xref: /freebsd/sys/vm/vm_object.c (revision f2bb1cae36283a8eb5a0f19d8612c6abc5148e8f)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD$
65  */
66 
67 /*
68  *	Virtual memory object module.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/lock.h>
74 #include <sys/mman.h>
75 #include <sys/mount.h>
76 #include <sys/kernel.h>
77 #include <sys/sysctl.h>
78 #include <sys/mutex.h>
79 #include <sys/proc.h>		/* for curproc, pageproc */
80 #include <sys/socket.h>
81 #include <sys/vnode.h>
82 #include <sys/vmmeter.h>
83 #include <sys/sx.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/uma.h>
97 
98 #define EASY_SCAN_FACTOR       8
99 
100 #define MSYNC_FLUSH_HARDSEQ	0x01
101 #define MSYNC_FLUSH_SOFTSEQ	0x02
102 
103 /*
104  * msync / VM object flushing optimizations
105  */
106 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
107 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
108         CTLFLAG_RW, &msync_flush_flags, 0, "");
109 
110 static void	vm_object_qcollapse(vm_object_t object);
111 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
112 static void	vm_object_pip_sleep(vm_object_t object, char *waitid);
113 
114 /*
115  *	Virtual memory objects maintain the actual data
116  *	associated with allocated virtual memory.  A given
117  *	page of memory exists within exactly one object.
118  *
119  *	An object is only deallocated when all "references"
120  *	are given up.  Only one "reference" to a given
121  *	region of an object should be writeable.
122  *
123  *	Associated with each object is a list of all resident
124  *	memory pages belonging to that object; this list is
125  *	maintained by the "vm_page" module, and locked by the object's
126  *	lock.
127  *
128  *	Each object also records a "pager" routine which is
129  *	used to retrieve (and store) pages to the proper backing
130  *	storage.  In addition, objects may be backed by other
131  *	objects from which they were virtual-copied.
132  *
133  *	The only items within the object structure which are
134  *	modified after time of creation are:
135  *		reference count		locked by object's lock
136  *		pager routine		locked by object's lock
137  *
138  */
139 
140 struct object_q vm_object_list;
141 struct mtx vm_object_list_mtx;	/* lock for object list and count */
142 vm_object_t kernel_object;
143 vm_object_t kmem_object;
144 static struct vm_object kernel_object_store;
145 static struct vm_object kmem_object_store;
146 
147 static long object_collapses;
148 static long object_bypasses;
149 static int next_index;
150 static uma_zone_t obj_zone;
151 #define VM_OBJECTS_INIT 256
152 
153 static void vm_object_zinit(void *mem, int size);
154 
155 #ifdef INVARIANTS
156 static void vm_object_zdtor(void *mem, int size, void *arg);
157 
158 static void
159 vm_object_zdtor(void *mem, int size, void *arg)
160 {
161 	vm_object_t object;
162 
163 	object = (vm_object_t)mem;
164 	KASSERT(object->paging_in_progress == 0,
165 	    ("object %p paging_in_progress = %d",
166 	    object, object->paging_in_progress));
167 	KASSERT(object->resident_page_count == 0,
168 	    ("object %p resident_page_count = %d",
169 	    object, object->resident_page_count));
170 	KASSERT(object->shadow_count == 0,
171 	    ("object %p shadow_count = %d",
172 	    object, object->shadow_count));
173 }
174 #endif
175 
176 static void
177 vm_object_zinit(void *mem, int size)
178 {
179 	vm_object_t object;
180 
181 	object = (vm_object_t)mem;
182 	bzero(&object->mtx, sizeof(object->mtx));
183 	VM_OBJECT_LOCK_INIT(object);
184 
185 	/* These are true for any object that has been freed */
186 	object->paging_in_progress = 0;
187 	object->resident_page_count = 0;
188 	object->shadow_count = 0;
189 }
190 
191 void
192 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
193 {
194 	int incr;
195 
196 	TAILQ_INIT(&object->memq);
197 	TAILQ_INIT(&object->shadow_head);
198 
199 	object->root = NULL;
200 	object->type = type;
201 	object->size = size;
202 	object->ref_count = 1;
203 	object->flags = 0;
204 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
205 		vm_object_set_flag(object, OBJ_ONEMAPPING);
206 	if (size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
207 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
208 	else
209 		incr = size;
210 	do
211 		object->pg_color = next_index;
212 	while (!atomic_cmpset_int(&next_index, object->pg_color,
213 				  (object->pg_color + incr) & PQ_L2_MASK));
214 	object->handle = NULL;
215 	object->backing_object = NULL;
216 	object->backing_object_offset = (vm_ooffset_t) 0;
217 
218 	atomic_add_int(&object->generation, 1);
219 
220 	mtx_lock(&vm_object_list_mtx);
221 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
222 	mtx_unlock(&vm_object_list_mtx);
223 }
224 
225 /*
226  *	vm_object_init:
227  *
228  *	Initialize the VM objects module.
229  */
230 void
231 vm_object_init(void)
232 {
233 	TAILQ_INIT(&vm_object_list);
234 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
235 
236 	kernel_object = &kernel_object_store;
237 	VM_OBJECT_LOCK_INIT(&kernel_object_store);
238 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
239 	    kernel_object);
240 
241 	/*
242 	 * The kmem object's mutex is given a unique name, instead of
243 	 * "vm object", to avoid false reports of lock-order reversal
244 	 * with a system map mutex.
245 	 */
246 	kmem_object = &kmem_object_store;
247 	mtx_init(VM_OBJECT_MTX(kmem_object), "kmem object", NULL, MTX_DEF);
248 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
249 	    kmem_object);
250 
251 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
252 #ifdef INVARIANTS
253 	    vm_object_zdtor,
254 #else
255 	    NULL,
256 #endif
257 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
258 	uma_prealloc(obj_zone, VM_OBJECTS_INIT);
259 }
260 
261 void
262 vm_object_set_flag(vm_object_t object, u_short bits)
263 {
264 	object->flags |= bits;
265 }
266 
267 void
268 vm_object_clear_flag(vm_object_t object, u_short bits)
269 {
270 
271 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
272 	object->flags &= ~bits;
273 }
274 
275 void
276 vm_object_pip_add(vm_object_t object, short i)
277 {
278 
279 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
280 	object->paging_in_progress += i;
281 }
282 
283 void
284 vm_object_pip_subtract(vm_object_t object, short i)
285 {
286 
287 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
288 	object->paging_in_progress -= i;
289 }
290 
291 void
292 vm_object_pip_wakeup(vm_object_t object)
293 {
294 
295 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
296 	object->paging_in_progress--;
297 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
298 		vm_object_clear_flag(object, OBJ_PIPWNT);
299 		wakeup(object);
300 	}
301 }
302 
303 void
304 vm_object_pip_wakeupn(vm_object_t object, short i)
305 {
306 
307 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
308 	if (i)
309 		object->paging_in_progress -= i;
310 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
311 		vm_object_clear_flag(object, OBJ_PIPWNT);
312 		wakeup(object);
313 	}
314 }
315 
316 static void
317 vm_object_pip_sleep(vm_object_t object, char *waitid)
318 {
319 	GIANT_REQUIRED;
320 	if (object->paging_in_progress) {
321 		int s = splvm();
322 		if (object->paging_in_progress) {
323 			vm_object_set_flag(object, OBJ_PIPWNT);
324 			tsleep(object, PVM, waitid, 0);
325 		}
326 		splx(s);
327 	}
328 }
329 
330 void
331 vm_object_pip_wait(vm_object_t object, char *waitid)
332 {
333 
334 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
335 	while (object->paging_in_progress) {
336 		object->flags |= OBJ_PIPWNT;
337 		msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
338 	}
339 }
340 
341 /*
342  *	vm_object_allocate_wait
343  *
344  *	Return a new object with the given size, and give the user the
345  *	option of waiting for it to complete or failing if the needed
346  *	memory isn't available.
347  */
348 vm_object_t
349 vm_object_allocate_wait(objtype_t type, vm_pindex_t size, int flags)
350 {
351 	vm_object_t result;
352 
353 	result = (vm_object_t) uma_zalloc(obj_zone, flags);
354 
355 	if (result != NULL)
356 		_vm_object_allocate(type, size, result);
357 
358 	return (result);
359 }
360 
361 /*
362  *	vm_object_allocate:
363  *
364  *	Returns a new object with the given size.
365  */
366 vm_object_t
367 vm_object_allocate(objtype_t type, vm_pindex_t size)
368 {
369 	return(vm_object_allocate_wait(type, size, M_WAITOK));
370 }
371 
372 
373 /*
374  *	vm_object_reference:
375  *
376  *	Gets another reference to the given object.  Note: OBJ_DEAD
377  *	objects can be referenced during final cleaning.
378  */
379 void
380 vm_object_reference(vm_object_t object)
381 {
382 	if (object == NULL)
383 		return;
384 	if (object != kmem_object)
385 		mtx_lock(&Giant);
386 	VM_OBJECT_LOCK(object);
387 	object->ref_count++;
388 	VM_OBJECT_UNLOCK(object);
389 	if (object->type == OBJT_VNODE) {
390 		while (vget((struct vnode *) object->handle, LK_RETRY, curthread)) {
391 			printf("vm_object_reference: delay in getting object\n");
392 		}
393 	}
394 	if (object != kmem_object)
395 		mtx_unlock(&Giant);
396 }
397 
398 /*
399  * Handle deallocating an object of type OBJT_VNODE.
400  */
401 void
402 vm_object_vndeallocate(vm_object_t object)
403 {
404 	struct vnode *vp = (struct vnode *) object->handle;
405 
406 	GIANT_REQUIRED;
407 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
408 	KASSERT(object->type == OBJT_VNODE,
409 	    ("vm_object_vndeallocate: not a vnode object"));
410 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
411 #ifdef INVARIANTS
412 	if (object->ref_count == 0) {
413 		vprint("vm_object_vndeallocate", vp);
414 		panic("vm_object_vndeallocate: bad object reference count");
415 	}
416 #endif
417 
418 	object->ref_count--;
419 	if (object->ref_count == 0) {
420 		mp_fixme("Unlocked vflag access.");
421 		vp->v_vflag &= ~VV_TEXT;
422 	}
423 	VM_OBJECT_UNLOCK(object);
424 	/*
425 	 * vrele may need a vop lock
426 	 */
427 	vrele(vp);
428 }
429 
430 /*
431  *	vm_object_deallocate:
432  *
433  *	Release a reference to the specified object,
434  *	gained either through a vm_object_allocate
435  *	or a vm_object_reference call.  When all references
436  *	are gone, storage associated with this object
437  *	may be relinquished.
438  *
439  *	No object may be locked.
440  */
441 void
442 vm_object_deallocate(vm_object_t object)
443 {
444 	vm_object_t temp;
445 
446 	vm_object_lock(object);
447 	while (object != NULL) {
448 
449 		if (object->type == OBJT_VNODE) {
450 			VM_OBJECT_LOCK(object);
451 			vm_object_vndeallocate(object);
452 			mtx_unlock(&Giant);
453 			return;
454 		}
455 
456 		KASSERT(object->ref_count != 0,
457 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
458 
459 		/*
460 		 * If the reference count goes to 0 we start calling
461 		 * vm_object_terminate() on the object chain.
462 		 * A ref count of 1 may be a special case depending on the
463 		 * shadow count being 0 or 1.
464 		 */
465 		object->ref_count--;
466 		if (object->ref_count > 1) {
467 			vm_object_unlock(object);
468 			return;
469 		} else if (object->ref_count == 1) {
470 			if (object->shadow_count == 0) {
471 				vm_object_set_flag(object, OBJ_ONEMAPPING);
472 			} else if ((object->shadow_count == 1) &&
473 			    (object->handle == NULL) &&
474 			    (object->type == OBJT_DEFAULT ||
475 			     object->type == OBJT_SWAP)) {
476 				vm_object_t robject;
477 
478 				robject = TAILQ_FIRST(&object->shadow_head);
479 				KASSERT(robject != NULL,
480 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
481 					 object->ref_count,
482 					 object->shadow_count));
483 				if ((robject->handle == NULL) &&
484 				    (robject->type == OBJT_DEFAULT ||
485 				     robject->type == OBJT_SWAP)) {
486 
487 					robject->ref_count++;
488 
489 					while (
490 						robject->paging_in_progress ||
491 						object->paging_in_progress
492 					) {
493 						vm_object_pip_sleep(robject, "objde1");
494 						vm_object_pip_sleep(object, "objde2");
495 					}
496 
497 					if (robject->ref_count == 1) {
498 						robject->ref_count--;
499 						object = robject;
500 						goto doterm;
501 					}
502 
503 					object = robject;
504 					vm_object_collapse(object);
505 					continue;
506 				}
507 			}
508 			vm_object_unlock(object);
509 			return;
510 		}
511 doterm:
512 		VM_OBJECT_LOCK(object);
513 		temp = object->backing_object;
514 		if (temp != NULL) {
515 			VM_OBJECT_LOCK(temp);
516 			TAILQ_REMOVE(&temp->shadow_head, object, shadow_list);
517 			temp->shadow_count--;
518 			temp->generation++;
519 			VM_OBJECT_UNLOCK(temp);
520 			object->backing_object = NULL;
521 		}
522 		/*
523 		 * Don't double-terminate, we could be in a termination
524 		 * recursion due to the terminate having to sync data
525 		 * to disk.
526 		 */
527 		if ((object->flags & OBJ_DEAD) == 0)
528 			vm_object_terminate(object);
529 		else
530 			VM_OBJECT_UNLOCK(object);
531 		object = temp;
532 	}
533 	vm_object_unlock(object);
534 }
535 
536 /*
537  *	vm_object_terminate actually destroys the specified object, freeing
538  *	up all previously used resources.
539  *
540  *	The object must be locked.
541  *	This routine may block.
542  */
543 void
544 vm_object_terminate(vm_object_t object)
545 {
546 	vm_page_t p;
547 	int s;
548 
549 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
550 
551 	/*
552 	 * Make sure no one uses us.
553 	 */
554 	vm_object_set_flag(object, OBJ_DEAD);
555 
556 	/*
557 	 * wait for the pageout daemon to be done with the object
558 	 */
559 	vm_object_pip_wait(object, "objtrm");
560 
561 	KASSERT(!object->paging_in_progress,
562 		("vm_object_terminate: pageout in progress"));
563 
564 	/*
565 	 * Clean and free the pages, as appropriate. All references to the
566 	 * object are gone, so we don't need to lock it.
567 	 */
568 	if (object->type == OBJT_VNODE) {
569 		struct vnode *vp = (struct vnode *)object->handle;
570 
571 		/*
572 		 * Clean pages and flush buffers.
573 		 */
574 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
575 		VM_OBJECT_UNLOCK(object);
576 
577 		vinvalbuf(vp, V_SAVE, NOCRED, NULL, 0, 0);
578 
579 		VM_OBJECT_LOCK(object);
580 	}
581 
582 	KASSERT(object->ref_count == 0,
583 		("vm_object_terminate: object with references, ref_count=%d",
584 		object->ref_count));
585 
586 	/*
587 	 * Now free any remaining pages. For internal objects, this also
588 	 * removes them from paging queues. Don't free wired pages, just
589 	 * remove them from the object.
590 	 */
591 	s = splvm();
592 	vm_page_lock_queues();
593 	while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
594 		KASSERT(!p->busy && (p->flags & PG_BUSY) == 0,
595 			("vm_object_terminate: freeing busy page %p "
596 			"p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
597 		if (p->wire_count == 0) {
598 			vm_page_busy(p);
599 			vm_page_free(p);
600 			cnt.v_pfree++;
601 		} else {
602 			vm_page_busy(p);
603 			vm_page_remove(p);
604 		}
605 	}
606 	vm_page_unlock_queues();
607 	splx(s);
608 
609 	/*
610 	 * Let the pager know object is dead.
611 	 */
612 	vm_pager_deallocate(object);
613 	VM_OBJECT_UNLOCK(object);
614 
615 	/*
616 	 * Remove the object from the global object list.
617 	 */
618 	mtx_lock(&vm_object_list_mtx);
619 	TAILQ_REMOVE(&vm_object_list, object, object_list);
620 	mtx_unlock(&vm_object_list_mtx);
621 
622 	wakeup(object);
623 
624 	/*
625 	 * Free the space for the object.
626 	 */
627 	uma_zfree(obj_zone, object);
628 }
629 
630 /*
631  *	vm_object_page_clean
632  *
633  *	Clean all dirty pages in the specified range of object.  Leaves page
634  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
635  *	write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
636  *	leaving the object dirty.
637  *
638  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
639  *	synchronous clustering mode implementation.
640  *
641  *	Odd semantics: if start == end, we clean everything.
642  *
643  *	The object must be locked.
644  */
645 void
646 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
647 {
648 	vm_page_t p, np;
649 	vm_pindex_t tstart, tend;
650 	vm_pindex_t pi;
651 	struct vnode *vp;
652 	int clearobjflags;
653 	int pagerflags;
654 	int curgeneration;
655 
656 	GIANT_REQUIRED;
657 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
658 	if (object->type != OBJT_VNODE ||
659 		(object->flags & OBJ_MIGHTBEDIRTY) == 0)
660 		return;
661 
662 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
663 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
664 
665 	vp = object->handle;
666 
667 	vm_object_set_flag(object, OBJ_CLEANING);
668 
669 	tstart = start;
670 	if (end == 0) {
671 		tend = object->size;
672 	} else {
673 		tend = end;
674 	}
675 
676 	vm_page_lock_queues();
677 	/*
678 	 * If the caller is smart and only msync()s a range he knows is
679 	 * dirty, we may be able to avoid an object scan.  This results in
680 	 * a phenominal improvement in performance.  We cannot do this
681 	 * as a matter of course because the object may be huge - e.g.
682 	 * the size might be in the gigabytes or terrabytes.
683 	 */
684 	if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
685 		vm_pindex_t tscan;
686 		int scanlimit;
687 		int scanreset;
688 
689 		scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
690 		if (scanreset < 16)
691 			scanreset = 16;
692 		pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
693 
694 		scanlimit = scanreset;
695 		tscan = tstart;
696 		while (tscan < tend) {
697 			curgeneration = object->generation;
698 			p = vm_page_lookup(object, tscan);
699 			if (p == NULL || p->valid == 0 ||
700 			    (p->queue - p->pc) == PQ_CACHE) {
701 				if (--scanlimit == 0)
702 					break;
703 				++tscan;
704 				continue;
705 			}
706 			vm_page_test_dirty(p);
707 			if ((p->dirty & p->valid) == 0) {
708 				if (--scanlimit == 0)
709 					break;
710 				++tscan;
711 				continue;
712 			}
713 			/*
714 			 * If we have been asked to skip nosync pages and
715 			 * this is a nosync page, we can't continue.
716 			 */
717 			if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
718 				if (--scanlimit == 0)
719 					break;
720 				++tscan;
721 				continue;
722 			}
723 			scanlimit = scanreset;
724 
725 			/*
726 			 * This returns 0 if it was unable to busy the first
727 			 * page (i.e. had to sleep).
728 			 */
729 			tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
730 		}
731 
732 		/*
733 		 * If everything was dirty and we flushed it successfully,
734 		 * and the requested range is not the entire object, we
735 		 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
736 		 * return immediately.
737 		 */
738 		if (tscan >= tend && (tstart || tend < object->size)) {
739 			vm_page_unlock_queues();
740 			vm_object_clear_flag(object, OBJ_CLEANING);
741 			return;
742 		}
743 		pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
744 	}
745 
746 	/*
747 	 * Generally set CLEANCHK interlock and make the page read-only so
748 	 * we can then clear the object flags.
749 	 *
750 	 * However, if this is a nosync mmap then the object is likely to
751 	 * stay dirty so do not mess with the page and do not clear the
752 	 * object flags.
753 	 */
754 	clearobjflags = 1;
755 	TAILQ_FOREACH(p, &object->memq, listq) {
756 		vm_page_flag_set(p, PG_CLEANCHK);
757 		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
758 			clearobjflags = 0;
759 		else
760 			pmap_page_protect(p, VM_PROT_READ);
761 	}
762 
763 	if (clearobjflags && (tstart == 0) && (tend == object->size)) {
764 		struct vnode *vp;
765 
766 		vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
767 		if (object->type == OBJT_VNODE &&
768 		    (vp = (struct vnode *)object->handle) != NULL) {
769 			VI_LOCK(vp);
770 			if (vp->v_iflag & VI_OBJDIRTY)
771 				vp->v_iflag &= ~VI_OBJDIRTY;
772 			VI_UNLOCK(vp);
773 		}
774 	}
775 
776 rescan:
777 	curgeneration = object->generation;
778 
779 	for (p = TAILQ_FIRST(&object->memq); p; p = np) {
780 		int n;
781 
782 		np = TAILQ_NEXT(p, listq);
783 
784 again:
785 		pi = p->pindex;
786 		if (((p->flags & PG_CLEANCHK) == 0) ||
787 			(pi < tstart) || (pi >= tend) ||
788 			(p->valid == 0) ||
789 			((p->queue - p->pc) == PQ_CACHE)) {
790 			vm_page_flag_clear(p, PG_CLEANCHK);
791 			continue;
792 		}
793 
794 		vm_page_test_dirty(p);
795 		if ((p->dirty & p->valid) == 0) {
796 			vm_page_flag_clear(p, PG_CLEANCHK);
797 			continue;
798 		}
799 
800 		/*
801 		 * If we have been asked to skip nosync pages and this is a
802 		 * nosync page, skip it.  Note that the object flags were
803 		 * not cleared in this case so we do not have to set them.
804 		 */
805 		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
806 			vm_page_flag_clear(p, PG_CLEANCHK);
807 			continue;
808 		}
809 
810 		n = vm_object_page_collect_flush(object, p,
811 			curgeneration, pagerflags);
812 		if (n == 0)
813 			goto rescan;
814 
815 		if (object->generation != curgeneration)
816 			goto rescan;
817 
818 		/*
819 		 * Try to optimize the next page.  If we can't we pick up
820 		 * our (random) scan where we left off.
821 		 */
822 		if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
823 			if ((p = vm_page_lookup(object, pi + n)) != NULL)
824 				goto again;
825 		}
826 	}
827 	vm_page_unlock_queues();
828 #if 0
829 	VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
830 #endif
831 
832 	vm_object_clear_flag(object, OBJ_CLEANING);
833 	return;
834 }
835 
836 static int
837 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
838 {
839 	int runlen;
840 	int s;
841 	int maxf;
842 	int chkb;
843 	int maxb;
844 	int i;
845 	vm_pindex_t pi;
846 	vm_page_t maf[vm_pageout_page_count];
847 	vm_page_t mab[vm_pageout_page_count];
848 	vm_page_t ma[vm_pageout_page_count];
849 
850 	s = splvm();
851 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
852 	pi = p->pindex;
853 	while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
854 		vm_page_lock_queues();
855 		if (object->generation != curgeneration) {
856 			splx(s);
857 			return(0);
858 		}
859 	}
860 	maxf = 0;
861 	for(i = 1; i < vm_pageout_page_count; i++) {
862 		vm_page_t tp;
863 
864 		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
865 			if ((tp->flags & PG_BUSY) ||
866 				((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
867 				 (tp->flags & PG_CLEANCHK) == 0) ||
868 				(tp->busy != 0))
869 				break;
870 			if((tp->queue - tp->pc) == PQ_CACHE) {
871 				vm_page_flag_clear(tp, PG_CLEANCHK);
872 				break;
873 			}
874 			vm_page_test_dirty(tp);
875 			if ((tp->dirty & tp->valid) == 0) {
876 				vm_page_flag_clear(tp, PG_CLEANCHK);
877 				break;
878 			}
879 			maf[ i - 1 ] = tp;
880 			maxf++;
881 			continue;
882 		}
883 		break;
884 	}
885 
886 	maxb = 0;
887 	chkb = vm_pageout_page_count -  maxf;
888 	if (chkb) {
889 		for(i = 1; i < chkb;i++) {
890 			vm_page_t tp;
891 
892 			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
893 				if ((tp->flags & PG_BUSY) ||
894 					((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
895 					 (tp->flags & PG_CLEANCHK) == 0) ||
896 					(tp->busy != 0))
897 					break;
898 				if ((tp->queue - tp->pc) == PQ_CACHE) {
899 					vm_page_flag_clear(tp, PG_CLEANCHK);
900 					break;
901 				}
902 				vm_page_test_dirty(tp);
903 				if ((tp->dirty & tp->valid) == 0) {
904 					vm_page_flag_clear(tp, PG_CLEANCHK);
905 					break;
906 				}
907 				mab[ i - 1 ] = tp;
908 				maxb++;
909 				continue;
910 			}
911 			break;
912 		}
913 	}
914 
915 	for(i = 0; i < maxb; i++) {
916 		int index = (maxb - i) - 1;
917 		ma[index] = mab[i];
918 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
919 	}
920 	vm_page_flag_clear(p, PG_CLEANCHK);
921 	ma[maxb] = p;
922 	for(i = 0; i < maxf; i++) {
923 		int index = (maxb + i) + 1;
924 		ma[index] = maf[i];
925 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
926 	}
927 	runlen = maxb + maxf + 1;
928 
929 	splx(s);
930 	vm_pageout_flush(ma, runlen, pagerflags, TRUE);
931 	for (i = 0; i < runlen; i++) {
932 		if (ma[i]->valid & ma[i]->dirty) {
933 			pmap_page_protect(ma[i], VM_PROT_READ);
934 			vm_page_flag_set(ma[i], PG_CLEANCHK);
935 
936 			/*
937 			 * maxf will end up being the actual number of pages
938 			 * we wrote out contiguously, non-inclusive of the
939 			 * first page.  We do not count look-behind pages.
940 			 */
941 			if (i >= maxb + 1 && (maxf > i - maxb - 1))
942 				maxf = i - maxb - 1;
943 		}
944 	}
945 	return(maxf + 1);
946 }
947 
948 /*
949  *	vm_object_madvise:
950  *
951  *	Implements the madvise function at the object/page level.
952  *
953  *	MADV_WILLNEED	(any object)
954  *
955  *	    Activate the specified pages if they are resident.
956  *
957  *	MADV_DONTNEED	(any object)
958  *
959  *	    Deactivate the specified pages if they are resident.
960  *
961  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
962  *			 OBJ_ONEMAPPING only)
963  *
964  *	    Deactivate and clean the specified pages if they are
965  *	    resident.  This permits the process to reuse the pages
966  *	    without faulting or the kernel to reclaim the pages
967  *	    without I/O.
968  */
969 void
970 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
971 {
972 	vm_pindex_t end, tpindex;
973 	vm_object_t tobject;
974 	vm_page_t m;
975 
976 	if (object == NULL)
977 		return;
978 
979 	vm_object_lock(object);
980 
981 	end = pindex + count;
982 
983 	/*
984 	 * Locate and adjust resident pages
985 	 */
986 	for (; pindex < end; pindex += 1) {
987 relookup:
988 		tobject = object;
989 		tpindex = pindex;
990 shadowlookup:
991 		/*
992 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
993 		 * and those pages must be OBJ_ONEMAPPING.
994 		 */
995 		if (advise == MADV_FREE) {
996 			if ((tobject->type != OBJT_DEFAULT &&
997 			     tobject->type != OBJT_SWAP) ||
998 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
999 				continue;
1000 			}
1001 		}
1002 
1003 		m = vm_page_lookup(tobject, tpindex);
1004 
1005 		if (m == NULL) {
1006 			/*
1007 			 * There may be swap even if there is no backing page
1008 			 */
1009 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1010 				swap_pager_freespace(tobject, tpindex, 1);
1011 
1012 			/*
1013 			 * next object
1014 			 */
1015 			tobject = tobject->backing_object;
1016 			if (tobject == NULL)
1017 				continue;
1018 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1019 			goto shadowlookup;
1020 		}
1021 
1022 		/*
1023 		 * If the page is busy or not in a normal active state,
1024 		 * we skip it.  If the page is not managed there are no
1025 		 * page queues to mess with.  Things can break if we mess
1026 		 * with pages in any of the below states.
1027 		 */
1028 		vm_page_lock_queues();
1029 		if (m->hold_count ||
1030 		    m->wire_count ||
1031 		    (m->flags & PG_UNMANAGED) ||
1032 		    m->valid != VM_PAGE_BITS_ALL) {
1033 			vm_page_unlock_queues();
1034 			continue;
1035 		}
1036  		if (vm_page_sleep_if_busy(m, TRUE, "madvpo"))
1037   			goto relookup;
1038 		if (advise == MADV_WILLNEED) {
1039 			vm_page_activate(m);
1040 		} else if (advise == MADV_DONTNEED) {
1041 			vm_page_dontneed(m);
1042 		} else if (advise == MADV_FREE) {
1043 			/*
1044 			 * Mark the page clean.  This will allow the page
1045 			 * to be freed up by the system.  However, such pages
1046 			 * are often reused quickly by malloc()/free()
1047 			 * so we do not do anything that would cause
1048 			 * a page fault if we can help it.
1049 			 *
1050 			 * Specifically, we do not try to actually free
1051 			 * the page now nor do we try to put it in the
1052 			 * cache (which would cause a page fault on reuse).
1053 			 *
1054 			 * But we do make the page is freeable as we
1055 			 * can without actually taking the step of unmapping
1056 			 * it.
1057 			 */
1058 			pmap_clear_modify(m);
1059 			m->dirty = 0;
1060 			m->act_count = 0;
1061 			vm_page_dontneed(m);
1062 		}
1063 		vm_page_unlock_queues();
1064 		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1065 			swap_pager_freespace(tobject, tpindex, 1);
1066 	}
1067 	vm_object_unlock(object);
1068 }
1069 
1070 /*
1071  *	vm_object_shadow:
1072  *
1073  *	Create a new object which is backed by the
1074  *	specified existing object range.  The source
1075  *	object reference is deallocated.
1076  *
1077  *	The new object and offset into that object
1078  *	are returned in the source parameters.
1079  */
1080 void
1081 vm_object_shadow(
1082 	vm_object_t *object,	/* IN/OUT */
1083 	vm_ooffset_t *offset,	/* IN/OUT */
1084 	vm_size_t length)
1085 {
1086 	vm_object_t source;
1087 	vm_object_t result;
1088 
1089 	GIANT_REQUIRED;
1090 
1091 	source = *object;
1092 
1093 	/*
1094 	 * Don't create the new object if the old object isn't shared.
1095 	 */
1096 	if (source != NULL) {
1097 		VM_OBJECT_LOCK(source);
1098 		if (source->ref_count == 1 &&
1099 		    source->handle == NULL &&
1100 		    (source->type == OBJT_DEFAULT ||
1101 		     source->type == OBJT_SWAP)) {
1102 			VM_OBJECT_UNLOCK(source);
1103 			return;
1104 		}
1105 		VM_OBJECT_UNLOCK(source);
1106 	}
1107 
1108 	/*
1109 	 * Allocate a new object with the given length.
1110 	 */
1111 	result = vm_object_allocate(OBJT_DEFAULT, length);
1112 
1113 	/*
1114 	 * The new object shadows the source object, adding a reference to it.
1115 	 * Our caller changes his reference to point to the new object,
1116 	 * removing a reference to the source object.  Net result: no change
1117 	 * of reference count.
1118 	 *
1119 	 * Try to optimize the result object's page color when shadowing
1120 	 * in order to maintain page coloring consistency in the combined
1121 	 * shadowed object.
1122 	 */
1123 	result->backing_object = source;
1124 	if (source != NULL) {
1125 		VM_OBJECT_LOCK(source);
1126 		TAILQ_INSERT_TAIL(&source->shadow_head, result, shadow_list);
1127 		source->shadow_count++;
1128 		source->generation++;
1129 		if (length < source->size)
1130 			length = source->size;
1131 		if (length > PQ_L2_SIZE / 3 + PQ_PRIME1 ||
1132 		    source->generation > 1)
1133 			length = PQ_L2_SIZE / 3 + PQ_PRIME1;
1134 		result->pg_color = (source->pg_color +
1135 		    length * source->generation) & PQ_L2_MASK;
1136 		VM_OBJECT_UNLOCK(source);
1137 		next_index = (result->pg_color + PQ_L2_SIZE / 3 + PQ_PRIME1) &
1138 		    PQ_L2_MASK;
1139 	}
1140 
1141 	/*
1142 	 * Store the offset into the source object, and fix up the offset into
1143 	 * the new object.
1144 	 */
1145 	result->backing_object_offset = *offset;
1146 
1147 	/*
1148 	 * Return the new things
1149 	 */
1150 	*offset = 0;
1151 	*object = result;
1152 }
1153 
1154 /*
1155  *	vm_object_split:
1156  *
1157  * Split the pages in a map entry into a new object.  This affords
1158  * easier removal of unused pages, and keeps object inheritance from
1159  * being a negative impact on memory usage.
1160  */
1161 void
1162 vm_object_split(vm_map_entry_t entry)
1163 {
1164 	vm_page_t m;
1165 	vm_object_t orig_object, new_object, source;
1166 	vm_offset_t s, e;
1167 	vm_pindex_t offidxstart, offidxend;
1168 	vm_size_t idx, size;
1169 	vm_ooffset_t offset;
1170 
1171 	GIANT_REQUIRED;
1172 
1173 	orig_object = entry->object.vm_object;
1174 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1175 		return;
1176 	if (orig_object->ref_count <= 1)
1177 		return;
1178 
1179 	offset = entry->offset;
1180 	s = entry->start;
1181 	e = entry->end;
1182 
1183 	offidxstart = OFF_TO_IDX(offset);
1184 	offidxend = offidxstart + OFF_TO_IDX(e - s);
1185 	size = offidxend - offidxstart;
1186 
1187 	new_object = vm_pager_allocate(orig_object->type,
1188 		NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
1189 	if (new_object == NULL)
1190 		return;
1191 
1192 	source = orig_object->backing_object;
1193 	if (source != NULL) {
1194 		vm_object_reference(source);	/* Referenced by new_object */
1195 		VM_OBJECT_LOCK(source);
1196 		TAILQ_INSERT_TAIL(&source->shadow_head,
1197 				  new_object, shadow_list);
1198 		source->shadow_count++;
1199 		source->generation++;
1200 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1201 		VM_OBJECT_UNLOCK(source);
1202 		new_object->backing_object_offset =
1203 			orig_object->backing_object_offset + offset;
1204 		new_object->backing_object = source;
1205 	}
1206 	VM_OBJECT_LOCK(orig_object);
1207 	for (idx = 0; idx < size; idx++) {
1208 	retry:
1209 		m = vm_page_lookup(orig_object, offidxstart + idx);
1210 		if (m == NULL)
1211 			continue;
1212 
1213 		/*
1214 		 * We must wait for pending I/O to complete before we can
1215 		 * rename the page.
1216 		 *
1217 		 * We do not have to VM_PROT_NONE the page as mappings should
1218 		 * not be changed by this operation.
1219 		 */
1220 		vm_page_lock_queues();
1221 		if (vm_page_sleep_if_busy(m, TRUE, "spltwt"))
1222 			goto retry;
1223 
1224 		vm_page_busy(m);
1225 		vm_page_rename(m, new_object, idx);
1226 		/* page automatically made dirty by rename and cache handled */
1227 		vm_page_busy(m);
1228 		vm_page_unlock_queues();
1229 	}
1230 	if (orig_object->type == OBJT_SWAP) {
1231 		vm_object_pip_add(orig_object, 1);
1232 		VM_OBJECT_UNLOCK(orig_object);
1233 		/*
1234 		 * copy orig_object pages into new_object
1235 		 * and destroy unneeded pages in
1236 		 * shadow object.
1237 		 */
1238 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1239 		VM_OBJECT_LOCK(orig_object);
1240 		vm_object_pip_wakeup(orig_object);
1241 	}
1242 	VM_OBJECT_UNLOCK(orig_object);
1243 	vm_page_lock_queues();
1244 	TAILQ_FOREACH(m, &new_object->memq, listq)
1245 		vm_page_wakeup(m);
1246 	vm_page_unlock_queues();
1247 	entry->object.vm_object = new_object;
1248 	entry->offset = 0LL;
1249 	vm_object_deallocate(orig_object);
1250 }
1251 
1252 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1253 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1254 #define	OBSC_COLLAPSE_WAIT	0x0004
1255 
1256 static __inline int
1257 vm_object_backing_scan(vm_object_t object, int op)
1258 {
1259 	int s;
1260 	int r = 1;
1261 	vm_page_t p;
1262 	vm_object_t backing_object;
1263 	vm_pindex_t backing_offset_index;
1264 
1265 	s = splvm();
1266 	GIANT_REQUIRED;
1267 
1268 	backing_object = object->backing_object;
1269 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1270 
1271 	/*
1272 	 * Initial conditions
1273 	 */
1274 	if (op & OBSC_TEST_ALL_SHADOWED) {
1275 		/*
1276 		 * We do not want to have to test for the existence of
1277 		 * swap pages in the backing object.  XXX but with the
1278 		 * new swapper this would be pretty easy to do.
1279 		 *
1280 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1281 		 * been ZFOD faulted yet?  If we do not test for this, the
1282 		 * shadow test may succeed! XXX
1283 		 */
1284 		if (backing_object->type != OBJT_DEFAULT) {
1285 			splx(s);
1286 			return (0);
1287 		}
1288 	}
1289 	if (op & OBSC_COLLAPSE_WAIT) {
1290 		vm_object_set_flag(backing_object, OBJ_DEAD);
1291 	}
1292 
1293 	/*
1294 	 * Our scan
1295 	 */
1296 	p = TAILQ_FIRST(&backing_object->memq);
1297 	while (p) {
1298 		vm_page_t next = TAILQ_NEXT(p, listq);
1299 		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1300 
1301 		if (op & OBSC_TEST_ALL_SHADOWED) {
1302 			vm_page_t pp;
1303 
1304 			/*
1305 			 * Ignore pages outside the parent object's range
1306 			 * and outside the parent object's mapping of the
1307 			 * backing object.
1308 			 *
1309 			 * note that we do not busy the backing object's
1310 			 * page.
1311 			 */
1312 			if (
1313 			    p->pindex < backing_offset_index ||
1314 			    new_pindex >= object->size
1315 			) {
1316 				p = next;
1317 				continue;
1318 			}
1319 
1320 			/*
1321 			 * See if the parent has the page or if the parent's
1322 			 * object pager has the page.  If the parent has the
1323 			 * page but the page is not valid, the parent's
1324 			 * object pager must have the page.
1325 			 *
1326 			 * If this fails, the parent does not completely shadow
1327 			 * the object and we might as well give up now.
1328 			 */
1329 
1330 			pp = vm_page_lookup(object, new_pindex);
1331 			if (
1332 			    (pp == NULL || pp->valid == 0) &&
1333 			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1334 			) {
1335 				r = 0;
1336 				break;
1337 			}
1338 		}
1339 
1340 		/*
1341 		 * Check for busy page
1342 		 */
1343 		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1344 			vm_page_t pp;
1345 
1346 			vm_page_lock_queues();
1347 			if (op & OBSC_COLLAPSE_NOWAIT) {
1348 				if ((p->flags & PG_BUSY) ||
1349 				    !p->valid ||
1350 				    p->hold_count ||
1351 				    p->wire_count ||
1352 				    p->busy) {
1353 					vm_page_unlock_queues();
1354 					p = next;
1355 					continue;
1356 				}
1357 			} else if (op & OBSC_COLLAPSE_WAIT) {
1358 				if (vm_page_sleep_if_busy(p, TRUE, "vmocol")) {
1359 					/*
1360 					 * If we slept, anything could have
1361 					 * happened.  Since the object is
1362 					 * marked dead, the backing offset
1363 					 * should not have changed so we
1364 					 * just restart our scan.
1365 					 */
1366 					p = TAILQ_FIRST(&backing_object->memq);
1367 					continue;
1368 				}
1369 			}
1370 
1371 			/*
1372 			 * Busy the page
1373 			 */
1374 			vm_page_busy(p);
1375 			vm_page_unlock_queues();
1376 
1377 			KASSERT(
1378 			    p->object == backing_object,
1379 			    ("vm_object_qcollapse(): object mismatch")
1380 			);
1381 
1382 			/*
1383 			 * Destroy any associated swap
1384 			 */
1385 			if (backing_object->type == OBJT_SWAP) {
1386 				swap_pager_freespace(
1387 				    backing_object,
1388 				    p->pindex,
1389 				    1
1390 				);
1391 			}
1392 
1393 			if (
1394 			    p->pindex < backing_offset_index ||
1395 			    new_pindex >= object->size
1396 			) {
1397 				/*
1398 				 * Page is out of the parent object's range, we
1399 				 * can simply destroy it.
1400 				 */
1401 				vm_page_lock_queues();
1402 				pmap_remove_all(p);
1403 				vm_page_free(p);
1404 				vm_page_unlock_queues();
1405 				p = next;
1406 				continue;
1407 			}
1408 
1409 			pp = vm_page_lookup(object, new_pindex);
1410 			if (
1411 			    pp != NULL ||
1412 			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1413 			) {
1414 				/*
1415 				 * page already exists in parent OR swap exists
1416 				 * for this location in the parent.  Destroy
1417 				 * the original page from the backing object.
1418 				 *
1419 				 * Leave the parent's page alone
1420 				 */
1421 				vm_page_lock_queues();
1422 				pmap_remove_all(p);
1423 				vm_page_free(p);
1424 				vm_page_unlock_queues();
1425 				p = next;
1426 				continue;
1427 			}
1428 
1429 			/*
1430 			 * Page does not exist in parent, rename the
1431 			 * page from the backing object to the main object.
1432 			 *
1433 			 * If the page was mapped to a process, it can remain
1434 			 * mapped through the rename.
1435 			 */
1436 			vm_page_lock_queues();
1437 			vm_page_rename(p, object, new_pindex);
1438 			vm_page_unlock_queues();
1439 			/* page automatically made dirty by rename */
1440 		}
1441 		p = next;
1442 	}
1443 	splx(s);
1444 	return (r);
1445 }
1446 
1447 
1448 /*
1449  * this version of collapse allows the operation to occur earlier and
1450  * when paging_in_progress is true for an object...  This is not a complete
1451  * operation, but should plug 99.9% of the rest of the leaks.
1452  */
1453 static void
1454 vm_object_qcollapse(vm_object_t object)
1455 {
1456 	vm_object_t backing_object = object->backing_object;
1457 
1458 	GIANT_REQUIRED;
1459 
1460 	if (backing_object->ref_count != 1)
1461 		return;
1462 
1463 	backing_object->ref_count += 2;
1464 
1465 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1466 
1467 	backing_object->ref_count -= 2;
1468 }
1469 
1470 /*
1471  *	vm_object_collapse:
1472  *
1473  *	Collapse an object with the object backing it.
1474  *	Pages in the backing object are moved into the
1475  *	parent, and the backing object is deallocated.
1476  */
1477 void
1478 vm_object_collapse(vm_object_t object)
1479 {
1480 	GIANT_REQUIRED;
1481 
1482 	while (TRUE) {
1483 		vm_object_t backing_object;
1484 
1485 		/*
1486 		 * Verify that the conditions are right for collapse:
1487 		 *
1488 		 * The object exists and the backing object exists.
1489 		 */
1490 		if (object == NULL)
1491 			break;
1492 
1493 		if ((backing_object = object->backing_object) == NULL)
1494 			break;
1495 
1496 		/*
1497 		 * we check the backing object first, because it is most likely
1498 		 * not collapsable.
1499 		 */
1500 		if (backing_object->handle != NULL ||
1501 		    (backing_object->type != OBJT_DEFAULT &&
1502 		     backing_object->type != OBJT_SWAP) ||
1503 		    (backing_object->flags & OBJ_DEAD) ||
1504 		    object->handle != NULL ||
1505 		    (object->type != OBJT_DEFAULT &&
1506 		     object->type != OBJT_SWAP) ||
1507 		    (object->flags & OBJ_DEAD)) {
1508 			break;
1509 		}
1510 
1511 		if (
1512 		    object->paging_in_progress != 0 ||
1513 		    backing_object->paging_in_progress != 0
1514 		) {
1515 			vm_object_qcollapse(object);
1516 			break;
1517 		}
1518 
1519 		/*
1520 		 * We know that we can either collapse the backing object (if
1521 		 * the parent is the only reference to it) or (perhaps) have
1522 		 * the parent bypass the object if the parent happens to shadow
1523 		 * all the resident pages in the entire backing object.
1524 		 *
1525 		 * This is ignoring pager-backed pages such as swap pages.
1526 		 * vm_object_backing_scan fails the shadowing test in this
1527 		 * case.
1528 		 */
1529 		if (backing_object->ref_count == 1) {
1530 			/*
1531 			 * If there is exactly one reference to the backing
1532 			 * object, we can collapse it into the parent.
1533 			 */
1534 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1535 
1536 			/*
1537 			 * Move the pager from backing_object to object.
1538 			 */
1539 			VM_OBJECT_LOCK(backing_object);
1540 			if (backing_object->type == OBJT_SWAP) {
1541 				vm_object_pip_add(backing_object, 1);
1542 				VM_OBJECT_UNLOCK(backing_object);
1543 				/*
1544 				 * scrap the paging_offset junk and do a
1545 				 * discrete copy.  This also removes major
1546 				 * assumptions about how the swap-pager
1547 				 * works from where it doesn't belong.  The
1548 				 * new swapper is able to optimize the
1549 				 * destroy-source case.
1550 				 */
1551 				VM_OBJECT_LOCK(object);
1552 				vm_object_pip_add(object, 1);
1553 				VM_OBJECT_UNLOCK(object);
1554 				swap_pager_copy(
1555 				    backing_object,
1556 				    object,
1557 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1558 				VM_OBJECT_LOCK(object);
1559 				vm_object_pip_wakeup(object);
1560 				VM_OBJECT_UNLOCK(object);
1561 
1562 				VM_OBJECT_LOCK(backing_object);
1563 				vm_object_pip_wakeup(backing_object);
1564 			}
1565 			/*
1566 			 * Object now shadows whatever backing_object did.
1567 			 * Note that the reference to
1568 			 * backing_object->backing_object moves from within
1569 			 * backing_object to within object.
1570 			 */
1571 			TAILQ_REMOVE(
1572 			    &backing_object->shadow_head,
1573 			    object,
1574 			    shadow_list
1575 			);
1576 			backing_object->shadow_count--;
1577 			backing_object->generation++;
1578 			if (backing_object->backing_object) {
1579 				VM_OBJECT_LOCK(backing_object->backing_object);
1580 				TAILQ_REMOVE(
1581 				    &backing_object->backing_object->shadow_head,
1582 				    backing_object,
1583 				    shadow_list
1584 				);
1585 				backing_object->backing_object->shadow_count--;
1586 				backing_object->backing_object->generation++;
1587 				VM_OBJECT_UNLOCK(backing_object->backing_object);
1588 			}
1589 			object->backing_object = backing_object->backing_object;
1590 			if (object->backing_object) {
1591 				VM_OBJECT_LOCK(object->backing_object);
1592 				TAILQ_INSERT_TAIL(
1593 				    &object->backing_object->shadow_head,
1594 				    object,
1595 				    shadow_list
1596 				);
1597 				object->backing_object->shadow_count++;
1598 				object->backing_object->generation++;
1599 				VM_OBJECT_UNLOCK(object->backing_object);
1600 			}
1601 
1602 			object->backing_object_offset +=
1603 			    backing_object->backing_object_offset;
1604 
1605 			/*
1606 			 * Discard backing_object.
1607 			 *
1608 			 * Since the backing object has no pages, no pager left,
1609 			 * and no object references within it, all that is
1610 			 * necessary is to dispose of it.
1611 			 */
1612 			KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1613 			KASSERT(TAILQ_FIRST(&backing_object->memq) == NULL, ("backing_object %p somehow has left over pages during collapse!", backing_object));
1614 			VM_OBJECT_UNLOCK(backing_object);
1615 
1616 			mtx_lock(&vm_object_list_mtx);
1617 			TAILQ_REMOVE(
1618 			    &vm_object_list,
1619 			    backing_object,
1620 			    object_list
1621 			);
1622 			mtx_unlock(&vm_object_list_mtx);
1623 
1624 			uma_zfree(obj_zone, backing_object);
1625 
1626 			object_collapses++;
1627 		} else {
1628 			vm_object_t new_backing_object;
1629 
1630 			/*
1631 			 * If we do not entirely shadow the backing object,
1632 			 * there is nothing we can do so we give up.
1633 			 */
1634 			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1635 				break;
1636 			}
1637 
1638 			/*
1639 			 * Make the parent shadow the next object in the
1640 			 * chain.  Deallocating backing_object will not remove
1641 			 * it, since its reference count is at least 2.
1642 			 */
1643 			VM_OBJECT_LOCK(backing_object);
1644 			TAILQ_REMOVE(
1645 			    &backing_object->shadow_head,
1646 			    object,
1647 			    shadow_list
1648 			);
1649 			backing_object->shadow_count--;
1650 			backing_object->generation++;
1651 			VM_OBJECT_UNLOCK(backing_object);
1652 
1653 			new_backing_object = backing_object->backing_object;
1654 			if ((object->backing_object = new_backing_object) != NULL) {
1655 				vm_object_reference(new_backing_object);
1656 				VM_OBJECT_LOCK(new_backing_object);
1657 				TAILQ_INSERT_TAIL(
1658 				    &new_backing_object->shadow_head,
1659 				    object,
1660 				    shadow_list
1661 				);
1662 				new_backing_object->shadow_count++;
1663 				new_backing_object->generation++;
1664 				VM_OBJECT_UNLOCK(new_backing_object);
1665 				object->backing_object_offset +=
1666 					backing_object->backing_object_offset;
1667 			}
1668 
1669 			/*
1670 			 * Drop the reference count on backing_object. Since
1671 			 * its ref_count was at least 2, it will not vanish;
1672 			 * so we don't need to call vm_object_deallocate, but
1673 			 * we do anyway.
1674 			 */
1675 			vm_object_deallocate(backing_object);
1676 			object_bypasses++;
1677 		}
1678 
1679 		/*
1680 		 * Try again with this object's new backing object.
1681 		 */
1682 	}
1683 }
1684 
1685 /*
1686  *	vm_object_page_remove:
1687  *
1688  *	Removes all physical pages in the given range from the
1689  *	object's list of pages.  If the range's end is zero, all
1690  *	physical pages from the range's start to the end of the object
1691  *	are deleted.
1692  *
1693  *	The object must be locked.
1694  */
1695 void
1696 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1697     boolean_t clean_only)
1698 {
1699 	vm_page_t p, next;
1700 
1701 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1702 	if (object->resident_page_count == 0)
1703 		return;
1704 
1705 	/*
1706 	 * Since physically-backed objects do not use managed pages, we can't
1707 	 * remove pages from the object (we must instead remove the page
1708 	 * references, and then destroy the object).
1709 	 */
1710 	KASSERT(object->type != OBJT_PHYS,
1711 	    ("attempt to remove pages from a physical object"));
1712 
1713 	vm_object_pip_add(object, 1);
1714 again:
1715 	vm_page_lock_queues();
1716 	if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1717 		if (p->pindex < start) {
1718 			p = vm_page_splay(start, object->root);
1719 			if ((object->root = p)->pindex < start)
1720 				p = TAILQ_NEXT(p, listq);
1721 		}
1722 	}
1723 	/*
1724 	 * Assert: the variable p is either (1) the page with the
1725 	 * least pindex greater than or equal to the parameter pindex
1726 	 * or (2) NULL.
1727 	 */
1728 	for (;
1729 	     p != NULL && (p->pindex < end || end == 0);
1730 	     p = next) {
1731 		next = TAILQ_NEXT(p, listq);
1732 
1733 		if (p->wire_count != 0) {
1734 			pmap_remove_all(p);
1735 			if (!clean_only)
1736 				p->valid = 0;
1737 			continue;
1738 		}
1739 		if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1740 			goto again;
1741 		if (clean_only && p->valid) {
1742 			vm_page_test_dirty(p);
1743 			if (p->valid & p->dirty)
1744 				continue;
1745 		}
1746 		vm_page_busy(p);
1747 		pmap_remove_all(p);
1748 		vm_page_free(p);
1749 	}
1750 	vm_page_unlock_queues();
1751 	vm_object_pip_wakeup(object);
1752 }
1753 
1754 /*
1755  *	Routine:	vm_object_coalesce
1756  *	Function:	Coalesces two objects backing up adjoining
1757  *			regions of memory into a single object.
1758  *
1759  *	returns TRUE if objects were combined.
1760  *
1761  *	NOTE:	Only works at the moment if the second object is NULL -
1762  *		if it's not, which object do we lock first?
1763  *
1764  *	Parameters:
1765  *		prev_object	First object to coalesce
1766  *		prev_offset	Offset into prev_object
1767  *		next_object	Second object into coalesce
1768  *		next_offset	Offset into next_object
1769  *
1770  *		prev_size	Size of reference to prev_object
1771  *		next_size	Size of reference to next_object
1772  *
1773  *	Conditions:
1774  *	The object must *not* be locked.
1775  */
1776 boolean_t
1777 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1778 	vm_size_t prev_size, vm_size_t next_size)
1779 {
1780 	vm_pindex_t next_pindex;
1781 
1782 	if (prev_object == NULL)
1783 		return (TRUE);
1784 	vm_object_lock(prev_object);
1785 	if (prev_object->type != OBJT_DEFAULT &&
1786 	    prev_object->type != OBJT_SWAP) {
1787 		vm_object_unlock(prev_object);
1788 		return (FALSE);
1789 	}
1790 
1791 	/*
1792 	 * Try to collapse the object first
1793 	 */
1794 	vm_object_collapse(prev_object);
1795 
1796 	/*
1797 	 * Can't coalesce if: . more than one reference . paged out . shadows
1798 	 * another object . has a copy elsewhere (any of which mean that the
1799 	 * pages not mapped to prev_entry may be in use anyway)
1800 	 */
1801 	if (prev_object->backing_object != NULL) {
1802 		vm_object_unlock(prev_object);
1803 		return (FALSE);
1804 	}
1805 
1806 	prev_size >>= PAGE_SHIFT;
1807 	next_size >>= PAGE_SHIFT;
1808 	next_pindex = prev_pindex + prev_size;
1809 
1810 	if ((prev_object->ref_count > 1) &&
1811 	    (prev_object->size != next_pindex)) {
1812 		vm_object_unlock(prev_object);
1813 		return (FALSE);
1814 	}
1815 
1816 	/*
1817 	 * Remove any pages that may still be in the object from a previous
1818 	 * deallocation.
1819 	 */
1820 	if (next_pindex < prev_object->size) {
1821 		VM_OBJECT_LOCK(prev_object);
1822 		vm_object_page_remove(prev_object,
1823 				      next_pindex,
1824 				      next_pindex + next_size, FALSE);
1825 		if (prev_object->type == OBJT_SWAP)
1826 			swap_pager_freespace(prev_object,
1827 					     next_pindex, next_size);
1828 		VM_OBJECT_UNLOCK(prev_object);
1829 	}
1830 
1831 	/*
1832 	 * Extend the object if necessary.
1833 	 */
1834 	if (next_pindex + next_size > prev_object->size)
1835 		prev_object->size = next_pindex + next_size;
1836 
1837 	vm_object_unlock(prev_object);
1838 	return (TRUE);
1839 }
1840 
1841 void
1842 vm_object_set_writeable_dirty(vm_object_t object)
1843 {
1844 	struct vnode *vp;
1845 
1846 	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1847 	if (object->type == OBJT_VNODE &&
1848 	    (vp = (struct vnode *)object->handle) != NULL) {
1849 		VI_LOCK(vp);
1850 		if ((vp->v_iflag & VI_OBJDIRTY) == 0)
1851 			vp->v_iflag |= VI_OBJDIRTY;
1852 		VI_UNLOCK(vp);
1853 	}
1854 }
1855 
1856 #include "opt_ddb.h"
1857 #ifdef DDB
1858 #include <sys/kernel.h>
1859 
1860 #include <sys/cons.h>
1861 
1862 #include <ddb/ddb.h>
1863 
1864 static int
1865 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1866 {
1867 	vm_map_t tmpm;
1868 	vm_map_entry_t tmpe;
1869 	vm_object_t obj;
1870 	int entcount;
1871 
1872 	if (map == 0)
1873 		return 0;
1874 
1875 	if (entry == 0) {
1876 		tmpe = map->header.next;
1877 		entcount = map->nentries;
1878 		while (entcount-- && (tmpe != &map->header)) {
1879 			if (_vm_object_in_map(map, object, tmpe)) {
1880 				return 1;
1881 			}
1882 			tmpe = tmpe->next;
1883 		}
1884 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1885 		tmpm = entry->object.sub_map;
1886 		tmpe = tmpm->header.next;
1887 		entcount = tmpm->nentries;
1888 		while (entcount-- && tmpe != &tmpm->header) {
1889 			if (_vm_object_in_map(tmpm, object, tmpe)) {
1890 				return 1;
1891 			}
1892 			tmpe = tmpe->next;
1893 		}
1894 	} else if ((obj = entry->object.vm_object) != NULL) {
1895 		for (; obj; obj = obj->backing_object)
1896 			if (obj == object) {
1897 				return 1;
1898 			}
1899 	}
1900 	return 0;
1901 }
1902 
1903 static int
1904 vm_object_in_map(vm_object_t object)
1905 {
1906 	struct proc *p;
1907 
1908 	/* sx_slock(&allproc_lock); */
1909 	LIST_FOREACH(p, &allproc, p_list) {
1910 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
1911 			continue;
1912 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
1913 			/* sx_sunlock(&allproc_lock); */
1914 			return 1;
1915 		}
1916 	}
1917 	/* sx_sunlock(&allproc_lock); */
1918 	if (_vm_object_in_map(kernel_map, object, 0))
1919 		return 1;
1920 	if (_vm_object_in_map(kmem_map, object, 0))
1921 		return 1;
1922 	if (_vm_object_in_map(pager_map, object, 0))
1923 		return 1;
1924 	if (_vm_object_in_map(buffer_map, object, 0))
1925 		return 1;
1926 	return 0;
1927 }
1928 
1929 DB_SHOW_COMMAND(vmochk, vm_object_check)
1930 {
1931 	vm_object_t object;
1932 
1933 	/*
1934 	 * make sure that internal objs are in a map somewhere
1935 	 * and none have zero ref counts.
1936 	 */
1937 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1938 		if (object->handle == NULL &&
1939 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1940 			if (object->ref_count == 0) {
1941 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
1942 					(long)object->size);
1943 			}
1944 			if (!vm_object_in_map(object)) {
1945 				db_printf(
1946 			"vmochk: internal obj is not in a map: "
1947 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1948 				    object->ref_count, (u_long)object->size,
1949 				    (u_long)object->size,
1950 				    (void *)object->backing_object);
1951 			}
1952 		}
1953 	}
1954 }
1955 
1956 /*
1957  *	vm_object_print:	[ debug ]
1958  */
1959 DB_SHOW_COMMAND(object, vm_object_print_static)
1960 {
1961 	/* XXX convert args. */
1962 	vm_object_t object = (vm_object_t)addr;
1963 	boolean_t full = have_addr;
1964 
1965 	vm_page_t p;
1966 
1967 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
1968 #define	count	was_count
1969 
1970 	int count;
1971 
1972 	if (object == NULL)
1973 		return;
1974 
1975 	db_iprintf(
1976 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x\n",
1977 	    object, (int)object->type, (uintmax_t)object->size,
1978 	    object->resident_page_count, object->ref_count, object->flags);
1979 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
1980 	    object->shadow_count,
1981 	    object->backing_object ? object->backing_object->ref_count : 0,
1982 	    object->backing_object, (uintmax_t)object->backing_object_offset);
1983 
1984 	if (!full)
1985 		return;
1986 
1987 	db_indent += 2;
1988 	count = 0;
1989 	TAILQ_FOREACH(p, &object->memq, listq) {
1990 		if (count == 0)
1991 			db_iprintf("memory:=");
1992 		else if (count == 6) {
1993 			db_printf("\n");
1994 			db_iprintf(" ...");
1995 			count = 0;
1996 		} else
1997 			db_printf(",");
1998 		count++;
1999 
2000 		db_printf("(off=0x%jx,page=0x%jx)",
2001 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2002 	}
2003 	if (count != 0)
2004 		db_printf("\n");
2005 	db_indent -= 2;
2006 }
2007 
2008 /* XXX. */
2009 #undef count
2010 
2011 /* XXX need this non-static entry for calling from vm_map_print. */
2012 void
2013 vm_object_print(
2014         /* db_expr_t */ long addr,
2015 	boolean_t have_addr,
2016 	/* db_expr_t */ long count,
2017 	char *modif)
2018 {
2019 	vm_object_print_static(addr, have_addr, count, modif);
2020 }
2021 
2022 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2023 {
2024 	vm_object_t object;
2025 	int nl = 0;
2026 	int c;
2027 
2028 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2029 		vm_pindex_t idx, fidx;
2030 		vm_pindex_t osize;
2031 		vm_paddr_t pa = -1, padiff;
2032 		int rcount;
2033 		vm_page_t m;
2034 
2035 		db_printf("new object: %p\n", (void *)object);
2036 		if (nl > 18) {
2037 			c = cngetc();
2038 			if (c != ' ')
2039 				return;
2040 			nl = 0;
2041 		}
2042 		nl++;
2043 		rcount = 0;
2044 		fidx = 0;
2045 		osize = object->size;
2046 		if (osize > 128)
2047 			osize = 128;
2048 		for (idx = 0; idx < osize; idx++) {
2049 			m = vm_page_lookup(object, idx);
2050 			if (m == NULL) {
2051 				if (rcount) {
2052 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2053 						(long)fidx, rcount, (long)pa);
2054 					if (nl > 18) {
2055 						c = cngetc();
2056 						if (c != ' ')
2057 							return;
2058 						nl = 0;
2059 					}
2060 					nl++;
2061 					rcount = 0;
2062 				}
2063 				continue;
2064 			}
2065 
2066 
2067 			if (rcount &&
2068 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2069 				++rcount;
2070 				continue;
2071 			}
2072 			if (rcount) {
2073 				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2074 				padiff >>= PAGE_SHIFT;
2075 				padiff &= PQ_L2_MASK;
2076 				if (padiff == 0) {
2077 					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2078 					++rcount;
2079 					continue;
2080 				}
2081 				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2082 					(long)fidx, rcount, (long)pa);
2083 				db_printf("pd(%ld)\n", (long)padiff);
2084 				if (nl > 18) {
2085 					c = cngetc();
2086 					if (c != ' ')
2087 						return;
2088 					nl = 0;
2089 				}
2090 				nl++;
2091 			}
2092 			fidx = idx;
2093 			pa = VM_PAGE_TO_PHYS(m);
2094 			rcount = 1;
2095 		}
2096 		if (rcount) {
2097 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2098 				(long)fidx, rcount, (long)pa);
2099 			if (nl > 18) {
2100 				c = cngetc();
2101 				if (c != ' ')
2102 					return;
2103 				nl = 0;
2104 			}
2105 			nl++;
2106 		}
2107 	}
2108 }
2109 #endif /* DDB */
2110