xref: /freebsd/sys/vm/vm_object.c (revision ee2ea5ceafed78a5bd9810beb9e3ca927180c226)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD$
65  */
66 
67 /*
68  *	Virtual memory object module.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/lock.h>
74 #include <sys/mman.h>
75 #include <sys/mount.h>
76 #include <sys/kernel.h>
77 #include <sys/sysctl.h>
78 #include <sys/mutex.h>
79 #include <sys/proc.h>		/* for curproc, pageproc */
80 #include <sys/socket.h>
81 #include <sys/vnode.h>
82 #include <sys/vmmeter.h>
83 #include <sys/sx.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/uma.h>
97 
98 #define EASY_SCAN_FACTOR       8
99 
100 #define MSYNC_FLUSH_HARDSEQ	0x01
101 #define MSYNC_FLUSH_SOFTSEQ	0x02
102 
103 /*
104  * msync / VM object flushing optimizations
105  */
106 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
107 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
108         CTLFLAG_RW, &msync_flush_flags, 0, "");
109 
110 static void	vm_object_qcollapse(vm_object_t object);
111 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
112 
113 /*
114  *	Virtual memory objects maintain the actual data
115  *	associated with allocated virtual memory.  A given
116  *	page of memory exists within exactly one object.
117  *
118  *	An object is only deallocated when all "references"
119  *	are given up.  Only one "reference" to a given
120  *	region of an object should be writeable.
121  *
122  *	Associated with each object is a list of all resident
123  *	memory pages belonging to that object; this list is
124  *	maintained by the "vm_page" module, and locked by the object's
125  *	lock.
126  *
127  *	Each object also records a "pager" routine which is
128  *	used to retrieve (and store) pages to the proper backing
129  *	storage.  In addition, objects may be backed by other
130  *	objects from which they were virtual-copied.
131  *
132  *	The only items within the object structure which are
133  *	modified after time of creation are:
134  *		reference count		locked by object's lock
135  *		pager routine		locked by object's lock
136  *
137  */
138 
139 struct object_q vm_object_list;
140 struct mtx vm_object_list_mtx;	/* lock for object list and count */
141 vm_object_t kernel_object;
142 vm_object_t kmem_object;
143 static struct vm_object kernel_object_store;
144 static struct vm_object kmem_object_store;
145 extern int vm_pageout_page_count;
146 
147 static long object_collapses;
148 static long object_bypasses;
149 static int next_index;
150 static uma_zone_t obj_zone;
151 #define VM_OBJECTS_INIT 256
152 
153 static void vm_object_zinit(void *mem, int size);
154 
155 #ifdef INVARIANTS
156 static void vm_object_zdtor(void *mem, int size, void *arg);
157 
158 static void
159 vm_object_zdtor(void *mem, int size, void *arg)
160 {
161 	vm_object_t object;
162 
163 	object = (vm_object_t)mem;
164 	KASSERT(object->paging_in_progress == 0,
165 	    ("object %p paging_in_progress = %d",
166 	    object, object->paging_in_progress));
167 	KASSERT(object->resident_page_count == 0,
168 	    ("object %p resident_page_count = %d",
169 	    object, object->resident_page_count));
170 	KASSERT(object->shadow_count == 0,
171 	    ("object %p shadow_count = %d",
172 	    object, object->shadow_count));
173 }
174 #endif
175 
176 static void
177 vm_object_zinit(void *mem, int size)
178 {
179 	vm_object_t object;
180 
181 	object = (vm_object_t)mem;
182 
183 	/* These are true for any object that has been freed */
184 	object->paging_in_progress = 0;
185 	object->resident_page_count = 0;
186 	object->shadow_count = 0;
187 }
188 
189 void
190 _vm_object_allocate(objtype_t type, vm_size_t size, vm_object_t object)
191 {
192 	static int object_hash_rand;
193 	int exp, incr;
194 
195 	TAILQ_INIT(&object->memq);
196 	TAILQ_INIT(&object->shadow_head);
197 
198 	object->type = type;
199 	object->size = size;
200 	object->ref_count = 1;
201 	object->flags = 0;
202 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
203 		vm_object_set_flag(object, OBJ_ONEMAPPING);
204 	if (size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
205 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
206 	else
207 		incr = size;
208 	do
209 		object->pg_color = next_index;
210 	while (!atomic_cmpset_int(&next_index, object->pg_color,
211 				  (object->pg_color + incr) & PQ_L2_MASK));
212 	object->handle = NULL;
213 	object->backing_object = NULL;
214 	object->backing_object_offset = (vm_ooffset_t) 0;
215 	/*
216 	 * Try to generate a number that will spread objects out in the
217 	 * hash table.  We 'wipe' new objects across the hash in 128 page
218 	 * increments plus 1 more to offset it a little more by the time
219 	 * it wraps around.
220 	 */
221 	do {
222 		exp = object_hash_rand;
223 		object->hash_rand = exp - 129;
224 	} while (!atomic_cmpset_int(&object_hash_rand, exp, object->hash_rand));
225 
226 	object->generation++;		/* atomicity needed? XXX */
227 
228 	mtx_lock(&vm_object_list_mtx);
229 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
230 	mtx_unlock(&vm_object_list_mtx);
231 }
232 
233 /*
234  *	vm_object_init:
235  *
236  *	Initialize the VM objects module.
237  */
238 void
239 vm_object_init(void)
240 {
241 	TAILQ_INIT(&vm_object_list);
242 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
243 
244 	kernel_object = &kernel_object_store;
245 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
246 	    kernel_object);
247 
248 	kmem_object = &kmem_object_store;
249 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
250 	    kmem_object);
251 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
252 #ifdef INVARIANTS
253 	    vm_object_zdtor,
254 #else
255 	    NULL,
256 #endif
257 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
258 	uma_prealloc(obj_zone, VM_OBJECTS_INIT);
259 }
260 
261 void
262 vm_object_init2(void)
263 {
264 }
265 
266 void
267 vm_object_set_flag(vm_object_t object, u_short bits)
268 {
269 	object->flags |= bits;
270 }
271 
272 void
273 vm_object_clear_flag(vm_object_t object, u_short bits)
274 {
275 	GIANT_REQUIRED;
276 	object->flags &= ~bits;
277 }
278 
279 void
280 vm_object_pip_add(vm_object_t object, short i)
281 {
282 	GIANT_REQUIRED;
283 	object->paging_in_progress += i;
284 }
285 
286 void
287 vm_object_pip_subtract(vm_object_t object, short i)
288 {
289 	GIANT_REQUIRED;
290 	object->paging_in_progress -= i;
291 }
292 
293 void
294 vm_object_pip_wakeup(vm_object_t object)
295 {
296 	GIANT_REQUIRED;
297 	object->paging_in_progress--;
298 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
299 		vm_object_clear_flag(object, OBJ_PIPWNT);
300 		wakeup(object);
301 	}
302 }
303 
304 void
305 vm_object_pip_wakeupn(vm_object_t object, short i)
306 {
307 	GIANT_REQUIRED;
308 	if (i)
309 		object->paging_in_progress -= i;
310 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
311 		vm_object_clear_flag(object, OBJ_PIPWNT);
312 		wakeup(object);
313 	}
314 }
315 
316 void
317 vm_object_pip_sleep(vm_object_t object, char *waitid)
318 {
319 	GIANT_REQUIRED;
320 	if (object->paging_in_progress) {
321 		int s = splvm();
322 		if (object->paging_in_progress) {
323 			vm_object_set_flag(object, OBJ_PIPWNT);
324 			tsleep(object, PVM, waitid, 0);
325 		}
326 		splx(s);
327 	}
328 }
329 
330 void
331 vm_object_pip_wait(vm_object_t object, char *waitid)
332 {
333 	GIANT_REQUIRED;
334 	while (object->paging_in_progress)
335 		vm_object_pip_sleep(object, waitid);
336 }
337 
338 /*
339  *	vm_object_allocate:
340  *
341  *	Returns a new object with the given size.
342  */
343 vm_object_t
344 vm_object_allocate(objtype_t type, vm_size_t size)
345 {
346 	vm_object_t result;
347 
348 	result = (vm_object_t) uma_zalloc(obj_zone, M_WAITOK);
349 	_vm_object_allocate(type, size, result);
350 
351 	return (result);
352 }
353 
354 
355 /*
356  *	vm_object_reference:
357  *
358  *	Gets another reference to the given object.
359  */
360 void
361 vm_object_reference(vm_object_t object)
362 {
363 	GIANT_REQUIRED;
364 
365 	if (object == NULL)
366 		return;
367 
368 #if 0
369 	/* object can be re-referenced during final cleaning */
370 	KASSERT(!(object->flags & OBJ_DEAD),
371 	    ("vm_object_reference: attempting to reference dead obj"));
372 #endif
373 
374 	object->ref_count++;
375 	if (object->type == OBJT_VNODE) {
376 		while (vget((struct vnode *) object->handle, LK_RETRY|LK_NOOBJ, curthread)) {
377 			printf("vm_object_reference: delay in getting object\n");
378 		}
379 	}
380 }
381 
382 /*
383  * handle deallocating a object of type OBJT_VNODE
384  */
385 void
386 vm_object_vndeallocate(vm_object_t object)
387 {
388 	struct vnode *vp = (struct vnode *) object->handle;
389 
390 	GIANT_REQUIRED;
391 	KASSERT(object->type == OBJT_VNODE,
392 	    ("vm_object_vndeallocate: not a vnode object"));
393 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
394 #ifdef INVARIANTS
395 	if (object->ref_count == 0) {
396 		vprint("vm_object_vndeallocate", vp);
397 		panic("vm_object_vndeallocate: bad object reference count");
398 	}
399 #endif
400 
401 	object->ref_count--;
402 	if (object->ref_count == 0) {
403 		vp->v_flag &= ~VTEXT;
404 #ifdef ENABLE_VFS_IOOPT
405 		vm_object_clear_flag(object, OBJ_OPT);
406 #endif
407 	}
408 	/*
409 	 * vrele may need a vop lock
410 	 */
411 	vrele(vp);
412 }
413 
414 /*
415  *	vm_object_deallocate:
416  *
417  *	Release a reference to the specified object,
418  *	gained either through a vm_object_allocate
419  *	or a vm_object_reference call.  When all references
420  *	are gone, storage associated with this object
421  *	may be relinquished.
422  *
423  *	No object may be locked.
424  */
425 void
426 vm_object_deallocate(vm_object_t object)
427 {
428 	vm_object_t temp;
429 
430 	GIANT_REQUIRED;
431 
432 	while (object != NULL) {
433 
434 		if (object->type == OBJT_VNODE) {
435 			vm_object_vndeallocate(object);
436 			return;
437 		}
438 
439 		KASSERT(object->ref_count != 0,
440 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
441 
442 		/*
443 		 * If the reference count goes to 0 we start calling
444 		 * vm_object_terminate() on the object chain.
445 		 * A ref count of 1 may be a special case depending on the
446 		 * shadow count being 0 or 1.
447 		 */
448 		object->ref_count--;
449 		if (object->ref_count > 1) {
450 			return;
451 		} else if (object->ref_count == 1) {
452 			if (object->shadow_count == 0) {
453 				vm_object_set_flag(object, OBJ_ONEMAPPING);
454 			} else if ((object->shadow_count == 1) &&
455 			    (object->handle == NULL) &&
456 			    (object->type == OBJT_DEFAULT ||
457 			     object->type == OBJT_SWAP)) {
458 				vm_object_t robject;
459 
460 				robject = TAILQ_FIRST(&object->shadow_head);
461 				KASSERT(robject != NULL,
462 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
463 					 object->ref_count,
464 					 object->shadow_count));
465 				if ((robject->handle == NULL) &&
466 				    (robject->type == OBJT_DEFAULT ||
467 				     robject->type == OBJT_SWAP)) {
468 
469 					robject->ref_count++;
470 
471 					while (
472 						robject->paging_in_progress ||
473 						object->paging_in_progress
474 					) {
475 						vm_object_pip_sleep(robject, "objde1");
476 						vm_object_pip_sleep(object, "objde2");
477 					}
478 
479 					if (robject->ref_count == 1) {
480 						robject->ref_count--;
481 						object = robject;
482 						goto doterm;
483 					}
484 
485 					object = robject;
486 					vm_object_collapse(object);
487 					continue;
488 				}
489 			}
490 
491 			return;
492 
493 		}
494 
495 doterm:
496 
497 		temp = object->backing_object;
498 		if (temp) {
499 			TAILQ_REMOVE(&temp->shadow_head, object, shadow_list);
500 			temp->shadow_count--;
501 #ifdef ENABLE_VFS_IOOPT
502 			if (temp->ref_count == 0)
503 				vm_object_clear_flag(temp, OBJ_OPT);
504 #endif
505 			temp->generation++;
506 			object->backing_object = NULL;
507 		}
508 		/*
509 		 * Don't double-terminate, we could be in a termination
510 		 * recursion due to the terminate having to sync data
511 		 * to disk.
512 		 */
513 		if ((object->flags & OBJ_DEAD) == 0)
514 			vm_object_terminate(object);
515 		object = temp;
516 	}
517 }
518 
519 /*
520  *	vm_object_terminate actually destroys the specified object, freeing
521  *	up all previously used resources.
522  *
523  *	The object must be locked.
524  *	This routine may block.
525  */
526 void
527 vm_object_terminate(vm_object_t object)
528 {
529 	vm_page_t p;
530 	int s;
531 
532 	GIANT_REQUIRED;
533 
534 	/*
535 	 * Make sure no one uses us.
536 	 */
537 	vm_object_set_flag(object, OBJ_DEAD);
538 
539 	/*
540 	 * wait for the pageout daemon to be done with the object
541 	 */
542 	vm_object_pip_wait(object, "objtrm");
543 
544 	KASSERT(!object->paging_in_progress,
545 		("vm_object_terminate: pageout in progress"));
546 
547 	/*
548 	 * Clean and free the pages, as appropriate. All references to the
549 	 * object are gone, so we don't need to lock it.
550 	 */
551 	if (object->type == OBJT_VNODE) {
552 		struct vnode *vp;
553 
554 #ifdef ENABLE_VFS_IOOPT
555 		/*
556 		 * Freeze optimized copies.
557 		 */
558 		vm_freeze_copyopts(object, 0, object->size);
559 #endif
560 		/*
561 		 * Clean pages and flush buffers.
562 		 */
563 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
564 
565 		vp = (struct vnode *) object->handle;
566 		vinvalbuf(vp, V_SAVE, NOCRED, NULL, 0, 0);
567 	}
568 
569 	KASSERT(object->ref_count == 0,
570 		("vm_object_terminate: object with references, ref_count=%d",
571 		object->ref_count));
572 
573 	/*
574 	 * Now free any remaining pages. For internal objects, this also
575 	 * removes them from paging queues. Don't free wired pages, just
576 	 * remove them from the object.
577 	 */
578 	s = splvm();
579 	while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
580 		KASSERT(!p->busy && (p->flags & PG_BUSY) == 0,
581 			("vm_object_terminate: freeing busy page %p "
582 			"p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
583 		if (p->wire_count == 0) {
584 			vm_page_busy(p);
585 			vm_page_free(p);
586 			cnt.v_pfree++;
587 		} else {
588 			vm_page_busy(p);
589 			vm_page_remove(p);
590 		}
591 	}
592 	splx(s);
593 
594 	/*
595 	 * Let the pager know object is dead.
596 	 */
597 	vm_pager_deallocate(object);
598 
599 	/*
600 	 * Remove the object from the global object list.
601 	 */
602 	mtx_lock(&vm_object_list_mtx);
603 	TAILQ_REMOVE(&vm_object_list, object, object_list);
604 	mtx_unlock(&vm_object_list_mtx);
605 
606 	wakeup(object);
607 
608 	/*
609 	 * Free the space for the object.
610 	 */
611 	uma_zfree(obj_zone, object);
612 }
613 
614 /*
615  *	vm_object_page_clean
616  *
617  *	Clean all dirty pages in the specified range of object.  Leaves page
618  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
619  *	write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
620  *	leaving the object dirty.
621  *
622  *	Odd semantics: if start == end, we clean everything.
623  *
624  *	The object must be locked.
625  */
626 void
627 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
628 {
629 	vm_page_t p, np;
630 	vm_offset_t tstart, tend;
631 	vm_pindex_t pi;
632 	struct vnode *vp;
633 	int clearobjflags;
634 	int pagerflags;
635 	int curgeneration;
636 
637 	GIANT_REQUIRED;
638 
639 	if (object->type != OBJT_VNODE ||
640 		(object->flags & OBJ_MIGHTBEDIRTY) == 0)
641 		return;
642 
643 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : 0;
644 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
645 
646 	vp = object->handle;
647 
648 	vm_object_set_flag(object, OBJ_CLEANING);
649 
650 	tstart = start;
651 	if (end == 0) {
652 		tend = object->size;
653 	} else {
654 		tend = end;
655 	}
656 
657 	/*
658 	 * If the caller is smart and only msync()s a range he knows is
659 	 * dirty, we may be able to avoid an object scan.  This results in
660 	 * a phenominal improvement in performance.  We cannot do this
661 	 * as a matter of course because the object may be huge - e.g.
662 	 * the size might be in the gigabytes or terrabytes.
663 	 */
664 	if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
665 		vm_offset_t tscan;
666 		int scanlimit;
667 		int scanreset;
668 
669 		scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
670 		if (scanreset < 16)
671 			scanreset = 16;
672 
673 		scanlimit = scanreset;
674 		tscan = tstart;
675 		while (tscan < tend) {
676 			curgeneration = object->generation;
677 			p = vm_page_lookup(object, tscan);
678 			if (p == NULL || p->valid == 0 ||
679 			    (p->queue - p->pc) == PQ_CACHE) {
680 				if (--scanlimit == 0)
681 					break;
682 				++tscan;
683 				continue;
684 			}
685 			vm_page_test_dirty(p);
686 			if ((p->dirty & p->valid) == 0) {
687 				if (--scanlimit == 0)
688 					break;
689 				++tscan;
690 				continue;
691 			}
692 			/*
693 			 * If we have been asked to skip nosync pages and
694 			 * this is a nosync page, we can't continue.
695 			 */
696 			if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
697 				if (--scanlimit == 0)
698 					break;
699 				++tscan;
700 				continue;
701 			}
702 			scanlimit = scanreset;
703 
704 			/*
705 			 * This returns 0 if it was unable to busy the first
706 			 * page (i.e. had to sleep).
707 			 */
708 			tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
709 		}
710 
711 		/*
712 		 * If everything was dirty and we flushed it successfully,
713 		 * and the requested range is not the entire object, we
714 		 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
715 		 * return immediately.
716 		 */
717 		if (tscan >= tend && (tstart || tend < object->size)) {
718 			vm_object_clear_flag(object, OBJ_CLEANING);
719 			return;
720 		}
721 	}
722 
723 	/*
724 	 * Generally set CLEANCHK interlock and make the page read-only so
725 	 * we can then clear the object flags.
726 	 *
727 	 * However, if this is a nosync mmap then the object is likely to
728 	 * stay dirty so do not mess with the page and do not clear the
729 	 * object flags.
730 	 */
731 	clearobjflags = 1;
732 
733 	TAILQ_FOREACH(p, &object->memq, listq) {
734 		vm_page_flag_set(p, PG_CLEANCHK);
735 		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
736 			clearobjflags = 0;
737 		else
738 			vm_page_protect(p, VM_PROT_READ);
739 	}
740 
741 	if (clearobjflags && (tstart == 0) && (tend == object->size)) {
742 		struct vnode *vp;
743 
744 		vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
745 		if (object->type == OBJT_VNODE &&
746 		    (vp = (struct vnode *)object->handle) != NULL) {
747 			if (vp->v_flag & VOBJDIRTY) {
748 				mtx_lock(&vp->v_interlock);
749 				vp->v_flag &= ~VOBJDIRTY;
750 				mtx_unlock(&vp->v_interlock);
751 			}
752 		}
753 	}
754 
755 rescan:
756 	curgeneration = object->generation;
757 
758 	for (p = TAILQ_FIRST(&object->memq); p; p = np) {
759 		int n;
760 
761 		np = TAILQ_NEXT(p, listq);
762 
763 again:
764 		pi = p->pindex;
765 		if (((p->flags & PG_CLEANCHK) == 0) ||
766 			(pi < tstart) || (pi >= tend) ||
767 			(p->valid == 0) ||
768 			((p->queue - p->pc) == PQ_CACHE)) {
769 			vm_page_flag_clear(p, PG_CLEANCHK);
770 			continue;
771 		}
772 
773 		vm_page_test_dirty(p);
774 		if ((p->dirty & p->valid) == 0) {
775 			vm_page_flag_clear(p, PG_CLEANCHK);
776 			continue;
777 		}
778 
779 		/*
780 		 * If we have been asked to skip nosync pages and this is a
781 		 * nosync page, skip it.  Note that the object flags were
782 		 * not cleared in this case so we do not have to set them.
783 		 */
784 		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
785 			vm_page_flag_clear(p, PG_CLEANCHK);
786 			continue;
787 		}
788 
789 		n = vm_object_page_collect_flush(object, p,
790 			curgeneration, pagerflags);
791 		if (n == 0)
792 			goto rescan;
793 
794 		if (object->generation != curgeneration)
795 			goto rescan;
796 
797 		/*
798 		 * Try to optimize the next page.  If we can't we pick up
799 		 * our (random) scan where we left off.
800 		 */
801 		if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
802 			if ((p = vm_page_lookup(object, pi + n)) != NULL)
803 				goto again;
804 		}
805 	}
806 
807 #if 0
808 	VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
809 #endif
810 
811 	vm_object_clear_flag(object, OBJ_CLEANING);
812 	return;
813 }
814 
815 static int
816 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
817 {
818 	int runlen;
819 	int s;
820 	int maxf;
821 	int chkb;
822 	int maxb;
823 	int i;
824 	vm_pindex_t pi;
825 	vm_page_t maf[vm_pageout_page_count];
826 	vm_page_t mab[vm_pageout_page_count];
827 	vm_page_t ma[vm_pageout_page_count];
828 
829 	s = splvm();
830 	pi = p->pindex;
831 	while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
832 		if (object->generation != curgeneration) {
833 			splx(s);
834 			return(0);
835 		}
836 	}
837 
838 	maxf = 0;
839 	for(i = 1; i < vm_pageout_page_count; i++) {
840 		vm_page_t tp;
841 
842 		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
843 			if ((tp->flags & PG_BUSY) ||
844 				(tp->flags & PG_CLEANCHK) == 0 ||
845 				(tp->busy != 0))
846 				break;
847 			if((tp->queue - tp->pc) == PQ_CACHE) {
848 				vm_page_flag_clear(tp, PG_CLEANCHK);
849 				break;
850 			}
851 			vm_page_test_dirty(tp);
852 			if ((tp->dirty & tp->valid) == 0) {
853 				vm_page_flag_clear(tp, PG_CLEANCHK);
854 				break;
855 			}
856 			maf[ i - 1 ] = tp;
857 			maxf++;
858 			continue;
859 		}
860 		break;
861 	}
862 
863 	maxb = 0;
864 	chkb = vm_pageout_page_count -  maxf;
865 	if (chkb) {
866 		for(i = 1; i < chkb;i++) {
867 			vm_page_t tp;
868 
869 			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
870 				if ((tp->flags & PG_BUSY) ||
871 					(tp->flags & PG_CLEANCHK) == 0 ||
872 					(tp->busy != 0))
873 					break;
874 				if ((tp->queue - tp->pc) == PQ_CACHE) {
875 					vm_page_flag_clear(tp, PG_CLEANCHK);
876 					break;
877 				}
878 				vm_page_test_dirty(tp);
879 				if ((tp->dirty & tp->valid) == 0) {
880 					vm_page_flag_clear(tp, PG_CLEANCHK);
881 					break;
882 				}
883 				mab[ i - 1 ] = tp;
884 				maxb++;
885 				continue;
886 			}
887 			break;
888 		}
889 	}
890 
891 	for(i = 0; i < maxb; i++) {
892 		int index = (maxb - i) - 1;
893 		ma[index] = mab[i];
894 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
895 	}
896 	vm_page_flag_clear(p, PG_CLEANCHK);
897 	ma[maxb] = p;
898 	for(i = 0; i < maxf; i++) {
899 		int index = (maxb + i) + 1;
900 		ma[index] = maf[i];
901 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
902 	}
903 	runlen = maxb + maxf + 1;
904 
905 	splx(s);
906 	vm_pageout_flush(ma, runlen, pagerflags);
907 	for (i = 0; i < runlen; i++) {
908 		if (ma[i]->valid & ma[i]->dirty) {
909 			vm_page_protect(ma[i], VM_PROT_READ);
910 			vm_page_flag_set(ma[i], PG_CLEANCHK);
911 
912 			/*
913 			 * maxf will end up being the actual number of pages
914 			 * we wrote out contiguously, non-inclusive of the
915 			 * first page.  We do not count look-behind pages.
916 			 */
917 			if (i >= maxb + 1 && (maxf > i - maxb - 1))
918 				maxf = i - maxb - 1;
919 		}
920 	}
921 	return(maxf + 1);
922 }
923 
924 /*
925  * Same as vm_object_pmap_copy, except range checking really
926  * works, and is meant for small sections of an object.
927  *
928  * This code protects resident pages by making them read-only
929  * and is typically called on a fork or split when a page
930  * is converted to copy-on-write.
931  *
932  * NOTE: If the page is already at VM_PROT_NONE, calling
933  * vm_page_protect will have no effect.
934  */
935 void
936 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
937 {
938 	vm_pindex_t idx;
939 	vm_page_t p;
940 
941 	GIANT_REQUIRED;
942 
943 	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
944 		return;
945 
946 	for (idx = start; idx < end; idx++) {
947 		p = vm_page_lookup(object, idx);
948 		if (p == NULL)
949 			continue;
950 		vm_page_protect(p, VM_PROT_READ);
951 	}
952 }
953 
954 /*
955  *	vm_object_pmap_remove:
956  *
957  *	Removes all physical pages in the specified
958  *	object range from all physical maps.
959  *
960  *	The object must *not* be locked.
961  */
962 void
963 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
964 {
965 	vm_page_t p;
966 
967 	GIANT_REQUIRED;
968 	if (object == NULL)
969 		return;
970 	TAILQ_FOREACH(p, &object->memq, listq) {
971 		if (p->pindex >= start && p->pindex < end)
972 			vm_page_protect(p, VM_PROT_NONE);
973 	}
974 	if ((start == 0) && (object->size == end))
975 		vm_object_clear_flag(object, OBJ_WRITEABLE);
976 }
977 
978 /*
979  *	vm_object_madvise:
980  *
981  *	Implements the madvise function at the object/page level.
982  *
983  *	MADV_WILLNEED	(any object)
984  *
985  *	    Activate the specified pages if they are resident.
986  *
987  *	MADV_DONTNEED	(any object)
988  *
989  *	    Deactivate the specified pages if they are resident.
990  *
991  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
992  *			 OBJ_ONEMAPPING only)
993  *
994  *	    Deactivate and clean the specified pages if they are
995  *	    resident.  This permits the process to reuse the pages
996  *	    without faulting or the kernel to reclaim the pages
997  *	    without I/O.
998  */
999 void
1000 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1001 {
1002 	vm_pindex_t end, tpindex;
1003 	vm_object_t tobject;
1004 	vm_page_t m;
1005 
1006 	GIANT_REQUIRED;
1007 	if (object == NULL)
1008 		return;
1009 
1010 	end = pindex + count;
1011 
1012 	/*
1013 	 * Locate and adjust resident pages
1014 	 */
1015 	for (; pindex < end; pindex += 1) {
1016 relookup:
1017 		tobject = object;
1018 		tpindex = pindex;
1019 shadowlookup:
1020 		/*
1021 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1022 		 * and those pages must be OBJ_ONEMAPPING.
1023 		 */
1024 		if (advise == MADV_FREE) {
1025 			if ((tobject->type != OBJT_DEFAULT &&
1026 			     tobject->type != OBJT_SWAP) ||
1027 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1028 				continue;
1029 			}
1030 		}
1031 
1032 		m = vm_page_lookup(tobject, tpindex);
1033 
1034 		if (m == NULL) {
1035 			/*
1036 			 * There may be swap even if there is no backing page
1037 			 */
1038 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1039 				swap_pager_freespace(tobject, tpindex, 1);
1040 
1041 			/*
1042 			 * next object
1043 			 */
1044 			tobject = tobject->backing_object;
1045 			if (tobject == NULL)
1046 				continue;
1047 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1048 			goto shadowlookup;
1049 		}
1050 
1051 		/*
1052 		 * If the page is busy or not in a normal active state,
1053 		 * we skip it.  If the page is not managed there are no
1054 		 * page queues to mess with.  Things can break if we mess
1055 		 * with pages in any of the below states.
1056 		 */
1057 		if (
1058 		    m->hold_count ||
1059 		    m->wire_count ||
1060 		    (m->flags & PG_UNMANAGED) ||
1061 		    m->valid != VM_PAGE_BITS_ALL
1062 		) {
1063 			continue;
1064 		}
1065 
1066  		if (vm_page_sleep_busy(m, TRUE, "madvpo"))
1067   			goto relookup;
1068 
1069 		if (advise == MADV_WILLNEED) {
1070 			vm_page_activate(m);
1071 		} else if (advise == MADV_DONTNEED) {
1072 			vm_page_dontneed(m);
1073 		} else if (advise == MADV_FREE) {
1074 			/*
1075 			 * Mark the page clean.  This will allow the page
1076 			 * to be freed up by the system.  However, such pages
1077 			 * are often reused quickly by malloc()/free()
1078 			 * so we do not do anything that would cause
1079 			 * a page fault if we can help it.
1080 			 *
1081 			 * Specifically, we do not try to actually free
1082 			 * the page now nor do we try to put it in the
1083 			 * cache (which would cause a page fault on reuse).
1084 			 *
1085 			 * But we do make the page is freeable as we
1086 			 * can without actually taking the step of unmapping
1087 			 * it.
1088 			 */
1089 			pmap_clear_modify(m);
1090 			m->dirty = 0;
1091 			m->act_count = 0;
1092 			vm_page_dontneed(m);
1093 			if (tobject->type == OBJT_SWAP)
1094 				swap_pager_freespace(tobject, tpindex, 1);
1095 		}
1096 	}
1097 }
1098 
1099 /*
1100  *	vm_object_shadow:
1101  *
1102  *	Create a new object which is backed by the
1103  *	specified existing object range.  The source
1104  *	object reference is deallocated.
1105  *
1106  *	The new object and offset into that object
1107  *	are returned in the source parameters.
1108  */
1109 void
1110 vm_object_shadow(
1111 	vm_object_t *object,	/* IN/OUT */
1112 	vm_ooffset_t *offset,	/* IN/OUT */
1113 	vm_size_t length)
1114 {
1115 	vm_object_t source;
1116 	vm_object_t result;
1117 
1118 	GIANT_REQUIRED;
1119 	source = *object;
1120 
1121 	/*
1122 	 * Don't create the new object if the old object isn't shared.
1123 	 */
1124 	if (source != NULL &&
1125 	    source->ref_count == 1 &&
1126 	    source->handle == NULL &&
1127 	    (source->type == OBJT_DEFAULT ||
1128 	     source->type == OBJT_SWAP))
1129 		return;
1130 
1131 	/*
1132 	 * Allocate a new object with the given length
1133 	 */
1134 	result = vm_object_allocate(OBJT_DEFAULT, length);
1135 	KASSERT(result != NULL, ("vm_object_shadow: no object for shadowing"));
1136 
1137 	/*
1138 	 * The new object shadows the source object, adding a reference to it.
1139 	 * Our caller changes his reference to point to the new object,
1140 	 * removing a reference to the source object.  Net result: no change
1141 	 * of reference count.
1142 	 *
1143 	 * Try to optimize the result object's page color when shadowing
1144 	 * in order to maintain page coloring consistency in the combined
1145 	 * shadowed object.
1146 	 */
1147 	result->backing_object = source;
1148 	if (source) {
1149 		TAILQ_INSERT_TAIL(&source->shadow_head, result, shadow_list);
1150 		source->shadow_count++;
1151 		source->generation++;
1152 		if (length < source->size)
1153 			length = source->size;
1154 		if (length > PQ_L2_SIZE / 3 + PQ_PRIME1 ||
1155 		    source->generation > 1)
1156 			length = PQ_L2_SIZE / 3 + PQ_PRIME1;
1157 		result->pg_color = (source->pg_color +
1158 		    length * source->generation) & PQ_L2_MASK;
1159 		next_index = (result->pg_color + PQ_L2_SIZE / 3 + PQ_PRIME1) &
1160 		    PQ_L2_MASK;
1161 	}
1162 
1163 	/*
1164 	 * Store the offset into the source object, and fix up the offset into
1165 	 * the new object.
1166 	 */
1167 	result->backing_object_offset = *offset;
1168 
1169 	/*
1170 	 * Return the new things
1171 	 */
1172 	*offset = 0;
1173 	*object = result;
1174 }
1175 
1176 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1177 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1178 #define	OBSC_COLLAPSE_WAIT	0x0004
1179 
1180 static __inline int
1181 vm_object_backing_scan(vm_object_t object, int op)
1182 {
1183 	int s;
1184 	int r = 1;
1185 	vm_page_t p;
1186 	vm_object_t backing_object;
1187 	vm_pindex_t backing_offset_index;
1188 
1189 	s = splvm();
1190 	GIANT_REQUIRED;
1191 
1192 	backing_object = object->backing_object;
1193 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1194 
1195 	/*
1196 	 * Initial conditions
1197 	 */
1198 	if (op & OBSC_TEST_ALL_SHADOWED) {
1199 		/*
1200 		 * We do not want to have to test for the existence of
1201 		 * swap pages in the backing object.  XXX but with the
1202 		 * new swapper this would be pretty easy to do.
1203 		 *
1204 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1205 		 * been ZFOD faulted yet?  If we do not test for this, the
1206 		 * shadow test may succeed! XXX
1207 		 */
1208 		if (backing_object->type != OBJT_DEFAULT) {
1209 			splx(s);
1210 			return (0);
1211 		}
1212 	}
1213 	if (op & OBSC_COLLAPSE_WAIT) {
1214 		vm_object_set_flag(backing_object, OBJ_DEAD);
1215 	}
1216 
1217 	/*
1218 	 * Our scan
1219 	 */
1220 	p = TAILQ_FIRST(&backing_object->memq);
1221 	while (p) {
1222 		vm_page_t next = TAILQ_NEXT(p, listq);
1223 		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1224 
1225 		if (op & OBSC_TEST_ALL_SHADOWED) {
1226 			vm_page_t pp;
1227 
1228 			/*
1229 			 * Ignore pages outside the parent object's range
1230 			 * and outside the parent object's mapping of the
1231 			 * backing object.
1232 			 *
1233 			 * note that we do not busy the backing object's
1234 			 * page.
1235 			 */
1236 			if (
1237 			    p->pindex < backing_offset_index ||
1238 			    new_pindex >= object->size
1239 			) {
1240 				p = next;
1241 				continue;
1242 			}
1243 
1244 			/*
1245 			 * See if the parent has the page or if the parent's
1246 			 * object pager has the page.  If the parent has the
1247 			 * page but the page is not valid, the parent's
1248 			 * object pager must have the page.
1249 			 *
1250 			 * If this fails, the parent does not completely shadow
1251 			 * the object and we might as well give up now.
1252 			 */
1253 
1254 			pp = vm_page_lookup(object, new_pindex);
1255 			if (
1256 			    (pp == NULL || pp->valid == 0) &&
1257 			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1258 			) {
1259 				r = 0;
1260 				break;
1261 			}
1262 		}
1263 
1264 		/*
1265 		 * Check for busy page
1266 		 */
1267 		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1268 			vm_page_t pp;
1269 
1270 			if (op & OBSC_COLLAPSE_NOWAIT) {
1271 				if (
1272 				    (p->flags & PG_BUSY) ||
1273 				    !p->valid ||
1274 				    p->hold_count ||
1275 				    p->wire_count ||
1276 				    p->busy
1277 				) {
1278 					p = next;
1279 					continue;
1280 				}
1281 			} else if (op & OBSC_COLLAPSE_WAIT) {
1282 				if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1283 					/*
1284 					 * If we slept, anything could have
1285 					 * happened.  Since the object is
1286 					 * marked dead, the backing offset
1287 					 * should not have changed so we
1288 					 * just restart our scan.
1289 					 */
1290 					p = TAILQ_FIRST(&backing_object->memq);
1291 					continue;
1292 				}
1293 			}
1294 
1295 			/*
1296 			 * Busy the page
1297 			 */
1298 			vm_page_busy(p);
1299 
1300 			KASSERT(
1301 			    p->object == backing_object,
1302 			    ("vm_object_qcollapse(): object mismatch")
1303 			);
1304 
1305 			/*
1306 			 * Destroy any associated swap
1307 			 */
1308 			if (backing_object->type == OBJT_SWAP) {
1309 				swap_pager_freespace(
1310 				    backing_object,
1311 				    p->pindex,
1312 				    1
1313 				);
1314 			}
1315 
1316 			if (
1317 			    p->pindex < backing_offset_index ||
1318 			    new_pindex >= object->size
1319 			) {
1320 				/*
1321 				 * Page is out of the parent object's range, we
1322 				 * can simply destroy it.
1323 				 */
1324 				vm_page_protect(p, VM_PROT_NONE);
1325 				vm_page_free(p);
1326 				p = next;
1327 				continue;
1328 			}
1329 
1330 			pp = vm_page_lookup(object, new_pindex);
1331 			if (
1332 			    pp != NULL ||
1333 			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1334 			) {
1335 				/*
1336 				 * page already exists in parent OR swap exists
1337 				 * for this location in the parent.  Destroy
1338 				 * the original page from the backing object.
1339 				 *
1340 				 * Leave the parent's page alone
1341 				 */
1342 				vm_page_protect(p, VM_PROT_NONE);
1343 				vm_page_free(p);
1344 				p = next;
1345 				continue;
1346 			}
1347 
1348 			/*
1349 			 * Page does not exist in parent, rename the
1350 			 * page from the backing object to the main object.
1351 			 *
1352 			 * If the page was mapped to a process, it can remain
1353 			 * mapped through the rename.
1354 			 */
1355 			if ((p->queue - p->pc) == PQ_CACHE)
1356 				vm_page_deactivate(p);
1357 
1358 			vm_page_rename(p, object, new_pindex);
1359 			/* page automatically made dirty by rename */
1360 		}
1361 		p = next;
1362 	}
1363 	splx(s);
1364 	return (r);
1365 }
1366 
1367 
1368 /*
1369  * this version of collapse allows the operation to occur earlier and
1370  * when paging_in_progress is true for an object...  This is not a complete
1371  * operation, but should plug 99.9% of the rest of the leaks.
1372  */
1373 static void
1374 vm_object_qcollapse(vm_object_t object)
1375 {
1376 	vm_object_t backing_object = object->backing_object;
1377 
1378 	GIANT_REQUIRED;
1379 
1380 	if (backing_object->ref_count != 1)
1381 		return;
1382 
1383 	backing_object->ref_count += 2;
1384 
1385 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1386 
1387 	backing_object->ref_count -= 2;
1388 }
1389 
1390 /*
1391  *	vm_object_collapse:
1392  *
1393  *	Collapse an object with the object backing it.
1394  *	Pages in the backing object are moved into the
1395  *	parent, and the backing object is deallocated.
1396  */
1397 void
1398 vm_object_collapse(vm_object_t object)
1399 {
1400 	GIANT_REQUIRED;
1401 
1402 	while (TRUE) {
1403 		vm_object_t backing_object;
1404 
1405 		/*
1406 		 * Verify that the conditions are right for collapse:
1407 		 *
1408 		 * The object exists and the backing object exists.
1409 		 */
1410 		if (object == NULL)
1411 			break;
1412 
1413 		if ((backing_object = object->backing_object) == NULL)
1414 			break;
1415 
1416 		/*
1417 		 * we check the backing object first, because it is most likely
1418 		 * not collapsable.
1419 		 */
1420 		if (backing_object->handle != NULL ||
1421 		    (backing_object->type != OBJT_DEFAULT &&
1422 		     backing_object->type != OBJT_SWAP) ||
1423 		    (backing_object->flags & OBJ_DEAD) ||
1424 		    object->handle != NULL ||
1425 		    (object->type != OBJT_DEFAULT &&
1426 		     object->type != OBJT_SWAP) ||
1427 		    (object->flags & OBJ_DEAD)) {
1428 			break;
1429 		}
1430 
1431 		if (
1432 		    object->paging_in_progress != 0 ||
1433 		    backing_object->paging_in_progress != 0
1434 		) {
1435 			vm_object_qcollapse(object);
1436 			break;
1437 		}
1438 
1439 		/*
1440 		 * We know that we can either collapse the backing object (if
1441 		 * the parent is the only reference to it) or (perhaps) have
1442 		 * the parent bypass the object if the parent happens to shadow
1443 		 * all the resident pages in the entire backing object.
1444 		 *
1445 		 * This is ignoring pager-backed pages such as swap pages.
1446 		 * vm_object_backing_scan fails the shadowing test in this
1447 		 * case.
1448 		 */
1449 		if (backing_object->ref_count == 1) {
1450 			/*
1451 			 * If there is exactly one reference to the backing
1452 			 * object, we can collapse it into the parent.
1453 			 */
1454 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1455 
1456 			/*
1457 			 * Move the pager from backing_object to object.
1458 			 */
1459 			if (backing_object->type == OBJT_SWAP) {
1460 				vm_object_pip_add(backing_object, 1);
1461 
1462 				/*
1463 				 * scrap the paging_offset junk and do a
1464 				 * discrete copy.  This also removes major
1465 				 * assumptions about how the swap-pager
1466 				 * works from where it doesn't belong.  The
1467 				 * new swapper is able to optimize the
1468 				 * destroy-source case.
1469 				 */
1470 				vm_object_pip_add(object, 1);
1471 				swap_pager_copy(
1472 				    backing_object,
1473 				    object,
1474 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1475 				vm_object_pip_wakeup(object);
1476 
1477 				vm_object_pip_wakeup(backing_object);
1478 			}
1479 			/*
1480 			 * Object now shadows whatever backing_object did.
1481 			 * Note that the reference to
1482 			 * backing_object->backing_object moves from within
1483 			 * backing_object to within object.
1484 			 */
1485 			TAILQ_REMOVE(
1486 			    &object->backing_object->shadow_head,
1487 			    object,
1488 			    shadow_list
1489 			);
1490 			object->backing_object->shadow_count--;
1491 			object->backing_object->generation++;
1492 			if (backing_object->backing_object) {
1493 				TAILQ_REMOVE(
1494 				    &backing_object->backing_object->shadow_head,
1495 				    backing_object,
1496 				    shadow_list
1497 				);
1498 				backing_object->backing_object->shadow_count--;
1499 				backing_object->backing_object->generation++;
1500 			}
1501 			object->backing_object = backing_object->backing_object;
1502 			if (object->backing_object) {
1503 				TAILQ_INSERT_TAIL(
1504 				    &object->backing_object->shadow_head,
1505 				    object,
1506 				    shadow_list
1507 				);
1508 				object->backing_object->shadow_count++;
1509 				object->backing_object->generation++;
1510 			}
1511 
1512 			object->backing_object_offset +=
1513 			    backing_object->backing_object_offset;
1514 
1515 			/*
1516 			 * Discard backing_object.
1517 			 *
1518 			 * Since the backing object has no pages, no pager left,
1519 			 * and no object references within it, all that is
1520 			 * necessary is to dispose of it.
1521 			 */
1522 			KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1523 			KASSERT(TAILQ_FIRST(&backing_object->memq) == NULL, ("backing_object %p somehow has left over pages during collapse!", backing_object));
1524 
1525 			mtx_lock(&vm_object_list_mtx);
1526 			TAILQ_REMOVE(
1527 			    &vm_object_list,
1528 			    backing_object,
1529 			    object_list
1530 			);
1531 			mtx_unlock(&vm_object_list_mtx);
1532 
1533 			uma_zfree(obj_zone, backing_object);
1534 
1535 			object_collapses++;
1536 		} else {
1537 			vm_object_t new_backing_object;
1538 
1539 			/*
1540 			 * If we do not entirely shadow the backing object,
1541 			 * there is nothing we can do so we give up.
1542 			 */
1543 			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1544 				break;
1545 			}
1546 
1547 			/*
1548 			 * Make the parent shadow the next object in the
1549 			 * chain.  Deallocating backing_object will not remove
1550 			 * it, since its reference count is at least 2.
1551 			 */
1552 			TAILQ_REMOVE(
1553 			    &backing_object->shadow_head,
1554 			    object,
1555 			    shadow_list
1556 			);
1557 			backing_object->shadow_count--;
1558 			backing_object->generation++;
1559 
1560 			new_backing_object = backing_object->backing_object;
1561 			if ((object->backing_object = new_backing_object) != NULL) {
1562 				vm_object_reference(new_backing_object);
1563 				TAILQ_INSERT_TAIL(
1564 				    &new_backing_object->shadow_head,
1565 				    object,
1566 				    shadow_list
1567 				);
1568 				new_backing_object->shadow_count++;
1569 				new_backing_object->generation++;
1570 				object->backing_object_offset +=
1571 					backing_object->backing_object_offset;
1572 			}
1573 
1574 			/*
1575 			 * Drop the reference count on backing_object. Since
1576 			 * its ref_count was at least 2, it will not vanish;
1577 			 * so we don't need to call vm_object_deallocate, but
1578 			 * we do anyway.
1579 			 */
1580 			vm_object_deallocate(backing_object);
1581 			object_bypasses++;
1582 		}
1583 
1584 		/*
1585 		 * Try again with this object's new backing object.
1586 		 */
1587 	}
1588 }
1589 
1590 /*
1591  *	vm_object_page_remove: [internal]
1592  *
1593  *	Removes all physical pages in the specified
1594  *	object range from the object's list of pages.
1595  *
1596  *	The object must be locked.
1597  */
1598 void
1599 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, boolean_t clean_only)
1600 {
1601 	vm_page_t p, next;
1602 	unsigned int size;
1603 	int all;
1604 
1605 	GIANT_REQUIRED;
1606 
1607 	if (object == NULL ||
1608 	    object->resident_page_count == 0)
1609 		return;
1610 
1611 	all = ((end == 0) && (start == 0));
1612 
1613 	/*
1614 	 * Since physically-backed objects do not use managed pages, we can't
1615 	 * remove pages from the object (we must instead remove the page
1616 	 * references, and then destroy the object).
1617 	 */
1618 	KASSERT(object->type != OBJT_PHYS, ("attempt to remove pages from a physical object"));
1619 
1620 	vm_object_pip_add(object, 1);
1621 again:
1622 	size = end - start;
1623 	if (all || size > object->resident_page_count / 4) {
1624 		for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
1625 			next = TAILQ_NEXT(p, listq);
1626 			if (all || ((start <= p->pindex) && (p->pindex < end))) {
1627 				if (p->wire_count != 0) {
1628 					vm_page_protect(p, VM_PROT_NONE);
1629 					if (!clean_only)
1630 						p->valid = 0;
1631 					continue;
1632 				}
1633 
1634 				/*
1635 				 * The busy flags are only cleared at
1636 				 * interrupt -- minimize the spl transitions
1637 				 */
1638  				if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1639  					goto again;
1640 
1641 				if (clean_only && p->valid) {
1642 					vm_page_test_dirty(p);
1643 					if (p->valid & p->dirty)
1644 						continue;
1645 				}
1646 
1647 				vm_page_busy(p);
1648 				vm_page_protect(p, VM_PROT_NONE);
1649 				vm_page_free(p);
1650 			}
1651 		}
1652 	} else {
1653 		while (size > 0) {
1654 			if ((p = vm_page_lookup(object, start)) != 0) {
1655 
1656 				if (p->wire_count != 0) {
1657 					vm_page_protect(p, VM_PROT_NONE);
1658 					if (!clean_only)
1659 						p->valid = 0;
1660 					start += 1;
1661 					size -= 1;
1662 					continue;
1663 				}
1664 
1665 				/*
1666 				 * The busy flags are only cleared at
1667 				 * interrupt -- minimize the spl transitions
1668 				 */
1669  				if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1670 					goto again;
1671 
1672 				if (clean_only && p->valid) {
1673 					vm_page_test_dirty(p);
1674 					if (p->valid & p->dirty) {
1675 						start += 1;
1676 						size -= 1;
1677 						continue;
1678 					}
1679 				}
1680 
1681 				vm_page_busy(p);
1682 				vm_page_protect(p, VM_PROT_NONE);
1683 				vm_page_free(p);
1684 			}
1685 			start += 1;
1686 			size -= 1;
1687 		}
1688 	}
1689 	vm_object_pip_wakeup(object);
1690 }
1691 
1692 /*
1693  *	Routine:	vm_object_coalesce
1694  *	Function:	Coalesces two objects backing up adjoining
1695  *			regions of memory into a single object.
1696  *
1697  *	returns TRUE if objects were combined.
1698  *
1699  *	NOTE:	Only works at the moment if the second object is NULL -
1700  *		if it's not, which object do we lock first?
1701  *
1702  *	Parameters:
1703  *		prev_object	First object to coalesce
1704  *		prev_offset	Offset into prev_object
1705  *		next_object	Second object into coalesce
1706  *		next_offset	Offset into next_object
1707  *
1708  *		prev_size	Size of reference to prev_object
1709  *		next_size	Size of reference to next_object
1710  *
1711  *	Conditions:
1712  *	The object must *not* be locked.
1713  */
1714 boolean_t
1715 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex, vm_size_t prev_size, vm_size_t next_size)
1716 {
1717 	vm_pindex_t next_pindex;
1718 
1719 	GIANT_REQUIRED;
1720 
1721 	if (prev_object == NULL) {
1722 		return (TRUE);
1723 	}
1724 
1725 	if (prev_object->type != OBJT_DEFAULT &&
1726 	    prev_object->type != OBJT_SWAP) {
1727 		return (FALSE);
1728 	}
1729 
1730 	/*
1731 	 * Try to collapse the object first
1732 	 */
1733 	vm_object_collapse(prev_object);
1734 
1735 	/*
1736 	 * Can't coalesce if: . more than one reference . paged out . shadows
1737 	 * another object . has a copy elsewhere (any of which mean that the
1738 	 * pages not mapped to prev_entry may be in use anyway)
1739 	 */
1740 	if (prev_object->backing_object != NULL) {
1741 		return (FALSE);
1742 	}
1743 
1744 	prev_size >>= PAGE_SHIFT;
1745 	next_size >>= PAGE_SHIFT;
1746 	next_pindex = prev_pindex + prev_size;
1747 
1748 	if ((prev_object->ref_count > 1) &&
1749 	    (prev_object->size != next_pindex)) {
1750 		return (FALSE);
1751 	}
1752 
1753 	/*
1754 	 * Remove any pages that may still be in the object from a previous
1755 	 * deallocation.
1756 	 */
1757 	if (next_pindex < prev_object->size) {
1758 		vm_object_page_remove(prev_object,
1759 				      next_pindex,
1760 				      next_pindex + next_size, FALSE);
1761 		if (prev_object->type == OBJT_SWAP)
1762 			swap_pager_freespace(prev_object,
1763 					     next_pindex, next_size);
1764 	}
1765 
1766 	/*
1767 	 * Extend the object if necessary.
1768 	 */
1769 	if (next_pindex + next_size > prev_object->size)
1770 		prev_object->size = next_pindex + next_size;
1771 
1772 	return (TRUE);
1773 }
1774 
1775 void
1776 vm_object_set_writeable_dirty(vm_object_t object)
1777 {
1778 	struct vnode *vp;
1779 
1780 	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1781 	if (object->type == OBJT_VNODE &&
1782 	    (vp = (struct vnode *)object->handle) != NULL) {
1783 		if ((vp->v_flag & VOBJDIRTY) == 0) {
1784 			mtx_lock(&vp->v_interlock);
1785 			vp->v_flag |= VOBJDIRTY;
1786 			mtx_unlock(&vp->v_interlock);
1787 		}
1788 	}
1789 }
1790 
1791 #ifdef ENABLE_VFS_IOOPT
1792 /*
1793  * Experimental support for zero-copy I/O
1794  *
1795  * Performs the copy_on_write operations necessary to allow the virtual copies
1796  * into user space to work.  This has to be called for write(2) system calls
1797  * from other processes, file unlinking, and file size shrinkage.
1798  */
1799 void
1800 vm_freeze_copyopts(vm_object_t object, vm_pindex_t froma, vm_pindex_t toa)
1801 {
1802 	int rv;
1803 	vm_object_t robject;
1804 	vm_pindex_t idx;
1805 
1806 	GIANT_REQUIRED;
1807 	if ((object == NULL) ||
1808 		((object->flags & OBJ_OPT) == 0))
1809 		return;
1810 
1811 	if (object->shadow_count > object->ref_count)
1812 		panic("vm_freeze_copyopts: sc > rc");
1813 
1814 	while ((robject = TAILQ_FIRST(&object->shadow_head)) != NULL) {
1815 		vm_pindex_t bo_pindex;
1816 		vm_page_t m_in, m_out;
1817 
1818 		bo_pindex = OFF_TO_IDX(robject->backing_object_offset);
1819 
1820 		vm_object_reference(robject);
1821 
1822 		vm_object_pip_wait(robject, "objfrz");
1823 
1824 		if (robject->ref_count == 1) {
1825 			vm_object_deallocate(robject);
1826 			continue;
1827 		}
1828 
1829 		vm_object_pip_add(robject, 1);
1830 
1831 		for (idx = 0; idx < robject->size; idx++) {
1832 
1833 			m_out = vm_page_grab(robject, idx,
1834 						VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1835 
1836 			if (m_out->valid == 0) {
1837 				m_in = vm_page_grab(object, bo_pindex + idx,
1838 						VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1839 				if (m_in->valid == 0) {
1840 					rv = vm_pager_get_pages(object, &m_in, 1, 0);
1841 					if (rv != VM_PAGER_OK) {
1842 						printf("vm_freeze_copyopts: cannot read page from file: %lx\n", (long)m_in->pindex);
1843 						continue;
1844 					}
1845 					vm_page_deactivate(m_in);
1846 				}
1847 
1848 				vm_page_protect(m_in, VM_PROT_NONE);
1849 				pmap_copy_page(m_in, m_out);
1850 				m_out->valid = m_in->valid;
1851 				vm_page_dirty(m_out);
1852 				vm_page_activate(m_out);
1853 				vm_page_wakeup(m_in);
1854 			}
1855 			vm_page_wakeup(m_out);
1856 		}
1857 
1858 		object->shadow_count--;
1859 		object->ref_count--;
1860 		TAILQ_REMOVE(&object->shadow_head, robject, shadow_list);
1861 		robject->backing_object = NULL;
1862 		robject->backing_object_offset = 0;
1863 
1864 		vm_object_pip_wakeup(robject);
1865 		vm_object_deallocate(robject);
1866 	}
1867 
1868 	vm_object_clear_flag(object, OBJ_OPT);
1869 }
1870 #endif
1871 
1872 #include "opt_ddb.h"
1873 #ifdef DDB
1874 #include <sys/kernel.h>
1875 
1876 #include <sys/cons.h>
1877 
1878 #include <ddb/ddb.h>
1879 
1880 static int
1881 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1882 {
1883 	vm_map_t tmpm;
1884 	vm_map_entry_t tmpe;
1885 	vm_object_t obj;
1886 	int entcount;
1887 
1888 	if (map == 0)
1889 		return 0;
1890 
1891 	if (entry == 0) {
1892 		tmpe = map->header.next;
1893 		entcount = map->nentries;
1894 		while (entcount-- && (tmpe != &map->header)) {
1895 			if (_vm_object_in_map(map, object, tmpe)) {
1896 				return 1;
1897 			}
1898 			tmpe = tmpe->next;
1899 		}
1900 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1901 		tmpm = entry->object.sub_map;
1902 		tmpe = tmpm->header.next;
1903 		entcount = tmpm->nentries;
1904 		while (entcount-- && tmpe != &tmpm->header) {
1905 			if (_vm_object_in_map(tmpm, object, tmpe)) {
1906 				return 1;
1907 			}
1908 			tmpe = tmpe->next;
1909 		}
1910 	} else if ((obj = entry->object.vm_object) != NULL) {
1911 		for (; obj; obj = obj->backing_object)
1912 			if (obj == object) {
1913 				return 1;
1914 			}
1915 	}
1916 	return 0;
1917 }
1918 
1919 static int
1920 vm_object_in_map(vm_object_t object)
1921 {
1922 	struct proc *p;
1923 
1924 	/* sx_slock(&allproc_lock); */
1925 	LIST_FOREACH(p, &allproc, p_list) {
1926 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
1927 			continue;
1928 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
1929 			/* sx_sunlock(&allproc_lock); */
1930 			return 1;
1931 		}
1932 	}
1933 	/* sx_sunlock(&allproc_lock); */
1934 	if (_vm_object_in_map(kernel_map, object, 0))
1935 		return 1;
1936 	if (_vm_object_in_map(kmem_map, object, 0))
1937 		return 1;
1938 	if (_vm_object_in_map(pager_map, object, 0))
1939 		return 1;
1940 	if (_vm_object_in_map(buffer_map, object, 0))
1941 		return 1;
1942 	return 0;
1943 }
1944 
1945 DB_SHOW_COMMAND(vmochk, vm_object_check)
1946 {
1947 	vm_object_t object;
1948 
1949 	/*
1950 	 * make sure that internal objs are in a map somewhere
1951 	 * and none have zero ref counts.
1952 	 */
1953 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1954 		if (object->handle == NULL &&
1955 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1956 			if (object->ref_count == 0) {
1957 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
1958 					(long)object->size);
1959 			}
1960 			if (!vm_object_in_map(object)) {
1961 				db_printf(
1962 			"vmochk: internal obj is not in a map: "
1963 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1964 				    object->ref_count, (u_long)object->size,
1965 				    (u_long)object->size,
1966 				    (void *)object->backing_object);
1967 			}
1968 		}
1969 	}
1970 }
1971 
1972 /*
1973  *	vm_object_print:	[ debug ]
1974  */
1975 DB_SHOW_COMMAND(object, vm_object_print_static)
1976 {
1977 	/* XXX convert args. */
1978 	vm_object_t object = (vm_object_t)addr;
1979 	boolean_t full = have_addr;
1980 
1981 	vm_page_t p;
1982 
1983 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
1984 #define	count	was_count
1985 
1986 	int count;
1987 
1988 	if (object == NULL)
1989 		return;
1990 
1991 	db_iprintf(
1992 	    "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
1993 	    object, (int)object->type, (u_long)object->size,
1994 	    object->resident_page_count, object->ref_count, object->flags);
1995 	/*
1996 	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
1997 	 */
1998 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
1999 	    object->shadow_count,
2000 	    object->backing_object ? object->backing_object->ref_count : 0,
2001 	    object->backing_object, (long)object->backing_object_offset);
2002 
2003 	if (!full)
2004 		return;
2005 
2006 	db_indent += 2;
2007 	count = 0;
2008 	TAILQ_FOREACH(p, &object->memq, listq) {
2009 		if (count == 0)
2010 			db_iprintf("memory:=");
2011 		else if (count == 6) {
2012 			db_printf("\n");
2013 			db_iprintf(" ...");
2014 			count = 0;
2015 		} else
2016 			db_printf(",");
2017 		count++;
2018 
2019 		db_printf("(off=0x%lx,page=0x%lx)",
2020 		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
2021 	}
2022 	if (count != 0)
2023 		db_printf("\n");
2024 	db_indent -= 2;
2025 }
2026 
2027 /* XXX. */
2028 #undef count
2029 
2030 /* XXX need this non-static entry for calling from vm_map_print. */
2031 void
2032 vm_object_print(
2033         /* db_expr_t */ long addr,
2034 	boolean_t have_addr,
2035 	/* db_expr_t */ long count,
2036 	char *modif)
2037 {
2038 	vm_object_print_static(addr, have_addr, count, modif);
2039 }
2040 
2041 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2042 {
2043 	vm_object_t object;
2044 	int nl = 0;
2045 	int c;
2046 
2047 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2048 		vm_pindex_t idx, fidx;
2049 		vm_pindex_t osize;
2050 		vm_offset_t pa = -1, padiff;
2051 		int rcount;
2052 		vm_page_t m;
2053 
2054 		db_printf("new object: %p\n", (void *)object);
2055 		if (nl > 18) {
2056 			c = cngetc();
2057 			if (c != ' ')
2058 				return;
2059 			nl = 0;
2060 		}
2061 		nl++;
2062 		rcount = 0;
2063 		fidx = 0;
2064 		osize = object->size;
2065 		if (osize > 128)
2066 			osize = 128;
2067 		for (idx = 0; idx < osize; idx++) {
2068 			m = vm_page_lookup(object, idx);
2069 			if (m == NULL) {
2070 				if (rcount) {
2071 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2072 						(long)fidx, rcount, (long)pa);
2073 					if (nl > 18) {
2074 						c = cngetc();
2075 						if (c != ' ')
2076 							return;
2077 						nl = 0;
2078 					}
2079 					nl++;
2080 					rcount = 0;
2081 				}
2082 				continue;
2083 			}
2084 
2085 
2086 			if (rcount &&
2087 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2088 				++rcount;
2089 				continue;
2090 			}
2091 			if (rcount) {
2092 				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2093 				padiff >>= PAGE_SHIFT;
2094 				padiff &= PQ_L2_MASK;
2095 				if (padiff == 0) {
2096 					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2097 					++rcount;
2098 					continue;
2099 				}
2100 				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2101 					(long)fidx, rcount, (long)pa);
2102 				db_printf("pd(%ld)\n", (long)padiff);
2103 				if (nl > 18) {
2104 					c = cngetc();
2105 					if (c != ' ')
2106 						return;
2107 					nl = 0;
2108 				}
2109 				nl++;
2110 			}
2111 			fidx = idx;
2112 			pa = VM_PAGE_TO_PHYS(m);
2113 			rcount = 1;
2114 		}
2115 		if (rcount) {
2116 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2117 				(long)fidx, rcount, (long)pa);
2118 			if (nl > 18) {
2119 				c = cngetc();
2120 				if (c != ' ')
2121 					return;
2122 				nl = 0;
2123 			}
2124 			nl++;
2125 		}
2126 	}
2127 }
2128 #endif /* DDB */
2129