer can call vm_page_dirty() without 4109 * holding a distinguished lock. The combination of 4110 * the object's lock and an atomic operation suffice 4111 * to guarantee consistency of the page dirty field. 4112 * 4113 * For PAGE_SIZE == 32768 case, compiler already 4114 * properly aligns the dirty field, so no forcible 4115 * alignment is needed. Only require existence of 4116 * atomic_clear_64 when page size is 32768. 4117 */ 4118 addr = (uintptr_t)&m->dirty; 4119 #if PAGE_SIZE == 32768 4120 atomic_clear_64((uint64_t *)addr, pagebits); 4121 #elif PAGE_SIZE == 16384 4122 atomic_clear_32((uint32_t *)addr, pagebits); 4123 #else /* PAGE_SIZE <= 8192 */ 4124 /* 4125 * Use a trick to perform a 32-bit atomic on the 4126 * containing aligned word, to not depend on the existence 4127 * of atomic_clear_{8, 16}. 4128 */ 4129 shift = addr & (sizeof(uint32_t) - 1); 4130 #if BYTE_ORDER == BIG_ENDIAN 4131 shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY; 4132 #else 4133 shift *= NBBY; 4134 #endif 4135 addr &= ~(sizeof(uint32_t) - 1); 4136 atomic_clear_32((uint32_t *)addr, pagebits << shift); 4137 #endif /* PAGE_SIZE */ 4138 } 4139 } 4140 4141 /* 4142 * vm_page_set_validclean: 4143 * 4144 * Sets portions of a page valid and clean. The arguments are expected 4145 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 4146 * of any partial chunks touched by the range. The invalid portion of 4147 * such chunks will be zero'd. 4148 * 4149 * (base + size) must be less then or equal to PAGE_SIZE. 4150 */ 4151 void 4152 vm_page_set_validclean(vm_page_t m, int base, int size) 4153 { 4154 vm_page_bits_t oldvalid, pagebits; 4155 int endoff, frag; 4156 4157 VM_OBJECT_ASSERT_WLOCKED(m->object); 4158 if (size == 0) /* handle degenerate case */ 4159 return; 4160 4161 /* 4162 * If the base is not DEV_BSIZE aligned and the valid 4163 * bit is clear, we have to zero out a portion of the 4164 * first block. 4165 */ 4166 if ((frag = rounddown2(base, DEV_BSIZE)) != base && 4167 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0) 4168 pmap_zero_page_area(m, frag, base - frag); 4169 4170 /* 4171 * If the ending offset is not DEV_BSIZE aligned and the 4172 * valid bit is clear, we have to zero out a portion of 4173 * the last block. 4174 */ 4175 endoff = base + size; 4176 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && 4177 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0) 4178 pmap_zero_page_area(m, endoff, 4179 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 4180 4181 /* 4182 * Set valid, clear dirty bits. If validating the entire 4183 * page we can safely clear the pmap modify bit. We also 4184 * use this opportunity to clear the VPO_NOSYNC flag. If a process 4185 * takes a write fault on a MAP_NOSYNC memory area the flag will 4186 * be set again. 4187 * 4188 * We set valid bits inclusive of any overlap, but we can only 4189 * clear dirty bits for DEV_BSIZE chunks that are fully within 4190 * the range. 4191 */ 4192 oldvalid = m->valid; 4193 pagebits = vm_page_bits(base, size); 4194 m->valid |= pagebits; 4195 #if 0 /* NOT YET */ 4196 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 4197 frag = DEV_BSIZE - frag; 4198 base += frag; 4199 size -= frag; 4200 if (size < 0) 4201 size = 0; 4202 } 4203 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 4204 #endif 4205 if (base == 0 && size == PAGE_SIZE) { 4206 /* 4207 * The page can only be modified within the pmap if it is 4208 * mapped, and it can only be mapped if it was previously 4209 * fully valid. 4210 */ 4211 if (oldvalid == VM_PAGE_BITS_ALL) 4212 /* 4213 * Perform the pmap_clear_modify() first. Otherwise, 4214 * a concurrent pmap operation, such as 4215 * pmap_protect(), could clear a modification in the 4216 * pmap and set the dirty field on the page before 4217 * pmap_clear_modify() had begun and after the dirty 4218 * field was cleared here. 4219 */ 4220 pmap_clear_modify(m); 4221 m->dirty = 0; 4222 m->oflags &= ~VPO_NOSYNC; 4223 } else if (oldvalid != VM_PAGE_BITS_ALL) 4224 m->dirty &= ~pagebits; 4225 else 4226 vm_page_clear_dirty_mask(m, pagebits); 4227 } 4228 4229 void 4230 vm_page_clear_dirty(vm_page_t m, int base, int size) 4231 { 4232 4233 vm_page_clear_dirty_mask(m, vm_page_bits(base, size)); 4234 } 4235 4236 /* 4237 * vm_page_set_invalid: 4238 * 4239 * Invalidates DEV_BSIZE'd chunks within a page. Both the 4240 * valid and dirty bits for the effected areas are cleared. 4241 */ 4242 void 4243 vm_page_set_invalid(vm_page_t m, int base, int size) 4244 { 4245 vm_page_bits_t bits; 4246 vm_object_t object; 4247 4248 object = m->object; 4249 VM_OBJECT_ASSERT_WLOCKED(object); 4250 if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) + 4251 size >= object->un_pager.vnp.vnp_size) 4252 bits = VM_PAGE_BITS_ALL; 4253 else 4254 bits = vm_page_bits(base, size); 4255 if (object->ref_count != 0 && m->valid == VM_PAGE_BITS_ALL && 4256 bits != 0) 4257 pmap_remove_all(m); 4258 KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) || 4259 !pmap_page_is_mapped(m), 4260 ("vm_page_set_invalid: page %p is mapped", m)); 4261 m->valid &= ~bits; 4262 m->dirty &= ~bits; 4263 } 4264 4265 /* 4266 * vm_page_zero_invalid() 4267 * 4268 * The kernel assumes that the invalid portions of a page contain 4269 * garbage, but such pages can be mapped into memory by user code. 4270 * When this occurs, we must zero out the non-valid portions of the 4271 * page so user code sees what it expects. 4272 * 4273 * Pages are most often semi-valid when the end of a file is mapped 4274 * into memory and the file's size is not page aligned. 4275 */ 4276 void 4277 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 4278 { 4279 int b; 4280 int i; 4281 4282 VM_OBJECT_ASSERT_WLOCKED(m->object); 4283 /* 4284 * Scan the valid bits looking for invalid sections that 4285 * must be zeroed. Invalid sub-DEV_BSIZE'd areas ( where the 4286 * valid bit may be set ) have already been zeroed by 4287 * vm_page_set_validclean(). 4288 */ 4289 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 4290 if (i == (PAGE_SIZE / DEV_BSIZE) || 4291 (m->valid & ((vm_page_bits_t)1 << i))) { 4292 if (i > b) { 4293 pmap_zero_page_area(m, 4294 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 4295 } 4296 b = i + 1; 4297 } 4298 } 4299 4300 /* 4301 * setvalid is TRUE when we can safely set the zero'd areas 4302 * as being valid. We can do this if there are no cache consistancy 4303 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 4304 */ 4305 if (setvalid) 4306 m->valid = VM_PAGE_BITS_ALL; 4307 } 4308 4309 /* 4310 * vm_page_is_valid: 4311 * 4312 * Is (partial) page valid? Note that the case where size == 0 4313 * will return FALSE in the degenerate case where the page is 4314 * entirely invalid, and TRUE otherwise. 4315 */ 4316 int 4317 vm_page_is_valid(vm_page_t m, int base, int size) 4318 { 4319 vm_page_bits_t bits; 4320 4321 VM_OBJECT_ASSERT_LOCKED(m->object); 4322 bits = vm_page_bits(base, size); 4323 return (m->valid != 0 && (m->valid & bits) == bits); 4324 } 4325 4326 /* 4327 * Returns true if all of the specified predicates are true for the entire 4328 * (super)page and false otherwise. 4329 */ 4330 bool 4331 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m) 4332 { 4333 vm_object_t object; 4334 int i, npages; 4335 4336 object = m->object; 4337 if (skip_m != NULL && skip_m->object != object) 4338 return (false); 4339 VM_OBJECT_ASSERT_LOCKED(object); 4340 npages = atop(pagesizes[m->psind]); 4341 4342 /* 4343 * The physically contiguous pages that make up a superpage, i.e., a 4344 * page with a page size index ("psind") greater than zero, will 4345 * occupy adjacent entries in vm_page_array[]. 4346 */ 4347 for (i = 0; i < npages; i++) { 4348 /* Always test object consistency, including "skip_m". */ 4349 if (m[i].object != object) 4350 return (false); 4351 if (&m[i] == skip_m) 4352 continue; 4353 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i])) 4354 return (false); 4355 if ((flags & PS_ALL_DIRTY) != 0) { 4356 /* 4357 * Calling vm_page_test_dirty() or pmap_is_modified() 4358 * might stop this case from spuriously returning 4359 * "false". However, that would require a write lock 4360 * on the object containing "m[i]". 4361 */ 4362 if (m[i].dirty != VM_PAGE_BITS_ALL) 4363 return (false); 4364 } 4365 if ((flags & PS_ALL_VALID) != 0 && 4366 m[i].valid != VM_PAGE_BITS_ALL) 4367 return (false); 4368 } 4369 return (true); 4370 } 4371 4372 /* 4373 * Set the page's dirty bits if the page is modified. 4374 */ 4375 void 4376 vm_page_test_dirty(vm_page_t m) 4377 { 4378 4379 VM_OBJECT_ASSERT_WLOCKED(m->object); 4380 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m)) 4381 vm_page_dirty(m); 4382 } 4383 4384 void 4385 vm_page_lock_KBI(vm_page_t m, const char *file, int line) 4386 { 4387 4388 mtx_lock_flags_(vm_page_lockptr(m), 0, file, line); 4389 } 4390 4391 void 4392 vm_page_unlock_KBI(vm_page_t m, const char *file, int line) 4393 { 4394 4395 mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line); 4396 } 4397 4398 int 4399 vm_page_trylock_KBI(vm_page_t m, const char *file, int line) 4400 { 4401 4402 return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line)); 4403 } 4404 4405 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT) 4406 void 4407 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line) 4408 { 4409 4410 vm_page_lock_assert_KBI(m, MA_OWNED, file, line); 4411 } 4412 4413 void 4414 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line) 4415 { 4416 4417 mtx_assert_(vm_page_lockptr(m), a, file, line); 4418 } 4419 #endif 4420 4421 #ifdef INVARIANTS 4422 void 4423 vm_page_object_lock_assert(vm_page_t m) 4424 { 4425 4426 /* 4427 * Certain of the page's fields may only be modified by the 4428 * holder of the containing object's lock or the exclusive busy. 4429 * holder. Unfortunately, the holder of the write busy is 4430 * not recorded, and thus cannot be checked here. 4431 */ 4432 if (m->object != NULL && !vm_page_xbusied(m)) 4433 VM_OBJECT_ASSERT_WLOCKED(m->object); 4434 } 4435 4436 void 4437 vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits) 4438 { 4439 4440 if ((bits & PGA_WRITEABLE) == 0) 4441 return; 4442 4443 /* 4444 * The PGA_WRITEABLE flag can only be set if the page is 4445 * managed, is exclusively busied or the object is locked. 4446 * Currently, this flag is only set by pmap_enter(). 4447 */ 4448 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4449 ("PGA_WRITEABLE on unmanaged page")); 4450 if (!vm_page_xbusied(m)) 4451 VM_OBJECT_ASSERT_LOCKED(m->object); 4452 } 4453 #endif 4454 4455 #include "opt_ddb.h" 4456 #ifdef DDB 4457 #include <sys/kernel.h> 4458 4459 #include <ddb/ddb.h> 4460 4461 DB_SHOW_COMMAND(page, vm_page_print_page_info) 4462 { 4463 4464 db_printf("vm_cnt.v_free_count: %d\n", vm_free_count()); 4465 db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count()); 4466 db_printf("vm_cnt.v_active_count: %d\n", vm_active_count()); 4467 db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count()); 4468 db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count()); 4469 db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved); 4470 db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min); 4471 db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target); 4472 db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target); 4473 } 4474 4475 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 4476 { 4477 int dom; 4478 4479 db_printf("pq_free %d\n", vm_free_count()); 4480 for (dom = 0; dom < vm_ndomains; dom++) { 4481 db_printf( 4482 "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n", 4483 dom, 4484 vm_dom[dom].vmd_page_count, 4485 vm_dom[dom].vmd_free_count, 4486 vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt, 4487 vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt, 4488 vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt, 4489 vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt); 4490 } 4491 } 4492 4493 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo) 4494 { 4495 vm_page_t m; 4496 boolean_t phys; 4497 4498 if (!have_addr) { 4499 db_printf("show pginfo addr\n"); 4500 return; 4501 } 4502 4503 phys = strchr(modif, 'p') != NULL; 4504 if (phys) 4505 m = PHYS_TO_VM_PAGE(addr); 4506 else 4507 m = (vm_page_t)addr; 4508 db_printf( 4509 "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n" 4510 " af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n", 4511 m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr, 4512 m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags, 4513 m->flags, m->act_count, m->busy_lock, m->valid, m->dirty); 4514 } 4515 #endif /* DDB */ 4516