1 /*-
2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3 *
4 * Copyright (c) 1991 Regents of the University of California.
5 * All rights reserved.
6 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * The Mach Operating System project at Carnegie-Mellon University.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 */
35
36 /*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
55 * School of Computer Science
56 * Carnegie Mellon University
57 * Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63 /*
64 * Resident memory management module.
65 */
66
67 #include <sys/cdefs.h>
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/counter.h>
73 #include <sys/domainset.h>
74 #include <sys/kernel.h>
75 #include <sys/limits.h>
76 #include <sys/linker.h>
77 #include <sys/lock.h>
78 #include <sys/malloc.h>
79 #include <sys/mman.h>
80 #include <sys/msgbuf.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>
83 #include <sys/rwlock.h>
84 #include <sys/sleepqueue.h>
85 #include <sys/sbuf.h>
86 #include <sys/sched.h>
87 #include <sys/sf_buf.h>
88 #include <sys/smp.h>
89 #include <sys/sysctl.h>
90 #include <sys/vmmeter.h>
91 #include <sys/vnode.h>
92
93 #include <vm/vm.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_param.h>
96 #include <vm/vm_domainset.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_map.h>
99 #include <vm/vm_object.h>
100 #include <vm/vm_page.h>
101 #include <vm/vm_pageout.h>
102 #include <vm/vm_phys.h>
103 #include <vm/vm_pagequeue.h>
104 #include <vm/vm_pager.h>
105 #include <vm/vm_radix.h>
106 #include <vm/vm_reserv.h>
107 #include <vm/vm_extern.h>
108 #include <vm/vm_dumpset.h>
109 #include <vm/uma.h>
110 #include <vm/uma_int.h>
111
112 #include <machine/md_var.h>
113
114 struct vm_domain vm_dom[MAXMEMDOM];
115
116 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
117
118 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
119 /* The following fields are protected by the domainset lock. */
120 domainset_t __exclusive_cache_line vm_min_domains;
121 domainset_t __exclusive_cache_line vm_severe_domains;
122 static int vm_min_waiters;
123 static int vm_severe_waiters;
124 static int vm_pageproc_waiters;
125
126 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
127 "VM page statistics");
128
129 static COUNTER_U64_DEFINE_EARLY(pqstate_commit_retries);
130 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries,
131 CTLFLAG_RD, &pqstate_commit_retries,
132 "Number of failed per-page atomic queue state updates");
133
134 static COUNTER_U64_DEFINE_EARLY(queue_ops);
135 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
136 CTLFLAG_RD, &queue_ops,
137 "Number of batched queue operations");
138
139 static COUNTER_U64_DEFINE_EARLY(queue_nops);
140 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
141 CTLFLAG_RD, &queue_nops,
142 "Number of batched queue operations with no effects");
143
144 static unsigned long nofreeq_size;
145 SYSCTL_ULONG(_vm_stats_page, OID_AUTO, nofreeq_size, CTLFLAG_RD,
146 &nofreeq_size, 0,
147 "Size of the nofree queue");
148
149 #ifdef INVARIANTS
150 bool vm_check_pg_zero = false;
151 SYSCTL_BOOL(_debug, OID_AUTO, vm_check_pg_zero, CTLFLAG_RWTUN,
152 &vm_check_pg_zero, 0,
153 "verify content of freed zero-filled pages");
154 #endif
155
156 /*
157 * bogus page -- for I/O to/from partially complete buffers,
158 * or for paging into sparsely invalid regions.
159 */
160 vm_page_t bogus_page;
161
162 vm_page_t vm_page_array;
163 long vm_page_array_size;
164 long first_page;
165
166 struct bitset *vm_page_dump;
167 long vm_page_dump_pages;
168
169 static TAILQ_HEAD(, vm_page) blacklist_head;
170 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
171 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
172 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
173
174 static uma_zone_t fakepg_zone;
175
176 static void vm_page_alloc_check(vm_page_t m);
177 static vm_page_t vm_page_alloc_nofree_domain(int domain, int req);
178 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
179 vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked);
180 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
181 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
182 static bool vm_page_free_prep(vm_page_t m);
183 static void vm_page_free_toq(vm_page_t m);
184 static void vm_page_init(void *dummy);
185 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object);
186 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue,
187 const uint16_t nflag);
188 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
189 vm_page_t m_run, vm_paddr_t high);
190 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse);
191 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
192 int req);
193 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
194 int flags);
195 static void vm_page_zone_release(void *arg, void **store, int cnt);
196
197 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
198
199 static void
vm_page_init(void * dummy)200 vm_page_init(void *dummy)
201 {
202
203 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
204 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
205 bogus_page = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_NOFREE);
206 }
207
208 static int pgcache_zone_max_pcpu;
209 SYSCTL_INT(_vm, OID_AUTO, pgcache_zone_max_pcpu,
210 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pgcache_zone_max_pcpu, 0,
211 "Per-CPU page cache size");
212
213 /*
214 * The cache page zone is initialized later since we need to be able to allocate
215 * pages before UMA is fully initialized.
216 */
217 static void
vm_page_init_cache_zones(void * dummy __unused)218 vm_page_init_cache_zones(void *dummy __unused)
219 {
220 struct vm_domain *vmd;
221 struct vm_pgcache *pgcache;
222 int cache, domain, maxcache, pool;
223
224 TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &pgcache_zone_max_pcpu);
225 maxcache = pgcache_zone_max_pcpu * mp_ncpus;
226 for (domain = 0; domain < vm_ndomains; domain++) {
227 vmd = VM_DOMAIN(domain);
228 for (pool = 0; pool < VM_NFREEPOOL; pool++) {
229 #ifdef VM_FREEPOOL_LAZYINIT
230 if (pool == VM_FREEPOOL_LAZYINIT)
231 continue;
232 #endif
233 pgcache = &vmd->vmd_pgcache[pool];
234 pgcache->domain = domain;
235 pgcache->pool = pool;
236 pgcache->zone = uma_zcache_create("vm pgcache",
237 PAGE_SIZE, NULL, NULL, NULL, NULL,
238 vm_page_zone_import, vm_page_zone_release, pgcache,
239 UMA_ZONE_VM);
240
241 /*
242 * Limit each pool's zone to 0.1% of the pages in the
243 * domain.
244 */
245 cache = maxcache != 0 ? maxcache :
246 vmd->vmd_page_count / 1000;
247 uma_zone_set_maxcache(pgcache->zone, cache);
248 }
249 }
250 }
251 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
252
253 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
254 #if PAGE_SIZE == 32768
255 #ifdef CTASSERT
256 CTASSERT(sizeof(u_long) >= 8);
257 #endif
258 #endif
259
260 /*
261 * vm_set_page_size:
262 *
263 * Sets the page size, perhaps based upon the memory
264 * size. Must be called before any use of page-size
265 * dependent functions.
266 */
267 void
vm_set_page_size(void)268 vm_set_page_size(void)
269 {
270 if (vm_cnt.v_page_size == 0)
271 vm_cnt.v_page_size = PAGE_SIZE;
272 if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
273 panic("vm_set_page_size: page size not a power of two");
274 }
275
276 /*
277 * vm_page_blacklist_next:
278 *
279 * Find the next entry in the provided string of blacklist
280 * addresses. Entries are separated by space, comma, or newline.
281 * If an invalid integer is encountered then the rest of the
282 * string is skipped. Updates the list pointer to the next
283 * character, or NULL if the string is exhausted or invalid.
284 */
285 static vm_paddr_t
vm_page_blacklist_next(char ** list,char * end)286 vm_page_blacklist_next(char **list, char *end)
287 {
288 vm_paddr_t bad;
289 char *cp, *pos;
290
291 if (list == NULL || *list == NULL)
292 return (0);
293 if (**list =='\0') {
294 *list = NULL;
295 return (0);
296 }
297
298 /*
299 * If there's no end pointer then the buffer is coming from
300 * the kenv and we know it's null-terminated.
301 */
302 if (end == NULL)
303 end = *list + strlen(*list);
304
305 /* Ensure that strtoq() won't walk off the end */
306 if (*end != '\0') {
307 if (*end == '\n' || *end == ' ' || *end == ',')
308 *end = '\0';
309 else {
310 printf("Blacklist not terminated, skipping\n");
311 *list = NULL;
312 return (0);
313 }
314 }
315
316 for (pos = *list; *pos != '\0'; pos = cp) {
317 bad = strtoq(pos, &cp, 0);
318 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
319 if (bad == 0) {
320 if (++cp < end)
321 continue;
322 else
323 break;
324 }
325 } else
326 break;
327 if (*cp == '\0' || ++cp >= end)
328 *list = NULL;
329 else
330 *list = cp;
331 return (trunc_page(bad));
332 }
333 printf("Garbage in RAM blacklist, skipping\n");
334 *list = NULL;
335 return (0);
336 }
337
338 bool
vm_page_blacklist_add(vm_paddr_t pa,bool verbose)339 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
340 {
341 struct vm_domain *vmd;
342 vm_page_t m;
343 bool found;
344
345 m = vm_phys_paddr_to_vm_page(pa);
346 if (m == NULL)
347 return (true); /* page does not exist, no failure */
348
349 vmd = VM_DOMAIN(vm_phys_domain(pa));
350 vm_domain_free_lock(vmd);
351 found = vm_phys_unfree_page(pa);
352 vm_domain_free_unlock(vmd);
353 if (found) {
354 vm_domain_freecnt_inc(vmd, -1);
355 TAILQ_INSERT_TAIL(&blacklist_head, m, plinks.q);
356 if (verbose)
357 printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
358 }
359 return (found);
360 }
361
362 /*
363 * vm_page_blacklist_check:
364 *
365 * Iterate through the provided string of blacklist addresses, pulling
366 * each entry out of the physical allocator free list and putting it
367 * onto a list for reporting via the vm.page_blacklist sysctl.
368 */
369 static void
vm_page_blacklist_check(char * list,char * end)370 vm_page_blacklist_check(char *list, char *end)
371 {
372 vm_paddr_t pa;
373 char *next;
374
375 next = list;
376 while (next != NULL) {
377 if ((pa = vm_page_blacklist_next(&next, end)) == 0)
378 continue;
379 vm_page_blacklist_add(pa, bootverbose);
380 }
381 }
382
383 /*
384 * vm_page_blacklist_load:
385 *
386 * Search for a special module named "ram_blacklist". It'll be a
387 * plain text file provided by the user via the loader directive
388 * of the same name.
389 */
390 static void
vm_page_blacklist_load(char ** list,char ** end)391 vm_page_blacklist_load(char **list, char **end)
392 {
393 void *mod;
394 u_char *ptr;
395 u_int len;
396
397 mod = NULL;
398 ptr = NULL;
399
400 mod = preload_search_by_type("ram_blacklist");
401 if (mod != NULL) {
402 ptr = preload_fetch_addr(mod);
403 len = preload_fetch_size(mod);
404 }
405
406 if (ptr != NULL && len > 0) {
407 *list = ptr;
408 *end = ptr + len - 1;
409 } else {
410 *list = NULL;
411 *end = NULL;
412 }
413
414 return;
415 }
416
417 static int
sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)418 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
419 {
420 vm_page_t m;
421 struct sbuf sbuf;
422 int error, first;
423
424 first = 1;
425 error = sysctl_wire_old_buffer(req, 0);
426 if (error != 0)
427 return (error);
428 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
429 TAILQ_FOREACH(m, &blacklist_head, plinks.q) {
430 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
431 (uintmax_t)m->phys_addr);
432 first = 0;
433 }
434 error = sbuf_finish(&sbuf);
435 sbuf_delete(&sbuf);
436 return (error);
437 }
438
439 /*
440 * Initialize a dummy page for use in scans of the specified paging queue.
441 * In principle, this function only needs to set the flag PG_MARKER.
442 * Nonetheless, it write busies the page as a safety precaution.
443 */
444 void
vm_page_init_marker(vm_page_t marker,int queue,uint16_t aflags)445 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags)
446 {
447
448 bzero(marker, sizeof(*marker));
449 marker->flags = PG_MARKER;
450 marker->a.flags = aflags;
451 marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
452 marker->a.queue = queue;
453 }
454
455 static void
vm_page_domain_init(int domain)456 vm_page_domain_init(int domain)
457 {
458 struct vm_domain *vmd;
459 struct vm_pagequeue *pq;
460 int i;
461
462 vmd = VM_DOMAIN(domain);
463 bzero(vmd, sizeof(*vmd));
464 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
465 "vm inactive pagequeue";
466 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
467 "vm active pagequeue";
468 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
469 "vm laundry pagequeue";
470 *__DECONST(const char **,
471 &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
472 "vm unswappable pagequeue";
473 vmd->vmd_domain = domain;
474 vmd->vmd_page_count = 0;
475 vmd->vmd_free_count = 0;
476 vmd->vmd_segs = 0;
477 vmd->vmd_oom = false;
478 vmd->vmd_helper_threads_enabled = true;
479 for (i = 0; i < PQ_COUNT; i++) {
480 pq = &vmd->vmd_pagequeues[i];
481 TAILQ_INIT(&pq->pq_pl);
482 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
483 MTX_DEF | MTX_DUPOK);
484 pq->pq_pdpages = 0;
485 vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
486 }
487 mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
488 mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
489 snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
490
491 /*
492 * inacthead is used to provide FIFO ordering for LRU-bypassing
493 * insertions.
494 */
495 vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
496 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
497 &vmd->vmd_inacthead, plinks.q);
498
499 /*
500 * The clock pages are used to implement active queue scanning without
501 * requeues. Scans start at clock[0], which is advanced after the scan
502 * ends. When the two clock hands meet, they are reset and scanning
503 * resumes from the head of the queue.
504 */
505 vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
506 vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
507 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
508 &vmd->vmd_clock[0], plinks.q);
509 TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
510 &vmd->vmd_clock[1], plinks.q);
511 }
512
513 /*
514 * Initialize a physical page in preparation for adding it to the free
515 * lists.
516 */
517 void
vm_page_init_page(vm_page_t m,vm_paddr_t pa,int segind,int pool)518 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind, int pool)
519 {
520 m->object = NULL;
521 m->ref_count = 0;
522 m->busy_lock = VPB_FREED;
523 m->flags = m->a.flags = 0;
524 m->phys_addr = pa;
525 m->a.queue = PQ_NONE;
526 m->psind = 0;
527 m->segind = segind;
528 m->order = VM_NFREEORDER;
529 m->pool = pool;
530 m->valid = m->dirty = 0;
531 pmap_page_init(m);
532 }
533
534 #ifndef PMAP_HAS_PAGE_ARRAY
535 static vm_paddr_t
vm_page_array_alloc(vm_offset_t * vaddr,vm_paddr_t end,vm_paddr_t page_range)536 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
537 {
538 vm_paddr_t new_end;
539
540 /*
541 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
542 * However, because this page is allocated from KVM, out-of-bounds
543 * accesses using the direct map will not be trapped.
544 */
545 *vaddr += PAGE_SIZE;
546
547 /*
548 * Allocate physical memory for the page structures, and map it.
549 */
550 new_end = trunc_page(end - page_range * sizeof(struct vm_page));
551 vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
552 VM_PROT_READ | VM_PROT_WRITE);
553 vm_page_array_size = page_range;
554
555 return (new_end);
556 }
557 #endif
558
559 /*
560 * vm_page_startup:
561 *
562 * Initializes the resident memory module. Allocates physical memory for
563 * bootstrapping UMA and some data structures that are used to manage
564 * physical pages. Initializes these structures, and populates the free
565 * page queues.
566 */
567 vm_offset_t
vm_page_startup(vm_offset_t vaddr)568 vm_page_startup(vm_offset_t vaddr)
569 {
570 struct vm_phys_seg *seg;
571 struct vm_domain *vmd;
572 vm_page_t m;
573 char *list, *listend;
574 vm_paddr_t end, high_avail, low_avail, new_end, size;
575 vm_paddr_t page_range __unused;
576 vm_paddr_t last_pa, pa, startp, endp;
577 u_long pagecount;
578 #if MINIDUMP_PAGE_TRACKING
579 u_long vm_page_dump_size;
580 #endif
581 int biggestone, i, segind;
582 #ifdef WITNESS
583 vm_offset_t mapped;
584 int witness_size;
585 #endif
586 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
587 long ii;
588 #endif
589 int pool;
590 #ifdef VM_FREEPOOL_LAZYINIT
591 int lazyinit;
592 #endif
593
594 vaddr = round_page(vaddr);
595
596 vm_phys_early_startup();
597 biggestone = vm_phys_avail_largest();
598 end = phys_avail[biggestone+1];
599
600 /*
601 * Initialize the page and queue locks.
602 */
603 mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
604 for (i = 0; i < vm_ndomains; i++)
605 vm_page_domain_init(i);
606
607 new_end = end;
608 #ifdef WITNESS
609 witness_size = round_page(witness_startup_count());
610 new_end -= witness_size;
611 mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
612 VM_PROT_READ | VM_PROT_WRITE);
613 bzero((void *)mapped, witness_size);
614 witness_startup((void *)mapped);
615 #endif
616
617 #if MINIDUMP_PAGE_TRACKING
618 /*
619 * Allocate a bitmap to indicate that a random physical page
620 * needs to be included in a minidump.
621 *
622 * The amd64 port needs this to indicate which direct map pages
623 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
624 *
625 * However, i386 still needs this workspace internally within the
626 * minidump code. In theory, they are not needed on i386, but are
627 * included should the sf_buf code decide to use them.
628 */
629 last_pa = 0;
630 vm_page_dump_pages = 0;
631 for (i = 0; dump_avail[i + 1] != 0; i += 2) {
632 vm_page_dump_pages += howmany(dump_avail[i + 1], PAGE_SIZE) -
633 dump_avail[i] / PAGE_SIZE;
634 if (dump_avail[i + 1] > last_pa)
635 last_pa = dump_avail[i + 1];
636 }
637 vm_page_dump_size = round_page(BITSET_SIZE(vm_page_dump_pages));
638 new_end -= vm_page_dump_size;
639 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
640 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
641 bzero((void *)vm_page_dump, vm_page_dump_size);
642 #if MINIDUMP_STARTUP_PAGE_TRACKING
643 /*
644 * Include the UMA bootstrap pages, witness pages and vm_page_dump
645 * in a crash dump. When pmap_map() uses the direct map, they are
646 * not automatically included.
647 */
648 for (pa = new_end; pa < end; pa += PAGE_SIZE)
649 dump_add_page(pa);
650 #endif
651 #else
652 (void)last_pa;
653 #endif
654 phys_avail[biggestone + 1] = new_end;
655 #ifdef __amd64__
656 /*
657 * Request that the physical pages underlying the message buffer be
658 * included in a crash dump. Since the message buffer is accessed
659 * through the direct map, they are not automatically included.
660 */
661 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
662 last_pa = pa + round_page(msgbufsize);
663 while (pa < last_pa) {
664 dump_add_page(pa);
665 pa += PAGE_SIZE;
666 }
667 #else
668 (void)pa;
669 #endif
670
671 /*
672 * Determine the lowest and highest physical addresses and, in the case
673 * of VM_PHYSSEG_SPARSE, the exact size of the available physical
674 * memory. vm_phys_early_startup() already checked that phys_avail[]
675 * has at least one element.
676 */
677 #ifdef VM_PHYSSEG_SPARSE
678 size = phys_avail[1] - phys_avail[0];
679 #endif
680 low_avail = phys_avail[0];
681 high_avail = phys_avail[1];
682 for (i = 2; phys_avail[i + 1] != 0; i += 2) {
683 #ifdef VM_PHYSSEG_SPARSE
684 size += phys_avail[i + 1] - phys_avail[i];
685 #endif
686 if (phys_avail[i] < low_avail)
687 low_avail = phys_avail[i];
688 if (phys_avail[i + 1] > high_avail)
689 high_avail = phys_avail[i + 1];
690 }
691 for (i = 0; i < vm_phys_nsegs; i++) {
692 #ifdef VM_PHYSSEG_SPARSE
693 size += vm_phys_segs[i].end - vm_phys_segs[i].start;
694 #endif
695 if (vm_phys_segs[i].start < low_avail)
696 low_avail = vm_phys_segs[i].start;
697 if (vm_phys_segs[i].end > high_avail)
698 high_avail = vm_phys_segs[i].end;
699 }
700 first_page = low_avail / PAGE_SIZE;
701 #ifdef VM_PHYSSEG_DENSE
702 size = high_avail - low_avail;
703 #endif
704
705 #ifdef PMAP_HAS_PAGE_ARRAY
706 pmap_page_array_startup(size / PAGE_SIZE);
707 biggestone = vm_phys_avail_largest();
708 end = new_end = phys_avail[biggestone + 1];
709 #else
710 #ifdef VM_PHYSSEG_DENSE
711 /*
712 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
713 * the overhead of a page structure per page only if vm_page_array is
714 * allocated from the last physical memory chunk. Otherwise, we must
715 * allocate page structures representing the physical memory
716 * underlying vm_page_array, even though they will not be used.
717 */
718 if (new_end != high_avail)
719 page_range = size / PAGE_SIZE;
720 else
721 #endif
722 {
723 page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
724
725 /*
726 * If the partial bytes remaining are large enough for
727 * a page (PAGE_SIZE) without a corresponding
728 * 'struct vm_page', then new_end will contain an
729 * extra page after subtracting the length of the VM
730 * page array. Compensate by subtracting an extra
731 * page from new_end.
732 */
733 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
734 if (new_end == high_avail)
735 high_avail -= PAGE_SIZE;
736 new_end -= PAGE_SIZE;
737 }
738 }
739 end = new_end;
740 new_end = vm_page_array_alloc(&vaddr, end, page_range);
741 #endif
742
743 #if VM_NRESERVLEVEL > 0
744 /*
745 * Allocate physical memory for the reservation management system's
746 * data structures, and map it.
747 */
748 new_end = vm_reserv_startup(&vaddr, new_end);
749 #endif
750 #if MINIDUMP_PAGE_TRACKING && MINIDUMP_STARTUP_PAGE_TRACKING
751 /*
752 * Include vm_page_array and vm_reserv_array in a crash dump.
753 */
754 for (pa = new_end; pa < end; pa += PAGE_SIZE)
755 dump_add_page(pa);
756 #endif
757 phys_avail[biggestone + 1] = new_end;
758
759 /*
760 * Add physical memory segments corresponding to the available
761 * physical pages.
762 */
763 for (i = 0; phys_avail[i + 1] != 0; i += 2)
764 vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
765
766 /*
767 * Initialize the physical memory allocator.
768 */
769 vm_phys_init();
770
771 pool = VM_FREEPOOL_DEFAULT;
772 #ifdef VM_FREEPOOL_LAZYINIT
773 lazyinit = 1;
774 TUNABLE_INT_FETCH("debug.vm.lazy_page_init", &lazyinit);
775 if (lazyinit)
776 pool = VM_FREEPOOL_LAZYINIT;
777 #endif
778
779 /*
780 * Initialize the page structures and add every available page to the
781 * physical memory allocator's free lists.
782 */
783 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
784 for (ii = 0; ii < vm_page_array_size; ii++) {
785 m = &vm_page_array[ii];
786 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0,
787 VM_FREEPOOL_DEFAULT);
788 m->flags = PG_FICTITIOUS;
789 }
790 #endif
791 vm_cnt.v_page_count = 0;
792 for (segind = 0; segind < vm_phys_nsegs; segind++) {
793 seg = &vm_phys_segs[segind];
794
795 /*
796 * Initialize pages not covered by phys_avail[], since they
797 * might be freed to the allocator at some future point, e.g.,
798 * by kmem_bootstrap_free().
799 */
800 startp = seg->start;
801 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
802 if (startp >= seg->end)
803 break;
804 if (phys_avail[i + 1] < startp)
805 continue;
806 if (phys_avail[i] <= startp) {
807 startp = phys_avail[i + 1];
808 continue;
809 }
810 m = vm_phys_seg_paddr_to_vm_page(seg, startp);
811 for (endp = MIN(phys_avail[i], seg->end);
812 startp < endp; startp += PAGE_SIZE, m++) {
813 vm_page_init_page(m, startp, segind,
814 VM_FREEPOOL_DEFAULT);
815 }
816 }
817
818 /*
819 * Add the segment's pages that are covered by one of
820 * phys_avail's ranges to the free lists.
821 */
822 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
823 if (seg->end <= phys_avail[i] ||
824 seg->start >= phys_avail[i + 1])
825 continue;
826
827 startp = MAX(seg->start, phys_avail[i]);
828 endp = MIN(seg->end, phys_avail[i + 1]);
829 pagecount = (u_long)atop(endp - startp);
830 if (pagecount == 0)
831 continue;
832
833 /*
834 * If lazy vm_page initialization is not enabled, simply
835 * initialize all of the pages in the segment covered by
836 * phys_avail. Otherwise, initialize only the first
837 * page of each run of free pages handed to the vm_phys
838 * allocator, which in turn defers initialization of
839 * pages until they are needed.
840 *
841 * This avoids blocking the boot process for long
842 * periods, which may be relevant for VMs (which ought
843 * to boot as quickly as possible) and/or systems with
844 * large amounts of physical memory.
845 */
846 m = vm_phys_seg_paddr_to_vm_page(seg, startp);
847 vm_page_init_page(m, startp, segind, pool);
848 if (pool == VM_FREEPOOL_DEFAULT) {
849 for (u_long j = 1; j < pagecount; j++) {
850 vm_page_init_page(&m[j],
851 startp + ptoa((vm_paddr_t)j),
852 segind, pool);
853 }
854 }
855 vmd = VM_DOMAIN(seg->domain);
856 vm_domain_free_lock(vmd);
857 vm_phys_enqueue_contig(m, pool, pagecount);
858 vm_domain_free_unlock(vmd);
859 vm_domain_freecnt_inc(vmd, pagecount);
860 vm_cnt.v_page_count += (u_int)pagecount;
861 vmd->vmd_page_count += (u_int)pagecount;
862 vmd->vmd_segs |= 1UL << segind;
863 }
864 }
865
866 /*
867 * Remove blacklisted pages from the physical memory allocator.
868 */
869 TAILQ_INIT(&blacklist_head);
870 vm_page_blacklist_load(&list, &listend);
871 vm_page_blacklist_check(list, listend);
872
873 list = kern_getenv("vm.blacklist");
874 vm_page_blacklist_check(list, NULL);
875
876 freeenv(list);
877 #if VM_NRESERVLEVEL > 0
878 /*
879 * Initialize the reservation management system.
880 */
881 vm_reserv_init();
882 #endif
883
884 return (vaddr);
885 }
886
887 void
vm_page_reference(vm_page_t m)888 vm_page_reference(vm_page_t m)
889 {
890
891 vm_page_aflag_set(m, PGA_REFERENCED);
892 }
893
894 /*
895 * vm_page_trybusy
896 *
897 * Helper routine for grab functions to trylock busy.
898 *
899 * Returns true on success and false on failure.
900 */
901 static bool
vm_page_trybusy(vm_page_t m,int allocflags)902 vm_page_trybusy(vm_page_t m, int allocflags)
903 {
904
905 if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
906 return (vm_page_trysbusy(m));
907 else
908 return (vm_page_tryxbusy(m));
909 }
910
911 /*
912 * vm_page_tryacquire
913 *
914 * Helper routine for grab functions to trylock busy and wire.
915 *
916 * Returns true on success and false on failure.
917 */
918 static inline bool
vm_page_tryacquire(vm_page_t m,int allocflags)919 vm_page_tryacquire(vm_page_t m, int allocflags)
920 {
921 bool locked;
922
923 locked = vm_page_trybusy(m, allocflags);
924 if (locked && (allocflags & VM_ALLOC_WIRED) != 0)
925 vm_page_wire(m);
926 return (locked);
927 }
928
929 /*
930 * vm_page_busy_acquire:
931 *
932 * Acquire the busy lock as described by VM_ALLOC_* flags. Will loop
933 * and drop the object lock if necessary.
934 */
935 bool
vm_page_busy_acquire(vm_page_t m,int allocflags)936 vm_page_busy_acquire(vm_page_t m, int allocflags)
937 {
938 vm_object_t obj;
939 bool locked;
940
941 /*
942 * The page-specific object must be cached because page
943 * identity can change during the sleep, causing the
944 * re-lock of a different object.
945 * It is assumed that a reference to the object is already
946 * held by the callers.
947 */
948 obj = atomic_load_ptr(&m->object);
949 for (;;) {
950 if (vm_page_tryacquire(m, allocflags))
951 return (true);
952 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
953 return (false);
954 if (obj != NULL)
955 locked = VM_OBJECT_WOWNED(obj);
956 else
957 locked = false;
958 MPASS(locked || vm_page_wired(m));
959 if (_vm_page_busy_sleep(obj, m, m->pindex, "vmpba", allocflags,
960 locked) && locked)
961 VM_OBJECT_WLOCK(obj);
962 if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
963 return (false);
964 KASSERT(m->object == obj || m->object == NULL,
965 ("vm_page_busy_acquire: page %p does not belong to %p",
966 m, obj));
967 }
968 }
969
970 /*
971 * vm_page_busy_downgrade:
972 *
973 * Downgrade an exclusive busy page into a single shared busy page.
974 */
975 void
vm_page_busy_downgrade(vm_page_t m)976 vm_page_busy_downgrade(vm_page_t m)
977 {
978 u_int x;
979
980 vm_page_assert_xbusied(m);
981
982 x = vm_page_busy_fetch(m);
983 for (;;) {
984 if (atomic_fcmpset_rel_int(&m->busy_lock,
985 &x, VPB_SHARERS_WORD(1)))
986 break;
987 }
988 if ((x & VPB_BIT_WAITERS) != 0)
989 wakeup(m);
990 }
991
992 /*
993 *
994 * vm_page_busy_tryupgrade:
995 *
996 * Attempt to upgrade a single shared busy into an exclusive busy.
997 */
998 int
vm_page_busy_tryupgrade(vm_page_t m)999 vm_page_busy_tryupgrade(vm_page_t m)
1000 {
1001 u_int ce, x;
1002
1003 vm_page_assert_sbusied(m);
1004
1005 x = vm_page_busy_fetch(m);
1006 ce = VPB_CURTHREAD_EXCLUSIVE;
1007 for (;;) {
1008 if (VPB_SHARERS(x) > 1)
1009 return (0);
1010 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
1011 ("vm_page_busy_tryupgrade: invalid lock state"));
1012 if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
1013 ce | (x & VPB_BIT_WAITERS)))
1014 continue;
1015 return (1);
1016 }
1017 }
1018
1019 /*
1020 * vm_page_sbusied:
1021 *
1022 * Return a positive value if the page is shared busied, 0 otherwise.
1023 */
1024 int
vm_page_sbusied(vm_page_t m)1025 vm_page_sbusied(vm_page_t m)
1026 {
1027 u_int x;
1028
1029 x = vm_page_busy_fetch(m);
1030 return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
1031 }
1032
1033 /*
1034 * vm_page_sunbusy:
1035 *
1036 * Shared unbusy a page.
1037 */
1038 void
vm_page_sunbusy(vm_page_t m)1039 vm_page_sunbusy(vm_page_t m)
1040 {
1041 u_int x;
1042
1043 vm_page_assert_sbusied(m);
1044
1045 x = vm_page_busy_fetch(m);
1046 for (;;) {
1047 KASSERT(x != VPB_FREED,
1048 ("vm_page_sunbusy: Unlocking freed page."));
1049 if (VPB_SHARERS(x) > 1) {
1050 if (atomic_fcmpset_int(&m->busy_lock, &x,
1051 x - VPB_ONE_SHARER))
1052 break;
1053 continue;
1054 }
1055 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
1056 ("vm_page_sunbusy: invalid lock state"));
1057 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1058 continue;
1059 if ((x & VPB_BIT_WAITERS) == 0)
1060 break;
1061 wakeup(m);
1062 break;
1063 }
1064 }
1065
1066 /*
1067 * vm_page_busy_sleep:
1068 *
1069 * Sleep if the page is busy, using the page pointer as wchan.
1070 * This is used to implement the hard-path of the busying mechanism.
1071 *
1072 * If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
1073 * will not sleep if the page is shared-busy.
1074 *
1075 * The object lock must be held on entry.
1076 *
1077 * Returns true if it slept and dropped the object lock, or false
1078 * if there was no sleep and the lock is still held.
1079 */
1080 bool
vm_page_busy_sleep(vm_page_t m,const char * wmesg,int allocflags)1081 vm_page_busy_sleep(vm_page_t m, const char *wmesg, int allocflags)
1082 {
1083 vm_object_t obj;
1084
1085 obj = m->object;
1086 VM_OBJECT_ASSERT_LOCKED(obj);
1087
1088 return (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, allocflags,
1089 true));
1090 }
1091
1092 /*
1093 * vm_page_busy_sleep_unlocked:
1094 *
1095 * Sleep if the page is busy, using the page pointer as wchan.
1096 * This is used to implement the hard-path of busying mechanism.
1097 *
1098 * If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
1099 * will not sleep if the page is shared-busy.
1100 *
1101 * The object lock must not be held on entry. The operation will
1102 * return if the page changes identity.
1103 */
1104 void
vm_page_busy_sleep_unlocked(vm_object_t obj,vm_page_t m,vm_pindex_t pindex,const char * wmesg,int allocflags)1105 vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1106 const char *wmesg, int allocflags)
1107 {
1108 VM_OBJECT_ASSERT_UNLOCKED(obj);
1109
1110 (void)_vm_page_busy_sleep(obj, m, pindex, wmesg, allocflags, false);
1111 }
1112
1113 /*
1114 * _vm_page_busy_sleep:
1115 *
1116 * Internal busy sleep function. Verifies the page identity and
1117 * lockstate against parameters. Returns true if it sleeps and
1118 * false otherwise.
1119 *
1120 * allocflags uses VM_ALLOC_* flags to specify the lock required.
1121 *
1122 * If locked is true the lock will be dropped for any true returns
1123 * and held for any false returns.
1124 */
1125 static bool
_vm_page_busy_sleep(vm_object_t obj,vm_page_t m,vm_pindex_t pindex,const char * wmesg,int allocflags,bool locked)1126 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1127 const char *wmesg, int allocflags, bool locked)
1128 {
1129 bool xsleep;
1130 u_int x;
1131
1132 /*
1133 * If the object is busy we must wait for that to drain to zero
1134 * before trying the page again.
1135 */
1136 if (obj != NULL && vm_object_busied(obj)) {
1137 if (locked)
1138 VM_OBJECT_DROP(obj);
1139 vm_object_busy_wait(obj, wmesg);
1140 return (true);
1141 }
1142
1143 if (!vm_page_busied(m))
1144 return (false);
1145
1146 xsleep = (allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0;
1147 sleepq_lock(m);
1148 x = vm_page_busy_fetch(m);
1149 do {
1150 /*
1151 * If the page changes objects or becomes unlocked we can
1152 * simply return.
1153 */
1154 if (x == VPB_UNBUSIED ||
1155 (xsleep && (x & VPB_BIT_SHARED) != 0) ||
1156 m->object != obj || m->pindex != pindex) {
1157 sleepq_release(m);
1158 return (false);
1159 }
1160 if ((x & VPB_BIT_WAITERS) != 0)
1161 break;
1162 } while (!atomic_fcmpset_int(&m->busy_lock, &x, x | VPB_BIT_WAITERS));
1163 if (locked)
1164 VM_OBJECT_DROP(obj);
1165 DROP_GIANT();
1166 sleepq_add(m, NULL, wmesg, 0, 0);
1167 sleepq_wait(m, PVM);
1168 PICKUP_GIANT();
1169 return (true);
1170 }
1171
1172 /*
1173 * vm_page_trysbusy:
1174 *
1175 * Try to shared busy a page.
1176 * If the operation succeeds 1 is returned otherwise 0.
1177 * The operation never sleeps.
1178 */
1179 int
vm_page_trysbusy(vm_page_t m)1180 vm_page_trysbusy(vm_page_t m)
1181 {
1182 vm_object_t obj;
1183 u_int x;
1184
1185 obj = m->object;
1186 x = vm_page_busy_fetch(m);
1187 for (;;) {
1188 if ((x & VPB_BIT_SHARED) == 0)
1189 return (0);
1190 /*
1191 * Reduce the window for transient busies that will trigger
1192 * false negatives in vm_page_ps_test().
1193 */
1194 if (obj != NULL && vm_object_busied(obj))
1195 return (0);
1196 if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1197 x + VPB_ONE_SHARER))
1198 break;
1199 }
1200
1201 /* Refetch the object now that we're guaranteed that it is stable. */
1202 obj = m->object;
1203 if (obj != NULL && vm_object_busied(obj)) {
1204 vm_page_sunbusy(m);
1205 return (0);
1206 }
1207 return (1);
1208 }
1209
1210 /*
1211 * vm_page_tryxbusy:
1212 *
1213 * Try to exclusive busy a page.
1214 * If the operation succeeds 1 is returned otherwise 0.
1215 * The operation never sleeps.
1216 */
1217 int
vm_page_tryxbusy(vm_page_t m)1218 vm_page_tryxbusy(vm_page_t m)
1219 {
1220 vm_object_t obj;
1221
1222 if (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED,
1223 VPB_CURTHREAD_EXCLUSIVE) == 0)
1224 return (0);
1225
1226 obj = m->object;
1227 if (obj != NULL && vm_object_busied(obj)) {
1228 vm_page_xunbusy(m);
1229 return (0);
1230 }
1231 return (1);
1232 }
1233
1234 static void
vm_page_xunbusy_hard_tail(vm_page_t m)1235 vm_page_xunbusy_hard_tail(vm_page_t m)
1236 {
1237 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1238 /* Wake the waiter. */
1239 wakeup(m);
1240 }
1241
1242 /*
1243 * vm_page_xunbusy_hard:
1244 *
1245 * Called when unbusy has failed because there is a waiter.
1246 */
1247 void
vm_page_xunbusy_hard(vm_page_t m)1248 vm_page_xunbusy_hard(vm_page_t m)
1249 {
1250 vm_page_assert_xbusied(m);
1251 vm_page_xunbusy_hard_tail(m);
1252 }
1253
1254 void
vm_page_xunbusy_hard_unchecked(vm_page_t m)1255 vm_page_xunbusy_hard_unchecked(vm_page_t m)
1256 {
1257 vm_page_assert_xbusied_unchecked(m);
1258 vm_page_xunbusy_hard_tail(m);
1259 }
1260
1261 static void
vm_page_busy_free(vm_page_t m)1262 vm_page_busy_free(vm_page_t m)
1263 {
1264 u_int x;
1265
1266 atomic_thread_fence_rel();
1267 x = atomic_swap_int(&m->busy_lock, VPB_FREED);
1268 if ((x & VPB_BIT_WAITERS) != 0)
1269 wakeup(m);
1270 }
1271
1272 /*
1273 * vm_page_unhold_pages:
1274 *
1275 * Unhold each of the pages that is referenced by the given array.
1276 */
1277 void
vm_page_unhold_pages(vm_page_t * ma,int count)1278 vm_page_unhold_pages(vm_page_t *ma, int count)
1279 {
1280
1281 for (; count != 0; count--) {
1282 vm_page_unwire(*ma, PQ_ACTIVE);
1283 ma++;
1284 }
1285 }
1286
1287 vm_page_t
PHYS_TO_VM_PAGE(vm_paddr_t pa)1288 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1289 {
1290 vm_page_t m;
1291
1292 #ifdef VM_PHYSSEG_SPARSE
1293 m = vm_phys_paddr_to_vm_page(pa);
1294 if (m == NULL)
1295 m = vm_phys_fictitious_to_vm_page(pa);
1296 return (m);
1297 #elif defined(VM_PHYSSEG_DENSE)
1298 long pi;
1299
1300 pi = atop(pa);
1301 if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1302 m = &vm_page_array[pi - first_page];
1303 return (m);
1304 }
1305 return (vm_phys_fictitious_to_vm_page(pa));
1306 #else
1307 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1308 #endif
1309 }
1310
1311 /*
1312 * vm_page_getfake:
1313 *
1314 * Create a fictitious page with the specified physical address and
1315 * memory attribute. The memory attribute is the only the machine-
1316 * dependent aspect of a fictitious page that must be initialized.
1317 */
1318 vm_page_t
vm_page_getfake(vm_paddr_t paddr,vm_memattr_t memattr)1319 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1320 {
1321 vm_page_t m;
1322
1323 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1324 vm_page_initfake(m, paddr, memattr);
1325 return (m);
1326 }
1327
1328 void
vm_page_initfake(vm_page_t m,vm_paddr_t paddr,vm_memattr_t memattr)1329 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1330 {
1331
1332 if ((m->flags & PG_FICTITIOUS) != 0) {
1333 /*
1334 * The page's memattr might have changed since the
1335 * previous initialization. Update the pmap to the
1336 * new memattr.
1337 */
1338 goto memattr;
1339 }
1340 m->phys_addr = paddr;
1341 m->a.queue = PQ_NONE;
1342 /* Fictitious pages don't use "segind". */
1343 m->flags = PG_FICTITIOUS;
1344 /* Fictitious pages don't use "order" or "pool". */
1345 m->oflags = VPO_UNMANAGED;
1346 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
1347 /* Fictitious pages are unevictable. */
1348 m->ref_count = 1;
1349 pmap_page_init(m);
1350 memattr:
1351 pmap_page_set_memattr(m, memattr);
1352 }
1353
1354 /*
1355 * vm_page_putfake:
1356 *
1357 * Release a fictitious page.
1358 */
1359 void
vm_page_putfake(vm_page_t m)1360 vm_page_putfake(vm_page_t m)
1361 {
1362
1363 KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1364 KASSERT((m->flags & PG_FICTITIOUS) != 0,
1365 ("vm_page_putfake: bad page %p", m));
1366 vm_page_assert_xbusied(m);
1367 vm_page_busy_free(m);
1368 uma_zfree(fakepg_zone, m);
1369 }
1370
1371 /*
1372 * vm_page_updatefake:
1373 *
1374 * Update the given fictitious page to the specified physical address and
1375 * memory attribute.
1376 */
1377 void
vm_page_updatefake(vm_page_t m,vm_paddr_t paddr,vm_memattr_t memattr)1378 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1379 {
1380
1381 KASSERT((m->flags & PG_FICTITIOUS) != 0,
1382 ("vm_page_updatefake: bad page %p", m));
1383 m->phys_addr = paddr;
1384 pmap_page_set_memattr(m, memattr);
1385 }
1386
1387 /*
1388 * vm_page_free:
1389 *
1390 * Free a page.
1391 */
1392 void
vm_page_free(vm_page_t m)1393 vm_page_free(vm_page_t m)
1394 {
1395
1396 m->flags &= ~PG_ZERO;
1397 vm_page_free_toq(m);
1398 }
1399
1400 /*
1401 * vm_page_free_zero:
1402 *
1403 * Free a page to the zerod-pages queue
1404 */
1405 void
vm_page_free_zero(vm_page_t m)1406 vm_page_free_zero(vm_page_t m)
1407 {
1408
1409 m->flags |= PG_ZERO;
1410 vm_page_free_toq(m);
1411 }
1412
1413 /*
1414 * Unbusy and handle the page queueing for a page from a getpages request that
1415 * was optionally read ahead or behind.
1416 */
1417 void
vm_page_readahead_finish(vm_page_t m)1418 vm_page_readahead_finish(vm_page_t m)
1419 {
1420
1421 /* We shouldn't put invalid pages on queues. */
1422 KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1423
1424 /*
1425 * Since the page is not the actually needed one, whether it should
1426 * be activated or deactivated is not obvious. Empirical results
1427 * have shown that deactivating the page is usually the best choice,
1428 * unless the page is wanted by another thread.
1429 */
1430 if ((vm_page_busy_fetch(m) & VPB_BIT_WAITERS) != 0)
1431 vm_page_activate(m);
1432 else
1433 vm_page_deactivate(m);
1434 vm_page_xunbusy_unchecked(m);
1435 }
1436
1437 /*
1438 * Destroy the identity of an invalid page and free it if possible.
1439 * This is intended to be used when reading a page from backing store fails.
1440 */
1441 void
vm_page_free_invalid(vm_page_t m)1442 vm_page_free_invalid(vm_page_t m)
1443 {
1444
1445 KASSERT(vm_page_none_valid(m), ("page %p is valid", m));
1446 KASSERT(!pmap_page_is_mapped(m), ("page %p is mapped", m));
1447 KASSERT(m->object != NULL, ("page %p has no object", m));
1448 VM_OBJECT_ASSERT_WLOCKED(m->object);
1449
1450 /*
1451 * We may be attempting to free the page as part of the handling for an
1452 * I/O error, in which case the page was xbusied by a different thread.
1453 */
1454 vm_page_xbusy_claim(m);
1455
1456 /*
1457 * If someone has wired this page while the object lock
1458 * was not held, then the thread that unwires is responsible
1459 * for freeing the page. Otherwise just free the page now.
1460 * The wire count of this unmapped page cannot change while
1461 * we have the page xbusy and the page's object wlocked.
1462 */
1463 if (vm_page_remove(m))
1464 vm_page_free(m);
1465 }
1466
1467 /*
1468 * vm_page_dirty_KBI: [ internal use only ]
1469 *
1470 * Set all bits in the page's dirty field.
1471 *
1472 * The object containing the specified page must be locked if the
1473 * call is made from the machine-independent layer.
1474 *
1475 * See vm_page_clear_dirty_mask().
1476 *
1477 * This function should only be called by vm_page_dirty().
1478 */
1479 void
vm_page_dirty_KBI(vm_page_t m)1480 vm_page_dirty_KBI(vm_page_t m)
1481 {
1482
1483 /* Refer to this operation by its public name. */
1484 KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1485 m->dirty = VM_PAGE_BITS_ALL;
1486 }
1487
1488 /*
1489 * Insert the given page into the given object at the given pindex.
1490 *
1491 * The procedure is marked __always_inline to suggest to the compiler to
1492 * eliminate the iter parameter and the associated alternate branch.
1493 */
1494 static __always_inline int
vm_page_insert_lookup(vm_page_t m,vm_object_t object,vm_pindex_t pindex,bool iter,struct pctrie_iter * pages)1495 vm_page_insert_lookup(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1496 bool iter, struct pctrie_iter *pages)
1497 {
1498 int error;
1499
1500 VM_OBJECT_ASSERT_WLOCKED(object);
1501 KASSERT(m->object == NULL,
1502 ("vm_page_insert: page %p already inserted", m));
1503
1504 /*
1505 * Record the object/offset pair in this page.
1506 */
1507 m->object = object;
1508 m->pindex = pindex;
1509 m->ref_count |= VPRC_OBJREF;
1510
1511 /*
1512 * Add this page to the object's radix tree.
1513 */
1514 if (iter)
1515 error = vm_radix_iter_insert(pages, m);
1516 else
1517 error = vm_radix_insert(&object->rtree, m);
1518 if (__predict_false(error != 0)) {
1519 m->object = NULL;
1520 m->pindex = 0;
1521 m->ref_count &= ~VPRC_OBJREF;
1522 return (1);
1523 }
1524
1525 vm_page_insert_radixdone(m, object);
1526 vm_pager_page_inserted(object, m);
1527 return (0);
1528 }
1529
1530 /*
1531 * vm_page_insert: [ internal use only ]
1532 *
1533 * Inserts the given mem entry into the object and object list.
1534 *
1535 * The object must be locked.
1536 */
1537 int
vm_page_insert(vm_page_t m,vm_object_t object,vm_pindex_t pindex)1538 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1539 {
1540 return (vm_page_insert_lookup(m, object, pindex, false, NULL));
1541 }
1542
1543 /*
1544 * vm_page_iter_insert:
1545 *
1546 * Tries to insert the page "m" into the specified object at offset
1547 * "pindex" using the iterator "pages". Returns 0 if the insertion was
1548 * successful.
1549 *
1550 * The object must be locked.
1551 */
1552 int
vm_page_iter_insert(vm_page_t m,vm_object_t object,vm_pindex_t pindex,struct pctrie_iter * pages)1553 vm_page_iter_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1554 struct pctrie_iter *pages)
1555 {
1556 return (vm_page_insert_lookup(m, object, pindex, true, pages));
1557 }
1558
1559 /*
1560 * vm_page_insert_radixdone:
1561 *
1562 * Complete page "m" insertion into the specified object after the
1563 * radix trie hooking.
1564 *
1565 * The object must be locked.
1566 */
1567 static void
vm_page_insert_radixdone(vm_page_t m,vm_object_t object)1568 vm_page_insert_radixdone(vm_page_t m, vm_object_t object)
1569 {
1570
1571 VM_OBJECT_ASSERT_WLOCKED(object);
1572 KASSERT(object != NULL && m->object == object,
1573 ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1574 KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1575 ("vm_page_insert_radixdone: page %p is missing object ref", m));
1576
1577 /*
1578 * Show that the object has one more resident page.
1579 */
1580 object->resident_page_count++;
1581
1582 /*
1583 * Hold the vnode until the last page is released.
1584 */
1585 if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1586 vhold(object->handle);
1587
1588 /*
1589 * Since we are inserting a new and possibly dirty page,
1590 * update the object's generation count.
1591 */
1592 if (pmap_page_is_write_mapped(m))
1593 vm_object_set_writeable_dirty(object);
1594 }
1595
1596 /*
1597 * vm_page_remove_radixdone
1598 *
1599 * Complete page "m" removal from the specified object after the radix trie
1600 * unhooking.
1601 *
1602 * The caller is responsible for updating the page's fields to reflect this
1603 * removal.
1604 */
1605 static void
vm_page_remove_radixdone(vm_page_t m)1606 vm_page_remove_radixdone(vm_page_t m)
1607 {
1608 vm_object_t object;
1609
1610 vm_page_assert_xbusied(m);
1611 object = m->object;
1612 VM_OBJECT_ASSERT_WLOCKED(object);
1613 KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1614 ("page %p is missing its object ref", m));
1615
1616 /* Deferred free of swap space. */
1617 if ((m->a.flags & PGA_SWAP_FREE) != 0)
1618 vm_pager_page_unswapped(m);
1619
1620 vm_pager_page_removed(object, m);
1621 m->object = NULL;
1622
1623 /*
1624 * And show that the object has one fewer resident page.
1625 */
1626 object->resident_page_count--;
1627
1628 /*
1629 * The vnode may now be recycled.
1630 */
1631 if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1632 vdrop(object->handle);
1633 }
1634
1635 /*
1636 * vm_page_free_object_prep:
1637 *
1638 * Disassociates the given page from its VM object.
1639 *
1640 * The object must be locked, and the page must be xbusy.
1641 */
1642 static void
vm_page_free_object_prep(vm_page_t m)1643 vm_page_free_object_prep(vm_page_t m)
1644 {
1645 KASSERT(((m->oflags & VPO_UNMANAGED) != 0) ==
1646 ((m->object->flags & OBJ_UNMANAGED) != 0),
1647 ("%s: managed flag mismatch for page %p",
1648 __func__, m));
1649 vm_page_assert_xbusied(m);
1650
1651 /*
1652 * The object reference can be released without an atomic
1653 * operation.
1654 */
1655 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
1656 m->ref_count == VPRC_OBJREF,
1657 ("%s: page %p has unexpected ref_count %u",
1658 __func__, m, m->ref_count));
1659 vm_page_remove_radixdone(m);
1660 m->ref_count -= VPRC_OBJREF;
1661 }
1662
1663 /*
1664 * vm_page_iter_free:
1665 *
1666 * Free the given page, and use the iterator to remove it from the radix
1667 * tree.
1668 */
1669 void
vm_page_iter_free(struct pctrie_iter * pages,vm_page_t m)1670 vm_page_iter_free(struct pctrie_iter *pages, vm_page_t m)
1671 {
1672 vm_radix_iter_remove(pages);
1673 vm_page_free_object_prep(m);
1674 vm_page_xunbusy(m);
1675 m->flags &= ~PG_ZERO;
1676 vm_page_free_toq(m);
1677 }
1678
1679 /*
1680 * vm_page_remove:
1681 *
1682 * Removes the specified page from its containing object, but does not
1683 * invalidate any backing storage. Returns true if the object's reference
1684 * was the last reference to the page, and false otherwise.
1685 *
1686 * The object must be locked and the page must be exclusively busied.
1687 * The exclusive busy will be released on return. If this is not the
1688 * final ref and the caller does not hold a wire reference it may not
1689 * continue to access the page.
1690 */
1691 bool
vm_page_remove(vm_page_t m)1692 vm_page_remove(vm_page_t m)
1693 {
1694 bool dropped;
1695
1696 dropped = vm_page_remove_xbusy(m);
1697 vm_page_xunbusy(m);
1698
1699 return (dropped);
1700 }
1701
1702 /*
1703 * vm_page_iter_remove:
1704 *
1705 * Remove the current page, and use the iterator to remove it from the
1706 * radix tree.
1707 */
1708 bool
vm_page_iter_remove(struct pctrie_iter * pages,vm_page_t m)1709 vm_page_iter_remove(struct pctrie_iter *pages, vm_page_t m)
1710 {
1711 bool dropped;
1712
1713 vm_radix_iter_remove(pages);
1714 vm_page_remove_radixdone(m);
1715 dropped = (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1716 vm_page_xunbusy(m);
1717
1718 return (dropped);
1719 }
1720
1721 /*
1722 * vm_page_radix_remove
1723 *
1724 * Removes the specified page from the radix tree.
1725 */
1726 static void
vm_page_radix_remove(vm_page_t m)1727 vm_page_radix_remove(vm_page_t m)
1728 {
1729 vm_page_t mrem __diagused;
1730
1731 mrem = vm_radix_remove(&m->object->rtree, m->pindex);
1732 KASSERT(mrem == m,
1733 ("removed page %p, expected page %p", mrem, m));
1734 }
1735
1736 /*
1737 * vm_page_remove_xbusy
1738 *
1739 * Removes the page but leaves the xbusy held. Returns true if this
1740 * removed the final ref and false otherwise.
1741 */
1742 bool
vm_page_remove_xbusy(vm_page_t m)1743 vm_page_remove_xbusy(vm_page_t m)
1744 {
1745
1746 vm_page_radix_remove(m);
1747 vm_page_remove_radixdone(m);
1748 return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1749 }
1750
1751 /*
1752 * vm_page_lookup:
1753 *
1754 * Returns the page associated with the object/offset
1755 * pair specified; if none is found, NULL is returned.
1756 *
1757 * The object must be locked.
1758 */
1759 vm_page_t
vm_page_lookup(vm_object_t object,vm_pindex_t pindex)1760 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1761 {
1762
1763 VM_OBJECT_ASSERT_LOCKED(object);
1764 return (vm_radix_lookup(&object->rtree, pindex));
1765 }
1766
1767 /*
1768 * vm_page_iter_init:
1769 *
1770 * Initialize iterator for vm pages.
1771 */
1772 void
vm_page_iter_init(struct pctrie_iter * pages,vm_object_t object)1773 vm_page_iter_init(struct pctrie_iter *pages, vm_object_t object)
1774 {
1775
1776 vm_radix_iter_init(pages, &object->rtree);
1777 }
1778
1779 /*
1780 * vm_page_iter_init:
1781 *
1782 * Initialize iterator for vm pages.
1783 */
1784 void
vm_page_iter_limit_init(struct pctrie_iter * pages,vm_object_t object,vm_pindex_t limit)1785 vm_page_iter_limit_init(struct pctrie_iter *pages, vm_object_t object,
1786 vm_pindex_t limit)
1787 {
1788
1789 vm_radix_iter_limit_init(pages, &object->rtree, limit);
1790 }
1791
1792 /*
1793 * vm_page_lookup_unlocked:
1794 *
1795 * Returns the page associated with the object/offset pair specified;
1796 * if none is found, NULL is returned. The page may be no longer be
1797 * present in the object at the time that this function returns. Only
1798 * useful for opportunistic checks such as inmem().
1799 */
1800 vm_page_t
vm_page_lookup_unlocked(vm_object_t object,vm_pindex_t pindex)1801 vm_page_lookup_unlocked(vm_object_t object, vm_pindex_t pindex)
1802 {
1803
1804 return (vm_radix_lookup_unlocked(&object->rtree, pindex));
1805 }
1806
1807 /*
1808 * vm_page_relookup:
1809 *
1810 * Returns a page that must already have been busied by
1811 * the caller. Used for bogus page replacement.
1812 */
1813 vm_page_t
vm_page_relookup(vm_object_t object,vm_pindex_t pindex)1814 vm_page_relookup(vm_object_t object, vm_pindex_t pindex)
1815 {
1816 vm_page_t m;
1817
1818 m = vm_page_lookup_unlocked(object, pindex);
1819 KASSERT(m != NULL && (vm_page_busied(m) || vm_page_wired(m)) &&
1820 m->object == object && m->pindex == pindex,
1821 ("vm_page_relookup: Invalid page %p", m));
1822 return (m);
1823 }
1824
1825 /*
1826 * This should only be used by lockless functions for releasing transient
1827 * incorrect acquires. The page may have been freed after we acquired a
1828 * busy lock. In this case busy_lock == VPB_FREED and we have nothing
1829 * further to do.
1830 */
1831 static void
vm_page_busy_release(vm_page_t m)1832 vm_page_busy_release(vm_page_t m)
1833 {
1834 u_int x;
1835
1836 x = vm_page_busy_fetch(m);
1837 for (;;) {
1838 if (x == VPB_FREED)
1839 break;
1840 if ((x & VPB_BIT_SHARED) != 0 && VPB_SHARERS(x) > 1) {
1841 if (atomic_fcmpset_int(&m->busy_lock, &x,
1842 x - VPB_ONE_SHARER))
1843 break;
1844 continue;
1845 }
1846 KASSERT((x & VPB_BIT_SHARED) != 0 ||
1847 (x & ~VPB_BIT_WAITERS) == VPB_CURTHREAD_EXCLUSIVE,
1848 ("vm_page_busy_release: %p xbusy not owned.", m));
1849 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1850 continue;
1851 if ((x & VPB_BIT_WAITERS) != 0)
1852 wakeup(m);
1853 break;
1854 }
1855 }
1856
1857 /*
1858 * Uses the page mnew as a replacement for an existing page at index
1859 * pindex which must be already present in the object.
1860 *
1861 * Both pages must be exclusively busied on enter. The old page is
1862 * unbusied on exit.
1863 *
1864 * A return value of true means mold is now free. If this is not the
1865 * final ref and the caller does not hold a wire reference it may not
1866 * continue to access the page.
1867 */
1868 static bool
vm_page_replace_hold(vm_page_t mnew,vm_object_t object,vm_pindex_t pindex,vm_page_t mold)1869 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1870 vm_page_t mold)
1871 {
1872 vm_page_t mret __diagused;
1873 bool dropped;
1874
1875 VM_OBJECT_ASSERT_WLOCKED(object);
1876 vm_page_assert_xbusied(mold);
1877 KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
1878 ("vm_page_replace: page %p already in object", mnew));
1879
1880 /*
1881 * This function mostly follows vm_page_insert() and
1882 * vm_page_remove() without the radix, object count and vnode
1883 * dance. Double check such functions for more comments.
1884 */
1885
1886 mnew->object = object;
1887 mnew->pindex = pindex;
1888 atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
1889 mret = vm_radix_replace(&object->rtree, mnew);
1890 KASSERT(mret == mold,
1891 ("invalid page replacement, mold=%p, mret=%p", mold, mret));
1892 KASSERT((mold->oflags & VPO_UNMANAGED) ==
1893 (mnew->oflags & VPO_UNMANAGED),
1894 ("vm_page_replace: mismatched VPO_UNMANAGED"));
1895
1896 mold->object = NULL;
1897
1898 /*
1899 * The object's resident_page_count does not change because we have
1900 * swapped one page for another, but the generation count should
1901 * change if the page is dirty.
1902 */
1903 if (pmap_page_is_write_mapped(mnew))
1904 vm_object_set_writeable_dirty(object);
1905 dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF;
1906 vm_page_xunbusy(mold);
1907
1908 return (dropped);
1909 }
1910
1911 void
vm_page_replace(vm_page_t mnew,vm_object_t object,vm_pindex_t pindex,vm_page_t mold)1912 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1913 vm_page_t mold)
1914 {
1915
1916 vm_page_assert_xbusied(mnew);
1917
1918 if (vm_page_replace_hold(mnew, object, pindex, mold))
1919 vm_page_free(mold);
1920 }
1921
1922 /*
1923 * vm_page_iter_rename:
1924 *
1925 * Tries to move the specified page from its current object to a new object
1926 * and pindex, using the given iterator to remove the page from its current
1927 * object. Returns true if the move was successful, and false if the move
1928 * was aborted due to a failed memory allocation.
1929 *
1930 * Panics if a page already resides in the new object at the new pindex.
1931 *
1932 * This routine dirties the page if it is valid, as callers are expected to
1933 * transfer backing storage only after moving the page. Dirtying the page
1934 * ensures that the destination object retains the most recent copy of the
1935 * page.
1936 *
1937 * The objects must be locked.
1938 */
1939 bool
vm_page_iter_rename(struct pctrie_iter * old_pages,vm_page_t m,vm_object_t new_object,vm_pindex_t new_pindex)1940 vm_page_iter_rename(struct pctrie_iter *old_pages, vm_page_t m,
1941 vm_object_t new_object, vm_pindex_t new_pindex)
1942 {
1943 vm_pindex_t opidx;
1944
1945 KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1946 ("%s: page %p is missing object ref", __func__, m));
1947 VM_OBJECT_ASSERT_WLOCKED(m->object);
1948 VM_OBJECT_ASSERT_WLOCKED(new_object);
1949
1950 /*
1951 * Create a custom version of vm_page_insert() which does not depend
1952 * by m_prev and can cheat on the implementation aspects of the
1953 * function.
1954 */
1955 opidx = m->pindex;
1956 m->pindex = new_pindex;
1957 if (vm_radix_insert(&new_object->rtree, m) != 0) {
1958 m->pindex = opidx;
1959 return (false);
1960 }
1961
1962 /*
1963 * The operation cannot fail anymore.
1964 */
1965 m->pindex = opidx;
1966 vm_radix_iter_remove(old_pages);
1967 vm_page_remove_radixdone(m);
1968
1969 /* Return back to the new pindex to complete vm_page_insert(). */
1970 m->pindex = new_pindex;
1971 m->object = new_object;
1972
1973 vm_page_insert_radixdone(m, new_object);
1974 if (vm_page_any_valid(m))
1975 vm_page_dirty(m);
1976 vm_pager_page_inserted(new_object, m);
1977 return (true);
1978 }
1979
1980 /*
1981 * vm_page_alloc:
1982 *
1983 * Allocate and return a page that is associated with the specified
1984 * object and offset pair. By default, this page is exclusive busied.
1985 *
1986 * The caller must always specify an allocation class.
1987 *
1988 * allocation classes:
1989 * VM_ALLOC_NORMAL normal process request
1990 * VM_ALLOC_SYSTEM system *really* needs a page
1991 * VM_ALLOC_INTERRUPT interrupt time request
1992 *
1993 * optional allocation flags:
1994 * VM_ALLOC_COUNT(number) the number of additional pages that the caller
1995 * intends to allocate
1996 * VM_ALLOC_NOBUSY do not exclusive busy the page
1997 * VM_ALLOC_NODUMP do not include the page in a kernel core dump
1998 * VM_ALLOC_NOFREE page will never be freed
1999 * VM_ALLOC_NOWAIT ignored (default behavior)
2000 * VM_ALLOC_SBUSY shared busy the allocated page
2001 * VM_ALLOC_WAITFAIL in case of failure, sleep before returning
2002 * VM_ALLOC_WIRED wire the allocated page
2003 * VM_ALLOC_ZERO prefer a zeroed page
2004 */
2005 vm_page_t
vm_page_alloc(vm_object_t object,vm_pindex_t pindex,int req)2006 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
2007 {
2008 struct pctrie_iter pages;
2009
2010 vm_page_iter_init(&pages, object);
2011 return (vm_page_alloc_iter(object, pindex, req, &pages));
2012 }
2013
2014 /*
2015 * Allocate a page in the specified object with the given page index. If the
2016 * object lock is dropped and regained, the pages iter is reset.
2017 */
2018 vm_page_t
vm_page_alloc_iter(vm_object_t object,vm_pindex_t pindex,int req,struct pctrie_iter * pages)2019 vm_page_alloc_iter(vm_object_t object, vm_pindex_t pindex, int req,
2020 struct pctrie_iter *pages)
2021 {
2022 struct vm_domainset_iter di;
2023 vm_page_t m;
2024 int domain;
2025
2026 if (vm_domainset_iter_page_init(&di, object, pindex, &domain, &req) != 0)
2027 return (NULL);
2028
2029 do {
2030 m = vm_page_alloc_domain_iter(object, pindex, domain, req,
2031 pages);
2032 if (m != NULL)
2033 break;
2034 } while (vm_domainset_iter_page(&di, object, &domain, pages) == 0);
2035
2036 return (m);
2037 }
2038
2039 /*
2040 * Returns true if the number of free pages exceeds the minimum
2041 * for the request class and false otherwise.
2042 */
2043 static int
_vm_domain_allocate(struct vm_domain * vmd,int req_class,int npages)2044 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages)
2045 {
2046 u_int limit, old, new;
2047
2048 if (req_class == VM_ALLOC_INTERRUPT)
2049 limit = 0;
2050 else if (req_class == VM_ALLOC_SYSTEM)
2051 limit = vmd->vmd_interrupt_free_min;
2052 else
2053 limit = vmd->vmd_free_reserved;
2054
2055 /*
2056 * Attempt to reserve the pages. Fail if we're below the limit.
2057 */
2058 limit += npages;
2059 old = atomic_load_int(&vmd->vmd_free_count);
2060 do {
2061 if (old < limit)
2062 return (0);
2063 new = old - npages;
2064 } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
2065
2066 /* Wake the page daemon if we've crossed the threshold. */
2067 if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
2068 pagedaemon_wakeup(vmd->vmd_domain);
2069
2070 /* Only update bitsets on transitions. */
2071 if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
2072 (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
2073 vm_domain_set(vmd);
2074
2075 return (1);
2076 }
2077
2078 int
vm_domain_allocate(struct vm_domain * vmd,int req,int npages)2079 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
2080 {
2081 int req_class;
2082
2083 /*
2084 * The page daemon is allowed to dig deeper into the free page list.
2085 */
2086 req_class = req & VM_ALLOC_CLASS_MASK;
2087 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2088 req_class = VM_ALLOC_SYSTEM;
2089 return (_vm_domain_allocate(vmd, req_class, npages));
2090 }
2091
2092 vm_page_t
vm_page_alloc_domain_iter(vm_object_t object,vm_pindex_t pindex,int domain,int req,struct pctrie_iter * pages)2093 vm_page_alloc_domain_iter(vm_object_t object, vm_pindex_t pindex, int domain,
2094 int req, struct pctrie_iter *pages)
2095 {
2096 struct vm_domain *vmd;
2097 vm_page_t m;
2098 int flags;
2099
2100 #define VM_ALLOC_COMMON (VM_ALLOC_CLASS_MASK | VM_ALLOC_NODUMP | \
2101 VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | \
2102 VM_ALLOC_WIRED | VM_ALLOC_ZERO)
2103 #define VPA_FLAGS (VM_ALLOC_COMMON | VM_ALLOC_COUNT_MASK | \
2104 VM_ALLOC_NOBUSY | VM_ALLOC_NOFREE | \
2105 VM_ALLOC_SBUSY)
2106 KASSERT((req & ~VPA_FLAGS) == 0,
2107 ("invalid request %#x", req));
2108 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2109 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2110 ("invalid request %#x", req));
2111 VM_OBJECT_ASSERT_WLOCKED(object);
2112
2113 flags = 0;
2114 m = NULL;
2115 if (!vm_pager_can_alloc_page(object, pindex))
2116 return (NULL);
2117 #if VM_NRESERVLEVEL > 0
2118 again:
2119 #endif
2120 if (__predict_false((req & VM_ALLOC_NOFREE) != 0)) {
2121 m = vm_page_alloc_nofree_domain(domain, req);
2122 if (m != NULL)
2123 goto found;
2124 }
2125 #if VM_NRESERVLEVEL > 0
2126 /*
2127 * Can we allocate the page from a reservation?
2128 */
2129 if (vm_object_reserv(object) &&
2130 (m = vm_reserv_alloc_page(object, pindex, domain, req, pages)) !=
2131 NULL) {
2132 goto found;
2133 }
2134 #endif
2135 vmd = VM_DOMAIN(domain);
2136 if (vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone != NULL) {
2137 m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone,
2138 M_NOWAIT | M_NOVM);
2139 if (m != NULL) {
2140 flags |= PG_PCPU_CACHE;
2141 goto found;
2142 }
2143 }
2144 if (vm_domain_allocate(vmd, req, 1)) {
2145 /*
2146 * If not, allocate it from the free page queues.
2147 */
2148 vm_domain_free_lock(vmd);
2149 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, 0);
2150 vm_domain_free_unlock(vmd);
2151 if (m == NULL) {
2152 vm_domain_freecnt_inc(vmd, 1);
2153 #if VM_NRESERVLEVEL > 0
2154 if (vm_reserv_reclaim_inactive(domain))
2155 goto again;
2156 #endif
2157 }
2158 }
2159 if (m == NULL) {
2160 /*
2161 * Not allocatable, give up.
2162 */
2163 (void)vm_domain_alloc_fail(vmd, object, req);
2164 if ((req & VM_ALLOC_WAITFAIL) != 0)
2165 pctrie_iter_reset(pages);
2166 return (NULL);
2167 }
2168
2169 /*
2170 * At this point we had better have found a good page.
2171 */
2172 found:
2173 vm_page_dequeue(m);
2174 vm_page_alloc_check(m);
2175
2176 /*
2177 * Initialize the page. Only the PG_ZERO flag is inherited.
2178 */
2179 flags |= m->flags & PG_ZERO;
2180 if ((req & VM_ALLOC_NODUMP) != 0)
2181 flags |= PG_NODUMP;
2182 if ((req & VM_ALLOC_NOFREE) != 0)
2183 flags |= PG_NOFREE;
2184 m->flags = flags;
2185 m->a.flags = 0;
2186 m->oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
2187 m->pool = VM_FREEPOOL_DEFAULT;
2188 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2189 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2190 else if ((req & VM_ALLOC_SBUSY) != 0)
2191 m->busy_lock = VPB_SHARERS_WORD(1);
2192 else
2193 m->busy_lock = VPB_UNBUSIED;
2194 if (req & VM_ALLOC_WIRED) {
2195 vm_wire_add(1);
2196 m->ref_count = 1;
2197 }
2198 m->a.act_count = 0;
2199
2200 if (vm_page_iter_insert(m, object, pindex, pages)) {
2201 if (req & VM_ALLOC_WIRED) {
2202 vm_wire_sub(1);
2203 m->ref_count = 0;
2204 }
2205 KASSERT(m->object == NULL, ("page %p has object", m));
2206 m->oflags = VPO_UNMANAGED;
2207 m->busy_lock = VPB_UNBUSIED;
2208 /* Don't change PG_ZERO. */
2209 vm_page_free_toq(m);
2210 if (req & VM_ALLOC_WAITFAIL) {
2211 VM_OBJECT_WUNLOCK(object);
2212 vm_radix_wait();
2213 pctrie_iter_reset(pages);
2214 VM_OBJECT_WLOCK(object);
2215 }
2216 return (NULL);
2217 }
2218
2219 /* Ignore device objects; the pager sets "memattr" for them. */
2220 if (object->memattr != VM_MEMATTR_DEFAULT &&
2221 (object->flags & OBJ_FICTITIOUS) == 0)
2222 pmap_page_set_memattr(m, object->memattr);
2223
2224 return (m);
2225 }
2226
2227 /*
2228 * vm_page_alloc_contig:
2229 *
2230 * Allocate a contiguous set of physical pages of the given size "npages"
2231 * from the free lists. All of the physical pages must be at or above
2232 * the given physical address "low" and below the given physical address
2233 * "high". The given value "alignment" determines the alignment of the
2234 * first physical page in the set. If the given value "boundary" is
2235 * non-zero, then the set of physical pages cannot cross any physical
2236 * address boundary that is a multiple of that value. Both "alignment"
2237 * and "boundary" must be a power of two.
2238 *
2239 * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2240 * then the memory attribute setting for the physical pages is configured
2241 * to the object's memory attribute setting. Otherwise, the memory
2242 * attribute setting for the physical pages is configured to "memattr",
2243 * overriding the object's memory attribute setting. However, if the
2244 * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2245 * memory attribute setting for the physical pages cannot be configured
2246 * to VM_MEMATTR_DEFAULT.
2247 *
2248 * The specified object may not contain fictitious pages.
2249 *
2250 * The caller must always specify an allocation class.
2251 *
2252 * allocation classes:
2253 * VM_ALLOC_NORMAL normal process request
2254 * VM_ALLOC_SYSTEM system *really* needs the pages
2255 * VM_ALLOC_INTERRUPT interrupt time request
2256 *
2257 * optional allocation flags:
2258 * VM_ALLOC_NOBUSY do not exclusive busy the pages
2259 * VM_ALLOC_NODUMP do not include the pages in a kernel core dump
2260 * VM_ALLOC_NORECLAIM do not reclaim after initial failure
2261 * VM_ALLOC_NOWAIT ignored (default behavior)
2262 * VM_ALLOC_SBUSY shared busy the allocated pages
2263 * VM_ALLOC_WAITFAIL in case of failure, sleep before returning
2264 * VM_ALLOC_WIRED wire the allocated pages
2265 * VM_ALLOC_ZERO prefer zeroed pages
2266 */
2267 vm_page_t
vm_page_alloc_contig(vm_object_t object,vm_pindex_t pindex,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2268 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2269 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2270 vm_paddr_t boundary, vm_memattr_t memattr)
2271 {
2272 struct vm_domainset_iter di;
2273 vm_page_t bounds[2];
2274 vm_page_t m;
2275 int domain;
2276 int start_segind;
2277
2278 start_segind = -1;
2279
2280 if (vm_domainset_iter_page_init(&di, object, pindex, &domain, &req) != 0)
2281 return (NULL);
2282
2283 do {
2284 m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2285 npages, low, high, alignment, boundary, memattr);
2286 if (m != NULL)
2287 break;
2288 if (start_segind == -1)
2289 start_segind = vm_phys_lookup_segind(low);
2290 if (vm_phys_find_range(bounds, start_segind, domain,
2291 npages, low, high) == -1) {
2292 vm_domainset_iter_ignore(&di, domain);
2293 }
2294 } while (vm_domainset_iter_page(&di, object, &domain, NULL) == 0);
2295
2296 return (m);
2297 }
2298
2299 static vm_page_t
vm_page_find_contig_domain(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)2300 vm_page_find_contig_domain(int domain, int req, u_long npages, vm_paddr_t low,
2301 vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2302 {
2303 struct vm_domain *vmd;
2304 vm_page_t m_ret;
2305
2306 /*
2307 * Can we allocate the pages without the number of free pages falling
2308 * below the lower bound for the allocation class?
2309 */
2310 vmd = VM_DOMAIN(domain);
2311 if (!vm_domain_allocate(vmd, req, npages))
2312 return (NULL);
2313 /*
2314 * Try to allocate the pages from the free page queues.
2315 */
2316 vm_domain_free_lock(vmd);
2317 m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2318 alignment, boundary);
2319 vm_domain_free_unlock(vmd);
2320 if (m_ret != NULL)
2321 return (m_ret);
2322 #if VM_NRESERVLEVEL > 0
2323 /*
2324 * Try to break a reservation to allocate the pages.
2325 */
2326 if ((req & VM_ALLOC_NORECLAIM) == 0) {
2327 m_ret = vm_reserv_reclaim_contig(domain, npages, low,
2328 high, alignment, boundary);
2329 if (m_ret != NULL)
2330 return (m_ret);
2331 }
2332 #endif
2333 vm_domain_freecnt_inc(vmd, npages);
2334 return (NULL);
2335 }
2336
2337 vm_page_t
vm_page_alloc_contig_domain(vm_object_t object,vm_pindex_t pindex,int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2338 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2339 int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2340 vm_paddr_t boundary, vm_memattr_t memattr)
2341 {
2342 struct pctrie_iter pages;
2343 vm_page_t m, m_ret, mpred;
2344 u_int busy_lock, flags, oflags;
2345
2346 #define VPAC_FLAGS (VM_ALLOC_COMMON | VM_ALLOC_COUNT_MASK | \
2347 VM_ALLOC_NOBUSY | VM_ALLOC_NORECLAIM | \
2348 VM_ALLOC_SBUSY)
2349 KASSERT((req & ~VPAC_FLAGS) == 0,
2350 ("invalid request %#x", req));
2351 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2352 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2353 ("invalid request %#x", req));
2354 VM_OBJECT_ASSERT_WLOCKED(object);
2355 KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2356 ("vm_page_alloc_contig: object %p has fictitious pages",
2357 object));
2358 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2359
2360 vm_page_iter_init(&pages, object);
2361 m_ret = NULL;
2362 #if VM_NRESERVLEVEL > 0
2363 /*
2364 * Can we allocate the pages from a reservation?
2365 */
2366 if (vm_object_reserv(object)) {
2367 m_ret = vm_reserv_alloc_contig(object, pindex, domain,
2368 req, npages, low, high, alignment, boundary, &pages);
2369 }
2370 #endif
2371 if (m_ret == NULL) {
2372 m_ret = vm_page_find_contig_domain(domain, req, npages,
2373 low, high, alignment, boundary);
2374 }
2375 if (m_ret == NULL) {
2376 (void)vm_domain_alloc_fail(VM_DOMAIN(domain), object, req);
2377 return (NULL);
2378 }
2379
2380 /*
2381 * Initialize the pages. Only the PG_ZERO flag is inherited.
2382 */
2383 flags = PG_ZERO;
2384 if ((req & VM_ALLOC_NODUMP) != 0)
2385 flags |= PG_NODUMP;
2386 oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
2387 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2388 busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2389 else if ((req & VM_ALLOC_SBUSY) != 0)
2390 busy_lock = VPB_SHARERS_WORD(1);
2391 else
2392 busy_lock = VPB_UNBUSIED;
2393 if ((req & VM_ALLOC_WIRED) != 0)
2394 vm_wire_add(npages);
2395 if (object->memattr != VM_MEMATTR_DEFAULT &&
2396 memattr == VM_MEMATTR_DEFAULT)
2397 memattr = object->memattr;
2398 for (m = m_ret; m < &m_ret[npages]; m++) {
2399 vm_page_dequeue(m);
2400 vm_page_alloc_check(m);
2401 m->a.flags = 0;
2402 m->flags = (m->flags | PG_NODUMP) & flags;
2403 m->busy_lock = busy_lock;
2404 if ((req & VM_ALLOC_WIRED) != 0)
2405 m->ref_count = 1;
2406 m->a.act_count = 0;
2407 m->oflags = oflags;
2408 m->pool = VM_FREEPOOL_DEFAULT;
2409 if (vm_page_iter_insert(m, object, pindex, &pages)) {
2410 if ((req & VM_ALLOC_WIRED) != 0)
2411 vm_wire_sub(npages);
2412 KASSERT(m->object == NULL,
2413 ("page %p has object", m));
2414 mpred = m;
2415 for (m = m_ret; m < &m_ret[npages]; m++) {
2416 if (m <= mpred &&
2417 (req & VM_ALLOC_WIRED) != 0)
2418 m->ref_count = 0;
2419 m->oflags = VPO_UNMANAGED;
2420 m->busy_lock = VPB_UNBUSIED;
2421 /* Don't change PG_ZERO. */
2422 vm_page_free_toq(m);
2423 }
2424 if (req & VM_ALLOC_WAITFAIL) {
2425 VM_OBJECT_WUNLOCK(object);
2426 vm_radix_wait();
2427 VM_OBJECT_WLOCK(object);
2428 }
2429 return (NULL);
2430 }
2431 if (memattr != VM_MEMATTR_DEFAULT)
2432 pmap_page_set_memattr(m, memattr);
2433 pindex++;
2434 }
2435 return (m_ret);
2436 }
2437
2438 /*
2439 * Allocate a physical page that is not intended to be inserted into a VM
2440 * object.
2441 */
2442 vm_page_t
vm_page_alloc_noobj_domain(int domain,int req)2443 vm_page_alloc_noobj_domain(int domain, int req)
2444 {
2445 struct vm_domain *vmd;
2446 vm_page_t m;
2447 int flags;
2448
2449 #define VPAN_FLAGS (VM_ALLOC_COMMON | VM_ALLOC_COUNT_MASK | \
2450 VM_ALLOC_NOFREE | VM_ALLOC_WAITOK)
2451 KASSERT((req & ~VPAN_FLAGS) == 0,
2452 ("invalid request %#x", req));
2453
2454 flags = ((req & VM_ALLOC_NODUMP) != 0 ? PG_NODUMP : 0) |
2455 ((req & VM_ALLOC_NOFREE) != 0 ? PG_NOFREE : 0);
2456 vmd = VM_DOMAIN(domain);
2457 again:
2458 if (__predict_false((req & VM_ALLOC_NOFREE) != 0)) {
2459 m = vm_page_alloc_nofree_domain(domain, req);
2460 if (m != NULL)
2461 goto found;
2462 }
2463
2464 if (vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone != NULL) {
2465 m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone,
2466 M_NOWAIT | M_NOVM);
2467 if (m != NULL) {
2468 flags |= PG_PCPU_CACHE;
2469 goto found;
2470 }
2471 }
2472
2473 if (vm_domain_allocate(vmd, req, 1)) {
2474 vm_domain_free_lock(vmd);
2475 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DIRECT, 0);
2476 vm_domain_free_unlock(vmd);
2477 if (m == NULL) {
2478 vm_domain_freecnt_inc(vmd, 1);
2479 #if VM_NRESERVLEVEL > 0
2480 if (vm_reserv_reclaim_inactive(domain))
2481 goto again;
2482 #endif
2483 }
2484 }
2485 if (m == NULL) {
2486 if (!vm_domain_alloc_fail(vmd, NULL, req))
2487 return (NULL);
2488 goto again;
2489 }
2490
2491 found:
2492 /*
2493 * If the page comes from the free page cache, then it might still
2494 * have a pending deferred dequeue. Specifically, when the page is
2495 * imported from a different pool by vm_phys_alloc_npages(), the
2496 * second, third, etc. pages in a non-zero order set could have
2497 * pending deferred dequeues.
2498 */
2499 vm_page_dequeue(m);
2500 vm_page_alloc_check(m);
2501
2502 /*
2503 * Consumers should not rely on a useful default pindex value.
2504 */
2505 m->pindex = 0xdeadc0dedeadc0de;
2506 m->flags = (m->flags & PG_ZERO) | flags;
2507 m->a.flags = 0;
2508 m->oflags = VPO_UNMANAGED;
2509 m->pool = VM_FREEPOOL_DIRECT;
2510 m->busy_lock = VPB_UNBUSIED;
2511 if ((req & VM_ALLOC_WIRED) != 0) {
2512 vm_wire_add(1);
2513 m->ref_count = 1;
2514 }
2515
2516 if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
2517 pmap_zero_page(m);
2518
2519 return (m);
2520 }
2521
2522 #if VM_NRESERVLEVEL > 1
2523 #define VM_NOFREE_IMPORT_ORDER (VM_LEVEL_1_ORDER + VM_LEVEL_0_ORDER)
2524 #elif VM_NRESERVLEVEL > 0
2525 #define VM_NOFREE_IMPORT_ORDER VM_LEVEL_0_ORDER
2526 #else
2527 #define VM_NOFREE_IMPORT_ORDER 8
2528 #endif
2529
2530 /*
2531 * Allocate a single NOFREE page.
2532 *
2533 * This routine hands out NOFREE pages from higher-order
2534 * physical memory blocks in order to reduce memory fragmentation.
2535 * When a NOFREE for a given domain chunk is used up,
2536 * the routine will try to fetch a new one from the freelists
2537 * and discard the old one.
2538 */
2539 static vm_page_t __noinline
vm_page_alloc_nofree_domain(int domain,int req)2540 vm_page_alloc_nofree_domain(int domain, int req)
2541 {
2542 vm_page_t m;
2543 struct vm_domain *vmd;
2544
2545 KASSERT((req & VM_ALLOC_NOFREE) != 0, ("invalid request %#x", req));
2546
2547 vmd = VM_DOMAIN(domain);
2548 vm_domain_free_lock(vmd);
2549 if (TAILQ_EMPTY(&vmd->vmd_nofreeq)) {
2550 int count;
2551
2552 count = 1 << VM_NOFREE_IMPORT_ORDER;
2553 if (!vm_domain_allocate(vmd, req, count)) {
2554 vm_domain_free_unlock(vmd);
2555 return (NULL);
2556 }
2557 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT,
2558 VM_NOFREE_IMPORT_ORDER);
2559 if (m == NULL) {
2560 vm_domain_freecnt_inc(vmd, count);
2561 vm_domain_free_unlock(vmd);
2562 return (NULL);
2563 }
2564 m->ref_count = count - 1;
2565 TAILQ_INSERT_HEAD(&vmd->vmd_nofreeq, m, plinks.q);
2566 atomic_add_long(&nofreeq_size, count);
2567 }
2568 m = TAILQ_FIRST(&vmd->vmd_nofreeq);
2569 TAILQ_REMOVE(&vmd->vmd_nofreeq, m, plinks.q);
2570 if (m->ref_count > 0) {
2571 vm_page_t m_next;
2572
2573 m_next = &m[1];
2574 vm_page_dequeue(m_next);
2575 m_next->ref_count = m->ref_count - 1;
2576 TAILQ_INSERT_HEAD(&vmd->vmd_nofreeq, m_next, plinks.q);
2577 m->ref_count = 0;
2578 }
2579 vm_domain_free_unlock(vmd);
2580 atomic_add_long(&nofreeq_size, -1);
2581 VM_CNT_INC(v_nofree_count);
2582
2583 return (m);
2584 }
2585
2586 /*
2587 * Though a NOFREE page by definition should not be freed, we support putting
2588 * them aside for future NOFREE allocations. This enables code which allocates
2589 * NOFREE pages for some purpose but then encounters an error and releases
2590 * resources.
2591 */
2592 static void __noinline
vm_page_free_nofree(struct vm_domain * vmd,vm_page_t m)2593 vm_page_free_nofree(struct vm_domain *vmd, vm_page_t m)
2594 {
2595 VM_CNT_ADD(v_nofree_count, -1);
2596 atomic_add_long(&nofreeq_size, 1);
2597 vm_domain_free_lock(vmd);
2598 MPASS(m->ref_count == 0);
2599 TAILQ_INSERT_HEAD(&vmd->vmd_nofreeq, m, plinks.q);
2600 vm_domain_free_unlock(vmd);
2601 }
2602
2603 vm_page_t
vm_page_alloc_noobj(int req)2604 vm_page_alloc_noobj(int req)
2605 {
2606 struct vm_domainset_iter di;
2607 vm_page_t m;
2608 int domain;
2609
2610 if (vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req) != 0)
2611 return (NULL);
2612
2613 do {
2614 m = vm_page_alloc_noobj_domain(domain, req);
2615 if (m != NULL)
2616 break;
2617 } while (vm_domainset_iter_page(&di, NULL, &domain, NULL) == 0);
2618
2619 return (m);
2620 }
2621
2622 vm_page_t
vm_page_alloc_noobj_contig(int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2623 vm_page_alloc_noobj_contig(int req, u_long npages, vm_paddr_t low,
2624 vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
2625 vm_memattr_t memattr)
2626 {
2627 struct vm_domainset_iter di;
2628 vm_page_t m;
2629 int domain;
2630
2631 if (vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req) != 0)
2632 return (NULL);
2633
2634 do {
2635 m = vm_page_alloc_noobj_contig_domain(domain, req, npages, low,
2636 high, alignment, boundary, memattr);
2637 if (m != NULL)
2638 break;
2639 } while (vm_domainset_iter_page(&di, NULL, &domain, NULL) == 0);
2640
2641 return (m);
2642 }
2643
2644 vm_page_t
vm_page_alloc_noobj_contig_domain(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2645 vm_page_alloc_noobj_contig_domain(int domain, int req, u_long npages,
2646 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
2647 vm_memattr_t memattr)
2648 {
2649 vm_page_t m, m_ret;
2650 u_int flags;
2651
2652 #define VPANC_FLAGS (VM_ALLOC_COMMON | VM_ALLOC_COUNT_MASK | \
2653 VM_ALLOC_NORECLAIM | VM_ALLOC_WAITOK)
2654 KASSERT((req & ~VPANC_FLAGS) == 0,
2655 ("invalid request %#x", req));
2656 KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) !=
2657 (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM),
2658 ("invalid request %#x", req));
2659 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2660
2661 while ((m_ret = vm_page_find_contig_domain(domain, req, npages,
2662 low, high, alignment, boundary)) == NULL) {
2663 if (!vm_domain_alloc_fail(VM_DOMAIN(domain), NULL, req))
2664 return (NULL);
2665 }
2666
2667 /*
2668 * Initialize the pages. Only the PG_ZERO flag is inherited.
2669 */
2670 flags = PG_ZERO;
2671 if ((req & VM_ALLOC_NODUMP) != 0)
2672 flags |= PG_NODUMP;
2673 if ((req & VM_ALLOC_WIRED) != 0)
2674 vm_wire_add(npages);
2675 for (m = m_ret; m < &m_ret[npages]; m++) {
2676 vm_page_dequeue(m);
2677 vm_page_alloc_check(m);
2678
2679 /*
2680 * Consumers should not rely on a useful default pindex value.
2681 */
2682 m->pindex = 0xdeadc0dedeadc0de;
2683 m->a.flags = 0;
2684 m->flags = (m->flags | PG_NODUMP) & flags;
2685 m->busy_lock = VPB_UNBUSIED;
2686 if ((req & VM_ALLOC_WIRED) != 0)
2687 m->ref_count = 1;
2688 m->a.act_count = 0;
2689 m->oflags = VPO_UNMANAGED;
2690 m->pool = VM_FREEPOOL_DIRECT;
2691
2692 /*
2693 * Zero the page before updating any mappings since the page is
2694 * not yet shared with any devices which might require the
2695 * non-default memory attribute. pmap_page_set_memattr()
2696 * flushes data caches before returning.
2697 */
2698 if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
2699 pmap_zero_page(m);
2700 if (memattr != VM_MEMATTR_DEFAULT)
2701 pmap_page_set_memattr(m, memattr);
2702 }
2703 return (m_ret);
2704 }
2705
2706 /*
2707 * Check a page that has been freshly dequeued from a freelist.
2708 */
2709 static void
vm_page_alloc_check(vm_page_t m)2710 vm_page_alloc_check(vm_page_t m)
2711 {
2712
2713 KASSERT(m->object == NULL, ("page %p has object", m));
2714 KASSERT(m->a.queue == PQ_NONE &&
2715 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
2716 ("page %p has unexpected queue %d, flags %#x",
2717 m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK)));
2718 KASSERT(m->ref_count == 0, ("page %p has references", m));
2719 KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m));
2720 KASSERT(m->dirty == 0, ("page %p is dirty", m));
2721 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2722 ("page %p has unexpected memattr %d",
2723 m, pmap_page_get_memattr(m)));
2724 KASSERT(vm_page_none_valid(m), ("free page %p is valid", m));
2725 pmap_vm_page_alloc_check(m);
2726 }
2727
2728 static int
vm_page_zone_import(void * arg,void ** store,int cnt,int domain,int flags)2729 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2730 {
2731 struct vm_domain *vmd;
2732 struct vm_pgcache *pgcache;
2733 int i;
2734
2735 pgcache = arg;
2736 vmd = VM_DOMAIN(pgcache->domain);
2737
2738 /*
2739 * The page daemon should avoid creating extra memory pressure since its
2740 * main purpose is to replenish the store of free pages.
2741 */
2742 if (vmd->vmd_severeset || curproc == pageproc ||
2743 !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2744 return (0);
2745 domain = vmd->vmd_domain;
2746 vm_domain_free_lock(vmd);
2747 i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2748 (vm_page_t *)store);
2749 vm_domain_free_unlock(vmd);
2750 if (cnt != i)
2751 vm_domain_freecnt_inc(vmd, cnt - i);
2752
2753 return (i);
2754 }
2755
2756 static void
vm_page_zone_release(void * arg,void ** store,int cnt)2757 vm_page_zone_release(void *arg, void **store, int cnt)
2758 {
2759 struct vm_domain *vmd;
2760 struct vm_pgcache *pgcache;
2761 vm_page_t m;
2762 int i;
2763
2764 pgcache = arg;
2765 vmd = VM_DOMAIN(pgcache->domain);
2766 vm_domain_free_lock(vmd);
2767 for (i = 0; i < cnt; i++) {
2768 m = (vm_page_t)store[i];
2769 vm_phys_free_pages(m, pgcache->pool, 0);
2770 }
2771 vm_domain_free_unlock(vmd);
2772 vm_domain_freecnt_inc(vmd, cnt);
2773 }
2774
2775 #define VPSC_ANY 0 /* No restrictions. */
2776 #define VPSC_NORESERV 1 /* Skip reservations; implies VPSC_NOSUPER. */
2777 #define VPSC_NOSUPER 2 /* Skip superpages. */
2778
2779 /*
2780 * vm_page_scan_contig:
2781 *
2782 * Scan vm_page_array[] between the specified entries "m_start" and
2783 * "m_end" for a run of contiguous physical pages that satisfy the
2784 * specified conditions, and return the lowest page in the run. The
2785 * specified "alignment" determines the alignment of the lowest physical
2786 * page in the run. If the specified "boundary" is non-zero, then the
2787 * run of physical pages cannot span a physical address that is a
2788 * multiple of "boundary".
2789 *
2790 * "m_end" is never dereferenced, so it need not point to a vm_page
2791 * structure within vm_page_array[].
2792 *
2793 * "npages" must be greater than zero. "m_start" and "m_end" must not
2794 * span a hole (or discontiguity) in the physical address space. Both
2795 * "alignment" and "boundary" must be a power of two.
2796 */
2797 static vm_page_t
vm_page_scan_contig(u_long npages,vm_page_t m_start,vm_page_t m_end,u_long alignment,vm_paddr_t boundary,int options)2798 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2799 u_long alignment, vm_paddr_t boundary, int options)
2800 {
2801 vm_object_t object;
2802 vm_paddr_t pa;
2803 vm_page_t m, m_run;
2804 #if VM_NRESERVLEVEL > 0
2805 int level;
2806 #endif
2807 int m_inc, order, run_ext, run_len;
2808
2809 KASSERT(npages > 0, ("npages is 0"));
2810 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2811 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2812 m_run = NULL;
2813 run_len = 0;
2814 for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2815 KASSERT((m->flags & PG_MARKER) == 0,
2816 ("page %p is PG_MARKER", m));
2817 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2818 ("fictitious page %p has invalid ref count", m));
2819
2820 /*
2821 * If the current page would be the start of a run, check its
2822 * physical address against the end, alignment, and boundary
2823 * conditions. If it doesn't satisfy these conditions, either
2824 * terminate the scan or advance to the next page that
2825 * satisfies the failed condition.
2826 */
2827 if (run_len == 0) {
2828 KASSERT(m_run == NULL, ("m_run != NULL"));
2829 if (m + npages > m_end)
2830 break;
2831 pa = VM_PAGE_TO_PHYS(m);
2832 if (!vm_addr_align_ok(pa, alignment)) {
2833 m_inc = atop(roundup2(pa, alignment) - pa);
2834 continue;
2835 }
2836 if (!vm_addr_bound_ok(pa, ptoa(npages), boundary)) {
2837 m_inc = atop(roundup2(pa, boundary) - pa);
2838 continue;
2839 }
2840 } else
2841 KASSERT(m_run != NULL, ("m_run == NULL"));
2842
2843 retry:
2844 m_inc = 1;
2845 if (vm_page_wired(m))
2846 run_ext = 0;
2847 #if VM_NRESERVLEVEL > 0
2848 else if ((level = vm_reserv_level(m)) >= 0 &&
2849 (options & VPSC_NORESERV) != 0) {
2850 run_ext = 0;
2851 /* Advance to the end of the reservation. */
2852 pa = VM_PAGE_TO_PHYS(m);
2853 m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2854 pa);
2855 }
2856 #endif
2857 else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2858 /*
2859 * The page is considered eligible for relocation if
2860 * and only if it could be laundered or reclaimed by
2861 * the page daemon.
2862 */
2863 VM_OBJECT_RLOCK(object);
2864 if (object != m->object) {
2865 VM_OBJECT_RUNLOCK(object);
2866 goto retry;
2867 }
2868 /* Don't care: PG_NODUMP, PG_ZERO. */
2869 if ((object->flags & OBJ_SWAP) == 0 &&
2870 object->type != OBJT_VNODE) {
2871 run_ext = 0;
2872 #if VM_NRESERVLEVEL > 0
2873 } else if ((options & VPSC_NOSUPER) != 0 &&
2874 (level = vm_reserv_level_iffullpop(m)) >= 0) {
2875 run_ext = 0;
2876 /* Advance to the end of the superpage. */
2877 pa = VM_PAGE_TO_PHYS(m);
2878 m_inc = atop(roundup2(pa + 1,
2879 vm_reserv_size(level)) - pa);
2880 #endif
2881 } else if (object->memattr == VM_MEMATTR_DEFAULT &&
2882 vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) {
2883 /*
2884 * The page is allocated but eligible for
2885 * relocation. Extend the current run by one
2886 * page.
2887 */
2888 KASSERT(pmap_page_get_memattr(m) ==
2889 VM_MEMATTR_DEFAULT,
2890 ("page %p has an unexpected memattr", m));
2891 KASSERT((m->oflags & (VPO_SWAPINPROG |
2892 VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2893 ("page %p has unexpected oflags", m));
2894 /* Don't care: PGA_NOSYNC. */
2895 run_ext = 1;
2896 } else
2897 run_ext = 0;
2898 VM_OBJECT_RUNLOCK(object);
2899 #if VM_NRESERVLEVEL > 0
2900 } else if (level >= 0) {
2901 /*
2902 * The page is reserved but not yet allocated. In
2903 * other words, it is still free. Extend the current
2904 * run by one page.
2905 */
2906 run_ext = 1;
2907 #endif
2908 } else if ((order = m->order) < VM_NFREEORDER) {
2909 /*
2910 * The page is enqueued in the physical memory
2911 * allocator's free page queues. Moreover, it is the
2912 * first page in a power-of-two-sized run of
2913 * contiguous free pages. Add these pages to the end
2914 * of the current run, and jump ahead.
2915 */
2916 run_ext = 1 << order;
2917 m_inc = 1 << order;
2918 } else {
2919 /*
2920 * Skip the page for one of the following reasons: (1)
2921 * It is enqueued in the physical memory allocator's
2922 * free page queues. However, it is not the first
2923 * page in a run of contiguous free pages. (This case
2924 * rarely occurs because the scan is performed in
2925 * ascending order.) (2) It is not reserved, and it is
2926 * transitioning from free to allocated. (Conversely,
2927 * the transition from allocated to free for managed
2928 * pages is blocked by the page busy lock.) (3) It is
2929 * allocated but not contained by an object and not
2930 * wired, e.g., allocated by Xen's balloon driver.
2931 */
2932 run_ext = 0;
2933 }
2934
2935 /*
2936 * Extend or reset the current run of pages.
2937 */
2938 if (run_ext > 0) {
2939 if (run_len == 0)
2940 m_run = m;
2941 run_len += run_ext;
2942 } else {
2943 if (run_len > 0) {
2944 m_run = NULL;
2945 run_len = 0;
2946 }
2947 }
2948 }
2949 if (run_len >= npages)
2950 return (m_run);
2951 return (NULL);
2952 }
2953
2954 /*
2955 * vm_page_reclaim_run:
2956 *
2957 * Try to relocate each of the allocated virtual pages within the
2958 * specified run of physical pages to a new physical address. Free the
2959 * physical pages underlying the relocated virtual pages. A virtual page
2960 * is relocatable if and only if it could be laundered or reclaimed by
2961 * the page daemon. Whenever possible, a virtual page is relocated to a
2962 * physical address above "high".
2963 *
2964 * Returns 0 if every physical page within the run was already free or
2965 * just freed by a successful relocation. Otherwise, returns a non-zero
2966 * value indicating why the last attempt to relocate a virtual page was
2967 * unsuccessful.
2968 *
2969 * "req_class" must be an allocation class.
2970 */
2971 static int
vm_page_reclaim_run(int req_class,int domain,u_long npages,vm_page_t m_run,vm_paddr_t high)2972 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
2973 vm_paddr_t high)
2974 {
2975 struct vm_domain *vmd;
2976 struct spglist free;
2977 vm_object_t object;
2978 vm_paddr_t pa;
2979 vm_page_t m, m_end, m_new;
2980 int error, order, req;
2981
2982 KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2983 ("req_class is not an allocation class"));
2984 SLIST_INIT(&free);
2985 error = 0;
2986 m = m_run;
2987 m_end = m_run + npages;
2988 for (; error == 0 && m < m_end; m++) {
2989 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2990 ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2991
2992 /*
2993 * Racily check for wirings. Races are handled once the object
2994 * lock is held and the page is unmapped.
2995 */
2996 if (vm_page_wired(m))
2997 error = EBUSY;
2998 else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2999 /*
3000 * The page is relocated if and only if it could be
3001 * laundered or reclaimed by the page daemon.
3002 */
3003 VM_OBJECT_WLOCK(object);
3004 /* Don't care: PG_NODUMP, PG_ZERO. */
3005 if (m->object != object ||
3006 ((object->flags & OBJ_SWAP) == 0 &&
3007 object->type != OBJT_VNODE))
3008 error = EINVAL;
3009 else if (object->memattr != VM_MEMATTR_DEFAULT)
3010 error = EINVAL;
3011 else if (vm_page_queue(m) != PQ_NONE &&
3012 vm_page_tryxbusy(m) != 0) {
3013 if (vm_page_wired(m)) {
3014 vm_page_xunbusy(m);
3015 error = EBUSY;
3016 goto unlock;
3017 }
3018 KASSERT(pmap_page_get_memattr(m) ==
3019 VM_MEMATTR_DEFAULT,
3020 ("page %p has an unexpected memattr", m));
3021 KASSERT(m->oflags == 0,
3022 ("page %p has unexpected oflags", m));
3023 /* Don't care: PGA_NOSYNC. */
3024 if (!vm_page_none_valid(m)) {
3025 /*
3026 * First, try to allocate a new page
3027 * that is above "high". Failing
3028 * that, try to allocate a new page
3029 * that is below "m_run". Allocate
3030 * the new page between the end of
3031 * "m_run" and "high" only as a last
3032 * resort.
3033 */
3034 req = req_class;
3035 if ((m->flags & PG_NODUMP) != 0)
3036 req |= VM_ALLOC_NODUMP;
3037 if (trunc_page(high) !=
3038 ~(vm_paddr_t)PAGE_MASK) {
3039 m_new =
3040 vm_page_alloc_noobj_contig(
3041 req, 1, round_page(high),
3042 ~(vm_paddr_t)0, PAGE_SIZE,
3043 0, VM_MEMATTR_DEFAULT);
3044 } else
3045 m_new = NULL;
3046 if (m_new == NULL) {
3047 pa = VM_PAGE_TO_PHYS(m_run);
3048 m_new =
3049 vm_page_alloc_noobj_contig(
3050 req, 1, 0, pa - 1,
3051 PAGE_SIZE, 0,
3052 VM_MEMATTR_DEFAULT);
3053 }
3054 if (m_new == NULL) {
3055 pa += ptoa(npages);
3056 m_new =
3057 vm_page_alloc_noobj_contig(
3058 req, 1, pa, high, PAGE_SIZE,
3059 0, VM_MEMATTR_DEFAULT);
3060 }
3061 if (m_new == NULL) {
3062 vm_page_xunbusy(m);
3063 error = ENOMEM;
3064 goto unlock;
3065 }
3066
3067 /*
3068 * Unmap the page and check for new
3069 * wirings that may have been acquired
3070 * through a pmap lookup.
3071 */
3072 if (object->ref_count != 0 &&
3073 !vm_page_try_remove_all(m)) {
3074 vm_page_xunbusy(m);
3075 vm_page_free(m_new);
3076 error = EBUSY;
3077 goto unlock;
3078 }
3079
3080 /*
3081 * Replace "m" with the new page. For
3082 * vm_page_replace(), "m" must be busy
3083 * and dequeued. Finally, change "m"
3084 * as if vm_page_free() was called.
3085 */
3086 m_new->a.flags = m->a.flags &
3087 ~PGA_QUEUE_STATE_MASK;
3088 KASSERT(m_new->oflags == VPO_UNMANAGED,
3089 ("page %p is managed", m_new));
3090 m_new->oflags = 0;
3091 pmap_copy_page(m, m_new);
3092 m_new->valid = m->valid;
3093 m_new->dirty = m->dirty;
3094 m->flags &= ~PG_ZERO;
3095 vm_page_dequeue(m);
3096 if (vm_page_replace_hold(m_new, object,
3097 m->pindex, m) &&
3098 vm_page_free_prep(m))
3099 SLIST_INSERT_HEAD(&free, m,
3100 plinks.s.ss);
3101
3102 /*
3103 * The new page must be deactivated
3104 * before the object is unlocked.
3105 */
3106 vm_page_deactivate(m_new);
3107 } else {
3108 m->flags &= ~PG_ZERO;
3109 vm_page_dequeue(m);
3110 if (vm_page_free_prep(m))
3111 SLIST_INSERT_HEAD(&free, m,
3112 plinks.s.ss);
3113 KASSERT(m->dirty == 0,
3114 ("page %p is dirty", m));
3115 }
3116 } else
3117 error = EBUSY;
3118 unlock:
3119 VM_OBJECT_WUNLOCK(object);
3120 } else {
3121 MPASS(vm_page_domain(m) == domain);
3122 vmd = VM_DOMAIN(domain);
3123 vm_domain_free_lock(vmd);
3124 order = m->order;
3125 if (order < VM_NFREEORDER) {
3126 /*
3127 * The page is enqueued in the physical memory
3128 * allocator's free page queues. Moreover, it
3129 * is the first page in a power-of-two-sized
3130 * run of contiguous free pages. Jump ahead
3131 * to the last page within that run, and
3132 * continue from there.
3133 */
3134 m += (1 << order) - 1;
3135 }
3136 #if VM_NRESERVLEVEL > 0
3137 else if (vm_reserv_is_page_free(m))
3138 order = 0;
3139 #endif
3140 vm_domain_free_unlock(vmd);
3141 if (order == VM_NFREEORDER)
3142 error = EINVAL;
3143 }
3144 }
3145 if ((m = SLIST_FIRST(&free)) != NULL) {
3146 int cnt;
3147
3148 vmd = VM_DOMAIN(domain);
3149 cnt = 0;
3150 vm_domain_free_lock(vmd);
3151 do {
3152 MPASS(vm_page_domain(m) == domain);
3153 SLIST_REMOVE_HEAD(&free, plinks.s.ss);
3154 vm_phys_free_pages(m, m->pool, 0);
3155 cnt++;
3156 } while ((m = SLIST_FIRST(&free)) != NULL);
3157 vm_domain_free_unlock(vmd);
3158 vm_domain_freecnt_inc(vmd, cnt);
3159 }
3160 return (error);
3161 }
3162
3163 #define NRUNS 16
3164
3165 #define RUN_INDEX(count, nruns) ((count) % (nruns))
3166
3167 #define MIN_RECLAIM 8
3168
3169 /*
3170 * vm_page_reclaim_contig:
3171 *
3172 * Reclaim allocated, contiguous physical memory satisfying the specified
3173 * conditions by relocating the virtual pages using that physical memory.
3174 * Returns 0 if reclamation is successful, ERANGE if the specified domain
3175 * can't possibly satisfy the reclamation request, or ENOMEM if not
3176 * currently able to reclaim the requested number of pages. Since
3177 * relocation requires the allocation of physical pages, reclamation may
3178 * fail with ENOMEM due to a shortage of free pages. When reclamation
3179 * fails in this manner, callers are expected to perform vm_wait() before
3180 * retrying a failed allocation operation, e.g., vm_page_alloc_contig().
3181 *
3182 * The caller must always specify an allocation class through "req".
3183 *
3184 * allocation classes:
3185 * VM_ALLOC_NORMAL normal process request
3186 * VM_ALLOC_SYSTEM system *really* needs a page
3187 * VM_ALLOC_INTERRUPT interrupt time request
3188 *
3189 * The optional allocation flags are ignored.
3190 *
3191 * "npages" must be greater than zero. Both "alignment" and "boundary"
3192 * must be a power of two.
3193 */
3194 int
vm_page_reclaim_contig_domain_ext(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,int desired_runs)3195 vm_page_reclaim_contig_domain_ext(int domain, int req, u_long npages,
3196 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
3197 int desired_runs)
3198 {
3199 struct vm_domain *vmd;
3200 vm_page_t bounds[2], m_run, _m_runs[NRUNS], *m_runs;
3201 u_long count, minalign, reclaimed;
3202 int error, i, min_reclaim, nruns, options, req_class;
3203 int segind, start_segind;
3204 int ret;
3205
3206 KASSERT(npages > 0, ("npages is 0"));
3207 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
3208 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
3209
3210 ret = ENOMEM;
3211
3212 /*
3213 * If the caller wants to reclaim multiple runs, try to allocate
3214 * space to store the runs. If that fails, fall back to the old
3215 * behavior of just reclaiming MIN_RECLAIM pages.
3216 */
3217 if (desired_runs > 1)
3218 m_runs = malloc((NRUNS + desired_runs) * sizeof(*m_runs),
3219 M_TEMP, M_NOWAIT);
3220 else
3221 m_runs = NULL;
3222
3223 if (m_runs == NULL) {
3224 m_runs = _m_runs;
3225 nruns = NRUNS;
3226 } else {
3227 nruns = NRUNS + desired_runs - 1;
3228 }
3229 min_reclaim = MAX(desired_runs * npages, MIN_RECLAIM);
3230
3231 /*
3232 * The caller will attempt an allocation after some runs have been
3233 * reclaimed and added to the vm_phys buddy lists. Due to limitations
3234 * of vm_phys_alloc_contig(), round up the requested length to the next
3235 * power of two or maximum chunk size, and ensure that each run is
3236 * suitably aligned.
3237 */
3238 minalign = 1ul << imin(flsl(npages - 1), VM_NFREEORDER - 1);
3239 npages = roundup2(npages, minalign);
3240 if (alignment < ptoa(minalign))
3241 alignment = ptoa(minalign);
3242
3243 /*
3244 * The page daemon is allowed to dig deeper into the free page list.
3245 */
3246 req_class = req & VM_ALLOC_CLASS_MASK;
3247 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
3248 req_class = VM_ALLOC_SYSTEM;
3249
3250 start_segind = vm_phys_lookup_segind(low);
3251
3252 /*
3253 * Return if the number of free pages cannot satisfy the requested
3254 * allocation.
3255 */
3256 vmd = VM_DOMAIN(domain);
3257 count = vmd->vmd_free_count;
3258 if (count < npages + vmd->vmd_free_reserved || (count < npages +
3259 vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
3260 (count < npages && req_class == VM_ALLOC_INTERRUPT))
3261 goto done;
3262
3263 /*
3264 * Scan up to three times, relaxing the restrictions ("options") on
3265 * the reclamation of reservations and superpages each time.
3266 */
3267 for (options = VPSC_NORESERV;;) {
3268 bool phys_range_exists = false;
3269
3270 /*
3271 * Find the highest runs that satisfy the given constraints
3272 * and restrictions, and record them in "m_runs".
3273 */
3274 count = 0;
3275 segind = start_segind;
3276 while ((segind = vm_phys_find_range(bounds, segind, domain,
3277 npages, low, high)) != -1) {
3278 phys_range_exists = true;
3279 while ((m_run = vm_page_scan_contig(npages, bounds[0],
3280 bounds[1], alignment, boundary, options))) {
3281 bounds[0] = m_run + npages;
3282 m_runs[RUN_INDEX(count, nruns)] = m_run;
3283 count++;
3284 }
3285 segind++;
3286 }
3287
3288 if (!phys_range_exists) {
3289 ret = ERANGE;
3290 goto done;
3291 }
3292
3293 /*
3294 * Reclaim the highest runs in LIFO (descending) order until
3295 * the number of reclaimed pages, "reclaimed", is at least
3296 * "min_reclaim". Reset "reclaimed" each time because each
3297 * reclamation is idempotent, and runs will (likely) recur
3298 * from one scan to the next as restrictions are relaxed.
3299 */
3300 reclaimed = 0;
3301 for (i = 0; count > 0 && i < nruns; i++) {
3302 count--;
3303 m_run = m_runs[RUN_INDEX(count, nruns)];
3304 error = vm_page_reclaim_run(req_class, domain, npages,
3305 m_run, high);
3306 if (error == 0) {
3307 reclaimed += npages;
3308 if (reclaimed >= min_reclaim) {
3309 ret = 0;
3310 goto done;
3311 }
3312 }
3313 }
3314
3315 /*
3316 * Either relax the restrictions on the next scan or return if
3317 * the last scan had no restrictions.
3318 */
3319 if (options == VPSC_NORESERV)
3320 options = VPSC_NOSUPER;
3321 else if (options == VPSC_NOSUPER)
3322 options = VPSC_ANY;
3323 else if (options == VPSC_ANY) {
3324 if (reclaimed != 0)
3325 ret = 0;
3326 goto done;
3327 }
3328 }
3329 done:
3330 if (m_runs != _m_runs)
3331 free(m_runs, M_TEMP);
3332 return (ret);
3333 }
3334
3335 int
vm_page_reclaim_contig_domain(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)3336 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
3337 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
3338 {
3339 return (vm_page_reclaim_contig_domain_ext(domain, req, npages, low,
3340 high, alignment, boundary, 1));
3341 }
3342
3343 int
vm_page_reclaim_contig(int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)3344 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
3345 u_long alignment, vm_paddr_t boundary)
3346 {
3347 struct vm_domainset_iter di;
3348 int domain, ret, status;
3349
3350 ret = ERANGE;
3351
3352 if (vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req) != 0)
3353 return (ret);
3354
3355 do {
3356 status = vm_page_reclaim_contig_domain(domain, req, npages, low,
3357 high, alignment, boundary);
3358 if (status == 0)
3359 return (0);
3360 else if (status == ERANGE)
3361 vm_domainset_iter_ignore(&di, domain);
3362 else {
3363 KASSERT(status == ENOMEM, ("Unrecognized error %d "
3364 "from vm_page_reclaim_contig_domain()", status));
3365 ret = ENOMEM;
3366 }
3367 } while (vm_domainset_iter_page(&di, NULL, &domain, NULL) == 0);
3368
3369 return (ret);
3370 }
3371
3372 /*
3373 * Set the domain in the appropriate page level domainset.
3374 */
3375 void
vm_domain_set(struct vm_domain * vmd)3376 vm_domain_set(struct vm_domain *vmd)
3377 {
3378
3379 mtx_lock(&vm_domainset_lock);
3380 if (!vmd->vmd_minset && vm_paging_min(vmd)) {
3381 vmd->vmd_minset = 1;
3382 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
3383 }
3384 if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
3385 vmd->vmd_severeset = 1;
3386 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
3387 }
3388 mtx_unlock(&vm_domainset_lock);
3389 }
3390
3391 /*
3392 * Clear the domain from the appropriate page level domainset.
3393 */
3394 void
vm_domain_clear(struct vm_domain * vmd)3395 vm_domain_clear(struct vm_domain *vmd)
3396 {
3397
3398 mtx_lock(&vm_domainset_lock);
3399 if (vmd->vmd_minset && !vm_paging_min(vmd)) {
3400 vmd->vmd_minset = 0;
3401 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
3402 if (vm_min_waiters != 0) {
3403 vm_min_waiters = 0;
3404 wakeup(&vm_min_domains);
3405 }
3406 }
3407 if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
3408 vmd->vmd_severeset = 0;
3409 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
3410 if (vm_severe_waiters != 0) {
3411 vm_severe_waiters = 0;
3412 wakeup(&vm_severe_domains);
3413 }
3414 }
3415
3416 /*
3417 * If pageout daemon needs pages, then tell it that there are
3418 * some free.
3419 */
3420 if (vmd->vmd_pageout_pages_needed &&
3421 vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
3422 wakeup(&vmd->vmd_pageout_pages_needed);
3423 vmd->vmd_pageout_pages_needed = 0;
3424 }
3425
3426 /* See comments in vm_wait_doms(). */
3427 if (vm_pageproc_waiters) {
3428 vm_pageproc_waiters = 0;
3429 wakeup(&vm_pageproc_waiters);
3430 }
3431 mtx_unlock(&vm_domainset_lock);
3432 }
3433
3434 /*
3435 * Wait for free pages to exceed the min threshold globally.
3436 */
3437 void
vm_wait_min(void)3438 vm_wait_min(void)
3439 {
3440
3441 mtx_lock(&vm_domainset_lock);
3442 while (vm_page_count_min()) {
3443 vm_min_waiters++;
3444 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
3445 }
3446 mtx_unlock(&vm_domainset_lock);
3447 }
3448
3449 /*
3450 * Wait for free pages to exceed the severe threshold globally.
3451 */
3452 void
vm_wait_severe(void)3453 vm_wait_severe(void)
3454 {
3455
3456 mtx_lock(&vm_domainset_lock);
3457 while (vm_page_count_severe()) {
3458 vm_severe_waiters++;
3459 msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
3460 "vmwait", 0);
3461 }
3462 mtx_unlock(&vm_domainset_lock);
3463 }
3464
3465 u_int
vm_wait_count(void)3466 vm_wait_count(void)
3467 {
3468
3469 return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3470 }
3471
3472 int
vm_wait_doms(const domainset_t * wdoms,int mflags)3473 vm_wait_doms(const domainset_t *wdoms, int mflags)
3474 {
3475 int error;
3476
3477 error = 0;
3478
3479 /*
3480 * We use racey wakeup synchronization to avoid expensive global
3481 * locking for the pageproc when sleeping with a non-specific vm_wait.
3482 * To handle this, we only sleep for one tick in this instance. It
3483 * is expected that most allocations for the pageproc will come from
3484 * kmem or vm_page_grab* which will use the more specific and
3485 * race-free vm_wait_domain().
3486 */
3487 if (curproc == pageproc) {
3488 mtx_lock(&vm_domainset_lock);
3489 vm_pageproc_waiters++;
3490 error = msleep(&vm_pageproc_waiters, &vm_domainset_lock,
3491 PVM | PDROP | mflags, "pageprocwait", 1);
3492 } else {
3493 /*
3494 * XXX Ideally we would wait only until the allocation could
3495 * be satisfied. This condition can cause new allocators to
3496 * consume all freed pages while old allocators wait.
3497 */
3498 mtx_lock(&vm_domainset_lock);
3499 if (vm_page_count_min_set(wdoms)) {
3500 if (pageproc == NULL)
3501 panic("vm_wait in early boot");
3502 vm_min_waiters++;
3503 error = msleep(&vm_min_domains, &vm_domainset_lock,
3504 PVM | PDROP | mflags, "vmwait", 0);
3505 } else
3506 mtx_unlock(&vm_domainset_lock);
3507 }
3508 return (error);
3509 }
3510
3511 /*
3512 * vm_wait_domain:
3513 *
3514 * Sleep until free pages are available for allocation.
3515 * - Called in various places after failed memory allocations.
3516 */
3517 void
vm_wait_domain(int domain)3518 vm_wait_domain(int domain)
3519 {
3520 struct vm_domain *vmd;
3521 domainset_t wdom;
3522
3523 vmd = VM_DOMAIN(domain);
3524 vm_domain_free_assert_unlocked(vmd);
3525
3526 if (curproc == pageproc) {
3527 mtx_lock(&vm_domainset_lock);
3528 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3529 vmd->vmd_pageout_pages_needed = 1;
3530 msleep(&vmd->vmd_pageout_pages_needed,
3531 &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3532 } else
3533 mtx_unlock(&vm_domainset_lock);
3534 } else {
3535 DOMAINSET_ZERO(&wdom);
3536 DOMAINSET_SET(vmd->vmd_domain, &wdom);
3537 vm_wait_doms(&wdom, 0);
3538 }
3539 }
3540
3541 static int
vm_wait_flags(vm_object_t obj,int mflags)3542 vm_wait_flags(vm_object_t obj, int mflags)
3543 {
3544 struct domainset *d;
3545
3546 d = NULL;
3547
3548 /*
3549 * Carefully fetch pointers only once: the struct domainset
3550 * itself is ummutable but the pointer might change.
3551 */
3552 if (obj != NULL)
3553 d = obj->domain.dr_policy;
3554 if (d == NULL)
3555 d = curthread->td_domain.dr_policy;
3556
3557 return (vm_wait_doms(&d->ds_mask, mflags));
3558 }
3559
3560 /*
3561 * vm_wait:
3562 *
3563 * Sleep until free pages are available for allocation in the
3564 * affinity domains of the obj. If obj is NULL, the domain set
3565 * for the calling thread is used.
3566 * Called in various places after failed memory allocations.
3567 */
3568 void
vm_wait(vm_object_t obj)3569 vm_wait(vm_object_t obj)
3570 {
3571 (void)vm_wait_flags(obj, 0);
3572 }
3573
3574 int
vm_wait_intr(vm_object_t obj)3575 vm_wait_intr(vm_object_t obj)
3576 {
3577 return (vm_wait_flags(obj, PCATCH));
3578 }
3579
3580 /*
3581 * vm_domain_alloc_fail:
3582 *
3583 * Called when a page allocation function fails. Informs the
3584 * pagedaemon and performs the requested wait. Requires the
3585 * domain_free and object lock on entry. Returns with the
3586 * object lock held and free lock released. Returns an error when
3587 * retry is necessary.
3588 *
3589 */
3590 static int
vm_domain_alloc_fail(struct vm_domain * vmd,vm_object_t object,int req)3591 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3592 {
3593
3594 vm_domain_free_assert_unlocked(vmd);
3595
3596 atomic_add_int(&vmd->vmd_pageout_deficit,
3597 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3598 if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3599 if (object != NULL)
3600 VM_OBJECT_WUNLOCK(object);
3601 vm_wait_domain(vmd->vmd_domain);
3602 if (object != NULL)
3603 VM_OBJECT_WLOCK(object);
3604 if (req & VM_ALLOC_WAITOK)
3605 return (EAGAIN);
3606 }
3607
3608 return (0);
3609 }
3610
3611 /*
3612 * vm_waitpfault:
3613 *
3614 * Sleep until free pages are available for allocation.
3615 * - Called only in vm_fault so that processes page faulting
3616 * can be easily tracked.
3617 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3618 * processes will be able to grab memory first. Do not change
3619 * this balance without careful testing first.
3620 */
3621 void
vm_waitpfault(struct domainset * dset,int timo)3622 vm_waitpfault(struct domainset *dset, int timo)
3623 {
3624
3625 /*
3626 * XXX Ideally we would wait only until the allocation could
3627 * be satisfied. This condition can cause new allocators to
3628 * consume all freed pages while old allocators wait.
3629 */
3630 mtx_lock(&vm_domainset_lock);
3631 if (vm_page_count_min_set(&dset->ds_mask)) {
3632 vm_min_waiters++;
3633 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3634 "pfault", timo);
3635 } else
3636 mtx_unlock(&vm_domainset_lock);
3637 }
3638
3639 static struct vm_pagequeue *
_vm_page_pagequeue(vm_page_t m,uint8_t queue)3640 _vm_page_pagequeue(vm_page_t m, uint8_t queue)
3641 {
3642
3643 return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3644 }
3645
3646 #ifdef INVARIANTS
3647 static struct vm_pagequeue *
vm_page_pagequeue(vm_page_t m)3648 vm_page_pagequeue(vm_page_t m)
3649 {
3650
3651 return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue));
3652 }
3653 #endif
3654
3655 static __always_inline bool
vm_page_pqstate_fcmpset(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3656 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old,
3657 vm_page_astate_t new)
3658 {
3659 vm_page_astate_t tmp;
3660
3661 tmp = *old;
3662 do {
3663 if (__predict_true(vm_page_astate_fcmpset(m, old, new)))
3664 return (true);
3665 counter_u64_add(pqstate_commit_retries, 1);
3666 } while (old->_bits == tmp._bits);
3667
3668 return (false);
3669 }
3670
3671 /*
3672 * Do the work of committing a queue state update that moves the page out of
3673 * its current queue.
3674 */
3675 static bool
_vm_page_pqstate_commit_dequeue(struct vm_pagequeue * pq,vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3676 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m,
3677 vm_page_astate_t *old, vm_page_astate_t new)
3678 {
3679 vm_page_t next;
3680
3681 vm_pagequeue_assert_locked(pq);
3682 KASSERT(vm_page_pagequeue(m) == pq,
3683 ("%s: queue %p does not match page %p", __func__, pq, m));
3684 KASSERT(old->queue != PQ_NONE && new.queue != old->queue,
3685 ("%s: invalid queue indices %d %d",
3686 __func__, old->queue, new.queue));
3687
3688 /*
3689 * Once the queue index of the page changes there is nothing
3690 * synchronizing with further updates to the page's physical
3691 * queue state. Therefore we must speculatively remove the page
3692 * from the queue now and be prepared to roll back if the queue
3693 * state update fails. If the page is not physically enqueued then
3694 * we just update its queue index.
3695 */
3696 if ((old->flags & PGA_ENQUEUED) != 0) {
3697 new.flags &= ~PGA_ENQUEUED;
3698 next = TAILQ_NEXT(m, plinks.q);
3699 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3700 vm_pagequeue_cnt_dec(pq);
3701 if (!vm_page_pqstate_fcmpset(m, old, new)) {
3702 if (next == NULL)
3703 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3704 else
3705 TAILQ_INSERT_BEFORE(next, m, plinks.q);
3706 vm_pagequeue_cnt_inc(pq);
3707 return (false);
3708 } else {
3709 return (true);
3710 }
3711 } else {
3712 return (vm_page_pqstate_fcmpset(m, old, new));
3713 }
3714 }
3715
3716 static bool
vm_page_pqstate_commit_dequeue(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3717 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old,
3718 vm_page_astate_t new)
3719 {
3720 struct vm_pagequeue *pq;
3721 vm_page_astate_t as;
3722 bool ret;
3723
3724 pq = _vm_page_pagequeue(m, old->queue);
3725
3726 /*
3727 * The queue field and PGA_ENQUEUED flag are stable only so long as the
3728 * corresponding page queue lock is held.
3729 */
3730 vm_pagequeue_lock(pq);
3731 as = vm_page_astate_load(m);
3732 if (__predict_false(as._bits != old->_bits)) {
3733 *old = as;
3734 ret = false;
3735 } else {
3736 ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new);
3737 }
3738 vm_pagequeue_unlock(pq);
3739 return (ret);
3740 }
3741
3742 /*
3743 * Commit a queue state update that enqueues or requeues a page.
3744 */
3745 static bool
_vm_page_pqstate_commit_requeue(struct vm_pagequeue * pq,vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3746 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m,
3747 vm_page_astate_t *old, vm_page_astate_t new)
3748 {
3749 struct vm_domain *vmd;
3750
3751 vm_pagequeue_assert_locked(pq);
3752 KASSERT(old->queue != PQ_NONE && new.queue == old->queue,
3753 ("%s: invalid queue indices %d %d",
3754 __func__, old->queue, new.queue));
3755
3756 new.flags |= PGA_ENQUEUED;
3757 if (!vm_page_pqstate_fcmpset(m, old, new))
3758 return (false);
3759
3760 if ((old->flags & PGA_ENQUEUED) != 0)
3761 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3762 else
3763 vm_pagequeue_cnt_inc(pq);
3764
3765 /*
3766 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE. In particular, if
3767 * both flags are set in close succession, only PGA_REQUEUE_HEAD will be
3768 * applied, even if it was set first.
3769 */
3770 if ((old->flags & PGA_REQUEUE_HEAD) != 0) {
3771 vmd = vm_pagequeue_domain(m);
3772 KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE],
3773 ("%s: invalid page queue for page %p", __func__, m));
3774 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3775 } else {
3776 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3777 }
3778 return (true);
3779 }
3780
3781 /*
3782 * Commit a queue state update that encodes a request for a deferred queue
3783 * operation.
3784 */
3785 static bool
vm_page_pqstate_commit_request(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3786 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old,
3787 vm_page_astate_t new)
3788 {
3789
3790 KASSERT(old->queue == new.queue || new.queue != PQ_NONE,
3791 ("%s: invalid state, queue %d flags %x",
3792 __func__, new.queue, new.flags));
3793
3794 if (old->_bits != new._bits &&
3795 !vm_page_pqstate_fcmpset(m, old, new))
3796 return (false);
3797 vm_page_pqbatch_submit(m, new.queue);
3798 return (true);
3799 }
3800
3801 /*
3802 * A generic queue state update function. This handles more cases than the
3803 * specialized functions above.
3804 */
3805 bool
vm_page_pqstate_commit(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3806 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3807 {
3808
3809 if (old->_bits == new._bits)
3810 return (true);
3811
3812 if (old->queue != PQ_NONE && new.queue != old->queue) {
3813 if (!vm_page_pqstate_commit_dequeue(m, old, new))
3814 return (false);
3815 if (new.queue != PQ_NONE)
3816 vm_page_pqbatch_submit(m, new.queue);
3817 } else {
3818 if (!vm_page_pqstate_fcmpset(m, old, new))
3819 return (false);
3820 if (new.queue != PQ_NONE &&
3821 ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0)
3822 vm_page_pqbatch_submit(m, new.queue);
3823 }
3824 return (true);
3825 }
3826
3827 /*
3828 * Apply deferred queue state updates to a page.
3829 */
3830 static inline void
vm_pqbatch_process_page(struct vm_pagequeue * pq,vm_page_t m,uint8_t queue)3831 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue)
3832 {
3833 vm_page_astate_t new, old;
3834
3835 CRITICAL_ASSERT(curthread);
3836 vm_pagequeue_assert_locked(pq);
3837 KASSERT(queue < PQ_COUNT,
3838 ("%s: invalid queue index %d", __func__, queue));
3839 KASSERT(pq == _vm_page_pagequeue(m, queue),
3840 ("%s: page %p does not belong to queue %p", __func__, m, pq));
3841
3842 for (old = vm_page_astate_load(m);;) {
3843 if (__predict_false(old.queue != queue ||
3844 (old.flags & PGA_QUEUE_OP_MASK) == 0)) {
3845 counter_u64_add(queue_nops, 1);
3846 break;
3847 }
3848 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3849 ("%s: page %p is unmanaged", __func__, m));
3850
3851 new = old;
3852 if ((old.flags & PGA_DEQUEUE) != 0) {
3853 new.flags &= ~PGA_QUEUE_OP_MASK;
3854 new.queue = PQ_NONE;
3855 if (__predict_true(_vm_page_pqstate_commit_dequeue(pq,
3856 m, &old, new))) {
3857 counter_u64_add(queue_ops, 1);
3858 break;
3859 }
3860 } else {
3861 new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD);
3862 if (__predict_true(_vm_page_pqstate_commit_requeue(pq,
3863 m, &old, new))) {
3864 counter_u64_add(queue_ops, 1);
3865 break;
3866 }
3867 }
3868 }
3869 }
3870
3871 static void
vm_pqbatch_process(struct vm_pagequeue * pq,struct vm_batchqueue * bq,uint8_t queue)3872 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3873 uint8_t queue)
3874 {
3875 int i;
3876
3877 for (i = 0; i < bq->bq_cnt; i++)
3878 vm_pqbatch_process_page(pq, bq->bq_pa[i], queue);
3879 vm_batchqueue_init(bq);
3880 }
3881
3882 /*
3883 * vm_page_pqbatch_submit: [ internal use only ]
3884 *
3885 * Enqueue a page in the specified page queue's batched work queue.
3886 * The caller must have encoded the requested operation in the page
3887 * structure's a.flags field.
3888 */
3889 void
vm_page_pqbatch_submit(vm_page_t m,uint8_t queue)3890 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
3891 {
3892 struct vm_batchqueue *bq;
3893 struct vm_pagequeue *pq;
3894 int domain, slots_remaining;
3895
3896 KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3897
3898 domain = vm_page_domain(m);
3899 critical_enter();
3900 bq = DPCPU_PTR(pqbatch[domain][queue]);
3901 slots_remaining = vm_batchqueue_insert(bq, m);
3902 if (slots_remaining > (VM_BATCHQUEUE_SIZE >> 1)) {
3903 /* keep building the bq */
3904 critical_exit();
3905 return;
3906 } else if (slots_remaining > 0 ) {
3907 /* Try to process the bq if we can get the lock */
3908 pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
3909 if (vm_pagequeue_trylock(pq)) {
3910 vm_pqbatch_process(pq, bq, queue);
3911 vm_pagequeue_unlock(pq);
3912 }
3913 critical_exit();
3914 return;
3915 }
3916 critical_exit();
3917
3918 /* if we make it here, the bq is full so wait for the lock */
3919
3920 pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
3921 vm_pagequeue_lock(pq);
3922 critical_enter();
3923 bq = DPCPU_PTR(pqbatch[domain][queue]);
3924 vm_pqbatch_process(pq, bq, queue);
3925 vm_pqbatch_process_page(pq, m, queue);
3926 vm_pagequeue_unlock(pq);
3927 critical_exit();
3928 }
3929
3930 /*
3931 * vm_page_pqbatch_drain: [ internal use only ]
3932 *
3933 * Force all per-CPU page queue batch queues to be drained. This is
3934 * intended for use in severe memory shortages, to ensure that pages
3935 * do not remain stuck in the batch queues.
3936 */
3937 void
vm_page_pqbatch_drain(void)3938 vm_page_pqbatch_drain(void)
3939 {
3940 struct thread *td;
3941 struct vm_domain *vmd;
3942 struct vm_pagequeue *pq;
3943 int cpu, domain, queue;
3944
3945 td = curthread;
3946 CPU_FOREACH(cpu) {
3947 thread_lock(td);
3948 sched_bind(td, cpu);
3949 thread_unlock(td);
3950
3951 for (domain = 0; domain < vm_ndomains; domain++) {
3952 vmd = VM_DOMAIN(domain);
3953 for (queue = 0; queue < PQ_COUNT; queue++) {
3954 pq = &vmd->vmd_pagequeues[queue];
3955 vm_pagequeue_lock(pq);
3956 critical_enter();
3957 vm_pqbatch_process(pq,
3958 DPCPU_PTR(pqbatch[domain][queue]), queue);
3959 critical_exit();
3960 vm_pagequeue_unlock(pq);
3961 }
3962 }
3963 }
3964 thread_lock(td);
3965 sched_unbind(td);
3966 thread_unlock(td);
3967 }
3968
3969 /*
3970 * vm_page_dequeue_deferred: [ internal use only ]
3971 *
3972 * Request removal of the given page from its current page
3973 * queue. Physical removal from the queue may be deferred
3974 * indefinitely.
3975 */
3976 void
vm_page_dequeue_deferred(vm_page_t m)3977 vm_page_dequeue_deferred(vm_page_t m)
3978 {
3979 vm_page_astate_t new, old;
3980
3981 old = vm_page_astate_load(m);
3982 do {
3983 if (old.queue == PQ_NONE) {
3984 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3985 ("%s: page %p has unexpected queue state",
3986 __func__, m));
3987 break;
3988 }
3989 new = old;
3990 new.flags |= PGA_DEQUEUE;
3991 } while (!vm_page_pqstate_commit_request(m, &old, new));
3992 }
3993
3994 /*
3995 * vm_page_dequeue:
3996 *
3997 * Remove the page from whichever page queue it's in, if any, before
3998 * returning.
3999 */
4000 void
vm_page_dequeue(vm_page_t m)4001 vm_page_dequeue(vm_page_t m)
4002 {
4003 vm_page_astate_t new, old;
4004
4005 old = vm_page_astate_load(m);
4006 do {
4007 if (__predict_true(old.queue == PQ_NONE)) {
4008 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
4009 ("%s: page %p has unexpected queue state",
4010 __func__, m));
4011 break;
4012 }
4013 new = old;
4014 new.flags &= ~PGA_QUEUE_OP_MASK;
4015 new.queue = PQ_NONE;
4016 } while (!vm_page_pqstate_commit_dequeue(m, &old, new));
4017
4018 }
4019
4020 /*
4021 * Schedule the given page for insertion into the specified page queue.
4022 * Physical insertion of the page may be deferred indefinitely.
4023 */
4024 static void
vm_page_enqueue(vm_page_t m,uint8_t queue)4025 vm_page_enqueue(vm_page_t m, uint8_t queue)
4026 {
4027
4028 KASSERT(m->a.queue == PQ_NONE &&
4029 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
4030 ("%s: page %p is already enqueued", __func__, m));
4031 KASSERT(m->ref_count > 0,
4032 ("%s: page %p does not carry any references", __func__, m));
4033
4034 m->a.queue = queue;
4035 if ((m->a.flags & PGA_REQUEUE) == 0)
4036 vm_page_aflag_set(m, PGA_REQUEUE);
4037 vm_page_pqbatch_submit(m, queue);
4038 }
4039
4040 /*
4041 * vm_page_free_prep:
4042 *
4043 * Prepares the given page to be put on the free list,
4044 * disassociating it from any VM object. The caller may return
4045 * the page to the free list only if this function returns true.
4046 *
4047 * The object, if it exists, must be locked, and then the page must
4048 * be xbusy. Otherwise the page must be not busied. A managed
4049 * page must be unmapped.
4050 */
4051 static bool
vm_page_free_prep(vm_page_t m)4052 vm_page_free_prep(vm_page_t m)
4053 {
4054
4055 /*
4056 * Synchronize with threads that have dropped a reference to this
4057 * page.
4058 */
4059 atomic_thread_fence_acq();
4060
4061 #ifdef INVARIANTS
4062 if (vm_check_pg_zero && (m->flags & PG_ZERO) != 0) {
4063 struct sf_buf *sf;
4064 unsigned long *p;
4065 int i;
4066
4067 sched_pin();
4068 sf = sf_buf_alloc(m, SFB_CPUPRIVATE | SFB_NOWAIT);
4069 if (sf != NULL) {
4070 p = (unsigned long *)sf_buf_kva(sf);
4071 for (i = 0; i < PAGE_SIZE / sizeof(*p); i++, p++) {
4072 KASSERT(*p == 0,
4073 ("zerocheck failed page %p PG_ZERO %d %jx",
4074 m, i, (uintmax_t)*p));
4075 }
4076 sf_buf_free(sf);
4077 }
4078 sched_unpin();
4079 }
4080 #endif
4081 if ((m->oflags & VPO_UNMANAGED) == 0) {
4082 KASSERT(!pmap_page_is_mapped(m),
4083 ("vm_page_free_prep: freeing mapped page %p", m));
4084 KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
4085 ("vm_page_free_prep: mapping flags set in page %p", m));
4086 } else {
4087 KASSERT(m->a.queue == PQ_NONE,
4088 ("vm_page_free_prep: unmanaged page %p is queued", m));
4089 }
4090 VM_CNT_INC(v_tfree);
4091
4092 if (m->object != NULL) {
4093 vm_page_radix_remove(m);
4094 vm_page_free_object_prep(m);
4095 } else
4096 vm_page_assert_unbusied(m);
4097
4098 vm_page_busy_free(m);
4099
4100 /*
4101 * If fictitious remove object association and
4102 * return.
4103 */
4104 if ((m->flags & PG_FICTITIOUS) != 0) {
4105 KASSERT(m->ref_count == 1,
4106 ("fictitious page %p is referenced", m));
4107 KASSERT(m->a.queue == PQ_NONE,
4108 ("fictitious page %p is queued", m));
4109 return (false);
4110 }
4111
4112 /*
4113 * Pages need not be dequeued before they are returned to the physical
4114 * memory allocator, but they must at least be marked for a deferred
4115 * dequeue.
4116 */
4117 if ((m->oflags & VPO_UNMANAGED) == 0)
4118 vm_page_dequeue_deferred(m);
4119
4120 m->valid = 0;
4121 vm_page_undirty(m);
4122
4123 if (m->ref_count != 0)
4124 panic("vm_page_free_prep: page %p has references", m);
4125
4126 /*
4127 * Restore the default memory attribute to the page.
4128 */
4129 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
4130 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
4131
4132 #if VM_NRESERVLEVEL > 0
4133 /*
4134 * Determine whether the page belongs to a reservation. If the page was
4135 * allocated from a per-CPU cache, it cannot belong to a reservation, so
4136 * as an optimization, we avoid the check in that case.
4137 */
4138 if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
4139 return (false);
4140 #endif
4141
4142 return (true);
4143 }
4144
4145 /*
4146 * vm_page_free_toq:
4147 *
4148 * Returns the given page to the free list, disassociating it
4149 * from any VM object.
4150 *
4151 * The object must be locked. The page must be exclusively busied if it
4152 * belongs to an object.
4153 */
4154 static void
vm_page_free_toq(vm_page_t m)4155 vm_page_free_toq(vm_page_t m)
4156 {
4157 struct vm_domain *vmd;
4158 uma_zone_t zone;
4159
4160 if (!vm_page_free_prep(m))
4161 return;
4162
4163 vmd = vm_pagequeue_domain(m);
4164 if (__predict_false((m->flags & PG_NOFREE) != 0)) {
4165 vm_page_free_nofree(vmd, m);
4166 return;
4167 }
4168 zone = vmd->vmd_pgcache[m->pool].zone;
4169 if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
4170 uma_zfree(zone, m);
4171 return;
4172 }
4173 vm_domain_free_lock(vmd);
4174 vm_phys_free_pages(m, m->pool, 0);
4175 vm_domain_free_unlock(vmd);
4176 vm_domain_freecnt_inc(vmd, 1);
4177 }
4178
4179 /*
4180 * vm_page_free_pages_toq:
4181 *
4182 * Returns a list of pages to the free list, disassociating it
4183 * from any VM object. In other words, this is equivalent to
4184 * calling vm_page_free_toq() for each page of a list of VM objects.
4185 */
4186 int
vm_page_free_pages_toq(struct spglist * free,bool update_wire_count)4187 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
4188 {
4189 vm_page_t m;
4190 int count;
4191
4192 if (SLIST_EMPTY(free))
4193 return (0);
4194
4195 count = 0;
4196 while ((m = SLIST_FIRST(free)) != NULL) {
4197 count++;
4198 SLIST_REMOVE_HEAD(free, plinks.s.ss);
4199 vm_page_free_toq(m);
4200 }
4201
4202 if (update_wire_count)
4203 vm_wire_sub(count);
4204 return (count);
4205 }
4206
4207 /*
4208 * Mark this page as wired down. For managed pages, this prevents reclamation
4209 * by the page daemon, or when the containing object, if any, is destroyed.
4210 */
4211 void
vm_page_wire(vm_page_t m)4212 vm_page_wire(vm_page_t m)
4213 {
4214 u_int old;
4215
4216 #ifdef INVARIANTS
4217 if (m->object != NULL && !vm_page_busied(m) &&
4218 !vm_object_busied(m->object))
4219 VM_OBJECT_ASSERT_LOCKED(m->object);
4220 #endif
4221 KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
4222 VPRC_WIRE_COUNT(m->ref_count) >= 1,
4223 ("vm_page_wire: fictitious page %p has zero wirings", m));
4224
4225 old = atomic_fetchadd_int(&m->ref_count, 1);
4226 KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
4227 ("vm_page_wire: counter overflow for page %p", m));
4228 if (VPRC_WIRE_COUNT(old) == 0) {
4229 if ((m->oflags & VPO_UNMANAGED) == 0)
4230 vm_page_aflag_set(m, PGA_DEQUEUE);
4231 vm_wire_add(1);
4232 }
4233 }
4234
4235 /*
4236 * Attempt to wire a mapped page following a pmap lookup of that page.
4237 * This may fail if a thread is concurrently tearing down mappings of the page.
4238 * The transient failure is acceptable because it translates to the
4239 * failure of the caller pmap_extract_and_hold(), which should be then
4240 * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages().
4241 */
4242 bool
vm_page_wire_mapped(vm_page_t m)4243 vm_page_wire_mapped(vm_page_t m)
4244 {
4245 u_int old;
4246
4247 old = atomic_load_int(&m->ref_count);
4248 do {
4249 KASSERT(old > 0,
4250 ("vm_page_wire_mapped: wiring unreferenced page %p", m));
4251 if ((old & VPRC_BLOCKED) != 0)
4252 return (false);
4253 } while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
4254
4255 if (VPRC_WIRE_COUNT(old) == 0) {
4256 if ((m->oflags & VPO_UNMANAGED) == 0)
4257 vm_page_aflag_set(m, PGA_DEQUEUE);
4258 vm_wire_add(1);
4259 }
4260 return (true);
4261 }
4262
4263 /*
4264 * Release a wiring reference to a managed page. If the page still belongs to
4265 * an object, update its position in the page queues to reflect the reference.
4266 * If the wiring was the last reference to the page, free the page.
4267 */
4268 static void
vm_page_unwire_managed(vm_page_t m,uint8_t nqueue,bool noreuse)4269 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse)
4270 {
4271 u_int old;
4272
4273 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4274 ("%s: page %p is unmanaged", __func__, m));
4275
4276 /*
4277 * Update LRU state before releasing the wiring reference.
4278 * Use a release store when updating the reference count to
4279 * synchronize with vm_page_free_prep().
4280 */
4281 old = atomic_load_int(&m->ref_count);
4282 do {
4283 u_int count;
4284
4285 KASSERT(VPRC_WIRE_COUNT(old) > 0,
4286 ("vm_page_unwire: wire count underflow for page %p", m));
4287
4288 count = old & ~VPRC_BLOCKED;
4289 if (count > VPRC_OBJREF + 1) {
4290 /*
4291 * The page has at least one other wiring reference. An
4292 * earlier iteration of this loop may have called
4293 * vm_page_release_toq() and cleared PGA_DEQUEUE, so
4294 * re-set it if necessary.
4295 */
4296 if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0)
4297 vm_page_aflag_set(m, PGA_DEQUEUE);
4298 } else if (count == VPRC_OBJREF + 1) {
4299 /*
4300 * This is the last wiring. Clear PGA_DEQUEUE and
4301 * update the page's queue state to reflect the
4302 * reference. If the page does not belong to an object
4303 * (i.e., the VPRC_OBJREF bit is clear), we only need to
4304 * clear leftover queue state.
4305 */
4306 vm_page_release_toq(m, nqueue, noreuse);
4307 } else if (count == 1) {
4308 vm_page_aflag_clear(m, PGA_DEQUEUE);
4309 }
4310 } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
4311
4312 if (VPRC_WIRE_COUNT(old) == 1) {
4313 vm_wire_sub(1);
4314 if (old == 1)
4315 vm_page_free(m);
4316 }
4317 }
4318
4319 /*
4320 * Release one wiring of the specified page, potentially allowing it to be
4321 * paged out.
4322 *
4323 * Only managed pages belonging to an object can be paged out. If the number
4324 * of wirings transitions to zero and the page is eligible for page out, then
4325 * the page is added to the specified paging queue. If the released wiring
4326 * represented the last reference to the page, the page is freed.
4327 */
4328 void
vm_page_unwire(vm_page_t m,uint8_t nqueue)4329 vm_page_unwire(vm_page_t m, uint8_t nqueue)
4330 {
4331
4332 KASSERT(nqueue < PQ_COUNT,
4333 ("vm_page_unwire: invalid queue %u request for page %p",
4334 nqueue, m));
4335
4336 if ((m->oflags & VPO_UNMANAGED) != 0) {
4337 if (vm_page_unwire_noq(m) && m->ref_count == 0)
4338 vm_page_free(m);
4339 return;
4340 }
4341 vm_page_unwire_managed(m, nqueue, false);
4342 }
4343
4344 /*
4345 * Unwire a page without (re-)inserting it into a page queue. It is up
4346 * to the caller to enqueue, requeue, or free the page as appropriate.
4347 * In most cases involving managed pages, vm_page_unwire() should be used
4348 * instead.
4349 */
4350 bool
vm_page_unwire_noq(vm_page_t m)4351 vm_page_unwire_noq(vm_page_t m)
4352 {
4353 u_int old;
4354
4355 old = vm_page_drop(m, 1);
4356 KASSERT(VPRC_WIRE_COUNT(old) != 0,
4357 ("%s: counter underflow for page %p", __func__, m));
4358 KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
4359 ("%s: missing ref on fictitious page %p", __func__, m));
4360
4361 if (VPRC_WIRE_COUNT(old) > 1)
4362 return (false);
4363 if ((m->oflags & VPO_UNMANAGED) == 0)
4364 vm_page_aflag_clear(m, PGA_DEQUEUE);
4365 vm_wire_sub(1);
4366 return (true);
4367 }
4368
4369 /*
4370 * Ensure that the page ends up in the specified page queue. If the page is
4371 * active or being moved to the active queue, ensure that its act_count is
4372 * at least ACT_INIT but do not otherwise mess with it.
4373 */
4374 static __always_inline void
vm_page_mvqueue(vm_page_t m,const uint8_t nqueue,const uint16_t nflag)4375 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag)
4376 {
4377 vm_page_astate_t old, new;
4378
4379 KASSERT(m->ref_count > 0,
4380 ("%s: page %p does not carry any references", __func__, m));
4381 KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD,
4382 ("%s: invalid flags %x", __func__, nflag));
4383
4384 if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
4385 return;
4386
4387 old = vm_page_astate_load(m);
4388 do {
4389 if ((old.flags & PGA_DEQUEUE) != 0)
4390 break;
4391 new = old;
4392 new.flags &= ~PGA_QUEUE_OP_MASK;
4393 if (nqueue == PQ_ACTIVE)
4394 new.act_count = max(old.act_count, ACT_INIT);
4395 if (old.queue == nqueue) {
4396 /*
4397 * There is no need to requeue pages already in the
4398 * active queue.
4399 */
4400 if (nqueue != PQ_ACTIVE ||
4401 (old.flags & PGA_ENQUEUED) == 0)
4402 new.flags |= nflag;
4403 } else {
4404 new.flags |= nflag;
4405 new.queue = nqueue;
4406 }
4407 } while (!vm_page_pqstate_commit(m, &old, new));
4408 }
4409
4410 /*
4411 * Put the specified page on the active list (if appropriate).
4412 */
4413 void
vm_page_activate(vm_page_t m)4414 vm_page_activate(vm_page_t m)
4415 {
4416
4417 vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE);
4418 }
4419
4420 /*
4421 * Move the specified page to the tail of the inactive queue, or requeue
4422 * the page if it is already in the inactive queue.
4423 */
4424 void
vm_page_deactivate(vm_page_t m)4425 vm_page_deactivate(vm_page_t m)
4426 {
4427
4428 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE);
4429 }
4430
4431 void
vm_page_deactivate_noreuse(vm_page_t m)4432 vm_page_deactivate_noreuse(vm_page_t m)
4433 {
4434
4435 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD);
4436 }
4437
4438 /*
4439 * Put a page in the laundry, or requeue it if it is already there.
4440 */
4441 void
vm_page_launder(vm_page_t m)4442 vm_page_launder(vm_page_t m)
4443 {
4444
4445 vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE);
4446 }
4447
4448 /*
4449 * Put a page in the PQ_UNSWAPPABLE holding queue.
4450 */
4451 void
vm_page_unswappable(vm_page_t m)4452 vm_page_unswappable(vm_page_t m)
4453 {
4454
4455 VM_OBJECT_ASSERT_LOCKED(m->object);
4456 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4457 ("page %p already unswappable", m));
4458
4459 vm_page_dequeue(m);
4460 vm_page_enqueue(m, PQ_UNSWAPPABLE);
4461 }
4462
4463 /*
4464 * Release a page back to the page queues in preparation for unwiring.
4465 */
4466 static void
vm_page_release_toq(vm_page_t m,uint8_t nqueue,const bool noreuse)4467 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse)
4468 {
4469 vm_page_astate_t old, new;
4470 uint16_t nflag;
4471
4472 /*
4473 * Use a check of the valid bits to determine whether we should
4474 * accelerate reclamation of the page. The object lock might not be
4475 * held here, in which case the check is racy. At worst we will either
4476 * accelerate reclamation of a valid page and violate LRU, or
4477 * unnecessarily defer reclamation of an invalid page.
4478 *
4479 * If we were asked to not cache the page, place it near the head of the
4480 * inactive queue so that is reclaimed sooner.
4481 */
4482 if (noreuse || vm_page_none_valid(m)) {
4483 nqueue = PQ_INACTIVE;
4484 nflag = PGA_REQUEUE_HEAD;
4485 } else {
4486 nflag = PGA_REQUEUE;
4487 }
4488
4489 old = vm_page_astate_load(m);
4490 do {
4491 new = old;
4492
4493 /*
4494 * If the page is already in the active queue and we are not
4495 * trying to accelerate reclamation, simply mark it as
4496 * referenced and avoid any queue operations.
4497 */
4498 new.flags &= ~PGA_QUEUE_OP_MASK;
4499 if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE &&
4500 (old.flags & PGA_ENQUEUED) != 0)
4501 new.flags |= PGA_REFERENCED;
4502 else {
4503 new.flags |= nflag;
4504 new.queue = nqueue;
4505 }
4506 } while (!vm_page_pqstate_commit(m, &old, new));
4507 }
4508
4509 /*
4510 * Unwire a page and either attempt to free it or re-add it to the page queues.
4511 */
4512 void
vm_page_release(vm_page_t m,int flags)4513 vm_page_release(vm_page_t m, int flags)
4514 {
4515 vm_object_t object;
4516
4517 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4518 ("vm_page_release: page %p is unmanaged", m));
4519
4520 if ((flags & VPR_TRYFREE) != 0) {
4521 for (;;) {
4522 object = atomic_load_ptr(&m->object);
4523 if (object == NULL)
4524 break;
4525 /* Depends on type-stability. */
4526 if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object))
4527 break;
4528 if (object == m->object) {
4529 vm_page_release_locked(m, flags);
4530 VM_OBJECT_WUNLOCK(object);
4531 return;
4532 }
4533 VM_OBJECT_WUNLOCK(object);
4534 }
4535 }
4536 vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0);
4537 }
4538
4539 /* See vm_page_release(). */
4540 void
vm_page_release_locked(vm_page_t m,int flags)4541 vm_page_release_locked(vm_page_t m, int flags)
4542 {
4543
4544 VM_OBJECT_ASSERT_WLOCKED(m->object);
4545 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4546 ("vm_page_release_locked: page %p is unmanaged", m));
4547
4548 if (vm_page_unwire_noq(m)) {
4549 if ((flags & VPR_TRYFREE) != 0 &&
4550 (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4551 m->dirty == 0 && vm_page_tryxbusy(m)) {
4552 /*
4553 * An unlocked lookup may have wired the page before the
4554 * busy lock was acquired, in which case the page must
4555 * not be freed.
4556 */
4557 if (__predict_true(!vm_page_wired(m))) {
4558 vm_page_free(m);
4559 return;
4560 }
4561 vm_page_xunbusy(m);
4562 } else {
4563 vm_page_release_toq(m, PQ_INACTIVE, flags != 0);
4564 }
4565 }
4566 }
4567
4568 static bool
vm_page_try_blocked_op(vm_page_t m,void (* op)(vm_page_t))4569 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4570 {
4571 u_int old;
4572
4573 KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4574 ("vm_page_try_blocked_op: page %p has no object", m));
4575 KASSERT(vm_page_busied(m),
4576 ("vm_page_try_blocked_op: page %p is not busy", m));
4577 VM_OBJECT_ASSERT_LOCKED(m->object);
4578
4579 old = atomic_load_int(&m->ref_count);
4580 do {
4581 KASSERT(old != 0,
4582 ("vm_page_try_blocked_op: page %p has no references", m));
4583 KASSERT((old & VPRC_BLOCKED) == 0,
4584 ("vm_page_try_blocked_op: page %p blocks wirings", m));
4585 if (VPRC_WIRE_COUNT(old) != 0)
4586 return (false);
4587 } while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4588
4589 (op)(m);
4590
4591 /*
4592 * If the object is read-locked, new wirings may be created via an
4593 * object lookup.
4594 */
4595 old = vm_page_drop(m, VPRC_BLOCKED);
4596 KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4597 old == (VPRC_BLOCKED | VPRC_OBJREF),
4598 ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4599 old, m));
4600 return (true);
4601 }
4602
4603 /*
4604 * Atomically check for wirings and remove all mappings of the page.
4605 */
4606 bool
vm_page_try_remove_all(vm_page_t m)4607 vm_page_try_remove_all(vm_page_t m)
4608 {
4609
4610 return (vm_page_try_blocked_op(m, pmap_remove_all));
4611 }
4612
4613 /*
4614 * Atomically check for wirings and remove all writeable mappings of the page.
4615 */
4616 bool
vm_page_try_remove_write(vm_page_t m)4617 vm_page_try_remove_write(vm_page_t m)
4618 {
4619
4620 return (vm_page_try_blocked_op(m, pmap_remove_write));
4621 }
4622
4623 /*
4624 * vm_page_advise
4625 *
4626 * Apply the specified advice to the given page.
4627 */
4628 void
vm_page_advise(vm_page_t m,int advice)4629 vm_page_advise(vm_page_t m, int advice)
4630 {
4631
4632 VM_OBJECT_ASSERT_WLOCKED(m->object);
4633 vm_page_assert_xbusied(m);
4634
4635 if (advice == MADV_FREE)
4636 /*
4637 * Mark the page clean. This will allow the page to be freed
4638 * without first paging it out. MADV_FREE pages are often
4639 * quickly reused by malloc(3), so we do not do anything that
4640 * would result in a page fault on a later access.
4641 */
4642 vm_page_undirty(m);
4643 else if (advice != MADV_DONTNEED) {
4644 if (advice == MADV_WILLNEED)
4645 vm_page_activate(m);
4646 return;
4647 }
4648
4649 if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4650 vm_page_dirty(m);
4651
4652 /*
4653 * Clear any references to the page. Otherwise, the page daemon will
4654 * immediately reactivate the page.
4655 */
4656 vm_page_aflag_clear(m, PGA_REFERENCED);
4657
4658 /*
4659 * Place clean pages near the head of the inactive queue rather than
4660 * the tail, thus defeating the queue's LRU operation and ensuring that
4661 * the page will be reused quickly. Dirty pages not already in the
4662 * laundry are moved there.
4663 */
4664 if (m->dirty == 0)
4665 vm_page_deactivate_noreuse(m);
4666 else if (!vm_page_in_laundry(m))
4667 vm_page_launder(m);
4668 }
4669
4670 /*
4671 * vm_page_grab_release
4672 *
4673 * Helper routine for grab functions to release busy on return.
4674 */
4675 static inline void
vm_page_grab_release(vm_page_t m,int allocflags)4676 vm_page_grab_release(vm_page_t m, int allocflags)
4677 {
4678
4679 if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4680 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4681 vm_page_sunbusy(m);
4682 else
4683 vm_page_xunbusy(m);
4684 }
4685 }
4686
4687 /*
4688 * vm_page_grab_sleep
4689 *
4690 * Sleep for busy according to VM_ALLOC_ parameters. Returns true
4691 * if the caller should retry and false otherwise.
4692 *
4693 * If the object is locked on entry the object will be unlocked with
4694 * false returns and still locked but possibly having been dropped
4695 * with true returns.
4696 */
4697 static bool
vm_page_grab_sleep(vm_object_t object,vm_page_t m,vm_pindex_t pindex,const char * wmesg,int allocflags,bool locked)4698 vm_page_grab_sleep(vm_object_t object, vm_page_t m, vm_pindex_t pindex,
4699 const char *wmesg, int allocflags, bool locked)
4700 {
4701
4702 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4703 return (false);
4704
4705 /*
4706 * Reference the page before unlocking and sleeping so that
4707 * the page daemon is less likely to reclaim it.
4708 */
4709 if (locked && (allocflags & VM_ALLOC_NOCREAT) == 0)
4710 vm_page_reference(m);
4711
4712 if (_vm_page_busy_sleep(object, m, pindex, wmesg, allocflags, locked) &&
4713 locked)
4714 VM_OBJECT_WLOCK(object);
4715 if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
4716 return (false);
4717
4718 return (true);
4719 }
4720
4721 /*
4722 * Assert that the grab flags are valid.
4723 */
4724 static inline void
vm_page_grab_check(int allocflags)4725 vm_page_grab_check(int allocflags)
4726 {
4727
4728 KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4729 (allocflags & VM_ALLOC_WIRED) != 0,
4730 ("vm_page_grab*: the pages must be busied or wired"));
4731
4732 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4733 (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4734 ("vm_page_grab*: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4735 }
4736
4737 /*
4738 * Calculate the page allocation flags for grab.
4739 */
4740 static inline int
vm_page_grab_pflags(int allocflags)4741 vm_page_grab_pflags(int allocflags)
4742 {
4743 int pflags;
4744
4745 pflags = allocflags &
4746 ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4747 VM_ALLOC_NOBUSY | VM_ALLOC_IGN_SBUSY | VM_ALLOC_NOCREAT);
4748 if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4749 pflags |= VM_ALLOC_WAITFAIL;
4750 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4751 pflags |= VM_ALLOC_SBUSY;
4752
4753 return (pflags);
4754 }
4755
4756 /*
4757 * Grab a page, waiting until we are woken up due to the page changing state.
4758 * We keep on waiting, if the page continues to be in the object, unless
4759 * allocflags forbid waiting.
4760 *
4761 * The object must be locked on entry. This routine may sleep. The lock will,
4762 * however, be released and reacquired if the routine sleeps.
4763 *
4764 * Return a grabbed page, or NULL. Set *found if a page was found, whether or
4765 * not it was grabbed.
4766 */
4767 static inline vm_page_t
vm_page_grab_lookup(vm_object_t object,vm_pindex_t pindex,int allocflags,bool * found,struct pctrie_iter * pages)4768 vm_page_grab_lookup(vm_object_t object, vm_pindex_t pindex, int allocflags,
4769 bool *found, struct pctrie_iter *pages)
4770 {
4771 vm_page_t m;
4772
4773 while ((*found = (m = vm_radix_iter_lookup(pages, pindex)) != NULL) &&
4774 !vm_page_tryacquire(m, allocflags)) {
4775 if (!vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4776 allocflags, true))
4777 return (NULL);
4778 pctrie_iter_reset(pages);
4779 }
4780 return (m);
4781 }
4782
4783 /*
4784 * Grab a page. Use an iterator parameter. Keep on waiting, as long as the page
4785 * exists in the object. If the page doesn't exist, first allocate it and then
4786 * conditionally zero it.
4787 *
4788 * The object must be locked on entry. This routine may sleep. The lock will,
4789 * however, be released and reacquired if the routine sleeps.
4790 */
4791 vm_page_t
vm_page_grab_iter(vm_object_t object,vm_pindex_t pindex,int allocflags,struct pctrie_iter * pages)4792 vm_page_grab_iter(vm_object_t object, vm_pindex_t pindex, int allocflags,
4793 struct pctrie_iter *pages)
4794 {
4795 vm_page_t m;
4796 bool found;
4797
4798 VM_OBJECT_ASSERT_WLOCKED(object);
4799 vm_page_grab_check(allocflags);
4800
4801 while ((m = vm_page_grab_lookup(
4802 object, pindex, allocflags, &found, pages)) == NULL) {
4803 if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4804 return (NULL);
4805 if (found &&
4806 (allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
4807 return (NULL);
4808 m = vm_page_alloc_iter(object, pindex,
4809 vm_page_grab_pflags(allocflags), pages);
4810 if (m != NULL) {
4811 if ((allocflags & VM_ALLOC_ZERO) != 0 &&
4812 (m->flags & PG_ZERO) == 0)
4813 pmap_zero_page(m);
4814 break;
4815 }
4816 if ((allocflags &
4817 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
4818 return (NULL);
4819 }
4820 vm_page_grab_release(m, allocflags);
4821
4822 return (m);
4823 }
4824
4825 /*
4826 * Grab a page. Keep on waiting, as long as the page exists in the object. If
4827 * the page doesn't exist, first allocate it and then conditionally zero it.
4828 *
4829 * The object must be locked on entry. This routine may sleep. The lock will,
4830 * however, be released and reacquired if the routine sleeps.
4831 */
4832 vm_page_t
vm_page_grab(vm_object_t object,vm_pindex_t pindex,int allocflags)4833 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4834 {
4835 struct pctrie_iter pages;
4836
4837 VM_OBJECT_ASSERT_WLOCKED(object);
4838 vm_page_iter_init(&pages, object);
4839 return (vm_page_grab_iter(object, pindex, allocflags, &pages));
4840 }
4841
4842 /*
4843 * Attempt to validate a page, locklessly acquiring it if necessary, given a
4844 * (object, pindex) tuple and either an invalided page or NULL. The resulting
4845 * page will be validated against the identity tuple, and busied or wired as
4846 * requested. A NULL page returned guarantees that the page was not in radix at
4847 * the time of the call but callers must perform higher level synchronization or
4848 * retry the operation under a lock if they require an atomic answer. This is
4849 * the only lock free validation routine, other routines can depend on the
4850 * resulting page state.
4851 *
4852 * The return value PAGE_NOT_ACQUIRED indicates that the operation failed due to
4853 * caller flags.
4854 */
4855 #define PAGE_NOT_ACQUIRED ((vm_page_t)1)
4856 static vm_page_t
vm_page_acquire_unlocked(vm_object_t object,vm_pindex_t pindex,vm_page_t m,int allocflags)4857 vm_page_acquire_unlocked(vm_object_t object, vm_pindex_t pindex, vm_page_t m,
4858 int allocflags)
4859 {
4860 if (m == NULL)
4861 m = vm_page_lookup_unlocked(object, pindex);
4862 for (; m != NULL; m = vm_page_lookup_unlocked(object, pindex)) {
4863 if (vm_page_trybusy(m, allocflags)) {
4864 if (m->object == object && m->pindex == pindex) {
4865 if ((allocflags & VM_ALLOC_WIRED) != 0)
4866 vm_page_wire(m);
4867 vm_page_grab_release(m, allocflags);
4868 break;
4869 }
4870 /* relookup. */
4871 vm_page_busy_release(m);
4872 cpu_spinwait();
4873 continue;
4874 }
4875 if (!vm_page_grab_sleep(object, m, pindex, "pgnslp",
4876 allocflags, false))
4877 return (PAGE_NOT_ACQUIRED);
4878 }
4879 return (m);
4880 }
4881
4882 /*
4883 * Try to locklessly grab a page and fall back to the object lock if NOCREAT
4884 * is not set.
4885 */
4886 vm_page_t
vm_page_grab_unlocked(vm_object_t object,vm_pindex_t pindex,int allocflags)4887 vm_page_grab_unlocked(vm_object_t object, vm_pindex_t pindex, int allocflags)
4888 {
4889 vm_page_t m;
4890
4891 vm_page_grab_check(allocflags);
4892 m = vm_page_acquire_unlocked(object, pindex, NULL, allocflags);
4893 if (m == PAGE_NOT_ACQUIRED)
4894 return (NULL);
4895 if (m != NULL)
4896 return (m);
4897
4898 /*
4899 * The radix lockless lookup should never return a false negative
4900 * errors. If the user specifies NOCREAT they are guaranteed there
4901 * was no page present at the instant of the call. A NOCREAT caller
4902 * must handle create races gracefully.
4903 */
4904 if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4905 return (NULL);
4906
4907 VM_OBJECT_WLOCK(object);
4908 m = vm_page_grab(object, pindex, allocflags);
4909 VM_OBJECT_WUNLOCK(object);
4910
4911 return (m);
4912 }
4913
4914 /*
4915 * Grab a page and make it valid, paging in if necessary. Use an iterator
4916 * parameter. Pages missing from their pager are zero filled and validated. If
4917 * a VM_ALLOC_COUNT is supplied and the page is not valid as many as
4918 * VM_INITIAL_PAGEIN pages can be brought in simultaneously. Additional pages
4919 * will be left on a paging queue but will neither be wired nor busy regardless
4920 * of allocflags.
4921 */
4922 int
vm_page_grab_valid_iter(vm_page_t * mp,vm_object_t object,vm_pindex_t pindex,int allocflags,struct pctrie_iter * pages)4923 vm_page_grab_valid_iter(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex,
4924 int allocflags, struct pctrie_iter *pages)
4925 {
4926 vm_page_t m;
4927 vm_page_t ma[VM_INITIAL_PAGEIN];
4928 int after, ahead, i, pflags, rv;
4929
4930 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4931 (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4932 ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4933 KASSERT((allocflags &
4934 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4935 ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4936 VM_OBJECT_ASSERT_WLOCKED(object);
4937 pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY |
4938 VM_ALLOC_WIRED | VM_ALLOC_IGN_SBUSY);
4939 pflags |= VM_ALLOC_WAITFAIL;
4940
4941 retrylookup:
4942 if ((m = vm_radix_iter_lookup(pages, pindex)) != NULL) {
4943 /*
4944 * If the page is fully valid it can only become invalid
4945 * with the object lock held. If it is not valid it can
4946 * become valid with the busy lock held. Therefore, we
4947 * may unnecessarily lock the exclusive busy here if we
4948 * race with I/O completion not using the object lock.
4949 * However, we will not end up with an invalid page and a
4950 * shared lock.
4951 */
4952 if (!vm_page_trybusy(m,
4953 vm_page_all_valid(m) ? allocflags : 0)) {
4954 (void)vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4955 allocflags, true);
4956 pctrie_iter_reset(pages);
4957 goto retrylookup;
4958 }
4959 if (vm_page_all_valid(m))
4960 goto out;
4961 if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4962 vm_page_busy_release(m);
4963 *mp = NULL;
4964 return (VM_PAGER_FAIL);
4965 }
4966 } else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4967 *mp = NULL;
4968 return (VM_PAGER_FAIL);
4969 } else {
4970 m = vm_page_alloc_iter(object, pindex, pflags, pages);
4971 if (m == NULL) {
4972 if (!vm_pager_can_alloc_page(object, pindex)) {
4973 *mp = NULL;
4974 return (VM_PAGER_AGAIN);
4975 }
4976 goto retrylookup;
4977 }
4978 }
4979
4980 vm_page_assert_xbusied(m);
4981 if (vm_pager_has_page(object, pindex, NULL, &after)) {
4982 after = MIN(after, VM_INITIAL_PAGEIN);
4983 after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT);
4984 after = MAX(after, 1);
4985 ma[0] = m;
4986 pctrie_iter_reset(pages);
4987 for (i = 1; i < after; i++) {
4988 m = vm_radix_iter_lookup_ge(pages, pindex + i);
4989 ahead = after;
4990 if (m != NULL)
4991 ahead = MIN(ahead, m->pindex - pindex);
4992 for (; i < ahead; i++) {
4993 ma[i] = vm_page_alloc_iter(object, pindex + i,
4994 VM_ALLOC_NORMAL, pages);
4995 if (ma[i] == NULL)
4996 break;
4997 }
4998 if (m == NULL || m->pindex != pindex + i ||
4999 vm_page_any_valid(m) || !vm_page_tryxbusy(m))
5000 break;
5001 ma[i] = m;
5002 }
5003 after = i;
5004 vm_object_pip_add(object, after);
5005 VM_OBJECT_WUNLOCK(object);
5006 rv = vm_pager_get_pages(object, ma, after, NULL, NULL);
5007 pctrie_iter_reset(pages);
5008 VM_OBJECT_WLOCK(object);
5009 vm_object_pip_wakeupn(object, after);
5010 /* Pager may have replaced a page. */
5011 m = ma[0];
5012 if (rv != VM_PAGER_OK) {
5013 for (i = 0; i < after; i++) {
5014 if (!vm_page_wired(ma[i]))
5015 vm_page_free(ma[i]);
5016 else
5017 vm_page_xunbusy(ma[i]);
5018 }
5019 *mp = NULL;
5020 return (rv);
5021 }
5022 for (i = 1; i < after; i++)
5023 vm_page_readahead_finish(ma[i]);
5024 MPASS(vm_page_all_valid(m));
5025 } else {
5026 vm_page_zero_invalid(m, TRUE);
5027 pctrie_iter_reset(pages);
5028 }
5029 out:
5030 if ((allocflags & VM_ALLOC_WIRED) != 0)
5031 vm_page_wire(m);
5032 if ((allocflags & VM_ALLOC_SBUSY) != 0 && vm_page_xbusied(m))
5033 vm_page_busy_downgrade(m);
5034 else if ((allocflags & VM_ALLOC_NOBUSY) != 0)
5035 vm_page_busy_release(m);
5036 *mp = m;
5037 return (VM_PAGER_OK);
5038 }
5039
5040 /*
5041 * Grab a page and make it valid, paging in if necessary. Pages missing from
5042 * their pager are zero filled and validated. If a VM_ALLOC_COUNT is supplied
5043 * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought
5044 * in simultaneously. Additional pages will be left on a paging queue but
5045 * will neither be wired nor busy regardless of allocflags.
5046 */
5047 int
vm_page_grab_valid(vm_page_t * mp,vm_object_t object,vm_pindex_t pindex,int allocflags)5048 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex,
5049 int allocflags)
5050 {
5051 struct pctrie_iter pages;
5052
5053 VM_OBJECT_ASSERT_WLOCKED(object);
5054 vm_page_iter_init(&pages, object);
5055 return (vm_page_grab_valid_iter(mp, object, pindex, allocflags,
5056 &pages));
5057 }
5058
5059 /*
5060 * Grab a page. Keep on waiting, as long as the page exists in the object. If
5061 * the page doesn't exist, and the pager has it, allocate it and zero part of
5062 * it.
5063 *
5064 * The object must be locked on entry. This routine may sleep. The lock will,
5065 * however, be released and reacquired if the routine sleeps.
5066 */
5067 int
vm_page_grab_zero_partial(vm_object_t object,vm_pindex_t pindex,int base,int end)5068 vm_page_grab_zero_partial(vm_object_t object, vm_pindex_t pindex, int base,
5069 int end)
5070 {
5071 struct pctrie_iter pages;
5072 vm_page_t m;
5073 int allocflags, rv;
5074 bool found;
5075
5076 VM_OBJECT_ASSERT_WLOCKED(object);
5077 KASSERT(base >= 0, ("%s: base %d", __func__, base));
5078 KASSERT(end - base <= PAGE_SIZE, ("%s: base %d end %d", __func__, base,
5079 end));
5080
5081 allocflags = VM_ALLOC_NOCREAT | VM_ALLOC_NORMAL | VM_ALLOC_WAITFAIL;
5082 vm_page_iter_init(&pages, object);
5083 while ((m = vm_page_grab_lookup(
5084 object, pindex, allocflags, &found, &pages)) == NULL) {
5085 if (!vm_pager_has_page(object, pindex, NULL, NULL))
5086 return (0);
5087 m = vm_page_alloc_iter(object, pindex,
5088 vm_page_grab_pflags(allocflags), &pages);
5089 if (m != NULL) {
5090 vm_object_pip_add(object, 1);
5091 VM_OBJECT_WUNLOCK(object);
5092 rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
5093 VM_OBJECT_WLOCK(object);
5094 vm_object_pip_wakeup(object);
5095 if (rv != VM_PAGER_OK) {
5096 vm_page_free(m);
5097 return (EIO);
5098 }
5099
5100 /*
5101 * Since the page was not resident, and therefore not
5102 * recently accessed, immediately enqueue it for
5103 * asynchronous laundering. The current operation is
5104 * not regarded as an access.
5105 */
5106 vm_page_launder(m);
5107 break;
5108 }
5109 }
5110
5111 pmap_zero_page_area(m, base, end - base);
5112 KASSERT(vm_page_all_valid(m), ("%s: page %p is invalid", __func__, m));
5113 vm_page_set_dirty(m);
5114 vm_page_xunbusy(m);
5115 return (0);
5116 }
5117
5118 /*
5119 * Locklessly grab a valid page. If the page is not valid or not yet
5120 * allocated this will fall back to the object lock method.
5121 */
5122 int
vm_page_grab_valid_unlocked(vm_page_t * mp,vm_object_t object,vm_pindex_t pindex,int allocflags)5123 vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object,
5124 vm_pindex_t pindex, int allocflags)
5125 {
5126 vm_page_t m;
5127 int flags;
5128 int error;
5129
5130 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
5131 (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
5132 ("vm_page_grab_valid_unlocked: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY "
5133 "mismatch"));
5134 KASSERT((allocflags &
5135 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
5136 ("vm_page_grab_valid_unlocked: Invalid flags 0x%X", allocflags));
5137
5138 /*
5139 * Attempt a lockless lookup and busy. We need at least an sbusy
5140 * before we can inspect the valid field and return a wired page.
5141 */
5142 flags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
5143 vm_page_grab_check(flags);
5144 m = vm_page_acquire_unlocked(object, pindex, NULL, flags);
5145 if (m == PAGE_NOT_ACQUIRED)
5146 return (VM_PAGER_FAIL);
5147 if (m != NULL) {
5148 if (vm_page_all_valid(m)) {
5149 if ((allocflags & VM_ALLOC_WIRED) != 0)
5150 vm_page_wire(m);
5151 vm_page_grab_release(m, allocflags);
5152 *mp = m;
5153 return (VM_PAGER_OK);
5154 }
5155 vm_page_busy_release(m);
5156 }
5157 if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
5158 *mp = NULL;
5159 return (VM_PAGER_FAIL);
5160 }
5161 VM_OBJECT_WLOCK(object);
5162 error = vm_page_grab_valid(mp, object, pindex, allocflags);
5163 VM_OBJECT_WUNLOCK(object);
5164
5165 return (error);
5166 }
5167
5168 /*
5169 * Return the specified range of pages from the given object. For each
5170 * page offset within the range, if a page already exists within the object
5171 * at that offset and it is busy, then wait for it to change state. If,
5172 * instead, the page doesn't exist, then allocate it.
5173 *
5174 * The caller must always specify an allocation class.
5175 *
5176 * allocation classes:
5177 * VM_ALLOC_NORMAL normal process request
5178 * VM_ALLOC_SYSTEM system *really* needs the pages
5179 * VM_ALLOC_INTERRUPT interrupt time request
5180 *
5181 * The caller must always specify that the pages are to be busied and/or
5182 * wired.
5183 *
5184 * optional allocation flags:
5185 * VM_ALLOC_IGN_SBUSY do not sleep on soft busy pages
5186 * VM_ALLOC_NOBUSY do not exclusive busy the pages
5187 * VM_ALLOC_NODUMP do not include the pages in a kernel core dump
5188 * VM_ALLOC_NOFREE pages will never be freed
5189 * VM_ALLOC_NOWAIT do not sleep
5190 * VM_ALLOC_SBUSY set pages to sbusy state
5191 * VM_ALLOC_WAITFAIL in case of failure, sleep before returning
5192 * VM_ALLOC_WAITOK ignored (default behavior)
5193 * VM_ALLOC_WIRED wire the pages
5194 * VM_ALLOC_ZERO zero and validate any invalid pages
5195 *
5196 * If VM_ALLOC_NOWAIT is not specified, this routine may sleep. Otherwise, it
5197 * may return a partial prefix of the requested range.
5198 */
5199 int
vm_page_grab_pages(vm_object_t object,vm_pindex_t pindex,int allocflags,vm_page_t * ma,int count)5200 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
5201 vm_page_t *ma, int count)
5202 {
5203 struct pctrie_iter pages;
5204 vm_page_t m;
5205 int pflags;
5206 int ahead, i;
5207
5208 VM_OBJECT_ASSERT_WLOCKED(object);
5209 KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
5210 ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
5211 KASSERT(count > 0,
5212 ("vm_page_grab_pages: invalid page count %d", count));
5213 vm_page_grab_check(allocflags);
5214
5215 pflags = vm_page_grab_pflags(allocflags);
5216 i = 0;
5217 vm_page_iter_init(&pages, object);
5218 retrylookup:
5219 ahead = -1;
5220 for (; i < count; i++) {
5221 if (ahead < 0) {
5222 ahead = vm_radix_iter_lookup_range(
5223 &pages, pindex + i, &ma[i], count - i);
5224 }
5225 if (ahead-- > 0) {
5226 m = ma[i];
5227 if (!vm_page_tryacquire(m, allocflags)) {
5228 if (vm_page_grab_sleep(object, m, pindex + i,
5229 "grbmaw", allocflags, true)) {
5230 pctrie_iter_reset(&pages);
5231 goto retrylookup;
5232 }
5233 break;
5234 }
5235 } else {
5236 if ((allocflags & VM_ALLOC_NOCREAT) != 0)
5237 break;
5238 m = vm_page_alloc_iter(object, pindex + i,
5239 pflags | VM_ALLOC_COUNT(count - i), &pages);
5240 /* pages was reset if alloc_iter lost the lock. */
5241 if (m == NULL) {
5242 if ((allocflags & (VM_ALLOC_NOWAIT |
5243 VM_ALLOC_WAITFAIL)) != 0)
5244 break;
5245 goto retrylookup;
5246 }
5247 ma[i] = m;
5248 }
5249 if (vm_page_none_valid(m) &&
5250 (allocflags & VM_ALLOC_ZERO) != 0) {
5251 if ((m->flags & PG_ZERO) == 0)
5252 pmap_zero_page(m);
5253 vm_page_valid(m);
5254 }
5255 vm_page_grab_release(m, allocflags);
5256 }
5257 return (i);
5258 }
5259
5260 /*
5261 * Unlocked variant of vm_page_grab_pages(). This accepts the same flags
5262 * and will fall back to the locked variant to handle allocation.
5263 */
5264 int
vm_page_grab_pages_unlocked(vm_object_t object,vm_pindex_t pindex,int allocflags,vm_page_t * ma,int count)5265 vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex,
5266 int allocflags, vm_page_t *ma, int count)
5267 {
5268 vm_page_t m;
5269 int flags;
5270 int i, num_fetched;
5271
5272 KASSERT(count > 0,
5273 ("vm_page_grab_pages_unlocked: invalid page count %d", count));
5274 vm_page_grab_check(allocflags);
5275
5276 /*
5277 * Modify flags for lockless acquire to hold the page until we
5278 * set it valid if necessary.
5279 */
5280 flags = allocflags & ~VM_ALLOC_NOBUSY;
5281 vm_page_grab_check(flags);
5282 num_fetched = vm_radix_lookup_range_unlocked(&object->rtree, pindex,
5283 ma, count);
5284 for (i = 0; i < num_fetched; i++, pindex++) {
5285 m = vm_page_acquire_unlocked(object, pindex, ma[i], flags);
5286 if (m == PAGE_NOT_ACQUIRED)
5287 return (i);
5288 if (m == NULL)
5289 break;
5290 if ((flags & VM_ALLOC_ZERO) != 0 && vm_page_none_valid(m)) {
5291 if ((m->flags & PG_ZERO) == 0)
5292 pmap_zero_page(m);
5293 vm_page_valid(m);
5294 }
5295 /* m will still be wired or busy according to flags. */
5296 vm_page_grab_release(m, allocflags);
5297 /* vm_page_acquire_unlocked() may not return ma[i]. */
5298 ma[i] = m;
5299 }
5300 if (i == count || (allocflags & VM_ALLOC_NOCREAT) != 0)
5301 return (i);
5302 count -= i;
5303 VM_OBJECT_WLOCK(object);
5304 i += vm_page_grab_pages(object, pindex, allocflags, &ma[i], count);
5305 VM_OBJECT_WUNLOCK(object);
5306
5307 return (i);
5308 }
5309
5310 /*
5311 * Mapping function for valid or dirty bits in a page.
5312 *
5313 * Inputs are required to range within a page.
5314 */
5315 vm_page_bits_t
vm_page_bits(int base,int size)5316 vm_page_bits(int base, int size)
5317 {
5318 int first_bit;
5319 int last_bit;
5320
5321 KASSERT(
5322 base + size <= PAGE_SIZE,
5323 ("vm_page_bits: illegal base/size %d/%d", base, size)
5324 );
5325
5326 if (size == 0) /* handle degenerate case */
5327 return (0);
5328
5329 first_bit = base >> DEV_BSHIFT;
5330 last_bit = (base + size - 1) >> DEV_BSHIFT;
5331
5332 return (((vm_page_bits_t)2 << last_bit) -
5333 ((vm_page_bits_t)1 << first_bit));
5334 }
5335
5336 void
vm_page_bits_set(vm_page_t m,vm_page_bits_t * bits,vm_page_bits_t set)5337 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
5338 {
5339
5340 #if PAGE_SIZE == 32768
5341 atomic_set_64((uint64_t *)bits, set);
5342 #elif PAGE_SIZE == 16384
5343 atomic_set_32((uint32_t *)bits, set);
5344 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
5345 atomic_set_16((uint16_t *)bits, set);
5346 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
5347 atomic_set_8((uint8_t *)bits, set);
5348 #else /* PAGE_SIZE <= 8192 */
5349 uintptr_t addr;
5350 int shift;
5351
5352 addr = (uintptr_t)bits;
5353 /*
5354 * Use a trick to perform a 32-bit atomic on the
5355 * containing aligned word, to not depend on the existence
5356 * of atomic_{set, clear}_{8, 16}.
5357 */
5358 shift = addr & (sizeof(uint32_t) - 1);
5359 #if BYTE_ORDER == BIG_ENDIAN
5360 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5361 #else
5362 shift *= NBBY;
5363 #endif
5364 addr &= ~(sizeof(uint32_t) - 1);
5365 atomic_set_32((uint32_t *)addr, set << shift);
5366 #endif /* PAGE_SIZE */
5367 }
5368
5369 static inline void
vm_page_bits_clear(vm_page_t m,vm_page_bits_t * bits,vm_page_bits_t clear)5370 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
5371 {
5372
5373 #if PAGE_SIZE == 32768
5374 atomic_clear_64((uint64_t *)bits, clear);
5375 #elif PAGE_SIZE == 16384
5376 atomic_clear_32((uint32_t *)bits, clear);
5377 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
5378 atomic_clear_16((uint16_t *)bits, clear);
5379 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
5380 atomic_clear_8((uint8_t *)bits, clear);
5381 #else /* PAGE_SIZE <= 8192 */
5382 uintptr_t addr;
5383 int shift;
5384
5385 addr = (uintptr_t)bits;
5386 /*
5387 * Use a trick to perform a 32-bit atomic on the
5388 * containing aligned word, to not depend on the existence
5389 * of atomic_{set, clear}_{8, 16}.
5390 */
5391 shift = addr & (sizeof(uint32_t) - 1);
5392 #if BYTE_ORDER == BIG_ENDIAN
5393 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5394 #else
5395 shift *= NBBY;
5396 #endif
5397 addr &= ~(sizeof(uint32_t) - 1);
5398 atomic_clear_32((uint32_t *)addr, clear << shift);
5399 #endif /* PAGE_SIZE */
5400 }
5401
5402 static inline vm_page_bits_t
vm_page_bits_swap(vm_page_t m,vm_page_bits_t * bits,vm_page_bits_t newbits)5403 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits)
5404 {
5405 #if PAGE_SIZE == 32768
5406 uint64_t old;
5407
5408 old = *bits;
5409 while (atomic_fcmpset_64(bits, &old, newbits) == 0);
5410 return (old);
5411 #elif PAGE_SIZE == 16384
5412 uint32_t old;
5413
5414 old = *bits;
5415 while (atomic_fcmpset_32(bits, &old, newbits) == 0);
5416 return (old);
5417 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16)
5418 uint16_t old;
5419
5420 old = *bits;
5421 while (atomic_fcmpset_16(bits, &old, newbits) == 0);
5422 return (old);
5423 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8)
5424 uint8_t old;
5425
5426 old = *bits;
5427 while (atomic_fcmpset_8(bits, &old, newbits) == 0);
5428 return (old);
5429 #else /* PAGE_SIZE <= 4096*/
5430 uintptr_t addr;
5431 uint32_t old, new, mask;
5432 int shift;
5433
5434 addr = (uintptr_t)bits;
5435 /*
5436 * Use a trick to perform a 32-bit atomic on the
5437 * containing aligned word, to not depend on the existence
5438 * of atomic_{set, swap, clear}_{8, 16}.
5439 */
5440 shift = addr & (sizeof(uint32_t) - 1);
5441 #if BYTE_ORDER == BIG_ENDIAN
5442 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5443 #else
5444 shift *= NBBY;
5445 #endif
5446 addr &= ~(sizeof(uint32_t) - 1);
5447 mask = VM_PAGE_BITS_ALL << shift;
5448
5449 old = *bits;
5450 do {
5451 new = old & ~mask;
5452 new |= newbits << shift;
5453 } while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0);
5454 return (old >> shift);
5455 #endif /* PAGE_SIZE */
5456 }
5457
5458 /*
5459 * vm_page_set_valid_range:
5460 *
5461 * Sets portions of a page valid. The arguments are expected
5462 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5463 * of any partial chunks touched by the range. The invalid portion of
5464 * such chunks will be zeroed.
5465 *
5466 * (base + size) must be less then or equal to PAGE_SIZE.
5467 */
5468 void
vm_page_set_valid_range(vm_page_t m,int base,int size)5469 vm_page_set_valid_range(vm_page_t m, int base, int size)
5470 {
5471 int endoff, frag;
5472 vm_page_bits_t pagebits;
5473
5474 vm_page_assert_busied(m);
5475 if (size == 0) /* handle degenerate case */
5476 return;
5477
5478 /*
5479 * If the base is not DEV_BSIZE aligned and the valid
5480 * bit is clear, we have to zero out a portion of the
5481 * first block.
5482 */
5483 if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5484 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
5485 pmap_zero_page_area(m, frag, base - frag);
5486
5487 /*
5488 * If the ending offset is not DEV_BSIZE aligned and the
5489 * valid bit is clear, we have to zero out a portion of
5490 * the last block.
5491 */
5492 endoff = base + size;
5493 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5494 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
5495 pmap_zero_page_area(m, endoff,
5496 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5497
5498 /*
5499 * Assert that no previously invalid block that is now being validated
5500 * is already dirty.
5501 */
5502 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
5503 ("vm_page_set_valid_range: page %p is dirty", m));
5504
5505 /*
5506 * Set valid bits inclusive of any overlap.
5507 */
5508 pagebits = vm_page_bits(base, size);
5509 if (vm_page_xbusied(m))
5510 m->valid |= pagebits;
5511 else
5512 vm_page_bits_set(m, &m->valid, pagebits);
5513 }
5514
5515 /*
5516 * Set the page dirty bits and free the invalid swap space if
5517 * present. Returns the previous dirty bits.
5518 */
5519 vm_page_bits_t
vm_page_set_dirty(vm_page_t m)5520 vm_page_set_dirty(vm_page_t m)
5521 {
5522 vm_page_bits_t old;
5523
5524 VM_PAGE_OBJECT_BUSY_ASSERT(m);
5525
5526 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) {
5527 old = m->dirty;
5528 m->dirty = VM_PAGE_BITS_ALL;
5529 } else
5530 old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL);
5531 if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0)
5532 vm_pager_page_unswapped(m);
5533
5534 return (old);
5535 }
5536
5537 /*
5538 * Clear the given bits from the specified page's dirty field.
5539 */
5540 static __inline void
vm_page_clear_dirty_mask(vm_page_t m,vm_page_bits_t pagebits)5541 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
5542 {
5543
5544 vm_page_assert_busied(m);
5545
5546 /*
5547 * If the page is xbusied and not write mapped we are the
5548 * only thread that can modify dirty bits. Otherwise, The pmap
5549 * layer can call vm_page_dirty() without holding a distinguished
5550 * lock. The combination of page busy and atomic operations
5551 * suffice to guarantee consistency of the page dirty field.
5552 */
5553 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
5554 m->dirty &= ~pagebits;
5555 else
5556 vm_page_bits_clear(m, &m->dirty, pagebits);
5557 }
5558
5559 /*
5560 * vm_page_set_validclean:
5561 *
5562 * Sets portions of a page valid and clean. The arguments are expected
5563 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5564 * of any partial chunks touched by the range. The invalid portion of
5565 * such chunks will be zero'd.
5566 *
5567 * (base + size) must be less then or equal to PAGE_SIZE.
5568 */
5569 void
vm_page_set_validclean(vm_page_t m,int base,int size)5570 vm_page_set_validclean(vm_page_t m, int base, int size)
5571 {
5572 vm_page_bits_t oldvalid, pagebits;
5573 int endoff, frag;
5574
5575 vm_page_assert_busied(m);
5576 if (size == 0) /* handle degenerate case */
5577 return;
5578
5579 /*
5580 * If the base is not DEV_BSIZE aligned and the valid
5581 * bit is clear, we have to zero out a portion of the
5582 * first block.
5583 */
5584 if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5585 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
5586 pmap_zero_page_area(m, frag, base - frag);
5587
5588 /*
5589 * If the ending offset is not DEV_BSIZE aligned and the
5590 * valid bit is clear, we have to zero out a portion of
5591 * the last block.
5592 */
5593 endoff = base + size;
5594 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5595 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
5596 pmap_zero_page_area(m, endoff,
5597 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5598
5599 /*
5600 * Set valid, clear dirty bits. If validating the entire
5601 * page we can safely clear the pmap modify bit. We also
5602 * use this opportunity to clear the PGA_NOSYNC flag. If a process
5603 * takes a write fault on a MAP_NOSYNC memory area the flag will
5604 * be set again.
5605 *
5606 * We set valid bits inclusive of any overlap, but we can only
5607 * clear dirty bits for DEV_BSIZE chunks that are fully within
5608 * the range.
5609 */
5610 oldvalid = m->valid;
5611 pagebits = vm_page_bits(base, size);
5612 if (vm_page_xbusied(m))
5613 m->valid |= pagebits;
5614 else
5615 vm_page_bits_set(m, &m->valid, pagebits);
5616 #if 0 /* NOT YET */
5617 if ((frag = base & (DEV_BSIZE - 1)) != 0) {
5618 frag = DEV_BSIZE - frag;
5619 base += frag;
5620 size -= frag;
5621 if (size < 0)
5622 size = 0;
5623 }
5624 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
5625 #endif
5626 if (base == 0 && size == PAGE_SIZE) {
5627 /*
5628 * The page can only be modified within the pmap if it is
5629 * mapped, and it can only be mapped if it was previously
5630 * fully valid.
5631 */
5632 if (oldvalid == VM_PAGE_BITS_ALL)
5633 /*
5634 * Perform the pmap_clear_modify() first. Otherwise,
5635 * a concurrent pmap operation, such as
5636 * pmap_protect(), could clear a modification in the
5637 * pmap and set the dirty field on the page before
5638 * pmap_clear_modify() had begun and after the dirty
5639 * field was cleared here.
5640 */
5641 pmap_clear_modify(m);
5642 m->dirty = 0;
5643 vm_page_aflag_clear(m, PGA_NOSYNC);
5644 } else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
5645 m->dirty &= ~pagebits;
5646 else
5647 vm_page_clear_dirty_mask(m, pagebits);
5648 }
5649
5650 void
vm_page_clear_dirty(vm_page_t m,int base,int size)5651 vm_page_clear_dirty(vm_page_t m, int base, int size)
5652 {
5653
5654 vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
5655 }
5656
5657 /*
5658 * vm_page_set_invalid:
5659 *
5660 * Invalidates DEV_BSIZE'd chunks within a page. Both the
5661 * valid and dirty bits for the effected areas are cleared.
5662 */
5663 void
vm_page_set_invalid(vm_page_t m,int base,int size)5664 vm_page_set_invalid(vm_page_t m, int base, int size)
5665 {
5666 vm_page_bits_t bits;
5667 vm_object_t object;
5668
5669 /*
5670 * The object lock is required so that pages can't be mapped
5671 * read-only while we're in the process of invalidating them.
5672 */
5673 object = m->object;
5674 VM_OBJECT_ASSERT_WLOCKED(object);
5675 vm_page_assert_busied(m);
5676
5677 if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
5678 size >= object->un_pager.vnp.vnp_size)
5679 bits = VM_PAGE_BITS_ALL;
5680 else
5681 bits = vm_page_bits(base, size);
5682 if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
5683 pmap_remove_all(m);
5684 KASSERT((bits == 0 && vm_page_all_valid(m)) ||
5685 !pmap_page_is_mapped(m),
5686 ("vm_page_set_invalid: page %p is mapped", m));
5687 if (vm_page_xbusied(m)) {
5688 m->valid &= ~bits;
5689 m->dirty &= ~bits;
5690 } else {
5691 vm_page_bits_clear(m, &m->valid, bits);
5692 vm_page_bits_clear(m, &m->dirty, bits);
5693 }
5694 }
5695
5696 /*
5697 * vm_page_invalid:
5698 *
5699 * Invalidates the entire page. The page must be busy, unmapped, and
5700 * the enclosing object must be locked. The object locks protects
5701 * against concurrent read-only pmap enter which is done without
5702 * busy.
5703 */
5704 void
vm_page_invalid(vm_page_t m)5705 vm_page_invalid(vm_page_t m)
5706 {
5707
5708 vm_page_assert_busied(m);
5709 VM_OBJECT_ASSERT_WLOCKED(m->object);
5710 MPASS(!pmap_page_is_mapped(m));
5711
5712 if (vm_page_xbusied(m))
5713 m->valid = 0;
5714 else
5715 vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
5716 }
5717
5718 /*
5719 * vm_page_zero_invalid()
5720 *
5721 * The kernel assumes that the invalid portions of a page contain
5722 * garbage, but such pages can be mapped into memory by user code.
5723 * When this occurs, we must zero out the non-valid portions of the
5724 * page so user code sees what it expects.
5725 *
5726 * Pages are most often semi-valid when the end of a file is mapped
5727 * into memory and the file's size is not page aligned.
5728 */
5729 void
vm_page_zero_invalid(vm_page_t m,boolean_t setvalid)5730 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
5731 {
5732 int b;
5733 int i;
5734
5735 /*
5736 * Scan the valid bits looking for invalid sections that
5737 * must be zeroed. Invalid sub-DEV_BSIZE'd areas ( where the
5738 * valid bit may be set ) have already been zeroed by
5739 * vm_page_set_validclean().
5740 */
5741 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
5742 if (i == (PAGE_SIZE / DEV_BSIZE) ||
5743 (m->valid & ((vm_page_bits_t)1 << i))) {
5744 if (i > b) {
5745 pmap_zero_page_area(m,
5746 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
5747 }
5748 b = i + 1;
5749 }
5750 }
5751
5752 /*
5753 * setvalid is TRUE when we can safely set the zero'd areas
5754 * as being valid. We can do this if there are no cache consistency
5755 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
5756 */
5757 if (setvalid)
5758 vm_page_valid(m);
5759 }
5760
5761 /*
5762 * vm_page_is_valid:
5763 *
5764 * Is (partial) page valid? Note that the case where size == 0
5765 * will return FALSE in the degenerate case where the page is
5766 * entirely invalid, and TRUE otherwise.
5767 *
5768 * Some callers envoke this routine without the busy lock held and
5769 * handle races via higher level locks. Typical callers should
5770 * hold a busy lock to prevent invalidation.
5771 */
5772 int
vm_page_is_valid(vm_page_t m,int base,int size)5773 vm_page_is_valid(vm_page_t m, int base, int size)
5774 {
5775 vm_page_bits_t bits;
5776
5777 bits = vm_page_bits(base, size);
5778 return (vm_page_any_valid(m) && (m->valid & bits) == bits);
5779 }
5780
5781 /*
5782 * Returns true if all of the specified predicates are true for the entire
5783 * (super)page and false otherwise.
5784 */
5785 bool
vm_page_ps_test(vm_page_t m,int psind,int flags,vm_page_t skip_m)5786 vm_page_ps_test(vm_page_t m, int psind, int flags, vm_page_t skip_m)
5787 {
5788 vm_object_t object;
5789 int i, npages;
5790
5791 object = m->object;
5792 if (skip_m != NULL && skip_m->object != object)
5793 return (false);
5794 VM_OBJECT_ASSERT_LOCKED(object);
5795 KASSERT(psind <= m->psind,
5796 ("psind %d > psind %d of m %p", psind, m->psind, m));
5797 npages = atop(pagesizes[psind]);
5798
5799 /*
5800 * The physically contiguous pages that make up a superpage, i.e., a
5801 * page with a page size index ("psind") greater than zero, will
5802 * occupy adjacent entries in vm_page_array[].
5803 */
5804 for (i = 0; i < npages; i++) {
5805 /* Always test object consistency, including "skip_m". */
5806 if (m[i].object != object)
5807 return (false);
5808 if (&m[i] == skip_m)
5809 continue;
5810 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
5811 return (false);
5812 if ((flags & PS_ALL_DIRTY) != 0) {
5813 /*
5814 * Calling vm_page_test_dirty() or pmap_is_modified()
5815 * might stop this case from spuriously returning
5816 * "false". However, that would require a write lock
5817 * on the object containing "m[i]".
5818 */
5819 if (m[i].dirty != VM_PAGE_BITS_ALL)
5820 return (false);
5821 }
5822 if ((flags & PS_ALL_VALID) != 0 &&
5823 m[i].valid != VM_PAGE_BITS_ALL)
5824 return (false);
5825 }
5826 return (true);
5827 }
5828
5829 /*
5830 * Set the page's dirty bits if the page is modified.
5831 */
5832 void
vm_page_test_dirty(vm_page_t m)5833 vm_page_test_dirty(vm_page_t m)
5834 {
5835
5836 vm_page_assert_busied(m);
5837 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
5838 vm_page_dirty(m);
5839 }
5840
5841 void
vm_page_valid(vm_page_t m)5842 vm_page_valid(vm_page_t m)
5843 {
5844
5845 vm_page_assert_busied(m);
5846 if (vm_page_xbusied(m))
5847 m->valid = VM_PAGE_BITS_ALL;
5848 else
5849 vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
5850 }
5851
5852 #ifdef INVARIANTS
5853 void
vm_page_object_busy_assert(vm_page_t m)5854 vm_page_object_busy_assert(vm_page_t m)
5855 {
5856
5857 /*
5858 * Certain of the page's fields may only be modified by the
5859 * holder of a page or object busy.
5860 */
5861 if (m->object != NULL && !vm_page_busied(m))
5862 VM_OBJECT_ASSERT_BUSY(m->object);
5863 }
5864
5865 void
vm_page_assert_pga_writeable(vm_page_t m,uint16_t bits)5866 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits)
5867 {
5868
5869 if ((bits & PGA_WRITEABLE) == 0)
5870 return;
5871
5872 /*
5873 * The PGA_WRITEABLE flag can only be set if the page is
5874 * managed, is exclusively busied or the object is locked.
5875 * Currently, this flag is only set by pmap_enter().
5876 */
5877 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5878 ("PGA_WRITEABLE on unmanaged page"));
5879 if (!vm_page_xbusied(m))
5880 VM_OBJECT_ASSERT_BUSY(m->object);
5881 }
5882 #endif
5883
5884 #include "opt_ddb.h"
5885 #ifdef DDB
5886 #include <sys/kernel.h>
5887
5888 #include <ddb/ddb.h>
5889
DB_SHOW_COMMAND_FLAGS(page,vm_page_print_page_info,DB_CMD_MEMSAFE)5890 DB_SHOW_COMMAND_FLAGS(page, vm_page_print_page_info, DB_CMD_MEMSAFE)
5891 {
5892
5893 db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5894 db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5895 db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5896 db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5897 db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5898 db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5899 db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5900 db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5901 db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5902 }
5903
DB_SHOW_COMMAND_FLAGS(pageq,vm_page_print_pageq_info,DB_CMD_MEMSAFE)5904 DB_SHOW_COMMAND_FLAGS(pageq, vm_page_print_pageq_info, DB_CMD_MEMSAFE)
5905 {
5906 int dom;
5907
5908 db_printf("pq_free %d\n", vm_free_count());
5909 for (dom = 0; dom < vm_ndomains; dom++) {
5910 db_printf(
5911 "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5912 dom,
5913 vm_dom[dom].vmd_page_count,
5914 vm_dom[dom].vmd_free_count,
5915 vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5916 vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5917 vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5918 vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5919 }
5920 }
5921
DB_SHOW_COMMAND(pginfo,vm_page_print_pginfo)5922 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5923 {
5924 vm_page_t m;
5925 boolean_t phys, virt;
5926
5927 if (!have_addr) {
5928 db_printf("show pginfo addr\n");
5929 return;
5930 }
5931
5932 phys = strchr(modif, 'p') != NULL;
5933 virt = strchr(modif, 'v') != NULL;
5934 if (virt)
5935 m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5936 else if (phys)
5937 m = PHYS_TO_VM_PAGE(addr);
5938 else
5939 m = (vm_page_t)addr;
5940 db_printf(
5941 "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref 0x%x\n"
5942 " af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5943 m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5944 m->a.queue, m->ref_count, m->a.flags, m->oflags,
5945 m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty);
5946 }
5947 #endif /* DDB */
5948