xref: /freebsd/sys/vm/vm_object.c (revision e9b148a3185f41e3a09e91ea75cae7828d908845)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory object module.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include "opt_vm.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/cpuset.h>
75 #include <sys/lock.h>
76 #include <sys/mman.h>
77 #include <sys/mount.h>
78 #include <sys/kernel.h>
79 #include <sys/pctrie.h>
80 #include <sys/sysctl.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>		/* for curproc, pageproc */
83 #include <sys/refcount.h>
84 #include <sys/socket.h>
85 #include <sys/resourcevar.h>
86 #include <sys/refcount.h>
87 #include <sys/rwlock.h>
88 #include <sys/user.h>
89 #include <sys/vnode.h>
90 #include <sys/vmmeter.h>
91 #include <sys/sx.h>
92 
93 #include <vm/vm.h>
94 #include <vm/vm_param.h>
95 #include <vm/pmap.h>
96 #include <vm/vm_map.h>
97 #include <vm/vm_object.h>
98 #include <vm/vm_page.h>
99 #include <vm/vm_pageout.h>
100 #include <vm/vm_pager.h>
101 #include <vm/vm_phys.h>
102 #include <vm/vm_pagequeue.h>
103 #include <vm/swap_pager.h>
104 #include <vm/vm_kern.h>
105 #include <vm/vm_extern.h>
106 #include <vm/vm_radix.h>
107 #include <vm/vm_reserv.h>
108 #include <vm/uma.h>
109 
110 static int old_msync;
111 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
112     "Use old (insecure) msync behavior");
113 
114 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
115 		    int pagerflags, int flags, boolean_t *clearobjflags,
116 		    boolean_t *eio);
117 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
118 		    boolean_t *clearobjflags);
119 static void	vm_object_qcollapse(vm_object_t object);
120 static void	vm_object_vndeallocate(vm_object_t object);
121 
122 /*
123  *	Virtual memory objects maintain the actual data
124  *	associated with allocated virtual memory.  A given
125  *	page of memory exists within exactly one object.
126  *
127  *	An object is only deallocated when all "references"
128  *	are given up.  Only one "reference" to a given
129  *	region of an object should be writeable.
130  *
131  *	Associated with each object is a list of all resident
132  *	memory pages belonging to that object; this list is
133  *	maintained by the "vm_page" module, and locked by the object's
134  *	lock.
135  *
136  *	Each object also records a "pager" routine which is
137  *	used to retrieve (and store) pages to the proper backing
138  *	storage.  In addition, objects may be backed by other
139  *	objects from which they were virtual-copied.
140  *
141  *	The only items within the object structure which are
142  *	modified after time of creation are:
143  *		reference count		locked by object's lock
144  *		pager routine		locked by object's lock
145  *
146  */
147 
148 struct object_q vm_object_list;
149 struct mtx vm_object_list_mtx;	/* lock for object list and count */
150 
151 struct vm_object kernel_object_store;
152 
153 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
154     "VM object stats");
155 
156 static counter_u64_t object_collapses = EARLY_COUNTER;
157 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
158     &object_collapses,
159     "VM object collapses");
160 
161 static counter_u64_t object_bypasses = EARLY_COUNTER;
162 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
163     &object_bypasses,
164     "VM object bypasses");
165 
166 static void
167 counter_startup(void)
168 {
169 
170 	object_collapses = counter_u64_alloc(M_WAITOK);
171 	object_bypasses = counter_u64_alloc(M_WAITOK);
172 }
173 SYSINIT(object_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
174 
175 static uma_zone_t obj_zone;
176 
177 static int vm_object_zinit(void *mem, int size, int flags);
178 
179 #ifdef INVARIANTS
180 static void vm_object_zdtor(void *mem, int size, void *arg);
181 
182 static void
183 vm_object_zdtor(void *mem, int size, void *arg)
184 {
185 	vm_object_t object;
186 
187 	object = (vm_object_t)mem;
188 	KASSERT(object->ref_count == 0,
189 	    ("object %p ref_count = %d", object, object->ref_count));
190 	KASSERT(TAILQ_EMPTY(&object->memq),
191 	    ("object %p has resident pages in its memq", object));
192 	KASSERT(vm_radix_is_empty(&object->rtree),
193 	    ("object %p has resident pages in its trie", object));
194 #if VM_NRESERVLEVEL > 0
195 	KASSERT(LIST_EMPTY(&object->rvq),
196 	    ("object %p has reservations",
197 	    object));
198 #endif
199 	KASSERT(REFCOUNT_COUNT(object->paging_in_progress) == 0,
200 	    ("object %p paging_in_progress = %d",
201 	    object, REFCOUNT_COUNT(object->paging_in_progress)));
202 	KASSERT(object->busy == 0,
203 	    ("object %p busy = %d",
204 	    object, object->busy));
205 	KASSERT(object->resident_page_count == 0,
206 	    ("object %p resident_page_count = %d",
207 	    object, object->resident_page_count));
208 	KASSERT(object->shadow_count == 0,
209 	    ("object %p shadow_count = %d",
210 	    object, object->shadow_count));
211 	KASSERT(object->type == OBJT_DEAD,
212 	    ("object %p has non-dead type %d",
213 	    object, object->type));
214 }
215 #endif
216 
217 static int
218 vm_object_zinit(void *mem, int size, int flags)
219 {
220 	vm_object_t object;
221 
222 	object = (vm_object_t)mem;
223 	rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
224 
225 	/* These are true for any object that has been freed */
226 	object->type = OBJT_DEAD;
227 	object->ref_count = 0;
228 	vm_radix_init(&object->rtree);
229 	refcount_init(&object->paging_in_progress, 0);
230 	refcount_init(&object->busy, 0);
231 	object->resident_page_count = 0;
232 	object->shadow_count = 0;
233 	object->flags = OBJ_DEAD;
234 
235 	mtx_lock(&vm_object_list_mtx);
236 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
237 	mtx_unlock(&vm_object_list_mtx);
238 	return (0);
239 }
240 
241 static void
242 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
243 {
244 
245 	TAILQ_INIT(&object->memq);
246 	LIST_INIT(&object->shadow_head);
247 
248 	object->type = type;
249 	if (type == OBJT_SWAP)
250 		pctrie_init(&object->un_pager.swp.swp_blks);
251 
252 	/*
253 	 * Ensure that swap_pager_swapoff() iteration over object_list
254 	 * sees up to date type and pctrie head if it observed
255 	 * non-dead object.
256 	 */
257 	atomic_thread_fence_rel();
258 
259 	switch (type) {
260 	case OBJT_DEAD:
261 		panic("_vm_object_allocate: can't create OBJT_DEAD");
262 	case OBJT_DEFAULT:
263 	case OBJT_SWAP:
264 		object->flags = OBJ_ONEMAPPING;
265 		break;
266 	case OBJT_DEVICE:
267 	case OBJT_SG:
268 		object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
269 		break;
270 	case OBJT_MGTDEVICE:
271 		object->flags = OBJ_FICTITIOUS;
272 		break;
273 	case OBJT_PHYS:
274 		object->flags = OBJ_UNMANAGED;
275 		break;
276 	case OBJT_VNODE:
277 		object->flags = 0;
278 		break;
279 	default:
280 		panic("_vm_object_allocate: type %d is undefined", type);
281 	}
282 	object->size = size;
283 	object->domain.dr_policy = NULL;
284 	object->generation = 1;
285 	object->ref_count = 1;
286 	object->memattr = VM_MEMATTR_DEFAULT;
287 	object->cred = NULL;
288 	object->charge = 0;
289 	object->handle = NULL;
290 	object->backing_object = NULL;
291 	object->backing_object_offset = (vm_ooffset_t) 0;
292 #if VM_NRESERVLEVEL > 0
293 	LIST_INIT(&object->rvq);
294 #endif
295 	umtx_shm_object_init(object);
296 }
297 
298 /*
299  *	vm_object_init:
300  *
301  *	Initialize the VM objects module.
302  */
303 void
304 vm_object_init(void)
305 {
306 	TAILQ_INIT(&vm_object_list);
307 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
308 
309 	rw_init(&kernel_object->lock, "kernel vm object");
310 	_vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
311 	    VM_MIN_KERNEL_ADDRESS), kernel_object);
312 #if VM_NRESERVLEVEL > 0
313 	kernel_object->flags |= OBJ_COLORED;
314 	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
315 #endif
316 
317 	/*
318 	 * The lock portion of struct vm_object must be type stable due
319 	 * to vm_pageout_fallback_object_lock locking a vm object
320 	 * without holding any references to it.
321 	 */
322 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
323 #ifdef INVARIANTS
324 	    vm_object_zdtor,
325 #else
326 	    NULL,
327 #endif
328 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
329 
330 	vm_radix_zinit();
331 }
332 
333 void
334 vm_object_clear_flag(vm_object_t object, u_short bits)
335 {
336 
337 	VM_OBJECT_ASSERT_WLOCKED(object);
338 	object->flags &= ~bits;
339 }
340 
341 /*
342  *	Sets the default memory attribute for the specified object.  Pages
343  *	that are allocated to this object are by default assigned this memory
344  *	attribute.
345  *
346  *	Presently, this function must be called before any pages are allocated
347  *	to the object.  In the future, this requirement may be relaxed for
348  *	"default" and "swap" objects.
349  */
350 int
351 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
352 {
353 
354 	VM_OBJECT_ASSERT_WLOCKED(object);
355 	switch (object->type) {
356 	case OBJT_DEFAULT:
357 	case OBJT_DEVICE:
358 	case OBJT_MGTDEVICE:
359 	case OBJT_PHYS:
360 	case OBJT_SG:
361 	case OBJT_SWAP:
362 	case OBJT_VNODE:
363 		if (!TAILQ_EMPTY(&object->memq))
364 			return (KERN_FAILURE);
365 		break;
366 	case OBJT_DEAD:
367 		return (KERN_INVALID_ARGUMENT);
368 	default:
369 		panic("vm_object_set_memattr: object %p is of undefined type",
370 		    object);
371 	}
372 	object->memattr = memattr;
373 	return (KERN_SUCCESS);
374 }
375 
376 void
377 vm_object_pip_add(vm_object_t object, short i)
378 {
379 
380 	refcount_acquiren(&object->paging_in_progress, i);
381 }
382 
383 void
384 vm_object_pip_wakeup(vm_object_t object)
385 {
386 
387 	refcount_release(&object->paging_in_progress);
388 }
389 
390 void
391 vm_object_pip_wakeupn(vm_object_t object, short i)
392 {
393 
394 	refcount_releasen(&object->paging_in_progress, i);
395 }
396 
397 void
398 vm_object_pip_wait(vm_object_t object, char *waitid)
399 {
400 
401 	VM_OBJECT_ASSERT_WLOCKED(object);
402 
403 	while (REFCOUNT_COUNT(object->paging_in_progress) > 0) {
404 		VM_OBJECT_WUNLOCK(object);
405 		refcount_wait(&object->paging_in_progress, waitid, PVM);
406 		VM_OBJECT_WLOCK(object);
407 	}
408 }
409 
410 void
411 vm_object_pip_wait_unlocked(vm_object_t object, char *waitid)
412 {
413 
414 	VM_OBJECT_ASSERT_UNLOCKED(object);
415 
416 	while (REFCOUNT_COUNT(object->paging_in_progress) > 0)
417 		refcount_wait(&object->paging_in_progress, waitid, PVM);
418 }
419 
420 /*
421  *	vm_object_allocate:
422  *
423  *	Returns a new object with the given size.
424  */
425 vm_object_t
426 vm_object_allocate(objtype_t type, vm_pindex_t size)
427 {
428 	vm_object_t object;
429 
430 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
431 	_vm_object_allocate(type, size, object);
432 	return (object);
433 }
434 
435 
436 /*
437  *	vm_object_reference:
438  *
439  *	Gets another reference to the given object.  Note: OBJ_DEAD
440  *	objects can be referenced during final cleaning.
441  */
442 void
443 vm_object_reference(vm_object_t object)
444 {
445 	if (object == NULL)
446 		return;
447 	VM_OBJECT_WLOCK(object);
448 	vm_object_reference_locked(object);
449 	VM_OBJECT_WUNLOCK(object);
450 }
451 
452 /*
453  *	vm_object_reference_locked:
454  *
455  *	Gets another reference to the given object.
456  *
457  *	The object must be locked.
458  */
459 void
460 vm_object_reference_locked(vm_object_t object)
461 {
462 	struct vnode *vp;
463 
464 	VM_OBJECT_ASSERT_WLOCKED(object);
465 	object->ref_count++;
466 	if (object->type == OBJT_VNODE) {
467 		vp = object->handle;
468 		vref(vp);
469 	}
470 }
471 
472 /*
473  * Handle deallocating an object of type OBJT_VNODE.
474  */
475 static void
476 vm_object_vndeallocate(vm_object_t object)
477 {
478 	struct vnode *vp = (struct vnode *) object->handle;
479 
480 	VM_OBJECT_ASSERT_WLOCKED(object);
481 	KASSERT(object->type == OBJT_VNODE,
482 	    ("vm_object_vndeallocate: not a vnode object"));
483 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
484 #ifdef INVARIANTS
485 	if (object->ref_count == 0) {
486 		vn_printf(vp, "vm_object_vndeallocate ");
487 		panic("vm_object_vndeallocate: bad object reference count");
488 	}
489 #endif
490 
491 	if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
492 		umtx_shm_object_terminated(object);
493 
494 	object->ref_count--;
495 
496 	/* vrele may need the vnode lock. */
497 	VM_OBJECT_WUNLOCK(object);
498 	vrele(vp);
499 }
500 
501 /*
502  *	vm_object_deallocate:
503  *
504  *	Release a reference to the specified object,
505  *	gained either through a vm_object_allocate
506  *	or a vm_object_reference call.  When all references
507  *	are gone, storage associated with this object
508  *	may be relinquished.
509  *
510  *	No object may be locked.
511  */
512 void
513 vm_object_deallocate(vm_object_t object)
514 {
515 	vm_object_t temp;
516 
517 	while (object != NULL) {
518 		VM_OBJECT_WLOCK(object);
519 		if (object->type == OBJT_VNODE) {
520 			vm_object_vndeallocate(object);
521 			return;
522 		}
523 
524 		KASSERT(object->ref_count != 0,
525 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
526 
527 		/*
528 		 * If the reference count goes to 0 we start calling
529 		 * vm_object_terminate() on the object chain.
530 		 * A ref count of 1 may be a special case depending on the
531 		 * shadow count being 0 or 1.
532 		 */
533 		object->ref_count--;
534 		if (object->ref_count > 1) {
535 			VM_OBJECT_WUNLOCK(object);
536 			return;
537 		} else if (object->ref_count == 1) {
538 			if (object->shadow_count == 0 &&
539 			    object->handle == NULL &&
540 			    (object->type == OBJT_DEFAULT ||
541 			    (object->type == OBJT_SWAP &&
542 			    (object->flags & OBJ_TMPFS_NODE) == 0))) {
543 				vm_object_set_flag(object, OBJ_ONEMAPPING);
544 			} else if ((object->shadow_count == 1) &&
545 			    (object->handle == NULL) &&
546 			    (object->type == OBJT_DEFAULT ||
547 			     object->type == OBJT_SWAP)) {
548 				vm_object_t robject;
549 
550 				robject = LIST_FIRST(&object->shadow_head);
551 				KASSERT(robject != NULL,
552 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
553 					 object->ref_count,
554 					 object->shadow_count));
555 				KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
556 				    ("shadowed tmpfs v_object %p", object));
557 				if (!VM_OBJECT_TRYWLOCK(robject)) {
558 					/*
559 					 * Avoid a potential deadlock.
560 					 */
561 					object->ref_count++;
562 					VM_OBJECT_WUNLOCK(object);
563 					/*
564 					 * More likely than not the thread
565 					 * holding robject's lock has lower
566 					 * priority than the current thread.
567 					 * Let the lower priority thread run.
568 					 */
569 					pause("vmo_de", 1);
570 					continue;
571 				}
572 				/*
573 				 * Collapse object into its shadow unless its
574 				 * shadow is dead.  In that case, object will
575 				 * be deallocated by the thread that is
576 				 * deallocating its shadow.
577 				 */
578 				if ((robject->flags & OBJ_DEAD) == 0 &&
579 				    (robject->handle == NULL) &&
580 				    (robject->type == OBJT_DEFAULT ||
581 				     robject->type == OBJT_SWAP)) {
582 
583 					robject->ref_count++;
584 retry:
585 					if (REFCOUNT_COUNT(robject->paging_in_progress) > 0) {
586 						VM_OBJECT_WUNLOCK(object);
587 						vm_object_pip_wait(robject,
588 						    "objde1");
589 						temp = robject->backing_object;
590 						if (object == temp) {
591 							VM_OBJECT_WLOCK(object);
592 							goto retry;
593 						}
594 					} else if (REFCOUNT_COUNT(object->paging_in_progress) > 0) {
595 						VM_OBJECT_WUNLOCK(robject);
596 						VM_OBJECT_WUNLOCK(object);
597 						refcount_wait(
598 						    &object->paging_in_progress,
599 						    "objde2", PVM);
600 						VM_OBJECT_WLOCK(robject);
601 						temp = robject->backing_object;
602 						if (object == temp) {
603 							VM_OBJECT_WLOCK(object);
604 							goto retry;
605 						}
606 					} else
607 						VM_OBJECT_WUNLOCK(object);
608 
609 					if (robject->ref_count == 1) {
610 						robject->ref_count--;
611 						object = robject;
612 						goto doterm;
613 					}
614 					object = robject;
615 					vm_object_collapse(object);
616 					VM_OBJECT_WUNLOCK(object);
617 					continue;
618 				}
619 				VM_OBJECT_WUNLOCK(robject);
620 			}
621 			VM_OBJECT_WUNLOCK(object);
622 			return;
623 		}
624 doterm:
625 		umtx_shm_object_terminated(object);
626 		temp = object->backing_object;
627 		if (temp != NULL) {
628 			KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
629 			    ("shadowed tmpfs v_object 2 %p", object));
630 			VM_OBJECT_WLOCK(temp);
631 			LIST_REMOVE(object, shadow_list);
632 			temp->shadow_count--;
633 			VM_OBJECT_WUNLOCK(temp);
634 			object->backing_object = NULL;
635 		}
636 		/*
637 		 * Don't double-terminate, we could be in a termination
638 		 * recursion due to the terminate having to sync data
639 		 * to disk.
640 		 */
641 		if ((object->flags & OBJ_DEAD) == 0) {
642 			vm_object_set_flag(object, OBJ_DEAD);
643 			vm_object_terminate(object);
644 		} else
645 			VM_OBJECT_WUNLOCK(object);
646 		object = temp;
647 	}
648 }
649 
650 /*
651  *	vm_object_destroy removes the object from the global object list
652  *      and frees the space for the object.
653  */
654 void
655 vm_object_destroy(vm_object_t object)
656 {
657 
658 	/*
659 	 * Release the allocation charge.
660 	 */
661 	if (object->cred != NULL) {
662 		swap_release_by_cred(object->charge, object->cred);
663 		object->charge = 0;
664 		crfree(object->cred);
665 		object->cred = NULL;
666 	}
667 
668 	/*
669 	 * Free the space for the object.
670 	 */
671 	uma_zfree(obj_zone, object);
672 }
673 
674 /*
675  *	vm_object_terminate_pages removes any remaining pageable pages
676  *	from the object and resets the object to an empty state.
677  */
678 static void
679 vm_object_terminate_pages(vm_object_t object)
680 {
681 	vm_page_t p, p_next;
682 
683 	VM_OBJECT_ASSERT_WLOCKED(object);
684 
685 	/*
686 	 * Free any remaining pageable pages.  This also removes them from the
687 	 * paging queues.  However, don't free wired pages, just remove them
688 	 * from the object.  Rather than incrementally removing each page from
689 	 * the object, the page and object are reset to any empty state.
690 	 */
691 	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
692 		vm_page_assert_unbusied(p);
693 		KASSERT(p->object == object &&
694 		    (p->ref_count & VPRC_OBJREF) != 0,
695 		    ("vm_object_terminate_pages: page %p is inconsistent", p));
696 
697 		p->object = NULL;
698 		if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) {
699 			VM_CNT_INC(v_pfree);
700 			vm_page_free(p);
701 		}
702 	}
703 
704 	/*
705 	 * If the object contained any pages, then reset it to an empty state.
706 	 * None of the object's fields, including "resident_page_count", were
707 	 * modified by the preceding loop.
708 	 */
709 	if (object->resident_page_count != 0) {
710 		vm_radix_reclaim_allnodes(&object->rtree);
711 		TAILQ_INIT(&object->memq);
712 		object->resident_page_count = 0;
713 		if (object->type == OBJT_VNODE)
714 			vdrop(object->handle);
715 	}
716 }
717 
718 /*
719  *	vm_object_terminate actually destroys the specified object, freeing
720  *	up all previously used resources.
721  *
722  *	The object must be locked.
723  *	This routine may block.
724  */
725 void
726 vm_object_terminate(vm_object_t object)
727 {
728 	VM_OBJECT_ASSERT_WLOCKED(object);
729 	KASSERT((object->flags & OBJ_DEAD) != 0,
730 	    ("terminating non-dead obj %p", object));
731 
732 	/*
733 	 * wait for the pageout daemon to be done with the object
734 	 */
735 	vm_object_pip_wait(object, "objtrm");
736 
737 	KASSERT(!REFCOUNT_COUNT(object->paging_in_progress),
738 		("vm_object_terminate: pageout in progress"));
739 
740 	KASSERT(object->ref_count == 0,
741 		("vm_object_terminate: object with references, ref_count=%d",
742 		object->ref_count));
743 
744 	if ((object->flags & OBJ_PG_DTOR) == 0)
745 		vm_object_terminate_pages(object);
746 
747 #if VM_NRESERVLEVEL > 0
748 	if (__predict_false(!LIST_EMPTY(&object->rvq)))
749 		vm_reserv_break_all(object);
750 #endif
751 
752 	KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
753 	    object->type == OBJT_SWAP,
754 	    ("%s: non-swap obj %p has cred", __func__, object));
755 
756 	/*
757 	 * Let the pager know object is dead.
758 	 */
759 	vm_pager_deallocate(object);
760 	VM_OBJECT_WUNLOCK(object);
761 
762 	vm_object_destroy(object);
763 }
764 
765 /*
766  * Make the page read-only so that we can clear the object flags.  However, if
767  * this is a nosync mmap then the object is likely to stay dirty so do not
768  * mess with the page and do not clear the object flags.  Returns TRUE if the
769  * page should be flushed, and FALSE otherwise.
770  */
771 static boolean_t
772 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
773 {
774 
775 	vm_page_assert_busied(p);
776 
777 	/*
778 	 * If we have been asked to skip nosync pages and this is a
779 	 * nosync page, skip it.  Note that the object flags were not
780 	 * cleared in this case so we do not have to set them.
781 	 */
782 	if ((flags & OBJPC_NOSYNC) != 0 && (p->aflags & PGA_NOSYNC) != 0) {
783 		*clearobjflags = FALSE;
784 		return (FALSE);
785 	} else {
786 		pmap_remove_write(p);
787 		return (p->dirty != 0);
788 	}
789 }
790 
791 /*
792  *	vm_object_page_clean
793  *
794  *	Clean all dirty pages in the specified range of object.  Leaves page
795  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
796  *	write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC),
797  *	leaving the object dirty.
798  *
799  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
800  *	synchronous clustering mode implementation.
801  *
802  *	Odd semantics: if start == end, we clean everything.
803  *
804  *	The object must be locked.
805  *
806  *	Returns FALSE if some page from the range was not written, as
807  *	reported by the pager, and TRUE otherwise.
808  */
809 boolean_t
810 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
811     int flags)
812 {
813 	vm_page_t np, p;
814 	vm_pindex_t pi, tend, tstart;
815 	int curgeneration, n, pagerflags;
816 	boolean_t clearobjflags, eio, res;
817 
818 	VM_OBJECT_ASSERT_WLOCKED(object);
819 
820 	/*
821 	 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
822 	 * objects.  The check below prevents the function from
823 	 * operating on non-vnode objects.
824 	 */
825 	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
826 	    object->resident_page_count == 0)
827 		return (TRUE);
828 
829 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
830 	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
831 	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
832 
833 	tstart = OFF_TO_IDX(start);
834 	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
835 	clearobjflags = tstart == 0 && tend >= object->size;
836 	res = TRUE;
837 
838 rescan:
839 	curgeneration = object->generation;
840 
841 	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
842 		pi = p->pindex;
843 		if (pi >= tend)
844 			break;
845 		np = TAILQ_NEXT(p, listq);
846 		if (vm_page_none_valid(p))
847 			continue;
848 		if (vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL) == 0) {
849 			if (object->generation != curgeneration) {
850 				if ((flags & OBJPC_SYNC) != 0)
851 					goto rescan;
852 				else
853 					clearobjflags = FALSE;
854 			}
855 			np = vm_page_find_least(object, pi);
856 			continue;
857 		}
858 		if (!vm_object_page_remove_write(p, flags, &clearobjflags)) {
859 			vm_page_xunbusy(p);
860 			continue;
861 		}
862 
863 		n = vm_object_page_collect_flush(object, p, pagerflags,
864 		    flags, &clearobjflags, &eio);
865 		if (eio) {
866 			res = FALSE;
867 			clearobjflags = FALSE;
868 		}
869 		if (object->generation != curgeneration) {
870 			if ((flags & OBJPC_SYNC) != 0)
871 				goto rescan;
872 			else
873 				clearobjflags = FALSE;
874 		}
875 
876 		/*
877 		 * If the VOP_PUTPAGES() did a truncated write, so
878 		 * that even the first page of the run is not fully
879 		 * written, vm_pageout_flush() returns 0 as the run
880 		 * length.  Since the condition that caused truncated
881 		 * write may be permanent, e.g. exhausted free space,
882 		 * accepting n == 0 would cause an infinite loop.
883 		 *
884 		 * Forwarding the iterator leaves the unwritten page
885 		 * behind, but there is not much we can do there if
886 		 * filesystem refuses to write it.
887 		 */
888 		if (n == 0) {
889 			n = 1;
890 			clearobjflags = FALSE;
891 		}
892 		np = vm_page_find_least(object, pi + n);
893 	}
894 #if 0
895 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
896 #endif
897 
898 	if (clearobjflags)
899 		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
900 	return (res);
901 }
902 
903 static int
904 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
905     int flags, boolean_t *clearobjflags, boolean_t *eio)
906 {
907 	vm_page_t ma[vm_pageout_page_count], p_first, tp;
908 	int count, i, mreq, runlen;
909 
910 	vm_page_lock_assert(p, MA_NOTOWNED);
911 	vm_page_assert_xbusied(p);
912 	VM_OBJECT_ASSERT_WLOCKED(object);
913 
914 	count = 1;
915 	mreq = 0;
916 
917 	for (tp = p; count < vm_pageout_page_count; count++) {
918 		tp = vm_page_next(tp);
919 		if (tp == NULL || vm_page_tryxbusy(tp) == 0)
920 			break;
921 		if (!vm_object_page_remove_write(tp, flags, clearobjflags)) {
922 			vm_page_xunbusy(tp);
923 			break;
924 		}
925 	}
926 
927 	for (p_first = p; count < vm_pageout_page_count; count++) {
928 		tp = vm_page_prev(p_first);
929 		if (tp == NULL || vm_page_tryxbusy(tp) == 0)
930 			break;
931 		if (!vm_object_page_remove_write(tp, flags, clearobjflags)) {
932 			vm_page_xunbusy(tp);
933 			break;
934 		}
935 		p_first = tp;
936 		mreq++;
937 	}
938 
939 	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
940 		ma[i] = tp;
941 
942 	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
943 	return (runlen);
944 }
945 
946 /*
947  * Note that there is absolutely no sense in writing out
948  * anonymous objects, so we track down the vnode object
949  * to write out.
950  * We invalidate (remove) all pages from the address space
951  * for semantic correctness.
952  *
953  * If the backing object is a device object with unmanaged pages, then any
954  * mappings to the specified range of pages must be removed before this
955  * function is called.
956  *
957  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
958  * may start out with a NULL object.
959  */
960 boolean_t
961 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
962     boolean_t syncio, boolean_t invalidate)
963 {
964 	vm_object_t backing_object;
965 	struct vnode *vp;
966 	struct mount *mp;
967 	int error, flags, fsync_after;
968 	boolean_t res;
969 
970 	if (object == NULL)
971 		return (TRUE);
972 	res = TRUE;
973 	error = 0;
974 	VM_OBJECT_WLOCK(object);
975 	while ((backing_object = object->backing_object) != NULL) {
976 		VM_OBJECT_WLOCK(backing_object);
977 		offset += object->backing_object_offset;
978 		VM_OBJECT_WUNLOCK(object);
979 		object = backing_object;
980 		if (object->size < OFF_TO_IDX(offset + size))
981 			size = IDX_TO_OFF(object->size) - offset;
982 	}
983 	/*
984 	 * Flush pages if writing is allowed, invalidate them
985 	 * if invalidation requested.  Pages undergoing I/O
986 	 * will be ignored by vm_object_page_remove().
987 	 *
988 	 * We cannot lock the vnode and then wait for paging
989 	 * to complete without deadlocking against vm_fault.
990 	 * Instead we simply call vm_object_page_remove() and
991 	 * allow it to block internally on a page-by-page
992 	 * basis when it encounters pages undergoing async
993 	 * I/O.
994 	 */
995 	if (object->type == OBJT_VNODE &&
996 	    (object->flags & OBJ_MIGHTBEDIRTY) != 0 &&
997 	    ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
998 		VM_OBJECT_WUNLOCK(object);
999 		(void) vn_start_write(vp, &mp, V_WAIT);
1000 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1001 		if (syncio && !invalidate && offset == 0 &&
1002 		    atop(size) == object->size) {
1003 			/*
1004 			 * If syncing the whole mapping of the file,
1005 			 * it is faster to schedule all the writes in
1006 			 * async mode, also allowing the clustering,
1007 			 * and then wait for i/o to complete.
1008 			 */
1009 			flags = 0;
1010 			fsync_after = TRUE;
1011 		} else {
1012 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1013 			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1014 			fsync_after = FALSE;
1015 		}
1016 		VM_OBJECT_WLOCK(object);
1017 		res = vm_object_page_clean(object, offset, offset + size,
1018 		    flags);
1019 		VM_OBJECT_WUNLOCK(object);
1020 		if (fsync_after)
1021 			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1022 		VOP_UNLOCK(vp, 0);
1023 		vn_finished_write(mp);
1024 		if (error != 0)
1025 			res = FALSE;
1026 		VM_OBJECT_WLOCK(object);
1027 	}
1028 	if ((object->type == OBJT_VNODE ||
1029 	     object->type == OBJT_DEVICE) && invalidate) {
1030 		if (object->type == OBJT_DEVICE)
1031 			/*
1032 			 * The option OBJPR_NOTMAPPED must be passed here
1033 			 * because vm_object_page_remove() cannot remove
1034 			 * unmanaged mappings.
1035 			 */
1036 			flags = OBJPR_NOTMAPPED;
1037 		else if (old_msync)
1038 			flags = 0;
1039 		else
1040 			flags = OBJPR_CLEANONLY;
1041 		vm_object_page_remove(object, OFF_TO_IDX(offset),
1042 		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1043 	}
1044 	VM_OBJECT_WUNLOCK(object);
1045 	return (res);
1046 }
1047 
1048 /*
1049  * Determine whether the given advice can be applied to the object.  Advice is
1050  * not applied to unmanaged pages since they never belong to page queues, and
1051  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1052  * have been mapped at most once.
1053  */
1054 static bool
1055 vm_object_advice_applies(vm_object_t object, int advice)
1056 {
1057 
1058 	if ((object->flags & OBJ_UNMANAGED) != 0)
1059 		return (false);
1060 	if (advice != MADV_FREE)
1061 		return (true);
1062 	return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) &&
1063 	    (object->flags & OBJ_ONEMAPPING) != 0);
1064 }
1065 
1066 static void
1067 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1068     vm_size_t size)
1069 {
1070 
1071 	if (advice == MADV_FREE && object->type == OBJT_SWAP)
1072 		swap_pager_freespace(object, pindex, size);
1073 }
1074 
1075 /*
1076  *	vm_object_madvise:
1077  *
1078  *	Implements the madvise function at the object/page level.
1079  *
1080  *	MADV_WILLNEED	(any object)
1081  *
1082  *	    Activate the specified pages if they are resident.
1083  *
1084  *	MADV_DONTNEED	(any object)
1085  *
1086  *	    Deactivate the specified pages if they are resident.
1087  *
1088  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1089  *			 OBJ_ONEMAPPING only)
1090  *
1091  *	    Deactivate and clean the specified pages if they are
1092  *	    resident.  This permits the process to reuse the pages
1093  *	    without faulting or the kernel to reclaim the pages
1094  *	    without I/O.
1095  */
1096 void
1097 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1098     int advice)
1099 {
1100 	vm_pindex_t tpindex;
1101 	vm_object_t backing_object, tobject;
1102 	vm_page_t m, tm;
1103 
1104 	if (object == NULL)
1105 		return;
1106 
1107 relookup:
1108 	VM_OBJECT_WLOCK(object);
1109 	if (!vm_object_advice_applies(object, advice)) {
1110 		VM_OBJECT_WUNLOCK(object);
1111 		return;
1112 	}
1113 	for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1114 		tobject = object;
1115 
1116 		/*
1117 		 * If the next page isn't resident in the top-level object, we
1118 		 * need to search the shadow chain.  When applying MADV_FREE, we
1119 		 * take care to release any swap space used to store
1120 		 * non-resident pages.
1121 		 */
1122 		if (m == NULL || pindex < m->pindex) {
1123 			/*
1124 			 * Optimize a common case: if the top-level object has
1125 			 * no backing object, we can skip over the non-resident
1126 			 * range in constant time.
1127 			 */
1128 			if (object->backing_object == NULL) {
1129 				tpindex = (m != NULL && m->pindex < end) ?
1130 				    m->pindex : end;
1131 				vm_object_madvise_freespace(object, advice,
1132 				    pindex, tpindex - pindex);
1133 				if ((pindex = tpindex) == end)
1134 					break;
1135 				goto next_page;
1136 			}
1137 
1138 			tpindex = pindex;
1139 			do {
1140 				vm_object_madvise_freespace(tobject, advice,
1141 				    tpindex, 1);
1142 				/*
1143 				 * Prepare to search the next object in the
1144 				 * chain.
1145 				 */
1146 				backing_object = tobject->backing_object;
1147 				if (backing_object == NULL)
1148 					goto next_pindex;
1149 				VM_OBJECT_WLOCK(backing_object);
1150 				tpindex +=
1151 				    OFF_TO_IDX(tobject->backing_object_offset);
1152 				if (tobject != object)
1153 					VM_OBJECT_WUNLOCK(tobject);
1154 				tobject = backing_object;
1155 				if (!vm_object_advice_applies(tobject, advice))
1156 					goto next_pindex;
1157 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
1158 			    NULL);
1159 		} else {
1160 next_page:
1161 			tm = m;
1162 			m = TAILQ_NEXT(m, listq);
1163 		}
1164 
1165 		/*
1166 		 * If the page is not in a normal state, skip it.  The page
1167 		 * can not be invalidated while the object lock is held.
1168 		 */
1169 		if (!vm_page_all_valid(tm) || vm_page_wired(tm))
1170 			goto next_pindex;
1171 		KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1172 		    ("vm_object_madvise: page %p is fictitious", tm));
1173 		KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1174 		    ("vm_object_madvise: page %p is not managed", tm));
1175 		if (vm_page_tryxbusy(tm) == 0) {
1176 			if (object != tobject)
1177 				VM_OBJECT_WUNLOCK(object);
1178 			if (advice == MADV_WILLNEED) {
1179 				/*
1180 				 * Reference the page before unlocking and
1181 				 * sleeping so that the page daemon is less
1182 				 * likely to reclaim it.
1183 				 */
1184 				vm_page_aflag_set(tm, PGA_REFERENCED);
1185 			}
1186 			vm_page_busy_sleep(tm, "madvpo", false);
1187   			goto relookup;
1188 		}
1189 		vm_page_lock(tm);
1190 		vm_page_advise(tm, advice);
1191 		vm_page_unlock(tm);
1192 		vm_page_xunbusy(tm);
1193 		vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1194 next_pindex:
1195 		if (tobject != object)
1196 			VM_OBJECT_WUNLOCK(tobject);
1197 	}
1198 	VM_OBJECT_WUNLOCK(object);
1199 }
1200 
1201 /*
1202  *	vm_object_shadow:
1203  *
1204  *	Create a new object which is backed by the
1205  *	specified existing object range.  The source
1206  *	object reference is deallocated.
1207  *
1208  *	The new object and offset into that object
1209  *	are returned in the source parameters.
1210  */
1211 void
1212 vm_object_shadow(
1213 	vm_object_t *object,	/* IN/OUT */
1214 	vm_ooffset_t *offset,	/* IN/OUT */
1215 	vm_size_t length)
1216 {
1217 	vm_object_t source;
1218 	vm_object_t result;
1219 
1220 	source = *object;
1221 
1222 	/*
1223 	 * Don't create the new object if the old object isn't shared.
1224 	 */
1225 	if (source != NULL) {
1226 		VM_OBJECT_WLOCK(source);
1227 		if (source->ref_count == 1 &&
1228 		    source->handle == NULL &&
1229 		    (source->type == OBJT_DEFAULT ||
1230 		     source->type == OBJT_SWAP)) {
1231 			VM_OBJECT_WUNLOCK(source);
1232 			return;
1233 		}
1234 		VM_OBJECT_WUNLOCK(source);
1235 	}
1236 
1237 	/*
1238 	 * Allocate a new object with the given length.
1239 	 */
1240 	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1241 
1242 	/*
1243 	 * The new object shadows the source object, adding a reference to it.
1244 	 * Our caller changes his reference to point to the new object,
1245 	 * removing a reference to the source object.  Net result: no change
1246 	 * of reference count.
1247 	 *
1248 	 * Try to optimize the result object's page color when shadowing
1249 	 * in order to maintain page coloring consistency in the combined
1250 	 * shadowed object.
1251 	 */
1252 	result->backing_object = source;
1253 	/*
1254 	 * Store the offset into the source object, and fix up the offset into
1255 	 * the new object.
1256 	 */
1257 	result->backing_object_offset = *offset;
1258 	if (source != NULL) {
1259 		VM_OBJECT_WLOCK(source);
1260 		result->domain = source->domain;
1261 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1262 		source->shadow_count++;
1263 #if VM_NRESERVLEVEL > 0
1264 		result->flags |= source->flags & OBJ_COLORED;
1265 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1266 		    ((1 << (VM_NFREEORDER - 1)) - 1);
1267 #endif
1268 		VM_OBJECT_WUNLOCK(source);
1269 	}
1270 
1271 
1272 	/*
1273 	 * Return the new things
1274 	 */
1275 	*offset = 0;
1276 	*object = result;
1277 }
1278 
1279 /*
1280  *	vm_object_split:
1281  *
1282  * Split the pages in a map entry into a new object.  This affords
1283  * easier removal of unused pages, and keeps object inheritance from
1284  * being a negative impact on memory usage.
1285  */
1286 void
1287 vm_object_split(vm_map_entry_t entry)
1288 {
1289 	vm_page_t m, m_next;
1290 	vm_object_t orig_object, new_object, source;
1291 	vm_pindex_t idx, offidxstart;
1292 	vm_size_t size;
1293 
1294 	orig_object = entry->object.vm_object;
1295 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1296 		return;
1297 	if (orig_object->ref_count <= 1)
1298 		return;
1299 	VM_OBJECT_WUNLOCK(orig_object);
1300 
1301 	offidxstart = OFF_TO_IDX(entry->offset);
1302 	size = atop(entry->end - entry->start);
1303 
1304 	/*
1305 	 * If swap_pager_copy() is later called, it will convert new_object
1306 	 * into a swap object.
1307 	 */
1308 	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1309 
1310 	/*
1311 	 * At this point, the new object is still private, so the order in
1312 	 * which the original and new objects are locked does not matter.
1313 	 */
1314 	VM_OBJECT_WLOCK(new_object);
1315 	VM_OBJECT_WLOCK(orig_object);
1316 	new_object->domain = orig_object->domain;
1317 	source = orig_object->backing_object;
1318 	if (source != NULL) {
1319 		VM_OBJECT_WLOCK(source);
1320 		if ((source->flags & OBJ_DEAD) != 0) {
1321 			VM_OBJECT_WUNLOCK(source);
1322 			VM_OBJECT_WUNLOCK(orig_object);
1323 			VM_OBJECT_WUNLOCK(new_object);
1324 			vm_object_deallocate(new_object);
1325 			VM_OBJECT_WLOCK(orig_object);
1326 			return;
1327 		}
1328 		LIST_INSERT_HEAD(&source->shadow_head,
1329 				  new_object, shadow_list);
1330 		source->shadow_count++;
1331 		vm_object_reference_locked(source);	/* for new_object */
1332 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1333 		VM_OBJECT_WUNLOCK(source);
1334 		new_object->backing_object_offset =
1335 			orig_object->backing_object_offset + entry->offset;
1336 		new_object->backing_object = source;
1337 	}
1338 	if (orig_object->cred != NULL) {
1339 		new_object->cred = orig_object->cred;
1340 		crhold(orig_object->cred);
1341 		new_object->charge = ptoa(size);
1342 		KASSERT(orig_object->charge >= ptoa(size),
1343 		    ("orig_object->charge < 0"));
1344 		orig_object->charge -= ptoa(size);
1345 	}
1346 retry:
1347 	m = vm_page_find_least(orig_object, offidxstart);
1348 	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1349 	    m = m_next) {
1350 		m_next = TAILQ_NEXT(m, listq);
1351 
1352 		/*
1353 		 * We must wait for pending I/O to complete before we can
1354 		 * rename the page.
1355 		 *
1356 		 * We do not have to VM_PROT_NONE the page as mappings should
1357 		 * not be changed by this operation.
1358 		 */
1359 		if (vm_page_tryxbusy(m) == 0) {
1360 			VM_OBJECT_WUNLOCK(new_object);
1361 			vm_page_sleep_if_busy(m, "spltwt");
1362 			VM_OBJECT_WLOCK(new_object);
1363 			goto retry;
1364 		}
1365 
1366 		/* vm_page_rename() will dirty the page. */
1367 		if (vm_page_rename(m, new_object, idx)) {
1368 			vm_page_xunbusy(m);
1369 			VM_OBJECT_WUNLOCK(new_object);
1370 			VM_OBJECT_WUNLOCK(orig_object);
1371 			vm_radix_wait();
1372 			VM_OBJECT_WLOCK(orig_object);
1373 			VM_OBJECT_WLOCK(new_object);
1374 			goto retry;
1375 		}
1376 
1377 #if VM_NRESERVLEVEL > 0
1378 		/*
1379 		 * If some of the reservation's allocated pages remain with
1380 		 * the original object, then transferring the reservation to
1381 		 * the new object is neither particularly beneficial nor
1382 		 * particularly harmful as compared to leaving the reservation
1383 		 * with the original object.  If, however, all of the
1384 		 * reservation's allocated pages are transferred to the new
1385 		 * object, then transferring the reservation is typically
1386 		 * beneficial.  Determining which of these two cases applies
1387 		 * would be more costly than unconditionally renaming the
1388 		 * reservation.
1389 		 */
1390 		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1391 #endif
1392 		if (orig_object->type != OBJT_SWAP)
1393 			vm_page_xunbusy(m);
1394 	}
1395 	if (orig_object->type == OBJT_SWAP) {
1396 		/*
1397 		 * swap_pager_copy() can sleep, in which case the orig_object's
1398 		 * and new_object's locks are released and reacquired.
1399 		 */
1400 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1401 		TAILQ_FOREACH(m, &new_object->memq, listq)
1402 			vm_page_xunbusy(m);
1403 	}
1404 	VM_OBJECT_WUNLOCK(orig_object);
1405 	VM_OBJECT_WUNLOCK(new_object);
1406 	entry->object.vm_object = new_object;
1407 	entry->offset = 0LL;
1408 	vm_object_deallocate(orig_object);
1409 	VM_OBJECT_WLOCK(new_object);
1410 }
1411 
1412 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1413 #define	OBSC_COLLAPSE_WAIT	0x0004
1414 
1415 static vm_page_t
1416 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1417     int op)
1418 {
1419 	vm_object_t backing_object;
1420 
1421 	VM_OBJECT_ASSERT_WLOCKED(object);
1422 	backing_object = object->backing_object;
1423 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1424 
1425 	KASSERT(p == NULL || p->object == object || p->object == backing_object,
1426 	    ("invalid ownership %p %p %p", p, object, backing_object));
1427 	if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1428 		return (next);
1429 	/* The page is only NULL when rename fails. */
1430 	if (p == NULL) {
1431 		vm_radix_wait();
1432 	} else {
1433 		if (p->object == object)
1434 			VM_OBJECT_WUNLOCK(backing_object);
1435 		else
1436 			VM_OBJECT_WUNLOCK(object);
1437 		vm_page_busy_sleep(p, "vmocol", false);
1438 	}
1439 	VM_OBJECT_WLOCK(object);
1440 	VM_OBJECT_WLOCK(backing_object);
1441 	return (TAILQ_FIRST(&backing_object->memq));
1442 }
1443 
1444 static bool
1445 vm_object_scan_all_shadowed(vm_object_t object)
1446 {
1447 	vm_object_t backing_object;
1448 	vm_page_t p, pp;
1449 	vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1450 
1451 	VM_OBJECT_ASSERT_WLOCKED(object);
1452 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1453 
1454 	backing_object = object->backing_object;
1455 
1456 	if (backing_object->type != OBJT_DEFAULT &&
1457 	    backing_object->type != OBJT_SWAP)
1458 		return (false);
1459 
1460 	pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1461 	p = vm_page_find_least(backing_object, pi);
1462 	ps = swap_pager_find_least(backing_object, pi);
1463 
1464 	/*
1465 	 * Only check pages inside the parent object's range and
1466 	 * inside the parent object's mapping of the backing object.
1467 	 */
1468 	for (;; pi++) {
1469 		if (p != NULL && p->pindex < pi)
1470 			p = TAILQ_NEXT(p, listq);
1471 		if (ps < pi)
1472 			ps = swap_pager_find_least(backing_object, pi);
1473 		if (p == NULL && ps >= backing_object->size)
1474 			break;
1475 		else if (p == NULL)
1476 			pi = ps;
1477 		else
1478 			pi = MIN(p->pindex, ps);
1479 
1480 		new_pindex = pi - backing_offset_index;
1481 		if (new_pindex >= object->size)
1482 			break;
1483 
1484 		/*
1485 		 * See if the parent has the page or if the parent's object
1486 		 * pager has the page.  If the parent has the page but the page
1487 		 * is not valid, the parent's object pager must have the page.
1488 		 *
1489 		 * If this fails, the parent does not completely shadow the
1490 		 * object and we might as well give up now.
1491 		 */
1492 		pp = vm_page_lookup(object, new_pindex);
1493 		/*
1494 		 * The valid check here is stable due to object lock being
1495 		 * required to clear valid and initiate paging.
1496 		 */
1497 		if ((pp == NULL || vm_page_none_valid(pp)) &&
1498 		    !vm_pager_has_page(object, new_pindex, NULL, NULL))
1499 			return (false);
1500 	}
1501 	return (true);
1502 }
1503 
1504 static bool
1505 vm_object_collapse_scan(vm_object_t object, int op)
1506 {
1507 	vm_object_t backing_object;
1508 	vm_page_t next, p, pp;
1509 	vm_pindex_t backing_offset_index, new_pindex;
1510 
1511 	VM_OBJECT_ASSERT_WLOCKED(object);
1512 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1513 
1514 	backing_object = object->backing_object;
1515 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1516 
1517 	/*
1518 	 * Initial conditions
1519 	 */
1520 	if ((op & OBSC_COLLAPSE_WAIT) != 0)
1521 		vm_object_set_flag(backing_object, OBJ_DEAD);
1522 
1523 	/*
1524 	 * Our scan
1525 	 */
1526 	for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1527 		next = TAILQ_NEXT(p, listq);
1528 		new_pindex = p->pindex - backing_offset_index;
1529 
1530 		/*
1531 		 * Check for busy page
1532 		 */
1533 		if (vm_page_tryxbusy(p) == 0) {
1534 			next = vm_object_collapse_scan_wait(object, p, next, op);
1535 			continue;
1536 		}
1537 
1538 		KASSERT(p->object == backing_object,
1539 		    ("vm_object_collapse_scan: object mismatch"));
1540 
1541 		if (p->pindex < backing_offset_index ||
1542 		    new_pindex >= object->size) {
1543 			if (backing_object->type == OBJT_SWAP)
1544 				swap_pager_freespace(backing_object, p->pindex,
1545 				    1);
1546 
1547 			KASSERT(!pmap_page_is_mapped(p),
1548 			    ("freeing mapped page %p", p));
1549 			if (vm_page_remove(p))
1550 				vm_page_free(p);
1551 			else
1552 				vm_page_xunbusy(p);
1553 			continue;
1554 		}
1555 
1556 		pp = vm_page_lookup(object, new_pindex);
1557 		if (pp != NULL && vm_page_tryxbusy(pp) == 0) {
1558 			vm_page_xunbusy(p);
1559 			/*
1560 			 * The page in the parent is busy and possibly not
1561 			 * (yet) valid.  Until its state is finalized by the
1562 			 * busy bit owner, we can't tell whether it shadows the
1563 			 * original page.  Therefore, we must either skip it
1564 			 * and the original (backing_object) page or wait for
1565 			 * its state to be finalized.
1566 			 *
1567 			 * This is due to a race with vm_fault() where we must
1568 			 * unbusy the original (backing_obj) page before we can
1569 			 * (re)lock the parent.  Hence we can get here.
1570 			 */
1571 			next = vm_object_collapse_scan_wait(object, pp, next,
1572 			    op);
1573 			continue;
1574 		}
1575 
1576 		KASSERT(pp == NULL || !vm_page_none_valid(pp),
1577 		    ("unbusy invalid page %p", pp));
1578 
1579 		if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1580 			NULL)) {
1581 			/*
1582 			 * The page already exists in the parent OR swap exists
1583 			 * for this location in the parent.  Leave the parent's
1584 			 * page alone.  Destroy the original page from the
1585 			 * backing object.
1586 			 */
1587 			if (backing_object->type == OBJT_SWAP)
1588 				swap_pager_freespace(backing_object, p->pindex,
1589 				    1);
1590 			KASSERT(!pmap_page_is_mapped(p),
1591 			    ("freeing mapped page %p", p));
1592 			if (vm_page_remove(p))
1593 				vm_page_free(p);
1594 			else
1595 				vm_page_xunbusy(p);
1596 			if (pp != NULL)
1597 				vm_page_xunbusy(pp);
1598 			continue;
1599 		}
1600 
1601 		/*
1602 		 * Page does not exist in parent, rename the page from the
1603 		 * backing object to the main object.
1604 		 *
1605 		 * If the page was mapped to a process, it can remain mapped
1606 		 * through the rename.  vm_page_rename() will dirty the page.
1607 		 */
1608 		if (vm_page_rename(p, object, new_pindex)) {
1609 			vm_page_xunbusy(p);
1610 			if (pp != NULL)
1611 				vm_page_xunbusy(pp);
1612 			next = vm_object_collapse_scan_wait(object, NULL, next,
1613 			    op);
1614 			continue;
1615 		}
1616 
1617 		/* Use the old pindex to free the right page. */
1618 		if (backing_object->type == OBJT_SWAP)
1619 			swap_pager_freespace(backing_object,
1620 			    new_pindex + backing_offset_index, 1);
1621 
1622 #if VM_NRESERVLEVEL > 0
1623 		/*
1624 		 * Rename the reservation.
1625 		 */
1626 		vm_reserv_rename(p, object, backing_object,
1627 		    backing_offset_index);
1628 #endif
1629 		vm_page_xunbusy(p);
1630 	}
1631 	return (true);
1632 }
1633 
1634 
1635 /*
1636  * this version of collapse allows the operation to occur earlier and
1637  * when paging_in_progress is true for an object...  This is not a complete
1638  * operation, but should plug 99.9% of the rest of the leaks.
1639  */
1640 static void
1641 vm_object_qcollapse(vm_object_t object)
1642 {
1643 	vm_object_t backing_object = object->backing_object;
1644 
1645 	VM_OBJECT_ASSERT_WLOCKED(object);
1646 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1647 
1648 	if (backing_object->ref_count != 1)
1649 		return;
1650 
1651 	vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1652 }
1653 
1654 /*
1655  *	vm_object_collapse:
1656  *
1657  *	Collapse an object with the object backing it.
1658  *	Pages in the backing object are moved into the
1659  *	parent, and the backing object is deallocated.
1660  */
1661 void
1662 vm_object_collapse(vm_object_t object)
1663 {
1664 	vm_object_t backing_object, new_backing_object;
1665 
1666 	VM_OBJECT_ASSERT_WLOCKED(object);
1667 
1668 	while (TRUE) {
1669 		/*
1670 		 * Verify that the conditions are right for collapse:
1671 		 *
1672 		 * The object exists and the backing object exists.
1673 		 */
1674 		if ((backing_object = object->backing_object) == NULL)
1675 			break;
1676 
1677 		/*
1678 		 * we check the backing object first, because it is most likely
1679 		 * not collapsable.
1680 		 */
1681 		VM_OBJECT_WLOCK(backing_object);
1682 		if (backing_object->handle != NULL ||
1683 		    (backing_object->type != OBJT_DEFAULT &&
1684 		    backing_object->type != OBJT_SWAP) ||
1685 		    (backing_object->flags & (OBJ_DEAD | OBJ_NOSPLIT)) != 0 ||
1686 		    object->handle != NULL ||
1687 		    (object->type != OBJT_DEFAULT &&
1688 		     object->type != OBJT_SWAP) ||
1689 		    (object->flags & OBJ_DEAD)) {
1690 			VM_OBJECT_WUNLOCK(backing_object);
1691 			break;
1692 		}
1693 
1694 		if (REFCOUNT_COUNT(object->paging_in_progress) > 0 ||
1695 		    REFCOUNT_COUNT(backing_object->paging_in_progress) > 0) {
1696 			vm_object_qcollapse(object);
1697 			VM_OBJECT_WUNLOCK(backing_object);
1698 			break;
1699 		}
1700 
1701 		/*
1702 		 * We know that we can either collapse the backing object (if
1703 		 * the parent is the only reference to it) or (perhaps) have
1704 		 * the parent bypass the object if the parent happens to shadow
1705 		 * all the resident pages in the entire backing object.
1706 		 *
1707 		 * This is ignoring pager-backed pages such as swap pages.
1708 		 * vm_object_collapse_scan fails the shadowing test in this
1709 		 * case.
1710 		 */
1711 		if (backing_object->ref_count == 1) {
1712 			vm_object_pip_add(object, 1);
1713 			vm_object_pip_add(backing_object, 1);
1714 
1715 			/*
1716 			 * If there is exactly one reference to the backing
1717 			 * object, we can collapse it into the parent.
1718 			 */
1719 			vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1720 
1721 #if VM_NRESERVLEVEL > 0
1722 			/*
1723 			 * Break any reservations from backing_object.
1724 			 */
1725 			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1726 				vm_reserv_break_all(backing_object);
1727 #endif
1728 
1729 			/*
1730 			 * Move the pager from backing_object to object.
1731 			 */
1732 			if (backing_object->type == OBJT_SWAP) {
1733 				/*
1734 				 * swap_pager_copy() can sleep, in which case
1735 				 * the backing_object's and object's locks are
1736 				 * released and reacquired.
1737 				 * Since swap_pager_copy() is being asked to
1738 				 * destroy the source, it will change the
1739 				 * backing_object's type to OBJT_DEFAULT.
1740 				 */
1741 				swap_pager_copy(
1742 				    backing_object,
1743 				    object,
1744 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1745 			}
1746 			/*
1747 			 * Object now shadows whatever backing_object did.
1748 			 * Note that the reference to
1749 			 * backing_object->backing_object moves from within
1750 			 * backing_object to within object.
1751 			 */
1752 			LIST_REMOVE(object, shadow_list);
1753 			backing_object->shadow_count--;
1754 			if (backing_object->backing_object) {
1755 				VM_OBJECT_WLOCK(backing_object->backing_object);
1756 				LIST_REMOVE(backing_object, shadow_list);
1757 				LIST_INSERT_HEAD(
1758 				    &backing_object->backing_object->shadow_head,
1759 				    object, shadow_list);
1760 				/*
1761 				 * The shadow_count has not changed.
1762 				 */
1763 				VM_OBJECT_WUNLOCK(backing_object->backing_object);
1764 			}
1765 			object->backing_object = backing_object->backing_object;
1766 			object->backing_object_offset +=
1767 			    backing_object->backing_object_offset;
1768 
1769 			/*
1770 			 * Discard backing_object.
1771 			 *
1772 			 * Since the backing object has no pages, no pager left,
1773 			 * and no object references within it, all that is
1774 			 * necessary is to dispose of it.
1775 			 */
1776 			KASSERT(backing_object->ref_count == 1, (
1777 "backing_object %p was somehow re-referenced during collapse!",
1778 			    backing_object));
1779 			vm_object_pip_wakeup(backing_object);
1780 			backing_object->type = OBJT_DEAD;
1781 			backing_object->ref_count = 0;
1782 			VM_OBJECT_WUNLOCK(backing_object);
1783 			vm_object_destroy(backing_object);
1784 
1785 			vm_object_pip_wakeup(object);
1786 			counter_u64_add(object_collapses, 1);
1787 		} else {
1788 			/*
1789 			 * If we do not entirely shadow the backing object,
1790 			 * there is nothing we can do so we give up.
1791 			 */
1792 			if (object->resident_page_count != object->size &&
1793 			    !vm_object_scan_all_shadowed(object)) {
1794 				VM_OBJECT_WUNLOCK(backing_object);
1795 				break;
1796 			}
1797 
1798 			/*
1799 			 * Make the parent shadow the next object in the
1800 			 * chain.  Deallocating backing_object will not remove
1801 			 * it, since its reference count is at least 2.
1802 			 */
1803 			LIST_REMOVE(object, shadow_list);
1804 			backing_object->shadow_count--;
1805 
1806 			new_backing_object = backing_object->backing_object;
1807 			if ((object->backing_object = new_backing_object) != NULL) {
1808 				VM_OBJECT_WLOCK(new_backing_object);
1809 				LIST_INSERT_HEAD(
1810 				    &new_backing_object->shadow_head,
1811 				    object,
1812 				    shadow_list
1813 				);
1814 				new_backing_object->shadow_count++;
1815 				vm_object_reference_locked(new_backing_object);
1816 				VM_OBJECT_WUNLOCK(new_backing_object);
1817 				object->backing_object_offset +=
1818 					backing_object->backing_object_offset;
1819 			}
1820 
1821 			/*
1822 			 * Drop the reference count on backing_object. Since
1823 			 * its ref_count was at least 2, it will not vanish.
1824 			 */
1825 			backing_object->ref_count--;
1826 			VM_OBJECT_WUNLOCK(backing_object);
1827 			counter_u64_add(object_bypasses, 1);
1828 		}
1829 
1830 		/*
1831 		 * Try again with this object's new backing object.
1832 		 */
1833 	}
1834 }
1835 
1836 /*
1837  *	vm_object_page_remove:
1838  *
1839  *	For the given object, either frees or invalidates each of the
1840  *	specified pages.  In general, a page is freed.  However, if a page is
1841  *	wired for any reason other than the existence of a managed, wired
1842  *	mapping, then it may be invalidated but not removed from the object.
1843  *	Pages are specified by the given range ["start", "end") and the option
1844  *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1845  *	extends from "start" to the end of the object.  If the option
1846  *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1847  *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1848  *	specified, then the pages within the specified range must have no
1849  *	mappings.  Otherwise, if this option is not specified, any mappings to
1850  *	the specified pages are removed before the pages are freed or
1851  *	invalidated.
1852  *
1853  *	In general, this operation should only be performed on objects that
1854  *	contain managed pages.  There are, however, two exceptions.  First, it
1855  *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1856  *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1857  *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1858  *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1859  *
1860  *	The object must be locked.
1861  */
1862 void
1863 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1864     int options)
1865 {
1866 	vm_page_t p, next;
1867 
1868 	VM_OBJECT_ASSERT_WLOCKED(object);
1869 	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1870 	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1871 	    ("vm_object_page_remove: illegal options for object %p", object));
1872 	if (object->resident_page_count == 0)
1873 		return;
1874 	vm_object_pip_add(object, 1);
1875 again:
1876 	p = vm_page_find_least(object, start);
1877 
1878 	/*
1879 	 * Here, the variable "p" is either (1) the page with the least pindex
1880 	 * greater than or equal to the parameter "start" or (2) NULL.
1881 	 */
1882 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1883 		next = TAILQ_NEXT(p, listq);
1884 
1885 		/*
1886 		 * If the page is wired for any reason besides the existence
1887 		 * of managed, wired mappings, then it cannot be freed.  For
1888 		 * example, fictitious pages, which represent device memory,
1889 		 * are inherently wired and cannot be freed.  They can,
1890 		 * however, be invalidated if the option OBJPR_CLEANONLY is
1891 		 * not specified.
1892 		 */
1893 		if (vm_page_tryxbusy(p) == 0) {
1894 			vm_page_sleep_if_busy(p, "vmopar");
1895 			goto again;
1896 		}
1897 		if (vm_page_wired(p)) {
1898 wired:
1899 			if ((options & OBJPR_NOTMAPPED) == 0 &&
1900 			    object->ref_count != 0)
1901 				pmap_remove_all(p);
1902 			if ((options & OBJPR_CLEANONLY) == 0) {
1903 				vm_page_invalid(p);
1904 				vm_page_undirty(p);
1905 			}
1906 			vm_page_xunbusy(p);
1907 			continue;
1908 		}
1909 		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1910 		    ("vm_object_page_remove: page %p is fictitious", p));
1911 		if ((options & OBJPR_CLEANONLY) != 0 &&
1912 		    !vm_page_none_valid(p)) {
1913 			if ((options & OBJPR_NOTMAPPED) == 0 &&
1914 			    object->ref_count != 0 &&
1915 			    !vm_page_try_remove_write(p))
1916 				goto wired;
1917 			if (p->dirty != 0) {
1918 				vm_page_xunbusy(p);
1919 				continue;
1920 			}
1921 		}
1922 		if ((options & OBJPR_NOTMAPPED) == 0 &&
1923 		    object->ref_count != 0 && !vm_page_try_remove_all(p))
1924 			goto wired;
1925 		vm_page_free(p);
1926 	}
1927 	vm_object_pip_wakeup(object);
1928 }
1929 
1930 /*
1931  *	vm_object_page_noreuse:
1932  *
1933  *	For the given object, attempt to move the specified pages to
1934  *	the head of the inactive queue.  This bypasses regular LRU
1935  *	operation and allows the pages to be reused quickly under memory
1936  *	pressure.  If a page is wired for any reason, then it will not
1937  *	be queued.  Pages are specified by the range ["start", "end").
1938  *	As a special case, if "end" is zero, then the range extends from
1939  *	"start" to the end of the object.
1940  *
1941  *	This operation should only be performed on objects that
1942  *	contain non-fictitious, managed pages.
1943  *
1944  *	The object must be locked.
1945  */
1946 void
1947 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1948 {
1949 	struct mtx *mtx;
1950 	vm_page_t p, next;
1951 
1952 	VM_OBJECT_ASSERT_LOCKED(object);
1953 	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
1954 	    ("vm_object_page_noreuse: illegal object %p", object));
1955 	if (object->resident_page_count == 0)
1956 		return;
1957 	p = vm_page_find_least(object, start);
1958 
1959 	/*
1960 	 * Here, the variable "p" is either (1) the page with the least pindex
1961 	 * greater than or equal to the parameter "start" or (2) NULL.
1962 	 */
1963 	mtx = NULL;
1964 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1965 		next = TAILQ_NEXT(p, listq);
1966 		vm_page_change_lock(p, &mtx);
1967 		vm_page_deactivate_noreuse(p);
1968 	}
1969 	if (mtx != NULL)
1970 		mtx_unlock(mtx);
1971 }
1972 
1973 /*
1974  *	Populate the specified range of the object with valid pages.  Returns
1975  *	TRUE if the range is successfully populated and FALSE otherwise.
1976  *
1977  *	Note: This function should be optimized to pass a larger array of
1978  *	pages to vm_pager_get_pages() before it is applied to a non-
1979  *	OBJT_DEVICE object.
1980  *
1981  *	The object must be locked.
1982  */
1983 boolean_t
1984 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1985 {
1986 	vm_page_t m;
1987 	vm_pindex_t pindex;
1988 	int rv;
1989 
1990 	VM_OBJECT_ASSERT_WLOCKED(object);
1991 	for (pindex = start; pindex < end; pindex++) {
1992 		rv = vm_page_grab_valid(&m, object, pindex, VM_ALLOC_NORMAL);
1993 		if (rv != VM_PAGER_OK)
1994 			break;
1995 
1996 		/*
1997 		 * Keep "m" busy because a subsequent iteration may unlock
1998 		 * the object.
1999 		 */
2000 	}
2001 	if (pindex > start) {
2002 		m = vm_page_lookup(object, start);
2003 		while (m != NULL && m->pindex < pindex) {
2004 			vm_page_xunbusy(m);
2005 			m = TAILQ_NEXT(m, listq);
2006 		}
2007 	}
2008 	return (pindex == end);
2009 }
2010 
2011 /*
2012  *	Routine:	vm_object_coalesce
2013  *	Function:	Coalesces two objects backing up adjoining
2014  *			regions of memory into a single object.
2015  *
2016  *	returns TRUE if objects were combined.
2017  *
2018  *	NOTE:	Only works at the moment if the second object is NULL -
2019  *		if it's not, which object do we lock first?
2020  *
2021  *	Parameters:
2022  *		prev_object	First object to coalesce
2023  *		prev_offset	Offset into prev_object
2024  *		prev_size	Size of reference to prev_object
2025  *		next_size	Size of reference to the second object
2026  *		reserved	Indicator that extension region has
2027  *				swap accounted for
2028  *
2029  *	Conditions:
2030  *	The object must *not* be locked.
2031  */
2032 boolean_t
2033 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2034     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2035 {
2036 	vm_pindex_t next_pindex;
2037 
2038 	if (prev_object == NULL)
2039 		return (TRUE);
2040 	VM_OBJECT_WLOCK(prev_object);
2041 	if ((prev_object->type != OBJT_DEFAULT &&
2042 	    prev_object->type != OBJT_SWAP) ||
2043 	    (prev_object->flags & OBJ_NOSPLIT) != 0) {
2044 		VM_OBJECT_WUNLOCK(prev_object);
2045 		return (FALSE);
2046 	}
2047 
2048 	/*
2049 	 * Try to collapse the object first
2050 	 */
2051 	vm_object_collapse(prev_object);
2052 
2053 	/*
2054 	 * Can't coalesce if: . more than one reference . paged out . shadows
2055 	 * another object . has a copy elsewhere (any of which mean that the
2056 	 * pages not mapped to prev_entry may be in use anyway)
2057 	 */
2058 	if (prev_object->backing_object != NULL) {
2059 		VM_OBJECT_WUNLOCK(prev_object);
2060 		return (FALSE);
2061 	}
2062 
2063 	prev_size >>= PAGE_SHIFT;
2064 	next_size >>= PAGE_SHIFT;
2065 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2066 
2067 	if (prev_object->ref_count > 1 &&
2068 	    prev_object->size != next_pindex &&
2069 	    (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2070 		VM_OBJECT_WUNLOCK(prev_object);
2071 		return (FALSE);
2072 	}
2073 
2074 	/*
2075 	 * Account for the charge.
2076 	 */
2077 	if (prev_object->cred != NULL) {
2078 
2079 		/*
2080 		 * If prev_object was charged, then this mapping,
2081 		 * although not charged now, may become writable
2082 		 * later. Non-NULL cred in the object would prevent
2083 		 * swap reservation during enabling of the write
2084 		 * access, so reserve swap now. Failed reservation
2085 		 * cause allocation of the separate object for the map
2086 		 * entry, and swap reservation for this entry is
2087 		 * managed in appropriate time.
2088 		 */
2089 		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2090 		    prev_object->cred)) {
2091 			VM_OBJECT_WUNLOCK(prev_object);
2092 			return (FALSE);
2093 		}
2094 		prev_object->charge += ptoa(next_size);
2095 	}
2096 
2097 	/*
2098 	 * Remove any pages that may still be in the object from a previous
2099 	 * deallocation.
2100 	 */
2101 	if (next_pindex < prev_object->size) {
2102 		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2103 		    next_size, 0);
2104 		if (prev_object->type == OBJT_SWAP)
2105 			swap_pager_freespace(prev_object,
2106 					     next_pindex, next_size);
2107 #if 0
2108 		if (prev_object->cred != NULL) {
2109 			KASSERT(prev_object->charge >=
2110 			    ptoa(prev_object->size - next_pindex),
2111 			    ("object %p overcharged 1 %jx %jx", prev_object,
2112 				(uintmax_t)next_pindex, (uintmax_t)next_size));
2113 			prev_object->charge -= ptoa(prev_object->size -
2114 			    next_pindex);
2115 		}
2116 #endif
2117 	}
2118 
2119 	/*
2120 	 * Extend the object if necessary.
2121 	 */
2122 	if (next_pindex + next_size > prev_object->size)
2123 		prev_object->size = next_pindex + next_size;
2124 
2125 	VM_OBJECT_WUNLOCK(prev_object);
2126 	return (TRUE);
2127 }
2128 
2129 void
2130 vm_object_set_writeable_dirty(vm_object_t object)
2131 {
2132 
2133 	VM_OBJECT_ASSERT_WLOCKED(object);
2134 	if (object->type != OBJT_VNODE) {
2135 		if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2136 			KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2137 			vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2138 		}
2139 		return;
2140 	}
2141 	object->generation++;
2142 	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2143 		return;
2144 	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2145 }
2146 
2147 /*
2148  *	vm_object_unwire:
2149  *
2150  *	For each page offset within the specified range of the given object,
2151  *	find the highest-level page in the shadow chain and unwire it.  A page
2152  *	must exist at every page offset, and the highest-level page must be
2153  *	wired.
2154  */
2155 void
2156 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2157     uint8_t queue)
2158 {
2159 	vm_object_t tobject, t1object;
2160 	vm_page_t m, tm;
2161 	vm_pindex_t end_pindex, pindex, tpindex;
2162 	int depth, locked_depth;
2163 
2164 	KASSERT((offset & PAGE_MASK) == 0,
2165 	    ("vm_object_unwire: offset is not page aligned"));
2166 	KASSERT((length & PAGE_MASK) == 0,
2167 	    ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2168 	/* The wired count of a fictitious page never changes. */
2169 	if ((object->flags & OBJ_FICTITIOUS) != 0)
2170 		return;
2171 	pindex = OFF_TO_IDX(offset);
2172 	end_pindex = pindex + atop(length);
2173 again:
2174 	locked_depth = 1;
2175 	VM_OBJECT_RLOCK(object);
2176 	m = vm_page_find_least(object, pindex);
2177 	while (pindex < end_pindex) {
2178 		if (m == NULL || pindex < m->pindex) {
2179 			/*
2180 			 * The first object in the shadow chain doesn't
2181 			 * contain a page at the current index.  Therefore,
2182 			 * the page must exist in a backing object.
2183 			 */
2184 			tobject = object;
2185 			tpindex = pindex;
2186 			depth = 0;
2187 			do {
2188 				tpindex +=
2189 				    OFF_TO_IDX(tobject->backing_object_offset);
2190 				tobject = tobject->backing_object;
2191 				KASSERT(tobject != NULL,
2192 				    ("vm_object_unwire: missing page"));
2193 				if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2194 					goto next_page;
2195 				depth++;
2196 				if (depth == locked_depth) {
2197 					locked_depth++;
2198 					VM_OBJECT_RLOCK(tobject);
2199 				}
2200 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
2201 			    NULL);
2202 		} else {
2203 			tm = m;
2204 			m = TAILQ_NEXT(m, listq);
2205 		}
2206 		if (vm_page_trysbusy(tm) == 0) {
2207 			for (tobject = object; locked_depth >= 1;
2208 			    locked_depth--) {
2209 				t1object = tobject->backing_object;
2210 				if (tm->object != tobject)
2211 					VM_OBJECT_RUNLOCK(tobject);
2212 				tobject = t1object;
2213 			}
2214 			vm_page_busy_sleep(tm, "unwbo", true);
2215 			goto again;
2216 		}
2217 		vm_page_unwire(tm, queue);
2218 		vm_page_sunbusy(tm);
2219 next_page:
2220 		pindex++;
2221 	}
2222 	/* Release the accumulated object locks. */
2223 	for (tobject = object; locked_depth >= 1; locked_depth--) {
2224 		t1object = tobject->backing_object;
2225 		VM_OBJECT_RUNLOCK(tobject);
2226 		tobject = t1object;
2227 	}
2228 }
2229 
2230 /*
2231  * Return the vnode for the given object, or NULL if none exists.
2232  * For tmpfs objects, the function may return NULL if there is
2233  * no vnode allocated at the time of the call.
2234  */
2235 struct vnode *
2236 vm_object_vnode(vm_object_t object)
2237 {
2238 	struct vnode *vp;
2239 
2240 	VM_OBJECT_ASSERT_LOCKED(object);
2241 	if (object->type == OBJT_VNODE) {
2242 		vp = object->handle;
2243 		KASSERT(vp != NULL, ("%s: OBJT_VNODE has no vnode", __func__));
2244 	} else if (object->type == OBJT_SWAP &&
2245 	    (object->flags & OBJ_TMPFS) != 0) {
2246 		vp = object->un_pager.swp.swp_tmpfs;
2247 		KASSERT(vp != NULL, ("%s: OBJT_TMPFS has no vnode", __func__));
2248 	} else {
2249 		vp = NULL;
2250 	}
2251 	return (vp);
2252 }
2253 
2254 
2255 /*
2256  * Busy the vm object.  This prevents new pages belonging to the object from
2257  * becoming busy.  Existing pages persist as busy.  Callers are responsible
2258  * for checking page state before proceeding.
2259  */
2260 void
2261 vm_object_busy(vm_object_t obj)
2262 {
2263 
2264 	VM_OBJECT_ASSERT_LOCKED(obj);
2265 
2266 	refcount_acquire(&obj->busy);
2267 	/* The fence is required to order loads of page busy. */
2268 	atomic_thread_fence_acq_rel();
2269 }
2270 
2271 void
2272 vm_object_unbusy(vm_object_t obj)
2273 {
2274 
2275 
2276 	refcount_release(&obj->busy);
2277 }
2278 
2279 void
2280 vm_object_busy_wait(vm_object_t obj, const char *wmesg)
2281 {
2282 
2283 	VM_OBJECT_ASSERT_UNLOCKED(obj);
2284 
2285 	if (obj->busy)
2286 		refcount_sleep(&obj->busy, wmesg, PVM);
2287 }
2288 
2289 /*
2290  * Return the kvme type of the given object.
2291  * If vpp is not NULL, set it to the object's vm_object_vnode() or NULL.
2292  */
2293 int
2294 vm_object_kvme_type(vm_object_t object, struct vnode **vpp)
2295 {
2296 
2297 	VM_OBJECT_ASSERT_LOCKED(object);
2298 	if (vpp != NULL)
2299 		*vpp = vm_object_vnode(object);
2300 	switch (object->type) {
2301 	case OBJT_DEFAULT:
2302 		return (KVME_TYPE_DEFAULT);
2303 	case OBJT_VNODE:
2304 		return (KVME_TYPE_VNODE);
2305 	case OBJT_SWAP:
2306 		if ((object->flags & OBJ_TMPFS_NODE) != 0)
2307 			return (KVME_TYPE_VNODE);
2308 		return (KVME_TYPE_SWAP);
2309 	case OBJT_DEVICE:
2310 		return (KVME_TYPE_DEVICE);
2311 	case OBJT_PHYS:
2312 		return (KVME_TYPE_PHYS);
2313 	case OBJT_DEAD:
2314 		return (KVME_TYPE_DEAD);
2315 	case OBJT_SG:
2316 		return (KVME_TYPE_SG);
2317 	case OBJT_MGTDEVICE:
2318 		return (KVME_TYPE_MGTDEVICE);
2319 	default:
2320 		return (KVME_TYPE_UNKNOWN);
2321 	}
2322 }
2323 
2324 static int
2325 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2326 {
2327 	struct kinfo_vmobject *kvo;
2328 	char *fullpath, *freepath;
2329 	struct vnode *vp;
2330 	struct vattr va;
2331 	vm_object_t obj;
2332 	vm_page_t m;
2333 	int count, error;
2334 
2335 	if (req->oldptr == NULL) {
2336 		/*
2337 		 * If an old buffer has not been provided, generate an
2338 		 * estimate of the space needed for a subsequent call.
2339 		 */
2340 		mtx_lock(&vm_object_list_mtx);
2341 		count = 0;
2342 		TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2343 			if (obj->type == OBJT_DEAD)
2344 				continue;
2345 			count++;
2346 		}
2347 		mtx_unlock(&vm_object_list_mtx);
2348 		return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2349 		    count * 11 / 10));
2350 	}
2351 
2352 	kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2353 	error = 0;
2354 
2355 	/*
2356 	 * VM objects are type stable and are never removed from the
2357 	 * list once added.  This allows us to safely read obj->object_list
2358 	 * after reacquiring the VM object lock.
2359 	 */
2360 	mtx_lock(&vm_object_list_mtx);
2361 	TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2362 		if (obj->type == OBJT_DEAD)
2363 			continue;
2364 		VM_OBJECT_RLOCK(obj);
2365 		if (obj->type == OBJT_DEAD) {
2366 			VM_OBJECT_RUNLOCK(obj);
2367 			continue;
2368 		}
2369 		mtx_unlock(&vm_object_list_mtx);
2370 		kvo->kvo_size = ptoa(obj->size);
2371 		kvo->kvo_resident = obj->resident_page_count;
2372 		kvo->kvo_ref_count = obj->ref_count;
2373 		kvo->kvo_shadow_count = obj->shadow_count;
2374 		kvo->kvo_memattr = obj->memattr;
2375 		kvo->kvo_active = 0;
2376 		kvo->kvo_inactive = 0;
2377 		TAILQ_FOREACH(m, &obj->memq, listq) {
2378 			/*
2379 			 * A page may belong to the object but be
2380 			 * dequeued and set to PQ_NONE while the
2381 			 * object lock is not held.  This makes the
2382 			 * reads of m->queue below racy, and we do not
2383 			 * count pages set to PQ_NONE.  However, this
2384 			 * sysctl is only meant to give an
2385 			 * approximation of the system anyway.
2386 			 */
2387 			if (m->queue == PQ_ACTIVE)
2388 				kvo->kvo_active++;
2389 			else if (m->queue == PQ_INACTIVE)
2390 				kvo->kvo_inactive++;
2391 		}
2392 
2393 		kvo->kvo_vn_fileid = 0;
2394 		kvo->kvo_vn_fsid = 0;
2395 		kvo->kvo_vn_fsid_freebsd11 = 0;
2396 		freepath = NULL;
2397 		fullpath = "";
2398 		kvo->kvo_type = vm_object_kvme_type(obj, &vp);
2399 		if (vp != NULL)
2400 			vref(vp);
2401 		VM_OBJECT_RUNLOCK(obj);
2402 		if (vp != NULL) {
2403 			vn_fullpath(curthread, vp, &fullpath, &freepath);
2404 			vn_lock(vp, LK_SHARED | LK_RETRY);
2405 			if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2406 				kvo->kvo_vn_fileid = va.va_fileid;
2407 				kvo->kvo_vn_fsid = va.va_fsid;
2408 				kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2409 								/* truncate */
2410 			}
2411 			vput(vp);
2412 		}
2413 
2414 		strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2415 		if (freepath != NULL)
2416 			free(freepath, M_TEMP);
2417 
2418 		/* Pack record size down */
2419 		kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2420 		    + strlen(kvo->kvo_path) + 1;
2421 		kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2422 		    sizeof(uint64_t));
2423 		error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2424 		mtx_lock(&vm_object_list_mtx);
2425 		if (error)
2426 			break;
2427 	}
2428 	mtx_unlock(&vm_object_list_mtx);
2429 	free(kvo, M_TEMP);
2430 	return (error);
2431 }
2432 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2433     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2434     "List of VM objects");
2435 
2436 #include "opt_ddb.h"
2437 #ifdef DDB
2438 #include <sys/kernel.h>
2439 
2440 #include <sys/cons.h>
2441 
2442 #include <ddb/ddb.h>
2443 
2444 static int
2445 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2446 {
2447 	vm_map_t tmpm;
2448 	vm_map_entry_t tmpe;
2449 	vm_object_t obj;
2450 
2451 	if (map == 0)
2452 		return 0;
2453 
2454 	if (entry == 0) {
2455 		VM_MAP_ENTRY_FOREACH(tmpe, map) {
2456 			if (_vm_object_in_map(map, object, tmpe)) {
2457 				return 1;
2458 			}
2459 		}
2460 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2461 		tmpm = entry->object.sub_map;
2462 		VM_MAP_ENTRY_FOREACH(tmpe, tmpm) {
2463 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2464 				return 1;
2465 			}
2466 		}
2467 	} else if ((obj = entry->object.vm_object) != NULL) {
2468 		for (; obj; obj = obj->backing_object)
2469 			if (obj == object) {
2470 				return 1;
2471 			}
2472 	}
2473 	return 0;
2474 }
2475 
2476 static int
2477 vm_object_in_map(vm_object_t object)
2478 {
2479 	struct proc *p;
2480 
2481 	/* sx_slock(&allproc_lock); */
2482 	FOREACH_PROC_IN_SYSTEM(p) {
2483 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2484 			continue;
2485 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2486 			/* sx_sunlock(&allproc_lock); */
2487 			return 1;
2488 		}
2489 	}
2490 	/* sx_sunlock(&allproc_lock); */
2491 	if (_vm_object_in_map(kernel_map, object, 0))
2492 		return 1;
2493 	return 0;
2494 }
2495 
2496 DB_SHOW_COMMAND(vmochk, vm_object_check)
2497 {
2498 	vm_object_t object;
2499 
2500 	/*
2501 	 * make sure that internal objs are in a map somewhere
2502 	 * and none have zero ref counts.
2503 	 */
2504 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2505 		if (object->handle == NULL &&
2506 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2507 			if (object->ref_count == 0) {
2508 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2509 					(long)object->size);
2510 			}
2511 			if (!vm_object_in_map(object)) {
2512 				db_printf(
2513 			"vmochk: internal obj is not in a map: "
2514 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2515 				    object->ref_count, (u_long)object->size,
2516 				    (u_long)object->size,
2517 				    (void *)object->backing_object);
2518 			}
2519 		}
2520 	}
2521 }
2522 
2523 /*
2524  *	vm_object_print:	[ debug ]
2525  */
2526 DB_SHOW_COMMAND(object, vm_object_print_static)
2527 {
2528 	/* XXX convert args. */
2529 	vm_object_t object = (vm_object_t)addr;
2530 	boolean_t full = have_addr;
2531 
2532 	vm_page_t p;
2533 
2534 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2535 #define	count	was_count
2536 
2537 	int count;
2538 
2539 	if (object == NULL)
2540 		return;
2541 
2542 	db_iprintf(
2543 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2544 	    object, (int)object->type, (uintmax_t)object->size,
2545 	    object->resident_page_count, object->ref_count, object->flags,
2546 	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2547 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2548 	    object->shadow_count,
2549 	    object->backing_object ? object->backing_object->ref_count : 0,
2550 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2551 
2552 	if (!full)
2553 		return;
2554 
2555 	db_indent += 2;
2556 	count = 0;
2557 	TAILQ_FOREACH(p, &object->memq, listq) {
2558 		if (count == 0)
2559 			db_iprintf("memory:=");
2560 		else if (count == 6) {
2561 			db_printf("\n");
2562 			db_iprintf(" ...");
2563 			count = 0;
2564 		} else
2565 			db_printf(",");
2566 		count++;
2567 
2568 		db_printf("(off=0x%jx,page=0x%jx)",
2569 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2570 	}
2571 	if (count != 0)
2572 		db_printf("\n");
2573 	db_indent -= 2;
2574 }
2575 
2576 /* XXX. */
2577 #undef count
2578 
2579 /* XXX need this non-static entry for calling from vm_map_print. */
2580 void
2581 vm_object_print(
2582         /* db_expr_t */ long addr,
2583 	boolean_t have_addr,
2584 	/* db_expr_t */ long count,
2585 	char *modif)
2586 {
2587 	vm_object_print_static(addr, have_addr, count, modif);
2588 }
2589 
2590 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2591 {
2592 	vm_object_t object;
2593 	vm_pindex_t fidx;
2594 	vm_paddr_t pa;
2595 	vm_page_t m, prev_m;
2596 	int rcount, nl, c;
2597 
2598 	nl = 0;
2599 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2600 		db_printf("new object: %p\n", (void *)object);
2601 		if (nl > 18) {
2602 			c = cngetc();
2603 			if (c != ' ')
2604 				return;
2605 			nl = 0;
2606 		}
2607 		nl++;
2608 		rcount = 0;
2609 		fidx = 0;
2610 		pa = -1;
2611 		TAILQ_FOREACH(m, &object->memq, listq) {
2612 			if (m->pindex > 128)
2613 				break;
2614 			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2615 			    prev_m->pindex + 1 != m->pindex) {
2616 				if (rcount) {
2617 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2618 						(long)fidx, rcount, (long)pa);
2619 					if (nl > 18) {
2620 						c = cngetc();
2621 						if (c != ' ')
2622 							return;
2623 						nl = 0;
2624 					}
2625 					nl++;
2626 					rcount = 0;
2627 				}
2628 			}
2629 			if (rcount &&
2630 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2631 				++rcount;
2632 				continue;
2633 			}
2634 			if (rcount) {
2635 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2636 					(long)fidx, rcount, (long)pa);
2637 				if (nl > 18) {
2638 					c = cngetc();
2639 					if (c != ' ')
2640 						return;
2641 					nl = 0;
2642 				}
2643 				nl++;
2644 			}
2645 			fidx = m->pindex;
2646 			pa = VM_PAGE_TO_PHYS(m);
2647 			rcount = 1;
2648 		}
2649 		if (rcount) {
2650 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2651 				(long)fidx, rcount, (long)pa);
2652 			if (nl > 18) {
2653 				c = cngetc();
2654 				if (c != ' ')
2655 					return;
2656 				nl = 0;
2657 			}
2658 			nl++;
2659 		}
2660 	}
2661 }
2662 #endif /* DDB */
2663