xref: /freebsd/sys/vm/vm_object.c (revision ef0cb5db0af0d5d5b75b74f8e534fe601b7176d7)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory object module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include "opt_vm.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>		/* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/vnode.h>
83 #include <sys/vmmeter.h>
84 #include <sys/sx.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_pageout.h>
93 #include <vm/vm_pager.h>
94 #include <vm/swap_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vm_radix.h>
98 #include <vm/vm_reserv.h>
99 #include <vm/uma.h>
100 
101 static int old_msync;
102 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
103     "Use old (insecure) msync behavior");
104 
105 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
106 		    int pagerflags, int flags, boolean_t *clearobjflags,
107 		    boolean_t *eio);
108 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
109 		    boolean_t *clearobjflags);
110 static void	vm_object_qcollapse(vm_object_t object);
111 static void	vm_object_vndeallocate(vm_object_t object);
112 
113 /*
114  *	Virtual memory objects maintain the actual data
115  *	associated with allocated virtual memory.  A given
116  *	page of memory exists within exactly one object.
117  *
118  *	An object is only deallocated when all "references"
119  *	are given up.  Only one "reference" to a given
120  *	region of an object should be writeable.
121  *
122  *	Associated with each object is a list of all resident
123  *	memory pages belonging to that object; this list is
124  *	maintained by the "vm_page" module, and locked by the object's
125  *	lock.
126  *
127  *	Each object also records a "pager" routine which is
128  *	used to retrieve (and store) pages to the proper backing
129  *	storage.  In addition, objects may be backed by other
130  *	objects from which they were virtual-copied.
131  *
132  *	The only items within the object structure which are
133  *	modified after time of creation are:
134  *		reference count		locked by object's lock
135  *		pager routine		locked by object's lock
136  *
137  */
138 
139 struct object_q vm_object_list;
140 struct mtx vm_object_list_mtx;	/* lock for object list and count */
141 
142 struct vm_object kernel_object_store;
143 struct vm_object kmem_object_store;
144 
145 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
146     "VM object stats");
147 
148 static long object_collapses;
149 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
150     &object_collapses, 0, "VM object collapses");
151 
152 static long object_bypasses;
153 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
154     &object_bypasses, 0, "VM object bypasses");
155 
156 static uma_zone_t obj_zone;
157 
158 static int vm_object_zinit(void *mem, int size, int flags);
159 
160 #ifdef INVARIANTS
161 static void vm_object_zdtor(void *mem, int size, void *arg);
162 
163 static void
164 vm_object_zdtor(void *mem, int size, void *arg)
165 {
166 	vm_object_t object;
167 
168 	object = (vm_object_t)mem;
169 	KASSERT(object->ref_count == 0,
170 	    ("object %p ref_count = %d", object, object->ref_count));
171 	KASSERT(TAILQ_EMPTY(&object->memq),
172 	    ("object %p has resident pages in its memq", object));
173 	KASSERT(vm_radix_is_empty(&object->rtree),
174 	    ("object %p has resident pages in its trie", object));
175 #if VM_NRESERVLEVEL > 0
176 	KASSERT(LIST_EMPTY(&object->rvq),
177 	    ("object %p has reservations",
178 	    object));
179 #endif
180 	KASSERT(vm_object_cache_is_empty(object),
181 	    ("object %p has cached pages",
182 	    object));
183 	KASSERT(object->paging_in_progress == 0,
184 	    ("object %p paging_in_progress = %d",
185 	    object, object->paging_in_progress));
186 	KASSERT(object->resident_page_count == 0,
187 	    ("object %p resident_page_count = %d",
188 	    object, object->resident_page_count));
189 	KASSERT(object->shadow_count == 0,
190 	    ("object %p shadow_count = %d",
191 	    object, object->shadow_count));
192 	KASSERT(object->type == OBJT_DEAD,
193 	    ("object %p has non-dead type %d",
194 	    object, object->type));
195 }
196 #endif
197 
198 static int
199 vm_object_zinit(void *mem, int size, int flags)
200 {
201 	vm_object_t object;
202 
203 	object = (vm_object_t)mem;
204 	rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
205 
206 	/* These are true for any object that has been freed */
207 	object->type = OBJT_DEAD;
208 	object->ref_count = 0;
209 	object->rtree.rt_root = 0;
210 	object->rtree.rt_flags = 0;
211 	object->paging_in_progress = 0;
212 	object->resident_page_count = 0;
213 	object->shadow_count = 0;
214 	object->cache.rt_root = 0;
215 	object->cache.rt_flags = 0;
216 
217 	mtx_lock(&vm_object_list_mtx);
218 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
219 	mtx_unlock(&vm_object_list_mtx);
220 	return (0);
221 }
222 
223 static void
224 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
225 {
226 
227 	TAILQ_INIT(&object->memq);
228 	LIST_INIT(&object->shadow_head);
229 
230 	object->type = type;
231 	switch (type) {
232 	case OBJT_DEAD:
233 		panic("_vm_object_allocate: can't create OBJT_DEAD");
234 	case OBJT_DEFAULT:
235 	case OBJT_SWAP:
236 		object->flags = OBJ_ONEMAPPING;
237 		break;
238 	case OBJT_DEVICE:
239 	case OBJT_SG:
240 		object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
241 		break;
242 	case OBJT_MGTDEVICE:
243 		object->flags = OBJ_FICTITIOUS;
244 		break;
245 	case OBJT_PHYS:
246 		object->flags = OBJ_UNMANAGED;
247 		break;
248 	case OBJT_VNODE:
249 		object->flags = 0;
250 		break;
251 	default:
252 		panic("_vm_object_allocate: type %d is undefined", type);
253 	}
254 	object->size = size;
255 	object->generation = 1;
256 	object->ref_count = 1;
257 	object->memattr = VM_MEMATTR_DEFAULT;
258 	object->cred = NULL;
259 	object->charge = 0;
260 	object->handle = NULL;
261 	object->backing_object = NULL;
262 	object->backing_object_offset = (vm_ooffset_t) 0;
263 #if VM_NRESERVLEVEL > 0
264 	LIST_INIT(&object->rvq);
265 #endif
266 }
267 
268 /*
269  *	vm_object_init:
270  *
271  *	Initialize the VM objects module.
272  */
273 void
274 vm_object_init(void)
275 {
276 	TAILQ_INIT(&vm_object_list);
277 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
278 
279 	rw_init(&kernel_object->lock, "kernel vm object");
280 	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
281 	    kernel_object);
282 #if VM_NRESERVLEVEL > 0
283 	kernel_object->flags |= OBJ_COLORED;
284 	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
285 #endif
286 
287 	rw_init(&kmem_object->lock, "kmem vm object");
288 	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
289 	    kmem_object);
290 #if VM_NRESERVLEVEL > 0
291 	kmem_object->flags |= OBJ_COLORED;
292 	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
293 #endif
294 
295 	/*
296 	 * The lock portion of struct vm_object must be type stable due
297 	 * to vm_pageout_fallback_object_lock locking a vm object
298 	 * without holding any references to it.
299 	 */
300 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
301 #ifdef INVARIANTS
302 	    vm_object_zdtor,
303 #else
304 	    NULL,
305 #endif
306 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
307 
308 	vm_radix_init();
309 }
310 
311 void
312 vm_object_clear_flag(vm_object_t object, u_short bits)
313 {
314 
315 	VM_OBJECT_ASSERT_WLOCKED(object);
316 	object->flags &= ~bits;
317 }
318 
319 /*
320  *	Sets the default memory attribute for the specified object.  Pages
321  *	that are allocated to this object are by default assigned this memory
322  *	attribute.
323  *
324  *	Presently, this function must be called before any pages are allocated
325  *	to the object.  In the future, this requirement may be relaxed for
326  *	"default" and "swap" objects.
327  */
328 int
329 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
330 {
331 
332 	VM_OBJECT_ASSERT_WLOCKED(object);
333 	switch (object->type) {
334 	case OBJT_DEFAULT:
335 	case OBJT_DEVICE:
336 	case OBJT_MGTDEVICE:
337 	case OBJT_PHYS:
338 	case OBJT_SG:
339 	case OBJT_SWAP:
340 	case OBJT_VNODE:
341 		if (!TAILQ_EMPTY(&object->memq))
342 			return (KERN_FAILURE);
343 		break;
344 	case OBJT_DEAD:
345 		return (KERN_INVALID_ARGUMENT);
346 	default:
347 		panic("vm_object_set_memattr: object %p is of undefined type",
348 		    object);
349 	}
350 	object->memattr = memattr;
351 	return (KERN_SUCCESS);
352 }
353 
354 void
355 vm_object_pip_add(vm_object_t object, short i)
356 {
357 
358 	VM_OBJECT_ASSERT_WLOCKED(object);
359 	object->paging_in_progress += i;
360 }
361 
362 void
363 vm_object_pip_subtract(vm_object_t object, short i)
364 {
365 
366 	VM_OBJECT_ASSERT_WLOCKED(object);
367 	object->paging_in_progress -= i;
368 }
369 
370 void
371 vm_object_pip_wakeup(vm_object_t object)
372 {
373 
374 	VM_OBJECT_ASSERT_WLOCKED(object);
375 	object->paging_in_progress--;
376 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
377 		vm_object_clear_flag(object, OBJ_PIPWNT);
378 		wakeup(object);
379 	}
380 }
381 
382 void
383 vm_object_pip_wakeupn(vm_object_t object, short i)
384 {
385 
386 	VM_OBJECT_ASSERT_WLOCKED(object);
387 	if (i)
388 		object->paging_in_progress -= i;
389 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
390 		vm_object_clear_flag(object, OBJ_PIPWNT);
391 		wakeup(object);
392 	}
393 }
394 
395 void
396 vm_object_pip_wait(vm_object_t object, char *waitid)
397 {
398 
399 	VM_OBJECT_ASSERT_WLOCKED(object);
400 	while (object->paging_in_progress) {
401 		object->flags |= OBJ_PIPWNT;
402 		VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
403 	}
404 }
405 
406 /*
407  *	vm_object_allocate:
408  *
409  *	Returns a new object with the given size.
410  */
411 vm_object_t
412 vm_object_allocate(objtype_t type, vm_pindex_t size)
413 {
414 	vm_object_t object;
415 
416 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
417 	_vm_object_allocate(type, size, object);
418 	return (object);
419 }
420 
421 
422 /*
423  *	vm_object_reference:
424  *
425  *	Gets another reference to the given object.  Note: OBJ_DEAD
426  *	objects can be referenced during final cleaning.
427  */
428 void
429 vm_object_reference(vm_object_t object)
430 {
431 	if (object == NULL)
432 		return;
433 	VM_OBJECT_WLOCK(object);
434 	vm_object_reference_locked(object);
435 	VM_OBJECT_WUNLOCK(object);
436 }
437 
438 /*
439  *	vm_object_reference_locked:
440  *
441  *	Gets another reference to the given object.
442  *
443  *	The object must be locked.
444  */
445 void
446 vm_object_reference_locked(vm_object_t object)
447 {
448 	struct vnode *vp;
449 
450 	VM_OBJECT_ASSERT_WLOCKED(object);
451 	object->ref_count++;
452 	if (object->type == OBJT_VNODE) {
453 		vp = object->handle;
454 		vref(vp);
455 	}
456 }
457 
458 /*
459  * Handle deallocating an object of type OBJT_VNODE.
460  */
461 static void
462 vm_object_vndeallocate(vm_object_t object)
463 {
464 	struct vnode *vp = (struct vnode *) object->handle;
465 
466 	VM_OBJECT_ASSERT_WLOCKED(object);
467 	KASSERT(object->type == OBJT_VNODE,
468 	    ("vm_object_vndeallocate: not a vnode object"));
469 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
470 #ifdef INVARIANTS
471 	if (object->ref_count == 0) {
472 		vprint("vm_object_vndeallocate", vp);
473 		panic("vm_object_vndeallocate: bad object reference count");
474 	}
475 #endif
476 
477 	/*
478 	 * The test for text of vp vnode does not need a bypass to
479 	 * reach right VV_TEXT there, since it is obtained from
480 	 * object->handle.
481 	 */
482 	if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
483 		object->ref_count--;
484 		VM_OBJECT_WUNLOCK(object);
485 		/* vrele may need the vnode lock. */
486 		vrele(vp);
487 	} else {
488 		vhold(vp);
489 		VM_OBJECT_WUNLOCK(object);
490 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
491 		vdrop(vp);
492 		VM_OBJECT_WLOCK(object);
493 		object->ref_count--;
494 		if (object->type == OBJT_DEAD) {
495 			VM_OBJECT_WUNLOCK(object);
496 			VOP_UNLOCK(vp, 0);
497 		} else {
498 			if (object->ref_count == 0)
499 				VOP_UNSET_TEXT(vp);
500 			VM_OBJECT_WUNLOCK(object);
501 			vput(vp);
502 		}
503 	}
504 }
505 
506 /*
507  *	vm_object_deallocate:
508  *
509  *	Release a reference to the specified object,
510  *	gained either through a vm_object_allocate
511  *	or a vm_object_reference call.  When all references
512  *	are gone, storage associated with this object
513  *	may be relinquished.
514  *
515  *	No object may be locked.
516  */
517 void
518 vm_object_deallocate(vm_object_t object)
519 {
520 	vm_object_t temp;
521 	struct vnode *vp;
522 
523 	while (object != NULL) {
524 		VM_OBJECT_WLOCK(object);
525 		if (object->type == OBJT_VNODE) {
526 			vm_object_vndeallocate(object);
527 			return;
528 		}
529 
530 		KASSERT(object->ref_count != 0,
531 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
532 
533 		/*
534 		 * If the reference count goes to 0 we start calling
535 		 * vm_object_terminate() on the object chain.
536 		 * A ref count of 1 may be a special case depending on the
537 		 * shadow count being 0 or 1.
538 		 */
539 		object->ref_count--;
540 		if (object->ref_count > 1) {
541 			VM_OBJECT_WUNLOCK(object);
542 			return;
543 		} else if (object->ref_count == 1) {
544 			if (object->type == OBJT_SWAP &&
545 			    (object->flags & OBJ_TMPFS) != 0) {
546 				vp = object->un_pager.swp.swp_tmpfs;
547 				vhold(vp);
548 				VM_OBJECT_WUNLOCK(object);
549 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
550 				VM_OBJECT_WLOCK(object);
551 				if (object->type == OBJT_DEAD ||
552 				    object->ref_count != 1) {
553 					VM_OBJECT_WUNLOCK(object);
554 					VOP_UNLOCK(vp, 0);
555 					vdrop(vp);
556 					return;
557 				}
558 				if ((object->flags & OBJ_TMPFS) != 0)
559 					VOP_UNSET_TEXT(vp);
560 				VOP_UNLOCK(vp, 0);
561 				vdrop(vp);
562 			}
563 			if (object->shadow_count == 0 &&
564 			    object->handle == NULL &&
565 			    (object->type == OBJT_DEFAULT ||
566 			    (object->type == OBJT_SWAP &&
567 			    (object->flags & OBJ_TMPFS_NODE) == 0))) {
568 				vm_object_set_flag(object, OBJ_ONEMAPPING);
569 			} else if ((object->shadow_count == 1) &&
570 			    (object->handle == NULL) &&
571 			    (object->type == OBJT_DEFAULT ||
572 			     object->type == OBJT_SWAP)) {
573 				vm_object_t robject;
574 
575 				robject = LIST_FIRST(&object->shadow_head);
576 				KASSERT(robject != NULL,
577 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
578 					 object->ref_count,
579 					 object->shadow_count));
580 				KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
581 				    ("shadowed tmpfs v_object %p", object));
582 				if (!VM_OBJECT_TRYWLOCK(robject)) {
583 					/*
584 					 * Avoid a potential deadlock.
585 					 */
586 					object->ref_count++;
587 					VM_OBJECT_WUNLOCK(object);
588 					/*
589 					 * More likely than not the thread
590 					 * holding robject's lock has lower
591 					 * priority than the current thread.
592 					 * Let the lower priority thread run.
593 					 */
594 					pause("vmo_de", 1);
595 					continue;
596 				}
597 				/*
598 				 * Collapse object into its shadow unless its
599 				 * shadow is dead.  In that case, object will
600 				 * be deallocated by the thread that is
601 				 * deallocating its shadow.
602 				 */
603 				if ((robject->flags & OBJ_DEAD) == 0 &&
604 				    (robject->handle == NULL) &&
605 				    (robject->type == OBJT_DEFAULT ||
606 				     robject->type == OBJT_SWAP)) {
607 
608 					robject->ref_count++;
609 retry:
610 					if (robject->paging_in_progress) {
611 						VM_OBJECT_WUNLOCK(object);
612 						vm_object_pip_wait(robject,
613 						    "objde1");
614 						temp = robject->backing_object;
615 						if (object == temp) {
616 							VM_OBJECT_WLOCK(object);
617 							goto retry;
618 						}
619 					} else if (object->paging_in_progress) {
620 						VM_OBJECT_WUNLOCK(robject);
621 						object->flags |= OBJ_PIPWNT;
622 						VM_OBJECT_SLEEP(object, object,
623 						    PDROP | PVM, "objde2", 0);
624 						VM_OBJECT_WLOCK(robject);
625 						temp = robject->backing_object;
626 						if (object == temp) {
627 							VM_OBJECT_WLOCK(object);
628 							goto retry;
629 						}
630 					} else
631 						VM_OBJECT_WUNLOCK(object);
632 
633 					if (robject->ref_count == 1) {
634 						robject->ref_count--;
635 						object = robject;
636 						goto doterm;
637 					}
638 					object = robject;
639 					vm_object_collapse(object);
640 					VM_OBJECT_WUNLOCK(object);
641 					continue;
642 				}
643 				VM_OBJECT_WUNLOCK(robject);
644 			}
645 			VM_OBJECT_WUNLOCK(object);
646 			return;
647 		}
648 doterm:
649 		temp = object->backing_object;
650 		if (temp != NULL) {
651 			KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
652 			    ("shadowed tmpfs v_object 2 %p", object));
653 			VM_OBJECT_WLOCK(temp);
654 			LIST_REMOVE(object, shadow_list);
655 			temp->shadow_count--;
656 			VM_OBJECT_WUNLOCK(temp);
657 			object->backing_object = NULL;
658 		}
659 		/*
660 		 * Don't double-terminate, we could be in a termination
661 		 * recursion due to the terminate having to sync data
662 		 * to disk.
663 		 */
664 		if ((object->flags & OBJ_DEAD) == 0)
665 			vm_object_terminate(object);
666 		else
667 			VM_OBJECT_WUNLOCK(object);
668 		object = temp;
669 	}
670 }
671 
672 /*
673  *	vm_object_destroy removes the object from the global object list
674  *      and frees the space for the object.
675  */
676 void
677 vm_object_destroy(vm_object_t object)
678 {
679 
680 	/*
681 	 * Release the allocation charge.
682 	 */
683 	if (object->cred != NULL) {
684 		swap_release_by_cred(object->charge, object->cred);
685 		object->charge = 0;
686 		crfree(object->cred);
687 		object->cred = NULL;
688 	}
689 
690 	/*
691 	 * Free the space for the object.
692 	 */
693 	uma_zfree(obj_zone, object);
694 }
695 
696 /*
697  *	vm_object_terminate actually destroys the specified object, freeing
698  *	up all previously used resources.
699  *
700  *	The object must be locked.
701  *	This routine may block.
702  */
703 void
704 vm_object_terminate(vm_object_t object)
705 {
706 	vm_page_t p, p_next;
707 
708 	VM_OBJECT_ASSERT_WLOCKED(object);
709 
710 	/*
711 	 * Make sure no one uses us.
712 	 */
713 	vm_object_set_flag(object, OBJ_DEAD);
714 
715 	/*
716 	 * wait for the pageout daemon to be done with the object
717 	 */
718 	vm_object_pip_wait(object, "objtrm");
719 
720 	KASSERT(!object->paging_in_progress,
721 		("vm_object_terminate: pageout in progress"));
722 
723 	/*
724 	 * Clean and free the pages, as appropriate. All references to the
725 	 * object are gone, so we don't need to lock it.
726 	 */
727 	if (object->type == OBJT_VNODE) {
728 		struct vnode *vp = (struct vnode *)object->handle;
729 
730 		/*
731 		 * Clean pages and flush buffers.
732 		 */
733 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
734 		VM_OBJECT_WUNLOCK(object);
735 
736 		vinvalbuf(vp, V_SAVE, 0, 0);
737 
738 		VM_OBJECT_WLOCK(object);
739 	}
740 
741 	KASSERT(object->ref_count == 0,
742 		("vm_object_terminate: object with references, ref_count=%d",
743 		object->ref_count));
744 
745 	/*
746 	 * Free any remaining pageable pages.  This also removes them from the
747 	 * paging queues.  However, don't free wired pages, just remove them
748 	 * from the object.  Rather than incrementally removing each page from
749 	 * the object, the page and object are reset to any empty state.
750 	 */
751 	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
752 		vm_page_assert_unbusied(p);
753 		vm_page_lock(p);
754 		/*
755 		 * Optimize the page's removal from the object by resetting
756 		 * its "object" field.  Specifically, if the page is not
757 		 * wired, then the effect of this assignment is that
758 		 * vm_page_free()'s call to vm_page_remove() will return
759 		 * immediately without modifying the page or the object.
760 		 */
761 		p->object = NULL;
762 		if (p->wire_count == 0) {
763 			vm_page_free(p);
764 			PCPU_INC(cnt.v_pfree);
765 		}
766 		vm_page_unlock(p);
767 	}
768 	/*
769 	 * If the object contained any pages, then reset it to an empty state.
770 	 * None of the object's fields, including "resident_page_count", were
771 	 * modified by the preceding loop.
772 	 */
773 	if (object->resident_page_count != 0) {
774 		vm_radix_reclaim_allnodes(&object->rtree);
775 		TAILQ_INIT(&object->memq);
776 		object->resident_page_count = 0;
777 		if (object->type == OBJT_VNODE)
778 			vdrop(object->handle);
779 	}
780 
781 #if VM_NRESERVLEVEL > 0
782 	if (__predict_false(!LIST_EMPTY(&object->rvq)))
783 		vm_reserv_break_all(object);
784 #endif
785 	if (__predict_false(!vm_object_cache_is_empty(object)))
786 		vm_page_cache_free(object, 0, 0);
787 
788 	KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
789 	    object->type == OBJT_SWAP,
790 	    ("%s: non-swap obj %p has cred", __func__, object));
791 
792 	/*
793 	 * Let the pager know object is dead.
794 	 */
795 	vm_pager_deallocate(object);
796 	VM_OBJECT_WUNLOCK(object);
797 
798 	vm_object_destroy(object);
799 }
800 
801 /*
802  * Make the page read-only so that we can clear the object flags.  However, if
803  * this is a nosync mmap then the object is likely to stay dirty so do not
804  * mess with the page and do not clear the object flags.  Returns TRUE if the
805  * page should be flushed, and FALSE otherwise.
806  */
807 static boolean_t
808 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
809 {
810 
811 	/*
812 	 * If we have been asked to skip nosync pages and this is a
813 	 * nosync page, skip it.  Note that the object flags were not
814 	 * cleared in this case so we do not have to set them.
815 	 */
816 	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
817 		*clearobjflags = FALSE;
818 		return (FALSE);
819 	} else {
820 		pmap_remove_write(p);
821 		return (p->dirty != 0);
822 	}
823 }
824 
825 /*
826  *	vm_object_page_clean
827  *
828  *	Clean all dirty pages in the specified range of object.  Leaves page
829  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
830  *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
831  *	leaving the object dirty.
832  *
833  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
834  *	synchronous clustering mode implementation.
835  *
836  *	Odd semantics: if start == end, we clean everything.
837  *
838  *	The object must be locked.
839  *
840  *	Returns FALSE if some page from the range was not written, as
841  *	reported by the pager, and TRUE otherwise.
842  */
843 boolean_t
844 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
845     int flags)
846 {
847 	vm_page_t np, p;
848 	vm_pindex_t pi, tend, tstart;
849 	int curgeneration, n, pagerflags;
850 	boolean_t clearobjflags, eio, res;
851 
852 	VM_OBJECT_ASSERT_WLOCKED(object);
853 
854 	/*
855 	 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
856 	 * objects.  The check below prevents the function from
857 	 * operating on non-vnode objects.
858 	 */
859 	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
860 	    object->resident_page_count == 0)
861 		return (TRUE);
862 
863 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
864 	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
865 	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
866 
867 	tstart = OFF_TO_IDX(start);
868 	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
869 	clearobjflags = tstart == 0 && tend >= object->size;
870 	res = TRUE;
871 
872 rescan:
873 	curgeneration = object->generation;
874 
875 	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
876 		pi = p->pindex;
877 		if (pi >= tend)
878 			break;
879 		np = TAILQ_NEXT(p, listq);
880 		if (p->valid == 0)
881 			continue;
882 		if (vm_page_sleep_if_busy(p, "vpcwai")) {
883 			if (object->generation != curgeneration) {
884 				if ((flags & OBJPC_SYNC) != 0)
885 					goto rescan;
886 				else
887 					clearobjflags = FALSE;
888 			}
889 			np = vm_page_find_least(object, pi);
890 			continue;
891 		}
892 		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
893 			continue;
894 
895 		n = vm_object_page_collect_flush(object, p, pagerflags,
896 		    flags, &clearobjflags, &eio);
897 		if (eio) {
898 			res = FALSE;
899 			clearobjflags = FALSE;
900 		}
901 		if (object->generation != curgeneration) {
902 			if ((flags & OBJPC_SYNC) != 0)
903 				goto rescan;
904 			else
905 				clearobjflags = FALSE;
906 		}
907 
908 		/*
909 		 * If the VOP_PUTPAGES() did a truncated write, so
910 		 * that even the first page of the run is not fully
911 		 * written, vm_pageout_flush() returns 0 as the run
912 		 * length.  Since the condition that caused truncated
913 		 * write may be permanent, e.g. exhausted free space,
914 		 * accepting n == 0 would cause an infinite loop.
915 		 *
916 		 * Forwarding the iterator leaves the unwritten page
917 		 * behind, but there is not much we can do there if
918 		 * filesystem refuses to write it.
919 		 */
920 		if (n == 0) {
921 			n = 1;
922 			clearobjflags = FALSE;
923 		}
924 		np = vm_page_find_least(object, pi + n);
925 	}
926 #if 0
927 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
928 #endif
929 
930 	if (clearobjflags)
931 		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
932 	return (res);
933 }
934 
935 static int
936 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
937     int flags, boolean_t *clearobjflags, boolean_t *eio)
938 {
939 	vm_page_t ma[vm_pageout_page_count], p_first, tp;
940 	int count, i, mreq, runlen;
941 
942 	vm_page_lock_assert(p, MA_NOTOWNED);
943 	VM_OBJECT_ASSERT_WLOCKED(object);
944 
945 	count = 1;
946 	mreq = 0;
947 
948 	for (tp = p; count < vm_pageout_page_count; count++) {
949 		tp = vm_page_next(tp);
950 		if (tp == NULL || vm_page_busied(tp))
951 			break;
952 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
953 			break;
954 	}
955 
956 	for (p_first = p; count < vm_pageout_page_count; count++) {
957 		tp = vm_page_prev(p_first);
958 		if (tp == NULL || vm_page_busied(tp))
959 			break;
960 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
961 			break;
962 		p_first = tp;
963 		mreq++;
964 	}
965 
966 	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
967 		ma[i] = tp;
968 
969 	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
970 	return (runlen);
971 }
972 
973 /*
974  * Note that there is absolutely no sense in writing out
975  * anonymous objects, so we track down the vnode object
976  * to write out.
977  * We invalidate (remove) all pages from the address space
978  * for semantic correctness.
979  *
980  * If the backing object is a device object with unmanaged pages, then any
981  * mappings to the specified range of pages must be removed before this
982  * function is called.
983  *
984  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
985  * may start out with a NULL object.
986  */
987 boolean_t
988 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
989     boolean_t syncio, boolean_t invalidate)
990 {
991 	vm_object_t backing_object;
992 	struct vnode *vp;
993 	struct mount *mp;
994 	int error, flags, fsync_after;
995 	boolean_t res;
996 
997 	if (object == NULL)
998 		return (TRUE);
999 	res = TRUE;
1000 	error = 0;
1001 	VM_OBJECT_WLOCK(object);
1002 	while ((backing_object = object->backing_object) != NULL) {
1003 		VM_OBJECT_WLOCK(backing_object);
1004 		offset += object->backing_object_offset;
1005 		VM_OBJECT_WUNLOCK(object);
1006 		object = backing_object;
1007 		if (object->size < OFF_TO_IDX(offset + size))
1008 			size = IDX_TO_OFF(object->size) - offset;
1009 	}
1010 	/*
1011 	 * Flush pages if writing is allowed, invalidate them
1012 	 * if invalidation requested.  Pages undergoing I/O
1013 	 * will be ignored by vm_object_page_remove().
1014 	 *
1015 	 * We cannot lock the vnode and then wait for paging
1016 	 * to complete without deadlocking against vm_fault.
1017 	 * Instead we simply call vm_object_page_remove() and
1018 	 * allow it to block internally on a page-by-page
1019 	 * basis when it encounters pages undergoing async
1020 	 * I/O.
1021 	 */
1022 	if (object->type == OBJT_VNODE &&
1023 	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1024 		vp = object->handle;
1025 		VM_OBJECT_WUNLOCK(object);
1026 		(void) vn_start_write(vp, &mp, V_WAIT);
1027 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1028 		if (syncio && !invalidate && offset == 0 &&
1029 		    OFF_TO_IDX(size) == object->size) {
1030 			/*
1031 			 * If syncing the whole mapping of the file,
1032 			 * it is faster to schedule all the writes in
1033 			 * async mode, also allowing the clustering,
1034 			 * and then wait for i/o to complete.
1035 			 */
1036 			flags = 0;
1037 			fsync_after = TRUE;
1038 		} else {
1039 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1040 			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1041 			fsync_after = FALSE;
1042 		}
1043 		VM_OBJECT_WLOCK(object);
1044 		res = vm_object_page_clean(object, offset, offset + size,
1045 		    flags);
1046 		VM_OBJECT_WUNLOCK(object);
1047 		if (fsync_after)
1048 			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1049 		VOP_UNLOCK(vp, 0);
1050 		vn_finished_write(mp);
1051 		if (error != 0)
1052 			res = FALSE;
1053 		VM_OBJECT_WLOCK(object);
1054 	}
1055 	if ((object->type == OBJT_VNODE ||
1056 	     object->type == OBJT_DEVICE) && invalidate) {
1057 		if (object->type == OBJT_DEVICE)
1058 			/*
1059 			 * The option OBJPR_NOTMAPPED must be passed here
1060 			 * because vm_object_page_remove() cannot remove
1061 			 * unmanaged mappings.
1062 			 */
1063 			flags = OBJPR_NOTMAPPED;
1064 		else if (old_msync)
1065 			flags = OBJPR_NOTWIRED;
1066 		else
1067 			flags = OBJPR_CLEANONLY | OBJPR_NOTWIRED;
1068 		vm_object_page_remove(object, OFF_TO_IDX(offset),
1069 		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1070 	}
1071 	VM_OBJECT_WUNLOCK(object);
1072 	return (res);
1073 }
1074 
1075 /*
1076  *	vm_object_madvise:
1077  *
1078  *	Implements the madvise function at the object/page level.
1079  *
1080  *	MADV_WILLNEED	(any object)
1081  *
1082  *	    Activate the specified pages if they are resident.
1083  *
1084  *	MADV_DONTNEED	(any object)
1085  *
1086  *	    Deactivate the specified pages if they are resident.
1087  *
1088  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1089  *			 OBJ_ONEMAPPING only)
1090  *
1091  *	    Deactivate and clean the specified pages if they are
1092  *	    resident.  This permits the process to reuse the pages
1093  *	    without faulting or the kernel to reclaim the pages
1094  *	    without I/O.
1095  */
1096 void
1097 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1098     int advise)
1099 {
1100 	vm_pindex_t tpindex;
1101 	vm_object_t backing_object, tobject;
1102 	vm_page_t m;
1103 
1104 	if (object == NULL)
1105 		return;
1106 	VM_OBJECT_WLOCK(object);
1107 	/*
1108 	 * Locate and adjust resident pages
1109 	 */
1110 	for (; pindex < end; pindex += 1) {
1111 relookup:
1112 		tobject = object;
1113 		tpindex = pindex;
1114 shadowlookup:
1115 		/*
1116 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1117 		 * and those pages must be OBJ_ONEMAPPING.
1118 		 */
1119 		if (advise == MADV_FREE) {
1120 			if ((tobject->type != OBJT_DEFAULT &&
1121 			     tobject->type != OBJT_SWAP) ||
1122 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1123 				goto unlock_tobject;
1124 			}
1125 		} else if ((tobject->flags & OBJ_UNMANAGED) != 0)
1126 			goto unlock_tobject;
1127 		m = vm_page_lookup(tobject, tpindex);
1128 		if (m == NULL && advise == MADV_WILLNEED) {
1129 			/*
1130 			 * If the page is cached, reactivate it.
1131 			 */
1132 			m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1133 			    VM_ALLOC_NOBUSY);
1134 		}
1135 		if (m == NULL) {
1136 			/*
1137 			 * There may be swap even if there is no backing page
1138 			 */
1139 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1140 				swap_pager_freespace(tobject, tpindex, 1);
1141 			/*
1142 			 * next object
1143 			 */
1144 			backing_object = tobject->backing_object;
1145 			if (backing_object == NULL)
1146 				goto unlock_tobject;
1147 			VM_OBJECT_WLOCK(backing_object);
1148 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1149 			if (tobject != object)
1150 				VM_OBJECT_WUNLOCK(tobject);
1151 			tobject = backing_object;
1152 			goto shadowlookup;
1153 		} else if (m->valid != VM_PAGE_BITS_ALL)
1154 			goto unlock_tobject;
1155 		/*
1156 		 * If the page is not in a normal state, skip it.
1157 		 */
1158 		vm_page_lock(m);
1159 		if (m->hold_count != 0 || m->wire_count != 0) {
1160 			vm_page_unlock(m);
1161 			goto unlock_tobject;
1162 		}
1163 		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1164 		    ("vm_object_madvise: page %p is fictitious", m));
1165 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1166 		    ("vm_object_madvise: page %p is not managed", m));
1167 		if (vm_page_busied(m)) {
1168 			if (advise == MADV_WILLNEED) {
1169 				/*
1170 				 * Reference the page before unlocking and
1171 				 * sleeping so that the page daemon is less
1172 				 * likely to reclaim it.
1173 				 */
1174 				vm_page_aflag_set(m, PGA_REFERENCED);
1175 			}
1176 			if (object != tobject)
1177 				VM_OBJECT_WUNLOCK(object);
1178 			VM_OBJECT_WUNLOCK(tobject);
1179 			vm_page_busy_sleep(m, "madvpo");
1180 			VM_OBJECT_WLOCK(object);
1181   			goto relookup;
1182 		}
1183 		if (advise == MADV_WILLNEED) {
1184 			vm_page_activate(m);
1185 		} else {
1186 			vm_page_advise(m, advise);
1187 		}
1188 		vm_page_unlock(m);
1189 		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1190 			swap_pager_freespace(tobject, tpindex, 1);
1191 unlock_tobject:
1192 		if (tobject != object)
1193 			VM_OBJECT_WUNLOCK(tobject);
1194 	}
1195 	VM_OBJECT_WUNLOCK(object);
1196 }
1197 
1198 /*
1199  *	vm_object_shadow:
1200  *
1201  *	Create a new object which is backed by the
1202  *	specified existing object range.  The source
1203  *	object reference is deallocated.
1204  *
1205  *	The new object and offset into that object
1206  *	are returned in the source parameters.
1207  */
1208 void
1209 vm_object_shadow(
1210 	vm_object_t *object,	/* IN/OUT */
1211 	vm_ooffset_t *offset,	/* IN/OUT */
1212 	vm_size_t length)
1213 {
1214 	vm_object_t source;
1215 	vm_object_t result;
1216 
1217 	source = *object;
1218 
1219 	/*
1220 	 * Don't create the new object if the old object isn't shared.
1221 	 */
1222 	if (source != NULL) {
1223 		VM_OBJECT_WLOCK(source);
1224 		if (source->ref_count == 1 &&
1225 		    source->handle == NULL &&
1226 		    (source->type == OBJT_DEFAULT ||
1227 		     source->type == OBJT_SWAP)) {
1228 			VM_OBJECT_WUNLOCK(source);
1229 			return;
1230 		}
1231 		VM_OBJECT_WUNLOCK(source);
1232 	}
1233 
1234 	/*
1235 	 * Allocate a new object with the given length.
1236 	 */
1237 	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1238 
1239 	/*
1240 	 * The new object shadows the source object, adding a reference to it.
1241 	 * Our caller changes his reference to point to the new object,
1242 	 * removing a reference to the source object.  Net result: no change
1243 	 * of reference count.
1244 	 *
1245 	 * Try to optimize the result object's page color when shadowing
1246 	 * in order to maintain page coloring consistency in the combined
1247 	 * shadowed object.
1248 	 */
1249 	result->backing_object = source;
1250 	/*
1251 	 * Store the offset into the source object, and fix up the offset into
1252 	 * the new object.
1253 	 */
1254 	result->backing_object_offset = *offset;
1255 	if (source != NULL) {
1256 		VM_OBJECT_WLOCK(source);
1257 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1258 		source->shadow_count++;
1259 #if VM_NRESERVLEVEL > 0
1260 		result->flags |= source->flags & OBJ_COLORED;
1261 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1262 		    ((1 << (VM_NFREEORDER - 1)) - 1);
1263 #endif
1264 		VM_OBJECT_WUNLOCK(source);
1265 	}
1266 
1267 
1268 	/*
1269 	 * Return the new things
1270 	 */
1271 	*offset = 0;
1272 	*object = result;
1273 }
1274 
1275 /*
1276  *	vm_object_split:
1277  *
1278  * Split the pages in a map entry into a new object.  This affords
1279  * easier removal of unused pages, and keeps object inheritance from
1280  * being a negative impact on memory usage.
1281  */
1282 void
1283 vm_object_split(vm_map_entry_t entry)
1284 {
1285 	vm_page_t m, m_next;
1286 	vm_object_t orig_object, new_object, source;
1287 	vm_pindex_t idx, offidxstart;
1288 	vm_size_t size;
1289 
1290 	orig_object = entry->object.vm_object;
1291 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1292 		return;
1293 	if (orig_object->ref_count <= 1)
1294 		return;
1295 	VM_OBJECT_WUNLOCK(orig_object);
1296 
1297 	offidxstart = OFF_TO_IDX(entry->offset);
1298 	size = atop(entry->end - entry->start);
1299 
1300 	/*
1301 	 * If swap_pager_copy() is later called, it will convert new_object
1302 	 * into a swap object.
1303 	 */
1304 	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1305 
1306 	/*
1307 	 * At this point, the new object is still private, so the order in
1308 	 * which the original and new objects are locked does not matter.
1309 	 */
1310 	VM_OBJECT_WLOCK(new_object);
1311 	VM_OBJECT_WLOCK(orig_object);
1312 	source = orig_object->backing_object;
1313 	if (source != NULL) {
1314 		VM_OBJECT_WLOCK(source);
1315 		if ((source->flags & OBJ_DEAD) != 0) {
1316 			VM_OBJECT_WUNLOCK(source);
1317 			VM_OBJECT_WUNLOCK(orig_object);
1318 			VM_OBJECT_WUNLOCK(new_object);
1319 			vm_object_deallocate(new_object);
1320 			VM_OBJECT_WLOCK(orig_object);
1321 			return;
1322 		}
1323 		LIST_INSERT_HEAD(&source->shadow_head,
1324 				  new_object, shadow_list);
1325 		source->shadow_count++;
1326 		vm_object_reference_locked(source);	/* for new_object */
1327 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1328 		VM_OBJECT_WUNLOCK(source);
1329 		new_object->backing_object_offset =
1330 			orig_object->backing_object_offset + entry->offset;
1331 		new_object->backing_object = source;
1332 	}
1333 	if (orig_object->cred != NULL) {
1334 		new_object->cred = orig_object->cred;
1335 		crhold(orig_object->cred);
1336 		new_object->charge = ptoa(size);
1337 		KASSERT(orig_object->charge >= ptoa(size),
1338 		    ("orig_object->charge < 0"));
1339 		orig_object->charge -= ptoa(size);
1340 	}
1341 retry:
1342 	m = vm_page_find_least(orig_object, offidxstart);
1343 	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1344 	    m = m_next) {
1345 		m_next = TAILQ_NEXT(m, listq);
1346 
1347 		/*
1348 		 * We must wait for pending I/O to complete before we can
1349 		 * rename the page.
1350 		 *
1351 		 * We do not have to VM_PROT_NONE the page as mappings should
1352 		 * not be changed by this operation.
1353 		 */
1354 		if (vm_page_busied(m)) {
1355 			VM_OBJECT_WUNLOCK(new_object);
1356 			vm_page_lock(m);
1357 			VM_OBJECT_WUNLOCK(orig_object);
1358 			vm_page_busy_sleep(m, "spltwt");
1359 			VM_OBJECT_WLOCK(orig_object);
1360 			VM_OBJECT_WLOCK(new_object);
1361 			goto retry;
1362 		}
1363 
1364 		/* vm_page_rename() will handle dirty and cache. */
1365 		if (vm_page_rename(m, new_object, idx)) {
1366 			VM_OBJECT_WUNLOCK(new_object);
1367 			VM_OBJECT_WUNLOCK(orig_object);
1368 			VM_WAIT;
1369 			VM_OBJECT_WLOCK(orig_object);
1370 			VM_OBJECT_WLOCK(new_object);
1371 			goto retry;
1372 		}
1373 #if VM_NRESERVLEVEL > 0
1374 		/*
1375 		 * If some of the reservation's allocated pages remain with
1376 		 * the original object, then transferring the reservation to
1377 		 * the new object is neither particularly beneficial nor
1378 		 * particularly harmful as compared to leaving the reservation
1379 		 * with the original object.  If, however, all of the
1380 		 * reservation's allocated pages are transferred to the new
1381 		 * object, then transferring the reservation is typically
1382 		 * beneficial.  Determining which of these two cases applies
1383 		 * would be more costly than unconditionally renaming the
1384 		 * reservation.
1385 		 */
1386 		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1387 #endif
1388 		if (orig_object->type == OBJT_SWAP)
1389 			vm_page_xbusy(m);
1390 	}
1391 	if (orig_object->type == OBJT_SWAP) {
1392 		/*
1393 		 * swap_pager_copy() can sleep, in which case the orig_object's
1394 		 * and new_object's locks are released and reacquired.
1395 		 */
1396 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1397 		TAILQ_FOREACH(m, &new_object->memq, listq)
1398 			vm_page_xunbusy(m);
1399 
1400 		/*
1401 		 * Transfer any cached pages from orig_object to new_object.
1402 		 * If swap_pager_copy() found swapped out pages within the
1403 		 * specified range of orig_object, then it changed
1404 		 * new_object's type to OBJT_SWAP when it transferred those
1405 		 * pages to new_object.  Otherwise, new_object's type
1406 		 * should still be OBJT_DEFAULT and orig_object should not
1407 		 * contain any cached pages within the specified range.
1408 		 */
1409 		if (__predict_false(!vm_object_cache_is_empty(orig_object)))
1410 			vm_page_cache_transfer(orig_object, offidxstart,
1411 			    new_object);
1412 	}
1413 	VM_OBJECT_WUNLOCK(orig_object);
1414 	VM_OBJECT_WUNLOCK(new_object);
1415 	entry->object.vm_object = new_object;
1416 	entry->offset = 0LL;
1417 	vm_object_deallocate(orig_object);
1418 	VM_OBJECT_WLOCK(new_object);
1419 }
1420 
1421 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1422 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1423 #define	OBSC_COLLAPSE_WAIT	0x0004
1424 
1425 static int
1426 vm_object_backing_scan(vm_object_t object, int op)
1427 {
1428 	int r = 1;
1429 	vm_page_t p;
1430 	vm_object_t backing_object;
1431 	vm_pindex_t backing_offset_index;
1432 
1433 	VM_OBJECT_ASSERT_WLOCKED(object);
1434 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1435 
1436 	backing_object = object->backing_object;
1437 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1438 
1439 	/*
1440 	 * Initial conditions
1441 	 */
1442 	if (op & OBSC_TEST_ALL_SHADOWED) {
1443 		/*
1444 		 * We do not want to have to test for the existence of cache
1445 		 * or swap pages in the backing object.  XXX but with the
1446 		 * new swapper this would be pretty easy to do.
1447 		 *
1448 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1449 		 * been ZFOD faulted yet?  If we do not test for this, the
1450 		 * shadow test may succeed! XXX
1451 		 */
1452 		if (backing_object->type != OBJT_DEFAULT) {
1453 			return (0);
1454 		}
1455 	}
1456 	if (op & OBSC_COLLAPSE_WAIT) {
1457 		vm_object_set_flag(backing_object, OBJ_DEAD);
1458 	}
1459 
1460 	/*
1461 	 * Our scan
1462 	 */
1463 	p = TAILQ_FIRST(&backing_object->memq);
1464 	while (p) {
1465 		vm_page_t next = TAILQ_NEXT(p, listq);
1466 		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1467 
1468 		if (op & OBSC_TEST_ALL_SHADOWED) {
1469 			vm_page_t pp;
1470 
1471 			/*
1472 			 * Ignore pages outside the parent object's range
1473 			 * and outside the parent object's mapping of the
1474 			 * backing object.
1475 			 *
1476 			 * note that we do not busy the backing object's
1477 			 * page.
1478 			 */
1479 			if (
1480 			    p->pindex < backing_offset_index ||
1481 			    new_pindex >= object->size
1482 			) {
1483 				p = next;
1484 				continue;
1485 			}
1486 
1487 			/*
1488 			 * See if the parent has the page or if the parent's
1489 			 * object pager has the page.  If the parent has the
1490 			 * page but the page is not valid, the parent's
1491 			 * object pager must have the page.
1492 			 *
1493 			 * If this fails, the parent does not completely shadow
1494 			 * the object and we might as well give up now.
1495 			 */
1496 
1497 			pp = vm_page_lookup(object, new_pindex);
1498 			if (
1499 			    (pp == NULL || pp->valid == 0) &&
1500 			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1501 			) {
1502 				r = 0;
1503 				break;
1504 			}
1505 		}
1506 
1507 		/*
1508 		 * Check for busy page
1509 		 */
1510 		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1511 			vm_page_t pp;
1512 
1513 			if (op & OBSC_COLLAPSE_NOWAIT) {
1514 				if (!p->valid || vm_page_busied(p)) {
1515 					p = next;
1516 					continue;
1517 				}
1518 			} else if (op & OBSC_COLLAPSE_WAIT) {
1519 				if (vm_page_busied(p)) {
1520 					VM_OBJECT_WUNLOCK(object);
1521 					vm_page_lock(p);
1522 					VM_OBJECT_WUNLOCK(backing_object);
1523 					vm_page_busy_sleep(p, "vmocol");
1524 					VM_OBJECT_WLOCK(object);
1525 					VM_OBJECT_WLOCK(backing_object);
1526 					/*
1527 					 * If we slept, anything could have
1528 					 * happened.  Since the object is
1529 					 * marked dead, the backing offset
1530 					 * should not have changed so we
1531 					 * just restart our scan.
1532 					 */
1533 					p = TAILQ_FIRST(&backing_object->memq);
1534 					continue;
1535 				}
1536 			}
1537 
1538 			KASSERT(
1539 			    p->object == backing_object,
1540 			    ("vm_object_backing_scan: object mismatch")
1541 			);
1542 
1543 			if (
1544 			    p->pindex < backing_offset_index ||
1545 			    new_pindex >= object->size
1546 			) {
1547 				if (backing_object->type == OBJT_SWAP)
1548 					swap_pager_freespace(backing_object,
1549 					    p->pindex, 1);
1550 
1551 				/*
1552 				 * Page is out of the parent object's range, we
1553 				 * can simply destroy it.
1554 				 */
1555 				vm_page_lock(p);
1556 				KASSERT(!pmap_page_is_mapped(p),
1557 				    ("freeing mapped page %p", p));
1558 				if (p->wire_count == 0)
1559 					vm_page_free(p);
1560 				else
1561 					vm_page_remove(p);
1562 				vm_page_unlock(p);
1563 				p = next;
1564 				continue;
1565 			}
1566 
1567 			pp = vm_page_lookup(object, new_pindex);
1568 			if (
1569 			    (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
1570 			    (pp != NULL && pp->valid == 0)
1571 			) {
1572 				if (backing_object->type == OBJT_SWAP)
1573 					swap_pager_freespace(backing_object,
1574 					    p->pindex, 1);
1575 
1576 				/*
1577 				 * The page in the parent is not (yet) valid.
1578 				 * We don't know anything about the state of
1579 				 * the original page.  It might be mapped,
1580 				 * so we must avoid the next if here.
1581 				 *
1582 				 * This is due to a race in vm_fault() where
1583 				 * we must unbusy the original (backing_obj)
1584 				 * page before we can (re)lock the parent.
1585 				 * Hence we can get here.
1586 				 */
1587 				p = next;
1588 				continue;
1589 			}
1590 			if (
1591 			    pp != NULL ||
1592 			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1593 			) {
1594 				if (backing_object->type == OBJT_SWAP)
1595 					swap_pager_freespace(backing_object,
1596 					    p->pindex, 1);
1597 
1598 				/*
1599 				 * page already exists in parent OR swap exists
1600 				 * for this location in the parent.  Destroy
1601 				 * the original page from the backing object.
1602 				 *
1603 				 * Leave the parent's page alone
1604 				 */
1605 				vm_page_lock(p);
1606 				KASSERT(!pmap_page_is_mapped(p),
1607 				    ("freeing mapped page %p", p));
1608 				if (p->wire_count == 0)
1609 					vm_page_free(p);
1610 				else
1611 					vm_page_remove(p);
1612 				vm_page_unlock(p);
1613 				p = next;
1614 				continue;
1615 			}
1616 
1617 			/*
1618 			 * Page does not exist in parent, rename the
1619 			 * page from the backing object to the main object.
1620 			 *
1621 			 * If the page was mapped to a process, it can remain
1622 			 * mapped through the rename.
1623 			 * vm_page_rename() will handle dirty and cache.
1624 			 */
1625 			if (vm_page_rename(p, object, new_pindex)) {
1626 				if (op & OBSC_COLLAPSE_NOWAIT) {
1627 					p = next;
1628 					continue;
1629 				}
1630 				VM_OBJECT_WUNLOCK(backing_object);
1631 				VM_OBJECT_WUNLOCK(object);
1632 				VM_WAIT;
1633 				VM_OBJECT_WLOCK(object);
1634 				VM_OBJECT_WLOCK(backing_object);
1635 				p = TAILQ_FIRST(&backing_object->memq);
1636 				continue;
1637 			}
1638 
1639 			/* Use the old pindex to free the right page. */
1640 			if (backing_object->type == OBJT_SWAP)
1641 				swap_pager_freespace(backing_object,
1642 				    new_pindex + backing_offset_index, 1);
1643 
1644 #if VM_NRESERVLEVEL > 0
1645 			/*
1646 			 * Rename the reservation.
1647 			 */
1648 			vm_reserv_rename(p, object, backing_object,
1649 			    backing_offset_index);
1650 #endif
1651 		}
1652 		p = next;
1653 	}
1654 	return (r);
1655 }
1656 
1657 
1658 /*
1659  * this version of collapse allows the operation to occur earlier and
1660  * when paging_in_progress is true for an object...  This is not a complete
1661  * operation, but should plug 99.9% of the rest of the leaks.
1662  */
1663 static void
1664 vm_object_qcollapse(vm_object_t object)
1665 {
1666 	vm_object_t backing_object = object->backing_object;
1667 
1668 	VM_OBJECT_ASSERT_WLOCKED(object);
1669 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1670 
1671 	if (backing_object->ref_count != 1)
1672 		return;
1673 
1674 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1675 }
1676 
1677 /*
1678  *	vm_object_collapse:
1679  *
1680  *	Collapse an object with the object backing it.
1681  *	Pages in the backing object are moved into the
1682  *	parent, and the backing object is deallocated.
1683  */
1684 void
1685 vm_object_collapse(vm_object_t object)
1686 {
1687 	VM_OBJECT_ASSERT_WLOCKED(object);
1688 
1689 	while (TRUE) {
1690 		vm_object_t backing_object;
1691 
1692 		/*
1693 		 * Verify that the conditions are right for collapse:
1694 		 *
1695 		 * The object exists and the backing object exists.
1696 		 */
1697 		if ((backing_object = object->backing_object) == NULL)
1698 			break;
1699 
1700 		/*
1701 		 * we check the backing object first, because it is most likely
1702 		 * not collapsable.
1703 		 */
1704 		VM_OBJECT_WLOCK(backing_object);
1705 		if (backing_object->handle != NULL ||
1706 		    (backing_object->type != OBJT_DEFAULT &&
1707 		     backing_object->type != OBJT_SWAP) ||
1708 		    (backing_object->flags & OBJ_DEAD) ||
1709 		    object->handle != NULL ||
1710 		    (object->type != OBJT_DEFAULT &&
1711 		     object->type != OBJT_SWAP) ||
1712 		    (object->flags & OBJ_DEAD)) {
1713 			VM_OBJECT_WUNLOCK(backing_object);
1714 			break;
1715 		}
1716 
1717 		if (
1718 		    object->paging_in_progress != 0 ||
1719 		    backing_object->paging_in_progress != 0
1720 		) {
1721 			vm_object_qcollapse(object);
1722 			VM_OBJECT_WUNLOCK(backing_object);
1723 			break;
1724 		}
1725 		/*
1726 		 * We know that we can either collapse the backing object (if
1727 		 * the parent is the only reference to it) or (perhaps) have
1728 		 * the parent bypass the object if the parent happens to shadow
1729 		 * all the resident pages in the entire backing object.
1730 		 *
1731 		 * This is ignoring pager-backed pages such as swap pages.
1732 		 * vm_object_backing_scan fails the shadowing test in this
1733 		 * case.
1734 		 */
1735 		if (backing_object->ref_count == 1) {
1736 			/*
1737 			 * If there is exactly one reference to the backing
1738 			 * object, we can collapse it into the parent.
1739 			 */
1740 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1741 
1742 #if VM_NRESERVLEVEL > 0
1743 			/*
1744 			 * Break any reservations from backing_object.
1745 			 */
1746 			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1747 				vm_reserv_break_all(backing_object);
1748 #endif
1749 
1750 			/*
1751 			 * Move the pager from backing_object to object.
1752 			 */
1753 			if (backing_object->type == OBJT_SWAP) {
1754 				/*
1755 				 * swap_pager_copy() can sleep, in which case
1756 				 * the backing_object's and object's locks are
1757 				 * released and reacquired.
1758 				 * Since swap_pager_copy() is being asked to
1759 				 * destroy the source, it will change the
1760 				 * backing_object's type to OBJT_DEFAULT.
1761 				 */
1762 				swap_pager_copy(
1763 				    backing_object,
1764 				    object,
1765 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1766 
1767 				/*
1768 				 * Free any cached pages from backing_object.
1769 				 */
1770 				if (__predict_false(
1771 				    !vm_object_cache_is_empty(backing_object)))
1772 					vm_page_cache_free(backing_object, 0, 0);
1773 			}
1774 			/*
1775 			 * Object now shadows whatever backing_object did.
1776 			 * Note that the reference to
1777 			 * backing_object->backing_object moves from within
1778 			 * backing_object to within object.
1779 			 */
1780 			LIST_REMOVE(object, shadow_list);
1781 			backing_object->shadow_count--;
1782 			if (backing_object->backing_object) {
1783 				VM_OBJECT_WLOCK(backing_object->backing_object);
1784 				LIST_REMOVE(backing_object, shadow_list);
1785 				LIST_INSERT_HEAD(
1786 				    &backing_object->backing_object->shadow_head,
1787 				    object, shadow_list);
1788 				/*
1789 				 * The shadow_count has not changed.
1790 				 */
1791 				VM_OBJECT_WUNLOCK(backing_object->backing_object);
1792 			}
1793 			object->backing_object = backing_object->backing_object;
1794 			object->backing_object_offset +=
1795 			    backing_object->backing_object_offset;
1796 
1797 			/*
1798 			 * Discard backing_object.
1799 			 *
1800 			 * Since the backing object has no pages, no pager left,
1801 			 * and no object references within it, all that is
1802 			 * necessary is to dispose of it.
1803 			 */
1804 			KASSERT(backing_object->ref_count == 1, (
1805 "backing_object %p was somehow re-referenced during collapse!",
1806 			    backing_object));
1807 			backing_object->type = OBJT_DEAD;
1808 			backing_object->ref_count = 0;
1809 			VM_OBJECT_WUNLOCK(backing_object);
1810 			vm_object_destroy(backing_object);
1811 
1812 			object_collapses++;
1813 		} else {
1814 			vm_object_t new_backing_object;
1815 
1816 			/*
1817 			 * If we do not entirely shadow the backing object,
1818 			 * there is nothing we can do so we give up.
1819 			 */
1820 			if (object->resident_page_count != object->size &&
1821 			    vm_object_backing_scan(object,
1822 			    OBSC_TEST_ALL_SHADOWED) == 0) {
1823 				VM_OBJECT_WUNLOCK(backing_object);
1824 				break;
1825 			}
1826 
1827 			/*
1828 			 * Make the parent shadow the next object in the
1829 			 * chain.  Deallocating backing_object will not remove
1830 			 * it, since its reference count is at least 2.
1831 			 */
1832 			LIST_REMOVE(object, shadow_list);
1833 			backing_object->shadow_count--;
1834 
1835 			new_backing_object = backing_object->backing_object;
1836 			if ((object->backing_object = new_backing_object) != NULL) {
1837 				VM_OBJECT_WLOCK(new_backing_object);
1838 				LIST_INSERT_HEAD(
1839 				    &new_backing_object->shadow_head,
1840 				    object,
1841 				    shadow_list
1842 				);
1843 				new_backing_object->shadow_count++;
1844 				vm_object_reference_locked(new_backing_object);
1845 				VM_OBJECT_WUNLOCK(new_backing_object);
1846 				object->backing_object_offset +=
1847 					backing_object->backing_object_offset;
1848 			}
1849 
1850 			/*
1851 			 * Drop the reference count on backing_object. Since
1852 			 * its ref_count was at least 2, it will not vanish.
1853 			 */
1854 			backing_object->ref_count--;
1855 			VM_OBJECT_WUNLOCK(backing_object);
1856 			object_bypasses++;
1857 		}
1858 
1859 		/*
1860 		 * Try again with this object's new backing object.
1861 		 */
1862 	}
1863 }
1864 
1865 /*
1866  *	vm_object_page_remove:
1867  *
1868  *	For the given object, either frees or invalidates each of the
1869  *	specified pages.  In general, a page is freed.  However, if a page is
1870  *	wired for any reason other than the existence of a managed, wired
1871  *	mapping, then it may be invalidated but not removed from the object.
1872  *	Pages are specified by the given range ["start", "end") and the option
1873  *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1874  *	extends from "start" to the end of the object.  If the option
1875  *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1876  *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1877  *	specified, then the pages within the specified range must have no
1878  *	mappings.  Otherwise, if this option is not specified, any mappings to
1879  *	the specified pages are removed before the pages are freed or
1880  *	invalidated.
1881  *
1882  *	In general, this operation should only be performed on objects that
1883  *	contain managed pages.  There are, however, two exceptions.  First, it
1884  *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1885  *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1886  *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1887  *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1888  *
1889  *	The object must be locked.
1890  */
1891 void
1892 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1893     int options)
1894 {
1895 	vm_page_t p, next;
1896 	int wirings;
1897 
1898 	VM_OBJECT_ASSERT_WLOCKED(object);
1899 	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1900 	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1901 	    ("vm_object_page_remove: illegal options for object %p", object));
1902 	if (object->resident_page_count == 0)
1903 		goto skipmemq;
1904 	vm_object_pip_add(object, 1);
1905 again:
1906 	p = vm_page_find_least(object, start);
1907 
1908 	/*
1909 	 * Here, the variable "p" is either (1) the page with the least pindex
1910 	 * greater than or equal to the parameter "start" or (2) NULL.
1911 	 */
1912 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1913 		next = TAILQ_NEXT(p, listq);
1914 
1915 		/*
1916 		 * If the page is wired for any reason besides the existence
1917 		 * of managed, wired mappings, then it cannot be freed.  For
1918 		 * example, fictitious pages, which represent device memory,
1919 		 * are inherently wired and cannot be freed.  They can,
1920 		 * however, be invalidated if the option OBJPR_CLEANONLY is
1921 		 * not specified.
1922 		 */
1923 		vm_page_lock(p);
1924 		if (vm_page_xbusied(p)) {
1925 			VM_OBJECT_WUNLOCK(object);
1926 			vm_page_busy_sleep(p, "vmopax");
1927 			VM_OBJECT_WLOCK(object);
1928 			goto again;
1929 		}
1930 		if ((wirings = p->wire_count) != 0 &&
1931 		    (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1932 			if ((options & (OBJPR_NOTWIRED | OBJPR_NOTMAPPED)) ==
1933 			    0) {
1934 				pmap_remove_all(p);
1935 				/* Account for removal of wired mappings. */
1936 				if (wirings != 0)
1937 					p->wire_count -= wirings;
1938 			}
1939 			if ((options & OBJPR_CLEANONLY) == 0) {
1940 				p->valid = 0;
1941 				vm_page_undirty(p);
1942 			}
1943 			goto next;
1944 		}
1945 		if (vm_page_busied(p)) {
1946 			VM_OBJECT_WUNLOCK(object);
1947 			vm_page_busy_sleep(p, "vmopar");
1948 			VM_OBJECT_WLOCK(object);
1949 			goto again;
1950 		}
1951 		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1952 		    ("vm_object_page_remove: page %p is fictitious", p));
1953 		if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1954 			if ((options & OBJPR_NOTMAPPED) == 0)
1955 				pmap_remove_write(p);
1956 			if (p->dirty)
1957 				goto next;
1958 		}
1959 		if ((options & OBJPR_NOTMAPPED) == 0) {
1960 			if ((options & OBJPR_NOTWIRED) != 0 && wirings != 0)
1961 				goto next;
1962 			pmap_remove_all(p);
1963 			/* Account for removal of wired mappings. */
1964 			if (wirings != 0) {
1965 				KASSERT(p->wire_count == wirings,
1966 				    ("inconsistent wire count %d %d %p",
1967 				    p->wire_count, wirings, p));
1968 				p->wire_count = 0;
1969 				atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1970 			}
1971 		}
1972 		vm_page_free(p);
1973 next:
1974 		vm_page_unlock(p);
1975 	}
1976 	vm_object_pip_wakeup(object);
1977 skipmemq:
1978 	if (__predict_false(!vm_object_cache_is_empty(object)))
1979 		vm_page_cache_free(object, start, end);
1980 }
1981 
1982 /*
1983  *	vm_object_page_cache:
1984  *
1985  *	For the given object, attempt to move the specified clean
1986  *	pages to the cache queue.  If a page is wired for any reason,
1987  *	then it will not be changed.  Pages are specified by the given
1988  *	range ["start", "end").  As a special case, if "end" is zero,
1989  *	then the range extends from "start" to the end of the object.
1990  *	Any mappings to the specified pages are removed before the
1991  *	pages are moved to the cache queue.
1992  *
1993  *	This operation should only be performed on objects that
1994  *	contain non-fictitious, managed pages.
1995  *
1996  *	The object must be locked.
1997  */
1998 void
1999 vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2000 {
2001 	struct mtx *mtx, *new_mtx;
2002 	vm_page_t p, next;
2003 
2004 	VM_OBJECT_ASSERT_WLOCKED(object);
2005 	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2006 	    ("vm_object_page_cache: illegal object %p", object));
2007 	if (object->resident_page_count == 0)
2008 		return;
2009 	p = vm_page_find_least(object, start);
2010 
2011 	/*
2012 	 * Here, the variable "p" is either (1) the page with the least pindex
2013 	 * greater than or equal to the parameter "start" or (2) NULL.
2014 	 */
2015 	mtx = NULL;
2016 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2017 		next = TAILQ_NEXT(p, listq);
2018 
2019 		/*
2020 		 * Avoid releasing and reacquiring the same page lock.
2021 		 */
2022 		new_mtx = vm_page_lockptr(p);
2023 		if (mtx != new_mtx) {
2024 			if (mtx != NULL)
2025 				mtx_unlock(mtx);
2026 			mtx = new_mtx;
2027 			mtx_lock(mtx);
2028 		}
2029 		vm_page_try_to_cache(p);
2030 	}
2031 	if (mtx != NULL)
2032 		mtx_unlock(mtx);
2033 }
2034 
2035 /*
2036  *	Populate the specified range of the object with valid pages.  Returns
2037  *	TRUE if the range is successfully populated and FALSE otherwise.
2038  *
2039  *	Note: This function should be optimized to pass a larger array of
2040  *	pages to vm_pager_get_pages() before it is applied to a non-
2041  *	OBJT_DEVICE object.
2042  *
2043  *	The object must be locked.
2044  */
2045 boolean_t
2046 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2047 {
2048 	vm_page_t m, ma[1];
2049 	vm_pindex_t pindex;
2050 	int rv;
2051 
2052 	VM_OBJECT_ASSERT_WLOCKED(object);
2053 	for (pindex = start; pindex < end; pindex++) {
2054 		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2055 		if (m->valid != VM_PAGE_BITS_ALL) {
2056 			ma[0] = m;
2057 			rv = vm_pager_get_pages(object, ma, 1, 0);
2058 			m = vm_page_lookup(object, pindex);
2059 			if (m == NULL)
2060 				break;
2061 			if (rv != VM_PAGER_OK) {
2062 				vm_page_lock(m);
2063 				vm_page_free(m);
2064 				vm_page_unlock(m);
2065 				break;
2066 			}
2067 		}
2068 		/*
2069 		 * Keep "m" busy because a subsequent iteration may unlock
2070 		 * the object.
2071 		 */
2072 	}
2073 	if (pindex > start) {
2074 		m = vm_page_lookup(object, start);
2075 		while (m != NULL && m->pindex < pindex) {
2076 			vm_page_xunbusy(m);
2077 			m = TAILQ_NEXT(m, listq);
2078 		}
2079 	}
2080 	return (pindex == end);
2081 }
2082 
2083 /*
2084  *	Routine:	vm_object_coalesce
2085  *	Function:	Coalesces two objects backing up adjoining
2086  *			regions of memory into a single object.
2087  *
2088  *	returns TRUE if objects were combined.
2089  *
2090  *	NOTE:	Only works at the moment if the second object is NULL -
2091  *		if it's not, which object do we lock first?
2092  *
2093  *	Parameters:
2094  *		prev_object	First object to coalesce
2095  *		prev_offset	Offset into prev_object
2096  *		prev_size	Size of reference to prev_object
2097  *		next_size	Size of reference to the second object
2098  *		reserved	Indicator that extension region has
2099  *				swap accounted for
2100  *
2101  *	Conditions:
2102  *	The object must *not* be locked.
2103  */
2104 boolean_t
2105 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2106     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2107 {
2108 	vm_pindex_t next_pindex;
2109 
2110 	if (prev_object == NULL)
2111 		return (TRUE);
2112 	VM_OBJECT_WLOCK(prev_object);
2113 	if ((prev_object->type != OBJT_DEFAULT &&
2114 	    prev_object->type != OBJT_SWAP) ||
2115 	    (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2116 		VM_OBJECT_WUNLOCK(prev_object);
2117 		return (FALSE);
2118 	}
2119 
2120 	/*
2121 	 * Try to collapse the object first
2122 	 */
2123 	vm_object_collapse(prev_object);
2124 
2125 	/*
2126 	 * Can't coalesce if: . more than one reference . paged out . shadows
2127 	 * another object . has a copy elsewhere (any of which mean that the
2128 	 * pages not mapped to prev_entry may be in use anyway)
2129 	 */
2130 	if (prev_object->backing_object != NULL) {
2131 		VM_OBJECT_WUNLOCK(prev_object);
2132 		return (FALSE);
2133 	}
2134 
2135 	prev_size >>= PAGE_SHIFT;
2136 	next_size >>= PAGE_SHIFT;
2137 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2138 
2139 	if ((prev_object->ref_count > 1) &&
2140 	    (prev_object->size != next_pindex)) {
2141 		VM_OBJECT_WUNLOCK(prev_object);
2142 		return (FALSE);
2143 	}
2144 
2145 	/*
2146 	 * Account for the charge.
2147 	 */
2148 	if (prev_object->cred != NULL) {
2149 
2150 		/*
2151 		 * If prev_object was charged, then this mapping,
2152 		 * althought not charged now, may become writable
2153 		 * later. Non-NULL cred in the object would prevent
2154 		 * swap reservation during enabling of the write
2155 		 * access, so reserve swap now. Failed reservation
2156 		 * cause allocation of the separate object for the map
2157 		 * entry, and swap reservation for this entry is
2158 		 * managed in appropriate time.
2159 		 */
2160 		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2161 		    prev_object->cred)) {
2162 			return (FALSE);
2163 		}
2164 		prev_object->charge += ptoa(next_size);
2165 	}
2166 
2167 	/*
2168 	 * Remove any pages that may still be in the object from a previous
2169 	 * deallocation.
2170 	 */
2171 	if (next_pindex < prev_object->size) {
2172 		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2173 		    next_size, 0);
2174 		if (prev_object->type == OBJT_SWAP)
2175 			swap_pager_freespace(prev_object,
2176 					     next_pindex, next_size);
2177 #if 0
2178 		if (prev_object->cred != NULL) {
2179 			KASSERT(prev_object->charge >=
2180 			    ptoa(prev_object->size - next_pindex),
2181 			    ("object %p overcharged 1 %jx %jx", prev_object,
2182 				(uintmax_t)next_pindex, (uintmax_t)next_size));
2183 			prev_object->charge -= ptoa(prev_object->size -
2184 			    next_pindex);
2185 		}
2186 #endif
2187 	}
2188 
2189 	/*
2190 	 * Extend the object if necessary.
2191 	 */
2192 	if (next_pindex + next_size > prev_object->size)
2193 		prev_object->size = next_pindex + next_size;
2194 
2195 	VM_OBJECT_WUNLOCK(prev_object);
2196 	return (TRUE);
2197 }
2198 
2199 void
2200 vm_object_set_writeable_dirty(vm_object_t object)
2201 {
2202 
2203 	VM_OBJECT_ASSERT_WLOCKED(object);
2204 	if (object->type != OBJT_VNODE) {
2205 		if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2206 			KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2207 			vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2208 		}
2209 		return;
2210 	}
2211 	object->generation++;
2212 	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2213 		return;
2214 	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2215 }
2216 
2217 /*
2218  *	vm_object_unwire:
2219  *
2220  *	For each page offset within the specified range of the given object,
2221  *	find the highest-level page in the shadow chain and unwire it.  A page
2222  *	must exist at every page offset, and the highest-level page must be
2223  *	wired.
2224  */
2225 void
2226 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2227     uint8_t queue)
2228 {
2229 	vm_object_t tobject;
2230 	vm_page_t m, tm;
2231 	vm_pindex_t end_pindex, pindex, tpindex;
2232 	int depth, locked_depth;
2233 
2234 	KASSERT((offset & PAGE_MASK) == 0,
2235 	    ("vm_object_unwire: offset is not page aligned"));
2236 	KASSERT((length & PAGE_MASK) == 0,
2237 	    ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2238 	/* The wired count of a fictitious page never changes. */
2239 	if ((object->flags & OBJ_FICTITIOUS) != 0)
2240 		return;
2241 	pindex = OFF_TO_IDX(offset);
2242 	end_pindex = pindex + atop(length);
2243 	locked_depth = 1;
2244 	VM_OBJECT_RLOCK(object);
2245 	m = vm_page_find_least(object, pindex);
2246 	while (pindex < end_pindex) {
2247 		if (m == NULL || pindex < m->pindex) {
2248 			/*
2249 			 * The first object in the shadow chain doesn't
2250 			 * contain a page at the current index.  Therefore,
2251 			 * the page must exist in a backing object.
2252 			 */
2253 			tobject = object;
2254 			tpindex = pindex;
2255 			depth = 0;
2256 			do {
2257 				tpindex +=
2258 				    OFF_TO_IDX(tobject->backing_object_offset);
2259 				tobject = tobject->backing_object;
2260 				KASSERT(tobject != NULL,
2261 				    ("vm_object_unwire: missing page"));
2262 				if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2263 					goto next_page;
2264 				depth++;
2265 				if (depth == locked_depth) {
2266 					locked_depth++;
2267 					VM_OBJECT_RLOCK(tobject);
2268 				}
2269 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
2270 			    NULL);
2271 		} else {
2272 			tm = m;
2273 			m = TAILQ_NEXT(m, listq);
2274 		}
2275 		vm_page_lock(tm);
2276 		vm_page_unwire(tm, queue);
2277 		vm_page_unlock(tm);
2278 next_page:
2279 		pindex++;
2280 	}
2281 	/* Release the accumulated object locks. */
2282 	for (depth = 0; depth < locked_depth; depth++) {
2283 		tobject = object->backing_object;
2284 		VM_OBJECT_RUNLOCK(object);
2285 		object = tobject;
2286 	}
2287 }
2288 
2289 #include "opt_ddb.h"
2290 #ifdef DDB
2291 #include <sys/kernel.h>
2292 
2293 #include <sys/cons.h>
2294 
2295 #include <ddb/ddb.h>
2296 
2297 static int
2298 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2299 {
2300 	vm_map_t tmpm;
2301 	vm_map_entry_t tmpe;
2302 	vm_object_t obj;
2303 	int entcount;
2304 
2305 	if (map == 0)
2306 		return 0;
2307 
2308 	if (entry == 0) {
2309 		tmpe = map->header.next;
2310 		entcount = map->nentries;
2311 		while (entcount-- && (tmpe != &map->header)) {
2312 			if (_vm_object_in_map(map, object, tmpe)) {
2313 				return 1;
2314 			}
2315 			tmpe = tmpe->next;
2316 		}
2317 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2318 		tmpm = entry->object.sub_map;
2319 		tmpe = tmpm->header.next;
2320 		entcount = tmpm->nentries;
2321 		while (entcount-- && tmpe != &tmpm->header) {
2322 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2323 				return 1;
2324 			}
2325 			tmpe = tmpe->next;
2326 		}
2327 	} else if ((obj = entry->object.vm_object) != NULL) {
2328 		for (; obj; obj = obj->backing_object)
2329 			if (obj == object) {
2330 				return 1;
2331 			}
2332 	}
2333 	return 0;
2334 }
2335 
2336 static int
2337 vm_object_in_map(vm_object_t object)
2338 {
2339 	struct proc *p;
2340 
2341 	/* sx_slock(&allproc_lock); */
2342 	FOREACH_PROC_IN_SYSTEM(p) {
2343 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2344 			continue;
2345 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2346 			/* sx_sunlock(&allproc_lock); */
2347 			return 1;
2348 		}
2349 	}
2350 	/* sx_sunlock(&allproc_lock); */
2351 	if (_vm_object_in_map(kernel_map, object, 0))
2352 		return 1;
2353 	return 0;
2354 }
2355 
2356 DB_SHOW_COMMAND(vmochk, vm_object_check)
2357 {
2358 	vm_object_t object;
2359 
2360 	/*
2361 	 * make sure that internal objs are in a map somewhere
2362 	 * and none have zero ref counts.
2363 	 */
2364 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2365 		if (object->handle == NULL &&
2366 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2367 			if (object->ref_count == 0) {
2368 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2369 					(long)object->size);
2370 			}
2371 			if (!vm_object_in_map(object)) {
2372 				db_printf(
2373 			"vmochk: internal obj is not in a map: "
2374 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2375 				    object->ref_count, (u_long)object->size,
2376 				    (u_long)object->size,
2377 				    (void *)object->backing_object);
2378 			}
2379 		}
2380 	}
2381 }
2382 
2383 /*
2384  *	vm_object_print:	[ debug ]
2385  */
2386 DB_SHOW_COMMAND(object, vm_object_print_static)
2387 {
2388 	/* XXX convert args. */
2389 	vm_object_t object = (vm_object_t)addr;
2390 	boolean_t full = have_addr;
2391 
2392 	vm_page_t p;
2393 
2394 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2395 #define	count	was_count
2396 
2397 	int count;
2398 
2399 	if (object == NULL)
2400 		return;
2401 
2402 	db_iprintf(
2403 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2404 	    object, (int)object->type, (uintmax_t)object->size,
2405 	    object->resident_page_count, object->ref_count, object->flags,
2406 	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2407 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2408 	    object->shadow_count,
2409 	    object->backing_object ? object->backing_object->ref_count : 0,
2410 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2411 
2412 	if (!full)
2413 		return;
2414 
2415 	db_indent += 2;
2416 	count = 0;
2417 	TAILQ_FOREACH(p, &object->memq, listq) {
2418 		if (count == 0)
2419 			db_iprintf("memory:=");
2420 		else if (count == 6) {
2421 			db_printf("\n");
2422 			db_iprintf(" ...");
2423 			count = 0;
2424 		} else
2425 			db_printf(",");
2426 		count++;
2427 
2428 		db_printf("(off=0x%jx,page=0x%jx)",
2429 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2430 	}
2431 	if (count != 0)
2432 		db_printf("\n");
2433 	db_indent -= 2;
2434 }
2435 
2436 /* XXX. */
2437 #undef count
2438 
2439 /* XXX need this non-static entry for calling from vm_map_print. */
2440 void
2441 vm_object_print(
2442         /* db_expr_t */ long addr,
2443 	boolean_t have_addr,
2444 	/* db_expr_t */ long count,
2445 	char *modif)
2446 {
2447 	vm_object_print_static(addr, have_addr, count, modif);
2448 }
2449 
2450 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2451 {
2452 	vm_object_t object;
2453 	vm_pindex_t fidx;
2454 	vm_paddr_t pa;
2455 	vm_page_t m, prev_m;
2456 	int rcount, nl, c;
2457 
2458 	nl = 0;
2459 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2460 		db_printf("new object: %p\n", (void *)object);
2461 		if (nl > 18) {
2462 			c = cngetc();
2463 			if (c != ' ')
2464 				return;
2465 			nl = 0;
2466 		}
2467 		nl++;
2468 		rcount = 0;
2469 		fidx = 0;
2470 		pa = -1;
2471 		TAILQ_FOREACH(m, &object->memq, listq) {
2472 			if (m->pindex > 128)
2473 				break;
2474 			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2475 			    prev_m->pindex + 1 != m->pindex) {
2476 				if (rcount) {
2477 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2478 						(long)fidx, rcount, (long)pa);
2479 					if (nl > 18) {
2480 						c = cngetc();
2481 						if (c != ' ')
2482 							return;
2483 						nl = 0;
2484 					}
2485 					nl++;
2486 					rcount = 0;
2487 				}
2488 			}
2489 			if (rcount &&
2490 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2491 				++rcount;
2492 				continue;
2493 			}
2494 			if (rcount) {
2495 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2496 					(long)fidx, rcount, (long)pa);
2497 				if (nl > 18) {
2498 					c = cngetc();
2499 					if (c != ' ')
2500 						return;
2501 					nl = 0;
2502 				}
2503 				nl++;
2504 			}
2505 			fidx = m->pindex;
2506 			pa = VM_PAGE_TO_PHYS(m);
2507 			rcount = 1;
2508 		}
2509 		if (rcount) {
2510 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2511 				(long)fidx, rcount, (long)pa);
2512 			if (nl > 18) {
2513 				c = cngetc();
2514 				if (c != ' ')
2515 					return;
2516 				nl = 0;
2517 			}
2518 			nl++;
2519 		}
2520 	}
2521 }
2522 #endif /* DDB */
2523