xref: /freebsd/sys/vm/vm_object.c (revision f391d6bc1d0464f62f1b8264666c897a680156b1)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory object module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include "opt_vm.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>		/* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/user.h>
83 #include <sys/vnode.h>
84 #include <sys/vmmeter.h>
85 #include <sys/sx.h>
86 
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <vm/pmap.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_pageout.h>
94 #include <vm/vm_pager.h>
95 #include <vm/swap_pager.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_extern.h>
98 #include <vm/vm_radix.h>
99 #include <vm/vm_reserv.h>
100 #include <vm/uma.h>
101 
102 static int old_msync;
103 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
104     "Use old (insecure) msync behavior");
105 
106 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
107 		    int pagerflags, int flags, boolean_t *clearobjflags,
108 		    boolean_t *eio);
109 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
110 		    boolean_t *clearobjflags);
111 static void	vm_object_qcollapse(vm_object_t object);
112 static void	vm_object_vndeallocate(vm_object_t object);
113 
114 /*
115  *	Virtual memory objects maintain the actual data
116  *	associated with allocated virtual memory.  A given
117  *	page of memory exists within exactly one object.
118  *
119  *	An object is only deallocated when all "references"
120  *	are given up.  Only one "reference" to a given
121  *	region of an object should be writeable.
122  *
123  *	Associated with each object is a list of all resident
124  *	memory pages belonging to that object; this list is
125  *	maintained by the "vm_page" module, and locked by the object's
126  *	lock.
127  *
128  *	Each object also records a "pager" routine which is
129  *	used to retrieve (and store) pages to the proper backing
130  *	storage.  In addition, objects may be backed by other
131  *	objects from which they were virtual-copied.
132  *
133  *	The only items within the object structure which are
134  *	modified after time of creation are:
135  *		reference count		locked by object's lock
136  *		pager routine		locked by object's lock
137  *
138  */
139 
140 struct object_q vm_object_list;
141 struct mtx vm_object_list_mtx;	/* lock for object list and count */
142 
143 struct vm_object kernel_object_store;
144 struct vm_object kmem_object_store;
145 
146 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
147     "VM object stats");
148 
149 static long object_collapses;
150 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
151     &object_collapses, 0, "VM object collapses");
152 
153 static long object_bypasses;
154 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
155     &object_bypasses, 0, "VM object bypasses");
156 
157 static uma_zone_t obj_zone;
158 
159 static int vm_object_zinit(void *mem, int size, int flags);
160 
161 #ifdef INVARIANTS
162 static void vm_object_zdtor(void *mem, int size, void *arg);
163 
164 static void
165 vm_object_zdtor(void *mem, int size, void *arg)
166 {
167 	vm_object_t object;
168 
169 	object = (vm_object_t)mem;
170 	KASSERT(object->ref_count == 0,
171 	    ("object %p ref_count = %d", object, object->ref_count));
172 	KASSERT(TAILQ_EMPTY(&object->memq),
173 	    ("object %p has resident pages in its memq", object));
174 	KASSERT(vm_radix_is_empty(&object->rtree),
175 	    ("object %p has resident pages in its trie", object));
176 #if VM_NRESERVLEVEL > 0
177 	KASSERT(LIST_EMPTY(&object->rvq),
178 	    ("object %p has reservations",
179 	    object));
180 #endif
181 	KASSERT(object->paging_in_progress == 0,
182 	    ("object %p paging_in_progress = %d",
183 	    object, object->paging_in_progress));
184 	KASSERT(object->resident_page_count == 0,
185 	    ("object %p resident_page_count = %d",
186 	    object, object->resident_page_count));
187 	KASSERT(object->shadow_count == 0,
188 	    ("object %p shadow_count = %d",
189 	    object, object->shadow_count));
190 	KASSERT(object->type == OBJT_DEAD,
191 	    ("object %p has non-dead type %d",
192 	    object, object->type));
193 }
194 #endif
195 
196 static int
197 vm_object_zinit(void *mem, int size, int flags)
198 {
199 	vm_object_t object;
200 
201 	object = (vm_object_t)mem;
202 	rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
203 
204 	/* These are true for any object that has been freed */
205 	object->type = OBJT_DEAD;
206 	object->ref_count = 0;
207 	object->rtree.rt_root = 0;
208 	object->rtree.rt_flags = 0;
209 	object->paging_in_progress = 0;
210 	object->resident_page_count = 0;
211 	object->shadow_count = 0;
212 
213 	mtx_lock(&vm_object_list_mtx);
214 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
215 	mtx_unlock(&vm_object_list_mtx);
216 	return (0);
217 }
218 
219 static void
220 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
221 {
222 
223 	TAILQ_INIT(&object->memq);
224 	LIST_INIT(&object->shadow_head);
225 
226 	object->type = type;
227 	switch (type) {
228 	case OBJT_DEAD:
229 		panic("_vm_object_allocate: can't create OBJT_DEAD");
230 	case OBJT_DEFAULT:
231 	case OBJT_SWAP:
232 		object->flags = OBJ_ONEMAPPING;
233 		break;
234 	case OBJT_DEVICE:
235 	case OBJT_SG:
236 		object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
237 		break;
238 	case OBJT_MGTDEVICE:
239 		object->flags = OBJ_FICTITIOUS;
240 		break;
241 	case OBJT_PHYS:
242 		object->flags = OBJ_UNMANAGED;
243 		break;
244 	case OBJT_VNODE:
245 		object->flags = 0;
246 		break;
247 	default:
248 		panic("_vm_object_allocate: type %d is undefined", type);
249 	}
250 	object->size = size;
251 	object->generation = 1;
252 	object->ref_count = 1;
253 	object->memattr = VM_MEMATTR_DEFAULT;
254 	object->cred = NULL;
255 	object->charge = 0;
256 	object->handle = NULL;
257 	object->backing_object = NULL;
258 	object->backing_object_offset = (vm_ooffset_t) 0;
259 #if VM_NRESERVLEVEL > 0
260 	LIST_INIT(&object->rvq);
261 #endif
262 	umtx_shm_object_init(object);
263 }
264 
265 /*
266  *	vm_object_init:
267  *
268  *	Initialize the VM objects module.
269  */
270 void
271 vm_object_init(void)
272 {
273 	TAILQ_INIT(&vm_object_list);
274 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
275 
276 	rw_init(&kernel_object->lock, "kernel vm object");
277 	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
278 	    kernel_object);
279 #if VM_NRESERVLEVEL > 0
280 	kernel_object->flags |= OBJ_COLORED;
281 	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
282 #endif
283 
284 	rw_init(&kmem_object->lock, "kmem vm object");
285 	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
286 	    kmem_object);
287 #if VM_NRESERVLEVEL > 0
288 	kmem_object->flags |= OBJ_COLORED;
289 	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
290 #endif
291 
292 	/*
293 	 * The lock portion of struct vm_object must be type stable due
294 	 * to vm_pageout_fallback_object_lock locking a vm object
295 	 * without holding any references to it.
296 	 */
297 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
298 #ifdef INVARIANTS
299 	    vm_object_zdtor,
300 #else
301 	    NULL,
302 #endif
303 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
304 
305 	vm_radix_init();
306 }
307 
308 void
309 vm_object_clear_flag(vm_object_t object, u_short bits)
310 {
311 
312 	VM_OBJECT_ASSERT_WLOCKED(object);
313 	object->flags &= ~bits;
314 }
315 
316 /*
317  *	Sets the default memory attribute for the specified object.  Pages
318  *	that are allocated to this object are by default assigned this memory
319  *	attribute.
320  *
321  *	Presently, this function must be called before any pages are allocated
322  *	to the object.  In the future, this requirement may be relaxed for
323  *	"default" and "swap" objects.
324  */
325 int
326 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
327 {
328 
329 	VM_OBJECT_ASSERT_WLOCKED(object);
330 	switch (object->type) {
331 	case OBJT_DEFAULT:
332 	case OBJT_DEVICE:
333 	case OBJT_MGTDEVICE:
334 	case OBJT_PHYS:
335 	case OBJT_SG:
336 	case OBJT_SWAP:
337 	case OBJT_VNODE:
338 		if (!TAILQ_EMPTY(&object->memq))
339 			return (KERN_FAILURE);
340 		break;
341 	case OBJT_DEAD:
342 		return (KERN_INVALID_ARGUMENT);
343 	default:
344 		panic("vm_object_set_memattr: object %p is of undefined type",
345 		    object);
346 	}
347 	object->memattr = memattr;
348 	return (KERN_SUCCESS);
349 }
350 
351 void
352 vm_object_pip_add(vm_object_t object, short i)
353 {
354 
355 	VM_OBJECT_ASSERT_WLOCKED(object);
356 	object->paging_in_progress += i;
357 }
358 
359 void
360 vm_object_pip_subtract(vm_object_t object, short i)
361 {
362 
363 	VM_OBJECT_ASSERT_WLOCKED(object);
364 	object->paging_in_progress -= i;
365 }
366 
367 void
368 vm_object_pip_wakeup(vm_object_t object)
369 {
370 
371 	VM_OBJECT_ASSERT_WLOCKED(object);
372 	object->paging_in_progress--;
373 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
374 		vm_object_clear_flag(object, OBJ_PIPWNT);
375 		wakeup(object);
376 	}
377 }
378 
379 void
380 vm_object_pip_wakeupn(vm_object_t object, short i)
381 {
382 
383 	VM_OBJECT_ASSERT_WLOCKED(object);
384 	if (i)
385 		object->paging_in_progress -= i;
386 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
387 		vm_object_clear_flag(object, OBJ_PIPWNT);
388 		wakeup(object);
389 	}
390 }
391 
392 void
393 vm_object_pip_wait(vm_object_t object, char *waitid)
394 {
395 
396 	VM_OBJECT_ASSERT_WLOCKED(object);
397 	while (object->paging_in_progress) {
398 		object->flags |= OBJ_PIPWNT;
399 		VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
400 	}
401 }
402 
403 /*
404  *	vm_object_allocate:
405  *
406  *	Returns a new object with the given size.
407  */
408 vm_object_t
409 vm_object_allocate(objtype_t type, vm_pindex_t size)
410 {
411 	vm_object_t object;
412 
413 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
414 	_vm_object_allocate(type, size, object);
415 	return (object);
416 }
417 
418 
419 /*
420  *	vm_object_reference:
421  *
422  *	Gets another reference to the given object.  Note: OBJ_DEAD
423  *	objects can be referenced during final cleaning.
424  */
425 void
426 vm_object_reference(vm_object_t object)
427 {
428 	if (object == NULL)
429 		return;
430 	VM_OBJECT_WLOCK(object);
431 	vm_object_reference_locked(object);
432 	VM_OBJECT_WUNLOCK(object);
433 }
434 
435 /*
436  *	vm_object_reference_locked:
437  *
438  *	Gets another reference to the given object.
439  *
440  *	The object must be locked.
441  */
442 void
443 vm_object_reference_locked(vm_object_t object)
444 {
445 	struct vnode *vp;
446 
447 	VM_OBJECT_ASSERT_WLOCKED(object);
448 	object->ref_count++;
449 	if (object->type == OBJT_VNODE) {
450 		vp = object->handle;
451 		vref(vp);
452 	}
453 }
454 
455 /*
456  * Handle deallocating an object of type OBJT_VNODE.
457  */
458 static void
459 vm_object_vndeallocate(vm_object_t object)
460 {
461 	struct vnode *vp = (struct vnode *) object->handle;
462 
463 	VM_OBJECT_ASSERT_WLOCKED(object);
464 	KASSERT(object->type == OBJT_VNODE,
465 	    ("vm_object_vndeallocate: not a vnode object"));
466 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
467 #ifdef INVARIANTS
468 	if (object->ref_count == 0) {
469 		vn_printf(vp, "vm_object_vndeallocate ");
470 		panic("vm_object_vndeallocate: bad object reference count");
471 	}
472 #endif
473 
474 	if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
475 		umtx_shm_object_terminated(object);
476 
477 	/*
478 	 * The test for text of vp vnode does not need a bypass to
479 	 * reach right VV_TEXT there, since it is obtained from
480 	 * object->handle.
481 	 */
482 	if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
483 		object->ref_count--;
484 		VM_OBJECT_WUNLOCK(object);
485 		/* vrele may need the vnode lock. */
486 		vrele(vp);
487 	} else {
488 		vhold(vp);
489 		VM_OBJECT_WUNLOCK(object);
490 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
491 		vdrop(vp);
492 		VM_OBJECT_WLOCK(object);
493 		object->ref_count--;
494 		if (object->type == OBJT_DEAD) {
495 			VM_OBJECT_WUNLOCK(object);
496 			VOP_UNLOCK(vp, 0);
497 		} else {
498 			if (object->ref_count == 0)
499 				VOP_UNSET_TEXT(vp);
500 			VM_OBJECT_WUNLOCK(object);
501 			vput(vp);
502 		}
503 	}
504 }
505 
506 /*
507  *	vm_object_deallocate:
508  *
509  *	Release a reference to the specified object,
510  *	gained either through a vm_object_allocate
511  *	or a vm_object_reference call.  When all references
512  *	are gone, storage associated with this object
513  *	may be relinquished.
514  *
515  *	No object may be locked.
516  */
517 void
518 vm_object_deallocate(vm_object_t object)
519 {
520 	vm_object_t temp;
521 	struct vnode *vp;
522 
523 	while (object != NULL) {
524 		VM_OBJECT_WLOCK(object);
525 		if (object->type == OBJT_VNODE) {
526 			vm_object_vndeallocate(object);
527 			return;
528 		}
529 
530 		KASSERT(object->ref_count != 0,
531 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
532 
533 		/*
534 		 * If the reference count goes to 0 we start calling
535 		 * vm_object_terminate() on the object chain.
536 		 * A ref count of 1 may be a special case depending on the
537 		 * shadow count being 0 or 1.
538 		 */
539 		object->ref_count--;
540 		if (object->ref_count > 1) {
541 			VM_OBJECT_WUNLOCK(object);
542 			return;
543 		} else if (object->ref_count == 1) {
544 			if (object->type == OBJT_SWAP &&
545 			    (object->flags & OBJ_TMPFS) != 0) {
546 				vp = object->un_pager.swp.swp_tmpfs;
547 				vhold(vp);
548 				VM_OBJECT_WUNLOCK(object);
549 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
550 				VM_OBJECT_WLOCK(object);
551 				if (object->type == OBJT_DEAD ||
552 				    object->ref_count != 1) {
553 					VM_OBJECT_WUNLOCK(object);
554 					VOP_UNLOCK(vp, 0);
555 					vdrop(vp);
556 					return;
557 				}
558 				if ((object->flags & OBJ_TMPFS) != 0)
559 					VOP_UNSET_TEXT(vp);
560 				VOP_UNLOCK(vp, 0);
561 				vdrop(vp);
562 			}
563 			if (object->shadow_count == 0 &&
564 			    object->handle == NULL &&
565 			    (object->type == OBJT_DEFAULT ||
566 			    (object->type == OBJT_SWAP &&
567 			    (object->flags & OBJ_TMPFS_NODE) == 0))) {
568 				vm_object_set_flag(object, OBJ_ONEMAPPING);
569 			} else if ((object->shadow_count == 1) &&
570 			    (object->handle == NULL) &&
571 			    (object->type == OBJT_DEFAULT ||
572 			     object->type == OBJT_SWAP)) {
573 				vm_object_t robject;
574 
575 				robject = LIST_FIRST(&object->shadow_head);
576 				KASSERT(robject != NULL,
577 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
578 					 object->ref_count,
579 					 object->shadow_count));
580 				KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
581 				    ("shadowed tmpfs v_object %p", object));
582 				if (!VM_OBJECT_TRYWLOCK(robject)) {
583 					/*
584 					 * Avoid a potential deadlock.
585 					 */
586 					object->ref_count++;
587 					VM_OBJECT_WUNLOCK(object);
588 					/*
589 					 * More likely than not the thread
590 					 * holding robject's lock has lower
591 					 * priority than the current thread.
592 					 * Let the lower priority thread run.
593 					 */
594 					pause("vmo_de", 1);
595 					continue;
596 				}
597 				/*
598 				 * Collapse object into its shadow unless its
599 				 * shadow is dead.  In that case, object will
600 				 * be deallocated by the thread that is
601 				 * deallocating its shadow.
602 				 */
603 				if ((robject->flags & OBJ_DEAD) == 0 &&
604 				    (robject->handle == NULL) &&
605 				    (robject->type == OBJT_DEFAULT ||
606 				     robject->type == OBJT_SWAP)) {
607 
608 					robject->ref_count++;
609 retry:
610 					if (robject->paging_in_progress) {
611 						VM_OBJECT_WUNLOCK(object);
612 						vm_object_pip_wait(robject,
613 						    "objde1");
614 						temp = robject->backing_object;
615 						if (object == temp) {
616 							VM_OBJECT_WLOCK(object);
617 							goto retry;
618 						}
619 					} else if (object->paging_in_progress) {
620 						VM_OBJECT_WUNLOCK(robject);
621 						object->flags |= OBJ_PIPWNT;
622 						VM_OBJECT_SLEEP(object, object,
623 						    PDROP | PVM, "objde2", 0);
624 						VM_OBJECT_WLOCK(robject);
625 						temp = robject->backing_object;
626 						if (object == temp) {
627 							VM_OBJECT_WLOCK(object);
628 							goto retry;
629 						}
630 					} else
631 						VM_OBJECT_WUNLOCK(object);
632 
633 					if (robject->ref_count == 1) {
634 						robject->ref_count--;
635 						object = robject;
636 						goto doterm;
637 					}
638 					object = robject;
639 					vm_object_collapse(object);
640 					VM_OBJECT_WUNLOCK(object);
641 					continue;
642 				}
643 				VM_OBJECT_WUNLOCK(robject);
644 			}
645 			VM_OBJECT_WUNLOCK(object);
646 			return;
647 		}
648 doterm:
649 		umtx_shm_object_terminated(object);
650 		temp = object->backing_object;
651 		if (temp != NULL) {
652 			KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
653 			    ("shadowed tmpfs v_object 2 %p", object));
654 			VM_OBJECT_WLOCK(temp);
655 			LIST_REMOVE(object, shadow_list);
656 			temp->shadow_count--;
657 			VM_OBJECT_WUNLOCK(temp);
658 			object->backing_object = NULL;
659 		}
660 		/*
661 		 * Don't double-terminate, we could be in a termination
662 		 * recursion due to the terminate having to sync data
663 		 * to disk.
664 		 */
665 		if ((object->flags & OBJ_DEAD) == 0)
666 			vm_object_terminate(object);
667 		else
668 			VM_OBJECT_WUNLOCK(object);
669 		object = temp;
670 	}
671 }
672 
673 /*
674  *	vm_object_destroy removes the object from the global object list
675  *      and frees the space for the object.
676  */
677 void
678 vm_object_destroy(vm_object_t object)
679 {
680 
681 	/*
682 	 * Release the allocation charge.
683 	 */
684 	if (object->cred != NULL) {
685 		swap_release_by_cred(object->charge, object->cred);
686 		object->charge = 0;
687 		crfree(object->cred);
688 		object->cred = NULL;
689 	}
690 
691 	/*
692 	 * Free the space for the object.
693 	 */
694 	uma_zfree(obj_zone, object);
695 }
696 
697 /*
698  *	vm_object_terminate actually destroys the specified object, freeing
699  *	up all previously used resources.
700  *
701  *	The object must be locked.
702  *	This routine may block.
703  */
704 void
705 vm_object_terminate(vm_object_t object)
706 {
707 	vm_page_t p, p_next;
708 
709 	VM_OBJECT_ASSERT_WLOCKED(object);
710 
711 	/*
712 	 * Make sure no one uses us.
713 	 */
714 	vm_object_set_flag(object, OBJ_DEAD);
715 
716 	/*
717 	 * wait for the pageout daemon to be done with the object
718 	 */
719 	vm_object_pip_wait(object, "objtrm");
720 
721 	KASSERT(!object->paging_in_progress,
722 		("vm_object_terminate: pageout in progress"));
723 
724 	/*
725 	 * Clean and free the pages, as appropriate. All references to the
726 	 * object are gone, so we don't need to lock it.
727 	 */
728 	if (object->type == OBJT_VNODE) {
729 		struct vnode *vp = (struct vnode *)object->handle;
730 
731 		/*
732 		 * Clean pages and flush buffers.
733 		 */
734 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
735 		VM_OBJECT_WUNLOCK(object);
736 
737 		vinvalbuf(vp, V_SAVE, 0, 0);
738 
739 		BO_LOCK(&vp->v_bufobj);
740 		vp->v_bufobj.bo_flag |= BO_DEAD;
741 		BO_UNLOCK(&vp->v_bufobj);
742 
743 		VM_OBJECT_WLOCK(object);
744 	}
745 
746 	KASSERT(object->ref_count == 0,
747 		("vm_object_terminate: object with references, ref_count=%d",
748 		object->ref_count));
749 
750 	/*
751 	 * Free any remaining pageable pages.  This also removes them from the
752 	 * paging queues.  However, don't free wired pages, just remove them
753 	 * from the object.  Rather than incrementally removing each page from
754 	 * the object, the page and object are reset to any empty state.
755 	 */
756 	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
757 		vm_page_assert_unbusied(p);
758 		vm_page_lock(p);
759 		/*
760 		 * Optimize the page's removal from the object by resetting
761 		 * its "object" field.  Specifically, if the page is not
762 		 * wired, then the effect of this assignment is that
763 		 * vm_page_free()'s call to vm_page_remove() will return
764 		 * immediately without modifying the page or the object.
765 		 */
766 		p->object = NULL;
767 		if (p->wire_count == 0) {
768 			vm_page_free(p);
769 			PCPU_INC(cnt.v_pfree);
770 		}
771 		vm_page_unlock(p);
772 	}
773 	/*
774 	 * If the object contained any pages, then reset it to an empty state.
775 	 * None of the object's fields, including "resident_page_count", were
776 	 * modified by the preceding loop.
777 	 */
778 	if (object->resident_page_count != 0) {
779 		vm_radix_reclaim_allnodes(&object->rtree);
780 		TAILQ_INIT(&object->memq);
781 		object->resident_page_count = 0;
782 		if (object->type == OBJT_VNODE)
783 			vdrop(object->handle);
784 	}
785 
786 #if VM_NRESERVLEVEL > 0
787 	if (__predict_false(!LIST_EMPTY(&object->rvq)))
788 		vm_reserv_break_all(object);
789 #endif
790 
791 	KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
792 	    object->type == OBJT_SWAP,
793 	    ("%s: non-swap obj %p has cred", __func__, object));
794 
795 	/*
796 	 * Let the pager know object is dead.
797 	 */
798 	vm_pager_deallocate(object);
799 	VM_OBJECT_WUNLOCK(object);
800 
801 	vm_object_destroy(object);
802 }
803 
804 /*
805  * Make the page read-only so that we can clear the object flags.  However, if
806  * this is a nosync mmap then the object is likely to stay dirty so do not
807  * mess with the page and do not clear the object flags.  Returns TRUE if the
808  * page should be flushed, and FALSE otherwise.
809  */
810 static boolean_t
811 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
812 {
813 
814 	/*
815 	 * If we have been asked to skip nosync pages and this is a
816 	 * nosync page, skip it.  Note that the object flags were not
817 	 * cleared in this case so we do not have to set them.
818 	 */
819 	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
820 		*clearobjflags = FALSE;
821 		return (FALSE);
822 	} else {
823 		pmap_remove_write(p);
824 		return (p->dirty != 0);
825 	}
826 }
827 
828 /*
829  *	vm_object_page_clean
830  *
831  *	Clean all dirty pages in the specified range of object.  Leaves page
832  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
833  *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
834  *	leaving the object dirty.
835  *
836  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
837  *	synchronous clustering mode implementation.
838  *
839  *	Odd semantics: if start == end, we clean everything.
840  *
841  *	The object must be locked.
842  *
843  *	Returns FALSE if some page from the range was not written, as
844  *	reported by the pager, and TRUE otherwise.
845  */
846 boolean_t
847 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
848     int flags)
849 {
850 	vm_page_t np, p;
851 	vm_pindex_t pi, tend, tstart;
852 	int curgeneration, n, pagerflags;
853 	boolean_t clearobjflags, eio, res;
854 
855 	VM_OBJECT_ASSERT_WLOCKED(object);
856 
857 	/*
858 	 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
859 	 * objects.  The check below prevents the function from
860 	 * operating on non-vnode objects.
861 	 */
862 	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
863 	    object->resident_page_count == 0)
864 		return (TRUE);
865 
866 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
867 	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
868 	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
869 
870 	tstart = OFF_TO_IDX(start);
871 	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
872 	clearobjflags = tstart == 0 && tend >= object->size;
873 	res = TRUE;
874 
875 rescan:
876 	curgeneration = object->generation;
877 
878 	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
879 		pi = p->pindex;
880 		if (pi >= tend)
881 			break;
882 		np = TAILQ_NEXT(p, listq);
883 		if (p->valid == 0)
884 			continue;
885 		if (vm_page_sleep_if_busy(p, "vpcwai")) {
886 			if (object->generation != curgeneration) {
887 				if ((flags & OBJPC_SYNC) != 0)
888 					goto rescan;
889 				else
890 					clearobjflags = FALSE;
891 			}
892 			np = vm_page_find_least(object, pi);
893 			continue;
894 		}
895 		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
896 			continue;
897 
898 		n = vm_object_page_collect_flush(object, p, pagerflags,
899 		    flags, &clearobjflags, &eio);
900 		if (eio) {
901 			res = FALSE;
902 			clearobjflags = FALSE;
903 		}
904 		if (object->generation != curgeneration) {
905 			if ((flags & OBJPC_SYNC) != 0)
906 				goto rescan;
907 			else
908 				clearobjflags = FALSE;
909 		}
910 
911 		/*
912 		 * If the VOP_PUTPAGES() did a truncated write, so
913 		 * that even the first page of the run is not fully
914 		 * written, vm_pageout_flush() returns 0 as the run
915 		 * length.  Since the condition that caused truncated
916 		 * write may be permanent, e.g. exhausted free space,
917 		 * accepting n == 0 would cause an infinite loop.
918 		 *
919 		 * Forwarding the iterator leaves the unwritten page
920 		 * behind, but there is not much we can do there if
921 		 * filesystem refuses to write it.
922 		 */
923 		if (n == 0) {
924 			n = 1;
925 			clearobjflags = FALSE;
926 		}
927 		np = vm_page_find_least(object, pi + n);
928 	}
929 #if 0
930 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
931 #endif
932 
933 	if (clearobjflags)
934 		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
935 	return (res);
936 }
937 
938 static int
939 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
940     int flags, boolean_t *clearobjflags, boolean_t *eio)
941 {
942 	vm_page_t ma[vm_pageout_page_count], p_first, tp;
943 	int count, i, mreq, runlen;
944 
945 	vm_page_lock_assert(p, MA_NOTOWNED);
946 	VM_OBJECT_ASSERT_WLOCKED(object);
947 
948 	count = 1;
949 	mreq = 0;
950 
951 	for (tp = p; count < vm_pageout_page_count; count++) {
952 		tp = vm_page_next(tp);
953 		if (tp == NULL || vm_page_busied(tp))
954 			break;
955 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
956 			break;
957 	}
958 
959 	for (p_first = p; count < vm_pageout_page_count; count++) {
960 		tp = vm_page_prev(p_first);
961 		if (tp == NULL || vm_page_busied(tp))
962 			break;
963 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
964 			break;
965 		p_first = tp;
966 		mreq++;
967 	}
968 
969 	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
970 		ma[i] = tp;
971 
972 	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
973 	return (runlen);
974 }
975 
976 /*
977  * Note that there is absolutely no sense in writing out
978  * anonymous objects, so we track down the vnode object
979  * to write out.
980  * We invalidate (remove) all pages from the address space
981  * for semantic correctness.
982  *
983  * If the backing object is a device object with unmanaged pages, then any
984  * mappings to the specified range of pages must be removed before this
985  * function is called.
986  *
987  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
988  * may start out with a NULL object.
989  */
990 boolean_t
991 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
992     boolean_t syncio, boolean_t invalidate)
993 {
994 	vm_object_t backing_object;
995 	struct vnode *vp;
996 	struct mount *mp;
997 	int error, flags, fsync_after;
998 	boolean_t res;
999 
1000 	if (object == NULL)
1001 		return (TRUE);
1002 	res = TRUE;
1003 	error = 0;
1004 	VM_OBJECT_WLOCK(object);
1005 	while ((backing_object = object->backing_object) != NULL) {
1006 		VM_OBJECT_WLOCK(backing_object);
1007 		offset += object->backing_object_offset;
1008 		VM_OBJECT_WUNLOCK(object);
1009 		object = backing_object;
1010 		if (object->size < OFF_TO_IDX(offset + size))
1011 			size = IDX_TO_OFF(object->size) - offset;
1012 	}
1013 	/*
1014 	 * Flush pages if writing is allowed, invalidate them
1015 	 * if invalidation requested.  Pages undergoing I/O
1016 	 * will be ignored by vm_object_page_remove().
1017 	 *
1018 	 * We cannot lock the vnode and then wait for paging
1019 	 * to complete without deadlocking against vm_fault.
1020 	 * Instead we simply call vm_object_page_remove() and
1021 	 * allow it to block internally on a page-by-page
1022 	 * basis when it encounters pages undergoing async
1023 	 * I/O.
1024 	 */
1025 	if (object->type == OBJT_VNODE &&
1026 	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1027 		vp = object->handle;
1028 		VM_OBJECT_WUNLOCK(object);
1029 		(void) vn_start_write(vp, &mp, V_WAIT);
1030 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1031 		if (syncio && !invalidate && offset == 0 &&
1032 		    OFF_TO_IDX(size) == object->size) {
1033 			/*
1034 			 * If syncing the whole mapping of the file,
1035 			 * it is faster to schedule all the writes in
1036 			 * async mode, also allowing the clustering,
1037 			 * and then wait for i/o to complete.
1038 			 */
1039 			flags = 0;
1040 			fsync_after = TRUE;
1041 		} else {
1042 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1043 			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1044 			fsync_after = FALSE;
1045 		}
1046 		VM_OBJECT_WLOCK(object);
1047 		res = vm_object_page_clean(object, offset, offset + size,
1048 		    flags);
1049 		VM_OBJECT_WUNLOCK(object);
1050 		if (fsync_after)
1051 			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1052 		VOP_UNLOCK(vp, 0);
1053 		vn_finished_write(mp);
1054 		if (error != 0)
1055 			res = FALSE;
1056 		VM_OBJECT_WLOCK(object);
1057 	}
1058 	if ((object->type == OBJT_VNODE ||
1059 	     object->type == OBJT_DEVICE) && invalidate) {
1060 		if (object->type == OBJT_DEVICE)
1061 			/*
1062 			 * The option OBJPR_NOTMAPPED must be passed here
1063 			 * because vm_object_page_remove() cannot remove
1064 			 * unmanaged mappings.
1065 			 */
1066 			flags = OBJPR_NOTMAPPED;
1067 		else if (old_msync)
1068 			flags = 0;
1069 		else
1070 			flags = OBJPR_CLEANONLY;
1071 		vm_object_page_remove(object, OFF_TO_IDX(offset),
1072 		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1073 	}
1074 	VM_OBJECT_WUNLOCK(object);
1075 	return (res);
1076 }
1077 
1078 /*
1079  *	vm_object_madvise:
1080  *
1081  *	Implements the madvise function at the object/page level.
1082  *
1083  *	MADV_WILLNEED	(any object)
1084  *
1085  *	    Activate the specified pages if they are resident.
1086  *
1087  *	MADV_DONTNEED	(any object)
1088  *
1089  *	    Deactivate the specified pages if they are resident.
1090  *
1091  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1092  *			 OBJ_ONEMAPPING only)
1093  *
1094  *	    Deactivate and clean the specified pages if they are
1095  *	    resident.  This permits the process to reuse the pages
1096  *	    without faulting or the kernel to reclaim the pages
1097  *	    without I/O.
1098  */
1099 void
1100 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1101     int advise)
1102 {
1103 	vm_pindex_t tpindex;
1104 	vm_object_t backing_object, tobject;
1105 	vm_page_t m;
1106 
1107 	if (object == NULL)
1108 		return;
1109 	VM_OBJECT_WLOCK(object);
1110 	/*
1111 	 * Locate and adjust resident pages
1112 	 */
1113 	for (; pindex < end; pindex += 1) {
1114 relookup:
1115 		tobject = object;
1116 		tpindex = pindex;
1117 shadowlookup:
1118 		/*
1119 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1120 		 * and those pages must be OBJ_ONEMAPPING.
1121 		 */
1122 		if (advise == MADV_FREE) {
1123 			if ((tobject->type != OBJT_DEFAULT &&
1124 			     tobject->type != OBJT_SWAP) ||
1125 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1126 				goto unlock_tobject;
1127 			}
1128 		} else if ((tobject->flags & OBJ_UNMANAGED) != 0)
1129 			goto unlock_tobject;
1130 		m = vm_page_lookup(tobject, tpindex);
1131 		if (m == NULL) {
1132 			/*
1133 			 * There may be swap even if there is no backing page
1134 			 */
1135 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1136 				swap_pager_freespace(tobject, tpindex, 1);
1137 			/*
1138 			 * next object
1139 			 */
1140 			backing_object = tobject->backing_object;
1141 			if (backing_object == NULL)
1142 				goto unlock_tobject;
1143 			VM_OBJECT_WLOCK(backing_object);
1144 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1145 			if (tobject != object)
1146 				VM_OBJECT_WUNLOCK(tobject);
1147 			tobject = backing_object;
1148 			goto shadowlookup;
1149 		} else if (m->valid != VM_PAGE_BITS_ALL)
1150 			goto unlock_tobject;
1151 		/*
1152 		 * If the page is not in a normal state, skip it.
1153 		 */
1154 		vm_page_lock(m);
1155 		if (m->hold_count != 0 || m->wire_count != 0) {
1156 			vm_page_unlock(m);
1157 			goto unlock_tobject;
1158 		}
1159 		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1160 		    ("vm_object_madvise: page %p is fictitious", m));
1161 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1162 		    ("vm_object_madvise: page %p is not managed", m));
1163 		if (vm_page_busied(m)) {
1164 			if (advise == MADV_WILLNEED) {
1165 				/*
1166 				 * Reference the page before unlocking and
1167 				 * sleeping so that the page daemon is less
1168 				 * likely to reclaim it.
1169 				 */
1170 				vm_page_aflag_set(m, PGA_REFERENCED);
1171 			}
1172 			if (object != tobject)
1173 				VM_OBJECT_WUNLOCK(object);
1174 			VM_OBJECT_WUNLOCK(tobject);
1175 			vm_page_busy_sleep(m, "madvpo", false);
1176 			VM_OBJECT_WLOCK(object);
1177   			goto relookup;
1178 		}
1179 		if (advise == MADV_WILLNEED) {
1180 			vm_page_activate(m);
1181 		} else {
1182 			vm_page_advise(m, advise);
1183 		}
1184 		vm_page_unlock(m);
1185 		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1186 			swap_pager_freespace(tobject, tpindex, 1);
1187 unlock_tobject:
1188 		if (tobject != object)
1189 			VM_OBJECT_WUNLOCK(tobject);
1190 	}
1191 	VM_OBJECT_WUNLOCK(object);
1192 }
1193 
1194 /*
1195  *	vm_object_shadow:
1196  *
1197  *	Create a new object which is backed by the
1198  *	specified existing object range.  The source
1199  *	object reference is deallocated.
1200  *
1201  *	The new object and offset into that object
1202  *	are returned in the source parameters.
1203  */
1204 void
1205 vm_object_shadow(
1206 	vm_object_t *object,	/* IN/OUT */
1207 	vm_ooffset_t *offset,	/* IN/OUT */
1208 	vm_size_t length)
1209 {
1210 	vm_object_t source;
1211 	vm_object_t result;
1212 
1213 	source = *object;
1214 
1215 	/*
1216 	 * Don't create the new object if the old object isn't shared.
1217 	 */
1218 	if (source != NULL) {
1219 		VM_OBJECT_WLOCK(source);
1220 		if (source->ref_count == 1 &&
1221 		    source->handle == NULL &&
1222 		    (source->type == OBJT_DEFAULT ||
1223 		     source->type == OBJT_SWAP)) {
1224 			VM_OBJECT_WUNLOCK(source);
1225 			return;
1226 		}
1227 		VM_OBJECT_WUNLOCK(source);
1228 	}
1229 
1230 	/*
1231 	 * Allocate a new object with the given length.
1232 	 */
1233 	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1234 
1235 	/*
1236 	 * The new object shadows the source object, adding a reference to it.
1237 	 * Our caller changes his reference to point to the new object,
1238 	 * removing a reference to the source object.  Net result: no change
1239 	 * of reference count.
1240 	 *
1241 	 * Try to optimize the result object's page color when shadowing
1242 	 * in order to maintain page coloring consistency in the combined
1243 	 * shadowed object.
1244 	 */
1245 	result->backing_object = source;
1246 	/*
1247 	 * Store the offset into the source object, and fix up the offset into
1248 	 * the new object.
1249 	 */
1250 	result->backing_object_offset = *offset;
1251 	if (source != NULL) {
1252 		VM_OBJECT_WLOCK(source);
1253 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1254 		source->shadow_count++;
1255 #if VM_NRESERVLEVEL > 0
1256 		result->flags |= source->flags & OBJ_COLORED;
1257 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1258 		    ((1 << (VM_NFREEORDER - 1)) - 1);
1259 #endif
1260 		VM_OBJECT_WUNLOCK(source);
1261 	}
1262 
1263 
1264 	/*
1265 	 * Return the new things
1266 	 */
1267 	*offset = 0;
1268 	*object = result;
1269 }
1270 
1271 /*
1272  *	vm_object_split:
1273  *
1274  * Split the pages in a map entry into a new object.  This affords
1275  * easier removal of unused pages, and keeps object inheritance from
1276  * being a negative impact on memory usage.
1277  */
1278 void
1279 vm_object_split(vm_map_entry_t entry)
1280 {
1281 	vm_page_t m, m_next;
1282 	vm_object_t orig_object, new_object, source;
1283 	vm_pindex_t idx, offidxstart;
1284 	vm_size_t size;
1285 
1286 	orig_object = entry->object.vm_object;
1287 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1288 		return;
1289 	if (orig_object->ref_count <= 1)
1290 		return;
1291 	VM_OBJECT_WUNLOCK(orig_object);
1292 
1293 	offidxstart = OFF_TO_IDX(entry->offset);
1294 	size = atop(entry->end - entry->start);
1295 
1296 	/*
1297 	 * If swap_pager_copy() is later called, it will convert new_object
1298 	 * into a swap object.
1299 	 */
1300 	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1301 
1302 	/*
1303 	 * At this point, the new object is still private, so the order in
1304 	 * which the original and new objects are locked does not matter.
1305 	 */
1306 	VM_OBJECT_WLOCK(new_object);
1307 	VM_OBJECT_WLOCK(orig_object);
1308 	source = orig_object->backing_object;
1309 	if (source != NULL) {
1310 		VM_OBJECT_WLOCK(source);
1311 		if ((source->flags & OBJ_DEAD) != 0) {
1312 			VM_OBJECT_WUNLOCK(source);
1313 			VM_OBJECT_WUNLOCK(orig_object);
1314 			VM_OBJECT_WUNLOCK(new_object);
1315 			vm_object_deallocate(new_object);
1316 			VM_OBJECT_WLOCK(orig_object);
1317 			return;
1318 		}
1319 		LIST_INSERT_HEAD(&source->shadow_head,
1320 				  new_object, shadow_list);
1321 		source->shadow_count++;
1322 		vm_object_reference_locked(source);	/* for new_object */
1323 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1324 		VM_OBJECT_WUNLOCK(source);
1325 		new_object->backing_object_offset =
1326 			orig_object->backing_object_offset + entry->offset;
1327 		new_object->backing_object = source;
1328 	}
1329 	if (orig_object->cred != NULL) {
1330 		new_object->cred = orig_object->cred;
1331 		crhold(orig_object->cred);
1332 		new_object->charge = ptoa(size);
1333 		KASSERT(orig_object->charge >= ptoa(size),
1334 		    ("orig_object->charge < 0"));
1335 		orig_object->charge -= ptoa(size);
1336 	}
1337 retry:
1338 	m = vm_page_find_least(orig_object, offidxstart);
1339 	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1340 	    m = m_next) {
1341 		m_next = TAILQ_NEXT(m, listq);
1342 
1343 		/*
1344 		 * We must wait for pending I/O to complete before we can
1345 		 * rename the page.
1346 		 *
1347 		 * We do not have to VM_PROT_NONE the page as mappings should
1348 		 * not be changed by this operation.
1349 		 */
1350 		if (vm_page_busied(m)) {
1351 			VM_OBJECT_WUNLOCK(new_object);
1352 			vm_page_lock(m);
1353 			VM_OBJECT_WUNLOCK(orig_object);
1354 			vm_page_busy_sleep(m, "spltwt", false);
1355 			VM_OBJECT_WLOCK(orig_object);
1356 			VM_OBJECT_WLOCK(new_object);
1357 			goto retry;
1358 		}
1359 
1360 		/* vm_page_rename() will handle dirty and cache. */
1361 		if (vm_page_rename(m, new_object, idx)) {
1362 			VM_OBJECT_WUNLOCK(new_object);
1363 			VM_OBJECT_WUNLOCK(orig_object);
1364 			VM_WAIT;
1365 			VM_OBJECT_WLOCK(orig_object);
1366 			VM_OBJECT_WLOCK(new_object);
1367 			goto retry;
1368 		}
1369 #if VM_NRESERVLEVEL > 0
1370 		/*
1371 		 * If some of the reservation's allocated pages remain with
1372 		 * the original object, then transferring the reservation to
1373 		 * the new object is neither particularly beneficial nor
1374 		 * particularly harmful as compared to leaving the reservation
1375 		 * with the original object.  If, however, all of the
1376 		 * reservation's allocated pages are transferred to the new
1377 		 * object, then transferring the reservation is typically
1378 		 * beneficial.  Determining which of these two cases applies
1379 		 * would be more costly than unconditionally renaming the
1380 		 * reservation.
1381 		 */
1382 		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1383 #endif
1384 		if (orig_object->type == OBJT_SWAP)
1385 			vm_page_xbusy(m);
1386 	}
1387 	if (orig_object->type == OBJT_SWAP) {
1388 		/*
1389 		 * swap_pager_copy() can sleep, in which case the orig_object's
1390 		 * and new_object's locks are released and reacquired.
1391 		 */
1392 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1393 		TAILQ_FOREACH(m, &new_object->memq, listq)
1394 			vm_page_xunbusy(m);
1395 	}
1396 	VM_OBJECT_WUNLOCK(orig_object);
1397 	VM_OBJECT_WUNLOCK(new_object);
1398 	entry->object.vm_object = new_object;
1399 	entry->offset = 0LL;
1400 	vm_object_deallocate(orig_object);
1401 	VM_OBJECT_WLOCK(new_object);
1402 }
1403 
1404 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1405 #define	OBSC_COLLAPSE_WAIT	0x0004
1406 
1407 static vm_page_t
1408 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1409     int op)
1410 {
1411 	vm_object_t backing_object;
1412 
1413 	VM_OBJECT_ASSERT_WLOCKED(object);
1414 	backing_object = object->backing_object;
1415 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1416 
1417 	KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1418 	KASSERT(p == NULL || p->object == object || p->object == backing_object,
1419 	    ("invalid ownership %p %p %p", p, object, backing_object));
1420 	if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1421 		return (next);
1422 	if (p != NULL)
1423 		vm_page_lock(p);
1424 	VM_OBJECT_WUNLOCK(object);
1425 	VM_OBJECT_WUNLOCK(backing_object);
1426 	if (p == NULL)
1427 		VM_WAIT;
1428 	else
1429 		vm_page_busy_sleep(p, "vmocol", false);
1430 	VM_OBJECT_WLOCK(object);
1431 	VM_OBJECT_WLOCK(backing_object);
1432 	return (TAILQ_FIRST(&backing_object->memq));
1433 }
1434 
1435 static bool
1436 vm_object_scan_all_shadowed(vm_object_t object)
1437 {
1438 	vm_object_t backing_object;
1439 	vm_page_t p, pp;
1440 	vm_pindex_t backing_offset_index, new_pindex;
1441 
1442 	VM_OBJECT_ASSERT_WLOCKED(object);
1443 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1444 
1445 	backing_object = object->backing_object;
1446 
1447 	/*
1448 	 * Initial conditions:
1449 	 *
1450 	 * We do not want to have to test for the existence of cache or swap
1451 	 * pages in the backing object.  XXX but with the new swapper this
1452 	 * would be pretty easy to do.
1453 	 */
1454 	if (backing_object->type != OBJT_DEFAULT)
1455 		return (false);
1456 
1457 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1458 
1459 	for (p = TAILQ_FIRST(&backing_object->memq); p != NULL;
1460 	    p = TAILQ_NEXT(p, listq)) {
1461 		new_pindex = p->pindex - backing_offset_index;
1462 
1463 		/*
1464 		 * Ignore pages outside the parent object's range and outside
1465 		 * the parent object's mapping of the backing object.
1466 		 */
1467 		if (p->pindex < backing_offset_index ||
1468 		    new_pindex >= object->size)
1469 			continue;
1470 
1471 		/*
1472 		 * See if the parent has the page or if the parent's object
1473 		 * pager has the page.  If the parent has the page but the page
1474 		 * is not valid, the parent's object pager must have the page.
1475 		 *
1476 		 * If this fails, the parent does not completely shadow the
1477 		 * object and we might as well give up now.
1478 		 */
1479 		pp = vm_page_lookup(object, new_pindex);
1480 		if ((pp == NULL || pp->valid == 0) &&
1481 		    !vm_pager_has_page(object, new_pindex, NULL, NULL))
1482 			return (false);
1483 	}
1484 	return (true);
1485 }
1486 
1487 static bool
1488 vm_object_collapse_scan(vm_object_t object, int op)
1489 {
1490 	vm_object_t backing_object;
1491 	vm_page_t next, p, pp;
1492 	vm_pindex_t backing_offset_index, new_pindex;
1493 
1494 	VM_OBJECT_ASSERT_WLOCKED(object);
1495 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1496 
1497 	backing_object = object->backing_object;
1498 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1499 
1500 	/*
1501 	 * Initial conditions
1502 	 */
1503 	if ((op & OBSC_COLLAPSE_WAIT) != 0)
1504 		vm_object_set_flag(backing_object, OBJ_DEAD);
1505 
1506 	/*
1507 	 * Our scan
1508 	 */
1509 	for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1510 		next = TAILQ_NEXT(p, listq);
1511 		new_pindex = p->pindex - backing_offset_index;
1512 
1513 		/*
1514 		 * Check for busy page
1515 		 */
1516 		if (vm_page_busied(p)) {
1517 			next = vm_object_collapse_scan_wait(object, p, next, op);
1518 			continue;
1519 		}
1520 
1521 		KASSERT(p->object == backing_object,
1522 		    ("vm_object_collapse_scan: object mismatch"));
1523 
1524 		if (p->pindex < backing_offset_index ||
1525 		    new_pindex >= object->size) {
1526 			if (backing_object->type == OBJT_SWAP)
1527 				swap_pager_freespace(backing_object, p->pindex,
1528 				    1);
1529 
1530 			/*
1531 			 * Page is out of the parent object's range, we can
1532 			 * simply destroy it.
1533 			 */
1534 			vm_page_lock(p);
1535 			KASSERT(!pmap_page_is_mapped(p),
1536 			    ("freeing mapped page %p", p));
1537 			if (p->wire_count == 0)
1538 				vm_page_free(p);
1539 			else
1540 				vm_page_remove(p);
1541 			vm_page_unlock(p);
1542 			continue;
1543 		}
1544 
1545 		pp = vm_page_lookup(object, new_pindex);
1546 		if (pp != NULL && vm_page_busied(pp)) {
1547 			/*
1548 			 * The page in the parent is busy and possibly not
1549 			 * (yet) valid.  Until its state is finalized by the
1550 			 * busy bit owner, we can't tell whether it shadows the
1551 			 * original page.  Therefore, we must either skip it
1552 			 * and the original (backing_object) page or wait for
1553 			 * its state to be finalized.
1554 			 *
1555 			 * This is due to a race with vm_fault() where we must
1556 			 * unbusy the original (backing_obj) page before we can
1557 			 * (re)lock the parent.  Hence we can get here.
1558 			 */
1559 			next = vm_object_collapse_scan_wait(object, pp, next,
1560 			    op);
1561 			continue;
1562 		}
1563 
1564 		KASSERT(pp == NULL || pp->valid != 0,
1565 		    ("unbusy invalid page %p", pp));
1566 
1567 		if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1568 			NULL)) {
1569 			/*
1570 			 * The page already exists in the parent OR swap exists
1571 			 * for this location in the parent.  Leave the parent's
1572 			 * page alone.  Destroy the original page from the
1573 			 * backing object.
1574 			 */
1575 			if (backing_object->type == OBJT_SWAP)
1576 				swap_pager_freespace(backing_object, p->pindex,
1577 				    1);
1578 			vm_page_lock(p);
1579 			KASSERT(!pmap_page_is_mapped(p),
1580 			    ("freeing mapped page %p", p));
1581 			if (p->wire_count == 0)
1582 				vm_page_free(p);
1583 			else
1584 				vm_page_remove(p);
1585 			vm_page_unlock(p);
1586 			continue;
1587 		}
1588 
1589 		/*
1590 		 * Page does not exist in parent, rename the page from the
1591 		 * backing object to the main object.
1592 		 *
1593 		 * If the page was mapped to a process, it can remain mapped
1594 		 * through the rename.  vm_page_rename() will handle dirty and
1595 		 * cache.
1596 		 */
1597 		if (vm_page_rename(p, object, new_pindex)) {
1598 			next = vm_object_collapse_scan_wait(object, NULL, next,
1599 			    op);
1600 			continue;
1601 		}
1602 
1603 		/* Use the old pindex to free the right page. */
1604 		if (backing_object->type == OBJT_SWAP)
1605 			swap_pager_freespace(backing_object,
1606 			    new_pindex + backing_offset_index, 1);
1607 
1608 #if VM_NRESERVLEVEL > 0
1609 		/*
1610 		 * Rename the reservation.
1611 		 */
1612 		vm_reserv_rename(p, object, backing_object,
1613 		    backing_offset_index);
1614 #endif
1615 	}
1616 	return (true);
1617 }
1618 
1619 
1620 /*
1621  * this version of collapse allows the operation to occur earlier and
1622  * when paging_in_progress is true for an object...  This is not a complete
1623  * operation, but should plug 99.9% of the rest of the leaks.
1624  */
1625 static void
1626 vm_object_qcollapse(vm_object_t object)
1627 {
1628 	vm_object_t backing_object = object->backing_object;
1629 
1630 	VM_OBJECT_ASSERT_WLOCKED(object);
1631 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1632 
1633 	if (backing_object->ref_count != 1)
1634 		return;
1635 
1636 	vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1637 }
1638 
1639 /*
1640  *	vm_object_collapse:
1641  *
1642  *	Collapse an object with the object backing it.
1643  *	Pages in the backing object are moved into the
1644  *	parent, and the backing object is deallocated.
1645  */
1646 void
1647 vm_object_collapse(vm_object_t object)
1648 {
1649 	vm_object_t backing_object, new_backing_object;
1650 
1651 	VM_OBJECT_ASSERT_WLOCKED(object);
1652 
1653 	while (TRUE) {
1654 		/*
1655 		 * Verify that the conditions are right for collapse:
1656 		 *
1657 		 * The object exists and the backing object exists.
1658 		 */
1659 		if ((backing_object = object->backing_object) == NULL)
1660 			break;
1661 
1662 		/*
1663 		 * we check the backing object first, because it is most likely
1664 		 * not collapsable.
1665 		 */
1666 		VM_OBJECT_WLOCK(backing_object);
1667 		if (backing_object->handle != NULL ||
1668 		    (backing_object->type != OBJT_DEFAULT &&
1669 		     backing_object->type != OBJT_SWAP) ||
1670 		    (backing_object->flags & OBJ_DEAD) ||
1671 		    object->handle != NULL ||
1672 		    (object->type != OBJT_DEFAULT &&
1673 		     object->type != OBJT_SWAP) ||
1674 		    (object->flags & OBJ_DEAD)) {
1675 			VM_OBJECT_WUNLOCK(backing_object);
1676 			break;
1677 		}
1678 
1679 		if (object->paging_in_progress != 0 ||
1680 		    backing_object->paging_in_progress != 0) {
1681 			vm_object_qcollapse(object);
1682 			VM_OBJECT_WUNLOCK(backing_object);
1683 			break;
1684 		}
1685 
1686 		/*
1687 		 * We know that we can either collapse the backing object (if
1688 		 * the parent is the only reference to it) or (perhaps) have
1689 		 * the parent bypass the object if the parent happens to shadow
1690 		 * all the resident pages in the entire backing object.
1691 		 *
1692 		 * This is ignoring pager-backed pages such as swap pages.
1693 		 * vm_object_collapse_scan fails the shadowing test in this
1694 		 * case.
1695 		 */
1696 		if (backing_object->ref_count == 1) {
1697 			vm_object_pip_add(object, 1);
1698 			vm_object_pip_add(backing_object, 1);
1699 
1700 			/*
1701 			 * If there is exactly one reference to the backing
1702 			 * object, we can collapse it into the parent.
1703 			 */
1704 			vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1705 
1706 #if VM_NRESERVLEVEL > 0
1707 			/*
1708 			 * Break any reservations from backing_object.
1709 			 */
1710 			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1711 				vm_reserv_break_all(backing_object);
1712 #endif
1713 
1714 			/*
1715 			 * Move the pager from backing_object to object.
1716 			 */
1717 			if (backing_object->type == OBJT_SWAP) {
1718 				/*
1719 				 * swap_pager_copy() can sleep, in which case
1720 				 * the backing_object's and object's locks are
1721 				 * released and reacquired.
1722 				 * Since swap_pager_copy() is being asked to
1723 				 * destroy the source, it will change the
1724 				 * backing_object's type to OBJT_DEFAULT.
1725 				 */
1726 				swap_pager_copy(
1727 				    backing_object,
1728 				    object,
1729 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1730 			}
1731 			/*
1732 			 * Object now shadows whatever backing_object did.
1733 			 * Note that the reference to
1734 			 * backing_object->backing_object moves from within
1735 			 * backing_object to within object.
1736 			 */
1737 			LIST_REMOVE(object, shadow_list);
1738 			backing_object->shadow_count--;
1739 			if (backing_object->backing_object) {
1740 				VM_OBJECT_WLOCK(backing_object->backing_object);
1741 				LIST_REMOVE(backing_object, shadow_list);
1742 				LIST_INSERT_HEAD(
1743 				    &backing_object->backing_object->shadow_head,
1744 				    object, shadow_list);
1745 				/*
1746 				 * The shadow_count has not changed.
1747 				 */
1748 				VM_OBJECT_WUNLOCK(backing_object->backing_object);
1749 			}
1750 			object->backing_object = backing_object->backing_object;
1751 			object->backing_object_offset +=
1752 			    backing_object->backing_object_offset;
1753 
1754 			/*
1755 			 * Discard backing_object.
1756 			 *
1757 			 * Since the backing object has no pages, no pager left,
1758 			 * and no object references within it, all that is
1759 			 * necessary is to dispose of it.
1760 			 */
1761 			KASSERT(backing_object->ref_count == 1, (
1762 "backing_object %p was somehow re-referenced during collapse!",
1763 			    backing_object));
1764 			vm_object_pip_wakeup(backing_object);
1765 			backing_object->type = OBJT_DEAD;
1766 			backing_object->ref_count = 0;
1767 			VM_OBJECT_WUNLOCK(backing_object);
1768 			vm_object_destroy(backing_object);
1769 
1770 			vm_object_pip_wakeup(object);
1771 			object_collapses++;
1772 		} else {
1773 			/*
1774 			 * If we do not entirely shadow the backing object,
1775 			 * there is nothing we can do so we give up.
1776 			 */
1777 			if (object->resident_page_count != object->size &&
1778 			    !vm_object_scan_all_shadowed(object)) {
1779 				VM_OBJECT_WUNLOCK(backing_object);
1780 				break;
1781 			}
1782 
1783 			/*
1784 			 * Make the parent shadow the next object in the
1785 			 * chain.  Deallocating backing_object will not remove
1786 			 * it, since its reference count is at least 2.
1787 			 */
1788 			LIST_REMOVE(object, shadow_list);
1789 			backing_object->shadow_count--;
1790 
1791 			new_backing_object = backing_object->backing_object;
1792 			if ((object->backing_object = new_backing_object) != NULL) {
1793 				VM_OBJECT_WLOCK(new_backing_object);
1794 				LIST_INSERT_HEAD(
1795 				    &new_backing_object->shadow_head,
1796 				    object,
1797 				    shadow_list
1798 				);
1799 				new_backing_object->shadow_count++;
1800 				vm_object_reference_locked(new_backing_object);
1801 				VM_OBJECT_WUNLOCK(new_backing_object);
1802 				object->backing_object_offset +=
1803 					backing_object->backing_object_offset;
1804 			}
1805 
1806 			/*
1807 			 * Drop the reference count on backing_object. Since
1808 			 * its ref_count was at least 2, it will not vanish.
1809 			 */
1810 			backing_object->ref_count--;
1811 			VM_OBJECT_WUNLOCK(backing_object);
1812 			object_bypasses++;
1813 		}
1814 
1815 		/*
1816 		 * Try again with this object's new backing object.
1817 		 */
1818 	}
1819 }
1820 
1821 /*
1822  *	vm_object_page_remove:
1823  *
1824  *	For the given object, either frees or invalidates each of the
1825  *	specified pages.  In general, a page is freed.  However, if a page is
1826  *	wired for any reason other than the existence of a managed, wired
1827  *	mapping, then it may be invalidated but not removed from the object.
1828  *	Pages are specified by the given range ["start", "end") and the option
1829  *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1830  *	extends from "start" to the end of the object.  If the option
1831  *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1832  *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1833  *	specified, then the pages within the specified range must have no
1834  *	mappings.  Otherwise, if this option is not specified, any mappings to
1835  *	the specified pages are removed before the pages are freed or
1836  *	invalidated.
1837  *
1838  *	In general, this operation should only be performed on objects that
1839  *	contain managed pages.  There are, however, two exceptions.  First, it
1840  *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1841  *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1842  *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1843  *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1844  *
1845  *	The object must be locked.
1846  */
1847 void
1848 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1849     int options)
1850 {
1851 	vm_page_t p, next;
1852 
1853 	VM_OBJECT_ASSERT_WLOCKED(object);
1854 	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1855 	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1856 	    ("vm_object_page_remove: illegal options for object %p", object));
1857 	if (object->resident_page_count == 0)
1858 		return;
1859 	vm_object_pip_add(object, 1);
1860 again:
1861 	p = vm_page_find_least(object, start);
1862 
1863 	/*
1864 	 * Here, the variable "p" is either (1) the page with the least pindex
1865 	 * greater than or equal to the parameter "start" or (2) NULL.
1866 	 */
1867 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1868 		next = TAILQ_NEXT(p, listq);
1869 
1870 		/*
1871 		 * If the page is wired for any reason besides the existence
1872 		 * of managed, wired mappings, then it cannot be freed.  For
1873 		 * example, fictitious pages, which represent device memory,
1874 		 * are inherently wired and cannot be freed.  They can,
1875 		 * however, be invalidated if the option OBJPR_CLEANONLY is
1876 		 * not specified.
1877 		 */
1878 		vm_page_lock(p);
1879 		if (vm_page_xbusied(p)) {
1880 			VM_OBJECT_WUNLOCK(object);
1881 			vm_page_busy_sleep(p, "vmopax", true);
1882 			VM_OBJECT_WLOCK(object);
1883 			goto again;
1884 		}
1885 		if (p->wire_count != 0) {
1886 			if ((options & OBJPR_NOTMAPPED) == 0)
1887 				pmap_remove_all(p);
1888 			if ((options & OBJPR_CLEANONLY) == 0) {
1889 				p->valid = 0;
1890 				vm_page_undirty(p);
1891 			}
1892 			goto next;
1893 		}
1894 		if (vm_page_busied(p)) {
1895 			VM_OBJECT_WUNLOCK(object);
1896 			vm_page_busy_sleep(p, "vmopar", false);
1897 			VM_OBJECT_WLOCK(object);
1898 			goto again;
1899 		}
1900 		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1901 		    ("vm_object_page_remove: page %p is fictitious", p));
1902 		if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1903 			if ((options & OBJPR_NOTMAPPED) == 0)
1904 				pmap_remove_write(p);
1905 			if (p->dirty)
1906 				goto next;
1907 		}
1908 		if ((options & OBJPR_NOTMAPPED) == 0)
1909 			pmap_remove_all(p);
1910 		vm_page_free(p);
1911 next:
1912 		vm_page_unlock(p);
1913 	}
1914 	vm_object_pip_wakeup(object);
1915 }
1916 
1917 /*
1918  *	vm_object_page_noreuse:
1919  *
1920  *	For the given object, attempt to move the specified pages to
1921  *	the head of the inactive queue.  This bypasses regular LRU
1922  *	operation and allows the pages to be reused quickly under memory
1923  *	pressure.  If a page is wired for any reason, then it will not
1924  *	be queued.  Pages are specified by the range ["start", "end").
1925  *	As a special case, if "end" is zero, then the range extends from
1926  *	"start" to the end of the object.
1927  *
1928  *	This operation should only be performed on objects that
1929  *	contain non-fictitious, managed pages.
1930  *
1931  *	The object must be locked.
1932  */
1933 void
1934 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1935 {
1936 	struct mtx *mtx, *new_mtx;
1937 	vm_page_t p, next;
1938 
1939 	VM_OBJECT_ASSERT_WLOCKED(object);
1940 	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
1941 	    ("vm_object_page_noreuse: illegal object %p", object));
1942 	if (object->resident_page_count == 0)
1943 		return;
1944 	p = vm_page_find_least(object, start);
1945 
1946 	/*
1947 	 * Here, the variable "p" is either (1) the page with the least pindex
1948 	 * greater than or equal to the parameter "start" or (2) NULL.
1949 	 */
1950 	mtx = NULL;
1951 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1952 		next = TAILQ_NEXT(p, listq);
1953 
1954 		/*
1955 		 * Avoid releasing and reacquiring the same page lock.
1956 		 */
1957 		new_mtx = vm_page_lockptr(p);
1958 		if (mtx != new_mtx) {
1959 			if (mtx != NULL)
1960 				mtx_unlock(mtx);
1961 			mtx = new_mtx;
1962 			mtx_lock(mtx);
1963 		}
1964 		vm_page_deactivate_noreuse(p);
1965 	}
1966 	if (mtx != NULL)
1967 		mtx_unlock(mtx);
1968 }
1969 
1970 /*
1971  *	Populate the specified range of the object with valid pages.  Returns
1972  *	TRUE if the range is successfully populated and FALSE otherwise.
1973  *
1974  *	Note: This function should be optimized to pass a larger array of
1975  *	pages to vm_pager_get_pages() before it is applied to a non-
1976  *	OBJT_DEVICE object.
1977  *
1978  *	The object must be locked.
1979  */
1980 boolean_t
1981 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1982 {
1983 	vm_page_t m;
1984 	vm_pindex_t pindex;
1985 	int rv;
1986 
1987 	VM_OBJECT_ASSERT_WLOCKED(object);
1988 	for (pindex = start; pindex < end; pindex++) {
1989 		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
1990 		if (m->valid != VM_PAGE_BITS_ALL) {
1991 			rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
1992 			if (rv != VM_PAGER_OK) {
1993 				vm_page_lock(m);
1994 				vm_page_free(m);
1995 				vm_page_unlock(m);
1996 				break;
1997 			}
1998 		}
1999 		/*
2000 		 * Keep "m" busy because a subsequent iteration may unlock
2001 		 * the object.
2002 		 */
2003 	}
2004 	if (pindex > start) {
2005 		m = vm_page_lookup(object, start);
2006 		while (m != NULL && m->pindex < pindex) {
2007 			vm_page_xunbusy(m);
2008 			m = TAILQ_NEXT(m, listq);
2009 		}
2010 	}
2011 	return (pindex == end);
2012 }
2013 
2014 /*
2015  *	Routine:	vm_object_coalesce
2016  *	Function:	Coalesces two objects backing up adjoining
2017  *			regions of memory into a single object.
2018  *
2019  *	returns TRUE if objects were combined.
2020  *
2021  *	NOTE:	Only works at the moment if the second object is NULL -
2022  *		if it's not, which object do we lock first?
2023  *
2024  *	Parameters:
2025  *		prev_object	First object to coalesce
2026  *		prev_offset	Offset into prev_object
2027  *		prev_size	Size of reference to prev_object
2028  *		next_size	Size of reference to the second object
2029  *		reserved	Indicator that extension region has
2030  *				swap accounted for
2031  *
2032  *	Conditions:
2033  *	The object must *not* be locked.
2034  */
2035 boolean_t
2036 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2037     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2038 {
2039 	vm_pindex_t next_pindex;
2040 
2041 	if (prev_object == NULL)
2042 		return (TRUE);
2043 	VM_OBJECT_WLOCK(prev_object);
2044 	if ((prev_object->type != OBJT_DEFAULT &&
2045 	    prev_object->type != OBJT_SWAP) ||
2046 	    (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2047 		VM_OBJECT_WUNLOCK(prev_object);
2048 		return (FALSE);
2049 	}
2050 
2051 	/*
2052 	 * Try to collapse the object first
2053 	 */
2054 	vm_object_collapse(prev_object);
2055 
2056 	/*
2057 	 * Can't coalesce if: . more than one reference . paged out . shadows
2058 	 * another object . has a copy elsewhere (any of which mean that the
2059 	 * pages not mapped to prev_entry may be in use anyway)
2060 	 */
2061 	if (prev_object->backing_object != NULL) {
2062 		VM_OBJECT_WUNLOCK(prev_object);
2063 		return (FALSE);
2064 	}
2065 
2066 	prev_size >>= PAGE_SHIFT;
2067 	next_size >>= PAGE_SHIFT;
2068 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2069 
2070 	if ((prev_object->ref_count > 1) &&
2071 	    (prev_object->size != next_pindex)) {
2072 		VM_OBJECT_WUNLOCK(prev_object);
2073 		return (FALSE);
2074 	}
2075 
2076 	/*
2077 	 * Account for the charge.
2078 	 */
2079 	if (prev_object->cred != NULL) {
2080 
2081 		/*
2082 		 * If prev_object was charged, then this mapping,
2083 		 * although not charged now, may become writable
2084 		 * later. Non-NULL cred in the object would prevent
2085 		 * swap reservation during enabling of the write
2086 		 * access, so reserve swap now. Failed reservation
2087 		 * cause allocation of the separate object for the map
2088 		 * entry, and swap reservation for this entry is
2089 		 * managed in appropriate time.
2090 		 */
2091 		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2092 		    prev_object->cred)) {
2093 			VM_OBJECT_WUNLOCK(prev_object);
2094 			return (FALSE);
2095 		}
2096 		prev_object->charge += ptoa(next_size);
2097 	}
2098 
2099 	/*
2100 	 * Remove any pages that may still be in the object from a previous
2101 	 * deallocation.
2102 	 */
2103 	if (next_pindex < prev_object->size) {
2104 		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2105 		    next_size, 0);
2106 		if (prev_object->type == OBJT_SWAP)
2107 			swap_pager_freespace(prev_object,
2108 					     next_pindex, next_size);
2109 #if 0
2110 		if (prev_object->cred != NULL) {
2111 			KASSERT(prev_object->charge >=
2112 			    ptoa(prev_object->size - next_pindex),
2113 			    ("object %p overcharged 1 %jx %jx", prev_object,
2114 				(uintmax_t)next_pindex, (uintmax_t)next_size));
2115 			prev_object->charge -= ptoa(prev_object->size -
2116 			    next_pindex);
2117 		}
2118 #endif
2119 	}
2120 
2121 	/*
2122 	 * Extend the object if necessary.
2123 	 */
2124 	if (next_pindex + next_size > prev_object->size)
2125 		prev_object->size = next_pindex + next_size;
2126 
2127 	VM_OBJECT_WUNLOCK(prev_object);
2128 	return (TRUE);
2129 }
2130 
2131 void
2132 vm_object_set_writeable_dirty(vm_object_t object)
2133 {
2134 
2135 	VM_OBJECT_ASSERT_WLOCKED(object);
2136 	if (object->type != OBJT_VNODE) {
2137 		if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2138 			KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2139 			vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2140 		}
2141 		return;
2142 	}
2143 	object->generation++;
2144 	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2145 		return;
2146 	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2147 }
2148 
2149 /*
2150  *	vm_object_unwire:
2151  *
2152  *	For each page offset within the specified range of the given object,
2153  *	find the highest-level page in the shadow chain and unwire it.  A page
2154  *	must exist at every page offset, and the highest-level page must be
2155  *	wired.
2156  */
2157 void
2158 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2159     uint8_t queue)
2160 {
2161 	vm_object_t tobject;
2162 	vm_page_t m, tm;
2163 	vm_pindex_t end_pindex, pindex, tpindex;
2164 	int depth, locked_depth;
2165 
2166 	KASSERT((offset & PAGE_MASK) == 0,
2167 	    ("vm_object_unwire: offset is not page aligned"));
2168 	KASSERT((length & PAGE_MASK) == 0,
2169 	    ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2170 	/* The wired count of a fictitious page never changes. */
2171 	if ((object->flags & OBJ_FICTITIOUS) != 0)
2172 		return;
2173 	pindex = OFF_TO_IDX(offset);
2174 	end_pindex = pindex + atop(length);
2175 	locked_depth = 1;
2176 	VM_OBJECT_RLOCK(object);
2177 	m = vm_page_find_least(object, pindex);
2178 	while (pindex < end_pindex) {
2179 		if (m == NULL || pindex < m->pindex) {
2180 			/*
2181 			 * The first object in the shadow chain doesn't
2182 			 * contain a page at the current index.  Therefore,
2183 			 * the page must exist in a backing object.
2184 			 */
2185 			tobject = object;
2186 			tpindex = pindex;
2187 			depth = 0;
2188 			do {
2189 				tpindex +=
2190 				    OFF_TO_IDX(tobject->backing_object_offset);
2191 				tobject = tobject->backing_object;
2192 				KASSERT(tobject != NULL,
2193 				    ("vm_object_unwire: missing page"));
2194 				if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2195 					goto next_page;
2196 				depth++;
2197 				if (depth == locked_depth) {
2198 					locked_depth++;
2199 					VM_OBJECT_RLOCK(tobject);
2200 				}
2201 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
2202 			    NULL);
2203 		} else {
2204 			tm = m;
2205 			m = TAILQ_NEXT(m, listq);
2206 		}
2207 		vm_page_lock(tm);
2208 		vm_page_unwire(tm, queue);
2209 		vm_page_unlock(tm);
2210 next_page:
2211 		pindex++;
2212 	}
2213 	/* Release the accumulated object locks. */
2214 	for (depth = 0; depth < locked_depth; depth++) {
2215 		tobject = object->backing_object;
2216 		VM_OBJECT_RUNLOCK(object);
2217 		object = tobject;
2218 	}
2219 }
2220 
2221 struct vnode *
2222 vm_object_vnode(vm_object_t object)
2223 {
2224 
2225 	VM_OBJECT_ASSERT_LOCKED(object);
2226 	if (object->type == OBJT_VNODE)
2227 		return (object->handle);
2228 	if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
2229 		return (object->un_pager.swp.swp_tmpfs);
2230 	return (NULL);
2231 }
2232 
2233 static int
2234 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2235 {
2236 	struct kinfo_vmobject kvo;
2237 	char *fullpath, *freepath;
2238 	struct vnode *vp;
2239 	struct vattr va;
2240 	vm_object_t obj;
2241 	vm_page_t m;
2242 	int count, error;
2243 
2244 	if (req->oldptr == NULL) {
2245 		/*
2246 		 * If an old buffer has not been provided, generate an
2247 		 * estimate of the space needed for a subsequent call.
2248 		 */
2249 		mtx_lock(&vm_object_list_mtx);
2250 		count = 0;
2251 		TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2252 			if (obj->type == OBJT_DEAD)
2253 				continue;
2254 			count++;
2255 		}
2256 		mtx_unlock(&vm_object_list_mtx);
2257 		return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2258 		    count * 11 / 10));
2259 	}
2260 
2261 	error = 0;
2262 
2263 	/*
2264 	 * VM objects are type stable and are never removed from the
2265 	 * list once added.  This allows us to safely read obj->object_list
2266 	 * after reacquiring the VM object lock.
2267 	 */
2268 	mtx_lock(&vm_object_list_mtx);
2269 	TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2270 		if (obj->type == OBJT_DEAD)
2271 			continue;
2272 		VM_OBJECT_RLOCK(obj);
2273 		if (obj->type == OBJT_DEAD) {
2274 			VM_OBJECT_RUNLOCK(obj);
2275 			continue;
2276 		}
2277 		mtx_unlock(&vm_object_list_mtx);
2278 		kvo.kvo_size = ptoa(obj->size);
2279 		kvo.kvo_resident = obj->resident_page_count;
2280 		kvo.kvo_ref_count = obj->ref_count;
2281 		kvo.kvo_shadow_count = obj->shadow_count;
2282 		kvo.kvo_memattr = obj->memattr;
2283 		kvo.kvo_active = 0;
2284 		kvo.kvo_inactive = 0;
2285 		TAILQ_FOREACH(m, &obj->memq, listq) {
2286 			/*
2287 			 * A page may belong to the object but be
2288 			 * dequeued and set to PQ_NONE while the
2289 			 * object lock is not held.  This makes the
2290 			 * reads of m->queue below racy, and we do not
2291 			 * count pages set to PQ_NONE.  However, this
2292 			 * sysctl is only meant to give an
2293 			 * approximation of the system anyway.
2294 			 */
2295 			if (vm_page_active(m))
2296 				kvo.kvo_active++;
2297 			else if (vm_page_inactive(m))
2298 				kvo.kvo_inactive++;
2299 		}
2300 
2301 		kvo.kvo_vn_fileid = 0;
2302 		kvo.kvo_vn_fsid = 0;
2303 		freepath = NULL;
2304 		fullpath = "";
2305 		vp = NULL;
2306 		switch (obj->type) {
2307 		case OBJT_DEFAULT:
2308 			kvo.kvo_type = KVME_TYPE_DEFAULT;
2309 			break;
2310 		case OBJT_VNODE:
2311 			kvo.kvo_type = KVME_TYPE_VNODE;
2312 			vp = obj->handle;
2313 			vref(vp);
2314 			break;
2315 		case OBJT_SWAP:
2316 			kvo.kvo_type = KVME_TYPE_SWAP;
2317 			break;
2318 		case OBJT_DEVICE:
2319 			kvo.kvo_type = KVME_TYPE_DEVICE;
2320 			break;
2321 		case OBJT_PHYS:
2322 			kvo.kvo_type = KVME_TYPE_PHYS;
2323 			break;
2324 		case OBJT_DEAD:
2325 			kvo.kvo_type = KVME_TYPE_DEAD;
2326 			break;
2327 		case OBJT_SG:
2328 			kvo.kvo_type = KVME_TYPE_SG;
2329 			break;
2330 		case OBJT_MGTDEVICE:
2331 			kvo.kvo_type = KVME_TYPE_MGTDEVICE;
2332 			break;
2333 		default:
2334 			kvo.kvo_type = KVME_TYPE_UNKNOWN;
2335 			break;
2336 		}
2337 		VM_OBJECT_RUNLOCK(obj);
2338 		if (vp != NULL) {
2339 			vn_fullpath(curthread, vp, &fullpath, &freepath);
2340 			vn_lock(vp, LK_SHARED | LK_RETRY);
2341 			if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2342 				kvo.kvo_vn_fileid = va.va_fileid;
2343 				kvo.kvo_vn_fsid = va.va_fsid;
2344 			}
2345 			vput(vp);
2346 		}
2347 
2348 		strlcpy(kvo.kvo_path, fullpath, sizeof(kvo.kvo_path));
2349 		if (freepath != NULL)
2350 			free(freepath, M_TEMP);
2351 
2352 		/* Pack record size down */
2353 		kvo.kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) +
2354 		    strlen(kvo.kvo_path) + 1;
2355 		kvo.kvo_structsize = roundup(kvo.kvo_structsize,
2356 		    sizeof(uint64_t));
2357 		error = SYSCTL_OUT(req, &kvo, kvo.kvo_structsize);
2358 		mtx_lock(&vm_object_list_mtx);
2359 		if (error)
2360 			break;
2361 	}
2362 	mtx_unlock(&vm_object_list_mtx);
2363 	return (error);
2364 }
2365 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2366     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2367     "List of VM objects");
2368 
2369 #include "opt_ddb.h"
2370 #ifdef DDB
2371 #include <sys/kernel.h>
2372 
2373 #include <sys/cons.h>
2374 
2375 #include <ddb/ddb.h>
2376 
2377 static int
2378 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2379 {
2380 	vm_map_t tmpm;
2381 	vm_map_entry_t tmpe;
2382 	vm_object_t obj;
2383 	int entcount;
2384 
2385 	if (map == 0)
2386 		return 0;
2387 
2388 	if (entry == 0) {
2389 		tmpe = map->header.next;
2390 		entcount = map->nentries;
2391 		while (entcount-- && (tmpe != &map->header)) {
2392 			if (_vm_object_in_map(map, object, tmpe)) {
2393 				return 1;
2394 			}
2395 			tmpe = tmpe->next;
2396 		}
2397 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2398 		tmpm = entry->object.sub_map;
2399 		tmpe = tmpm->header.next;
2400 		entcount = tmpm->nentries;
2401 		while (entcount-- && tmpe != &tmpm->header) {
2402 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2403 				return 1;
2404 			}
2405 			tmpe = tmpe->next;
2406 		}
2407 	} else if ((obj = entry->object.vm_object) != NULL) {
2408 		for (; obj; obj = obj->backing_object)
2409 			if (obj == object) {
2410 				return 1;
2411 			}
2412 	}
2413 	return 0;
2414 }
2415 
2416 static int
2417 vm_object_in_map(vm_object_t object)
2418 {
2419 	struct proc *p;
2420 
2421 	/* sx_slock(&allproc_lock); */
2422 	FOREACH_PROC_IN_SYSTEM(p) {
2423 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2424 			continue;
2425 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2426 			/* sx_sunlock(&allproc_lock); */
2427 			return 1;
2428 		}
2429 	}
2430 	/* sx_sunlock(&allproc_lock); */
2431 	if (_vm_object_in_map(kernel_map, object, 0))
2432 		return 1;
2433 	return 0;
2434 }
2435 
2436 DB_SHOW_COMMAND(vmochk, vm_object_check)
2437 {
2438 	vm_object_t object;
2439 
2440 	/*
2441 	 * make sure that internal objs are in a map somewhere
2442 	 * and none have zero ref counts.
2443 	 */
2444 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2445 		if (object->handle == NULL &&
2446 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2447 			if (object->ref_count == 0) {
2448 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2449 					(long)object->size);
2450 			}
2451 			if (!vm_object_in_map(object)) {
2452 				db_printf(
2453 			"vmochk: internal obj is not in a map: "
2454 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2455 				    object->ref_count, (u_long)object->size,
2456 				    (u_long)object->size,
2457 				    (void *)object->backing_object);
2458 			}
2459 		}
2460 	}
2461 }
2462 
2463 /*
2464  *	vm_object_print:	[ debug ]
2465  */
2466 DB_SHOW_COMMAND(object, vm_object_print_static)
2467 {
2468 	/* XXX convert args. */
2469 	vm_object_t object = (vm_object_t)addr;
2470 	boolean_t full = have_addr;
2471 
2472 	vm_page_t p;
2473 
2474 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2475 #define	count	was_count
2476 
2477 	int count;
2478 
2479 	if (object == NULL)
2480 		return;
2481 
2482 	db_iprintf(
2483 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2484 	    object, (int)object->type, (uintmax_t)object->size,
2485 	    object->resident_page_count, object->ref_count, object->flags,
2486 	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2487 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2488 	    object->shadow_count,
2489 	    object->backing_object ? object->backing_object->ref_count : 0,
2490 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2491 
2492 	if (!full)
2493 		return;
2494 
2495 	db_indent += 2;
2496 	count = 0;
2497 	TAILQ_FOREACH(p, &object->memq, listq) {
2498 		if (count == 0)
2499 			db_iprintf("memory:=");
2500 		else if (count == 6) {
2501 			db_printf("\n");
2502 			db_iprintf(" ...");
2503 			count = 0;
2504 		} else
2505 			db_printf(",");
2506 		count++;
2507 
2508 		db_printf("(off=0x%jx,page=0x%jx)",
2509 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2510 	}
2511 	if (count != 0)
2512 		db_printf("\n");
2513 	db_indent -= 2;
2514 }
2515 
2516 /* XXX. */
2517 #undef count
2518 
2519 /* XXX need this non-static entry for calling from vm_map_print. */
2520 void
2521 vm_object_print(
2522         /* db_expr_t */ long addr,
2523 	boolean_t have_addr,
2524 	/* db_expr_t */ long count,
2525 	char *modif)
2526 {
2527 	vm_object_print_static(addr, have_addr, count, modif);
2528 }
2529 
2530 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2531 {
2532 	vm_object_t object;
2533 	vm_pindex_t fidx;
2534 	vm_paddr_t pa;
2535 	vm_page_t m, prev_m;
2536 	int rcount, nl, c;
2537 
2538 	nl = 0;
2539 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2540 		db_printf("new object: %p\n", (void *)object);
2541 		if (nl > 18) {
2542 			c = cngetc();
2543 			if (c != ' ')
2544 				return;
2545 			nl = 0;
2546 		}
2547 		nl++;
2548 		rcount = 0;
2549 		fidx = 0;
2550 		pa = -1;
2551 		TAILQ_FOREACH(m, &object->memq, listq) {
2552 			if (m->pindex > 128)
2553 				break;
2554 			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2555 			    prev_m->pindex + 1 != m->pindex) {
2556 				if (rcount) {
2557 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2558 						(long)fidx, rcount, (long)pa);
2559 					if (nl > 18) {
2560 						c = cngetc();
2561 						if (c != ' ')
2562 							return;
2563 						nl = 0;
2564 					}
2565 					nl++;
2566 					rcount = 0;
2567 				}
2568 			}
2569 			if (rcount &&
2570 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2571 				++rcount;
2572 				continue;
2573 			}
2574 			if (rcount) {
2575 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2576 					(long)fidx, rcount, (long)pa);
2577 				if (nl > 18) {
2578 					c = cngetc();
2579 					if (c != ' ')
2580 						return;
2581 					nl = 0;
2582 				}
2583 				nl++;
2584 			}
2585 			fidx = m->pindex;
2586 			pa = VM_PAGE_TO_PHYS(m);
2587 			rcount = 1;
2588 		}
2589 		if (rcount) {
2590 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2591 				(long)fidx, rcount, (long)pa);
2592 			if (nl > 18) {
2593 				c = cngetc();
2594 				if (c != ' ')
2595 					return;
2596 				nl = 0;
2597 			}
2598 			nl++;
2599 		}
2600 	}
2601 }
2602 #endif /* DDB */
2603