1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory object module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_vm.h" 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/lock.h> 73 #include <sys/mman.h> 74 #include <sys/mount.h> 75 #include <sys/kernel.h> 76 #include <sys/sysctl.h> 77 #include <sys/mutex.h> 78 #include <sys/proc.h> /* for curproc, pageproc */ 79 #include <sys/socket.h> 80 #include <sys/resourcevar.h> 81 #include <sys/rwlock.h> 82 #include <sys/vnode.h> 83 #include <sys/vmmeter.h> 84 #include <sys/sx.h> 85 86 #include <vm/vm.h> 87 #include <vm/vm_param.h> 88 #include <vm/pmap.h> 89 #include <vm/vm_map.h> 90 #include <vm/vm_object.h> 91 #include <vm/vm_page.h> 92 #include <vm/vm_pageout.h> 93 #include <vm/vm_pager.h> 94 #include <vm/swap_pager.h> 95 #include <vm/vm_kern.h> 96 #include <vm/vm_extern.h> 97 #include <vm/vm_radix.h> 98 #include <vm/vm_reserv.h> 99 #include <vm/uma.h> 100 101 static int old_msync; 102 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0, 103 "Use old (insecure) msync behavior"); 104 105 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 106 int pagerflags, int flags, boolean_t *clearobjflags, 107 boolean_t *eio); 108 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags, 109 boolean_t *clearobjflags); 110 static void vm_object_qcollapse(vm_object_t object); 111 static void vm_object_vndeallocate(vm_object_t object); 112 113 /* 114 * Virtual memory objects maintain the actual data 115 * associated with allocated virtual memory. A given 116 * page of memory exists within exactly one object. 117 * 118 * An object is only deallocated when all "references" 119 * are given up. Only one "reference" to a given 120 * region of an object should be writeable. 121 * 122 * Associated with each object is a list of all resident 123 * memory pages belonging to that object; this list is 124 * maintained by the "vm_page" module, and locked by the object's 125 * lock. 126 * 127 * Each object also records a "pager" routine which is 128 * used to retrieve (and store) pages to the proper backing 129 * storage. In addition, objects may be backed by other 130 * objects from which they were virtual-copied. 131 * 132 * The only items within the object structure which are 133 * modified after time of creation are: 134 * reference count locked by object's lock 135 * pager routine locked by object's lock 136 * 137 */ 138 139 struct object_q vm_object_list; 140 struct mtx vm_object_list_mtx; /* lock for object list and count */ 141 142 struct vm_object kernel_object_store; 143 struct vm_object kmem_object_store; 144 145 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, 146 "VM object stats"); 147 148 static long object_collapses; 149 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD, 150 &object_collapses, 0, "VM object collapses"); 151 152 static long object_bypasses; 153 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD, 154 &object_bypasses, 0, "VM object bypasses"); 155 156 static uma_zone_t obj_zone; 157 158 static int vm_object_zinit(void *mem, int size, int flags); 159 160 #ifdef INVARIANTS 161 static void vm_object_zdtor(void *mem, int size, void *arg); 162 163 static void 164 vm_object_zdtor(void *mem, int size, void *arg) 165 { 166 vm_object_t object; 167 168 object = (vm_object_t)mem; 169 KASSERT(object->ref_count == 0, 170 ("object %p ref_count = %d", object, object->ref_count)); 171 KASSERT(TAILQ_EMPTY(&object->memq), 172 ("object %p has resident pages in its memq", object)); 173 KASSERT(vm_radix_is_empty(&object->rtree), 174 ("object %p has resident pages in its trie", object)); 175 #if VM_NRESERVLEVEL > 0 176 KASSERT(LIST_EMPTY(&object->rvq), 177 ("object %p has reservations", 178 object)); 179 #endif 180 KASSERT(vm_object_cache_is_empty(object), 181 ("object %p has cached pages", 182 object)); 183 KASSERT(object->paging_in_progress == 0, 184 ("object %p paging_in_progress = %d", 185 object, object->paging_in_progress)); 186 KASSERT(object->resident_page_count == 0, 187 ("object %p resident_page_count = %d", 188 object, object->resident_page_count)); 189 KASSERT(object->shadow_count == 0, 190 ("object %p shadow_count = %d", 191 object, object->shadow_count)); 192 KASSERT(object->type == OBJT_DEAD, 193 ("object %p has non-dead type %d", 194 object, object->type)); 195 } 196 #endif 197 198 static int 199 vm_object_zinit(void *mem, int size, int flags) 200 { 201 vm_object_t object; 202 203 object = (vm_object_t)mem; 204 rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW); 205 206 /* These are true for any object that has been freed */ 207 object->type = OBJT_DEAD; 208 object->ref_count = 0; 209 object->rtree.rt_root = 0; 210 object->rtree.rt_flags = 0; 211 object->paging_in_progress = 0; 212 object->resident_page_count = 0; 213 object->shadow_count = 0; 214 object->cache.rt_root = 0; 215 object->cache.rt_flags = 0; 216 217 mtx_lock(&vm_object_list_mtx); 218 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 219 mtx_unlock(&vm_object_list_mtx); 220 return (0); 221 } 222 223 static void 224 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object) 225 { 226 227 TAILQ_INIT(&object->memq); 228 LIST_INIT(&object->shadow_head); 229 230 object->type = type; 231 switch (type) { 232 case OBJT_DEAD: 233 panic("_vm_object_allocate: can't create OBJT_DEAD"); 234 case OBJT_DEFAULT: 235 case OBJT_SWAP: 236 object->flags = OBJ_ONEMAPPING; 237 break; 238 case OBJT_DEVICE: 239 case OBJT_SG: 240 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED; 241 break; 242 case OBJT_MGTDEVICE: 243 object->flags = OBJ_FICTITIOUS; 244 break; 245 case OBJT_PHYS: 246 object->flags = OBJ_UNMANAGED; 247 break; 248 case OBJT_VNODE: 249 object->flags = 0; 250 break; 251 default: 252 panic("_vm_object_allocate: type %d is undefined", type); 253 } 254 object->size = size; 255 object->generation = 1; 256 object->ref_count = 1; 257 object->memattr = VM_MEMATTR_DEFAULT; 258 object->cred = NULL; 259 object->charge = 0; 260 object->handle = NULL; 261 object->backing_object = NULL; 262 object->backing_object_offset = (vm_ooffset_t) 0; 263 #if VM_NRESERVLEVEL > 0 264 LIST_INIT(&object->rvq); 265 #endif 266 } 267 268 /* 269 * vm_object_init: 270 * 271 * Initialize the VM objects module. 272 */ 273 void 274 vm_object_init(void) 275 { 276 TAILQ_INIT(&vm_object_list); 277 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF); 278 279 rw_init(&kernel_object->lock, "kernel vm object"); 280 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 281 kernel_object); 282 #if VM_NRESERVLEVEL > 0 283 kernel_object->flags |= OBJ_COLORED; 284 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 285 #endif 286 287 rw_init(&kmem_object->lock, "kmem vm object"); 288 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 289 kmem_object); 290 #if VM_NRESERVLEVEL > 0 291 kmem_object->flags |= OBJ_COLORED; 292 kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 293 #endif 294 295 /* 296 * The lock portion of struct vm_object must be type stable due 297 * to vm_pageout_fallback_object_lock locking a vm object 298 * without holding any references to it. 299 */ 300 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL, 301 #ifdef INVARIANTS 302 vm_object_zdtor, 303 #else 304 NULL, 305 #endif 306 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 307 308 vm_radix_init(); 309 } 310 311 void 312 vm_object_clear_flag(vm_object_t object, u_short bits) 313 { 314 315 VM_OBJECT_ASSERT_WLOCKED(object); 316 object->flags &= ~bits; 317 } 318 319 /* 320 * Sets the default memory attribute for the specified object. Pages 321 * that are allocated to this object are by default assigned this memory 322 * attribute. 323 * 324 * Presently, this function must be called before any pages are allocated 325 * to the object. In the future, this requirement may be relaxed for 326 * "default" and "swap" objects. 327 */ 328 int 329 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr) 330 { 331 332 VM_OBJECT_ASSERT_WLOCKED(object); 333 switch (object->type) { 334 case OBJT_DEFAULT: 335 case OBJT_DEVICE: 336 case OBJT_MGTDEVICE: 337 case OBJT_PHYS: 338 case OBJT_SG: 339 case OBJT_SWAP: 340 case OBJT_VNODE: 341 if (!TAILQ_EMPTY(&object->memq)) 342 return (KERN_FAILURE); 343 break; 344 case OBJT_DEAD: 345 return (KERN_INVALID_ARGUMENT); 346 default: 347 panic("vm_object_set_memattr: object %p is of undefined type", 348 object); 349 } 350 object->memattr = memattr; 351 return (KERN_SUCCESS); 352 } 353 354 void 355 vm_object_pip_add(vm_object_t object, short i) 356 { 357 358 VM_OBJECT_ASSERT_WLOCKED(object); 359 object->paging_in_progress += i; 360 } 361 362 void 363 vm_object_pip_subtract(vm_object_t object, short i) 364 { 365 366 VM_OBJECT_ASSERT_WLOCKED(object); 367 object->paging_in_progress -= i; 368 } 369 370 void 371 vm_object_pip_wakeup(vm_object_t object) 372 { 373 374 VM_OBJECT_ASSERT_WLOCKED(object); 375 object->paging_in_progress--; 376 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 377 vm_object_clear_flag(object, OBJ_PIPWNT); 378 wakeup(object); 379 } 380 } 381 382 void 383 vm_object_pip_wakeupn(vm_object_t object, short i) 384 { 385 386 VM_OBJECT_ASSERT_WLOCKED(object); 387 if (i) 388 object->paging_in_progress -= i; 389 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 390 vm_object_clear_flag(object, OBJ_PIPWNT); 391 wakeup(object); 392 } 393 } 394 395 void 396 vm_object_pip_wait(vm_object_t object, char *waitid) 397 { 398 399 VM_OBJECT_ASSERT_WLOCKED(object); 400 while (object->paging_in_progress) { 401 object->flags |= OBJ_PIPWNT; 402 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0); 403 } 404 } 405 406 /* 407 * vm_object_allocate: 408 * 409 * Returns a new object with the given size. 410 */ 411 vm_object_t 412 vm_object_allocate(objtype_t type, vm_pindex_t size) 413 { 414 vm_object_t object; 415 416 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 417 _vm_object_allocate(type, size, object); 418 return (object); 419 } 420 421 422 /* 423 * vm_object_reference: 424 * 425 * Gets another reference to the given object. Note: OBJ_DEAD 426 * objects can be referenced during final cleaning. 427 */ 428 void 429 vm_object_reference(vm_object_t object) 430 { 431 if (object == NULL) 432 return; 433 VM_OBJECT_WLOCK(object); 434 vm_object_reference_locked(object); 435 VM_OBJECT_WUNLOCK(object); 436 } 437 438 /* 439 * vm_object_reference_locked: 440 * 441 * Gets another reference to the given object. 442 * 443 * The object must be locked. 444 */ 445 void 446 vm_object_reference_locked(vm_object_t object) 447 { 448 struct vnode *vp; 449 450 VM_OBJECT_ASSERT_WLOCKED(object); 451 object->ref_count++; 452 if (object->type == OBJT_VNODE) { 453 vp = object->handle; 454 vref(vp); 455 } 456 } 457 458 /* 459 * Handle deallocating an object of type OBJT_VNODE. 460 */ 461 static void 462 vm_object_vndeallocate(vm_object_t object) 463 { 464 struct vnode *vp = (struct vnode *) object->handle; 465 466 VM_OBJECT_ASSERT_WLOCKED(object); 467 KASSERT(object->type == OBJT_VNODE, 468 ("vm_object_vndeallocate: not a vnode object")); 469 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 470 #ifdef INVARIANTS 471 if (object->ref_count == 0) { 472 vprint("vm_object_vndeallocate", vp); 473 panic("vm_object_vndeallocate: bad object reference count"); 474 } 475 #endif 476 477 /* 478 * The test for text of vp vnode does not need a bypass to 479 * reach right VV_TEXT there, since it is obtained from 480 * object->handle. 481 */ 482 if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) { 483 object->ref_count--; 484 VM_OBJECT_WUNLOCK(object); 485 /* vrele may need the vnode lock. */ 486 vrele(vp); 487 } else { 488 vhold(vp); 489 VM_OBJECT_WUNLOCK(object); 490 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 491 vdrop(vp); 492 VM_OBJECT_WLOCK(object); 493 object->ref_count--; 494 if (object->type == OBJT_DEAD) { 495 VM_OBJECT_WUNLOCK(object); 496 VOP_UNLOCK(vp, 0); 497 } else { 498 if (object->ref_count == 0) 499 VOP_UNSET_TEXT(vp); 500 VM_OBJECT_WUNLOCK(object); 501 vput(vp); 502 } 503 } 504 } 505 506 /* 507 * vm_object_deallocate: 508 * 509 * Release a reference to the specified object, 510 * gained either through a vm_object_allocate 511 * or a vm_object_reference call. When all references 512 * are gone, storage associated with this object 513 * may be relinquished. 514 * 515 * No object may be locked. 516 */ 517 void 518 vm_object_deallocate(vm_object_t object) 519 { 520 vm_object_t temp; 521 struct vnode *vp; 522 523 while (object != NULL) { 524 VM_OBJECT_WLOCK(object); 525 if (object->type == OBJT_VNODE) { 526 vm_object_vndeallocate(object); 527 return; 528 } 529 530 KASSERT(object->ref_count != 0, 531 ("vm_object_deallocate: object deallocated too many times: %d", object->type)); 532 533 /* 534 * If the reference count goes to 0 we start calling 535 * vm_object_terminate() on the object chain. 536 * A ref count of 1 may be a special case depending on the 537 * shadow count being 0 or 1. 538 */ 539 object->ref_count--; 540 if (object->ref_count > 1) { 541 VM_OBJECT_WUNLOCK(object); 542 return; 543 } else if (object->ref_count == 1) { 544 if (object->type == OBJT_SWAP && 545 (object->flags & OBJ_TMPFS) != 0) { 546 vp = object->un_pager.swp.swp_tmpfs; 547 vhold(vp); 548 VM_OBJECT_WUNLOCK(object); 549 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 550 VM_OBJECT_WLOCK(object); 551 if (object->type == OBJT_DEAD || 552 object->ref_count != 1) { 553 VM_OBJECT_WUNLOCK(object); 554 VOP_UNLOCK(vp, 0); 555 vdrop(vp); 556 return; 557 } 558 if ((object->flags & OBJ_TMPFS) != 0) 559 VOP_UNSET_TEXT(vp); 560 VOP_UNLOCK(vp, 0); 561 vdrop(vp); 562 } 563 if (object->shadow_count == 0 && 564 object->handle == NULL && 565 (object->type == OBJT_DEFAULT || 566 (object->type == OBJT_SWAP && 567 (object->flags & OBJ_TMPFS_NODE) == 0))) { 568 vm_object_set_flag(object, OBJ_ONEMAPPING); 569 } else if ((object->shadow_count == 1) && 570 (object->handle == NULL) && 571 (object->type == OBJT_DEFAULT || 572 object->type == OBJT_SWAP)) { 573 vm_object_t robject; 574 575 robject = LIST_FIRST(&object->shadow_head); 576 KASSERT(robject != NULL, 577 ("vm_object_deallocate: ref_count: %d, shadow_count: %d", 578 object->ref_count, 579 object->shadow_count)); 580 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0, 581 ("shadowed tmpfs v_object %p", object)); 582 if (!VM_OBJECT_TRYWLOCK(robject)) { 583 /* 584 * Avoid a potential deadlock. 585 */ 586 object->ref_count++; 587 VM_OBJECT_WUNLOCK(object); 588 /* 589 * More likely than not the thread 590 * holding robject's lock has lower 591 * priority than the current thread. 592 * Let the lower priority thread run. 593 */ 594 pause("vmo_de", 1); 595 continue; 596 } 597 /* 598 * Collapse object into its shadow unless its 599 * shadow is dead. In that case, object will 600 * be deallocated by the thread that is 601 * deallocating its shadow. 602 */ 603 if ((robject->flags & OBJ_DEAD) == 0 && 604 (robject->handle == NULL) && 605 (robject->type == OBJT_DEFAULT || 606 robject->type == OBJT_SWAP)) { 607 608 robject->ref_count++; 609 retry: 610 if (robject->paging_in_progress) { 611 VM_OBJECT_WUNLOCK(object); 612 vm_object_pip_wait(robject, 613 "objde1"); 614 temp = robject->backing_object; 615 if (object == temp) { 616 VM_OBJECT_WLOCK(object); 617 goto retry; 618 } 619 } else if (object->paging_in_progress) { 620 VM_OBJECT_WUNLOCK(robject); 621 object->flags |= OBJ_PIPWNT; 622 VM_OBJECT_SLEEP(object, object, 623 PDROP | PVM, "objde2", 0); 624 VM_OBJECT_WLOCK(robject); 625 temp = robject->backing_object; 626 if (object == temp) { 627 VM_OBJECT_WLOCK(object); 628 goto retry; 629 } 630 } else 631 VM_OBJECT_WUNLOCK(object); 632 633 if (robject->ref_count == 1) { 634 robject->ref_count--; 635 object = robject; 636 goto doterm; 637 } 638 object = robject; 639 vm_object_collapse(object); 640 VM_OBJECT_WUNLOCK(object); 641 continue; 642 } 643 VM_OBJECT_WUNLOCK(robject); 644 } 645 VM_OBJECT_WUNLOCK(object); 646 return; 647 } 648 doterm: 649 temp = object->backing_object; 650 if (temp != NULL) { 651 KASSERT((object->flags & OBJ_TMPFS_NODE) == 0, 652 ("shadowed tmpfs v_object 2 %p", object)); 653 VM_OBJECT_WLOCK(temp); 654 LIST_REMOVE(object, shadow_list); 655 temp->shadow_count--; 656 VM_OBJECT_WUNLOCK(temp); 657 object->backing_object = NULL; 658 } 659 /* 660 * Don't double-terminate, we could be in a termination 661 * recursion due to the terminate having to sync data 662 * to disk. 663 */ 664 if ((object->flags & OBJ_DEAD) == 0) 665 vm_object_terminate(object); 666 else 667 VM_OBJECT_WUNLOCK(object); 668 object = temp; 669 } 670 } 671 672 /* 673 * vm_object_destroy removes the object from the global object list 674 * and frees the space for the object. 675 */ 676 void 677 vm_object_destroy(vm_object_t object) 678 { 679 680 /* 681 * Release the allocation charge. 682 */ 683 if (object->cred != NULL) { 684 swap_release_by_cred(object->charge, object->cred); 685 object->charge = 0; 686 crfree(object->cred); 687 object->cred = NULL; 688 } 689 690 /* 691 * Free the space for the object. 692 */ 693 uma_zfree(obj_zone, object); 694 } 695 696 /* 697 * vm_object_terminate actually destroys the specified object, freeing 698 * up all previously used resources. 699 * 700 * The object must be locked. 701 * This routine may block. 702 */ 703 void 704 vm_object_terminate(vm_object_t object) 705 { 706 vm_page_t p, p_next; 707 708 VM_OBJECT_ASSERT_WLOCKED(object); 709 710 /* 711 * Make sure no one uses us. 712 */ 713 vm_object_set_flag(object, OBJ_DEAD); 714 715 /* 716 * wait for the pageout daemon to be done with the object 717 */ 718 vm_object_pip_wait(object, "objtrm"); 719 720 KASSERT(!object->paging_in_progress, 721 ("vm_object_terminate: pageout in progress")); 722 723 /* 724 * Clean and free the pages, as appropriate. All references to the 725 * object are gone, so we don't need to lock it. 726 */ 727 if (object->type == OBJT_VNODE) { 728 struct vnode *vp = (struct vnode *)object->handle; 729 730 /* 731 * Clean pages and flush buffers. 732 */ 733 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 734 VM_OBJECT_WUNLOCK(object); 735 736 vinvalbuf(vp, V_SAVE, 0, 0); 737 738 VM_OBJECT_WLOCK(object); 739 } 740 741 KASSERT(object->ref_count == 0, 742 ("vm_object_terminate: object with references, ref_count=%d", 743 object->ref_count)); 744 745 /* 746 * Free any remaining pageable pages. This also removes them from the 747 * paging queues. However, don't free wired pages, just remove them 748 * from the object. Rather than incrementally removing each page from 749 * the object, the page and object are reset to any empty state. 750 */ 751 TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) { 752 vm_page_assert_unbusied(p); 753 vm_page_lock(p); 754 /* 755 * Optimize the page's removal from the object by resetting 756 * its "object" field. Specifically, if the page is not 757 * wired, then the effect of this assignment is that 758 * vm_page_free()'s call to vm_page_remove() will return 759 * immediately without modifying the page or the object. 760 */ 761 p->object = NULL; 762 if (p->wire_count == 0) { 763 vm_page_free(p); 764 PCPU_INC(cnt.v_pfree); 765 } 766 vm_page_unlock(p); 767 } 768 /* 769 * If the object contained any pages, then reset it to an empty state. 770 * None of the object's fields, including "resident_page_count", were 771 * modified by the preceding loop. 772 */ 773 if (object->resident_page_count != 0) { 774 vm_radix_reclaim_allnodes(&object->rtree); 775 TAILQ_INIT(&object->memq); 776 object->resident_page_count = 0; 777 if (object->type == OBJT_VNODE) 778 vdrop(object->handle); 779 } 780 781 #if VM_NRESERVLEVEL > 0 782 if (__predict_false(!LIST_EMPTY(&object->rvq))) 783 vm_reserv_break_all(object); 784 #endif 785 if (__predict_false(!vm_object_cache_is_empty(object))) 786 vm_page_cache_free(object, 0, 0); 787 788 KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT || 789 object->type == OBJT_SWAP, 790 ("%s: non-swap obj %p has cred", __func__, object)); 791 792 /* 793 * Let the pager know object is dead. 794 */ 795 vm_pager_deallocate(object); 796 VM_OBJECT_WUNLOCK(object); 797 798 vm_object_destroy(object); 799 } 800 801 /* 802 * Make the page read-only so that we can clear the object flags. However, if 803 * this is a nosync mmap then the object is likely to stay dirty so do not 804 * mess with the page and do not clear the object flags. Returns TRUE if the 805 * page should be flushed, and FALSE otherwise. 806 */ 807 static boolean_t 808 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags) 809 { 810 811 /* 812 * If we have been asked to skip nosync pages and this is a 813 * nosync page, skip it. Note that the object flags were not 814 * cleared in this case so we do not have to set them. 815 */ 816 if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) { 817 *clearobjflags = FALSE; 818 return (FALSE); 819 } else { 820 pmap_remove_write(p); 821 return (p->dirty != 0); 822 } 823 } 824 825 /* 826 * vm_object_page_clean 827 * 828 * Clean all dirty pages in the specified range of object. Leaves page 829 * on whatever queue it is currently on. If NOSYNC is set then do not 830 * write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC), 831 * leaving the object dirty. 832 * 833 * When stuffing pages asynchronously, allow clustering. XXX we need a 834 * synchronous clustering mode implementation. 835 * 836 * Odd semantics: if start == end, we clean everything. 837 * 838 * The object must be locked. 839 * 840 * Returns FALSE if some page from the range was not written, as 841 * reported by the pager, and TRUE otherwise. 842 */ 843 boolean_t 844 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end, 845 int flags) 846 { 847 vm_page_t np, p; 848 vm_pindex_t pi, tend, tstart; 849 int curgeneration, n, pagerflags; 850 boolean_t clearobjflags, eio, res; 851 852 VM_OBJECT_ASSERT_WLOCKED(object); 853 854 /* 855 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE 856 * objects. The check below prevents the function from 857 * operating on non-vnode objects. 858 */ 859 if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 || 860 object->resident_page_count == 0) 861 return (TRUE); 862 863 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ? 864 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 865 pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0; 866 867 tstart = OFF_TO_IDX(start); 868 tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK); 869 clearobjflags = tstart == 0 && tend >= object->size; 870 res = TRUE; 871 872 rescan: 873 curgeneration = object->generation; 874 875 for (p = vm_page_find_least(object, tstart); p != NULL; p = np) { 876 pi = p->pindex; 877 if (pi >= tend) 878 break; 879 np = TAILQ_NEXT(p, listq); 880 if (p->valid == 0) 881 continue; 882 if (vm_page_sleep_if_busy(p, "vpcwai")) { 883 if (object->generation != curgeneration) { 884 if ((flags & OBJPC_SYNC) != 0) 885 goto rescan; 886 else 887 clearobjflags = FALSE; 888 } 889 np = vm_page_find_least(object, pi); 890 continue; 891 } 892 if (!vm_object_page_remove_write(p, flags, &clearobjflags)) 893 continue; 894 895 n = vm_object_page_collect_flush(object, p, pagerflags, 896 flags, &clearobjflags, &eio); 897 if (eio) { 898 res = FALSE; 899 clearobjflags = FALSE; 900 } 901 if (object->generation != curgeneration) { 902 if ((flags & OBJPC_SYNC) != 0) 903 goto rescan; 904 else 905 clearobjflags = FALSE; 906 } 907 908 /* 909 * If the VOP_PUTPAGES() did a truncated write, so 910 * that even the first page of the run is not fully 911 * written, vm_pageout_flush() returns 0 as the run 912 * length. Since the condition that caused truncated 913 * write may be permanent, e.g. exhausted free space, 914 * accepting n == 0 would cause an infinite loop. 915 * 916 * Forwarding the iterator leaves the unwritten page 917 * behind, but there is not much we can do there if 918 * filesystem refuses to write it. 919 */ 920 if (n == 0) { 921 n = 1; 922 clearobjflags = FALSE; 923 } 924 np = vm_page_find_least(object, pi + n); 925 } 926 #if 0 927 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0); 928 #endif 929 930 if (clearobjflags) 931 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY); 932 return (res); 933 } 934 935 static int 936 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags, 937 int flags, boolean_t *clearobjflags, boolean_t *eio) 938 { 939 vm_page_t ma[vm_pageout_page_count], p_first, tp; 940 int count, i, mreq, runlen; 941 942 vm_page_lock_assert(p, MA_NOTOWNED); 943 VM_OBJECT_ASSERT_WLOCKED(object); 944 945 count = 1; 946 mreq = 0; 947 948 for (tp = p; count < vm_pageout_page_count; count++) { 949 tp = vm_page_next(tp); 950 if (tp == NULL || vm_page_busied(tp)) 951 break; 952 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 953 break; 954 } 955 956 for (p_first = p; count < vm_pageout_page_count; count++) { 957 tp = vm_page_prev(p_first); 958 if (tp == NULL || vm_page_busied(tp)) 959 break; 960 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 961 break; 962 p_first = tp; 963 mreq++; 964 } 965 966 for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++) 967 ma[i] = tp; 968 969 vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio); 970 return (runlen); 971 } 972 973 /* 974 * Note that there is absolutely no sense in writing out 975 * anonymous objects, so we track down the vnode object 976 * to write out. 977 * We invalidate (remove) all pages from the address space 978 * for semantic correctness. 979 * 980 * If the backing object is a device object with unmanaged pages, then any 981 * mappings to the specified range of pages must be removed before this 982 * function is called. 983 * 984 * Note: certain anonymous maps, such as MAP_NOSYNC maps, 985 * may start out with a NULL object. 986 */ 987 boolean_t 988 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, 989 boolean_t syncio, boolean_t invalidate) 990 { 991 vm_object_t backing_object; 992 struct vnode *vp; 993 struct mount *mp; 994 int error, flags, fsync_after; 995 boolean_t res; 996 997 if (object == NULL) 998 return (TRUE); 999 res = TRUE; 1000 error = 0; 1001 VM_OBJECT_WLOCK(object); 1002 while ((backing_object = object->backing_object) != NULL) { 1003 VM_OBJECT_WLOCK(backing_object); 1004 offset += object->backing_object_offset; 1005 VM_OBJECT_WUNLOCK(object); 1006 object = backing_object; 1007 if (object->size < OFF_TO_IDX(offset + size)) 1008 size = IDX_TO_OFF(object->size) - offset; 1009 } 1010 /* 1011 * Flush pages if writing is allowed, invalidate them 1012 * if invalidation requested. Pages undergoing I/O 1013 * will be ignored by vm_object_page_remove(). 1014 * 1015 * We cannot lock the vnode and then wait for paging 1016 * to complete without deadlocking against vm_fault. 1017 * Instead we simply call vm_object_page_remove() and 1018 * allow it to block internally on a page-by-page 1019 * basis when it encounters pages undergoing async 1020 * I/O. 1021 */ 1022 if (object->type == OBJT_VNODE && 1023 (object->flags & OBJ_MIGHTBEDIRTY) != 0) { 1024 vp = object->handle; 1025 VM_OBJECT_WUNLOCK(object); 1026 (void) vn_start_write(vp, &mp, V_WAIT); 1027 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1028 if (syncio && !invalidate && offset == 0 && 1029 OFF_TO_IDX(size) == object->size) { 1030 /* 1031 * If syncing the whole mapping of the file, 1032 * it is faster to schedule all the writes in 1033 * async mode, also allowing the clustering, 1034 * and then wait for i/o to complete. 1035 */ 1036 flags = 0; 1037 fsync_after = TRUE; 1038 } else { 1039 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1040 flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0; 1041 fsync_after = FALSE; 1042 } 1043 VM_OBJECT_WLOCK(object); 1044 res = vm_object_page_clean(object, offset, offset + size, 1045 flags); 1046 VM_OBJECT_WUNLOCK(object); 1047 if (fsync_after) 1048 error = VOP_FSYNC(vp, MNT_WAIT, curthread); 1049 VOP_UNLOCK(vp, 0); 1050 vn_finished_write(mp); 1051 if (error != 0) 1052 res = FALSE; 1053 VM_OBJECT_WLOCK(object); 1054 } 1055 if ((object->type == OBJT_VNODE || 1056 object->type == OBJT_DEVICE) && invalidate) { 1057 if (object->type == OBJT_DEVICE) 1058 /* 1059 * The option OBJPR_NOTMAPPED must be passed here 1060 * because vm_object_page_remove() cannot remove 1061 * unmanaged mappings. 1062 */ 1063 flags = OBJPR_NOTMAPPED; 1064 else if (old_msync) 1065 flags = OBJPR_NOTWIRED; 1066 else 1067 flags = OBJPR_CLEANONLY | OBJPR_NOTWIRED; 1068 vm_object_page_remove(object, OFF_TO_IDX(offset), 1069 OFF_TO_IDX(offset + size + PAGE_MASK), flags); 1070 } 1071 VM_OBJECT_WUNLOCK(object); 1072 return (res); 1073 } 1074 1075 /* 1076 * vm_object_madvise: 1077 * 1078 * Implements the madvise function at the object/page level. 1079 * 1080 * MADV_WILLNEED (any object) 1081 * 1082 * Activate the specified pages if they are resident. 1083 * 1084 * MADV_DONTNEED (any object) 1085 * 1086 * Deactivate the specified pages if they are resident. 1087 * 1088 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, 1089 * OBJ_ONEMAPPING only) 1090 * 1091 * Deactivate and clean the specified pages if they are 1092 * resident. This permits the process to reuse the pages 1093 * without faulting or the kernel to reclaim the pages 1094 * without I/O. 1095 */ 1096 void 1097 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end, 1098 int advise) 1099 { 1100 vm_pindex_t tpindex; 1101 vm_object_t backing_object, tobject; 1102 vm_page_t m; 1103 1104 if (object == NULL) 1105 return; 1106 VM_OBJECT_WLOCK(object); 1107 /* 1108 * Locate and adjust resident pages 1109 */ 1110 for (; pindex < end; pindex += 1) { 1111 relookup: 1112 tobject = object; 1113 tpindex = pindex; 1114 shadowlookup: 1115 /* 1116 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages 1117 * and those pages must be OBJ_ONEMAPPING. 1118 */ 1119 if (advise == MADV_FREE) { 1120 if ((tobject->type != OBJT_DEFAULT && 1121 tobject->type != OBJT_SWAP) || 1122 (tobject->flags & OBJ_ONEMAPPING) == 0) { 1123 goto unlock_tobject; 1124 } 1125 } else if ((tobject->flags & OBJ_UNMANAGED) != 0) 1126 goto unlock_tobject; 1127 m = vm_page_lookup(tobject, tpindex); 1128 if (m == NULL && advise == MADV_WILLNEED) { 1129 /* 1130 * If the page is cached, reactivate it. 1131 */ 1132 m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED | 1133 VM_ALLOC_NOBUSY); 1134 } 1135 if (m == NULL) { 1136 /* 1137 * There may be swap even if there is no backing page 1138 */ 1139 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1140 swap_pager_freespace(tobject, tpindex, 1); 1141 /* 1142 * next object 1143 */ 1144 backing_object = tobject->backing_object; 1145 if (backing_object == NULL) 1146 goto unlock_tobject; 1147 VM_OBJECT_WLOCK(backing_object); 1148 tpindex += OFF_TO_IDX(tobject->backing_object_offset); 1149 if (tobject != object) 1150 VM_OBJECT_WUNLOCK(tobject); 1151 tobject = backing_object; 1152 goto shadowlookup; 1153 } else if (m->valid != VM_PAGE_BITS_ALL) 1154 goto unlock_tobject; 1155 /* 1156 * If the page is not in a normal state, skip it. 1157 */ 1158 vm_page_lock(m); 1159 if (m->hold_count != 0 || m->wire_count != 0) { 1160 vm_page_unlock(m); 1161 goto unlock_tobject; 1162 } 1163 KASSERT((m->flags & PG_FICTITIOUS) == 0, 1164 ("vm_object_madvise: page %p is fictitious", m)); 1165 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1166 ("vm_object_madvise: page %p is not managed", m)); 1167 if (vm_page_busied(m)) { 1168 if (advise == MADV_WILLNEED) { 1169 /* 1170 * Reference the page before unlocking and 1171 * sleeping so that the page daemon is less 1172 * likely to reclaim it. 1173 */ 1174 vm_page_aflag_set(m, PGA_REFERENCED); 1175 } 1176 if (object != tobject) 1177 VM_OBJECT_WUNLOCK(object); 1178 VM_OBJECT_WUNLOCK(tobject); 1179 vm_page_busy_sleep(m, "madvpo"); 1180 VM_OBJECT_WLOCK(object); 1181 goto relookup; 1182 } 1183 if (advise == MADV_WILLNEED) { 1184 vm_page_activate(m); 1185 } else { 1186 vm_page_advise(m, advise); 1187 } 1188 vm_page_unlock(m); 1189 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1190 swap_pager_freespace(tobject, tpindex, 1); 1191 unlock_tobject: 1192 if (tobject != object) 1193 VM_OBJECT_WUNLOCK(tobject); 1194 } 1195 VM_OBJECT_WUNLOCK(object); 1196 } 1197 1198 /* 1199 * vm_object_shadow: 1200 * 1201 * Create a new object which is backed by the 1202 * specified existing object range. The source 1203 * object reference is deallocated. 1204 * 1205 * The new object and offset into that object 1206 * are returned in the source parameters. 1207 */ 1208 void 1209 vm_object_shadow( 1210 vm_object_t *object, /* IN/OUT */ 1211 vm_ooffset_t *offset, /* IN/OUT */ 1212 vm_size_t length) 1213 { 1214 vm_object_t source; 1215 vm_object_t result; 1216 1217 source = *object; 1218 1219 /* 1220 * Don't create the new object if the old object isn't shared. 1221 */ 1222 if (source != NULL) { 1223 VM_OBJECT_WLOCK(source); 1224 if (source->ref_count == 1 && 1225 source->handle == NULL && 1226 (source->type == OBJT_DEFAULT || 1227 source->type == OBJT_SWAP)) { 1228 VM_OBJECT_WUNLOCK(source); 1229 return; 1230 } 1231 VM_OBJECT_WUNLOCK(source); 1232 } 1233 1234 /* 1235 * Allocate a new object with the given length. 1236 */ 1237 result = vm_object_allocate(OBJT_DEFAULT, atop(length)); 1238 1239 /* 1240 * The new object shadows the source object, adding a reference to it. 1241 * Our caller changes his reference to point to the new object, 1242 * removing a reference to the source object. Net result: no change 1243 * of reference count. 1244 * 1245 * Try to optimize the result object's page color when shadowing 1246 * in order to maintain page coloring consistency in the combined 1247 * shadowed object. 1248 */ 1249 result->backing_object = source; 1250 /* 1251 * Store the offset into the source object, and fix up the offset into 1252 * the new object. 1253 */ 1254 result->backing_object_offset = *offset; 1255 if (source != NULL) { 1256 VM_OBJECT_WLOCK(source); 1257 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list); 1258 source->shadow_count++; 1259 #if VM_NRESERVLEVEL > 0 1260 result->flags |= source->flags & OBJ_COLORED; 1261 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & 1262 ((1 << (VM_NFREEORDER - 1)) - 1); 1263 #endif 1264 VM_OBJECT_WUNLOCK(source); 1265 } 1266 1267 1268 /* 1269 * Return the new things 1270 */ 1271 *offset = 0; 1272 *object = result; 1273 } 1274 1275 /* 1276 * vm_object_split: 1277 * 1278 * Split the pages in a map entry into a new object. This affords 1279 * easier removal of unused pages, and keeps object inheritance from 1280 * being a negative impact on memory usage. 1281 */ 1282 void 1283 vm_object_split(vm_map_entry_t entry) 1284 { 1285 vm_page_t m, m_next; 1286 vm_object_t orig_object, new_object, source; 1287 vm_pindex_t idx, offidxstart; 1288 vm_size_t size; 1289 1290 orig_object = entry->object.vm_object; 1291 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 1292 return; 1293 if (orig_object->ref_count <= 1) 1294 return; 1295 VM_OBJECT_WUNLOCK(orig_object); 1296 1297 offidxstart = OFF_TO_IDX(entry->offset); 1298 size = atop(entry->end - entry->start); 1299 1300 /* 1301 * If swap_pager_copy() is later called, it will convert new_object 1302 * into a swap object. 1303 */ 1304 new_object = vm_object_allocate(OBJT_DEFAULT, size); 1305 1306 /* 1307 * At this point, the new object is still private, so the order in 1308 * which the original and new objects are locked does not matter. 1309 */ 1310 VM_OBJECT_WLOCK(new_object); 1311 VM_OBJECT_WLOCK(orig_object); 1312 source = orig_object->backing_object; 1313 if (source != NULL) { 1314 VM_OBJECT_WLOCK(source); 1315 if ((source->flags & OBJ_DEAD) != 0) { 1316 VM_OBJECT_WUNLOCK(source); 1317 VM_OBJECT_WUNLOCK(orig_object); 1318 VM_OBJECT_WUNLOCK(new_object); 1319 vm_object_deallocate(new_object); 1320 VM_OBJECT_WLOCK(orig_object); 1321 return; 1322 } 1323 LIST_INSERT_HEAD(&source->shadow_head, 1324 new_object, shadow_list); 1325 source->shadow_count++; 1326 vm_object_reference_locked(source); /* for new_object */ 1327 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1328 VM_OBJECT_WUNLOCK(source); 1329 new_object->backing_object_offset = 1330 orig_object->backing_object_offset + entry->offset; 1331 new_object->backing_object = source; 1332 } 1333 if (orig_object->cred != NULL) { 1334 new_object->cred = orig_object->cred; 1335 crhold(orig_object->cred); 1336 new_object->charge = ptoa(size); 1337 KASSERT(orig_object->charge >= ptoa(size), 1338 ("orig_object->charge < 0")); 1339 orig_object->charge -= ptoa(size); 1340 } 1341 retry: 1342 m = vm_page_find_least(orig_object, offidxstart); 1343 for (; m != NULL && (idx = m->pindex - offidxstart) < size; 1344 m = m_next) { 1345 m_next = TAILQ_NEXT(m, listq); 1346 1347 /* 1348 * We must wait for pending I/O to complete before we can 1349 * rename the page. 1350 * 1351 * We do not have to VM_PROT_NONE the page as mappings should 1352 * not be changed by this operation. 1353 */ 1354 if (vm_page_busied(m)) { 1355 VM_OBJECT_WUNLOCK(new_object); 1356 vm_page_lock(m); 1357 VM_OBJECT_WUNLOCK(orig_object); 1358 vm_page_busy_sleep(m, "spltwt"); 1359 VM_OBJECT_WLOCK(orig_object); 1360 VM_OBJECT_WLOCK(new_object); 1361 goto retry; 1362 } 1363 1364 /* vm_page_rename() will handle dirty and cache. */ 1365 if (vm_page_rename(m, new_object, idx)) { 1366 VM_OBJECT_WUNLOCK(new_object); 1367 VM_OBJECT_WUNLOCK(orig_object); 1368 VM_WAIT; 1369 VM_OBJECT_WLOCK(orig_object); 1370 VM_OBJECT_WLOCK(new_object); 1371 goto retry; 1372 } 1373 #if VM_NRESERVLEVEL > 0 1374 /* 1375 * If some of the reservation's allocated pages remain with 1376 * the original object, then transferring the reservation to 1377 * the new object is neither particularly beneficial nor 1378 * particularly harmful as compared to leaving the reservation 1379 * with the original object. If, however, all of the 1380 * reservation's allocated pages are transferred to the new 1381 * object, then transferring the reservation is typically 1382 * beneficial. Determining which of these two cases applies 1383 * would be more costly than unconditionally renaming the 1384 * reservation. 1385 */ 1386 vm_reserv_rename(m, new_object, orig_object, offidxstart); 1387 #endif 1388 if (orig_object->type == OBJT_SWAP) 1389 vm_page_xbusy(m); 1390 } 1391 if (orig_object->type == OBJT_SWAP) { 1392 /* 1393 * swap_pager_copy() can sleep, in which case the orig_object's 1394 * and new_object's locks are released and reacquired. 1395 */ 1396 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1397 TAILQ_FOREACH(m, &new_object->memq, listq) 1398 vm_page_xunbusy(m); 1399 1400 /* 1401 * Transfer any cached pages from orig_object to new_object. 1402 * If swap_pager_copy() found swapped out pages within the 1403 * specified range of orig_object, then it changed 1404 * new_object's type to OBJT_SWAP when it transferred those 1405 * pages to new_object. Otherwise, new_object's type 1406 * should still be OBJT_DEFAULT and orig_object should not 1407 * contain any cached pages within the specified range. 1408 */ 1409 if (__predict_false(!vm_object_cache_is_empty(orig_object))) 1410 vm_page_cache_transfer(orig_object, offidxstart, 1411 new_object); 1412 } 1413 VM_OBJECT_WUNLOCK(orig_object); 1414 VM_OBJECT_WUNLOCK(new_object); 1415 entry->object.vm_object = new_object; 1416 entry->offset = 0LL; 1417 vm_object_deallocate(orig_object); 1418 VM_OBJECT_WLOCK(new_object); 1419 } 1420 1421 #define OBSC_TEST_ALL_SHADOWED 0x0001 1422 #define OBSC_COLLAPSE_NOWAIT 0x0002 1423 #define OBSC_COLLAPSE_WAIT 0x0004 1424 1425 static int 1426 vm_object_backing_scan(vm_object_t object, int op) 1427 { 1428 int r = 1; 1429 vm_page_t p; 1430 vm_object_t backing_object; 1431 vm_pindex_t backing_offset_index; 1432 1433 VM_OBJECT_ASSERT_WLOCKED(object); 1434 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1435 1436 backing_object = object->backing_object; 1437 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1438 1439 /* 1440 * Initial conditions 1441 */ 1442 if (op & OBSC_TEST_ALL_SHADOWED) { 1443 /* 1444 * We do not want to have to test for the existence of cache 1445 * or swap pages in the backing object. XXX but with the 1446 * new swapper this would be pretty easy to do. 1447 * 1448 * XXX what about anonymous MAP_SHARED memory that hasn't 1449 * been ZFOD faulted yet? If we do not test for this, the 1450 * shadow test may succeed! XXX 1451 */ 1452 if (backing_object->type != OBJT_DEFAULT) { 1453 return (0); 1454 } 1455 } 1456 if (op & OBSC_COLLAPSE_WAIT) { 1457 vm_object_set_flag(backing_object, OBJ_DEAD); 1458 } 1459 1460 /* 1461 * Our scan 1462 */ 1463 p = TAILQ_FIRST(&backing_object->memq); 1464 while (p) { 1465 vm_page_t next = TAILQ_NEXT(p, listq); 1466 vm_pindex_t new_pindex = p->pindex - backing_offset_index; 1467 1468 if (op & OBSC_TEST_ALL_SHADOWED) { 1469 vm_page_t pp; 1470 1471 /* 1472 * Ignore pages outside the parent object's range 1473 * and outside the parent object's mapping of the 1474 * backing object. 1475 * 1476 * note that we do not busy the backing object's 1477 * page. 1478 */ 1479 if ( 1480 p->pindex < backing_offset_index || 1481 new_pindex >= object->size 1482 ) { 1483 p = next; 1484 continue; 1485 } 1486 1487 /* 1488 * See if the parent has the page or if the parent's 1489 * object pager has the page. If the parent has the 1490 * page but the page is not valid, the parent's 1491 * object pager must have the page. 1492 * 1493 * If this fails, the parent does not completely shadow 1494 * the object and we might as well give up now. 1495 */ 1496 1497 pp = vm_page_lookup(object, new_pindex); 1498 if ( 1499 (pp == NULL || pp->valid == 0) && 1500 !vm_pager_has_page(object, new_pindex, NULL, NULL) 1501 ) { 1502 r = 0; 1503 break; 1504 } 1505 } 1506 1507 /* 1508 * Check for busy page 1509 */ 1510 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) { 1511 vm_page_t pp; 1512 1513 if (op & OBSC_COLLAPSE_NOWAIT) { 1514 if (!p->valid || vm_page_busied(p)) { 1515 p = next; 1516 continue; 1517 } 1518 } else if (op & OBSC_COLLAPSE_WAIT) { 1519 if (vm_page_busied(p)) { 1520 VM_OBJECT_WUNLOCK(object); 1521 vm_page_lock(p); 1522 VM_OBJECT_WUNLOCK(backing_object); 1523 vm_page_busy_sleep(p, "vmocol"); 1524 VM_OBJECT_WLOCK(object); 1525 VM_OBJECT_WLOCK(backing_object); 1526 /* 1527 * If we slept, anything could have 1528 * happened. Since the object is 1529 * marked dead, the backing offset 1530 * should not have changed so we 1531 * just restart our scan. 1532 */ 1533 p = TAILQ_FIRST(&backing_object->memq); 1534 continue; 1535 } 1536 } 1537 1538 KASSERT( 1539 p->object == backing_object, 1540 ("vm_object_backing_scan: object mismatch") 1541 ); 1542 1543 if ( 1544 p->pindex < backing_offset_index || 1545 new_pindex >= object->size 1546 ) { 1547 if (backing_object->type == OBJT_SWAP) 1548 swap_pager_freespace(backing_object, 1549 p->pindex, 1); 1550 1551 /* 1552 * Page is out of the parent object's range, we 1553 * can simply destroy it. 1554 */ 1555 vm_page_lock(p); 1556 KASSERT(!pmap_page_is_mapped(p), 1557 ("freeing mapped page %p", p)); 1558 if (p->wire_count == 0) 1559 vm_page_free(p); 1560 else 1561 vm_page_remove(p); 1562 vm_page_unlock(p); 1563 p = next; 1564 continue; 1565 } 1566 1567 pp = vm_page_lookup(object, new_pindex); 1568 if ( 1569 (op & OBSC_COLLAPSE_NOWAIT) != 0 && 1570 (pp != NULL && pp->valid == 0) 1571 ) { 1572 if (backing_object->type == OBJT_SWAP) 1573 swap_pager_freespace(backing_object, 1574 p->pindex, 1); 1575 1576 /* 1577 * The page in the parent is not (yet) valid. 1578 * We don't know anything about the state of 1579 * the original page. It might be mapped, 1580 * so we must avoid the next if here. 1581 * 1582 * This is due to a race in vm_fault() where 1583 * we must unbusy the original (backing_obj) 1584 * page before we can (re)lock the parent. 1585 * Hence we can get here. 1586 */ 1587 p = next; 1588 continue; 1589 } 1590 if ( 1591 pp != NULL || 1592 vm_pager_has_page(object, new_pindex, NULL, NULL) 1593 ) { 1594 if (backing_object->type == OBJT_SWAP) 1595 swap_pager_freespace(backing_object, 1596 p->pindex, 1); 1597 1598 /* 1599 * page already exists in parent OR swap exists 1600 * for this location in the parent. Destroy 1601 * the original page from the backing object. 1602 * 1603 * Leave the parent's page alone 1604 */ 1605 vm_page_lock(p); 1606 KASSERT(!pmap_page_is_mapped(p), 1607 ("freeing mapped page %p", p)); 1608 if (p->wire_count == 0) 1609 vm_page_free(p); 1610 else 1611 vm_page_remove(p); 1612 vm_page_unlock(p); 1613 p = next; 1614 continue; 1615 } 1616 1617 /* 1618 * Page does not exist in parent, rename the 1619 * page from the backing object to the main object. 1620 * 1621 * If the page was mapped to a process, it can remain 1622 * mapped through the rename. 1623 * vm_page_rename() will handle dirty and cache. 1624 */ 1625 if (vm_page_rename(p, object, new_pindex)) { 1626 if (op & OBSC_COLLAPSE_NOWAIT) { 1627 p = next; 1628 continue; 1629 } 1630 VM_OBJECT_WUNLOCK(backing_object); 1631 VM_OBJECT_WUNLOCK(object); 1632 VM_WAIT; 1633 VM_OBJECT_WLOCK(object); 1634 VM_OBJECT_WLOCK(backing_object); 1635 p = TAILQ_FIRST(&backing_object->memq); 1636 continue; 1637 } 1638 1639 /* Use the old pindex to free the right page. */ 1640 if (backing_object->type == OBJT_SWAP) 1641 swap_pager_freespace(backing_object, 1642 new_pindex + backing_offset_index, 1); 1643 1644 #if VM_NRESERVLEVEL > 0 1645 /* 1646 * Rename the reservation. 1647 */ 1648 vm_reserv_rename(p, object, backing_object, 1649 backing_offset_index); 1650 #endif 1651 } 1652 p = next; 1653 } 1654 return (r); 1655 } 1656 1657 1658 /* 1659 * this version of collapse allows the operation to occur earlier and 1660 * when paging_in_progress is true for an object... This is not a complete 1661 * operation, but should plug 99.9% of the rest of the leaks. 1662 */ 1663 static void 1664 vm_object_qcollapse(vm_object_t object) 1665 { 1666 vm_object_t backing_object = object->backing_object; 1667 1668 VM_OBJECT_ASSERT_WLOCKED(object); 1669 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1670 1671 if (backing_object->ref_count != 1) 1672 return; 1673 1674 vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT); 1675 } 1676 1677 /* 1678 * vm_object_collapse: 1679 * 1680 * Collapse an object with the object backing it. 1681 * Pages in the backing object are moved into the 1682 * parent, and the backing object is deallocated. 1683 */ 1684 void 1685 vm_object_collapse(vm_object_t object) 1686 { 1687 VM_OBJECT_ASSERT_WLOCKED(object); 1688 1689 while (TRUE) { 1690 vm_object_t backing_object; 1691 1692 /* 1693 * Verify that the conditions are right for collapse: 1694 * 1695 * The object exists and the backing object exists. 1696 */ 1697 if ((backing_object = object->backing_object) == NULL) 1698 break; 1699 1700 /* 1701 * we check the backing object first, because it is most likely 1702 * not collapsable. 1703 */ 1704 VM_OBJECT_WLOCK(backing_object); 1705 if (backing_object->handle != NULL || 1706 (backing_object->type != OBJT_DEFAULT && 1707 backing_object->type != OBJT_SWAP) || 1708 (backing_object->flags & OBJ_DEAD) || 1709 object->handle != NULL || 1710 (object->type != OBJT_DEFAULT && 1711 object->type != OBJT_SWAP) || 1712 (object->flags & OBJ_DEAD)) { 1713 VM_OBJECT_WUNLOCK(backing_object); 1714 break; 1715 } 1716 1717 if ( 1718 object->paging_in_progress != 0 || 1719 backing_object->paging_in_progress != 0 1720 ) { 1721 vm_object_qcollapse(object); 1722 VM_OBJECT_WUNLOCK(backing_object); 1723 break; 1724 } 1725 /* 1726 * We know that we can either collapse the backing object (if 1727 * the parent is the only reference to it) or (perhaps) have 1728 * the parent bypass the object if the parent happens to shadow 1729 * all the resident pages in the entire backing object. 1730 * 1731 * This is ignoring pager-backed pages such as swap pages. 1732 * vm_object_backing_scan fails the shadowing test in this 1733 * case. 1734 */ 1735 if (backing_object->ref_count == 1) { 1736 /* 1737 * If there is exactly one reference to the backing 1738 * object, we can collapse it into the parent. 1739 */ 1740 vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT); 1741 1742 #if VM_NRESERVLEVEL > 0 1743 /* 1744 * Break any reservations from backing_object. 1745 */ 1746 if (__predict_false(!LIST_EMPTY(&backing_object->rvq))) 1747 vm_reserv_break_all(backing_object); 1748 #endif 1749 1750 /* 1751 * Move the pager from backing_object to object. 1752 */ 1753 if (backing_object->type == OBJT_SWAP) { 1754 /* 1755 * swap_pager_copy() can sleep, in which case 1756 * the backing_object's and object's locks are 1757 * released and reacquired. 1758 * Since swap_pager_copy() is being asked to 1759 * destroy the source, it will change the 1760 * backing_object's type to OBJT_DEFAULT. 1761 */ 1762 swap_pager_copy( 1763 backing_object, 1764 object, 1765 OFF_TO_IDX(object->backing_object_offset), TRUE); 1766 1767 /* 1768 * Free any cached pages from backing_object. 1769 */ 1770 if (__predict_false( 1771 !vm_object_cache_is_empty(backing_object))) 1772 vm_page_cache_free(backing_object, 0, 0); 1773 } 1774 /* 1775 * Object now shadows whatever backing_object did. 1776 * Note that the reference to 1777 * backing_object->backing_object moves from within 1778 * backing_object to within object. 1779 */ 1780 LIST_REMOVE(object, shadow_list); 1781 backing_object->shadow_count--; 1782 if (backing_object->backing_object) { 1783 VM_OBJECT_WLOCK(backing_object->backing_object); 1784 LIST_REMOVE(backing_object, shadow_list); 1785 LIST_INSERT_HEAD( 1786 &backing_object->backing_object->shadow_head, 1787 object, shadow_list); 1788 /* 1789 * The shadow_count has not changed. 1790 */ 1791 VM_OBJECT_WUNLOCK(backing_object->backing_object); 1792 } 1793 object->backing_object = backing_object->backing_object; 1794 object->backing_object_offset += 1795 backing_object->backing_object_offset; 1796 1797 /* 1798 * Discard backing_object. 1799 * 1800 * Since the backing object has no pages, no pager left, 1801 * and no object references within it, all that is 1802 * necessary is to dispose of it. 1803 */ 1804 KASSERT(backing_object->ref_count == 1, ( 1805 "backing_object %p was somehow re-referenced during collapse!", 1806 backing_object)); 1807 backing_object->type = OBJT_DEAD; 1808 backing_object->ref_count = 0; 1809 VM_OBJECT_WUNLOCK(backing_object); 1810 vm_object_destroy(backing_object); 1811 1812 object_collapses++; 1813 } else { 1814 vm_object_t new_backing_object; 1815 1816 /* 1817 * If we do not entirely shadow the backing object, 1818 * there is nothing we can do so we give up. 1819 */ 1820 if (object->resident_page_count != object->size && 1821 vm_object_backing_scan(object, 1822 OBSC_TEST_ALL_SHADOWED) == 0) { 1823 VM_OBJECT_WUNLOCK(backing_object); 1824 break; 1825 } 1826 1827 /* 1828 * Make the parent shadow the next object in the 1829 * chain. Deallocating backing_object will not remove 1830 * it, since its reference count is at least 2. 1831 */ 1832 LIST_REMOVE(object, shadow_list); 1833 backing_object->shadow_count--; 1834 1835 new_backing_object = backing_object->backing_object; 1836 if ((object->backing_object = new_backing_object) != NULL) { 1837 VM_OBJECT_WLOCK(new_backing_object); 1838 LIST_INSERT_HEAD( 1839 &new_backing_object->shadow_head, 1840 object, 1841 shadow_list 1842 ); 1843 new_backing_object->shadow_count++; 1844 vm_object_reference_locked(new_backing_object); 1845 VM_OBJECT_WUNLOCK(new_backing_object); 1846 object->backing_object_offset += 1847 backing_object->backing_object_offset; 1848 } 1849 1850 /* 1851 * Drop the reference count on backing_object. Since 1852 * its ref_count was at least 2, it will not vanish. 1853 */ 1854 backing_object->ref_count--; 1855 VM_OBJECT_WUNLOCK(backing_object); 1856 object_bypasses++; 1857 } 1858 1859 /* 1860 * Try again with this object's new backing object. 1861 */ 1862 } 1863 } 1864 1865 /* 1866 * vm_object_page_remove: 1867 * 1868 * For the given object, either frees or invalidates each of the 1869 * specified pages. In general, a page is freed. However, if a page is 1870 * wired for any reason other than the existence of a managed, wired 1871 * mapping, then it may be invalidated but not removed from the object. 1872 * Pages are specified by the given range ["start", "end") and the option 1873 * OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range 1874 * extends from "start" to the end of the object. If the option 1875 * OBJPR_CLEANONLY is specified, then only the non-dirty pages within the 1876 * specified range are affected. If the option OBJPR_NOTMAPPED is 1877 * specified, then the pages within the specified range must have no 1878 * mappings. Otherwise, if this option is not specified, any mappings to 1879 * the specified pages are removed before the pages are freed or 1880 * invalidated. 1881 * 1882 * In general, this operation should only be performed on objects that 1883 * contain managed pages. There are, however, two exceptions. First, it 1884 * is performed on the kernel and kmem objects by vm_map_entry_delete(). 1885 * Second, it is used by msync(..., MS_INVALIDATE) to invalidate device- 1886 * backed pages. In both of these cases, the option OBJPR_CLEANONLY must 1887 * not be specified and the option OBJPR_NOTMAPPED must be specified. 1888 * 1889 * The object must be locked. 1890 */ 1891 void 1892 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 1893 int options) 1894 { 1895 vm_page_t p, next; 1896 int wirings; 1897 1898 VM_OBJECT_ASSERT_WLOCKED(object); 1899 KASSERT((object->flags & OBJ_UNMANAGED) == 0 || 1900 (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED, 1901 ("vm_object_page_remove: illegal options for object %p", object)); 1902 if (object->resident_page_count == 0) 1903 goto skipmemq; 1904 vm_object_pip_add(object, 1); 1905 again: 1906 p = vm_page_find_least(object, start); 1907 1908 /* 1909 * Here, the variable "p" is either (1) the page with the least pindex 1910 * greater than or equal to the parameter "start" or (2) NULL. 1911 */ 1912 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1913 next = TAILQ_NEXT(p, listq); 1914 1915 /* 1916 * If the page is wired for any reason besides the existence 1917 * of managed, wired mappings, then it cannot be freed. For 1918 * example, fictitious pages, which represent device memory, 1919 * are inherently wired and cannot be freed. They can, 1920 * however, be invalidated if the option OBJPR_CLEANONLY is 1921 * not specified. 1922 */ 1923 vm_page_lock(p); 1924 if (vm_page_xbusied(p)) { 1925 VM_OBJECT_WUNLOCK(object); 1926 vm_page_busy_sleep(p, "vmopax"); 1927 VM_OBJECT_WLOCK(object); 1928 goto again; 1929 } 1930 if ((wirings = p->wire_count) != 0 && 1931 (wirings = pmap_page_wired_mappings(p)) != p->wire_count) { 1932 if ((options & (OBJPR_NOTWIRED | OBJPR_NOTMAPPED)) == 1933 0) { 1934 pmap_remove_all(p); 1935 /* Account for removal of wired mappings. */ 1936 if (wirings != 0) 1937 p->wire_count -= wirings; 1938 } 1939 if ((options & OBJPR_CLEANONLY) == 0) { 1940 p->valid = 0; 1941 vm_page_undirty(p); 1942 } 1943 goto next; 1944 } 1945 if (vm_page_busied(p)) { 1946 VM_OBJECT_WUNLOCK(object); 1947 vm_page_busy_sleep(p, "vmopar"); 1948 VM_OBJECT_WLOCK(object); 1949 goto again; 1950 } 1951 KASSERT((p->flags & PG_FICTITIOUS) == 0, 1952 ("vm_object_page_remove: page %p is fictitious", p)); 1953 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) { 1954 if ((options & OBJPR_NOTMAPPED) == 0) 1955 pmap_remove_write(p); 1956 if (p->dirty) 1957 goto next; 1958 } 1959 if ((options & OBJPR_NOTMAPPED) == 0) { 1960 if ((options & OBJPR_NOTWIRED) != 0 && wirings != 0) 1961 goto next; 1962 pmap_remove_all(p); 1963 /* Account for removal of wired mappings. */ 1964 if (wirings != 0) { 1965 KASSERT(p->wire_count == wirings, 1966 ("inconsistent wire count %d %d %p", 1967 p->wire_count, wirings, p)); 1968 p->wire_count = 0; 1969 atomic_subtract_int(&vm_cnt.v_wire_count, 1); 1970 } 1971 } 1972 vm_page_free(p); 1973 next: 1974 vm_page_unlock(p); 1975 } 1976 vm_object_pip_wakeup(object); 1977 skipmemq: 1978 if (__predict_false(!vm_object_cache_is_empty(object))) 1979 vm_page_cache_free(object, start, end); 1980 } 1981 1982 /* 1983 * vm_object_page_cache: 1984 * 1985 * For the given object, attempt to move the specified clean 1986 * pages to the cache queue. If a page is wired for any reason, 1987 * then it will not be changed. Pages are specified by the given 1988 * range ["start", "end"). As a special case, if "end" is zero, 1989 * then the range extends from "start" to the end of the object. 1990 * Any mappings to the specified pages are removed before the 1991 * pages are moved to the cache queue. 1992 * 1993 * This operation should only be performed on objects that 1994 * contain non-fictitious, managed pages. 1995 * 1996 * The object must be locked. 1997 */ 1998 void 1999 vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 2000 { 2001 struct mtx *mtx, *new_mtx; 2002 vm_page_t p, next; 2003 2004 VM_OBJECT_ASSERT_WLOCKED(object); 2005 KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0, 2006 ("vm_object_page_cache: illegal object %p", object)); 2007 if (object->resident_page_count == 0) 2008 return; 2009 p = vm_page_find_least(object, start); 2010 2011 /* 2012 * Here, the variable "p" is either (1) the page with the least pindex 2013 * greater than or equal to the parameter "start" or (2) NULL. 2014 */ 2015 mtx = NULL; 2016 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 2017 next = TAILQ_NEXT(p, listq); 2018 2019 /* 2020 * Avoid releasing and reacquiring the same page lock. 2021 */ 2022 new_mtx = vm_page_lockptr(p); 2023 if (mtx != new_mtx) { 2024 if (mtx != NULL) 2025 mtx_unlock(mtx); 2026 mtx = new_mtx; 2027 mtx_lock(mtx); 2028 } 2029 vm_page_try_to_cache(p); 2030 } 2031 if (mtx != NULL) 2032 mtx_unlock(mtx); 2033 } 2034 2035 /* 2036 * Populate the specified range of the object with valid pages. Returns 2037 * TRUE if the range is successfully populated and FALSE otherwise. 2038 * 2039 * Note: This function should be optimized to pass a larger array of 2040 * pages to vm_pager_get_pages() before it is applied to a non- 2041 * OBJT_DEVICE object. 2042 * 2043 * The object must be locked. 2044 */ 2045 boolean_t 2046 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 2047 { 2048 vm_page_t m, ma[1]; 2049 vm_pindex_t pindex; 2050 int rv; 2051 2052 VM_OBJECT_ASSERT_WLOCKED(object); 2053 for (pindex = start; pindex < end; pindex++) { 2054 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL); 2055 if (m->valid != VM_PAGE_BITS_ALL) { 2056 ma[0] = m; 2057 rv = vm_pager_get_pages(object, ma, 1, 0); 2058 m = vm_page_lookup(object, pindex); 2059 if (m == NULL) 2060 break; 2061 if (rv != VM_PAGER_OK) { 2062 vm_page_lock(m); 2063 vm_page_free(m); 2064 vm_page_unlock(m); 2065 break; 2066 } 2067 } 2068 /* 2069 * Keep "m" busy because a subsequent iteration may unlock 2070 * the object. 2071 */ 2072 } 2073 if (pindex > start) { 2074 m = vm_page_lookup(object, start); 2075 while (m != NULL && m->pindex < pindex) { 2076 vm_page_xunbusy(m); 2077 m = TAILQ_NEXT(m, listq); 2078 } 2079 } 2080 return (pindex == end); 2081 } 2082 2083 /* 2084 * Routine: vm_object_coalesce 2085 * Function: Coalesces two objects backing up adjoining 2086 * regions of memory into a single object. 2087 * 2088 * returns TRUE if objects were combined. 2089 * 2090 * NOTE: Only works at the moment if the second object is NULL - 2091 * if it's not, which object do we lock first? 2092 * 2093 * Parameters: 2094 * prev_object First object to coalesce 2095 * prev_offset Offset into prev_object 2096 * prev_size Size of reference to prev_object 2097 * next_size Size of reference to the second object 2098 * reserved Indicator that extension region has 2099 * swap accounted for 2100 * 2101 * Conditions: 2102 * The object must *not* be locked. 2103 */ 2104 boolean_t 2105 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, 2106 vm_size_t prev_size, vm_size_t next_size, boolean_t reserved) 2107 { 2108 vm_pindex_t next_pindex; 2109 2110 if (prev_object == NULL) 2111 return (TRUE); 2112 VM_OBJECT_WLOCK(prev_object); 2113 if ((prev_object->type != OBJT_DEFAULT && 2114 prev_object->type != OBJT_SWAP) || 2115 (prev_object->flags & OBJ_TMPFS_NODE) != 0) { 2116 VM_OBJECT_WUNLOCK(prev_object); 2117 return (FALSE); 2118 } 2119 2120 /* 2121 * Try to collapse the object first 2122 */ 2123 vm_object_collapse(prev_object); 2124 2125 /* 2126 * Can't coalesce if: . more than one reference . paged out . shadows 2127 * another object . has a copy elsewhere (any of which mean that the 2128 * pages not mapped to prev_entry may be in use anyway) 2129 */ 2130 if (prev_object->backing_object != NULL) { 2131 VM_OBJECT_WUNLOCK(prev_object); 2132 return (FALSE); 2133 } 2134 2135 prev_size >>= PAGE_SHIFT; 2136 next_size >>= PAGE_SHIFT; 2137 next_pindex = OFF_TO_IDX(prev_offset) + prev_size; 2138 2139 if ((prev_object->ref_count > 1) && 2140 (prev_object->size != next_pindex)) { 2141 VM_OBJECT_WUNLOCK(prev_object); 2142 return (FALSE); 2143 } 2144 2145 /* 2146 * Account for the charge. 2147 */ 2148 if (prev_object->cred != NULL) { 2149 2150 /* 2151 * If prev_object was charged, then this mapping, 2152 * althought not charged now, may become writable 2153 * later. Non-NULL cred in the object would prevent 2154 * swap reservation during enabling of the write 2155 * access, so reserve swap now. Failed reservation 2156 * cause allocation of the separate object for the map 2157 * entry, and swap reservation for this entry is 2158 * managed in appropriate time. 2159 */ 2160 if (!reserved && !swap_reserve_by_cred(ptoa(next_size), 2161 prev_object->cred)) { 2162 return (FALSE); 2163 } 2164 prev_object->charge += ptoa(next_size); 2165 } 2166 2167 /* 2168 * Remove any pages that may still be in the object from a previous 2169 * deallocation. 2170 */ 2171 if (next_pindex < prev_object->size) { 2172 vm_object_page_remove(prev_object, next_pindex, next_pindex + 2173 next_size, 0); 2174 if (prev_object->type == OBJT_SWAP) 2175 swap_pager_freespace(prev_object, 2176 next_pindex, next_size); 2177 #if 0 2178 if (prev_object->cred != NULL) { 2179 KASSERT(prev_object->charge >= 2180 ptoa(prev_object->size - next_pindex), 2181 ("object %p overcharged 1 %jx %jx", prev_object, 2182 (uintmax_t)next_pindex, (uintmax_t)next_size)); 2183 prev_object->charge -= ptoa(prev_object->size - 2184 next_pindex); 2185 } 2186 #endif 2187 } 2188 2189 /* 2190 * Extend the object if necessary. 2191 */ 2192 if (next_pindex + next_size > prev_object->size) 2193 prev_object->size = next_pindex + next_size; 2194 2195 VM_OBJECT_WUNLOCK(prev_object); 2196 return (TRUE); 2197 } 2198 2199 void 2200 vm_object_set_writeable_dirty(vm_object_t object) 2201 { 2202 2203 VM_OBJECT_ASSERT_WLOCKED(object); 2204 if (object->type != OBJT_VNODE) { 2205 if ((object->flags & OBJ_TMPFS_NODE) != 0) { 2206 KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs")); 2207 vm_object_set_flag(object, OBJ_TMPFS_DIRTY); 2208 } 2209 return; 2210 } 2211 object->generation++; 2212 if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) 2213 return; 2214 vm_object_set_flag(object, OBJ_MIGHTBEDIRTY); 2215 } 2216 2217 /* 2218 * vm_object_unwire: 2219 * 2220 * For each page offset within the specified range of the given object, 2221 * find the highest-level page in the shadow chain and unwire it. A page 2222 * must exist at every page offset, and the highest-level page must be 2223 * wired. 2224 */ 2225 void 2226 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length, 2227 uint8_t queue) 2228 { 2229 vm_object_t tobject; 2230 vm_page_t m, tm; 2231 vm_pindex_t end_pindex, pindex, tpindex; 2232 int depth, locked_depth; 2233 2234 KASSERT((offset & PAGE_MASK) == 0, 2235 ("vm_object_unwire: offset is not page aligned")); 2236 KASSERT((length & PAGE_MASK) == 0, 2237 ("vm_object_unwire: length is not a multiple of PAGE_SIZE")); 2238 /* The wired count of a fictitious page never changes. */ 2239 if ((object->flags & OBJ_FICTITIOUS) != 0) 2240 return; 2241 pindex = OFF_TO_IDX(offset); 2242 end_pindex = pindex + atop(length); 2243 locked_depth = 1; 2244 VM_OBJECT_RLOCK(object); 2245 m = vm_page_find_least(object, pindex); 2246 while (pindex < end_pindex) { 2247 if (m == NULL || pindex < m->pindex) { 2248 /* 2249 * The first object in the shadow chain doesn't 2250 * contain a page at the current index. Therefore, 2251 * the page must exist in a backing object. 2252 */ 2253 tobject = object; 2254 tpindex = pindex; 2255 depth = 0; 2256 do { 2257 tpindex += 2258 OFF_TO_IDX(tobject->backing_object_offset); 2259 tobject = tobject->backing_object; 2260 KASSERT(tobject != NULL, 2261 ("vm_object_unwire: missing page")); 2262 if ((tobject->flags & OBJ_FICTITIOUS) != 0) 2263 goto next_page; 2264 depth++; 2265 if (depth == locked_depth) { 2266 locked_depth++; 2267 VM_OBJECT_RLOCK(tobject); 2268 } 2269 } while ((tm = vm_page_lookup(tobject, tpindex)) == 2270 NULL); 2271 } else { 2272 tm = m; 2273 m = TAILQ_NEXT(m, listq); 2274 } 2275 vm_page_lock(tm); 2276 vm_page_unwire(tm, queue); 2277 vm_page_unlock(tm); 2278 next_page: 2279 pindex++; 2280 } 2281 /* Release the accumulated object locks. */ 2282 for (depth = 0; depth < locked_depth; depth++) { 2283 tobject = object->backing_object; 2284 VM_OBJECT_RUNLOCK(object); 2285 object = tobject; 2286 } 2287 } 2288 2289 #include "opt_ddb.h" 2290 #ifdef DDB 2291 #include <sys/kernel.h> 2292 2293 #include <sys/cons.h> 2294 2295 #include <ddb/ddb.h> 2296 2297 static int 2298 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2299 { 2300 vm_map_t tmpm; 2301 vm_map_entry_t tmpe; 2302 vm_object_t obj; 2303 int entcount; 2304 2305 if (map == 0) 2306 return 0; 2307 2308 if (entry == 0) { 2309 tmpe = map->header.next; 2310 entcount = map->nentries; 2311 while (entcount-- && (tmpe != &map->header)) { 2312 if (_vm_object_in_map(map, object, tmpe)) { 2313 return 1; 2314 } 2315 tmpe = tmpe->next; 2316 } 2317 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2318 tmpm = entry->object.sub_map; 2319 tmpe = tmpm->header.next; 2320 entcount = tmpm->nentries; 2321 while (entcount-- && tmpe != &tmpm->header) { 2322 if (_vm_object_in_map(tmpm, object, tmpe)) { 2323 return 1; 2324 } 2325 tmpe = tmpe->next; 2326 } 2327 } else if ((obj = entry->object.vm_object) != NULL) { 2328 for (; obj; obj = obj->backing_object) 2329 if (obj == object) { 2330 return 1; 2331 } 2332 } 2333 return 0; 2334 } 2335 2336 static int 2337 vm_object_in_map(vm_object_t object) 2338 { 2339 struct proc *p; 2340 2341 /* sx_slock(&allproc_lock); */ 2342 FOREACH_PROC_IN_SYSTEM(p) { 2343 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 2344 continue; 2345 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) { 2346 /* sx_sunlock(&allproc_lock); */ 2347 return 1; 2348 } 2349 } 2350 /* sx_sunlock(&allproc_lock); */ 2351 if (_vm_object_in_map(kernel_map, object, 0)) 2352 return 1; 2353 return 0; 2354 } 2355 2356 DB_SHOW_COMMAND(vmochk, vm_object_check) 2357 { 2358 vm_object_t object; 2359 2360 /* 2361 * make sure that internal objs are in a map somewhere 2362 * and none have zero ref counts. 2363 */ 2364 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2365 if (object->handle == NULL && 2366 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2367 if (object->ref_count == 0) { 2368 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2369 (long)object->size); 2370 } 2371 if (!vm_object_in_map(object)) { 2372 db_printf( 2373 "vmochk: internal obj is not in a map: " 2374 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2375 object->ref_count, (u_long)object->size, 2376 (u_long)object->size, 2377 (void *)object->backing_object); 2378 } 2379 } 2380 } 2381 } 2382 2383 /* 2384 * vm_object_print: [ debug ] 2385 */ 2386 DB_SHOW_COMMAND(object, vm_object_print_static) 2387 { 2388 /* XXX convert args. */ 2389 vm_object_t object = (vm_object_t)addr; 2390 boolean_t full = have_addr; 2391 2392 vm_page_t p; 2393 2394 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2395 #define count was_count 2396 2397 int count; 2398 2399 if (object == NULL) 2400 return; 2401 2402 db_iprintf( 2403 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n", 2404 object, (int)object->type, (uintmax_t)object->size, 2405 object->resident_page_count, object->ref_count, object->flags, 2406 object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge); 2407 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n", 2408 object->shadow_count, 2409 object->backing_object ? object->backing_object->ref_count : 0, 2410 object->backing_object, (uintmax_t)object->backing_object_offset); 2411 2412 if (!full) 2413 return; 2414 2415 db_indent += 2; 2416 count = 0; 2417 TAILQ_FOREACH(p, &object->memq, listq) { 2418 if (count == 0) 2419 db_iprintf("memory:="); 2420 else if (count == 6) { 2421 db_printf("\n"); 2422 db_iprintf(" ..."); 2423 count = 0; 2424 } else 2425 db_printf(","); 2426 count++; 2427 2428 db_printf("(off=0x%jx,page=0x%jx)", 2429 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p)); 2430 } 2431 if (count != 0) 2432 db_printf("\n"); 2433 db_indent -= 2; 2434 } 2435 2436 /* XXX. */ 2437 #undef count 2438 2439 /* XXX need this non-static entry for calling from vm_map_print. */ 2440 void 2441 vm_object_print( 2442 /* db_expr_t */ long addr, 2443 boolean_t have_addr, 2444 /* db_expr_t */ long count, 2445 char *modif) 2446 { 2447 vm_object_print_static(addr, have_addr, count, modif); 2448 } 2449 2450 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 2451 { 2452 vm_object_t object; 2453 vm_pindex_t fidx; 2454 vm_paddr_t pa; 2455 vm_page_t m, prev_m; 2456 int rcount, nl, c; 2457 2458 nl = 0; 2459 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2460 db_printf("new object: %p\n", (void *)object); 2461 if (nl > 18) { 2462 c = cngetc(); 2463 if (c != ' ') 2464 return; 2465 nl = 0; 2466 } 2467 nl++; 2468 rcount = 0; 2469 fidx = 0; 2470 pa = -1; 2471 TAILQ_FOREACH(m, &object->memq, listq) { 2472 if (m->pindex > 128) 2473 break; 2474 if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL && 2475 prev_m->pindex + 1 != m->pindex) { 2476 if (rcount) { 2477 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2478 (long)fidx, rcount, (long)pa); 2479 if (nl > 18) { 2480 c = cngetc(); 2481 if (c != ' ') 2482 return; 2483 nl = 0; 2484 } 2485 nl++; 2486 rcount = 0; 2487 } 2488 } 2489 if (rcount && 2490 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2491 ++rcount; 2492 continue; 2493 } 2494 if (rcount) { 2495 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2496 (long)fidx, rcount, (long)pa); 2497 if (nl > 18) { 2498 c = cngetc(); 2499 if (c != ' ') 2500 return; 2501 nl = 0; 2502 } 2503 nl++; 2504 } 2505 fidx = m->pindex; 2506 pa = VM_PAGE_TO_PHYS(m); 2507 rcount = 1; 2508 } 2509 if (rcount) { 2510 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2511 (long)fidx, rcount, (long)pa); 2512 if (nl > 18) { 2513 c = cngetc(); 2514 if (c != ' ') 2515 return; 2516 nl = 0; 2517 } 2518 nl++; 2519 } 2520 } 2521 } 2522 #endif /* DDB */ 2523