1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory object module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_vm.h" 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/lock.h> 73 #include <sys/mman.h> 74 #include <sys/mount.h> 75 #include <sys/kernel.h> 76 #include <sys/pctrie.h> 77 #include <sys/sysctl.h> 78 #include <sys/mutex.h> 79 #include <sys/proc.h> /* for curproc, pageproc */ 80 #include <sys/socket.h> 81 #include <sys/resourcevar.h> 82 #include <sys/rwlock.h> 83 #include <sys/user.h> 84 #include <sys/vnode.h> 85 #include <sys/vmmeter.h> 86 #include <sys/sx.h> 87 88 #include <vm/vm.h> 89 #include <vm/vm_param.h> 90 #include <vm/pmap.h> 91 #include <vm/vm_map.h> 92 #include <vm/vm_object.h> 93 #include <vm/vm_page.h> 94 #include <vm/vm_pageout.h> 95 #include <vm/vm_pager.h> 96 #include <vm/swap_pager.h> 97 #include <vm/vm_kern.h> 98 #include <vm/vm_extern.h> 99 #include <vm/vm_radix.h> 100 #include <vm/vm_reserv.h> 101 #include <vm/uma.h> 102 103 static int old_msync; 104 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0, 105 "Use old (insecure) msync behavior"); 106 107 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 108 int pagerflags, int flags, boolean_t *clearobjflags, 109 boolean_t *eio); 110 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags, 111 boolean_t *clearobjflags); 112 static void vm_object_qcollapse(vm_object_t object); 113 static void vm_object_vndeallocate(vm_object_t object); 114 115 /* 116 * Virtual memory objects maintain the actual data 117 * associated with allocated virtual memory. A given 118 * page of memory exists within exactly one object. 119 * 120 * An object is only deallocated when all "references" 121 * are given up. Only one "reference" to a given 122 * region of an object should be writeable. 123 * 124 * Associated with each object is a list of all resident 125 * memory pages belonging to that object; this list is 126 * maintained by the "vm_page" module, and locked by the object's 127 * lock. 128 * 129 * Each object also records a "pager" routine which is 130 * used to retrieve (and store) pages to the proper backing 131 * storage. In addition, objects may be backed by other 132 * objects from which they were virtual-copied. 133 * 134 * The only items within the object structure which are 135 * modified after time of creation are: 136 * reference count locked by object's lock 137 * pager routine locked by object's lock 138 * 139 */ 140 141 struct object_q vm_object_list; 142 struct mtx vm_object_list_mtx; /* lock for object list and count */ 143 144 struct vm_object kernel_object_store; 145 struct vm_object kmem_object_store; 146 147 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, 148 "VM object stats"); 149 150 static long object_collapses; 151 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD, 152 &object_collapses, 0, "VM object collapses"); 153 154 static long object_bypasses; 155 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD, 156 &object_bypasses, 0, "VM object bypasses"); 157 158 static uma_zone_t obj_zone; 159 160 static int vm_object_zinit(void *mem, int size, int flags); 161 162 #ifdef INVARIANTS 163 static void vm_object_zdtor(void *mem, int size, void *arg); 164 165 static void 166 vm_object_zdtor(void *mem, int size, void *arg) 167 { 168 vm_object_t object; 169 170 object = (vm_object_t)mem; 171 KASSERT(object->ref_count == 0, 172 ("object %p ref_count = %d", object, object->ref_count)); 173 KASSERT(TAILQ_EMPTY(&object->memq), 174 ("object %p has resident pages in its memq", object)); 175 KASSERT(vm_radix_is_empty(&object->rtree), 176 ("object %p has resident pages in its trie", object)); 177 #if VM_NRESERVLEVEL > 0 178 KASSERT(LIST_EMPTY(&object->rvq), 179 ("object %p has reservations", 180 object)); 181 #endif 182 KASSERT(object->paging_in_progress == 0, 183 ("object %p paging_in_progress = %d", 184 object, object->paging_in_progress)); 185 KASSERT(object->resident_page_count == 0, 186 ("object %p resident_page_count = %d", 187 object, object->resident_page_count)); 188 KASSERT(object->shadow_count == 0, 189 ("object %p shadow_count = %d", 190 object, object->shadow_count)); 191 KASSERT(object->type == OBJT_DEAD, 192 ("object %p has non-dead type %d", 193 object, object->type)); 194 } 195 #endif 196 197 static int 198 vm_object_zinit(void *mem, int size, int flags) 199 { 200 vm_object_t object; 201 202 object = (vm_object_t)mem; 203 rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW); 204 205 /* These are true for any object that has been freed */ 206 object->type = OBJT_DEAD; 207 object->ref_count = 0; 208 vm_radix_init(&object->rtree); 209 object->paging_in_progress = 0; 210 object->resident_page_count = 0; 211 object->shadow_count = 0; 212 object->flags = OBJ_DEAD; 213 214 mtx_lock(&vm_object_list_mtx); 215 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 216 mtx_unlock(&vm_object_list_mtx); 217 return (0); 218 } 219 220 static void 221 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object) 222 { 223 224 TAILQ_INIT(&object->memq); 225 LIST_INIT(&object->shadow_head); 226 227 object->type = type; 228 if (type == OBJT_SWAP) 229 pctrie_init(&object->un_pager.swp.swp_blks); 230 231 /* 232 * Ensure that swap_pager_swapoff() iteration over object_list 233 * sees up to date type and pctrie head if it observed 234 * non-dead object. 235 */ 236 atomic_thread_fence_rel(); 237 238 switch (type) { 239 case OBJT_DEAD: 240 panic("_vm_object_allocate: can't create OBJT_DEAD"); 241 case OBJT_DEFAULT: 242 case OBJT_SWAP: 243 object->flags = OBJ_ONEMAPPING; 244 break; 245 case OBJT_DEVICE: 246 case OBJT_SG: 247 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED; 248 break; 249 case OBJT_MGTDEVICE: 250 object->flags = OBJ_FICTITIOUS; 251 break; 252 case OBJT_PHYS: 253 object->flags = OBJ_UNMANAGED; 254 break; 255 case OBJT_VNODE: 256 object->flags = 0; 257 break; 258 default: 259 panic("_vm_object_allocate: type %d is undefined", type); 260 } 261 object->size = size; 262 object->generation = 1; 263 object->ref_count = 1; 264 object->memattr = VM_MEMATTR_DEFAULT; 265 object->cred = NULL; 266 object->charge = 0; 267 object->handle = NULL; 268 object->backing_object = NULL; 269 object->backing_object_offset = (vm_ooffset_t) 0; 270 #if VM_NRESERVLEVEL > 0 271 LIST_INIT(&object->rvq); 272 #endif 273 umtx_shm_object_init(object); 274 } 275 276 /* 277 * vm_object_init: 278 * 279 * Initialize the VM objects module. 280 */ 281 void 282 vm_object_init(void) 283 { 284 TAILQ_INIT(&vm_object_list); 285 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF); 286 287 rw_init(&kernel_object->lock, "kernel vm object"); 288 _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS - 289 VM_MIN_KERNEL_ADDRESS), kernel_object); 290 #if VM_NRESERVLEVEL > 0 291 kernel_object->flags |= OBJ_COLORED; 292 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 293 #endif 294 295 rw_init(&kmem_object->lock, "kmem vm object"); 296 _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS - 297 VM_MIN_KERNEL_ADDRESS), kmem_object); 298 #if VM_NRESERVLEVEL > 0 299 kmem_object->flags |= OBJ_COLORED; 300 kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 301 #endif 302 303 /* 304 * The lock portion of struct vm_object must be type stable due 305 * to vm_pageout_fallback_object_lock locking a vm object 306 * without holding any references to it. 307 */ 308 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL, 309 #ifdef INVARIANTS 310 vm_object_zdtor, 311 #else 312 NULL, 313 #endif 314 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 315 316 vm_radix_zinit(); 317 } 318 319 void 320 vm_object_clear_flag(vm_object_t object, u_short bits) 321 { 322 323 VM_OBJECT_ASSERT_WLOCKED(object); 324 object->flags &= ~bits; 325 } 326 327 /* 328 * Sets the default memory attribute for the specified object. Pages 329 * that are allocated to this object are by default assigned this memory 330 * attribute. 331 * 332 * Presently, this function must be called before any pages are allocated 333 * to the object. In the future, this requirement may be relaxed for 334 * "default" and "swap" objects. 335 */ 336 int 337 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr) 338 { 339 340 VM_OBJECT_ASSERT_WLOCKED(object); 341 switch (object->type) { 342 case OBJT_DEFAULT: 343 case OBJT_DEVICE: 344 case OBJT_MGTDEVICE: 345 case OBJT_PHYS: 346 case OBJT_SG: 347 case OBJT_SWAP: 348 case OBJT_VNODE: 349 if (!TAILQ_EMPTY(&object->memq)) 350 return (KERN_FAILURE); 351 break; 352 case OBJT_DEAD: 353 return (KERN_INVALID_ARGUMENT); 354 default: 355 panic("vm_object_set_memattr: object %p is of undefined type", 356 object); 357 } 358 object->memattr = memattr; 359 return (KERN_SUCCESS); 360 } 361 362 void 363 vm_object_pip_add(vm_object_t object, short i) 364 { 365 366 VM_OBJECT_ASSERT_WLOCKED(object); 367 object->paging_in_progress += i; 368 } 369 370 void 371 vm_object_pip_subtract(vm_object_t object, short i) 372 { 373 374 VM_OBJECT_ASSERT_WLOCKED(object); 375 object->paging_in_progress -= i; 376 } 377 378 void 379 vm_object_pip_wakeup(vm_object_t object) 380 { 381 382 VM_OBJECT_ASSERT_WLOCKED(object); 383 object->paging_in_progress--; 384 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 385 vm_object_clear_flag(object, OBJ_PIPWNT); 386 wakeup(object); 387 } 388 } 389 390 void 391 vm_object_pip_wakeupn(vm_object_t object, short i) 392 { 393 394 VM_OBJECT_ASSERT_WLOCKED(object); 395 if (i) 396 object->paging_in_progress -= i; 397 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 398 vm_object_clear_flag(object, OBJ_PIPWNT); 399 wakeup(object); 400 } 401 } 402 403 void 404 vm_object_pip_wait(vm_object_t object, char *waitid) 405 { 406 407 VM_OBJECT_ASSERT_WLOCKED(object); 408 while (object->paging_in_progress) { 409 object->flags |= OBJ_PIPWNT; 410 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0); 411 } 412 } 413 414 /* 415 * vm_object_allocate: 416 * 417 * Returns a new object with the given size. 418 */ 419 vm_object_t 420 vm_object_allocate(objtype_t type, vm_pindex_t size) 421 { 422 vm_object_t object; 423 424 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 425 _vm_object_allocate(type, size, object); 426 return (object); 427 } 428 429 430 /* 431 * vm_object_reference: 432 * 433 * Gets another reference to the given object. Note: OBJ_DEAD 434 * objects can be referenced during final cleaning. 435 */ 436 void 437 vm_object_reference(vm_object_t object) 438 { 439 if (object == NULL) 440 return; 441 VM_OBJECT_WLOCK(object); 442 vm_object_reference_locked(object); 443 VM_OBJECT_WUNLOCK(object); 444 } 445 446 /* 447 * vm_object_reference_locked: 448 * 449 * Gets another reference to the given object. 450 * 451 * The object must be locked. 452 */ 453 void 454 vm_object_reference_locked(vm_object_t object) 455 { 456 struct vnode *vp; 457 458 VM_OBJECT_ASSERT_WLOCKED(object); 459 object->ref_count++; 460 if (object->type == OBJT_VNODE) { 461 vp = object->handle; 462 vref(vp); 463 } 464 } 465 466 /* 467 * Handle deallocating an object of type OBJT_VNODE. 468 */ 469 static void 470 vm_object_vndeallocate(vm_object_t object) 471 { 472 struct vnode *vp = (struct vnode *) object->handle; 473 474 VM_OBJECT_ASSERT_WLOCKED(object); 475 KASSERT(object->type == OBJT_VNODE, 476 ("vm_object_vndeallocate: not a vnode object")); 477 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 478 #ifdef INVARIANTS 479 if (object->ref_count == 0) { 480 vn_printf(vp, "vm_object_vndeallocate "); 481 panic("vm_object_vndeallocate: bad object reference count"); 482 } 483 #endif 484 485 if (!umtx_shm_vnobj_persistent && object->ref_count == 1) 486 umtx_shm_object_terminated(object); 487 488 /* 489 * The test for text of vp vnode does not need a bypass to 490 * reach right VV_TEXT there, since it is obtained from 491 * object->handle. 492 */ 493 if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) { 494 object->ref_count--; 495 VM_OBJECT_WUNLOCK(object); 496 /* vrele may need the vnode lock. */ 497 vrele(vp); 498 } else { 499 vhold(vp); 500 VM_OBJECT_WUNLOCK(object); 501 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 502 vdrop(vp); 503 VM_OBJECT_WLOCK(object); 504 object->ref_count--; 505 if (object->type == OBJT_DEAD) { 506 VM_OBJECT_WUNLOCK(object); 507 VOP_UNLOCK(vp, 0); 508 } else { 509 if (object->ref_count == 0) 510 VOP_UNSET_TEXT(vp); 511 VM_OBJECT_WUNLOCK(object); 512 vput(vp); 513 } 514 } 515 } 516 517 /* 518 * vm_object_deallocate: 519 * 520 * Release a reference to the specified object, 521 * gained either through a vm_object_allocate 522 * or a vm_object_reference call. When all references 523 * are gone, storage associated with this object 524 * may be relinquished. 525 * 526 * No object may be locked. 527 */ 528 void 529 vm_object_deallocate(vm_object_t object) 530 { 531 vm_object_t temp; 532 struct vnode *vp; 533 534 while (object != NULL) { 535 VM_OBJECT_WLOCK(object); 536 if (object->type == OBJT_VNODE) { 537 vm_object_vndeallocate(object); 538 return; 539 } 540 541 KASSERT(object->ref_count != 0, 542 ("vm_object_deallocate: object deallocated too many times: %d", object->type)); 543 544 /* 545 * If the reference count goes to 0 we start calling 546 * vm_object_terminate() on the object chain. 547 * A ref count of 1 may be a special case depending on the 548 * shadow count being 0 or 1. 549 */ 550 object->ref_count--; 551 if (object->ref_count > 1) { 552 VM_OBJECT_WUNLOCK(object); 553 return; 554 } else if (object->ref_count == 1) { 555 if (object->type == OBJT_SWAP && 556 (object->flags & OBJ_TMPFS) != 0) { 557 vp = object->un_pager.swp.swp_tmpfs; 558 vhold(vp); 559 VM_OBJECT_WUNLOCK(object); 560 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 561 VM_OBJECT_WLOCK(object); 562 if (object->type == OBJT_DEAD || 563 object->ref_count != 1) { 564 VM_OBJECT_WUNLOCK(object); 565 VOP_UNLOCK(vp, 0); 566 vdrop(vp); 567 return; 568 } 569 if ((object->flags & OBJ_TMPFS) != 0) 570 VOP_UNSET_TEXT(vp); 571 VOP_UNLOCK(vp, 0); 572 vdrop(vp); 573 } 574 if (object->shadow_count == 0 && 575 object->handle == NULL && 576 (object->type == OBJT_DEFAULT || 577 (object->type == OBJT_SWAP && 578 (object->flags & OBJ_TMPFS_NODE) == 0))) { 579 vm_object_set_flag(object, OBJ_ONEMAPPING); 580 } else if ((object->shadow_count == 1) && 581 (object->handle == NULL) && 582 (object->type == OBJT_DEFAULT || 583 object->type == OBJT_SWAP)) { 584 vm_object_t robject; 585 586 robject = LIST_FIRST(&object->shadow_head); 587 KASSERT(robject != NULL, 588 ("vm_object_deallocate: ref_count: %d, shadow_count: %d", 589 object->ref_count, 590 object->shadow_count)); 591 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0, 592 ("shadowed tmpfs v_object %p", object)); 593 if (!VM_OBJECT_TRYWLOCK(robject)) { 594 /* 595 * Avoid a potential deadlock. 596 */ 597 object->ref_count++; 598 VM_OBJECT_WUNLOCK(object); 599 /* 600 * More likely than not the thread 601 * holding robject's lock has lower 602 * priority than the current thread. 603 * Let the lower priority thread run. 604 */ 605 pause("vmo_de", 1); 606 continue; 607 } 608 /* 609 * Collapse object into its shadow unless its 610 * shadow is dead. In that case, object will 611 * be deallocated by the thread that is 612 * deallocating its shadow. 613 */ 614 if ((robject->flags & OBJ_DEAD) == 0 && 615 (robject->handle == NULL) && 616 (robject->type == OBJT_DEFAULT || 617 robject->type == OBJT_SWAP)) { 618 619 robject->ref_count++; 620 retry: 621 if (robject->paging_in_progress) { 622 VM_OBJECT_WUNLOCK(object); 623 vm_object_pip_wait(robject, 624 "objde1"); 625 temp = robject->backing_object; 626 if (object == temp) { 627 VM_OBJECT_WLOCK(object); 628 goto retry; 629 } 630 } else if (object->paging_in_progress) { 631 VM_OBJECT_WUNLOCK(robject); 632 object->flags |= OBJ_PIPWNT; 633 VM_OBJECT_SLEEP(object, object, 634 PDROP | PVM, "objde2", 0); 635 VM_OBJECT_WLOCK(robject); 636 temp = robject->backing_object; 637 if (object == temp) { 638 VM_OBJECT_WLOCK(object); 639 goto retry; 640 } 641 } else 642 VM_OBJECT_WUNLOCK(object); 643 644 if (robject->ref_count == 1) { 645 robject->ref_count--; 646 object = robject; 647 goto doterm; 648 } 649 object = robject; 650 vm_object_collapse(object); 651 VM_OBJECT_WUNLOCK(object); 652 continue; 653 } 654 VM_OBJECT_WUNLOCK(robject); 655 } 656 VM_OBJECT_WUNLOCK(object); 657 return; 658 } 659 doterm: 660 umtx_shm_object_terminated(object); 661 temp = object->backing_object; 662 if (temp != NULL) { 663 KASSERT((object->flags & OBJ_TMPFS_NODE) == 0, 664 ("shadowed tmpfs v_object 2 %p", object)); 665 VM_OBJECT_WLOCK(temp); 666 LIST_REMOVE(object, shadow_list); 667 temp->shadow_count--; 668 VM_OBJECT_WUNLOCK(temp); 669 object->backing_object = NULL; 670 } 671 /* 672 * Don't double-terminate, we could be in a termination 673 * recursion due to the terminate having to sync data 674 * to disk. 675 */ 676 if ((object->flags & OBJ_DEAD) == 0) 677 vm_object_terminate(object); 678 else 679 VM_OBJECT_WUNLOCK(object); 680 object = temp; 681 } 682 } 683 684 /* 685 * vm_object_destroy removes the object from the global object list 686 * and frees the space for the object. 687 */ 688 void 689 vm_object_destroy(vm_object_t object) 690 { 691 692 /* 693 * Release the allocation charge. 694 */ 695 if (object->cred != NULL) { 696 swap_release_by_cred(object->charge, object->cred); 697 object->charge = 0; 698 crfree(object->cred); 699 object->cred = NULL; 700 } 701 702 /* 703 * Free the space for the object. 704 */ 705 uma_zfree(obj_zone, object); 706 } 707 708 /* 709 * vm_object_terminate_pages removes any remaining pageable pages 710 * from the object and resets the object to an empty state. 711 */ 712 static void 713 vm_object_terminate_pages(vm_object_t object) 714 { 715 vm_page_t p, p_next; 716 struct mtx *mtx, *mtx1; 717 struct vm_pagequeue *pq, *pq1; 718 int dequeued; 719 720 VM_OBJECT_ASSERT_WLOCKED(object); 721 722 mtx = NULL; 723 pq = NULL; 724 725 /* 726 * Free any remaining pageable pages. This also removes them from the 727 * paging queues. However, don't free wired pages, just remove them 728 * from the object. Rather than incrementally removing each page from 729 * the object, the page and object are reset to any empty state. 730 */ 731 TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) { 732 vm_page_assert_unbusied(p); 733 if ((object->flags & OBJ_UNMANAGED) == 0) { 734 /* 735 * vm_page_free_prep() only needs the page 736 * lock for managed pages. 737 */ 738 mtx1 = vm_page_lockptr(p); 739 if (mtx1 != mtx) { 740 if (mtx != NULL) 741 mtx_unlock(mtx); 742 if (pq != NULL) { 743 vm_pagequeue_cnt_add(pq, dequeued); 744 vm_pagequeue_unlock(pq); 745 pq = NULL; 746 } 747 mtx = mtx1; 748 mtx_lock(mtx); 749 } 750 } 751 p->object = NULL; 752 if (p->wire_count != 0) 753 goto unlist; 754 VM_CNT_INC(v_pfree); 755 p->flags &= ~PG_ZERO; 756 if (p->queue != PQ_NONE) { 757 KASSERT(p->queue < PQ_COUNT, ("vm_object_terminate: " 758 "page %p is not queued", p)); 759 pq1 = vm_page_pagequeue(p); 760 if (pq != pq1) { 761 if (pq != NULL) { 762 vm_pagequeue_cnt_add(pq, dequeued); 763 vm_pagequeue_unlock(pq); 764 } 765 pq = pq1; 766 vm_pagequeue_lock(pq); 767 dequeued = 0; 768 } 769 p->queue = PQ_NONE; 770 TAILQ_REMOVE(&pq->pq_pl, p, plinks.q); 771 dequeued--; 772 } 773 if (vm_page_free_prep(p, true)) 774 continue; 775 unlist: 776 TAILQ_REMOVE(&object->memq, p, listq); 777 } 778 if (pq != NULL) { 779 vm_pagequeue_cnt_add(pq, dequeued); 780 vm_pagequeue_unlock(pq); 781 } 782 if (mtx != NULL) 783 mtx_unlock(mtx); 784 785 vm_page_free_phys_pglist(&object->memq); 786 787 /* 788 * If the object contained any pages, then reset it to an empty state. 789 * None of the object's fields, including "resident_page_count", were 790 * modified by the preceding loop. 791 */ 792 if (object->resident_page_count != 0) { 793 vm_radix_reclaim_allnodes(&object->rtree); 794 TAILQ_INIT(&object->memq); 795 object->resident_page_count = 0; 796 if (object->type == OBJT_VNODE) 797 vdrop(object->handle); 798 } 799 } 800 801 /* 802 * vm_object_terminate actually destroys the specified object, freeing 803 * up all previously used resources. 804 * 805 * The object must be locked. 806 * This routine may block. 807 */ 808 void 809 vm_object_terminate(vm_object_t object) 810 { 811 812 VM_OBJECT_ASSERT_WLOCKED(object); 813 814 /* 815 * Make sure no one uses us. 816 */ 817 vm_object_set_flag(object, OBJ_DEAD); 818 819 /* 820 * wait for the pageout daemon to be done with the object 821 */ 822 vm_object_pip_wait(object, "objtrm"); 823 824 KASSERT(!object->paging_in_progress, 825 ("vm_object_terminate: pageout in progress")); 826 827 /* 828 * Clean and free the pages, as appropriate. All references to the 829 * object are gone, so we don't need to lock it. 830 */ 831 if (object->type == OBJT_VNODE) { 832 struct vnode *vp = (struct vnode *)object->handle; 833 834 /* 835 * Clean pages and flush buffers. 836 */ 837 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 838 VM_OBJECT_WUNLOCK(object); 839 840 vinvalbuf(vp, V_SAVE, 0, 0); 841 842 BO_LOCK(&vp->v_bufobj); 843 vp->v_bufobj.bo_flag |= BO_DEAD; 844 BO_UNLOCK(&vp->v_bufobj); 845 846 VM_OBJECT_WLOCK(object); 847 } 848 849 KASSERT(object->ref_count == 0, 850 ("vm_object_terminate: object with references, ref_count=%d", 851 object->ref_count)); 852 853 if ((object->flags & OBJ_PG_DTOR) == 0) 854 vm_object_terminate_pages(object); 855 856 #if VM_NRESERVLEVEL > 0 857 if (__predict_false(!LIST_EMPTY(&object->rvq))) 858 vm_reserv_break_all(object); 859 #endif 860 861 KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT || 862 object->type == OBJT_SWAP, 863 ("%s: non-swap obj %p has cred", __func__, object)); 864 865 /* 866 * Let the pager know object is dead. 867 */ 868 vm_pager_deallocate(object); 869 VM_OBJECT_WUNLOCK(object); 870 871 vm_object_destroy(object); 872 } 873 874 /* 875 * Make the page read-only so that we can clear the object flags. However, if 876 * this is a nosync mmap then the object is likely to stay dirty so do not 877 * mess with the page and do not clear the object flags. Returns TRUE if the 878 * page should be flushed, and FALSE otherwise. 879 */ 880 static boolean_t 881 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags) 882 { 883 884 /* 885 * If we have been asked to skip nosync pages and this is a 886 * nosync page, skip it. Note that the object flags were not 887 * cleared in this case so we do not have to set them. 888 */ 889 if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) { 890 *clearobjflags = FALSE; 891 return (FALSE); 892 } else { 893 pmap_remove_write(p); 894 return (p->dirty != 0); 895 } 896 } 897 898 /* 899 * vm_object_page_clean 900 * 901 * Clean all dirty pages in the specified range of object. Leaves page 902 * on whatever queue it is currently on. If NOSYNC is set then do not 903 * write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC), 904 * leaving the object dirty. 905 * 906 * When stuffing pages asynchronously, allow clustering. XXX we need a 907 * synchronous clustering mode implementation. 908 * 909 * Odd semantics: if start == end, we clean everything. 910 * 911 * The object must be locked. 912 * 913 * Returns FALSE if some page from the range was not written, as 914 * reported by the pager, and TRUE otherwise. 915 */ 916 boolean_t 917 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end, 918 int flags) 919 { 920 vm_page_t np, p; 921 vm_pindex_t pi, tend, tstart; 922 int curgeneration, n, pagerflags; 923 boolean_t clearobjflags, eio, res; 924 925 VM_OBJECT_ASSERT_WLOCKED(object); 926 927 /* 928 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE 929 * objects. The check below prevents the function from 930 * operating on non-vnode objects. 931 */ 932 if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 || 933 object->resident_page_count == 0) 934 return (TRUE); 935 936 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ? 937 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 938 pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0; 939 940 tstart = OFF_TO_IDX(start); 941 tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK); 942 clearobjflags = tstart == 0 && tend >= object->size; 943 res = TRUE; 944 945 rescan: 946 curgeneration = object->generation; 947 948 for (p = vm_page_find_least(object, tstart); p != NULL; p = np) { 949 pi = p->pindex; 950 if (pi >= tend) 951 break; 952 np = TAILQ_NEXT(p, listq); 953 if (p->valid == 0) 954 continue; 955 if (vm_page_sleep_if_busy(p, "vpcwai")) { 956 if (object->generation != curgeneration) { 957 if ((flags & OBJPC_SYNC) != 0) 958 goto rescan; 959 else 960 clearobjflags = FALSE; 961 } 962 np = vm_page_find_least(object, pi); 963 continue; 964 } 965 if (!vm_object_page_remove_write(p, flags, &clearobjflags)) 966 continue; 967 968 n = vm_object_page_collect_flush(object, p, pagerflags, 969 flags, &clearobjflags, &eio); 970 if (eio) { 971 res = FALSE; 972 clearobjflags = FALSE; 973 } 974 if (object->generation != curgeneration) { 975 if ((flags & OBJPC_SYNC) != 0) 976 goto rescan; 977 else 978 clearobjflags = FALSE; 979 } 980 981 /* 982 * If the VOP_PUTPAGES() did a truncated write, so 983 * that even the first page of the run is not fully 984 * written, vm_pageout_flush() returns 0 as the run 985 * length. Since the condition that caused truncated 986 * write may be permanent, e.g. exhausted free space, 987 * accepting n == 0 would cause an infinite loop. 988 * 989 * Forwarding the iterator leaves the unwritten page 990 * behind, but there is not much we can do there if 991 * filesystem refuses to write it. 992 */ 993 if (n == 0) { 994 n = 1; 995 clearobjflags = FALSE; 996 } 997 np = vm_page_find_least(object, pi + n); 998 } 999 #if 0 1000 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0); 1001 #endif 1002 1003 if (clearobjflags) 1004 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY); 1005 return (res); 1006 } 1007 1008 static int 1009 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags, 1010 int flags, boolean_t *clearobjflags, boolean_t *eio) 1011 { 1012 vm_page_t ma[vm_pageout_page_count], p_first, tp; 1013 int count, i, mreq, runlen; 1014 1015 vm_page_lock_assert(p, MA_NOTOWNED); 1016 VM_OBJECT_ASSERT_WLOCKED(object); 1017 1018 count = 1; 1019 mreq = 0; 1020 1021 for (tp = p; count < vm_pageout_page_count; count++) { 1022 tp = vm_page_next(tp); 1023 if (tp == NULL || vm_page_busied(tp)) 1024 break; 1025 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 1026 break; 1027 } 1028 1029 for (p_first = p; count < vm_pageout_page_count; count++) { 1030 tp = vm_page_prev(p_first); 1031 if (tp == NULL || vm_page_busied(tp)) 1032 break; 1033 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 1034 break; 1035 p_first = tp; 1036 mreq++; 1037 } 1038 1039 for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++) 1040 ma[i] = tp; 1041 1042 vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio); 1043 return (runlen); 1044 } 1045 1046 /* 1047 * Note that there is absolutely no sense in writing out 1048 * anonymous objects, so we track down the vnode object 1049 * to write out. 1050 * We invalidate (remove) all pages from the address space 1051 * for semantic correctness. 1052 * 1053 * If the backing object is a device object with unmanaged pages, then any 1054 * mappings to the specified range of pages must be removed before this 1055 * function is called. 1056 * 1057 * Note: certain anonymous maps, such as MAP_NOSYNC maps, 1058 * may start out with a NULL object. 1059 */ 1060 boolean_t 1061 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, 1062 boolean_t syncio, boolean_t invalidate) 1063 { 1064 vm_object_t backing_object; 1065 struct vnode *vp; 1066 struct mount *mp; 1067 int error, flags, fsync_after; 1068 boolean_t res; 1069 1070 if (object == NULL) 1071 return (TRUE); 1072 res = TRUE; 1073 error = 0; 1074 VM_OBJECT_WLOCK(object); 1075 while ((backing_object = object->backing_object) != NULL) { 1076 VM_OBJECT_WLOCK(backing_object); 1077 offset += object->backing_object_offset; 1078 VM_OBJECT_WUNLOCK(object); 1079 object = backing_object; 1080 if (object->size < OFF_TO_IDX(offset + size)) 1081 size = IDX_TO_OFF(object->size) - offset; 1082 } 1083 /* 1084 * Flush pages if writing is allowed, invalidate them 1085 * if invalidation requested. Pages undergoing I/O 1086 * will be ignored by vm_object_page_remove(). 1087 * 1088 * We cannot lock the vnode and then wait for paging 1089 * to complete without deadlocking against vm_fault. 1090 * Instead we simply call vm_object_page_remove() and 1091 * allow it to block internally on a page-by-page 1092 * basis when it encounters pages undergoing async 1093 * I/O. 1094 */ 1095 if (object->type == OBJT_VNODE && 1096 (object->flags & OBJ_MIGHTBEDIRTY) != 0 && 1097 ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) { 1098 VM_OBJECT_WUNLOCK(object); 1099 (void) vn_start_write(vp, &mp, V_WAIT); 1100 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1101 if (syncio && !invalidate && offset == 0 && 1102 atop(size) == object->size) { 1103 /* 1104 * If syncing the whole mapping of the file, 1105 * it is faster to schedule all the writes in 1106 * async mode, also allowing the clustering, 1107 * and then wait for i/o to complete. 1108 */ 1109 flags = 0; 1110 fsync_after = TRUE; 1111 } else { 1112 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1113 flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0; 1114 fsync_after = FALSE; 1115 } 1116 VM_OBJECT_WLOCK(object); 1117 res = vm_object_page_clean(object, offset, offset + size, 1118 flags); 1119 VM_OBJECT_WUNLOCK(object); 1120 if (fsync_after) 1121 error = VOP_FSYNC(vp, MNT_WAIT, curthread); 1122 VOP_UNLOCK(vp, 0); 1123 vn_finished_write(mp); 1124 if (error != 0) 1125 res = FALSE; 1126 VM_OBJECT_WLOCK(object); 1127 } 1128 if ((object->type == OBJT_VNODE || 1129 object->type == OBJT_DEVICE) && invalidate) { 1130 if (object->type == OBJT_DEVICE) 1131 /* 1132 * The option OBJPR_NOTMAPPED must be passed here 1133 * because vm_object_page_remove() cannot remove 1134 * unmanaged mappings. 1135 */ 1136 flags = OBJPR_NOTMAPPED; 1137 else if (old_msync) 1138 flags = 0; 1139 else 1140 flags = OBJPR_CLEANONLY; 1141 vm_object_page_remove(object, OFF_TO_IDX(offset), 1142 OFF_TO_IDX(offset + size + PAGE_MASK), flags); 1143 } 1144 VM_OBJECT_WUNLOCK(object); 1145 return (res); 1146 } 1147 1148 /* 1149 * Determine whether the given advice can be applied to the object. Advice is 1150 * not applied to unmanaged pages since they never belong to page queues, and 1151 * since MADV_FREE is destructive, it can apply only to anonymous pages that 1152 * have been mapped at most once. 1153 */ 1154 static bool 1155 vm_object_advice_applies(vm_object_t object, int advice) 1156 { 1157 1158 if ((object->flags & OBJ_UNMANAGED) != 0) 1159 return (false); 1160 if (advice != MADV_FREE) 1161 return (true); 1162 return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) && 1163 (object->flags & OBJ_ONEMAPPING) != 0); 1164 } 1165 1166 static void 1167 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex, 1168 vm_size_t size) 1169 { 1170 1171 if (advice == MADV_FREE && object->type == OBJT_SWAP) 1172 swap_pager_freespace(object, pindex, size); 1173 } 1174 1175 /* 1176 * vm_object_madvise: 1177 * 1178 * Implements the madvise function at the object/page level. 1179 * 1180 * MADV_WILLNEED (any object) 1181 * 1182 * Activate the specified pages if they are resident. 1183 * 1184 * MADV_DONTNEED (any object) 1185 * 1186 * Deactivate the specified pages if they are resident. 1187 * 1188 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, 1189 * OBJ_ONEMAPPING only) 1190 * 1191 * Deactivate and clean the specified pages if they are 1192 * resident. This permits the process to reuse the pages 1193 * without faulting or the kernel to reclaim the pages 1194 * without I/O. 1195 */ 1196 void 1197 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end, 1198 int advice) 1199 { 1200 vm_pindex_t tpindex; 1201 vm_object_t backing_object, tobject; 1202 vm_page_t m, tm; 1203 1204 if (object == NULL) 1205 return; 1206 1207 relookup: 1208 VM_OBJECT_WLOCK(object); 1209 if (!vm_object_advice_applies(object, advice)) { 1210 VM_OBJECT_WUNLOCK(object); 1211 return; 1212 } 1213 for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) { 1214 tobject = object; 1215 1216 /* 1217 * If the next page isn't resident in the top-level object, we 1218 * need to search the shadow chain. When applying MADV_FREE, we 1219 * take care to release any swap space used to store 1220 * non-resident pages. 1221 */ 1222 if (m == NULL || pindex < m->pindex) { 1223 /* 1224 * Optimize a common case: if the top-level object has 1225 * no backing object, we can skip over the non-resident 1226 * range in constant time. 1227 */ 1228 if (object->backing_object == NULL) { 1229 tpindex = (m != NULL && m->pindex < end) ? 1230 m->pindex : end; 1231 vm_object_madvise_freespace(object, advice, 1232 pindex, tpindex - pindex); 1233 if ((pindex = tpindex) == end) 1234 break; 1235 goto next_page; 1236 } 1237 1238 tpindex = pindex; 1239 do { 1240 vm_object_madvise_freespace(tobject, advice, 1241 tpindex, 1); 1242 /* 1243 * Prepare to search the next object in the 1244 * chain. 1245 */ 1246 backing_object = tobject->backing_object; 1247 if (backing_object == NULL) 1248 goto next_pindex; 1249 VM_OBJECT_WLOCK(backing_object); 1250 tpindex += 1251 OFF_TO_IDX(tobject->backing_object_offset); 1252 if (tobject != object) 1253 VM_OBJECT_WUNLOCK(tobject); 1254 tobject = backing_object; 1255 if (!vm_object_advice_applies(tobject, advice)) 1256 goto next_pindex; 1257 } while ((tm = vm_page_lookup(tobject, tpindex)) == 1258 NULL); 1259 } else { 1260 next_page: 1261 tm = m; 1262 m = TAILQ_NEXT(m, listq); 1263 } 1264 1265 /* 1266 * If the page is not in a normal state, skip it. 1267 */ 1268 if (tm->valid != VM_PAGE_BITS_ALL) 1269 goto next_pindex; 1270 vm_page_lock(tm); 1271 if (tm->hold_count != 0 || tm->wire_count != 0) { 1272 vm_page_unlock(tm); 1273 goto next_pindex; 1274 } 1275 KASSERT((tm->flags & PG_FICTITIOUS) == 0, 1276 ("vm_object_madvise: page %p is fictitious", tm)); 1277 KASSERT((tm->oflags & VPO_UNMANAGED) == 0, 1278 ("vm_object_madvise: page %p is not managed", tm)); 1279 if (vm_page_busied(tm)) { 1280 if (object != tobject) 1281 VM_OBJECT_WUNLOCK(tobject); 1282 VM_OBJECT_WUNLOCK(object); 1283 if (advice == MADV_WILLNEED) { 1284 /* 1285 * Reference the page before unlocking and 1286 * sleeping so that the page daemon is less 1287 * likely to reclaim it. 1288 */ 1289 vm_page_aflag_set(tm, PGA_REFERENCED); 1290 } 1291 vm_page_busy_sleep(tm, "madvpo", false); 1292 goto relookup; 1293 } 1294 vm_page_advise(tm, advice); 1295 vm_page_unlock(tm); 1296 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1); 1297 next_pindex: 1298 if (tobject != object) 1299 VM_OBJECT_WUNLOCK(tobject); 1300 } 1301 VM_OBJECT_WUNLOCK(object); 1302 } 1303 1304 /* 1305 * vm_object_shadow: 1306 * 1307 * Create a new object which is backed by the 1308 * specified existing object range. The source 1309 * object reference is deallocated. 1310 * 1311 * The new object and offset into that object 1312 * are returned in the source parameters. 1313 */ 1314 void 1315 vm_object_shadow( 1316 vm_object_t *object, /* IN/OUT */ 1317 vm_ooffset_t *offset, /* IN/OUT */ 1318 vm_size_t length) 1319 { 1320 vm_object_t source; 1321 vm_object_t result; 1322 1323 source = *object; 1324 1325 /* 1326 * Don't create the new object if the old object isn't shared. 1327 */ 1328 if (source != NULL) { 1329 VM_OBJECT_WLOCK(source); 1330 if (source->ref_count == 1 && 1331 source->handle == NULL && 1332 (source->type == OBJT_DEFAULT || 1333 source->type == OBJT_SWAP)) { 1334 VM_OBJECT_WUNLOCK(source); 1335 return; 1336 } 1337 VM_OBJECT_WUNLOCK(source); 1338 } 1339 1340 /* 1341 * Allocate a new object with the given length. 1342 */ 1343 result = vm_object_allocate(OBJT_DEFAULT, atop(length)); 1344 1345 /* 1346 * The new object shadows the source object, adding a reference to it. 1347 * Our caller changes his reference to point to the new object, 1348 * removing a reference to the source object. Net result: no change 1349 * of reference count. 1350 * 1351 * Try to optimize the result object's page color when shadowing 1352 * in order to maintain page coloring consistency in the combined 1353 * shadowed object. 1354 */ 1355 result->backing_object = source; 1356 /* 1357 * Store the offset into the source object, and fix up the offset into 1358 * the new object. 1359 */ 1360 result->backing_object_offset = *offset; 1361 if (source != NULL) { 1362 VM_OBJECT_WLOCK(source); 1363 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list); 1364 source->shadow_count++; 1365 #if VM_NRESERVLEVEL > 0 1366 result->flags |= source->flags & OBJ_COLORED; 1367 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & 1368 ((1 << (VM_NFREEORDER - 1)) - 1); 1369 #endif 1370 VM_OBJECT_WUNLOCK(source); 1371 } 1372 1373 1374 /* 1375 * Return the new things 1376 */ 1377 *offset = 0; 1378 *object = result; 1379 } 1380 1381 /* 1382 * vm_object_split: 1383 * 1384 * Split the pages in a map entry into a new object. This affords 1385 * easier removal of unused pages, and keeps object inheritance from 1386 * being a negative impact on memory usage. 1387 */ 1388 void 1389 vm_object_split(vm_map_entry_t entry) 1390 { 1391 vm_page_t m, m_next; 1392 vm_object_t orig_object, new_object, source; 1393 vm_pindex_t idx, offidxstart; 1394 vm_size_t size; 1395 1396 orig_object = entry->object.vm_object; 1397 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 1398 return; 1399 if (orig_object->ref_count <= 1) 1400 return; 1401 VM_OBJECT_WUNLOCK(orig_object); 1402 1403 offidxstart = OFF_TO_IDX(entry->offset); 1404 size = atop(entry->end - entry->start); 1405 1406 /* 1407 * If swap_pager_copy() is later called, it will convert new_object 1408 * into a swap object. 1409 */ 1410 new_object = vm_object_allocate(OBJT_DEFAULT, size); 1411 1412 /* 1413 * At this point, the new object is still private, so the order in 1414 * which the original and new objects are locked does not matter. 1415 */ 1416 VM_OBJECT_WLOCK(new_object); 1417 VM_OBJECT_WLOCK(orig_object); 1418 source = orig_object->backing_object; 1419 if (source != NULL) { 1420 VM_OBJECT_WLOCK(source); 1421 if ((source->flags & OBJ_DEAD) != 0) { 1422 VM_OBJECT_WUNLOCK(source); 1423 VM_OBJECT_WUNLOCK(orig_object); 1424 VM_OBJECT_WUNLOCK(new_object); 1425 vm_object_deallocate(new_object); 1426 VM_OBJECT_WLOCK(orig_object); 1427 return; 1428 } 1429 LIST_INSERT_HEAD(&source->shadow_head, 1430 new_object, shadow_list); 1431 source->shadow_count++; 1432 vm_object_reference_locked(source); /* for new_object */ 1433 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1434 VM_OBJECT_WUNLOCK(source); 1435 new_object->backing_object_offset = 1436 orig_object->backing_object_offset + entry->offset; 1437 new_object->backing_object = source; 1438 } 1439 if (orig_object->cred != NULL) { 1440 new_object->cred = orig_object->cred; 1441 crhold(orig_object->cred); 1442 new_object->charge = ptoa(size); 1443 KASSERT(orig_object->charge >= ptoa(size), 1444 ("orig_object->charge < 0")); 1445 orig_object->charge -= ptoa(size); 1446 } 1447 retry: 1448 m = vm_page_find_least(orig_object, offidxstart); 1449 for (; m != NULL && (idx = m->pindex - offidxstart) < size; 1450 m = m_next) { 1451 m_next = TAILQ_NEXT(m, listq); 1452 1453 /* 1454 * We must wait for pending I/O to complete before we can 1455 * rename the page. 1456 * 1457 * We do not have to VM_PROT_NONE the page as mappings should 1458 * not be changed by this operation. 1459 */ 1460 if (vm_page_busied(m)) { 1461 VM_OBJECT_WUNLOCK(new_object); 1462 vm_page_lock(m); 1463 VM_OBJECT_WUNLOCK(orig_object); 1464 vm_page_busy_sleep(m, "spltwt", false); 1465 VM_OBJECT_WLOCK(orig_object); 1466 VM_OBJECT_WLOCK(new_object); 1467 goto retry; 1468 } 1469 1470 /* vm_page_rename() will dirty the page. */ 1471 if (vm_page_rename(m, new_object, idx)) { 1472 VM_OBJECT_WUNLOCK(new_object); 1473 VM_OBJECT_WUNLOCK(orig_object); 1474 VM_WAIT; 1475 VM_OBJECT_WLOCK(orig_object); 1476 VM_OBJECT_WLOCK(new_object); 1477 goto retry; 1478 } 1479 #if VM_NRESERVLEVEL > 0 1480 /* 1481 * If some of the reservation's allocated pages remain with 1482 * the original object, then transferring the reservation to 1483 * the new object is neither particularly beneficial nor 1484 * particularly harmful as compared to leaving the reservation 1485 * with the original object. If, however, all of the 1486 * reservation's allocated pages are transferred to the new 1487 * object, then transferring the reservation is typically 1488 * beneficial. Determining which of these two cases applies 1489 * would be more costly than unconditionally renaming the 1490 * reservation. 1491 */ 1492 vm_reserv_rename(m, new_object, orig_object, offidxstart); 1493 #endif 1494 if (orig_object->type == OBJT_SWAP) 1495 vm_page_xbusy(m); 1496 } 1497 if (orig_object->type == OBJT_SWAP) { 1498 /* 1499 * swap_pager_copy() can sleep, in which case the orig_object's 1500 * and new_object's locks are released and reacquired. 1501 */ 1502 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1503 TAILQ_FOREACH(m, &new_object->memq, listq) 1504 vm_page_xunbusy(m); 1505 } 1506 VM_OBJECT_WUNLOCK(orig_object); 1507 VM_OBJECT_WUNLOCK(new_object); 1508 entry->object.vm_object = new_object; 1509 entry->offset = 0LL; 1510 vm_object_deallocate(orig_object); 1511 VM_OBJECT_WLOCK(new_object); 1512 } 1513 1514 #define OBSC_COLLAPSE_NOWAIT 0x0002 1515 #define OBSC_COLLAPSE_WAIT 0x0004 1516 1517 static vm_page_t 1518 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next, 1519 int op) 1520 { 1521 vm_object_t backing_object; 1522 1523 VM_OBJECT_ASSERT_WLOCKED(object); 1524 backing_object = object->backing_object; 1525 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1526 1527 KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p)); 1528 KASSERT(p == NULL || p->object == object || p->object == backing_object, 1529 ("invalid ownership %p %p %p", p, object, backing_object)); 1530 if ((op & OBSC_COLLAPSE_NOWAIT) != 0) 1531 return (next); 1532 if (p != NULL) 1533 vm_page_lock(p); 1534 VM_OBJECT_WUNLOCK(object); 1535 VM_OBJECT_WUNLOCK(backing_object); 1536 if (p == NULL) 1537 VM_WAIT; 1538 else 1539 vm_page_busy_sleep(p, "vmocol", false); 1540 VM_OBJECT_WLOCK(object); 1541 VM_OBJECT_WLOCK(backing_object); 1542 return (TAILQ_FIRST(&backing_object->memq)); 1543 } 1544 1545 static bool 1546 vm_object_scan_all_shadowed(vm_object_t object) 1547 { 1548 vm_object_t backing_object; 1549 vm_page_t p, pp; 1550 vm_pindex_t backing_offset_index, new_pindex, pi, ps; 1551 1552 VM_OBJECT_ASSERT_WLOCKED(object); 1553 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1554 1555 backing_object = object->backing_object; 1556 1557 if (backing_object->type != OBJT_DEFAULT && 1558 backing_object->type != OBJT_SWAP) 1559 return (false); 1560 1561 pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1562 p = vm_page_find_least(backing_object, pi); 1563 ps = swap_pager_find_least(backing_object, pi); 1564 1565 /* 1566 * Only check pages inside the parent object's range and 1567 * inside the parent object's mapping of the backing object. 1568 */ 1569 for (;; pi++) { 1570 if (p != NULL && p->pindex < pi) 1571 p = TAILQ_NEXT(p, listq); 1572 if (ps < pi) 1573 ps = swap_pager_find_least(backing_object, pi); 1574 if (p == NULL && ps >= backing_object->size) 1575 break; 1576 else if (p == NULL) 1577 pi = ps; 1578 else 1579 pi = MIN(p->pindex, ps); 1580 1581 new_pindex = pi - backing_offset_index; 1582 if (new_pindex >= object->size) 1583 break; 1584 1585 /* 1586 * See if the parent has the page or if the parent's object 1587 * pager has the page. If the parent has the page but the page 1588 * is not valid, the parent's object pager must have the page. 1589 * 1590 * If this fails, the parent does not completely shadow the 1591 * object and we might as well give up now. 1592 */ 1593 pp = vm_page_lookup(object, new_pindex); 1594 if ((pp == NULL || pp->valid == 0) && 1595 !vm_pager_has_page(object, new_pindex, NULL, NULL)) 1596 return (false); 1597 } 1598 return (true); 1599 } 1600 1601 static bool 1602 vm_object_collapse_scan(vm_object_t object, int op) 1603 { 1604 vm_object_t backing_object; 1605 vm_page_t next, p, pp; 1606 vm_pindex_t backing_offset_index, new_pindex; 1607 1608 VM_OBJECT_ASSERT_WLOCKED(object); 1609 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1610 1611 backing_object = object->backing_object; 1612 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1613 1614 /* 1615 * Initial conditions 1616 */ 1617 if ((op & OBSC_COLLAPSE_WAIT) != 0) 1618 vm_object_set_flag(backing_object, OBJ_DEAD); 1619 1620 /* 1621 * Our scan 1622 */ 1623 for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) { 1624 next = TAILQ_NEXT(p, listq); 1625 new_pindex = p->pindex - backing_offset_index; 1626 1627 /* 1628 * Check for busy page 1629 */ 1630 if (vm_page_busied(p)) { 1631 next = vm_object_collapse_scan_wait(object, p, next, op); 1632 continue; 1633 } 1634 1635 KASSERT(p->object == backing_object, 1636 ("vm_object_collapse_scan: object mismatch")); 1637 1638 if (p->pindex < backing_offset_index || 1639 new_pindex >= object->size) { 1640 if (backing_object->type == OBJT_SWAP) 1641 swap_pager_freespace(backing_object, p->pindex, 1642 1); 1643 1644 /* 1645 * Page is out of the parent object's range, we can 1646 * simply destroy it. 1647 */ 1648 vm_page_lock(p); 1649 KASSERT(!pmap_page_is_mapped(p), 1650 ("freeing mapped page %p", p)); 1651 if (p->wire_count == 0) 1652 vm_page_free(p); 1653 else 1654 vm_page_remove(p); 1655 vm_page_unlock(p); 1656 continue; 1657 } 1658 1659 pp = vm_page_lookup(object, new_pindex); 1660 if (pp != NULL && vm_page_busied(pp)) { 1661 /* 1662 * The page in the parent is busy and possibly not 1663 * (yet) valid. Until its state is finalized by the 1664 * busy bit owner, we can't tell whether it shadows the 1665 * original page. Therefore, we must either skip it 1666 * and the original (backing_object) page or wait for 1667 * its state to be finalized. 1668 * 1669 * This is due to a race with vm_fault() where we must 1670 * unbusy the original (backing_obj) page before we can 1671 * (re)lock the parent. Hence we can get here. 1672 */ 1673 next = vm_object_collapse_scan_wait(object, pp, next, 1674 op); 1675 continue; 1676 } 1677 1678 KASSERT(pp == NULL || pp->valid != 0, 1679 ("unbusy invalid page %p", pp)); 1680 1681 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL, 1682 NULL)) { 1683 /* 1684 * The page already exists in the parent OR swap exists 1685 * for this location in the parent. Leave the parent's 1686 * page alone. Destroy the original page from the 1687 * backing object. 1688 */ 1689 if (backing_object->type == OBJT_SWAP) 1690 swap_pager_freespace(backing_object, p->pindex, 1691 1); 1692 vm_page_lock(p); 1693 KASSERT(!pmap_page_is_mapped(p), 1694 ("freeing mapped page %p", p)); 1695 if (p->wire_count == 0) 1696 vm_page_free(p); 1697 else 1698 vm_page_remove(p); 1699 vm_page_unlock(p); 1700 continue; 1701 } 1702 1703 /* 1704 * Page does not exist in parent, rename the page from the 1705 * backing object to the main object. 1706 * 1707 * If the page was mapped to a process, it can remain mapped 1708 * through the rename. vm_page_rename() will dirty the page. 1709 */ 1710 if (vm_page_rename(p, object, new_pindex)) { 1711 next = vm_object_collapse_scan_wait(object, NULL, next, 1712 op); 1713 continue; 1714 } 1715 1716 /* Use the old pindex to free the right page. */ 1717 if (backing_object->type == OBJT_SWAP) 1718 swap_pager_freespace(backing_object, 1719 new_pindex + backing_offset_index, 1); 1720 1721 #if VM_NRESERVLEVEL > 0 1722 /* 1723 * Rename the reservation. 1724 */ 1725 vm_reserv_rename(p, object, backing_object, 1726 backing_offset_index); 1727 #endif 1728 } 1729 return (true); 1730 } 1731 1732 1733 /* 1734 * this version of collapse allows the operation to occur earlier and 1735 * when paging_in_progress is true for an object... This is not a complete 1736 * operation, but should plug 99.9% of the rest of the leaks. 1737 */ 1738 static void 1739 vm_object_qcollapse(vm_object_t object) 1740 { 1741 vm_object_t backing_object = object->backing_object; 1742 1743 VM_OBJECT_ASSERT_WLOCKED(object); 1744 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1745 1746 if (backing_object->ref_count != 1) 1747 return; 1748 1749 vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT); 1750 } 1751 1752 /* 1753 * vm_object_collapse: 1754 * 1755 * Collapse an object with the object backing it. 1756 * Pages in the backing object are moved into the 1757 * parent, and the backing object is deallocated. 1758 */ 1759 void 1760 vm_object_collapse(vm_object_t object) 1761 { 1762 vm_object_t backing_object, new_backing_object; 1763 1764 VM_OBJECT_ASSERT_WLOCKED(object); 1765 1766 while (TRUE) { 1767 /* 1768 * Verify that the conditions are right for collapse: 1769 * 1770 * The object exists and the backing object exists. 1771 */ 1772 if ((backing_object = object->backing_object) == NULL) 1773 break; 1774 1775 /* 1776 * we check the backing object first, because it is most likely 1777 * not collapsable. 1778 */ 1779 VM_OBJECT_WLOCK(backing_object); 1780 if (backing_object->handle != NULL || 1781 (backing_object->type != OBJT_DEFAULT && 1782 backing_object->type != OBJT_SWAP) || 1783 (backing_object->flags & OBJ_DEAD) || 1784 object->handle != NULL || 1785 (object->type != OBJT_DEFAULT && 1786 object->type != OBJT_SWAP) || 1787 (object->flags & OBJ_DEAD)) { 1788 VM_OBJECT_WUNLOCK(backing_object); 1789 break; 1790 } 1791 1792 if (object->paging_in_progress != 0 || 1793 backing_object->paging_in_progress != 0) { 1794 vm_object_qcollapse(object); 1795 VM_OBJECT_WUNLOCK(backing_object); 1796 break; 1797 } 1798 1799 /* 1800 * We know that we can either collapse the backing object (if 1801 * the parent is the only reference to it) or (perhaps) have 1802 * the parent bypass the object if the parent happens to shadow 1803 * all the resident pages in the entire backing object. 1804 * 1805 * This is ignoring pager-backed pages such as swap pages. 1806 * vm_object_collapse_scan fails the shadowing test in this 1807 * case. 1808 */ 1809 if (backing_object->ref_count == 1) { 1810 vm_object_pip_add(object, 1); 1811 vm_object_pip_add(backing_object, 1); 1812 1813 /* 1814 * If there is exactly one reference to the backing 1815 * object, we can collapse it into the parent. 1816 */ 1817 vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT); 1818 1819 #if VM_NRESERVLEVEL > 0 1820 /* 1821 * Break any reservations from backing_object. 1822 */ 1823 if (__predict_false(!LIST_EMPTY(&backing_object->rvq))) 1824 vm_reserv_break_all(backing_object); 1825 #endif 1826 1827 /* 1828 * Move the pager from backing_object to object. 1829 */ 1830 if (backing_object->type == OBJT_SWAP) { 1831 /* 1832 * swap_pager_copy() can sleep, in which case 1833 * the backing_object's and object's locks are 1834 * released and reacquired. 1835 * Since swap_pager_copy() is being asked to 1836 * destroy the source, it will change the 1837 * backing_object's type to OBJT_DEFAULT. 1838 */ 1839 swap_pager_copy( 1840 backing_object, 1841 object, 1842 OFF_TO_IDX(object->backing_object_offset), TRUE); 1843 } 1844 /* 1845 * Object now shadows whatever backing_object did. 1846 * Note that the reference to 1847 * backing_object->backing_object moves from within 1848 * backing_object to within object. 1849 */ 1850 LIST_REMOVE(object, shadow_list); 1851 backing_object->shadow_count--; 1852 if (backing_object->backing_object) { 1853 VM_OBJECT_WLOCK(backing_object->backing_object); 1854 LIST_REMOVE(backing_object, shadow_list); 1855 LIST_INSERT_HEAD( 1856 &backing_object->backing_object->shadow_head, 1857 object, shadow_list); 1858 /* 1859 * The shadow_count has not changed. 1860 */ 1861 VM_OBJECT_WUNLOCK(backing_object->backing_object); 1862 } 1863 object->backing_object = backing_object->backing_object; 1864 object->backing_object_offset += 1865 backing_object->backing_object_offset; 1866 1867 /* 1868 * Discard backing_object. 1869 * 1870 * Since the backing object has no pages, no pager left, 1871 * and no object references within it, all that is 1872 * necessary is to dispose of it. 1873 */ 1874 KASSERT(backing_object->ref_count == 1, ( 1875 "backing_object %p was somehow re-referenced during collapse!", 1876 backing_object)); 1877 vm_object_pip_wakeup(backing_object); 1878 backing_object->type = OBJT_DEAD; 1879 backing_object->ref_count = 0; 1880 VM_OBJECT_WUNLOCK(backing_object); 1881 vm_object_destroy(backing_object); 1882 1883 vm_object_pip_wakeup(object); 1884 object_collapses++; 1885 } else { 1886 /* 1887 * If we do not entirely shadow the backing object, 1888 * there is nothing we can do so we give up. 1889 */ 1890 if (object->resident_page_count != object->size && 1891 !vm_object_scan_all_shadowed(object)) { 1892 VM_OBJECT_WUNLOCK(backing_object); 1893 break; 1894 } 1895 1896 /* 1897 * Make the parent shadow the next object in the 1898 * chain. Deallocating backing_object will not remove 1899 * it, since its reference count is at least 2. 1900 */ 1901 LIST_REMOVE(object, shadow_list); 1902 backing_object->shadow_count--; 1903 1904 new_backing_object = backing_object->backing_object; 1905 if ((object->backing_object = new_backing_object) != NULL) { 1906 VM_OBJECT_WLOCK(new_backing_object); 1907 LIST_INSERT_HEAD( 1908 &new_backing_object->shadow_head, 1909 object, 1910 shadow_list 1911 ); 1912 new_backing_object->shadow_count++; 1913 vm_object_reference_locked(new_backing_object); 1914 VM_OBJECT_WUNLOCK(new_backing_object); 1915 object->backing_object_offset += 1916 backing_object->backing_object_offset; 1917 } 1918 1919 /* 1920 * Drop the reference count on backing_object. Since 1921 * its ref_count was at least 2, it will not vanish. 1922 */ 1923 backing_object->ref_count--; 1924 VM_OBJECT_WUNLOCK(backing_object); 1925 object_bypasses++; 1926 } 1927 1928 /* 1929 * Try again with this object's new backing object. 1930 */ 1931 } 1932 } 1933 1934 /* 1935 * vm_object_page_remove: 1936 * 1937 * For the given object, either frees or invalidates each of the 1938 * specified pages. In general, a page is freed. However, if a page is 1939 * wired for any reason other than the existence of a managed, wired 1940 * mapping, then it may be invalidated but not removed from the object. 1941 * Pages are specified by the given range ["start", "end") and the option 1942 * OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range 1943 * extends from "start" to the end of the object. If the option 1944 * OBJPR_CLEANONLY is specified, then only the non-dirty pages within the 1945 * specified range are affected. If the option OBJPR_NOTMAPPED is 1946 * specified, then the pages within the specified range must have no 1947 * mappings. Otherwise, if this option is not specified, any mappings to 1948 * the specified pages are removed before the pages are freed or 1949 * invalidated. 1950 * 1951 * In general, this operation should only be performed on objects that 1952 * contain managed pages. There are, however, two exceptions. First, it 1953 * is performed on the kernel and kmem objects by vm_map_entry_delete(). 1954 * Second, it is used by msync(..., MS_INVALIDATE) to invalidate device- 1955 * backed pages. In both of these cases, the option OBJPR_CLEANONLY must 1956 * not be specified and the option OBJPR_NOTMAPPED must be specified. 1957 * 1958 * The object must be locked. 1959 */ 1960 void 1961 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 1962 int options) 1963 { 1964 vm_page_t p, next; 1965 struct mtx *mtx; 1966 struct pglist pgl; 1967 1968 VM_OBJECT_ASSERT_WLOCKED(object); 1969 KASSERT((object->flags & OBJ_UNMANAGED) == 0 || 1970 (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED, 1971 ("vm_object_page_remove: illegal options for object %p", object)); 1972 if (object->resident_page_count == 0) 1973 return; 1974 vm_object_pip_add(object, 1); 1975 TAILQ_INIT(&pgl); 1976 again: 1977 p = vm_page_find_least(object, start); 1978 mtx = NULL; 1979 1980 /* 1981 * Here, the variable "p" is either (1) the page with the least pindex 1982 * greater than or equal to the parameter "start" or (2) NULL. 1983 */ 1984 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1985 next = TAILQ_NEXT(p, listq); 1986 1987 /* 1988 * If the page is wired for any reason besides the existence 1989 * of managed, wired mappings, then it cannot be freed. For 1990 * example, fictitious pages, which represent device memory, 1991 * are inherently wired and cannot be freed. They can, 1992 * however, be invalidated if the option OBJPR_CLEANONLY is 1993 * not specified. 1994 */ 1995 vm_page_change_lock(p, &mtx); 1996 if (vm_page_xbusied(p)) { 1997 VM_OBJECT_WUNLOCK(object); 1998 vm_page_busy_sleep(p, "vmopax", true); 1999 VM_OBJECT_WLOCK(object); 2000 goto again; 2001 } 2002 if (p->wire_count != 0) { 2003 if ((options & OBJPR_NOTMAPPED) == 0 && 2004 object->ref_count != 0) 2005 pmap_remove_all(p); 2006 if ((options & OBJPR_CLEANONLY) == 0) { 2007 p->valid = 0; 2008 vm_page_undirty(p); 2009 } 2010 continue; 2011 } 2012 if (vm_page_busied(p)) { 2013 VM_OBJECT_WUNLOCK(object); 2014 vm_page_busy_sleep(p, "vmopar", false); 2015 VM_OBJECT_WLOCK(object); 2016 goto again; 2017 } 2018 KASSERT((p->flags & PG_FICTITIOUS) == 0, 2019 ("vm_object_page_remove: page %p is fictitious", p)); 2020 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) { 2021 if ((options & OBJPR_NOTMAPPED) == 0 && 2022 object->ref_count != 0) 2023 pmap_remove_write(p); 2024 if (p->dirty != 0) 2025 continue; 2026 } 2027 if ((options & OBJPR_NOTMAPPED) == 0 && object->ref_count != 0) 2028 pmap_remove_all(p); 2029 p->flags &= ~PG_ZERO; 2030 if (vm_page_free_prep(p, false)) 2031 TAILQ_INSERT_TAIL(&pgl, p, listq); 2032 } 2033 if (mtx != NULL) 2034 mtx_unlock(mtx); 2035 vm_page_free_phys_pglist(&pgl); 2036 vm_object_pip_wakeup(object); 2037 } 2038 2039 /* 2040 * vm_object_page_noreuse: 2041 * 2042 * For the given object, attempt to move the specified pages to 2043 * the head of the inactive queue. This bypasses regular LRU 2044 * operation and allows the pages to be reused quickly under memory 2045 * pressure. If a page is wired for any reason, then it will not 2046 * be queued. Pages are specified by the range ["start", "end"). 2047 * As a special case, if "end" is zero, then the range extends from 2048 * "start" to the end of the object. 2049 * 2050 * This operation should only be performed on objects that 2051 * contain non-fictitious, managed pages. 2052 * 2053 * The object must be locked. 2054 */ 2055 void 2056 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 2057 { 2058 struct mtx *mtx; 2059 vm_page_t p, next; 2060 2061 VM_OBJECT_ASSERT_LOCKED(object); 2062 KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0, 2063 ("vm_object_page_noreuse: illegal object %p", object)); 2064 if (object->resident_page_count == 0) 2065 return; 2066 p = vm_page_find_least(object, start); 2067 2068 /* 2069 * Here, the variable "p" is either (1) the page with the least pindex 2070 * greater than or equal to the parameter "start" or (2) NULL. 2071 */ 2072 mtx = NULL; 2073 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 2074 next = TAILQ_NEXT(p, listq); 2075 vm_page_change_lock(p, &mtx); 2076 vm_page_deactivate_noreuse(p); 2077 } 2078 if (mtx != NULL) 2079 mtx_unlock(mtx); 2080 } 2081 2082 /* 2083 * Populate the specified range of the object with valid pages. Returns 2084 * TRUE if the range is successfully populated and FALSE otherwise. 2085 * 2086 * Note: This function should be optimized to pass a larger array of 2087 * pages to vm_pager_get_pages() before it is applied to a non- 2088 * OBJT_DEVICE object. 2089 * 2090 * The object must be locked. 2091 */ 2092 boolean_t 2093 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 2094 { 2095 vm_page_t m; 2096 vm_pindex_t pindex; 2097 int rv; 2098 2099 VM_OBJECT_ASSERT_WLOCKED(object); 2100 for (pindex = start; pindex < end; pindex++) { 2101 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL); 2102 if (m->valid != VM_PAGE_BITS_ALL) { 2103 rv = vm_pager_get_pages(object, &m, 1, NULL, NULL); 2104 if (rv != VM_PAGER_OK) { 2105 vm_page_lock(m); 2106 vm_page_free(m); 2107 vm_page_unlock(m); 2108 break; 2109 } 2110 } 2111 /* 2112 * Keep "m" busy because a subsequent iteration may unlock 2113 * the object. 2114 */ 2115 } 2116 if (pindex > start) { 2117 m = vm_page_lookup(object, start); 2118 while (m != NULL && m->pindex < pindex) { 2119 vm_page_xunbusy(m); 2120 m = TAILQ_NEXT(m, listq); 2121 } 2122 } 2123 return (pindex == end); 2124 } 2125 2126 /* 2127 * Routine: vm_object_coalesce 2128 * Function: Coalesces two objects backing up adjoining 2129 * regions of memory into a single object. 2130 * 2131 * returns TRUE if objects were combined. 2132 * 2133 * NOTE: Only works at the moment if the second object is NULL - 2134 * if it's not, which object do we lock first? 2135 * 2136 * Parameters: 2137 * prev_object First object to coalesce 2138 * prev_offset Offset into prev_object 2139 * prev_size Size of reference to prev_object 2140 * next_size Size of reference to the second object 2141 * reserved Indicator that extension region has 2142 * swap accounted for 2143 * 2144 * Conditions: 2145 * The object must *not* be locked. 2146 */ 2147 boolean_t 2148 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, 2149 vm_size_t prev_size, vm_size_t next_size, boolean_t reserved) 2150 { 2151 vm_pindex_t next_pindex; 2152 2153 if (prev_object == NULL) 2154 return (TRUE); 2155 VM_OBJECT_WLOCK(prev_object); 2156 if ((prev_object->type != OBJT_DEFAULT && 2157 prev_object->type != OBJT_SWAP) || 2158 (prev_object->flags & OBJ_TMPFS_NODE) != 0) { 2159 VM_OBJECT_WUNLOCK(prev_object); 2160 return (FALSE); 2161 } 2162 2163 /* 2164 * Try to collapse the object first 2165 */ 2166 vm_object_collapse(prev_object); 2167 2168 /* 2169 * Can't coalesce if: . more than one reference . paged out . shadows 2170 * another object . has a copy elsewhere (any of which mean that the 2171 * pages not mapped to prev_entry may be in use anyway) 2172 */ 2173 if (prev_object->backing_object != NULL) { 2174 VM_OBJECT_WUNLOCK(prev_object); 2175 return (FALSE); 2176 } 2177 2178 prev_size >>= PAGE_SHIFT; 2179 next_size >>= PAGE_SHIFT; 2180 next_pindex = OFF_TO_IDX(prev_offset) + prev_size; 2181 2182 if ((prev_object->ref_count > 1) && 2183 (prev_object->size != next_pindex)) { 2184 VM_OBJECT_WUNLOCK(prev_object); 2185 return (FALSE); 2186 } 2187 2188 /* 2189 * Account for the charge. 2190 */ 2191 if (prev_object->cred != NULL) { 2192 2193 /* 2194 * If prev_object was charged, then this mapping, 2195 * although not charged now, may become writable 2196 * later. Non-NULL cred in the object would prevent 2197 * swap reservation during enabling of the write 2198 * access, so reserve swap now. Failed reservation 2199 * cause allocation of the separate object for the map 2200 * entry, and swap reservation for this entry is 2201 * managed in appropriate time. 2202 */ 2203 if (!reserved && !swap_reserve_by_cred(ptoa(next_size), 2204 prev_object->cred)) { 2205 VM_OBJECT_WUNLOCK(prev_object); 2206 return (FALSE); 2207 } 2208 prev_object->charge += ptoa(next_size); 2209 } 2210 2211 /* 2212 * Remove any pages that may still be in the object from a previous 2213 * deallocation. 2214 */ 2215 if (next_pindex < prev_object->size) { 2216 vm_object_page_remove(prev_object, next_pindex, next_pindex + 2217 next_size, 0); 2218 if (prev_object->type == OBJT_SWAP) 2219 swap_pager_freespace(prev_object, 2220 next_pindex, next_size); 2221 #if 0 2222 if (prev_object->cred != NULL) { 2223 KASSERT(prev_object->charge >= 2224 ptoa(prev_object->size - next_pindex), 2225 ("object %p overcharged 1 %jx %jx", prev_object, 2226 (uintmax_t)next_pindex, (uintmax_t)next_size)); 2227 prev_object->charge -= ptoa(prev_object->size - 2228 next_pindex); 2229 } 2230 #endif 2231 } 2232 2233 /* 2234 * Extend the object if necessary. 2235 */ 2236 if (next_pindex + next_size > prev_object->size) 2237 prev_object->size = next_pindex + next_size; 2238 2239 VM_OBJECT_WUNLOCK(prev_object); 2240 return (TRUE); 2241 } 2242 2243 void 2244 vm_object_set_writeable_dirty(vm_object_t object) 2245 { 2246 2247 VM_OBJECT_ASSERT_WLOCKED(object); 2248 if (object->type != OBJT_VNODE) { 2249 if ((object->flags & OBJ_TMPFS_NODE) != 0) { 2250 KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs")); 2251 vm_object_set_flag(object, OBJ_TMPFS_DIRTY); 2252 } 2253 return; 2254 } 2255 object->generation++; 2256 if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) 2257 return; 2258 vm_object_set_flag(object, OBJ_MIGHTBEDIRTY); 2259 } 2260 2261 /* 2262 * vm_object_unwire: 2263 * 2264 * For each page offset within the specified range of the given object, 2265 * find the highest-level page in the shadow chain and unwire it. A page 2266 * must exist at every page offset, and the highest-level page must be 2267 * wired. 2268 */ 2269 void 2270 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length, 2271 uint8_t queue) 2272 { 2273 vm_object_t tobject; 2274 vm_page_t m, tm; 2275 vm_pindex_t end_pindex, pindex, tpindex; 2276 int depth, locked_depth; 2277 2278 KASSERT((offset & PAGE_MASK) == 0, 2279 ("vm_object_unwire: offset is not page aligned")); 2280 KASSERT((length & PAGE_MASK) == 0, 2281 ("vm_object_unwire: length is not a multiple of PAGE_SIZE")); 2282 /* The wired count of a fictitious page never changes. */ 2283 if ((object->flags & OBJ_FICTITIOUS) != 0) 2284 return; 2285 pindex = OFF_TO_IDX(offset); 2286 end_pindex = pindex + atop(length); 2287 locked_depth = 1; 2288 VM_OBJECT_RLOCK(object); 2289 m = vm_page_find_least(object, pindex); 2290 while (pindex < end_pindex) { 2291 if (m == NULL || pindex < m->pindex) { 2292 /* 2293 * The first object in the shadow chain doesn't 2294 * contain a page at the current index. Therefore, 2295 * the page must exist in a backing object. 2296 */ 2297 tobject = object; 2298 tpindex = pindex; 2299 depth = 0; 2300 do { 2301 tpindex += 2302 OFF_TO_IDX(tobject->backing_object_offset); 2303 tobject = tobject->backing_object; 2304 KASSERT(tobject != NULL, 2305 ("vm_object_unwire: missing page")); 2306 if ((tobject->flags & OBJ_FICTITIOUS) != 0) 2307 goto next_page; 2308 depth++; 2309 if (depth == locked_depth) { 2310 locked_depth++; 2311 VM_OBJECT_RLOCK(tobject); 2312 } 2313 } while ((tm = vm_page_lookup(tobject, tpindex)) == 2314 NULL); 2315 } else { 2316 tm = m; 2317 m = TAILQ_NEXT(m, listq); 2318 } 2319 vm_page_lock(tm); 2320 vm_page_unwire(tm, queue); 2321 vm_page_unlock(tm); 2322 next_page: 2323 pindex++; 2324 } 2325 /* Release the accumulated object locks. */ 2326 for (depth = 0; depth < locked_depth; depth++) { 2327 tobject = object->backing_object; 2328 VM_OBJECT_RUNLOCK(object); 2329 object = tobject; 2330 } 2331 } 2332 2333 struct vnode * 2334 vm_object_vnode(vm_object_t object) 2335 { 2336 2337 VM_OBJECT_ASSERT_LOCKED(object); 2338 if (object->type == OBJT_VNODE) 2339 return (object->handle); 2340 if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0) 2341 return (object->un_pager.swp.swp_tmpfs); 2342 return (NULL); 2343 } 2344 2345 static int 2346 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS) 2347 { 2348 struct kinfo_vmobject *kvo; 2349 char *fullpath, *freepath; 2350 struct vnode *vp; 2351 struct vattr va; 2352 vm_object_t obj; 2353 vm_page_t m; 2354 int count, error; 2355 2356 if (req->oldptr == NULL) { 2357 /* 2358 * If an old buffer has not been provided, generate an 2359 * estimate of the space needed for a subsequent call. 2360 */ 2361 mtx_lock(&vm_object_list_mtx); 2362 count = 0; 2363 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2364 if (obj->type == OBJT_DEAD) 2365 continue; 2366 count++; 2367 } 2368 mtx_unlock(&vm_object_list_mtx); 2369 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) * 2370 count * 11 / 10)); 2371 } 2372 2373 kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK); 2374 error = 0; 2375 2376 /* 2377 * VM objects are type stable and are never removed from the 2378 * list once added. This allows us to safely read obj->object_list 2379 * after reacquiring the VM object lock. 2380 */ 2381 mtx_lock(&vm_object_list_mtx); 2382 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2383 if (obj->type == OBJT_DEAD) 2384 continue; 2385 VM_OBJECT_RLOCK(obj); 2386 if (obj->type == OBJT_DEAD) { 2387 VM_OBJECT_RUNLOCK(obj); 2388 continue; 2389 } 2390 mtx_unlock(&vm_object_list_mtx); 2391 kvo->kvo_size = ptoa(obj->size); 2392 kvo->kvo_resident = obj->resident_page_count; 2393 kvo->kvo_ref_count = obj->ref_count; 2394 kvo->kvo_shadow_count = obj->shadow_count; 2395 kvo->kvo_memattr = obj->memattr; 2396 kvo->kvo_active = 0; 2397 kvo->kvo_inactive = 0; 2398 TAILQ_FOREACH(m, &obj->memq, listq) { 2399 /* 2400 * A page may belong to the object but be 2401 * dequeued and set to PQ_NONE while the 2402 * object lock is not held. This makes the 2403 * reads of m->queue below racy, and we do not 2404 * count pages set to PQ_NONE. However, this 2405 * sysctl is only meant to give an 2406 * approximation of the system anyway. 2407 */ 2408 if (vm_page_active(m)) 2409 kvo->kvo_active++; 2410 else if (vm_page_inactive(m)) 2411 kvo->kvo_inactive++; 2412 } 2413 2414 kvo->kvo_vn_fileid = 0; 2415 kvo->kvo_vn_fsid = 0; 2416 kvo->kvo_vn_fsid_freebsd11 = 0; 2417 freepath = NULL; 2418 fullpath = ""; 2419 vp = NULL; 2420 switch (obj->type) { 2421 case OBJT_DEFAULT: 2422 kvo->kvo_type = KVME_TYPE_DEFAULT; 2423 break; 2424 case OBJT_VNODE: 2425 kvo->kvo_type = KVME_TYPE_VNODE; 2426 vp = obj->handle; 2427 vref(vp); 2428 break; 2429 case OBJT_SWAP: 2430 kvo->kvo_type = KVME_TYPE_SWAP; 2431 break; 2432 case OBJT_DEVICE: 2433 kvo->kvo_type = KVME_TYPE_DEVICE; 2434 break; 2435 case OBJT_PHYS: 2436 kvo->kvo_type = KVME_TYPE_PHYS; 2437 break; 2438 case OBJT_DEAD: 2439 kvo->kvo_type = KVME_TYPE_DEAD; 2440 break; 2441 case OBJT_SG: 2442 kvo->kvo_type = KVME_TYPE_SG; 2443 break; 2444 case OBJT_MGTDEVICE: 2445 kvo->kvo_type = KVME_TYPE_MGTDEVICE; 2446 break; 2447 default: 2448 kvo->kvo_type = KVME_TYPE_UNKNOWN; 2449 break; 2450 } 2451 VM_OBJECT_RUNLOCK(obj); 2452 if (vp != NULL) { 2453 vn_fullpath(curthread, vp, &fullpath, &freepath); 2454 vn_lock(vp, LK_SHARED | LK_RETRY); 2455 if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) { 2456 kvo->kvo_vn_fileid = va.va_fileid; 2457 kvo->kvo_vn_fsid = va.va_fsid; 2458 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid; 2459 /* truncate */ 2460 } 2461 vput(vp); 2462 } 2463 2464 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path)); 2465 if (freepath != NULL) 2466 free(freepath, M_TEMP); 2467 2468 /* Pack record size down */ 2469 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) 2470 + strlen(kvo->kvo_path) + 1; 2471 kvo->kvo_structsize = roundup(kvo->kvo_structsize, 2472 sizeof(uint64_t)); 2473 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize); 2474 mtx_lock(&vm_object_list_mtx); 2475 if (error) 2476 break; 2477 } 2478 mtx_unlock(&vm_object_list_mtx); 2479 free(kvo, M_TEMP); 2480 return (error); 2481 } 2482 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | 2483 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject", 2484 "List of VM objects"); 2485 2486 #include "opt_ddb.h" 2487 #ifdef DDB 2488 #include <sys/kernel.h> 2489 2490 #include <sys/cons.h> 2491 2492 #include <ddb/ddb.h> 2493 2494 static int 2495 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2496 { 2497 vm_map_t tmpm; 2498 vm_map_entry_t tmpe; 2499 vm_object_t obj; 2500 int entcount; 2501 2502 if (map == 0) 2503 return 0; 2504 2505 if (entry == 0) { 2506 tmpe = map->header.next; 2507 entcount = map->nentries; 2508 while (entcount-- && (tmpe != &map->header)) { 2509 if (_vm_object_in_map(map, object, tmpe)) { 2510 return 1; 2511 } 2512 tmpe = tmpe->next; 2513 } 2514 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2515 tmpm = entry->object.sub_map; 2516 tmpe = tmpm->header.next; 2517 entcount = tmpm->nentries; 2518 while (entcount-- && tmpe != &tmpm->header) { 2519 if (_vm_object_in_map(tmpm, object, tmpe)) { 2520 return 1; 2521 } 2522 tmpe = tmpe->next; 2523 } 2524 } else if ((obj = entry->object.vm_object) != NULL) { 2525 for (; obj; obj = obj->backing_object) 2526 if (obj == object) { 2527 return 1; 2528 } 2529 } 2530 return 0; 2531 } 2532 2533 static int 2534 vm_object_in_map(vm_object_t object) 2535 { 2536 struct proc *p; 2537 2538 /* sx_slock(&allproc_lock); */ 2539 FOREACH_PROC_IN_SYSTEM(p) { 2540 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 2541 continue; 2542 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) { 2543 /* sx_sunlock(&allproc_lock); */ 2544 return 1; 2545 } 2546 } 2547 /* sx_sunlock(&allproc_lock); */ 2548 if (_vm_object_in_map(kernel_map, object, 0)) 2549 return 1; 2550 return 0; 2551 } 2552 2553 DB_SHOW_COMMAND(vmochk, vm_object_check) 2554 { 2555 vm_object_t object; 2556 2557 /* 2558 * make sure that internal objs are in a map somewhere 2559 * and none have zero ref counts. 2560 */ 2561 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2562 if (object->handle == NULL && 2563 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2564 if (object->ref_count == 0) { 2565 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2566 (long)object->size); 2567 } 2568 if (!vm_object_in_map(object)) { 2569 db_printf( 2570 "vmochk: internal obj is not in a map: " 2571 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2572 object->ref_count, (u_long)object->size, 2573 (u_long)object->size, 2574 (void *)object->backing_object); 2575 } 2576 } 2577 } 2578 } 2579 2580 /* 2581 * vm_object_print: [ debug ] 2582 */ 2583 DB_SHOW_COMMAND(object, vm_object_print_static) 2584 { 2585 /* XXX convert args. */ 2586 vm_object_t object = (vm_object_t)addr; 2587 boolean_t full = have_addr; 2588 2589 vm_page_t p; 2590 2591 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2592 #define count was_count 2593 2594 int count; 2595 2596 if (object == NULL) 2597 return; 2598 2599 db_iprintf( 2600 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n", 2601 object, (int)object->type, (uintmax_t)object->size, 2602 object->resident_page_count, object->ref_count, object->flags, 2603 object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge); 2604 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n", 2605 object->shadow_count, 2606 object->backing_object ? object->backing_object->ref_count : 0, 2607 object->backing_object, (uintmax_t)object->backing_object_offset); 2608 2609 if (!full) 2610 return; 2611 2612 db_indent += 2; 2613 count = 0; 2614 TAILQ_FOREACH(p, &object->memq, listq) { 2615 if (count == 0) 2616 db_iprintf("memory:="); 2617 else if (count == 6) { 2618 db_printf("\n"); 2619 db_iprintf(" ..."); 2620 count = 0; 2621 } else 2622 db_printf(","); 2623 count++; 2624 2625 db_printf("(off=0x%jx,page=0x%jx)", 2626 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p)); 2627 } 2628 if (count != 0) 2629 db_printf("\n"); 2630 db_indent -= 2; 2631 } 2632 2633 /* XXX. */ 2634 #undef count 2635 2636 /* XXX need this non-static entry for calling from vm_map_print. */ 2637 void 2638 vm_object_print( 2639 /* db_expr_t */ long addr, 2640 boolean_t have_addr, 2641 /* db_expr_t */ long count, 2642 char *modif) 2643 { 2644 vm_object_print_static(addr, have_addr, count, modif); 2645 } 2646 2647 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 2648 { 2649 vm_object_t object; 2650 vm_pindex_t fidx; 2651 vm_paddr_t pa; 2652 vm_page_t m, prev_m; 2653 int rcount, nl, c; 2654 2655 nl = 0; 2656 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2657 db_printf("new object: %p\n", (void *)object); 2658 if (nl > 18) { 2659 c = cngetc(); 2660 if (c != ' ') 2661 return; 2662 nl = 0; 2663 } 2664 nl++; 2665 rcount = 0; 2666 fidx = 0; 2667 pa = -1; 2668 TAILQ_FOREACH(m, &object->memq, listq) { 2669 if (m->pindex > 128) 2670 break; 2671 if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL && 2672 prev_m->pindex + 1 != m->pindex) { 2673 if (rcount) { 2674 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2675 (long)fidx, rcount, (long)pa); 2676 if (nl > 18) { 2677 c = cngetc(); 2678 if (c != ' ') 2679 return; 2680 nl = 0; 2681 } 2682 nl++; 2683 rcount = 0; 2684 } 2685 } 2686 if (rcount && 2687 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2688 ++rcount; 2689 continue; 2690 } 2691 if (rcount) { 2692 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2693 (long)fidx, rcount, (long)pa); 2694 if (nl > 18) { 2695 c = cngetc(); 2696 if (c != ' ') 2697 return; 2698 nl = 0; 2699 } 2700 nl++; 2701 } 2702 fidx = m->pindex; 2703 pa = VM_PAGE_TO_PHYS(m); 2704 rcount = 1; 2705 } 2706 if (rcount) { 2707 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2708 (long)fidx, rcount, (long)pa); 2709 if (nl > 18) { 2710 c = cngetc(); 2711 if (c != ' ') 2712 return; 2713 nl = 0; 2714 } 2715 nl++; 2716 } 2717 } 2718 } 2719 #endif /* DDB */ 2720