xref: /freebsd/sys/vm/vm_object.c (revision ef36b3f75658d201edb495068db5e1be49593de5)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory object module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include "opt_vm.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/pctrie.h>
77 #include <sys/sysctl.h>
78 #include <sys/mutex.h>
79 #include <sys/proc.h>		/* for curproc, pageproc */
80 #include <sys/socket.h>
81 #include <sys/resourcevar.h>
82 #include <sys/rwlock.h>
83 #include <sys/user.h>
84 #include <sys/vnode.h>
85 #include <sys/vmmeter.h>
86 #include <sys/sx.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_extern.h>
99 #include <vm/vm_radix.h>
100 #include <vm/vm_reserv.h>
101 #include <vm/uma.h>
102 
103 static int old_msync;
104 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
105     "Use old (insecure) msync behavior");
106 
107 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
108 		    int pagerflags, int flags, boolean_t *clearobjflags,
109 		    boolean_t *eio);
110 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
111 		    boolean_t *clearobjflags);
112 static void	vm_object_qcollapse(vm_object_t object);
113 static void	vm_object_vndeallocate(vm_object_t object);
114 
115 /*
116  *	Virtual memory objects maintain the actual data
117  *	associated with allocated virtual memory.  A given
118  *	page of memory exists within exactly one object.
119  *
120  *	An object is only deallocated when all "references"
121  *	are given up.  Only one "reference" to a given
122  *	region of an object should be writeable.
123  *
124  *	Associated with each object is a list of all resident
125  *	memory pages belonging to that object; this list is
126  *	maintained by the "vm_page" module, and locked by the object's
127  *	lock.
128  *
129  *	Each object also records a "pager" routine which is
130  *	used to retrieve (and store) pages to the proper backing
131  *	storage.  In addition, objects may be backed by other
132  *	objects from which they were virtual-copied.
133  *
134  *	The only items within the object structure which are
135  *	modified after time of creation are:
136  *		reference count		locked by object's lock
137  *		pager routine		locked by object's lock
138  *
139  */
140 
141 struct object_q vm_object_list;
142 struct mtx vm_object_list_mtx;	/* lock for object list and count */
143 
144 struct vm_object kernel_object_store;
145 struct vm_object kmem_object_store;
146 
147 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
148     "VM object stats");
149 
150 static long object_collapses;
151 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
152     &object_collapses, 0, "VM object collapses");
153 
154 static long object_bypasses;
155 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
156     &object_bypasses, 0, "VM object bypasses");
157 
158 static uma_zone_t obj_zone;
159 
160 static int vm_object_zinit(void *mem, int size, int flags);
161 
162 #ifdef INVARIANTS
163 static void vm_object_zdtor(void *mem, int size, void *arg);
164 
165 static void
166 vm_object_zdtor(void *mem, int size, void *arg)
167 {
168 	vm_object_t object;
169 
170 	object = (vm_object_t)mem;
171 	KASSERT(object->ref_count == 0,
172 	    ("object %p ref_count = %d", object, object->ref_count));
173 	KASSERT(TAILQ_EMPTY(&object->memq),
174 	    ("object %p has resident pages in its memq", object));
175 	KASSERT(vm_radix_is_empty(&object->rtree),
176 	    ("object %p has resident pages in its trie", object));
177 #if VM_NRESERVLEVEL > 0
178 	KASSERT(LIST_EMPTY(&object->rvq),
179 	    ("object %p has reservations",
180 	    object));
181 #endif
182 	KASSERT(object->paging_in_progress == 0,
183 	    ("object %p paging_in_progress = %d",
184 	    object, object->paging_in_progress));
185 	KASSERT(object->resident_page_count == 0,
186 	    ("object %p resident_page_count = %d",
187 	    object, object->resident_page_count));
188 	KASSERT(object->shadow_count == 0,
189 	    ("object %p shadow_count = %d",
190 	    object, object->shadow_count));
191 	KASSERT(object->type == OBJT_DEAD,
192 	    ("object %p has non-dead type %d",
193 	    object, object->type));
194 }
195 #endif
196 
197 static int
198 vm_object_zinit(void *mem, int size, int flags)
199 {
200 	vm_object_t object;
201 
202 	object = (vm_object_t)mem;
203 	rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
204 
205 	/* These are true for any object that has been freed */
206 	object->type = OBJT_DEAD;
207 	object->ref_count = 0;
208 	vm_radix_init(&object->rtree);
209 	object->paging_in_progress = 0;
210 	object->resident_page_count = 0;
211 	object->shadow_count = 0;
212 	object->flags = OBJ_DEAD;
213 
214 	mtx_lock(&vm_object_list_mtx);
215 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
216 	mtx_unlock(&vm_object_list_mtx);
217 	return (0);
218 }
219 
220 static void
221 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
222 {
223 
224 	TAILQ_INIT(&object->memq);
225 	LIST_INIT(&object->shadow_head);
226 
227 	object->type = type;
228 	if (type == OBJT_SWAP)
229 		pctrie_init(&object->un_pager.swp.swp_blks);
230 
231 	/*
232 	 * Ensure that swap_pager_swapoff() iteration over object_list
233 	 * sees up to date type and pctrie head if it observed
234 	 * non-dead object.
235 	 */
236 	atomic_thread_fence_rel();
237 
238 	switch (type) {
239 	case OBJT_DEAD:
240 		panic("_vm_object_allocate: can't create OBJT_DEAD");
241 	case OBJT_DEFAULT:
242 	case OBJT_SWAP:
243 		object->flags = OBJ_ONEMAPPING;
244 		break;
245 	case OBJT_DEVICE:
246 	case OBJT_SG:
247 		object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
248 		break;
249 	case OBJT_MGTDEVICE:
250 		object->flags = OBJ_FICTITIOUS;
251 		break;
252 	case OBJT_PHYS:
253 		object->flags = OBJ_UNMANAGED;
254 		break;
255 	case OBJT_VNODE:
256 		object->flags = 0;
257 		break;
258 	default:
259 		panic("_vm_object_allocate: type %d is undefined", type);
260 	}
261 	object->size = size;
262 	object->generation = 1;
263 	object->ref_count = 1;
264 	object->memattr = VM_MEMATTR_DEFAULT;
265 	object->cred = NULL;
266 	object->charge = 0;
267 	object->handle = NULL;
268 	object->backing_object = NULL;
269 	object->backing_object_offset = (vm_ooffset_t) 0;
270 #if VM_NRESERVLEVEL > 0
271 	LIST_INIT(&object->rvq);
272 #endif
273 	umtx_shm_object_init(object);
274 }
275 
276 /*
277  *	vm_object_init:
278  *
279  *	Initialize the VM objects module.
280  */
281 void
282 vm_object_init(void)
283 {
284 	TAILQ_INIT(&vm_object_list);
285 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
286 
287 	rw_init(&kernel_object->lock, "kernel vm object");
288 	_vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
289 	    VM_MIN_KERNEL_ADDRESS), kernel_object);
290 #if VM_NRESERVLEVEL > 0
291 	kernel_object->flags |= OBJ_COLORED;
292 	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
293 #endif
294 
295 	rw_init(&kmem_object->lock, "kmem vm object");
296 	_vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
297 	    VM_MIN_KERNEL_ADDRESS), kmem_object);
298 #if VM_NRESERVLEVEL > 0
299 	kmem_object->flags |= OBJ_COLORED;
300 	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
301 #endif
302 
303 	/*
304 	 * The lock portion of struct vm_object must be type stable due
305 	 * to vm_pageout_fallback_object_lock locking a vm object
306 	 * without holding any references to it.
307 	 */
308 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
309 #ifdef INVARIANTS
310 	    vm_object_zdtor,
311 #else
312 	    NULL,
313 #endif
314 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
315 
316 	vm_radix_zinit();
317 }
318 
319 void
320 vm_object_clear_flag(vm_object_t object, u_short bits)
321 {
322 
323 	VM_OBJECT_ASSERT_WLOCKED(object);
324 	object->flags &= ~bits;
325 }
326 
327 /*
328  *	Sets the default memory attribute for the specified object.  Pages
329  *	that are allocated to this object are by default assigned this memory
330  *	attribute.
331  *
332  *	Presently, this function must be called before any pages are allocated
333  *	to the object.  In the future, this requirement may be relaxed for
334  *	"default" and "swap" objects.
335  */
336 int
337 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
338 {
339 
340 	VM_OBJECT_ASSERT_WLOCKED(object);
341 	switch (object->type) {
342 	case OBJT_DEFAULT:
343 	case OBJT_DEVICE:
344 	case OBJT_MGTDEVICE:
345 	case OBJT_PHYS:
346 	case OBJT_SG:
347 	case OBJT_SWAP:
348 	case OBJT_VNODE:
349 		if (!TAILQ_EMPTY(&object->memq))
350 			return (KERN_FAILURE);
351 		break;
352 	case OBJT_DEAD:
353 		return (KERN_INVALID_ARGUMENT);
354 	default:
355 		panic("vm_object_set_memattr: object %p is of undefined type",
356 		    object);
357 	}
358 	object->memattr = memattr;
359 	return (KERN_SUCCESS);
360 }
361 
362 void
363 vm_object_pip_add(vm_object_t object, short i)
364 {
365 
366 	VM_OBJECT_ASSERT_WLOCKED(object);
367 	object->paging_in_progress += i;
368 }
369 
370 void
371 vm_object_pip_subtract(vm_object_t object, short i)
372 {
373 
374 	VM_OBJECT_ASSERT_WLOCKED(object);
375 	object->paging_in_progress -= i;
376 }
377 
378 void
379 vm_object_pip_wakeup(vm_object_t object)
380 {
381 
382 	VM_OBJECT_ASSERT_WLOCKED(object);
383 	object->paging_in_progress--;
384 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
385 		vm_object_clear_flag(object, OBJ_PIPWNT);
386 		wakeup(object);
387 	}
388 }
389 
390 void
391 vm_object_pip_wakeupn(vm_object_t object, short i)
392 {
393 
394 	VM_OBJECT_ASSERT_WLOCKED(object);
395 	if (i)
396 		object->paging_in_progress -= i;
397 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
398 		vm_object_clear_flag(object, OBJ_PIPWNT);
399 		wakeup(object);
400 	}
401 }
402 
403 void
404 vm_object_pip_wait(vm_object_t object, char *waitid)
405 {
406 
407 	VM_OBJECT_ASSERT_WLOCKED(object);
408 	while (object->paging_in_progress) {
409 		object->flags |= OBJ_PIPWNT;
410 		VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
411 	}
412 }
413 
414 /*
415  *	vm_object_allocate:
416  *
417  *	Returns a new object with the given size.
418  */
419 vm_object_t
420 vm_object_allocate(objtype_t type, vm_pindex_t size)
421 {
422 	vm_object_t object;
423 
424 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
425 	_vm_object_allocate(type, size, object);
426 	return (object);
427 }
428 
429 
430 /*
431  *	vm_object_reference:
432  *
433  *	Gets another reference to the given object.  Note: OBJ_DEAD
434  *	objects can be referenced during final cleaning.
435  */
436 void
437 vm_object_reference(vm_object_t object)
438 {
439 	if (object == NULL)
440 		return;
441 	VM_OBJECT_WLOCK(object);
442 	vm_object_reference_locked(object);
443 	VM_OBJECT_WUNLOCK(object);
444 }
445 
446 /*
447  *	vm_object_reference_locked:
448  *
449  *	Gets another reference to the given object.
450  *
451  *	The object must be locked.
452  */
453 void
454 vm_object_reference_locked(vm_object_t object)
455 {
456 	struct vnode *vp;
457 
458 	VM_OBJECT_ASSERT_WLOCKED(object);
459 	object->ref_count++;
460 	if (object->type == OBJT_VNODE) {
461 		vp = object->handle;
462 		vref(vp);
463 	}
464 }
465 
466 /*
467  * Handle deallocating an object of type OBJT_VNODE.
468  */
469 static void
470 vm_object_vndeallocate(vm_object_t object)
471 {
472 	struct vnode *vp = (struct vnode *) object->handle;
473 
474 	VM_OBJECT_ASSERT_WLOCKED(object);
475 	KASSERT(object->type == OBJT_VNODE,
476 	    ("vm_object_vndeallocate: not a vnode object"));
477 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
478 #ifdef INVARIANTS
479 	if (object->ref_count == 0) {
480 		vn_printf(vp, "vm_object_vndeallocate ");
481 		panic("vm_object_vndeallocate: bad object reference count");
482 	}
483 #endif
484 
485 	if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
486 		umtx_shm_object_terminated(object);
487 
488 	/*
489 	 * The test for text of vp vnode does not need a bypass to
490 	 * reach right VV_TEXT there, since it is obtained from
491 	 * object->handle.
492 	 */
493 	if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
494 		object->ref_count--;
495 		VM_OBJECT_WUNLOCK(object);
496 		/* vrele may need the vnode lock. */
497 		vrele(vp);
498 	} else {
499 		vhold(vp);
500 		VM_OBJECT_WUNLOCK(object);
501 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
502 		vdrop(vp);
503 		VM_OBJECT_WLOCK(object);
504 		object->ref_count--;
505 		if (object->type == OBJT_DEAD) {
506 			VM_OBJECT_WUNLOCK(object);
507 			VOP_UNLOCK(vp, 0);
508 		} else {
509 			if (object->ref_count == 0)
510 				VOP_UNSET_TEXT(vp);
511 			VM_OBJECT_WUNLOCK(object);
512 			vput(vp);
513 		}
514 	}
515 }
516 
517 /*
518  *	vm_object_deallocate:
519  *
520  *	Release a reference to the specified object,
521  *	gained either through a vm_object_allocate
522  *	or a vm_object_reference call.  When all references
523  *	are gone, storage associated with this object
524  *	may be relinquished.
525  *
526  *	No object may be locked.
527  */
528 void
529 vm_object_deallocate(vm_object_t object)
530 {
531 	vm_object_t temp;
532 	struct vnode *vp;
533 
534 	while (object != NULL) {
535 		VM_OBJECT_WLOCK(object);
536 		if (object->type == OBJT_VNODE) {
537 			vm_object_vndeallocate(object);
538 			return;
539 		}
540 
541 		KASSERT(object->ref_count != 0,
542 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
543 
544 		/*
545 		 * If the reference count goes to 0 we start calling
546 		 * vm_object_terminate() on the object chain.
547 		 * A ref count of 1 may be a special case depending on the
548 		 * shadow count being 0 or 1.
549 		 */
550 		object->ref_count--;
551 		if (object->ref_count > 1) {
552 			VM_OBJECT_WUNLOCK(object);
553 			return;
554 		} else if (object->ref_count == 1) {
555 			if (object->type == OBJT_SWAP &&
556 			    (object->flags & OBJ_TMPFS) != 0) {
557 				vp = object->un_pager.swp.swp_tmpfs;
558 				vhold(vp);
559 				VM_OBJECT_WUNLOCK(object);
560 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
561 				VM_OBJECT_WLOCK(object);
562 				if (object->type == OBJT_DEAD ||
563 				    object->ref_count != 1) {
564 					VM_OBJECT_WUNLOCK(object);
565 					VOP_UNLOCK(vp, 0);
566 					vdrop(vp);
567 					return;
568 				}
569 				if ((object->flags & OBJ_TMPFS) != 0)
570 					VOP_UNSET_TEXT(vp);
571 				VOP_UNLOCK(vp, 0);
572 				vdrop(vp);
573 			}
574 			if (object->shadow_count == 0 &&
575 			    object->handle == NULL &&
576 			    (object->type == OBJT_DEFAULT ||
577 			    (object->type == OBJT_SWAP &&
578 			    (object->flags & OBJ_TMPFS_NODE) == 0))) {
579 				vm_object_set_flag(object, OBJ_ONEMAPPING);
580 			} else if ((object->shadow_count == 1) &&
581 			    (object->handle == NULL) &&
582 			    (object->type == OBJT_DEFAULT ||
583 			     object->type == OBJT_SWAP)) {
584 				vm_object_t robject;
585 
586 				robject = LIST_FIRST(&object->shadow_head);
587 				KASSERT(robject != NULL,
588 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
589 					 object->ref_count,
590 					 object->shadow_count));
591 				KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
592 				    ("shadowed tmpfs v_object %p", object));
593 				if (!VM_OBJECT_TRYWLOCK(robject)) {
594 					/*
595 					 * Avoid a potential deadlock.
596 					 */
597 					object->ref_count++;
598 					VM_OBJECT_WUNLOCK(object);
599 					/*
600 					 * More likely than not the thread
601 					 * holding robject's lock has lower
602 					 * priority than the current thread.
603 					 * Let the lower priority thread run.
604 					 */
605 					pause("vmo_de", 1);
606 					continue;
607 				}
608 				/*
609 				 * Collapse object into its shadow unless its
610 				 * shadow is dead.  In that case, object will
611 				 * be deallocated by the thread that is
612 				 * deallocating its shadow.
613 				 */
614 				if ((robject->flags & OBJ_DEAD) == 0 &&
615 				    (robject->handle == NULL) &&
616 				    (robject->type == OBJT_DEFAULT ||
617 				     robject->type == OBJT_SWAP)) {
618 
619 					robject->ref_count++;
620 retry:
621 					if (robject->paging_in_progress) {
622 						VM_OBJECT_WUNLOCK(object);
623 						vm_object_pip_wait(robject,
624 						    "objde1");
625 						temp = robject->backing_object;
626 						if (object == temp) {
627 							VM_OBJECT_WLOCK(object);
628 							goto retry;
629 						}
630 					} else if (object->paging_in_progress) {
631 						VM_OBJECT_WUNLOCK(robject);
632 						object->flags |= OBJ_PIPWNT;
633 						VM_OBJECT_SLEEP(object, object,
634 						    PDROP | PVM, "objde2", 0);
635 						VM_OBJECT_WLOCK(robject);
636 						temp = robject->backing_object;
637 						if (object == temp) {
638 							VM_OBJECT_WLOCK(object);
639 							goto retry;
640 						}
641 					} else
642 						VM_OBJECT_WUNLOCK(object);
643 
644 					if (robject->ref_count == 1) {
645 						robject->ref_count--;
646 						object = robject;
647 						goto doterm;
648 					}
649 					object = robject;
650 					vm_object_collapse(object);
651 					VM_OBJECT_WUNLOCK(object);
652 					continue;
653 				}
654 				VM_OBJECT_WUNLOCK(robject);
655 			}
656 			VM_OBJECT_WUNLOCK(object);
657 			return;
658 		}
659 doterm:
660 		umtx_shm_object_terminated(object);
661 		temp = object->backing_object;
662 		if (temp != NULL) {
663 			KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
664 			    ("shadowed tmpfs v_object 2 %p", object));
665 			VM_OBJECT_WLOCK(temp);
666 			LIST_REMOVE(object, shadow_list);
667 			temp->shadow_count--;
668 			VM_OBJECT_WUNLOCK(temp);
669 			object->backing_object = NULL;
670 		}
671 		/*
672 		 * Don't double-terminate, we could be in a termination
673 		 * recursion due to the terminate having to sync data
674 		 * to disk.
675 		 */
676 		if ((object->flags & OBJ_DEAD) == 0)
677 			vm_object_terminate(object);
678 		else
679 			VM_OBJECT_WUNLOCK(object);
680 		object = temp;
681 	}
682 }
683 
684 /*
685  *	vm_object_destroy removes the object from the global object list
686  *      and frees the space for the object.
687  */
688 void
689 vm_object_destroy(vm_object_t object)
690 {
691 
692 	/*
693 	 * Release the allocation charge.
694 	 */
695 	if (object->cred != NULL) {
696 		swap_release_by_cred(object->charge, object->cred);
697 		object->charge = 0;
698 		crfree(object->cred);
699 		object->cred = NULL;
700 	}
701 
702 	/*
703 	 * Free the space for the object.
704 	 */
705 	uma_zfree(obj_zone, object);
706 }
707 
708 /*
709  *	vm_object_terminate_pages removes any remaining pageable pages
710  *	from the object and resets the object to an empty state.
711  */
712 static void
713 vm_object_terminate_pages(vm_object_t object)
714 {
715 	vm_page_t p, p_next;
716 	struct mtx *mtx, *mtx1;
717 	struct vm_pagequeue *pq, *pq1;
718 	int dequeued;
719 
720 	VM_OBJECT_ASSERT_WLOCKED(object);
721 
722 	mtx = NULL;
723 	pq = NULL;
724 
725 	/*
726 	 * Free any remaining pageable pages.  This also removes them from the
727 	 * paging queues.  However, don't free wired pages, just remove them
728 	 * from the object.  Rather than incrementally removing each page from
729 	 * the object, the page and object are reset to any empty state.
730 	 */
731 	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
732 		vm_page_assert_unbusied(p);
733 		if ((object->flags & OBJ_UNMANAGED) == 0) {
734 			/*
735 			 * vm_page_free_prep() only needs the page
736 			 * lock for managed pages.
737 			 */
738 			mtx1 = vm_page_lockptr(p);
739 			if (mtx1 != mtx) {
740 				if (mtx != NULL)
741 					mtx_unlock(mtx);
742 				if (pq != NULL) {
743 					vm_pagequeue_cnt_add(pq, dequeued);
744 					vm_pagequeue_unlock(pq);
745 					pq = NULL;
746 				}
747 				mtx = mtx1;
748 				mtx_lock(mtx);
749 			}
750 		}
751 		p->object = NULL;
752 		if (p->wire_count != 0)
753 			goto unlist;
754 		VM_CNT_INC(v_pfree);
755 		p->flags &= ~PG_ZERO;
756 		if (p->queue != PQ_NONE) {
757 			KASSERT(p->queue < PQ_COUNT, ("vm_object_terminate: "
758 			    "page %p is not queued", p));
759 			pq1 = vm_page_pagequeue(p);
760 			if (pq != pq1) {
761 				if (pq != NULL) {
762 					vm_pagequeue_cnt_add(pq, dequeued);
763 					vm_pagequeue_unlock(pq);
764 				}
765 				pq = pq1;
766 				vm_pagequeue_lock(pq);
767 				dequeued = 0;
768 			}
769 			p->queue = PQ_NONE;
770 			TAILQ_REMOVE(&pq->pq_pl, p, plinks.q);
771 			dequeued--;
772 		}
773 		if (vm_page_free_prep(p, true))
774 			continue;
775 unlist:
776 		TAILQ_REMOVE(&object->memq, p, listq);
777 	}
778 	if (pq != NULL) {
779 		vm_pagequeue_cnt_add(pq, dequeued);
780 		vm_pagequeue_unlock(pq);
781 	}
782 	if (mtx != NULL)
783 		mtx_unlock(mtx);
784 
785 	vm_page_free_phys_pglist(&object->memq);
786 
787 	/*
788 	 * If the object contained any pages, then reset it to an empty state.
789 	 * None of the object's fields, including "resident_page_count", were
790 	 * modified by the preceding loop.
791 	 */
792 	if (object->resident_page_count != 0) {
793 		vm_radix_reclaim_allnodes(&object->rtree);
794 		TAILQ_INIT(&object->memq);
795 		object->resident_page_count = 0;
796 		if (object->type == OBJT_VNODE)
797 			vdrop(object->handle);
798 	}
799 }
800 
801 /*
802  *	vm_object_terminate actually destroys the specified object, freeing
803  *	up all previously used resources.
804  *
805  *	The object must be locked.
806  *	This routine may block.
807  */
808 void
809 vm_object_terminate(vm_object_t object)
810 {
811 
812 	VM_OBJECT_ASSERT_WLOCKED(object);
813 
814 	/*
815 	 * Make sure no one uses us.
816 	 */
817 	vm_object_set_flag(object, OBJ_DEAD);
818 
819 	/*
820 	 * wait for the pageout daemon to be done with the object
821 	 */
822 	vm_object_pip_wait(object, "objtrm");
823 
824 	KASSERT(!object->paging_in_progress,
825 		("vm_object_terminate: pageout in progress"));
826 
827 	/*
828 	 * Clean and free the pages, as appropriate. All references to the
829 	 * object are gone, so we don't need to lock it.
830 	 */
831 	if (object->type == OBJT_VNODE) {
832 		struct vnode *vp = (struct vnode *)object->handle;
833 
834 		/*
835 		 * Clean pages and flush buffers.
836 		 */
837 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
838 		VM_OBJECT_WUNLOCK(object);
839 
840 		vinvalbuf(vp, V_SAVE, 0, 0);
841 
842 		BO_LOCK(&vp->v_bufobj);
843 		vp->v_bufobj.bo_flag |= BO_DEAD;
844 		BO_UNLOCK(&vp->v_bufobj);
845 
846 		VM_OBJECT_WLOCK(object);
847 	}
848 
849 	KASSERT(object->ref_count == 0,
850 		("vm_object_terminate: object with references, ref_count=%d",
851 		object->ref_count));
852 
853 	if ((object->flags & OBJ_PG_DTOR) == 0)
854 		vm_object_terminate_pages(object);
855 
856 #if VM_NRESERVLEVEL > 0
857 	if (__predict_false(!LIST_EMPTY(&object->rvq)))
858 		vm_reserv_break_all(object);
859 #endif
860 
861 	KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
862 	    object->type == OBJT_SWAP,
863 	    ("%s: non-swap obj %p has cred", __func__, object));
864 
865 	/*
866 	 * Let the pager know object is dead.
867 	 */
868 	vm_pager_deallocate(object);
869 	VM_OBJECT_WUNLOCK(object);
870 
871 	vm_object_destroy(object);
872 }
873 
874 /*
875  * Make the page read-only so that we can clear the object flags.  However, if
876  * this is a nosync mmap then the object is likely to stay dirty so do not
877  * mess with the page and do not clear the object flags.  Returns TRUE if the
878  * page should be flushed, and FALSE otherwise.
879  */
880 static boolean_t
881 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
882 {
883 
884 	/*
885 	 * If we have been asked to skip nosync pages and this is a
886 	 * nosync page, skip it.  Note that the object flags were not
887 	 * cleared in this case so we do not have to set them.
888 	 */
889 	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
890 		*clearobjflags = FALSE;
891 		return (FALSE);
892 	} else {
893 		pmap_remove_write(p);
894 		return (p->dirty != 0);
895 	}
896 }
897 
898 /*
899  *	vm_object_page_clean
900  *
901  *	Clean all dirty pages in the specified range of object.  Leaves page
902  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
903  *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
904  *	leaving the object dirty.
905  *
906  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
907  *	synchronous clustering mode implementation.
908  *
909  *	Odd semantics: if start == end, we clean everything.
910  *
911  *	The object must be locked.
912  *
913  *	Returns FALSE if some page from the range was not written, as
914  *	reported by the pager, and TRUE otherwise.
915  */
916 boolean_t
917 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
918     int flags)
919 {
920 	vm_page_t np, p;
921 	vm_pindex_t pi, tend, tstart;
922 	int curgeneration, n, pagerflags;
923 	boolean_t clearobjflags, eio, res;
924 
925 	VM_OBJECT_ASSERT_WLOCKED(object);
926 
927 	/*
928 	 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
929 	 * objects.  The check below prevents the function from
930 	 * operating on non-vnode objects.
931 	 */
932 	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
933 	    object->resident_page_count == 0)
934 		return (TRUE);
935 
936 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
937 	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
938 	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
939 
940 	tstart = OFF_TO_IDX(start);
941 	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
942 	clearobjflags = tstart == 0 && tend >= object->size;
943 	res = TRUE;
944 
945 rescan:
946 	curgeneration = object->generation;
947 
948 	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
949 		pi = p->pindex;
950 		if (pi >= tend)
951 			break;
952 		np = TAILQ_NEXT(p, listq);
953 		if (p->valid == 0)
954 			continue;
955 		if (vm_page_sleep_if_busy(p, "vpcwai")) {
956 			if (object->generation != curgeneration) {
957 				if ((flags & OBJPC_SYNC) != 0)
958 					goto rescan;
959 				else
960 					clearobjflags = FALSE;
961 			}
962 			np = vm_page_find_least(object, pi);
963 			continue;
964 		}
965 		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
966 			continue;
967 
968 		n = vm_object_page_collect_flush(object, p, pagerflags,
969 		    flags, &clearobjflags, &eio);
970 		if (eio) {
971 			res = FALSE;
972 			clearobjflags = FALSE;
973 		}
974 		if (object->generation != curgeneration) {
975 			if ((flags & OBJPC_SYNC) != 0)
976 				goto rescan;
977 			else
978 				clearobjflags = FALSE;
979 		}
980 
981 		/*
982 		 * If the VOP_PUTPAGES() did a truncated write, so
983 		 * that even the first page of the run is not fully
984 		 * written, vm_pageout_flush() returns 0 as the run
985 		 * length.  Since the condition that caused truncated
986 		 * write may be permanent, e.g. exhausted free space,
987 		 * accepting n == 0 would cause an infinite loop.
988 		 *
989 		 * Forwarding the iterator leaves the unwritten page
990 		 * behind, but there is not much we can do there if
991 		 * filesystem refuses to write it.
992 		 */
993 		if (n == 0) {
994 			n = 1;
995 			clearobjflags = FALSE;
996 		}
997 		np = vm_page_find_least(object, pi + n);
998 	}
999 #if 0
1000 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
1001 #endif
1002 
1003 	if (clearobjflags)
1004 		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
1005 	return (res);
1006 }
1007 
1008 static int
1009 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
1010     int flags, boolean_t *clearobjflags, boolean_t *eio)
1011 {
1012 	vm_page_t ma[vm_pageout_page_count], p_first, tp;
1013 	int count, i, mreq, runlen;
1014 
1015 	vm_page_lock_assert(p, MA_NOTOWNED);
1016 	VM_OBJECT_ASSERT_WLOCKED(object);
1017 
1018 	count = 1;
1019 	mreq = 0;
1020 
1021 	for (tp = p; count < vm_pageout_page_count; count++) {
1022 		tp = vm_page_next(tp);
1023 		if (tp == NULL || vm_page_busied(tp))
1024 			break;
1025 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
1026 			break;
1027 	}
1028 
1029 	for (p_first = p; count < vm_pageout_page_count; count++) {
1030 		tp = vm_page_prev(p_first);
1031 		if (tp == NULL || vm_page_busied(tp))
1032 			break;
1033 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
1034 			break;
1035 		p_first = tp;
1036 		mreq++;
1037 	}
1038 
1039 	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
1040 		ma[i] = tp;
1041 
1042 	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
1043 	return (runlen);
1044 }
1045 
1046 /*
1047  * Note that there is absolutely no sense in writing out
1048  * anonymous objects, so we track down the vnode object
1049  * to write out.
1050  * We invalidate (remove) all pages from the address space
1051  * for semantic correctness.
1052  *
1053  * If the backing object is a device object with unmanaged pages, then any
1054  * mappings to the specified range of pages must be removed before this
1055  * function is called.
1056  *
1057  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1058  * may start out with a NULL object.
1059  */
1060 boolean_t
1061 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1062     boolean_t syncio, boolean_t invalidate)
1063 {
1064 	vm_object_t backing_object;
1065 	struct vnode *vp;
1066 	struct mount *mp;
1067 	int error, flags, fsync_after;
1068 	boolean_t res;
1069 
1070 	if (object == NULL)
1071 		return (TRUE);
1072 	res = TRUE;
1073 	error = 0;
1074 	VM_OBJECT_WLOCK(object);
1075 	while ((backing_object = object->backing_object) != NULL) {
1076 		VM_OBJECT_WLOCK(backing_object);
1077 		offset += object->backing_object_offset;
1078 		VM_OBJECT_WUNLOCK(object);
1079 		object = backing_object;
1080 		if (object->size < OFF_TO_IDX(offset + size))
1081 			size = IDX_TO_OFF(object->size) - offset;
1082 	}
1083 	/*
1084 	 * Flush pages if writing is allowed, invalidate them
1085 	 * if invalidation requested.  Pages undergoing I/O
1086 	 * will be ignored by vm_object_page_remove().
1087 	 *
1088 	 * We cannot lock the vnode and then wait for paging
1089 	 * to complete without deadlocking against vm_fault.
1090 	 * Instead we simply call vm_object_page_remove() and
1091 	 * allow it to block internally on a page-by-page
1092 	 * basis when it encounters pages undergoing async
1093 	 * I/O.
1094 	 */
1095 	if (object->type == OBJT_VNODE &&
1096 	    (object->flags & OBJ_MIGHTBEDIRTY) != 0 &&
1097 	    ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1098 		VM_OBJECT_WUNLOCK(object);
1099 		(void) vn_start_write(vp, &mp, V_WAIT);
1100 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1101 		if (syncio && !invalidate && offset == 0 &&
1102 		    atop(size) == object->size) {
1103 			/*
1104 			 * If syncing the whole mapping of the file,
1105 			 * it is faster to schedule all the writes in
1106 			 * async mode, also allowing the clustering,
1107 			 * and then wait for i/o to complete.
1108 			 */
1109 			flags = 0;
1110 			fsync_after = TRUE;
1111 		} else {
1112 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1113 			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1114 			fsync_after = FALSE;
1115 		}
1116 		VM_OBJECT_WLOCK(object);
1117 		res = vm_object_page_clean(object, offset, offset + size,
1118 		    flags);
1119 		VM_OBJECT_WUNLOCK(object);
1120 		if (fsync_after)
1121 			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1122 		VOP_UNLOCK(vp, 0);
1123 		vn_finished_write(mp);
1124 		if (error != 0)
1125 			res = FALSE;
1126 		VM_OBJECT_WLOCK(object);
1127 	}
1128 	if ((object->type == OBJT_VNODE ||
1129 	     object->type == OBJT_DEVICE) && invalidate) {
1130 		if (object->type == OBJT_DEVICE)
1131 			/*
1132 			 * The option OBJPR_NOTMAPPED must be passed here
1133 			 * because vm_object_page_remove() cannot remove
1134 			 * unmanaged mappings.
1135 			 */
1136 			flags = OBJPR_NOTMAPPED;
1137 		else if (old_msync)
1138 			flags = 0;
1139 		else
1140 			flags = OBJPR_CLEANONLY;
1141 		vm_object_page_remove(object, OFF_TO_IDX(offset),
1142 		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1143 	}
1144 	VM_OBJECT_WUNLOCK(object);
1145 	return (res);
1146 }
1147 
1148 /*
1149  * Determine whether the given advice can be applied to the object.  Advice is
1150  * not applied to unmanaged pages since they never belong to page queues, and
1151  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1152  * have been mapped at most once.
1153  */
1154 static bool
1155 vm_object_advice_applies(vm_object_t object, int advice)
1156 {
1157 
1158 	if ((object->flags & OBJ_UNMANAGED) != 0)
1159 		return (false);
1160 	if (advice != MADV_FREE)
1161 		return (true);
1162 	return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) &&
1163 	    (object->flags & OBJ_ONEMAPPING) != 0);
1164 }
1165 
1166 static void
1167 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1168     vm_size_t size)
1169 {
1170 
1171 	if (advice == MADV_FREE && object->type == OBJT_SWAP)
1172 		swap_pager_freespace(object, pindex, size);
1173 }
1174 
1175 /*
1176  *	vm_object_madvise:
1177  *
1178  *	Implements the madvise function at the object/page level.
1179  *
1180  *	MADV_WILLNEED	(any object)
1181  *
1182  *	    Activate the specified pages if they are resident.
1183  *
1184  *	MADV_DONTNEED	(any object)
1185  *
1186  *	    Deactivate the specified pages if they are resident.
1187  *
1188  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1189  *			 OBJ_ONEMAPPING only)
1190  *
1191  *	    Deactivate and clean the specified pages if they are
1192  *	    resident.  This permits the process to reuse the pages
1193  *	    without faulting or the kernel to reclaim the pages
1194  *	    without I/O.
1195  */
1196 void
1197 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1198     int advice)
1199 {
1200 	vm_pindex_t tpindex;
1201 	vm_object_t backing_object, tobject;
1202 	vm_page_t m, tm;
1203 
1204 	if (object == NULL)
1205 		return;
1206 
1207 relookup:
1208 	VM_OBJECT_WLOCK(object);
1209 	if (!vm_object_advice_applies(object, advice)) {
1210 		VM_OBJECT_WUNLOCK(object);
1211 		return;
1212 	}
1213 	for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1214 		tobject = object;
1215 
1216 		/*
1217 		 * If the next page isn't resident in the top-level object, we
1218 		 * need to search the shadow chain.  When applying MADV_FREE, we
1219 		 * take care to release any swap space used to store
1220 		 * non-resident pages.
1221 		 */
1222 		if (m == NULL || pindex < m->pindex) {
1223 			/*
1224 			 * Optimize a common case: if the top-level object has
1225 			 * no backing object, we can skip over the non-resident
1226 			 * range in constant time.
1227 			 */
1228 			if (object->backing_object == NULL) {
1229 				tpindex = (m != NULL && m->pindex < end) ?
1230 				    m->pindex : end;
1231 				vm_object_madvise_freespace(object, advice,
1232 				    pindex, tpindex - pindex);
1233 				if ((pindex = tpindex) == end)
1234 					break;
1235 				goto next_page;
1236 			}
1237 
1238 			tpindex = pindex;
1239 			do {
1240 				vm_object_madvise_freespace(tobject, advice,
1241 				    tpindex, 1);
1242 				/*
1243 				 * Prepare to search the next object in the
1244 				 * chain.
1245 				 */
1246 				backing_object = tobject->backing_object;
1247 				if (backing_object == NULL)
1248 					goto next_pindex;
1249 				VM_OBJECT_WLOCK(backing_object);
1250 				tpindex +=
1251 				    OFF_TO_IDX(tobject->backing_object_offset);
1252 				if (tobject != object)
1253 					VM_OBJECT_WUNLOCK(tobject);
1254 				tobject = backing_object;
1255 				if (!vm_object_advice_applies(tobject, advice))
1256 					goto next_pindex;
1257 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
1258 			    NULL);
1259 		} else {
1260 next_page:
1261 			tm = m;
1262 			m = TAILQ_NEXT(m, listq);
1263 		}
1264 
1265 		/*
1266 		 * If the page is not in a normal state, skip it.
1267 		 */
1268 		if (tm->valid != VM_PAGE_BITS_ALL)
1269 			goto next_pindex;
1270 		vm_page_lock(tm);
1271 		if (tm->hold_count != 0 || tm->wire_count != 0) {
1272 			vm_page_unlock(tm);
1273 			goto next_pindex;
1274 		}
1275 		KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1276 		    ("vm_object_madvise: page %p is fictitious", tm));
1277 		KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1278 		    ("vm_object_madvise: page %p is not managed", tm));
1279 		if (vm_page_busied(tm)) {
1280 			if (object != tobject)
1281 				VM_OBJECT_WUNLOCK(tobject);
1282 			VM_OBJECT_WUNLOCK(object);
1283 			if (advice == MADV_WILLNEED) {
1284 				/*
1285 				 * Reference the page before unlocking and
1286 				 * sleeping so that the page daemon is less
1287 				 * likely to reclaim it.
1288 				 */
1289 				vm_page_aflag_set(tm, PGA_REFERENCED);
1290 			}
1291 			vm_page_busy_sleep(tm, "madvpo", false);
1292   			goto relookup;
1293 		}
1294 		vm_page_advise(tm, advice);
1295 		vm_page_unlock(tm);
1296 		vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1297 next_pindex:
1298 		if (tobject != object)
1299 			VM_OBJECT_WUNLOCK(tobject);
1300 	}
1301 	VM_OBJECT_WUNLOCK(object);
1302 }
1303 
1304 /*
1305  *	vm_object_shadow:
1306  *
1307  *	Create a new object which is backed by the
1308  *	specified existing object range.  The source
1309  *	object reference is deallocated.
1310  *
1311  *	The new object and offset into that object
1312  *	are returned in the source parameters.
1313  */
1314 void
1315 vm_object_shadow(
1316 	vm_object_t *object,	/* IN/OUT */
1317 	vm_ooffset_t *offset,	/* IN/OUT */
1318 	vm_size_t length)
1319 {
1320 	vm_object_t source;
1321 	vm_object_t result;
1322 
1323 	source = *object;
1324 
1325 	/*
1326 	 * Don't create the new object if the old object isn't shared.
1327 	 */
1328 	if (source != NULL) {
1329 		VM_OBJECT_WLOCK(source);
1330 		if (source->ref_count == 1 &&
1331 		    source->handle == NULL &&
1332 		    (source->type == OBJT_DEFAULT ||
1333 		     source->type == OBJT_SWAP)) {
1334 			VM_OBJECT_WUNLOCK(source);
1335 			return;
1336 		}
1337 		VM_OBJECT_WUNLOCK(source);
1338 	}
1339 
1340 	/*
1341 	 * Allocate a new object with the given length.
1342 	 */
1343 	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1344 
1345 	/*
1346 	 * The new object shadows the source object, adding a reference to it.
1347 	 * Our caller changes his reference to point to the new object,
1348 	 * removing a reference to the source object.  Net result: no change
1349 	 * of reference count.
1350 	 *
1351 	 * Try to optimize the result object's page color when shadowing
1352 	 * in order to maintain page coloring consistency in the combined
1353 	 * shadowed object.
1354 	 */
1355 	result->backing_object = source;
1356 	/*
1357 	 * Store the offset into the source object, and fix up the offset into
1358 	 * the new object.
1359 	 */
1360 	result->backing_object_offset = *offset;
1361 	if (source != NULL) {
1362 		VM_OBJECT_WLOCK(source);
1363 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1364 		source->shadow_count++;
1365 #if VM_NRESERVLEVEL > 0
1366 		result->flags |= source->flags & OBJ_COLORED;
1367 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1368 		    ((1 << (VM_NFREEORDER - 1)) - 1);
1369 #endif
1370 		VM_OBJECT_WUNLOCK(source);
1371 	}
1372 
1373 
1374 	/*
1375 	 * Return the new things
1376 	 */
1377 	*offset = 0;
1378 	*object = result;
1379 }
1380 
1381 /*
1382  *	vm_object_split:
1383  *
1384  * Split the pages in a map entry into a new object.  This affords
1385  * easier removal of unused pages, and keeps object inheritance from
1386  * being a negative impact on memory usage.
1387  */
1388 void
1389 vm_object_split(vm_map_entry_t entry)
1390 {
1391 	vm_page_t m, m_next;
1392 	vm_object_t orig_object, new_object, source;
1393 	vm_pindex_t idx, offidxstart;
1394 	vm_size_t size;
1395 
1396 	orig_object = entry->object.vm_object;
1397 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1398 		return;
1399 	if (orig_object->ref_count <= 1)
1400 		return;
1401 	VM_OBJECT_WUNLOCK(orig_object);
1402 
1403 	offidxstart = OFF_TO_IDX(entry->offset);
1404 	size = atop(entry->end - entry->start);
1405 
1406 	/*
1407 	 * If swap_pager_copy() is later called, it will convert new_object
1408 	 * into a swap object.
1409 	 */
1410 	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1411 
1412 	/*
1413 	 * At this point, the new object is still private, so the order in
1414 	 * which the original and new objects are locked does not matter.
1415 	 */
1416 	VM_OBJECT_WLOCK(new_object);
1417 	VM_OBJECT_WLOCK(orig_object);
1418 	source = orig_object->backing_object;
1419 	if (source != NULL) {
1420 		VM_OBJECT_WLOCK(source);
1421 		if ((source->flags & OBJ_DEAD) != 0) {
1422 			VM_OBJECT_WUNLOCK(source);
1423 			VM_OBJECT_WUNLOCK(orig_object);
1424 			VM_OBJECT_WUNLOCK(new_object);
1425 			vm_object_deallocate(new_object);
1426 			VM_OBJECT_WLOCK(orig_object);
1427 			return;
1428 		}
1429 		LIST_INSERT_HEAD(&source->shadow_head,
1430 				  new_object, shadow_list);
1431 		source->shadow_count++;
1432 		vm_object_reference_locked(source);	/* for new_object */
1433 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1434 		VM_OBJECT_WUNLOCK(source);
1435 		new_object->backing_object_offset =
1436 			orig_object->backing_object_offset + entry->offset;
1437 		new_object->backing_object = source;
1438 	}
1439 	if (orig_object->cred != NULL) {
1440 		new_object->cred = orig_object->cred;
1441 		crhold(orig_object->cred);
1442 		new_object->charge = ptoa(size);
1443 		KASSERT(orig_object->charge >= ptoa(size),
1444 		    ("orig_object->charge < 0"));
1445 		orig_object->charge -= ptoa(size);
1446 	}
1447 retry:
1448 	m = vm_page_find_least(orig_object, offidxstart);
1449 	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1450 	    m = m_next) {
1451 		m_next = TAILQ_NEXT(m, listq);
1452 
1453 		/*
1454 		 * We must wait for pending I/O to complete before we can
1455 		 * rename the page.
1456 		 *
1457 		 * We do not have to VM_PROT_NONE the page as mappings should
1458 		 * not be changed by this operation.
1459 		 */
1460 		if (vm_page_busied(m)) {
1461 			VM_OBJECT_WUNLOCK(new_object);
1462 			vm_page_lock(m);
1463 			VM_OBJECT_WUNLOCK(orig_object);
1464 			vm_page_busy_sleep(m, "spltwt", false);
1465 			VM_OBJECT_WLOCK(orig_object);
1466 			VM_OBJECT_WLOCK(new_object);
1467 			goto retry;
1468 		}
1469 
1470 		/* vm_page_rename() will dirty the page. */
1471 		if (vm_page_rename(m, new_object, idx)) {
1472 			VM_OBJECT_WUNLOCK(new_object);
1473 			VM_OBJECT_WUNLOCK(orig_object);
1474 			VM_WAIT;
1475 			VM_OBJECT_WLOCK(orig_object);
1476 			VM_OBJECT_WLOCK(new_object);
1477 			goto retry;
1478 		}
1479 #if VM_NRESERVLEVEL > 0
1480 		/*
1481 		 * If some of the reservation's allocated pages remain with
1482 		 * the original object, then transferring the reservation to
1483 		 * the new object is neither particularly beneficial nor
1484 		 * particularly harmful as compared to leaving the reservation
1485 		 * with the original object.  If, however, all of the
1486 		 * reservation's allocated pages are transferred to the new
1487 		 * object, then transferring the reservation is typically
1488 		 * beneficial.  Determining which of these two cases applies
1489 		 * would be more costly than unconditionally renaming the
1490 		 * reservation.
1491 		 */
1492 		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1493 #endif
1494 		if (orig_object->type == OBJT_SWAP)
1495 			vm_page_xbusy(m);
1496 	}
1497 	if (orig_object->type == OBJT_SWAP) {
1498 		/*
1499 		 * swap_pager_copy() can sleep, in which case the orig_object's
1500 		 * and new_object's locks are released and reacquired.
1501 		 */
1502 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1503 		TAILQ_FOREACH(m, &new_object->memq, listq)
1504 			vm_page_xunbusy(m);
1505 	}
1506 	VM_OBJECT_WUNLOCK(orig_object);
1507 	VM_OBJECT_WUNLOCK(new_object);
1508 	entry->object.vm_object = new_object;
1509 	entry->offset = 0LL;
1510 	vm_object_deallocate(orig_object);
1511 	VM_OBJECT_WLOCK(new_object);
1512 }
1513 
1514 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1515 #define	OBSC_COLLAPSE_WAIT	0x0004
1516 
1517 static vm_page_t
1518 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1519     int op)
1520 {
1521 	vm_object_t backing_object;
1522 
1523 	VM_OBJECT_ASSERT_WLOCKED(object);
1524 	backing_object = object->backing_object;
1525 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1526 
1527 	KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1528 	KASSERT(p == NULL || p->object == object || p->object == backing_object,
1529 	    ("invalid ownership %p %p %p", p, object, backing_object));
1530 	if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1531 		return (next);
1532 	if (p != NULL)
1533 		vm_page_lock(p);
1534 	VM_OBJECT_WUNLOCK(object);
1535 	VM_OBJECT_WUNLOCK(backing_object);
1536 	if (p == NULL)
1537 		VM_WAIT;
1538 	else
1539 		vm_page_busy_sleep(p, "vmocol", false);
1540 	VM_OBJECT_WLOCK(object);
1541 	VM_OBJECT_WLOCK(backing_object);
1542 	return (TAILQ_FIRST(&backing_object->memq));
1543 }
1544 
1545 static bool
1546 vm_object_scan_all_shadowed(vm_object_t object)
1547 {
1548 	vm_object_t backing_object;
1549 	vm_page_t p, pp;
1550 	vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1551 
1552 	VM_OBJECT_ASSERT_WLOCKED(object);
1553 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1554 
1555 	backing_object = object->backing_object;
1556 
1557 	if (backing_object->type != OBJT_DEFAULT &&
1558 	    backing_object->type != OBJT_SWAP)
1559 		return (false);
1560 
1561 	pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1562 	p = vm_page_find_least(backing_object, pi);
1563 	ps = swap_pager_find_least(backing_object, pi);
1564 
1565 	/*
1566 	 * Only check pages inside the parent object's range and
1567 	 * inside the parent object's mapping of the backing object.
1568 	 */
1569 	for (;; pi++) {
1570 		if (p != NULL && p->pindex < pi)
1571 			p = TAILQ_NEXT(p, listq);
1572 		if (ps < pi)
1573 			ps = swap_pager_find_least(backing_object, pi);
1574 		if (p == NULL && ps >= backing_object->size)
1575 			break;
1576 		else if (p == NULL)
1577 			pi = ps;
1578 		else
1579 			pi = MIN(p->pindex, ps);
1580 
1581 		new_pindex = pi - backing_offset_index;
1582 		if (new_pindex >= object->size)
1583 			break;
1584 
1585 		/*
1586 		 * See if the parent has the page or if the parent's object
1587 		 * pager has the page.  If the parent has the page but the page
1588 		 * is not valid, the parent's object pager must have the page.
1589 		 *
1590 		 * If this fails, the parent does not completely shadow the
1591 		 * object and we might as well give up now.
1592 		 */
1593 		pp = vm_page_lookup(object, new_pindex);
1594 		if ((pp == NULL || pp->valid == 0) &&
1595 		    !vm_pager_has_page(object, new_pindex, NULL, NULL))
1596 			return (false);
1597 	}
1598 	return (true);
1599 }
1600 
1601 static bool
1602 vm_object_collapse_scan(vm_object_t object, int op)
1603 {
1604 	vm_object_t backing_object;
1605 	vm_page_t next, p, pp;
1606 	vm_pindex_t backing_offset_index, new_pindex;
1607 
1608 	VM_OBJECT_ASSERT_WLOCKED(object);
1609 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1610 
1611 	backing_object = object->backing_object;
1612 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1613 
1614 	/*
1615 	 * Initial conditions
1616 	 */
1617 	if ((op & OBSC_COLLAPSE_WAIT) != 0)
1618 		vm_object_set_flag(backing_object, OBJ_DEAD);
1619 
1620 	/*
1621 	 * Our scan
1622 	 */
1623 	for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1624 		next = TAILQ_NEXT(p, listq);
1625 		new_pindex = p->pindex - backing_offset_index;
1626 
1627 		/*
1628 		 * Check for busy page
1629 		 */
1630 		if (vm_page_busied(p)) {
1631 			next = vm_object_collapse_scan_wait(object, p, next, op);
1632 			continue;
1633 		}
1634 
1635 		KASSERT(p->object == backing_object,
1636 		    ("vm_object_collapse_scan: object mismatch"));
1637 
1638 		if (p->pindex < backing_offset_index ||
1639 		    new_pindex >= object->size) {
1640 			if (backing_object->type == OBJT_SWAP)
1641 				swap_pager_freespace(backing_object, p->pindex,
1642 				    1);
1643 
1644 			/*
1645 			 * Page is out of the parent object's range, we can
1646 			 * simply destroy it.
1647 			 */
1648 			vm_page_lock(p);
1649 			KASSERT(!pmap_page_is_mapped(p),
1650 			    ("freeing mapped page %p", p));
1651 			if (p->wire_count == 0)
1652 				vm_page_free(p);
1653 			else
1654 				vm_page_remove(p);
1655 			vm_page_unlock(p);
1656 			continue;
1657 		}
1658 
1659 		pp = vm_page_lookup(object, new_pindex);
1660 		if (pp != NULL && vm_page_busied(pp)) {
1661 			/*
1662 			 * The page in the parent is busy and possibly not
1663 			 * (yet) valid.  Until its state is finalized by the
1664 			 * busy bit owner, we can't tell whether it shadows the
1665 			 * original page.  Therefore, we must either skip it
1666 			 * and the original (backing_object) page or wait for
1667 			 * its state to be finalized.
1668 			 *
1669 			 * This is due to a race with vm_fault() where we must
1670 			 * unbusy the original (backing_obj) page before we can
1671 			 * (re)lock the parent.  Hence we can get here.
1672 			 */
1673 			next = vm_object_collapse_scan_wait(object, pp, next,
1674 			    op);
1675 			continue;
1676 		}
1677 
1678 		KASSERT(pp == NULL || pp->valid != 0,
1679 		    ("unbusy invalid page %p", pp));
1680 
1681 		if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1682 			NULL)) {
1683 			/*
1684 			 * The page already exists in the parent OR swap exists
1685 			 * for this location in the parent.  Leave the parent's
1686 			 * page alone.  Destroy the original page from the
1687 			 * backing object.
1688 			 */
1689 			if (backing_object->type == OBJT_SWAP)
1690 				swap_pager_freespace(backing_object, p->pindex,
1691 				    1);
1692 			vm_page_lock(p);
1693 			KASSERT(!pmap_page_is_mapped(p),
1694 			    ("freeing mapped page %p", p));
1695 			if (p->wire_count == 0)
1696 				vm_page_free(p);
1697 			else
1698 				vm_page_remove(p);
1699 			vm_page_unlock(p);
1700 			continue;
1701 		}
1702 
1703 		/*
1704 		 * Page does not exist in parent, rename the page from the
1705 		 * backing object to the main object.
1706 		 *
1707 		 * If the page was mapped to a process, it can remain mapped
1708 		 * through the rename.  vm_page_rename() will dirty the page.
1709 		 */
1710 		if (vm_page_rename(p, object, new_pindex)) {
1711 			next = vm_object_collapse_scan_wait(object, NULL, next,
1712 			    op);
1713 			continue;
1714 		}
1715 
1716 		/* Use the old pindex to free the right page. */
1717 		if (backing_object->type == OBJT_SWAP)
1718 			swap_pager_freespace(backing_object,
1719 			    new_pindex + backing_offset_index, 1);
1720 
1721 #if VM_NRESERVLEVEL > 0
1722 		/*
1723 		 * Rename the reservation.
1724 		 */
1725 		vm_reserv_rename(p, object, backing_object,
1726 		    backing_offset_index);
1727 #endif
1728 	}
1729 	return (true);
1730 }
1731 
1732 
1733 /*
1734  * this version of collapse allows the operation to occur earlier and
1735  * when paging_in_progress is true for an object...  This is not a complete
1736  * operation, but should plug 99.9% of the rest of the leaks.
1737  */
1738 static void
1739 vm_object_qcollapse(vm_object_t object)
1740 {
1741 	vm_object_t backing_object = object->backing_object;
1742 
1743 	VM_OBJECT_ASSERT_WLOCKED(object);
1744 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1745 
1746 	if (backing_object->ref_count != 1)
1747 		return;
1748 
1749 	vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1750 }
1751 
1752 /*
1753  *	vm_object_collapse:
1754  *
1755  *	Collapse an object with the object backing it.
1756  *	Pages in the backing object are moved into the
1757  *	parent, and the backing object is deallocated.
1758  */
1759 void
1760 vm_object_collapse(vm_object_t object)
1761 {
1762 	vm_object_t backing_object, new_backing_object;
1763 
1764 	VM_OBJECT_ASSERT_WLOCKED(object);
1765 
1766 	while (TRUE) {
1767 		/*
1768 		 * Verify that the conditions are right for collapse:
1769 		 *
1770 		 * The object exists and the backing object exists.
1771 		 */
1772 		if ((backing_object = object->backing_object) == NULL)
1773 			break;
1774 
1775 		/*
1776 		 * we check the backing object first, because it is most likely
1777 		 * not collapsable.
1778 		 */
1779 		VM_OBJECT_WLOCK(backing_object);
1780 		if (backing_object->handle != NULL ||
1781 		    (backing_object->type != OBJT_DEFAULT &&
1782 		     backing_object->type != OBJT_SWAP) ||
1783 		    (backing_object->flags & OBJ_DEAD) ||
1784 		    object->handle != NULL ||
1785 		    (object->type != OBJT_DEFAULT &&
1786 		     object->type != OBJT_SWAP) ||
1787 		    (object->flags & OBJ_DEAD)) {
1788 			VM_OBJECT_WUNLOCK(backing_object);
1789 			break;
1790 		}
1791 
1792 		if (object->paging_in_progress != 0 ||
1793 		    backing_object->paging_in_progress != 0) {
1794 			vm_object_qcollapse(object);
1795 			VM_OBJECT_WUNLOCK(backing_object);
1796 			break;
1797 		}
1798 
1799 		/*
1800 		 * We know that we can either collapse the backing object (if
1801 		 * the parent is the only reference to it) or (perhaps) have
1802 		 * the parent bypass the object if the parent happens to shadow
1803 		 * all the resident pages in the entire backing object.
1804 		 *
1805 		 * This is ignoring pager-backed pages such as swap pages.
1806 		 * vm_object_collapse_scan fails the shadowing test in this
1807 		 * case.
1808 		 */
1809 		if (backing_object->ref_count == 1) {
1810 			vm_object_pip_add(object, 1);
1811 			vm_object_pip_add(backing_object, 1);
1812 
1813 			/*
1814 			 * If there is exactly one reference to the backing
1815 			 * object, we can collapse it into the parent.
1816 			 */
1817 			vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1818 
1819 #if VM_NRESERVLEVEL > 0
1820 			/*
1821 			 * Break any reservations from backing_object.
1822 			 */
1823 			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1824 				vm_reserv_break_all(backing_object);
1825 #endif
1826 
1827 			/*
1828 			 * Move the pager from backing_object to object.
1829 			 */
1830 			if (backing_object->type == OBJT_SWAP) {
1831 				/*
1832 				 * swap_pager_copy() can sleep, in which case
1833 				 * the backing_object's and object's locks are
1834 				 * released and reacquired.
1835 				 * Since swap_pager_copy() is being asked to
1836 				 * destroy the source, it will change the
1837 				 * backing_object's type to OBJT_DEFAULT.
1838 				 */
1839 				swap_pager_copy(
1840 				    backing_object,
1841 				    object,
1842 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1843 			}
1844 			/*
1845 			 * Object now shadows whatever backing_object did.
1846 			 * Note that the reference to
1847 			 * backing_object->backing_object moves from within
1848 			 * backing_object to within object.
1849 			 */
1850 			LIST_REMOVE(object, shadow_list);
1851 			backing_object->shadow_count--;
1852 			if (backing_object->backing_object) {
1853 				VM_OBJECT_WLOCK(backing_object->backing_object);
1854 				LIST_REMOVE(backing_object, shadow_list);
1855 				LIST_INSERT_HEAD(
1856 				    &backing_object->backing_object->shadow_head,
1857 				    object, shadow_list);
1858 				/*
1859 				 * The shadow_count has not changed.
1860 				 */
1861 				VM_OBJECT_WUNLOCK(backing_object->backing_object);
1862 			}
1863 			object->backing_object = backing_object->backing_object;
1864 			object->backing_object_offset +=
1865 			    backing_object->backing_object_offset;
1866 
1867 			/*
1868 			 * Discard backing_object.
1869 			 *
1870 			 * Since the backing object has no pages, no pager left,
1871 			 * and no object references within it, all that is
1872 			 * necessary is to dispose of it.
1873 			 */
1874 			KASSERT(backing_object->ref_count == 1, (
1875 "backing_object %p was somehow re-referenced during collapse!",
1876 			    backing_object));
1877 			vm_object_pip_wakeup(backing_object);
1878 			backing_object->type = OBJT_DEAD;
1879 			backing_object->ref_count = 0;
1880 			VM_OBJECT_WUNLOCK(backing_object);
1881 			vm_object_destroy(backing_object);
1882 
1883 			vm_object_pip_wakeup(object);
1884 			object_collapses++;
1885 		} else {
1886 			/*
1887 			 * If we do not entirely shadow the backing object,
1888 			 * there is nothing we can do so we give up.
1889 			 */
1890 			if (object->resident_page_count != object->size &&
1891 			    !vm_object_scan_all_shadowed(object)) {
1892 				VM_OBJECT_WUNLOCK(backing_object);
1893 				break;
1894 			}
1895 
1896 			/*
1897 			 * Make the parent shadow the next object in the
1898 			 * chain.  Deallocating backing_object will not remove
1899 			 * it, since its reference count is at least 2.
1900 			 */
1901 			LIST_REMOVE(object, shadow_list);
1902 			backing_object->shadow_count--;
1903 
1904 			new_backing_object = backing_object->backing_object;
1905 			if ((object->backing_object = new_backing_object) != NULL) {
1906 				VM_OBJECT_WLOCK(new_backing_object);
1907 				LIST_INSERT_HEAD(
1908 				    &new_backing_object->shadow_head,
1909 				    object,
1910 				    shadow_list
1911 				);
1912 				new_backing_object->shadow_count++;
1913 				vm_object_reference_locked(new_backing_object);
1914 				VM_OBJECT_WUNLOCK(new_backing_object);
1915 				object->backing_object_offset +=
1916 					backing_object->backing_object_offset;
1917 			}
1918 
1919 			/*
1920 			 * Drop the reference count on backing_object. Since
1921 			 * its ref_count was at least 2, it will not vanish.
1922 			 */
1923 			backing_object->ref_count--;
1924 			VM_OBJECT_WUNLOCK(backing_object);
1925 			object_bypasses++;
1926 		}
1927 
1928 		/*
1929 		 * Try again with this object's new backing object.
1930 		 */
1931 	}
1932 }
1933 
1934 /*
1935  *	vm_object_page_remove:
1936  *
1937  *	For the given object, either frees or invalidates each of the
1938  *	specified pages.  In general, a page is freed.  However, if a page is
1939  *	wired for any reason other than the existence of a managed, wired
1940  *	mapping, then it may be invalidated but not removed from the object.
1941  *	Pages are specified by the given range ["start", "end") and the option
1942  *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1943  *	extends from "start" to the end of the object.  If the option
1944  *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1945  *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1946  *	specified, then the pages within the specified range must have no
1947  *	mappings.  Otherwise, if this option is not specified, any mappings to
1948  *	the specified pages are removed before the pages are freed or
1949  *	invalidated.
1950  *
1951  *	In general, this operation should only be performed on objects that
1952  *	contain managed pages.  There are, however, two exceptions.  First, it
1953  *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1954  *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1955  *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1956  *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1957  *
1958  *	The object must be locked.
1959  */
1960 void
1961 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1962     int options)
1963 {
1964 	vm_page_t p, next;
1965 	struct mtx *mtx;
1966 	struct pglist pgl;
1967 
1968 	VM_OBJECT_ASSERT_WLOCKED(object);
1969 	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1970 	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1971 	    ("vm_object_page_remove: illegal options for object %p", object));
1972 	if (object->resident_page_count == 0)
1973 		return;
1974 	vm_object_pip_add(object, 1);
1975 	TAILQ_INIT(&pgl);
1976 again:
1977 	p = vm_page_find_least(object, start);
1978 	mtx = NULL;
1979 
1980 	/*
1981 	 * Here, the variable "p" is either (1) the page with the least pindex
1982 	 * greater than or equal to the parameter "start" or (2) NULL.
1983 	 */
1984 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1985 		next = TAILQ_NEXT(p, listq);
1986 
1987 		/*
1988 		 * If the page is wired for any reason besides the existence
1989 		 * of managed, wired mappings, then it cannot be freed.  For
1990 		 * example, fictitious pages, which represent device memory,
1991 		 * are inherently wired and cannot be freed.  They can,
1992 		 * however, be invalidated if the option OBJPR_CLEANONLY is
1993 		 * not specified.
1994 		 */
1995 		vm_page_change_lock(p, &mtx);
1996 		if (vm_page_xbusied(p)) {
1997 			VM_OBJECT_WUNLOCK(object);
1998 			vm_page_busy_sleep(p, "vmopax", true);
1999 			VM_OBJECT_WLOCK(object);
2000 			goto again;
2001 		}
2002 		if (p->wire_count != 0) {
2003 			if ((options & OBJPR_NOTMAPPED) == 0 &&
2004 			    object->ref_count != 0)
2005 				pmap_remove_all(p);
2006 			if ((options & OBJPR_CLEANONLY) == 0) {
2007 				p->valid = 0;
2008 				vm_page_undirty(p);
2009 			}
2010 			continue;
2011 		}
2012 		if (vm_page_busied(p)) {
2013 			VM_OBJECT_WUNLOCK(object);
2014 			vm_page_busy_sleep(p, "vmopar", false);
2015 			VM_OBJECT_WLOCK(object);
2016 			goto again;
2017 		}
2018 		KASSERT((p->flags & PG_FICTITIOUS) == 0,
2019 		    ("vm_object_page_remove: page %p is fictitious", p));
2020 		if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
2021 			if ((options & OBJPR_NOTMAPPED) == 0 &&
2022 			    object->ref_count != 0)
2023 				pmap_remove_write(p);
2024 			if (p->dirty != 0)
2025 				continue;
2026 		}
2027 		if ((options & OBJPR_NOTMAPPED) == 0 && object->ref_count != 0)
2028 			pmap_remove_all(p);
2029 		p->flags &= ~PG_ZERO;
2030 		if (vm_page_free_prep(p, false))
2031 			TAILQ_INSERT_TAIL(&pgl, p, listq);
2032 	}
2033 	if (mtx != NULL)
2034 		mtx_unlock(mtx);
2035 	vm_page_free_phys_pglist(&pgl);
2036 	vm_object_pip_wakeup(object);
2037 }
2038 
2039 /*
2040  *	vm_object_page_noreuse:
2041  *
2042  *	For the given object, attempt to move the specified pages to
2043  *	the head of the inactive queue.  This bypasses regular LRU
2044  *	operation and allows the pages to be reused quickly under memory
2045  *	pressure.  If a page is wired for any reason, then it will not
2046  *	be queued.  Pages are specified by the range ["start", "end").
2047  *	As a special case, if "end" is zero, then the range extends from
2048  *	"start" to the end of the object.
2049  *
2050  *	This operation should only be performed on objects that
2051  *	contain non-fictitious, managed pages.
2052  *
2053  *	The object must be locked.
2054  */
2055 void
2056 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2057 {
2058 	struct mtx *mtx;
2059 	vm_page_t p, next;
2060 
2061 	VM_OBJECT_ASSERT_LOCKED(object);
2062 	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2063 	    ("vm_object_page_noreuse: illegal object %p", object));
2064 	if (object->resident_page_count == 0)
2065 		return;
2066 	p = vm_page_find_least(object, start);
2067 
2068 	/*
2069 	 * Here, the variable "p" is either (1) the page with the least pindex
2070 	 * greater than or equal to the parameter "start" or (2) NULL.
2071 	 */
2072 	mtx = NULL;
2073 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2074 		next = TAILQ_NEXT(p, listq);
2075 		vm_page_change_lock(p, &mtx);
2076 		vm_page_deactivate_noreuse(p);
2077 	}
2078 	if (mtx != NULL)
2079 		mtx_unlock(mtx);
2080 }
2081 
2082 /*
2083  *	Populate the specified range of the object with valid pages.  Returns
2084  *	TRUE if the range is successfully populated and FALSE otherwise.
2085  *
2086  *	Note: This function should be optimized to pass a larger array of
2087  *	pages to vm_pager_get_pages() before it is applied to a non-
2088  *	OBJT_DEVICE object.
2089  *
2090  *	The object must be locked.
2091  */
2092 boolean_t
2093 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2094 {
2095 	vm_page_t m;
2096 	vm_pindex_t pindex;
2097 	int rv;
2098 
2099 	VM_OBJECT_ASSERT_WLOCKED(object);
2100 	for (pindex = start; pindex < end; pindex++) {
2101 		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2102 		if (m->valid != VM_PAGE_BITS_ALL) {
2103 			rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
2104 			if (rv != VM_PAGER_OK) {
2105 				vm_page_lock(m);
2106 				vm_page_free(m);
2107 				vm_page_unlock(m);
2108 				break;
2109 			}
2110 		}
2111 		/*
2112 		 * Keep "m" busy because a subsequent iteration may unlock
2113 		 * the object.
2114 		 */
2115 	}
2116 	if (pindex > start) {
2117 		m = vm_page_lookup(object, start);
2118 		while (m != NULL && m->pindex < pindex) {
2119 			vm_page_xunbusy(m);
2120 			m = TAILQ_NEXT(m, listq);
2121 		}
2122 	}
2123 	return (pindex == end);
2124 }
2125 
2126 /*
2127  *	Routine:	vm_object_coalesce
2128  *	Function:	Coalesces two objects backing up adjoining
2129  *			regions of memory into a single object.
2130  *
2131  *	returns TRUE if objects were combined.
2132  *
2133  *	NOTE:	Only works at the moment if the second object is NULL -
2134  *		if it's not, which object do we lock first?
2135  *
2136  *	Parameters:
2137  *		prev_object	First object to coalesce
2138  *		prev_offset	Offset into prev_object
2139  *		prev_size	Size of reference to prev_object
2140  *		next_size	Size of reference to the second object
2141  *		reserved	Indicator that extension region has
2142  *				swap accounted for
2143  *
2144  *	Conditions:
2145  *	The object must *not* be locked.
2146  */
2147 boolean_t
2148 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2149     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2150 {
2151 	vm_pindex_t next_pindex;
2152 
2153 	if (prev_object == NULL)
2154 		return (TRUE);
2155 	VM_OBJECT_WLOCK(prev_object);
2156 	if ((prev_object->type != OBJT_DEFAULT &&
2157 	    prev_object->type != OBJT_SWAP) ||
2158 	    (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2159 		VM_OBJECT_WUNLOCK(prev_object);
2160 		return (FALSE);
2161 	}
2162 
2163 	/*
2164 	 * Try to collapse the object first
2165 	 */
2166 	vm_object_collapse(prev_object);
2167 
2168 	/*
2169 	 * Can't coalesce if: . more than one reference . paged out . shadows
2170 	 * another object . has a copy elsewhere (any of which mean that the
2171 	 * pages not mapped to prev_entry may be in use anyway)
2172 	 */
2173 	if (prev_object->backing_object != NULL) {
2174 		VM_OBJECT_WUNLOCK(prev_object);
2175 		return (FALSE);
2176 	}
2177 
2178 	prev_size >>= PAGE_SHIFT;
2179 	next_size >>= PAGE_SHIFT;
2180 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2181 
2182 	if ((prev_object->ref_count > 1) &&
2183 	    (prev_object->size != next_pindex)) {
2184 		VM_OBJECT_WUNLOCK(prev_object);
2185 		return (FALSE);
2186 	}
2187 
2188 	/*
2189 	 * Account for the charge.
2190 	 */
2191 	if (prev_object->cred != NULL) {
2192 
2193 		/*
2194 		 * If prev_object was charged, then this mapping,
2195 		 * although not charged now, may become writable
2196 		 * later. Non-NULL cred in the object would prevent
2197 		 * swap reservation during enabling of the write
2198 		 * access, so reserve swap now. Failed reservation
2199 		 * cause allocation of the separate object for the map
2200 		 * entry, and swap reservation for this entry is
2201 		 * managed in appropriate time.
2202 		 */
2203 		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2204 		    prev_object->cred)) {
2205 			VM_OBJECT_WUNLOCK(prev_object);
2206 			return (FALSE);
2207 		}
2208 		prev_object->charge += ptoa(next_size);
2209 	}
2210 
2211 	/*
2212 	 * Remove any pages that may still be in the object from a previous
2213 	 * deallocation.
2214 	 */
2215 	if (next_pindex < prev_object->size) {
2216 		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2217 		    next_size, 0);
2218 		if (prev_object->type == OBJT_SWAP)
2219 			swap_pager_freespace(prev_object,
2220 					     next_pindex, next_size);
2221 #if 0
2222 		if (prev_object->cred != NULL) {
2223 			KASSERT(prev_object->charge >=
2224 			    ptoa(prev_object->size - next_pindex),
2225 			    ("object %p overcharged 1 %jx %jx", prev_object,
2226 				(uintmax_t)next_pindex, (uintmax_t)next_size));
2227 			prev_object->charge -= ptoa(prev_object->size -
2228 			    next_pindex);
2229 		}
2230 #endif
2231 	}
2232 
2233 	/*
2234 	 * Extend the object if necessary.
2235 	 */
2236 	if (next_pindex + next_size > prev_object->size)
2237 		prev_object->size = next_pindex + next_size;
2238 
2239 	VM_OBJECT_WUNLOCK(prev_object);
2240 	return (TRUE);
2241 }
2242 
2243 void
2244 vm_object_set_writeable_dirty(vm_object_t object)
2245 {
2246 
2247 	VM_OBJECT_ASSERT_WLOCKED(object);
2248 	if (object->type != OBJT_VNODE) {
2249 		if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2250 			KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2251 			vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2252 		}
2253 		return;
2254 	}
2255 	object->generation++;
2256 	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2257 		return;
2258 	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2259 }
2260 
2261 /*
2262  *	vm_object_unwire:
2263  *
2264  *	For each page offset within the specified range of the given object,
2265  *	find the highest-level page in the shadow chain and unwire it.  A page
2266  *	must exist at every page offset, and the highest-level page must be
2267  *	wired.
2268  */
2269 void
2270 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2271     uint8_t queue)
2272 {
2273 	vm_object_t tobject;
2274 	vm_page_t m, tm;
2275 	vm_pindex_t end_pindex, pindex, tpindex;
2276 	int depth, locked_depth;
2277 
2278 	KASSERT((offset & PAGE_MASK) == 0,
2279 	    ("vm_object_unwire: offset is not page aligned"));
2280 	KASSERT((length & PAGE_MASK) == 0,
2281 	    ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2282 	/* The wired count of a fictitious page never changes. */
2283 	if ((object->flags & OBJ_FICTITIOUS) != 0)
2284 		return;
2285 	pindex = OFF_TO_IDX(offset);
2286 	end_pindex = pindex + atop(length);
2287 	locked_depth = 1;
2288 	VM_OBJECT_RLOCK(object);
2289 	m = vm_page_find_least(object, pindex);
2290 	while (pindex < end_pindex) {
2291 		if (m == NULL || pindex < m->pindex) {
2292 			/*
2293 			 * The first object in the shadow chain doesn't
2294 			 * contain a page at the current index.  Therefore,
2295 			 * the page must exist in a backing object.
2296 			 */
2297 			tobject = object;
2298 			tpindex = pindex;
2299 			depth = 0;
2300 			do {
2301 				tpindex +=
2302 				    OFF_TO_IDX(tobject->backing_object_offset);
2303 				tobject = tobject->backing_object;
2304 				KASSERT(tobject != NULL,
2305 				    ("vm_object_unwire: missing page"));
2306 				if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2307 					goto next_page;
2308 				depth++;
2309 				if (depth == locked_depth) {
2310 					locked_depth++;
2311 					VM_OBJECT_RLOCK(tobject);
2312 				}
2313 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
2314 			    NULL);
2315 		} else {
2316 			tm = m;
2317 			m = TAILQ_NEXT(m, listq);
2318 		}
2319 		vm_page_lock(tm);
2320 		vm_page_unwire(tm, queue);
2321 		vm_page_unlock(tm);
2322 next_page:
2323 		pindex++;
2324 	}
2325 	/* Release the accumulated object locks. */
2326 	for (depth = 0; depth < locked_depth; depth++) {
2327 		tobject = object->backing_object;
2328 		VM_OBJECT_RUNLOCK(object);
2329 		object = tobject;
2330 	}
2331 }
2332 
2333 struct vnode *
2334 vm_object_vnode(vm_object_t object)
2335 {
2336 
2337 	VM_OBJECT_ASSERT_LOCKED(object);
2338 	if (object->type == OBJT_VNODE)
2339 		return (object->handle);
2340 	if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
2341 		return (object->un_pager.swp.swp_tmpfs);
2342 	return (NULL);
2343 }
2344 
2345 static int
2346 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2347 {
2348 	struct kinfo_vmobject *kvo;
2349 	char *fullpath, *freepath;
2350 	struct vnode *vp;
2351 	struct vattr va;
2352 	vm_object_t obj;
2353 	vm_page_t m;
2354 	int count, error;
2355 
2356 	if (req->oldptr == NULL) {
2357 		/*
2358 		 * If an old buffer has not been provided, generate an
2359 		 * estimate of the space needed for a subsequent call.
2360 		 */
2361 		mtx_lock(&vm_object_list_mtx);
2362 		count = 0;
2363 		TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2364 			if (obj->type == OBJT_DEAD)
2365 				continue;
2366 			count++;
2367 		}
2368 		mtx_unlock(&vm_object_list_mtx);
2369 		return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2370 		    count * 11 / 10));
2371 	}
2372 
2373 	kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2374 	error = 0;
2375 
2376 	/*
2377 	 * VM objects are type stable and are never removed from the
2378 	 * list once added.  This allows us to safely read obj->object_list
2379 	 * after reacquiring the VM object lock.
2380 	 */
2381 	mtx_lock(&vm_object_list_mtx);
2382 	TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2383 		if (obj->type == OBJT_DEAD)
2384 			continue;
2385 		VM_OBJECT_RLOCK(obj);
2386 		if (obj->type == OBJT_DEAD) {
2387 			VM_OBJECT_RUNLOCK(obj);
2388 			continue;
2389 		}
2390 		mtx_unlock(&vm_object_list_mtx);
2391 		kvo->kvo_size = ptoa(obj->size);
2392 		kvo->kvo_resident = obj->resident_page_count;
2393 		kvo->kvo_ref_count = obj->ref_count;
2394 		kvo->kvo_shadow_count = obj->shadow_count;
2395 		kvo->kvo_memattr = obj->memattr;
2396 		kvo->kvo_active = 0;
2397 		kvo->kvo_inactive = 0;
2398 		TAILQ_FOREACH(m, &obj->memq, listq) {
2399 			/*
2400 			 * A page may belong to the object but be
2401 			 * dequeued and set to PQ_NONE while the
2402 			 * object lock is not held.  This makes the
2403 			 * reads of m->queue below racy, and we do not
2404 			 * count pages set to PQ_NONE.  However, this
2405 			 * sysctl is only meant to give an
2406 			 * approximation of the system anyway.
2407 			 */
2408 			if (vm_page_active(m))
2409 				kvo->kvo_active++;
2410 			else if (vm_page_inactive(m))
2411 				kvo->kvo_inactive++;
2412 		}
2413 
2414 		kvo->kvo_vn_fileid = 0;
2415 		kvo->kvo_vn_fsid = 0;
2416 		kvo->kvo_vn_fsid_freebsd11 = 0;
2417 		freepath = NULL;
2418 		fullpath = "";
2419 		vp = NULL;
2420 		switch (obj->type) {
2421 		case OBJT_DEFAULT:
2422 			kvo->kvo_type = KVME_TYPE_DEFAULT;
2423 			break;
2424 		case OBJT_VNODE:
2425 			kvo->kvo_type = KVME_TYPE_VNODE;
2426 			vp = obj->handle;
2427 			vref(vp);
2428 			break;
2429 		case OBJT_SWAP:
2430 			kvo->kvo_type = KVME_TYPE_SWAP;
2431 			break;
2432 		case OBJT_DEVICE:
2433 			kvo->kvo_type = KVME_TYPE_DEVICE;
2434 			break;
2435 		case OBJT_PHYS:
2436 			kvo->kvo_type = KVME_TYPE_PHYS;
2437 			break;
2438 		case OBJT_DEAD:
2439 			kvo->kvo_type = KVME_TYPE_DEAD;
2440 			break;
2441 		case OBJT_SG:
2442 			kvo->kvo_type = KVME_TYPE_SG;
2443 			break;
2444 		case OBJT_MGTDEVICE:
2445 			kvo->kvo_type = KVME_TYPE_MGTDEVICE;
2446 			break;
2447 		default:
2448 			kvo->kvo_type = KVME_TYPE_UNKNOWN;
2449 			break;
2450 		}
2451 		VM_OBJECT_RUNLOCK(obj);
2452 		if (vp != NULL) {
2453 			vn_fullpath(curthread, vp, &fullpath, &freepath);
2454 			vn_lock(vp, LK_SHARED | LK_RETRY);
2455 			if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2456 				kvo->kvo_vn_fileid = va.va_fileid;
2457 				kvo->kvo_vn_fsid = va.va_fsid;
2458 				kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2459 								/* truncate */
2460 			}
2461 			vput(vp);
2462 		}
2463 
2464 		strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2465 		if (freepath != NULL)
2466 			free(freepath, M_TEMP);
2467 
2468 		/* Pack record size down */
2469 		kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2470 		    + strlen(kvo->kvo_path) + 1;
2471 		kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2472 		    sizeof(uint64_t));
2473 		error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2474 		mtx_lock(&vm_object_list_mtx);
2475 		if (error)
2476 			break;
2477 	}
2478 	mtx_unlock(&vm_object_list_mtx);
2479 	free(kvo, M_TEMP);
2480 	return (error);
2481 }
2482 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2483     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2484     "List of VM objects");
2485 
2486 #include "opt_ddb.h"
2487 #ifdef DDB
2488 #include <sys/kernel.h>
2489 
2490 #include <sys/cons.h>
2491 
2492 #include <ddb/ddb.h>
2493 
2494 static int
2495 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2496 {
2497 	vm_map_t tmpm;
2498 	vm_map_entry_t tmpe;
2499 	vm_object_t obj;
2500 	int entcount;
2501 
2502 	if (map == 0)
2503 		return 0;
2504 
2505 	if (entry == 0) {
2506 		tmpe = map->header.next;
2507 		entcount = map->nentries;
2508 		while (entcount-- && (tmpe != &map->header)) {
2509 			if (_vm_object_in_map(map, object, tmpe)) {
2510 				return 1;
2511 			}
2512 			tmpe = tmpe->next;
2513 		}
2514 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2515 		tmpm = entry->object.sub_map;
2516 		tmpe = tmpm->header.next;
2517 		entcount = tmpm->nentries;
2518 		while (entcount-- && tmpe != &tmpm->header) {
2519 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2520 				return 1;
2521 			}
2522 			tmpe = tmpe->next;
2523 		}
2524 	} else if ((obj = entry->object.vm_object) != NULL) {
2525 		for (; obj; obj = obj->backing_object)
2526 			if (obj == object) {
2527 				return 1;
2528 			}
2529 	}
2530 	return 0;
2531 }
2532 
2533 static int
2534 vm_object_in_map(vm_object_t object)
2535 {
2536 	struct proc *p;
2537 
2538 	/* sx_slock(&allproc_lock); */
2539 	FOREACH_PROC_IN_SYSTEM(p) {
2540 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2541 			continue;
2542 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2543 			/* sx_sunlock(&allproc_lock); */
2544 			return 1;
2545 		}
2546 	}
2547 	/* sx_sunlock(&allproc_lock); */
2548 	if (_vm_object_in_map(kernel_map, object, 0))
2549 		return 1;
2550 	return 0;
2551 }
2552 
2553 DB_SHOW_COMMAND(vmochk, vm_object_check)
2554 {
2555 	vm_object_t object;
2556 
2557 	/*
2558 	 * make sure that internal objs are in a map somewhere
2559 	 * and none have zero ref counts.
2560 	 */
2561 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2562 		if (object->handle == NULL &&
2563 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2564 			if (object->ref_count == 0) {
2565 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2566 					(long)object->size);
2567 			}
2568 			if (!vm_object_in_map(object)) {
2569 				db_printf(
2570 			"vmochk: internal obj is not in a map: "
2571 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2572 				    object->ref_count, (u_long)object->size,
2573 				    (u_long)object->size,
2574 				    (void *)object->backing_object);
2575 			}
2576 		}
2577 	}
2578 }
2579 
2580 /*
2581  *	vm_object_print:	[ debug ]
2582  */
2583 DB_SHOW_COMMAND(object, vm_object_print_static)
2584 {
2585 	/* XXX convert args. */
2586 	vm_object_t object = (vm_object_t)addr;
2587 	boolean_t full = have_addr;
2588 
2589 	vm_page_t p;
2590 
2591 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2592 #define	count	was_count
2593 
2594 	int count;
2595 
2596 	if (object == NULL)
2597 		return;
2598 
2599 	db_iprintf(
2600 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2601 	    object, (int)object->type, (uintmax_t)object->size,
2602 	    object->resident_page_count, object->ref_count, object->flags,
2603 	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2604 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2605 	    object->shadow_count,
2606 	    object->backing_object ? object->backing_object->ref_count : 0,
2607 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2608 
2609 	if (!full)
2610 		return;
2611 
2612 	db_indent += 2;
2613 	count = 0;
2614 	TAILQ_FOREACH(p, &object->memq, listq) {
2615 		if (count == 0)
2616 			db_iprintf("memory:=");
2617 		else if (count == 6) {
2618 			db_printf("\n");
2619 			db_iprintf(" ...");
2620 			count = 0;
2621 		} else
2622 			db_printf(",");
2623 		count++;
2624 
2625 		db_printf("(off=0x%jx,page=0x%jx)",
2626 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2627 	}
2628 	if (count != 0)
2629 		db_printf("\n");
2630 	db_indent -= 2;
2631 }
2632 
2633 /* XXX. */
2634 #undef count
2635 
2636 /* XXX need this non-static entry for calling from vm_map_print. */
2637 void
2638 vm_object_print(
2639         /* db_expr_t */ long addr,
2640 	boolean_t have_addr,
2641 	/* db_expr_t */ long count,
2642 	char *modif)
2643 {
2644 	vm_object_print_static(addr, have_addr, count, modif);
2645 }
2646 
2647 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2648 {
2649 	vm_object_t object;
2650 	vm_pindex_t fidx;
2651 	vm_paddr_t pa;
2652 	vm_page_t m, prev_m;
2653 	int rcount, nl, c;
2654 
2655 	nl = 0;
2656 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2657 		db_printf("new object: %p\n", (void *)object);
2658 		if (nl > 18) {
2659 			c = cngetc();
2660 			if (c != ' ')
2661 				return;
2662 			nl = 0;
2663 		}
2664 		nl++;
2665 		rcount = 0;
2666 		fidx = 0;
2667 		pa = -1;
2668 		TAILQ_FOREACH(m, &object->memq, listq) {
2669 			if (m->pindex > 128)
2670 				break;
2671 			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2672 			    prev_m->pindex + 1 != m->pindex) {
2673 				if (rcount) {
2674 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2675 						(long)fidx, rcount, (long)pa);
2676 					if (nl > 18) {
2677 						c = cngetc();
2678 						if (c != ' ')
2679 							return;
2680 						nl = 0;
2681 					}
2682 					nl++;
2683 					rcount = 0;
2684 				}
2685 			}
2686 			if (rcount &&
2687 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2688 				++rcount;
2689 				continue;
2690 			}
2691 			if (rcount) {
2692 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2693 					(long)fidx, rcount, (long)pa);
2694 				if (nl > 18) {
2695 					c = cngetc();
2696 					if (c != ' ')
2697 						return;
2698 					nl = 0;
2699 				}
2700 				nl++;
2701 			}
2702 			fidx = m->pindex;
2703 			pa = VM_PAGE_TO_PHYS(m);
2704 			rcount = 1;
2705 		}
2706 		if (rcount) {
2707 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2708 				(long)fidx, rcount, (long)pa);
2709 			if (nl > 18) {
2710 				c = cngetc();
2711 				if (c != ' ')
2712 					return;
2713 				nl = 0;
2714 			}
2715 			nl++;
2716 		}
2717 	}
2718 }
2719 #endif /* DDB */
2720