1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory object module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_vm.h" 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/lock.h> 73 #include <sys/mman.h> 74 #include <sys/mount.h> 75 #include <sys/kernel.h> 76 #include <sys/sysctl.h> 77 #include <sys/mutex.h> 78 #include <sys/proc.h> /* for curproc, pageproc */ 79 #include <sys/socket.h> 80 #include <sys/resourcevar.h> 81 #include <sys/rwlock.h> 82 #include <sys/user.h> 83 #include <sys/vnode.h> 84 #include <sys/vmmeter.h> 85 #include <sys/sx.h> 86 87 #include <vm/vm.h> 88 #include <vm/vm_param.h> 89 #include <vm/pmap.h> 90 #include <vm/vm_map.h> 91 #include <vm/vm_object.h> 92 #include <vm/vm_page.h> 93 #include <vm/vm_pageout.h> 94 #include <vm/vm_pager.h> 95 #include <vm/swap_pager.h> 96 #include <vm/vm_kern.h> 97 #include <vm/vm_extern.h> 98 #include <vm/vm_radix.h> 99 #include <vm/vm_reserv.h> 100 #include <vm/uma.h> 101 102 static int old_msync; 103 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0, 104 "Use old (insecure) msync behavior"); 105 106 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 107 int pagerflags, int flags, boolean_t *clearobjflags, 108 boolean_t *eio); 109 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags, 110 boolean_t *clearobjflags); 111 static void vm_object_qcollapse(vm_object_t object); 112 static void vm_object_vndeallocate(vm_object_t object); 113 114 /* 115 * Virtual memory objects maintain the actual data 116 * associated with allocated virtual memory. A given 117 * page of memory exists within exactly one object. 118 * 119 * An object is only deallocated when all "references" 120 * are given up. Only one "reference" to a given 121 * region of an object should be writeable. 122 * 123 * Associated with each object is a list of all resident 124 * memory pages belonging to that object; this list is 125 * maintained by the "vm_page" module, and locked by the object's 126 * lock. 127 * 128 * Each object also records a "pager" routine which is 129 * used to retrieve (and store) pages to the proper backing 130 * storage. In addition, objects may be backed by other 131 * objects from which they were virtual-copied. 132 * 133 * The only items within the object structure which are 134 * modified after time of creation are: 135 * reference count locked by object's lock 136 * pager routine locked by object's lock 137 * 138 */ 139 140 struct object_q vm_object_list; 141 struct mtx vm_object_list_mtx; /* lock for object list and count */ 142 143 struct vm_object kernel_object_store; 144 struct vm_object kmem_object_store; 145 146 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, 147 "VM object stats"); 148 149 static long object_collapses; 150 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD, 151 &object_collapses, 0, "VM object collapses"); 152 153 static long object_bypasses; 154 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD, 155 &object_bypasses, 0, "VM object bypasses"); 156 157 static uma_zone_t obj_zone; 158 159 static int vm_object_zinit(void *mem, int size, int flags); 160 161 #ifdef INVARIANTS 162 static void vm_object_zdtor(void *mem, int size, void *arg); 163 164 static void 165 vm_object_zdtor(void *mem, int size, void *arg) 166 { 167 vm_object_t object; 168 169 object = (vm_object_t)mem; 170 KASSERT(object->ref_count == 0, 171 ("object %p ref_count = %d", object, object->ref_count)); 172 KASSERT(TAILQ_EMPTY(&object->memq), 173 ("object %p has resident pages in its memq", object)); 174 KASSERT(vm_radix_is_empty(&object->rtree), 175 ("object %p has resident pages in its trie", object)); 176 #if VM_NRESERVLEVEL > 0 177 KASSERT(LIST_EMPTY(&object->rvq), 178 ("object %p has reservations", 179 object)); 180 #endif 181 KASSERT(object->paging_in_progress == 0, 182 ("object %p paging_in_progress = %d", 183 object, object->paging_in_progress)); 184 KASSERT(object->resident_page_count == 0, 185 ("object %p resident_page_count = %d", 186 object, object->resident_page_count)); 187 KASSERT(object->shadow_count == 0, 188 ("object %p shadow_count = %d", 189 object, object->shadow_count)); 190 KASSERT(object->type == OBJT_DEAD, 191 ("object %p has non-dead type %d", 192 object, object->type)); 193 } 194 #endif 195 196 static int 197 vm_object_zinit(void *mem, int size, int flags) 198 { 199 vm_object_t object; 200 201 object = (vm_object_t)mem; 202 rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW); 203 204 /* These are true for any object that has been freed */ 205 object->type = OBJT_DEAD; 206 object->ref_count = 0; 207 object->rtree.rt_root = 0; 208 object->rtree.rt_flags = 0; 209 object->paging_in_progress = 0; 210 object->resident_page_count = 0; 211 object->shadow_count = 0; 212 213 mtx_lock(&vm_object_list_mtx); 214 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 215 mtx_unlock(&vm_object_list_mtx); 216 return (0); 217 } 218 219 static void 220 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object) 221 { 222 223 TAILQ_INIT(&object->memq); 224 LIST_INIT(&object->shadow_head); 225 226 object->type = type; 227 switch (type) { 228 case OBJT_DEAD: 229 panic("_vm_object_allocate: can't create OBJT_DEAD"); 230 case OBJT_DEFAULT: 231 case OBJT_SWAP: 232 object->flags = OBJ_ONEMAPPING; 233 break; 234 case OBJT_DEVICE: 235 case OBJT_SG: 236 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED; 237 break; 238 case OBJT_MGTDEVICE: 239 object->flags = OBJ_FICTITIOUS; 240 break; 241 case OBJT_PHYS: 242 object->flags = OBJ_UNMANAGED; 243 break; 244 case OBJT_VNODE: 245 object->flags = 0; 246 break; 247 default: 248 panic("_vm_object_allocate: type %d is undefined", type); 249 } 250 object->size = size; 251 object->generation = 1; 252 object->ref_count = 1; 253 object->memattr = VM_MEMATTR_DEFAULT; 254 object->cred = NULL; 255 object->charge = 0; 256 object->handle = NULL; 257 object->backing_object = NULL; 258 object->backing_object_offset = (vm_ooffset_t) 0; 259 #if VM_NRESERVLEVEL > 0 260 LIST_INIT(&object->rvq); 261 #endif 262 umtx_shm_object_init(object); 263 } 264 265 /* 266 * vm_object_init: 267 * 268 * Initialize the VM objects module. 269 */ 270 void 271 vm_object_init(void) 272 { 273 TAILQ_INIT(&vm_object_list); 274 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF); 275 276 rw_init(&kernel_object->lock, "kernel vm object"); 277 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 278 kernel_object); 279 #if VM_NRESERVLEVEL > 0 280 kernel_object->flags |= OBJ_COLORED; 281 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 282 #endif 283 284 rw_init(&kmem_object->lock, "kmem vm object"); 285 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 286 kmem_object); 287 #if VM_NRESERVLEVEL > 0 288 kmem_object->flags |= OBJ_COLORED; 289 kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 290 #endif 291 292 /* 293 * The lock portion of struct vm_object must be type stable due 294 * to vm_pageout_fallback_object_lock locking a vm object 295 * without holding any references to it. 296 */ 297 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL, 298 #ifdef INVARIANTS 299 vm_object_zdtor, 300 #else 301 NULL, 302 #endif 303 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 304 305 vm_radix_init(); 306 } 307 308 void 309 vm_object_clear_flag(vm_object_t object, u_short bits) 310 { 311 312 VM_OBJECT_ASSERT_WLOCKED(object); 313 object->flags &= ~bits; 314 } 315 316 /* 317 * Sets the default memory attribute for the specified object. Pages 318 * that are allocated to this object are by default assigned this memory 319 * attribute. 320 * 321 * Presently, this function must be called before any pages are allocated 322 * to the object. In the future, this requirement may be relaxed for 323 * "default" and "swap" objects. 324 */ 325 int 326 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr) 327 { 328 329 VM_OBJECT_ASSERT_WLOCKED(object); 330 switch (object->type) { 331 case OBJT_DEFAULT: 332 case OBJT_DEVICE: 333 case OBJT_MGTDEVICE: 334 case OBJT_PHYS: 335 case OBJT_SG: 336 case OBJT_SWAP: 337 case OBJT_VNODE: 338 if (!TAILQ_EMPTY(&object->memq)) 339 return (KERN_FAILURE); 340 break; 341 case OBJT_DEAD: 342 return (KERN_INVALID_ARGUMENT); 343 default: 344 panic("vm_object_set_memattr: object %p is of undefined type", 345 object); 346 } 347 object->memattr = memattr; 348 return (KERN_SUCCESS); 349 } 350 351 void 352 vm_object_pip_add(vm_object_t object, short i) 353 { 354 355 VM_OBJECT_ASSERT_WLOCKED(object); 356 object->paging_in_progress += i; 357 } 358 359 void 360 vm_object_pip_subtract(vm_object_t object, short i) 361 { 362 363 VM_OBJECT_ASSERT_WLOCKED(object); 364 object->paging_in_progress -= i; 365 } 366 367 void 368 vm_object_pip_wakeup(vm_object_t object) 369 { 370 371 VM_OBJECT_ASSERT_WLOCKED(object); 372 object->paging_in_progress--; 373 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 374 vm_object_clear_flag(object, OBJ_PIPWNT); 375 wakeup(object); 376 } 377 } 378 379 void 380 vm_object_pip_wakeupn(vm_object_t object, short i) 381 { 382 383 VM_OBJECT_ASSERT_WLOCKED(object); 384 if (i) 385 object->paging_in_progress -= i; 386 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 387 vm_object_clear_flag(object, OBJ_PIPWNT); 388 wakeup(object); 389 } 390 } 391 392 void 393 vm_object_pip_wait(vm_object_t object, char *waitid) 394 { 395 396 VM_OBJECT_ASSERT_WLOCKED(object); 397 while (object->paging_in_progress) { 398 object->flags |= OBJ_PIPWNT; 399 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0); 400 } 401 } 402 403 /* 404 * vm_object_allocate: 405 * 406 * Returns a new object with the given size. 407 */ 408 vm_object_t 409 vm_object_allocate(objtype_t type, vm_pindex_t size) 410 { 411 vm_object_t object; 412 413 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 414 _vm_object_allocate(type, size, object); 415 return (object); 416 } 417 418 419 /* 420 * vm_object_reference: 421 * 422 * Gets another reference to the given object. Note: OBJ_DEAD 423 * objects can be referenced during final cleaning. 424 */ 425 void 426 vm_object_reference(vm_object_t object) 427 { 428 if (object == NULL) 429 return; 430 VM_OBJECT_WLOCK(object); 431 vm_object_reference_locked(object); 432 VM_OBJECT_WUNLOCK(object); 433 } 434 435 /* 436 * vm_object_reference_locked: 437 * 438 * Gets another reference to the given object. 439 * 440 * The object must be locked. 441 */ 442 void 443 vm_object_reference_locked(vm_object_t object) 444 { 445 struct vnode *vp; 446 447 VM_OBJECT_ASSERT_WLOCKED(object); 448 object->ref_count++; 449 if (object->type == OBJT_VNODE) { 450 vp = object->handle; 451 vref(vp); 452 } 453 } 454 455 /* 456 * Handle deallocating an object of type OBJT_VNODE. 457 */ 458 static void 459 vm_object_vndeallocate(vm_object_t object) 460 { 461 struct vnode *vp = (struct vnode *) object->handle; 462 463 VM_OBJECT_ASSERT_WLOCKED(object); 464 KASSERT(object->type == OBJT_VNODE, 465 ("vm_object_vndeallocate: not a vnode object")); 466 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 467 #ifdef INVARIANTS 468 if (object->ref_count == 0) { 469 vn_printf(vp, "vm_object_vndeallocate "); 470 panic("vm_object_vndeallocate: bad object reference count"); 471 } 472 #endif 473 474 if (!umtx_shm_vnobj_persistent && object->ref_count == 1) 475 umtx_shm_object_terminated(object); 476 477 /* 478 * The test for text of vp vnode does not need a bypass to 479 * reach right VV_TEXT there, since it is obtained from 480 * object->handle. 481 */ 482 if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) { 483 object->ref_count--; 484 VM_OBJECT_WUNLOCK(object); 485 /* vrele may need the vnode lock. */ 486 vrele(vp); 487 } else { 488 vhold(vp); 489 VM_OBJECT_WUNLOCK(object); 490 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 491 vdrop(vp); 492 VM_OBJECT_WLOCK(object); 493 object->ref_count--; 494 if (object->type == OBJT_DEAD) { 495 VM_OBJECT_WUNLOCK(object); 496 VOP_UNLOCK(vp, 0); 497 } else { 498 if (object->ref_count == 0) 499 VOP_UNSET_TEXT(vp); 500 VM_OBJECT_WUNLOCK(object); 501 vput(vp); 502 } 503 } 504 } 505 506 /* 507 * vm_object_deallocate: 508 * 509 * Release a reference to the specified object, 510 * gained either through a vm_object_allocate 511 * or a vm_object_reference call. When all references 512 * are gone, storage associated with this object 513 * may be relinquished. 514 * 515 * No object may be locked. 516 */ 517 void 518 vm_object_deallocate(vm_object_t object) 519 { 520 vm_object_t temp; 521 struct vnode *vp; 522 523 while (object != NULL) { 524 VM_OBJECT_WLOCK(object); 525 if (object->type == OBJT_VNODE) { 526 vm_object_vndeallocate(object); 527 return; 528 } 529 530 KASSERT(object->ref_count != 0, 531 ("vm_object_deallocate: object deallocated too many times: %d", object->type)); 532 533 /* 534 * If the reference count goes to 0 we start calling 535 * vm_object_terminate() on the object chain. 536 * A ref count of 1 may be a special case depending on the 537 * shadow count being 0 or 1. 538 */ 539 object->ref_count--; 540 if (object->ref_count > 1) { 541 VM_OBJECT_WUNLOCK(object); 542 return; 543 } else if (object->ref_count == 1) { 544 if (object->type == OBJT_SWAP && 545 (object->flags & OBJ_TMPFS) != 0) { 546 vp = object->un_pager.swp.swp_tmpfs; 547 vhold(vp); 548 VM_OBJECT_WUNLOCK(object); 549 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 550 VM_OBJECT_WLOCK(object); 551 if (object->type == OBJT_DEAD || 552 object->ref_count != 1) { 553 VM_OBJECT_WUNLOCK(object); 554 VOP_UNLOCK(vp, 0); 555 vdrop(vp); 556 return; 557 } 558 if ((object->flags & OBJ_TMPFS) != 0) 559 VOP_UNSET_TEXT(vp); 560 VOP_UNLOCK(vp, 0); 561 vdrop(vp); 562 } 563 if (object->shadow_count == 0 && 564 object->handle == NULL && 565 (object->type == OBJT_DEFAULT || 566 (object->type == OBJT_SWAP && 567 (object->flags & OBJ_TMPFS_NODE) == 0))) { 568 vm_object_set_flag(object, OBJ_ONEMAPPING); 569 } else if ((object->shadow_count == 1) && 570 (object->handle == NULL) && 571 (object->type == OBJT_DEFAULT || 572 object->type == OBJT_SWAP)) { 573 vm_object_t robject; 574 575 robject = LIST_FIRST(&object->shadow_head); 576 KASSERT(robject != NULL, 577 ("vm_object_deallocate: ref_count: %d, shadow_count: %d", 578 object->ref_count, 579 object->shadow_count)); 580 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0, 581 ("shadowed tmpfs v_object %p", object)); 582 if (!VM_OBJECT_TRYWLOCK(robject)) { 583 /* 584 * Avoid a potential deadlock. 585 */ 586 object->ref_count++; 587 VM_OBJECT_WUNLOCK(object); 588 /* 589 * More likely than not the thread 590 * holding robject's lock has lower 591 * priority than the current thread. 592 * Let the lower priority thread run. 593 */ 594 pause("vmo_de", 1); 595 continue; 596 } 597 /* 598 * Collapse object into its shadow unless its 599 * shadow is dead. In that case, object will 600 * be deallocated by the thread that is 601 * deallocating its shadow. 602 */ 603 if ((robject->flags & OBJ_DEAD) == 0 && 604 (robject->handle == NULL) && 605 (robject->type == OBJT_DEFAULT || 606 robject->type == OBJT_SWAP)) { 607 608 robject->ref_count++; 609 retry: 610 if (robject->paging_in_progress) { 611 VM_OBJECT_WUNLOCK(object); 612 vm_object_pip_wait(robject, 613 "objde1"); 614 temp = robject->backing_object; 615 if (object == temp) { 616 VM_OBJECT_WLOCK(object); 617 goto retry; 618 } 619 } else if (object->paging_in_progress) { 620 VM_OBJECT_WUNLOCK(robject); 621 object->flags |= OBJ_PIPWNT; 622 VM_OBJECT_SLEEP(object, object, 623 PDROP | PVM, "objde2", 0); 624 VM_OBJECT_WLOCK(robject); 625 temp = robject->backing_object; 626 if (object == temp) { 627 VM_OBJECT_WLOCK(object); 628 goto retry; 629 } 630 } else 631 VM_OBJECT_WUNLOCK(object); 632 633 if (robject->ref_count == 1) { 634 robject->ref_count--; 635 object = robject; 636 goto doterm; 637 } 638 object = robject; 639 vm_object_collapse(object); 640 VM_OBJECT_WUNLOCK(object); 641 continue; 642 } 643 VM_OBJECT_WUNLOCK(robject); 644 } 645 VM_OBJECT_WUNLOCK(object); 646 return; 647 } 648 doterm: 649 umtx_shm_object_terminated(object); 650 temp = object->backing_object; 651 if (temp != NULL) { 652 KASSERT((object->flags & OBJ_TMPFS_NODE) == 0, 653 ("shadowed tmpfs v_object 2 %p", object)); 654 VM_OBJECT_WLOCK(temp); 655 LIST_REMOVE(object, shadow_list); 656 temp->shadow_count--; 657 VM_OBJECT_WUNLOCK(temp); 658 object->backing_object = NULL; 659 } 660 /* 661 * Don't double-terminate, we could be in a termination 662 * recursion due to the terminate having to sync data 663 * to disk. 664 */ 665 if ((object->flags & OBJ_DEAD) == 0) 666 vm_object_terminate(object); 667 else 668 VM_OBJECT_WUNLOCK(object); 669 object = temp; 670 } 671 } 672 673 /* 674 * vm_object_destroy removes the object from the global object list 675 * and frees the space for the object. 676 */ 677 void 678 vm_object_destroy(vm_object_t object) 679 { 680 681 /* 682 * Release the allocation charge. 683 */ 684 if (object->cred != NULL) { 685 swap_release_by_cred(object->charge, object->cred); 686 object->charge = 0; 687 crfree(object->cred); 688 object->cred = NULL; 689 } 690 691 /* 692 * Free the space for the object. 693 */ 694 uma_zfree(obj_zone, object); 695 } 696 697 /* 698 * vm_object_terminate actually destroys the specified object, freeing 699 * up all previously used resources. 700 * 701 * The object must be locked. 702 * This routine may block. 703 */ 704 void 705 vm_object_terminate(vm_object_t object) 706 { 707 vm_page_t p, p_next; 708 709 VM_OBJECT_ASSERT_WLOCKED(object); 710 711 /* 712 * Make sure no one uses us. 713 */ 714 vm_object_set_flag(object, OBJ_DEAD); 715 716 /* 717 * wait for the pageout daemon to be done with the object 718 */ 719 vm_object_pip_wait(object, "objtrm"); 720 721 KASSERT(!object->paging_in_progress, 722 ("vm_object_terminate: pageout in progress")); 723 724 /* 725 * Clean and free the pages, as appropriate. All references to the 726 * object are gone, so we don't need to lock it. 727 */ 728 if (object->type == OBJT_VNODE) { 729 struct vnode *vp = (struct vnode *)object->handle; 730 731 /* 732 * Clean pages and flush buffers. 733 */ 734 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 735 VM_OBJECT_WUNLOCK(object); 736 737 vinvalbuf(vp, V_SAVE, 0, 0); 738 739 BO_LOCK(&vp->v_bufobj); 740 vp->v_bufobj.bo_flag |= BO_DEAD; 741 BO_UNLOCK(&vp->v_bufobj); 742 743 VM_OBJECT_WLOCK(object); 744 } 745 746 KASSERT(object->ref_count == 0, 747 ("vm_object_terminate: object with references, ref_count=%d", 748 object->ref_count)); 749 750 /* 751 * Free any remaining pageable pages. This also removes them from the 752 * paging queues. However, don't free wired pages, just remove them 753 * from the object. Rather than incrementally removing each page from 754 * the object, the page and object are reset to any empty state. 755 */ 756 TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) { 757 vm_page_assert_unbusied(p); 758 vm_page_lock(p); 759 /* 760 * Optimize the page's removal from the object by resetting 761 * its "object" field. Specifically, if the page is not 762 * wired, then the effect of this assignment is that 763 * vm_page_free()'s call to vm_page_remove() will return 764 * immediately without modifying the page or the object. 765 */ 766 p->object = NULL; 767 if (p->wire_count == 0) { 768 vm_page_free(p); 769 PCPU_INC(cnt.v_pfree); 770 } 771 vm_page_unlock(p); 772 } 773 /* 774 * If the object contained any pages, then reset it to an empty state. 775 * None of the object's fields, including "resident_page_count", were 776 * modified by the preceding loop. 777 */ 778 if (object->resident_page_count != 0) { 779 vm_radix_reclaim_allnodes(&object->rtree); 780 TAILQ_INIT(&object->memq); 781 object->resident_page_count = 0; 782 if (object->type == OBJT_VNODE) 783 vdrop(object->handle); 784 } 785 786 #if VM_NRESERVLEVEL > 0 787 if (__predict_false(!LIST_EMPTY(&object->rvq))) 788 vm_reserv_break_all(object); 789 #endif 790 791 KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT || 792 object->type == OBJT_SWAP, 793 ("%s: non-swap obj %p has cred", __func__, object)); 794 795 /* 796 * Let the pager know object is dead. 797 */ 798 vm_pager_deallocate(object); 799 VM_OBJECT_WUNLOCK(object); 800 801 vm_object_destroy(object); 802 } 803 804 /* 805 * Make the page read-only so that we can clear the object flags. However, if 806 * this is a nosync mmap then the object is likely to stay dirty so do not 807 * mess with the page and do not clear the object flags. Returns TRUE if the 808 * page should be flushed, and FALSE otherwise. 809 */ 810 static boolean_t 811 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags) 812 { 813 814 /* 815 * If we have been asked to skip nosync pages and this is a 816 * nosync page, skip it. Note that the object flags were not 817 * cleared in this case so we do not have to set them. 818 */ 819 if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) { 820 *clearobjflags = FALSE; 821 return (FALSE); 822 } else { 823 pmap_remove_write(p); 824 return (p->dirty != 0); 825 } 826 } 827 828 /* 829 * vm_object_page_clean 830 * 831 * Clean all dirty pages in the specified range of object. Leaves page 832 * on whatever queue it is currently on. If NOSYNC is set then do not 833 * write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC), 834 * leaving the object dirty. 835 * 836 * When stuffing pages asynchronously, allow clustering. XXX we need a 837 * synchronous clustering mode implementation. 838 * 839 * Odd semantics: if start == end, we clean everything. 840 * 841 * The object must be locked. 842 * 843 * Returns FALSE if some page from the range was not written, as 844 * reported by the pager, and TRUE otherwise. 845 */ 846 boolean_t 847 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end, 848 int flags) 849 { 850 vm_page_t np, p; 851 vm_pindex_t pi, tend, tstart; 852 int curgeneration, n, pagerflags; 853 boolean_t clearobjflags, eio, res; 854 855 VM_OBJECT_ASSERT_WLOCKED(object); 856 857 /* 858 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE 859 * objects. The check below prevents the function from 860 * operating on non-vnode objects. 861 */ 862 if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 || 863 object->resident_page_count == 0) 864 return (TRUE); 865 866 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ? 867 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 868 pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0; 869 870 tstart = OFF_TO_IDX(start); 871 tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK); 872 clearobjflags = tstart == 0 && tend >= object->size; 873 res = TRUE; 874 875 rescan: 876 curgeneration = object->generation; 877 878 for (p = vm_page_find_least(object, tstart); p != NULL; p = np) { 879 pi = p->pindex; 880 if (pi >= tend) 881 break; 882 np = TAILQ_NEXT(p, listq); 883 if (p->valid == 0) 884 continue; 885 if (vm_page_sleep_if_busy(p, "vpcwai")) { 886 if (object->generation != curgeneration) { 887 if ((flags & OBJPC_SYNC) != 0) 888 goto rescan; 889 else 890 clearobjflags = FALSE; 891 } 892 np = vm_page_find_least(object, pi); 893 continue; 894 } 895 if (!vm_object_page_remove_write(p, flags, &clearobjflags)) 896 continue; 897 898 n = vm_object_page_collect_flush(object, p, pagerflags, 899 flags, &clearobjflags, &eio); 900 if (eio) { 901 res = FALSE; 902 clearobjflags = FALSE; 903 } 904 if (object->generation != curgeneration) { 905 if ((flags & OBJPC_SYNC) != 0) 906 goto rescan; 907 else 908 clearobjflags = FALSE; 909 } 910 911 /* 912 * If the VOP_PUTPAGES() did a truncated write, so 913 * that even the first page of the run is not fully 914 * written, vm_pageout_flush() returns 0 as the run 915 * length. Since the condition that caused truncated 916 * write may be permanent, e.g. exhausted free space, 917 * accepting n == 0 would cause an infinite loop. 918 * 919 * Forwarding the iterator leaves the unwritten page 920 * behind, but there is not much we can do there if 921 * filesystem refuses to write it. 922 */ 923 if (n == 0) { 924 n = 1; 925 clearobjflags = FALSE; 926 } 927 np = vm_page_find_least(object, pi + n); 928 } 929 #if 0 930 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0); 931 #endif 932 933 if (clearobjflags) 934 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY); 935 return (res); 936 } 937 938 static int 939 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags, 940 int flags, boolean_t *clearobjflags, boolean_t *eio) 941 { 942 vm_page_t ma[vm_pageout_page_count], p_first, tp; 943 int count, i, mreq, runlen; 944 945 vm_page_lock_assert(p, MA_NOTOWNED); 946 VM_OBJECT_ASSERT_WLOCKED(object); 947 948 count = 1; 949 mreq = 0; 950 951 for (tp = p; count < vm_pageout_page_count; count++) { 952 tp = vm_page_next(tp); 953 if (tp == NULL || vm_page_busied(tp)) 954 break; 955 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 956 break; 957 } 958 959 for (p_first = p; count < vm_pageout_page_count; count++) { 960 tp = vm_page_prev(p_first); 961 if (tp == NULL || vm_page_busied(tp)) 962 break; 963 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 964 break; 965 p_first = tp; 966 mreq++; 967 } 968 969 for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++) 970 ma[i] = tp; 971 972 vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio); 973 return (runlen); 974 } 975 976 /* 977 * Note that there is absolutely no sense in writing out 978 * anonymous objects, so we track down the vnode object 979 * to write out. 980 * We invalidate (remove) all pages from the address space 981 * for semantic correctness. 982 * 983 * If the backing object is a device object with unmanaged pages, then any 984 * mappings to the specified range of pages must be removed before this 985 * function is called. 986 * 987 * Note: certain anonymous maps, such as MAP_NOSYNC maps, 988 * may start out with a NULL object. 989 */ 990 boolean_t 991 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, 992 boolean_t syncio, boolean_t invalidate) 993 { 994 vm_object_t backing_object; 995 struct vnode *vp; 996 struct mount *mp; 997 int error, flags, fsync_after; 998 boolean_t res; 999 1000 if (object == NULL) 1001 return (TRUE); 1002 res = TRUE; 1003 error = 0; 1004 VM_OBJECT_WLOCK(object); 1005 while ((backing_object = object->backing_object) != NULL) { 1006 VM_OBJECT_WLOCK(backing_object); 1007 offset += object->backing_object_offset; 1008 VM_OBJECT_WUNLOCK(object); 1009 object = backing_object; 1010 if (object->size < OFF_TO_IDX(offset + size)) 1011 size = IDX_TO_OFF(object->size) - offset; 1012 } 1013 /* 1014 * Flush pages if writing is allowed, invalidate them 1015 * if invalidation requested. Pages undergoing I/O 1016 * will be ignored by vm_object_page_remove(). 1017 * 1018 * We cannot lock the vnode and then wait for paging 1019 * to complete without deadlocking against vm_fault. 1020 * Instead we simply call vm_object_page_remove() and 1021 * allow it to block internally on a page-by-page 1022 * basis when it encounters pages undergoing async 1023 * I/O. 1024 */ 1025 if (object->type == OBJT_VNODE && 1026 (object->flags & OBJ_MIGHTBEDIRTY) != 0) { 1027 vp = object->handle; 1028 VM_OBJECT_WUNLOCK(object); 1029 (void) vn_start_write(vp, &mp, V_WAIT); 1030 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1031 if (syncio && !invalidate && offset == 0 && 1032 OFF_TO_IDX(size) == object->size) { 1033 /* 1034 * If syncing the whole mapping of the file, 1035 * it is faster to schedule all the writes in 1036 * async mode, also allowing the clustering, 1037 * and then wait for i/o to complete. 1038 */ 1039 flags = 0; 1040 fsync_after = TRUE; 1041 } else { 1042 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1043 flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0; 1044 fsync_after = FALSE; 1045 } 1046 VM_OBJECT_WLOCK(object); 1047 res = vm_object_page_clean(object, offset, offset + size, 1048 flags); 1049 VM_OBJECT_WUNLOCK(object); 1050 if (fsync_after) 1051 error = VOP_FSYNC(vp, MNT_WAIT, curthread); 1052 VOP_UNLOCK(vp, 0); 1053 vn_finished_write(mp); 1054 if (error != 0) 1055 res = FALSE; 1056 VM_OBJECT_WLOCK(object); 1057 } 1058 if ((object->type == OBJT_VNODE || 1059 object->type == OBJT_DEVICE) && invalidate) { 1060 if (object->type == OBJT_DEVICE) 1061 /* 1062 * The option OBJPR_NOTMAPPED must be passed here 1063 * because vm_object_page_remove() cannot remove 1064 * unmanaged mappings. 1065 */ 1066 flags = OBJPR_NOTMAPPED; 1067 else if (old_msync) 1068 flags = 0; 1069 else 1070 flags = OBJPR_CLEANONLY; 1071 vm_object_page_remove(object, OFF_TO_IDX(offset), 1072 OFF_TO_IDX(offset + size + PAGE_MASK), flags); 1073 } 1074 VM_OBJECT_WUNLOCK(object); 1075 return (res); 1076 } 1077 1078 /* 1079 * vm_object_madvise: 1080 * 1081 * Implements the madvise function at the object/page level. 1082 * 1083 * MADV_WILLNEED (any object) 1084 * 1085 * Activate the specified pages if they are resident. 1086 * 1087 * MADV_DONTNEED (any object) 1088 * 1089 * Deactivate the specified pages if they are resident. 1090 * 1091 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, 1092 * OBJ_ONEMAPPING only) 1093 * 1094 * Deactivate and clean the specified pages if they are 1095 * resident. This permits the process to reuse the pages 1096 * without faulting or the kernel to reclaim the pages 1097 * without I/O. 1098 */ 1099 void 1100 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end, 1101 int advise) 1102 { 1103 vm_pindex_t tpindex; 1104 vm_object_t backing_object, tobject; 1105 vm_page_t m; 1106 1107 if (object == NULL) 1108 return; 1109 VM_OBJECT_WLOCK(object); 1110 /* 1111 * Locate and adjust resident pages 1112 */ 1113 for (; pindex < end; pindex += 1) { 1114 relookup: 1115 tobject = object; 1116 tpindex = pindex; 1117 shadowlookup: 1118 /* 1119 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages 1120 * and those pages must be OBJ_ONEMAPPING. 1121 */ 1122 if (advise == MADV_FREE) { 1123 if ((tobject->type != OBJT_DEFAULT && 1124 tobject->type != OBJT_SWAP) || 1125 (tobject->flags & OBJ_ONEMAPPING) == 0) { 1126 goto unlock_tobject; 1127 } 1128 } else if ((tobject->flags & OBJ_UNMANAGED) != 0) 1129 goto unlock_tobject; 1130 m = vm_page_lookup(tobject, tpindex); 1131 if (m == NULL) { 1132 /* 1133 * There may be swap even if there is no backing page 1134 */ 1135 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1136 swap_pager_freespace(tobject, tpindex, 1); 1137 /* 1138 * next object 1139 */ 1140 backing_object = tobject->backing_object; 1141 if (backing_object == NULL) 1142 goto unlock_tobject; 1143 VM_OBJECT_WLOCK(backing_object); 1144 tpindex += OFF_TO_IDX(tobject->backing_object_offset); 1145 if (tobject != object) 1146 VM_OBJECT_WUNLOCK(tobject); 1147 tobject = backing_object; 1148 goto shadowlookup; 1149 } else if (m->valid != VM_PAGE_BITS_ALL) 1150 goto unlock_tobject; 1151 /* 1152 * If the page is not in a normal state, skip it. 1153 */ 1154 vm_page_lock(m); 1155 if (m->hold_count != 0 || m->wire_count != 0) { 1156 vm_page_unlock(m); 1157 goto unlock_tobject; 1158 } 1159 KASSERT((m->flags & PG_FICTITIOUS) == 0, 1160 ("vm_object_madvise: page %p is fictitious", m)); 1161 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1162 ("vm_object_madvise: page %p is not managed", m)); 1163 if (vm_page_busied(m)) { 1164 if (advise == MADV_WILLNEED) { 1165 /* 1166 * Reference the page before unlocking and 1167 * sleeping so that the page daemon is less 1168 * likely to reclaim it. 1169 */ 1170 vm_page_aflag_set(m, PGA_REFERENCED); 1171 } 1172 if (object != tobject) 1173 VM_OBJECT_WUNLOCK(object); 1174 VM_OBJECT_WUNLOCK(tobject); 1175 vm_page_busy_sleep(m, "madvpo", false); 1176 VM_OBJECT_WLOCK(object); 1177 goto relookup; 1178 } 1179 if (advise == MADV_WILLNEED) { 1180 vm_page_activate(m); 1181 } else { 1182 vm_page_advise(m, advise); 1183 } 1184 vm_page_unlock(m); 1185 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1186 swap_pager_freespace(tobject, tpindex, 1); 1187 unlock_tobject: 1188 if (tobject != object) 1189 VM_OBJECT_WUNLOCK(tobject); 1190 } 1191 VM_OBJECT_WUNLOCK(object); 1192 } 1193 1194 /* 1195 * vm_object_shadow: 1196 * 1197 * Create a new object which is backed by the 1198 * specified existing object range. The source 1199 * object reference is deallocated. 1200 * 1201 * The new object and offset into that object 1202 * are returned in the source parameters. 1203 */ 1204 void 1205 vm_object_shadow( 1206 vm_object_t *object, /* IN/OUT */ 1207 vm_ooffset_t *offset, /* IN/OUT */ 1208 vm_size_t length) 1209 { 1210 vm_object_t source; 1211 vm_object_t result; 1212 1213 source = *object; 1214 1215 /* 1216 * Don't create the new object if the old object isn't shared. 1217 */ 1218 if (source != NULL) { 1219 VM_OBJECT_WLOCK(source); 1220 if (source->ref_count == 1 && 1221 source->handle == NULL && 1222 (source->type == OBJT_DEFAULT || 1223 source->type == OBJT_SWAP)) { 1224 VM_OBJECT_WUNLOCK(source); 1225 return; 1226 } 1227 VM_OBJECT_WUNLOCK(source); 1228 } 1229 1230 /* 1231 * Allocate a new object with the given length. 1232 */ 1233 result = vm_object_allocate(OBJT_DEFAULT, atop(length)); 1234 1235 /* 1236 * The new object shadows the source object, adding a reference to it. 1237 * Our caller changes his reference to point to the new object, 1238 * removing a reference to the source object. Net result: no change 1239 * of reference count. 1240 * 1241 * Try to optimize the result object's page color when shadowing 1242 * in order to maintain page coloring consistency in the combined 1243 * shadowed object. 1244 */ 1245 result->backing_object = source; 1246 /* 1247 * Store the offset into the source object, and fix up the offset into 1248 * the new object. 1249 */ 1250 result->backing_object_offset = *offset; 1251 if (source != NULL) { 1252 VM_OBJECT_WLOCK(source); 1253 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list); 1254 source->shadow_count++; 1255 #if VM_NRESERVLEVEL > 0 1256 result->flags |= source->flags & OBJ_COLORED; 1257 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & 1258 ((1 << (VM_NFREEORDER - 1)) - 1); 1259 #endif 1260 VM_OBJECT_WUNLOCK(source); 1261 } 1262 1263 1264 /* 1265 * Return the new things 1266 */ 1267 *offset = 0; 1268 *object = result; 1269 } 1270 1271 /* 1272 * vm_object_split: 1273 * 1274 * Split the pages in a map entry into a new object. This affords 1275 * easier removal of unused pages, and keeps object inheritance from 1276 * being a negative impact on memory usage. 1277 */ 1278 void 1279 vm_object_split(vm_map_entry_t entry) 1280 { 1281 vm_page_t m, m_next; 1282 vm_object_t orig_object, new_object, source; 1283 vm_pindex_t idx, offidxstart; 1284 vm_size_t size; 1285 1286 orig_object = entry->object.vm_object; 1287 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 1288 return; 1289 if (orig_object->ref_count <= 1) 1290 return; 1291 VM_OBJECT_WUNLOCK(orig_object); 1292 1293 offidxstart = OFF_TO_IDX(entry->offset); 1294 size = atop(entry->end - entry->start); 1295 1296 /* 1297 * If swap_pager_copy() is later called, it will convert new_object 1298 * into a swap object. 1299 */ 1300 new_object = vm_object_allocate(OBJT_DEFAULT, size); 1301 1302 /* 1303 * At this point, the new object is still private, so the order in 1304 * which the original and new objects are locked does not matter. 1305 */ 1306 VM_OBJECT_WLOCK(new_object); 1307 VM_OBJECT_WLOCK(orig_object); 1308 source = orig_object->backing_object; 1309 if (source != NULL) { 1310 VM_OBJECT_WLOCK(source); 1311 if ((source->flags & OBJ_DEAD) != 0) { 1312 VM_OBJECT_WUNLOCK(source); 1313 VM_OBJECT_WUNLOCK(orig_object); 1314 VM_OBJECT_WUNLOCK(new_object); 1315 vm_object_deallocate(new_object); 1316 VM_OBJECT_WLOCK(orig_object); 1317 return; 1318 } 1319 LIST_INSERT_HEAD(&source->shadow_head, 1320 new_object, shadow_list); 1321 source->shadow_count++; 1322 vm_object_reference_locked(source); /* for new_object */ 1323 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1324 VM_OBJECT_WUNLOCK(source); 1325 new_object->backing_object_offset = 1326 orig_object->backing_object_offset + entry->offset; 1327 new_object->backing_object = source; 1328 } 1329 if (orig_object->cred != NULL) { 1330 new_object->cred = orig_object->cred; 1331 crhold(orig_object->cred); 1332 new_object->charge = ptoa(size); 1333 KASSERT(orig_object->charge >= ptoa(size), 1334 ("orig_object->charge < 0")); 1335 orig_object->charge -= ptoa(size); 1336 } 1337 retry: 1338 m = vm_page_find_least(orig_object, offidxstart); 1339 for (; m != NULL && (idx = m->pindex - offidxstart) < size; 1340 m = m_next) { 1341 m_next = TAILQ_NEXT(m, listq); 1342 1343 /* 1344 * We must wait for pending I/O to complete before we can 1345 * rename the page. 1346 * 1347 * We do not have to VM_PROT_NONE the page as mappings should 1348 * not be changed by this operation. 1349 */ 1350 if (vm_page_busied(m)) { 1351 VM_OBJECT_WUNLOCK(new_object); 1352 vm_page_lock(m); 1353 VM_OBJECT_WUNLOCK(orig_object); 1354 vm_page_busy_sleep(m, "spltwt", false); 1355 VM_OBJECT_WLOCK(orig_object); 1356 VM_OBJECT_WLOCK(new_object); 1357 goto retry; 1358 } 1359 1360 /* vm_page_rename() will handle dirty and cache. */ 1361 if (vm_page_rename(m, new_object, idx)) { 1362 VM_OBJECT_WUNLOCK(new_object); 1363 VM_OBJECT_WUNLOCK(orig_object); 1364 VM_WAIT; 1365 VM_OBJECT_WLOCK(orig_object); 1366 VM_OBJECT_WLOCK(new_object); 1367 goto retry; 1368 } 1369 #if VM_NRESERVLEVEL > 0 1370 /* 1371 * If some of the reservation's allocated pages remain with 1372 * the original object, then transferring the reservation to 1373 * the new object is neither particularly beneficial nor 1374 * particularly harmful as compared to leaving the reservation 1375 * with the original object. If, however, all of the 1376 * reservation's allocated pages are transferred to the new 1377 * object, then transferring the reservation is typically 1378 * beneficial. Determining which of these two cases applies 1379 * would be more costly than unconditionally renaming the 1380 * reservation. 1381 */ 1382 vm_reserv_rename(m, new_object, orig_object, offidxstart); 1383 #endif 1384 if (orig_object->type == OBJT_SWAP) 1385 vm_page_xbusy(m); 1386 } 1387 if (orig_object->type == OBJT_SWAP) { 1388 /* 1389 * swap_pager_copy() can sleep, in which case the orig_object's 1390 * and new_object's locks are released and reacquired. 1391 */ 1392 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1393 TAILQ_FOREACH(m, &new_object->memq, listq) 1394 vm_page_xunbusy(m); 1395 } 1396 VM_OBJECT_WUNLOCK(orig_object); 1397 VM_OBJECT_WUNLOCK(new_object); 1398 entry->object.vm_object = new_object; 1399 entry->offset = 0LL; 1400 vm_object_deallocate(orig_object); 1401 VM_OBJECT_WLOCK(new_object); 1402 } 1403 1404 #define OBSC_COLLAPSE_NOWAIT 0x0002 1405 #define OBSC_COLLAPSE_WAIT 0x0004 1406 1407 static vm_page_t 1408 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next, 1409 int op) 1410 { 1411 vm_object_t backing_object; 1412 1413 VM_OBJECT_ASSERT_WLOCKED(object); 1414 backing_object = object->backing_object; 1415 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1416 1417 KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p)); 1418 KASSERT(p == NULL || p->object == object || p->object == backing_object, 1419 ("invalid ownership %p %p %p", p, object, backing_object)); 1420 if ((op & OBSC_COLLAPSE_NOWAIT) != 0) 1421 return (next); 1422 if (p != NULL) 1423 vm_page_lock(p); 1424 VM_OBJECT_WUNLOCK(object); 1425 VM_OBJECT_WUNLOCK(backing_object); 1426 if (p == NULL) 1427 VM_WAIT; 1428 else 1429 vm_page_busy_sleep(p, "vmocol", false); 1430 VM_OBJECT_WLOCK(object); 1431 VM_OBJECT_WLOCK(backing_object); 1432 return (TAILQ_FIRST(&backing_object->memq)); 1433 } 1434 1435 static bool 1436 vm_object_scan_all_shadowed(vm_object_t object) 1437 { 1438 vm_object_t backing_object; 1439 vm_page_t p, pp; 1440 vm_pindex_t backing_offset_index, new_pindex; 1441 1442 VM_OBJECT_ASSERT_WLOCKED(object); 1443 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1444 1445 backing_object = object->backing_object; 1446 1447 /* 1448 * Initial conditions: 1449 * 1450 * We do not want to have to test for the existence of cache or swap 1451 * pages in the backing object. XXX but with the new swapper this 1452 * would be pretty easy to do. 1453 */ 1454 if (backing_object->type != OBJT_DEFAULT) 1455 return (false); 1456 1457 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1458 1459 for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; 1460 p = TAILQ_NEXT(p, listq)) { 1461 new_pindex = p->pindex - backing_offset_index; 1462 1463 /* 1464 * Ignore pages outside the parent object's range and outside 1465 * the parent object's mapping of the backing object. 1466 */ 1467 if (p->pindex < backing_offset_index || 1468 new_pindex >= object->size) 1469 continue; 1470 1471 /* 1472 * See if the parent has the page or if the parent's object 1473 * pager has the page. If the parent has the page but the page 1474 * is not valid, the parent's object pager must have the page. 1475 * 1476 * If this fails, the parent does not completely shadow the 1477 * object and we might as well give up now. 1478 */ 1479 pp = vm_page_lookup(object, new_pindex); 1480 if ((pp == NULL || pp->valid == 0) && 1481 !vm_pager_has_page(object, new_pindex, NULL, NULL)) 1482 return (false); 1483 } 1484 return (true); 1485 } 1486 1487 static bool 1488 vm_object_collapse_scan(vm_object_t object, int op) 1489 { 1490 vm_object_t backing_object; 1491 vm_page_t next, p, pp; 1492 vm_pindex_t backing_offset_index, new_pindex; 1493 1494 VM_OBJECT_ASSERT_WLOCKED(object); 1495 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1496 1497 backing_object = object->backing_object; 1498 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1499 1500 /* 1501 * Initial conditions 1502 */ 1503 if ((op & OBSC_COLLAPSE_WAIT) != 0) 1504 vm_object_set_flag(backing_object, OBJ_DEAD); 1505 1506 /* 1507 * Our scan 1508 */ 1509 for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) { 1510 next = TAILQ_NEXT(p, listq); 1511 new_pindex = p->pindex - backing_offset_index; 1512 1513 /* 1514 * Check for busy page 1515 */ 1516 if (vm_page_busied(p)) { 1517 next = vm_object_collapse_scan_wait(object, p, next, op); 1518 continue; 1519 } 1520 1521 KASSERT(p->object == backing_object, 1522 ("vm_object_collapse_scan: object mismatch")); 1523 1524 if (p->pindex < backing_offset_index || 1525 new_pindex >= object->size) { 1526 if (backing_object->type == OBJT_SWAP) 1527 swap_pager_freespace(backing_object, p->pindex, 1528 1); 1529 1530 /* 1531 * Page is out of the parent object's range, we can 1532 * simply destroy it. 1533 */ 1534 vm_page_lock(p); 1535 KASSERT(!pmap_page_is_mapped(p), 1536 ("freeing mapped page %p", p)); 1537 if (p->wire_count == 0) 1538 vm_page_free(p); 1539 else 1540 vm_page_remove(p); 1541 vm_page_unlock(p); 1542 continue; 1543 } 1544 1545 pp = vm_page_lookup(object, new_pindex); 1546 if (pp != NULL && vm_page_busied(pp)) { 1547 /* 1548 * The page in the parent is busy and possibly not 1549 * (yet) valid. Until its state is finalized by the 1550 * busy bit owner, we can't tell whether it shadows the 1551 * original page. Therefore, we must either skip it 1552 * and the original (backing_object) page or wait for 1553 * its state to be finalized. 1554 * 1555 * This is due to a race with vm_fault() where we must 1556 * unbusy the original (backing_obj) page before we can 1557 * (re)lock the parent. Hence we can get here. 1558 */ 1559 next = vm_object_collapse_scan_wait(object, pp, next, 1560 op); 1561 continue; 1562 } 1563 1564 KASSERT(pp == NULL || pp->valid != 0, 1565 ("unbusy invalid page %p", pp)); 1566 1567 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL, 1568 NULL)) { 1569 /* 1570 * The page already exists in the parent OR swap exists 1571 * for this location in the parent. Leave the parent's 1572 * page alone. Destroy the original page from the 1573 * backing object. 1574 */ 1575 if (backing_object->type == OBJT_SWAP) 1576 swap_pager_freespace(backing_object, p->pindex, 1577 1); 1578 vm_page_lock(p); 1579 KASSERT(!pmap_page_is_mapped(p), 1580 ("freeing mapped page %p", p)); 1581 if (p->wire_count == 0) 1582 vm_page_free(p); 1583 else 1584 vm_page_remove(p); 1585 vm_page_unlock(p); 1586 continue; 1587 } 1588 1589 /* 1590 * Page does not exist in parent, rename the page from the 1591 * backing object to the main object. 1592 * 1593 * If the page was mapped to a process, it can remain mapped 1594 * through the rename. vm_page_rename() will handle dirty and 1595 * cache. 1596 */ 1597 if (vm_page_rename(p, object, new_pindex)) { 1598 next = vm_object_collapse_scan_wait(object, NULL, next, 1599 op); 1600 continue; 1601 } 1602 1603 /* Use the old pindex to free the right page. */ 1604 if (backing_object->type == OBJT_SWAP) 1605 swap_pager_freespace(backing_object, 1606 new_pindex + backing_offset_index, 1); 1607 1608 #if VM_NRESERVLEVEL > 0 1609 /* 1610 * Rename the reservation. 1611 */ 1612 vm_reserv_rename(p, object, backing_object, 1613 backing_offset_index); 1614 #endif 1615 } 1616 return (true); 1617 } 1618 1619 1620 /* 1621 * this version of collapse allows the operation to occur earlier and 1622 * when paging_in_progress is true for an object... This is not a complete 1623 * operation, but should plug 99.9% of the rest of the leaks. 1624 */ 1625 static void 1626 vm_object_qcollapse(vm_object_t object) 1627 { 1628 vm_object_t backing_object = object->backing_object; 1629 1630 VM_OBJECT_ASSERT_WLOCKED(object); 1631 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1632 1633 if (backing_object->ref_count != 1) 1634 return; 1635 1636 vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT); 1637 } 1638 1639 /* 1640 * vm_object_collapse: 1641 * 1642 * Collapse an object with the object backing it. 1643 * Pages in the backing object are moved into the 1644 * parent, and the backing object is deallocated. 1645 */ 1646 void 1647 vm_object_collapse(vm_object_t object) 1648 { 1649 vm_object_t backing_object, new_backing_object; 1650 1651 VM_OBJECT_ASSERT_WLOCKED(object); 1652 1653 while (TRUE) { 1654 /* 1655 * Verify that the conditions are right for collapse: 1656 * 1657 * The object exists and the backing object exists. 1658 */ 1659 if ((backing_object = object->backing_object) == NULL) 1660 break; 1661 1662 /* 1663 * we check the backing object first, because it is most likely 1664 * not collapsable. 1665 */ 1666 VM_OBJECT_WLOCK(backing_object); 1667 if (backing_object->handle != NULL || 1668 (backing_object->type != OBJT_DEFAULT && 1669 backing_object->type != OBJT_SWAP) || 1670 (backing_object->flags & OBJ_DEAD) || 1671 object->handle != NULL || 1672 (object->type != OBJT_DEFAULT && 1673 object->type != OBJT_SWAP) || 1674 (object->flags & OBJ_DEAD)) { 1675 VM_OBJECT_WUNLOCK(backing_object); 1676 break; 1677 } 1678 1679 if (object->paging_in_progress != 0 || 1680 backing_object->paging_in_progress != 0) { 1681 vm_object_qcollapse(object); 1682 VM_OBJECT_WUNLOCK(backing_object); 1683 break; 1684 } 1685 1686 /* 1687 * We know that we can either collapse the backing object (if 1688 * the parent is the only reference to it) or (perhaps) have 1689 * the parent bypass the object if the parent happens to shadow 1690 * all the resident pages in the entire backing object. 1691 * 1692 * This is ignoring pager-backed pages such as swap pages. 1693 * vm_object_collapse_scan fails the shadowing test in this 1694 * case. 1695 */ 1696 if (backing_object->ref_count == 1) { 1697 vm_object_pip_add(object, 1); 1698 vm_object_pip_add(backing_object, 1); 1699 1700 /* 1701 * If there is exactly one reference to the backing 1702 * object, we can collapse it into the parent. 1703 */ 1704 vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT); 1705 1706 #if VM_NRESERVLEVEL > 0 1707 /* 1708 * Break any reservations from backing_object. 1709 */ 1710 if (__predict_false(!LIST_EMPTY(&backing_object->rvq))) 1711 vm_reserv_break_all(backing_object); 1712 #endif 1713 1714 /* 1715 * Move the pager from backing_object to object. 1716 */ 1717 if (backing_object->type == OBJT_SWAP) { 1718 /* 1719 * swap_pager_copy() can sleep, in which case 1720 * the backing_object's and object's locks are 1721 * released and reacquired. 1722 * Since swap_pager_copy() is being asked to 1723 * destroy the source, it will change the 1724 * backing_object's type to OBJT_DEFAULT. 1725 */ 1726 swap_pager_copy( 1727 backing_object, 1728 object, 1729 OFF_TO_IDX(object->backing_object_offset), TRUE); 1730 } 1731 /* 1732 * Object now shadows whatever backing_object did. 1733 * Note that the reference to 1734 * backing_object->backing_object moves from within 1735 * backing_object to within object. 1736 */ 1737 LIST_REMOVE(object, shadow_list); 1738 backing_object->shadow_count--; 1739 if (backing_object->backing_object) { 1740 VM_OBJECT_WLOCK(backing_object->backing_object); 1741 LIST_REMOVE(backing_object, shadow_list); 1742 LIST_INSERT_HEAD( 1743 &backing_object->backing_object->shadow_head, 1744 object, shadow_list); 1745 /* 1746 * The shadow_count has not changed. 1747 */ 1748 VM_OBJECT_WUNLOCK(backing_object->backing_object); 1749 } 1750 object->backing_object = backing_object->backing_object; 1751 object->backing_object_offset += 1752 backing_object->backing_object_offset; 1753 1754 /* 1755 * Discard backing_object. 1756 * 1757 * Since the backing object has no pages, no pager left, 1758 * and no object references within it, all that is 1759 * necessary is to dispose of it. 1760 */ 1761 KASSERT(backing_object->ref_count == 1, ( 1762 "backing_object %p was somehow re-referenced during collapse!", 1763 backing_object)); 1764 vm_object_pip_wakeup(backing_object); 1765 backing_object->type = OBJT_DEAD; 1766 backing_object->ref_count = 0; 1767 VM_OBJECT_WUNLOCK(backing_object); 1768 vm_object_destroy(backing_object); 1769 1770 vm_object_pip_wakeup(object); 1771 object_collapses++; 1772 } else { 1773 /* 1774 * If we do not entirely shadow the backing object, 1775 * there is nothing we can do so we give up. 1776 */ 1777 if (object->resident_page_count != object->size && 1778 !vm_object_scan_all_shadowed(object)) { 1779 VM_OBJECT_WUNLOCK(backing_object); 1780 break; 1781 } 1782 1783 /* 1784 * Make the parent shadow the next object in the 1785 * chain. Deallocating backing_object will not remove 1786 * it, since its reference count is at least 2. 1787 */ 1788 LIST_REMOVE(object, shadow_list); 1789 backing_object->shadow_count--; 1790 1791 new_backing_object = backing_object->backing_object; 1792 if ((object->backing_object = new_backing_object) != NULL) { 1793 VM_OBJECT_WLOCK(new_backing_object); 1794 LIST_INSERT_HEAD( 1795 &new_backing_object->shadow_head, 1796 object, 1797 shadow_list 1798 ); 1799 new_backing_object->shadow_count++; 1800 vm_object_reference_locked(new_backing_object); 1801 VM_OBJECT_WUNLOCK(new_backing_object); 1802 object->backing_object_offset += 1803 backing_object->backing_object_offset; 1804 } 1805 1806 /* 1807 * Drop the reference count on backing_object. Since 1808 * its ref_count was at least 2, it will not vanish. 1809 */ 1810 backing_object->ref_count--; 1811 VM_OBJECT_WUNLOCK(backing_object); 1812 object_bypasses++; 1813 } 1814 1815 /* 1816 * Try again with this object's new backing object. 1817 */ 1818 } 1819 } 1820 1821 /* 1822 * vm_object_page_remove: 1823 * 1824 * For the given object, either frees or invalidates each of the 1825 * specified pages. In general, a page is freed. However, if a page is 1826 * wired for any reason other than the existence of a managed, wired 1827 * mapping, then it may be invalidated but not removed from the object. 1828 * Pages are specified by the given range ["start", "end") and the option 1829 * OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range 1830 * extends from "start" to the end of the object. If the option 1831 * OBJPR_CLEANONLY is specified, then only the non-dirty pages within the 1832 * specified range are affected. If the option OBJPR_NOTMAPPED is 1833 * specified, then the pages within the specified range must have no 1834 * mappings. Otherwise, if this option is not specified, any mappings to 1835 * the specified pages are removed before the pages are freed or 1836 * invalidated. 1837 * 1838 * In general, this operation should only be performed on objects that 1839 * contain managed pages. There are, however, two exceptions. First, it 1840 * is performed on the kernel and kmem objects by vm_map_entry_delete(). 1841 * Second, it is used by msync(..., MS_INVALIDATE) to invalidate device- 1842 * backed pages. In both of these cases, the option OBJPR_CLEANONLY must 1843 * not be specified and the option OBJPR_NOTMAPPED must be specified. 1844 * 1845 * The object must be locked. 1846 */ 1847 void 1848 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 1849 int options) 1850 { 1851 vm_page_t p, next; 1852 1853 VM_OBJECT_ASSERT_WLOCKED(object); 1854 KASSERT((object->flags & OBJ_UNMANAGED) == 0 || 1855 (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED, 1856 ("vm_object_page_remove: illegal options for object %p", object)); 1857 if (object->resident_page_count == 0) 1858 return; 1859 vm_object_pip_add(object, 1); 1860 again: 1861 p = vm_page_find_least(object, start); 1862 1863 /* 1864 * Here, the variable "p" is either (1) the page with the least pindex 1865 * greater than or equal to the parameter "start" or (2) NULL. 1866 */ 1867 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1868 next = TAILQ_NEXT(p, listq); 1869 1870 /* 1871 * If the page is wired for any reason besides the existence 1872 * of managed, wired mappings, then it cannot be freed. For 1873 * example, fictitious pages, which represent device memory, 1874 * are inherently wired and cannot be freed. They can, 1875 * however, be invalidated if the option OBJPR_CLEANONLY is 1876 * not specified. 1877 */ 1878 vm_page_lock(p); 1879 if (vm_page_xbusied(p)) { 1880 VM_OBJECT_WUNLOCK(object); 1881 vm_page_busy_sleep(p, "vmopax", true); 1882 VM_OBJECT_WLOCK(object); 1883 goto again; 1884 } 1885 if (p->wire_count != 0) { 1886 if ((options & OBJPR_NOTMAPPED) == 0) 1887 pmap_remove_all(p); 1888 if ((options & OBJPR_CLEANONLY) == 0) { 1889 p->valid = 0; 1890 vm_page_undirty(p); 1891 } 1892 goto next; 1893 } 1894 if (vm_page_busied(p)) { 1895 VM_OBJECT_WUNLOCK(object); 1896 vm_page_busy_sleep(p, "vmopar", false); 1897 VM_OBJECT_WLOCK(object); 1898 goto again; 1899 } 1900 KASSERT((p->flags & PG_FICTITIOUS) == 0, 1901 ("vm_object_page_remove: page %p is fictitious", p)); 1902 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) { 1903 if ((options & OBJPR_NOTMAPPED) == 0) 1904 pmap_remove_write(p); 1905 if (p->dirty) 1906 goto next; 1907 } 1908 if ((options & OBJPR_NOTMAPPED) == 0) 1909 pmap_remove_all(p); 1910 vm_page_free(p); 1911 next: 1912 vm_page_unlock(p); 1913 } 1914 vm_object_pip_wakeup(object); 1915 } 1916 1917 /* 1918 * vm_object_page_noreuse: 1919 * 1920 * For the given object, attempt to move the specified pages to 1921 * the head of the inactive queue. This bypasses regular LRU 1922 * operation and allows the pages to be reused quickly under memory 1923 * pressure. If a page is wired for any reason, then it will not 1924 * be queued. Pages are specified by the range ["start", "end"). 1925 * As a special case, if "end" is zero, then the range extends from 1926 * "start" to the end of the object. 1927 * 1928 * This operation should only be performed on objects that 1929 * contain non-fictitious, managed pages. 1930 * 1931 * The object must be locked. 1932 */ 1933 void 1934 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1935 { 1936 struct mtx *mtx, *new_mtx; 1937 vm_page_t p, next; 1938 1939 VM_OBJECT_ASSERT_WLOCKED(object); 1940 KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0, 1941 ("vm_object_page_noreuse: illegal object %p", object)); 1942 if (object->resident_page_count == 0) 1943 return; 1944 p = vm_page_find_least(object, start); 1945 1946 /* 1947 * Here, the variable "p" is either (1) the page with the least pindex 1948 * greater than or equal to the parameter "start" or (2) NULL. 1949 */ 1950 mtx = NULL; 1951 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1952 next = TAILQ_NEXT(p, listq); 1953 1954 /* 1955 * Avoid releasing and reacquiring the same page lock. 1956 */ 1957 new_mtx = vm_page_lockptr(p); 1958 if (mtx != new_mtx) { 1959 if (mtx != NULL) 1960 mtx_unlock(mtx); 1961 mtx = new_mtx; 1962 mtx_lock(mtx); 1963 } 1964 vm_page_deactivate_noreuse(p); 1965 } 1966 if (mtx != NULL) 1967 mtx_unlock(mtx); 1968 } 1969 1970 /* 1971 * Populate the specified range of the object with valid pages. Returns 1972 * TRUE if the range is successfully populated and FALSE otherwise. 1973 * 1974 * Note: This function should be optimized to pass a larger array of 1975 * pages to vm_pager_get_pages() before it is applied to a non- 1976 * OBJT_DEVICE object. 1977 * 1978 * The object must be locked. 1979 */ 1980 boolean_t 1981 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1982 { 1983 vm_page_t m; 1984 vm_pindex_t pindex; 1985 int rv; 1986 1987 VM_OBJECT_ASSERT_WLOCKED(object); 1988 for (pindex = start; pindex < end; pindex++) { 1989 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL); 1990 if (m->valid != VM_PAGE_BITS_ALL) { 1991 rv = vm_pager_get_pages(object, &m, 1, NULL, NULL); 1992 if (rv != VM_PAGER_OK) { 1993 vm_page_lock(m); 1994 vm_page_free(m); 1995 vm_page_unlock(m); 1996 break; 1997 } 1998 } 1999 /* 2000 * Keep "m" busy because a subsequent iteration may unlock 2001 * the object. 2002 */ 2003 } 2004 if (pindex > start) { 2005 m = vm_page_lookup(object, start); 2006 while (m != NULL && m->pindex < pindex) { 2007 vm_page_xunbusy(m); 2008 m = TAILQ_NEXT(m, listq); 2009 } 2010 } 2011 return (pindex == end); 2012 } 2013 2014 /* 2015 * Routine: vm_object_coalesce 2016 * Function: Coalesces two objects backing up adjoining 2017 * regions of memory into a single object. 2018 * 2019 * returns TRUE if objects were combined. 2020 * 2021 * NOTE: Only works at the moment if the second object is NULL - 2022 * if it's not, which object do we lock first? 2023 * 2024 * Parameters: 2025 * prev_object First object to coalesce 2026 * prev_offset Offset into prev_object 2027 * prev_size Size of reference to prev_object 2028 * next_size Size of reference to the second object 2029 * reserved Indicator that extension region has 2030 * swap accounted for 2031 * 2032 * Conditions: 2033 * The object must *not* be locked. 2034 */ 2035 boolean_t 2036 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, 2037 vm_size_t prev_size, vm_size_t next_size, boolean_t reserved) 2038 { 2039 vm_pindex_t next_pindex; 2040 2041 if (prev_object == NULL) 2042 return (TRUE); 2043 VM_OBJECT_WLOCK(prev_object); 2044 if ((prev_object->type != OBJT_DEFAULT && 2045 prev_object->type != OBJT_SWAP) || 2046 (prev_object->flags & OBJ_TMPFS_NODE) != 0) { 2047 VM_OBJECT_WUNLOCK(prev_object); 2048 return (FALSE); 2049 } 2050 2051 /* 2052 * Try to collapse the object first 2053 */ 2054 vm_object_collapse(prev_object); 2055 2056 /* 2057 * Can't coalesce if: . more than one reference . paged out . shadows 2058 * another object . has a copy elsewhere (any of which mean that the 2059 * pages not mapped to prev_entry may be in use anyway) 2060 */ 2061 if (prev_object->backing_object != NULL) { 2062 VM_OBJECT_WUNLOCK(prev_object); 2063 return (FALSE); 2064 } 2065 2066 prev_size >>= PAGE_SHIFT; 2067 next_size >>= PAGE_SHIFT; 2068 next_pindex = OFF_TO_IDX(prev_offset) + prev_size; 2069 2070 if ((prev_object->ref_count > 1) && 2071 (prev_object->size != next_pindex)) { 2072 VM_OBJECT_WUNLOCK(prev_object); 2073 return (FALSE); 2074 } 2075 2076 /* 2077 * Account for the charge. 2078 */ 2079 if (prev_object->cred != NULL) { 2080 2081 /* 2082 * If prev_object was charged, then this mapping, 2083 * although not charged now, may become writable 2084 * later. Non-NULL cred in the object would prevent 2085 * swap reservation during enabling of the write 2086 * access, so reserve swap now. Failed reservation 2087 * cause allocation of the separate object for the map 2088 * entry, and swap reservation for this entry is 2089 * managed in appropriate time. 2090 */ 2091 if (!reserved && !swap_reserve_by_cred(ptoa(next_size), 2092 prev_object->cred)) { 2093 VM_OBJECT_WUNLOCK(prev_object); 2094 return (FALSE); 2095 } 2096 prev_object->charge += ptoa(next_size); 2097 } 2098 2099 /* 2100 * Remove any pages that may still be in the object from a previous 2101 * deallocation. 2102 */ 2103 if (next_pindex < prev_object->size) { 2104 vm_object_page_remove(prev_object, next_pindex, next_pindex + 2105 next_size, 0); 2106 if (prev_object->type == OBJT_SWAP) 2107 swap_pager_freespace(prev_object, 2108 next_pindex, next_size); 2109 #if 0 2110 if (prev_object->cred != NULL) { 2111 KASSERT(prev_object->charge >= 2112 ptoa(prev_object->size - next_pindex), 2113 ("object %p overcharged 1 %jx %jx", prev_object, 2114 (uintmax_t)next_pindex, (uintmax_t)next_size)); 2115 prev_object->charge -= ptoa(prev_object->size - 2116 next_pindex); 2117 } 2118 #endif 2119 } 2120 2121 /* 2122 * Extend the object if necessary. 2123 */ 2124 if (next_pindex + next_size > prev_object->size) 2125 prev_object->size = next_pindex + next_size; 2126 2127 VM_OBJECT_WUNLOCK(prev_object); 2128 return (TRUE); 2129 } 2130 2131 void 2132 vm_object_set_writeable_dirty(vm_object_t object) 2133 { 2134 2135 VM_OBJECT_ASSERT_WLOCKED(object); 2136 if (object->type != OBJT_VNODE) { 2137 if ((object->flags & OBJ_TMPFS_NODE) != 0) { 2138 KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs")); 2139 vm_object_set_flag(object, OBJ_TMPFS_DIRTY); 2140 } 2141 return; 2142 } 2143 object->generation++; 2144 if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) 2145 return; 2146 vm_object_set_flag(object, OBJ_MIGHTBEDIRTY); 2147 } 2148 2149 /* 2150 * vm_object_unwire: 2151 * 2152 * For each page offset within the specified range of the given object, 2153 * find the highest-level page in the shadow chain and unwire it. A page 2154 * must exist at every page offset, and the highest-level page must be 2155 * wired. 2156 */ 2157 void 2158 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length, 2159 uint8_t queue) 2160 { 2161 vm_object_t tobject; 2162 vm_page_t m, tm; 2163 vm_pindex_t end_pindex, pindex, tpindex; 2164 int depth, locked_depth; 2165 2166 KASSERT((offset & PAGE_MASK) == 0, 2167 ("vm_object_unwire: offset is not page aligned")); 2168 KASSERT((length & PAGE_MASK) == 0, 2169 ("vm_object_unwire: length is not a multiple of PAGE_SIZE")); 2170 /* The wired count of a fictitious page never changes. */ 2171 if ((object->flags & OBJ_FICTITIOUS) != 0) 2172 return; 2173 pindex = OFF_TO_IDX(offset); 2174 end_pindex = pindex + atop(length); 2175 locked_depth = 1; 2176 VM_OBJECT_RLOCK(object); 2177 m = vm_page_find_least(object, pindex); 2178 while (pindex < end_pindex) { 2179 if (m == NULL || pindex < m->pindex) { 2180 /* 2181 * The first object in the shadow chain doesn't 2182 * contain a page at the current index. Therefore, 2183 * the page must exist in a backing object. 2184 */ 2185 tobject = object; 2186 tpindex = pindex; 2187 depth = 0; 2188 do { 2189 tpindex += 2190 OFF_TO_IDX(tobject->backing_object_offset); 2191 tobject = tobject->backing_object; 2192 KASSERT(tobject != NULL, 2193 ("vm_object_unwire: missing page")); 2194 if ((tobject->flags & OBJ_FICTITIOUS) != 0) 2195 goto next_page; 2196 depth++; 2197 if (depth == locked_depth) { 2198 locked_depth++; 2199 VM_OBJECT_RLOCK(tobject); 2200 } 2201 } while ((tm = vm_page_lookup(tobject, tpindex)) == 2202 NULL); 2203 } else { 2204 tm = m; 2205 m = TAILQ_NEXT(m, listq); 2206 } 2207 vm_page_lock(tm); 2208 vm_page_unwire(tm, queue); 2209 vm_page_unlock(tm); 2210 next_page: 2211 pindex++; 2212 } 2213 /* Release the accumulated object locks. */ 2214 for (depth = 0; depth < locked_depth; depth++) { 2215 tobject = object->backing_object; 2216 VM_OBJECT_RUNLOCK(object); 2217 object = tobject; 2218 } 2219 } 2220 2221 struct vnode * 2222 vm_object_vnode(vm_object_t object) 2223 { 2224 2225 VM_OBJECT_ASSERT_LOCKED(object); 2226 if (object->type == OBJT_VNODE) 2227 return (object->handle); 2228 if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0) 2229 return (object->un_pager.swp.swp_tmpfs); 2230 return (NULL); 2231 } 2232 2233 static int 2234 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS) 2235 { 2236 struct kinfo_vmobject kvo; 2237 char *fullpath, *freepath; 2238 struct vnode *vp; 2239 struct vattr va; 2240 vm_object_t obj; 2241 vm_page_t m; 2242 int count, error; 2243 2244 if (req->oldptr == NULL) { 2245 /* 2246 * If an old buffer has not been provided, generate an 2247 * estimate of the space needed for a subsequent call. 2248 */ 2249 mtx_lock(&vm_object_list_mtx); 2250 count = 0; 2251 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2252 if (obj->type == OBJT_DEAD) 2253 continue; 2254 count++; 2255 } 2256 mtx_unlock(&vm_object_list_mtx); 2257 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) * 2258 count * 11 / 10)); 2259 } 2260 2261 error = 0; 2262 2263 /* 2264 * VM objects are type stable and are never removed from the 2265 * list once added. This allows us to safely read obj->object_list 2266 * after reacquiring the VM object lock. 2267 */ 2268 mtx_lock(&vm_object_list_mtx); 2269 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2270 if (obj->type == OBJT_DEAD) 2271 continue; 2272 VM_OBJECT_RLOCK(obj); 2273 if (obj->type == OBJT_DEAD) { 2274 VM_OBJECT_RUNLOCK(obj); 2275 continue; 2276 } 2277 mtx_unlock(&vm_object_list_mtx); 2278 kvo.kvo_size = ptoa(obj->size); 2279 kvo.kvo_resident = obj->resident_page_count; 2280 kvo.kvo_ref_count = obj->ref_count; 2281 kvo.kvo_shadow_count = obj->shadow_count; 2282 kvo.kvo_memattr = obj->memattr; 2283 kvo.kvo_active = 0; 2284 kvo.kvo_inactive = 0; 2285 TAILQ_FOREACH(m, &obj->memq, listq) { 2286 /* 2287 * A page may belong to the object but be 2288 * dequeued and set to PQ_NONE while the 2289 * object lock is not held. This makes the 2290 * reads of m->queue below racy, and we do not 2291 * count pages set to PQ_NONE. However, this 2292 * sysctl is only meant to give an 2293 * approximation of the system anyway. 2294 */ 2295 if (vm_page_active(m)) 2296 kvo.kvo_active++; 2297 else if (vm_page_inactive(m)) 2298 kvo.kvo_inactive++; 2299 } 2300 2301 kvo.kvo_vn_fileid = 0; 2302 kvo.kvo_vn_fsid = 0; 2303 freepath = NULL; 2304 fullpath = ""; 2305 vp = NULL; 2306 switch (obj->type) { 2307 case OBJT_DEFAULT: 2308 kvo.kvo_type = KVME_TYPE_DEFAULT; 2309 break; 2310 case OBJT_VNODE: 2311 kvo.kvo_type = KVME_TYPE_VNODE; 2312 vp = obj->handle; 2313 vref(vp); 2314 break; 2315 case OBJT_SWAP: 2316 kvo.kvo_type = KVME_TYPE_SWAP; 2317 break; 2318 case OBJT_DEVICE: 2319 kvo.kvo_type = KVME_TYPE_DEVICE; 2320 break; 2321 case OBJT_PHYS: 2322 kvo.kvo_type = KVME_TYPE_PHYS; 2323 break; 2324 case OBJT_DEAD: 2325 kvo.kvo_type = KVME_TYPE_DEAD; 2326 break; 2327 case OBJT_SG: 2328 kvo.kvo_type = KVME_TYPE_SG; 2329 break; 2330 case OBJT_MGTDEVICE: 2331 kvo.kvo_type = KVME_TYPE_MGTDEVICE; 2332 break; 2333 default: 2334 kvo.kvo_type = KVME_TYPE_UNKNOWN; 2335 break; 2336 } 2337 VM_OBJECT_RUNLOCK(obj); 2338 if (vp != NULL) { 2339 vn_fullpath(curthread, vp, &fullpath, &freepath); 2340 vn_lock(vp, LK_SHARED | LK_RETRY); 2341 if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) { 2342 kvo.kvo_vn_fileid = va.va_fileid; 2343 kvo.kvo_vn_fsid = va.va_fsid; 2344 } 2345 vput(vp); 2346 } 2347 2348 strlcpy(kvo.kvo_path, fullpath, sizeof(kvo.kvo_path)); 2349 if (freepath != NULL) 2350 free(freepath, M_TEMP); 2351 2352 /* Pack record size down */ 2353 kvo.kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) + 2354 strlen(kvo.kvo_path) + 1; 2355 kvo.kvo_structsize = roundup(kvo.kvo_structsize, 2356 sizeof(uint64_t)); 2357 error = SYSCTL_OUT(req, &kvo, kvo.kvo_structsize); 2358 mtx_lock(&vm_object_list_mtx); 2359 if (error) 2360 break; 2361 } 2362 mtx_unlock(&vm_object_list_mtx); 2363 return (error); 2364 } 2365 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | 2366 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject", 2367 "List of VM objects"); 2368 2369 #include "opt_ddb.h" 2370 #ifdef DDB 2371 #include <sys/kernel.h> 2372 2373 #include <sys/cons.h> 2374 2375 #include <ddb/ddb.h> 2376 2377 static int 2378 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2379 { 2380 vm_map_t tmpm; 2381 vm_map_entry_t tmpe; 2382 vm_object_t obj; 2383 int entcount; 2384 2385 if (map == 0) 2386 return 0; 2387 2388 if (entry == 0) { 2389 tmpe = map->header.next; 2390 entcount = map->nentries; 2391 while (entcount-- && (tmpe != &map->header)) { 2392 if (_vm_object_in_map(map, object, tmpe)) { 2393 return 1; 2394 } 2395 tmpe = tmpe->next; 2396 } 2397 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2398 tmpm = entry->object.sub_map; 2399 tmpe = tmpm->header.next; 2400 entcount = tmpm->nentries; 2401 while (entcount-- && tmpe != &tmpm->header) { 2402 if (_vm_object_in_map(tmpm, object, tmpe)) { 2403 return 1; 2404 } 2405 tmpe = tmpe->next; 2406 } 2407 } else if ((obj = entry->object.vm_object) != NULL) { 2408 for (; obj; obj = obj->backing_object) 2409 if (obj == object) { 2410 return 1; 2411 } 2412 } 2413 return 0; 2414 } 2415 2416 static int 2417 vm_object_in_map(vm_object_t object) 2418 { 2419 struct proc *p; 2420 2421 /* sx_slock(&allproc_lock); */ 2422 FOREACH_PROC_IN_SYSTEM(p) { 2423 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 2424 continue; 2425 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) { 2426 /* sx_sunlock(&allproc_lock); */ 2427 return 1; 2428 } 2429 } 2430 /* sx_sunlock(&allproc_lock); */ 2431 if (_vm_object_in_map(kernel_map, object, 0)) 2432 return 1; 2433 return 0; 2434 } 2435 2436 DB_SHOW_COMMAND(vmochk, vm_object_check) 2437 { 2438 vm_object_t object; 2439 2440 /* 2441 * make sure that internal objs are in a map somewhere 2442 * and none have zero ref counts. 2443 */ 2444 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2445 if (object->handle == NULL && 2446 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2447 if (object->ref_count == 0) { 2448 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2449 (long)object->size); 2450 } 2451 if (!vm_object_in_map(object)) { 2452 db_printf( 2453 "vmochk: internal obj is not in a map: " 2454 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2455 object->ref_count, (u_long)object->size, 2456 (u_long)object->size, 2457 (void *)object->backing_object); 2458 } 2459 } 2460 } 2461 } 2462 2463 /* 2464 * vm_object_print: [ debug ] 2465 */ 2466 DB_SHOW_COMMAND(object, vm_object_print_static) 2467 { 2468 /* XXX convert args. */ 2469 vm_object_t object = (vm_object_t)addr; 2470 boolean_t full = have_addr; 2471 2472 vm_page_t p; 2473 2474 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2475 #define count was_count 2476 2477 int count; 2478 2479 if (object == NULL) 2480 return; 2481 2482 db_iprintf( 2483 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n", 2484 object, (int)object->type, (uintmax_t)object->size, 2485 object->resident_page_count, object->ref_count, object->flags, 2486 object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge); 2487 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n", 2488 object->shadow_count, 2489 object->backing_object ? object->backing_object->ref_count : 0, 2490 object->backing_object, (uintmax_t)object->backing_object_offset); 2491 2492 if (!full) 2493 return; 2494 2495 db_indent += 2; 2496 count = 0; 2497 TAILQ_FOREACH(p, &object->memq, listq) { 2498 if (count == 0) 2499 db_iprintf("memory:="); 2500 else if (count == 6) { 2501 db_printf("\n"); 2502 db_iprintf(" ..."); 2503 count = 0; 2504 } else 2505 db_printf(","); 2506 count++; 2507 2508 db_printf("(off=0x%jx,page=0x%jx)", 2509 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p)); 2510 } 2511 if (count != 0) 2512 db_printf("\n"); 2513 db_indent -= 2; 2514 } 2515 2516 /* XXX. */ 2517 #undef count 2518 2519 /* XXX need this non-static entry for calling from vm_map_print. */ 2520 void 2521 vm_object_print( 2522 /* db_expr_t */ long addr, 2523 boolean_t have_addr, 2524 /* db_expr_t */ long count, 2525 char *modif) 2526 { 2527 vm_object_print_static(addr, have_addr, count, modif); 2528 } 2529 2530 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 2531 { 2532 vm_object_t object; 2533 vm_pindex_t fidx; 2534 vm_paddr_t pa; 2535 vm_page_t m, prev_m; 2536 int rcount, nl, c; 2537 2538 nl = 0; 2539 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2540 db_printf("new object: %p\n", (void *)object); 2541 if (nl > 18) { 2542 c = cngetc(); 2543 if (c != ' ') 2544 return; 2545 nl = 0; 2546 } 2547 nl++; 2548 rcount = 0; 2549 fidx = 0; 2550 pa = -1; 2551 TAILQ_FOREACH(m, &object->memq, listq) { 2552 if (m->pindex > 128) 2553 break; 2554 if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL && 2555 prev_m->pindex + 1 != m->pindex) { 2556 if (rcount) { 2557 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2558 (long)fidx, rcount, (long)pa); 2559 if (nl > 18) { 2560 c = cngetc(); 2561 if (c != ' ') 2562 return; 2563 nl = 0; 2564 } 2565 nl++; 2566 rcount = 0; 2567 } 2568 } 2569 if (rcount && 2570 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2571 ++rcount; 2572 continue; 2573 } 2574 if (rcount) { 2575 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2576 (long)fidx, rcount, (long)pa); 2577 if (nl > 18) { 2578 c = cngetc(); 2579 if (c != ' ') 2580 return; 2581 nl = 0; 2582 } 2583 nl++; 2584 } 2585 fidx = m->pindex; 2586 pa = VM_PAGE_TO_PHYS(m); 2587 rcount = 1; 2588 } 2589 if (rcount) { 2590 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2591 (long)fidx, rcount, (long)pa); 2592 if (nl > 18) { 2593 c = cngetc(); 2594 if (c != ' ') 2595 return; 2596 nl = 0; 2597 } 2598 nl++; 2599 } 2600 } 2601 } 2602 #endif /* DDB */ 2603