xref: /freebsd/sys/vm/vm_object.c (revision e50dfdc9abb9eebc78636ee930ece699a837de52)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD$
65  */
66 
67 /*
68  *	Virtual memory object module.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/lock.h>
74 #include <sys/mman.h>
75 #include <sys/mount.h>
76 #include <sys/kernel.h>
77 #include <sys/sysctl.h>
78 #include <sys/mutex.h>
79 #include <sys/proc.h>		/* for curproc, pageproc */
80 #include <sys/socket.h>
81 #include <sys/vnode.h>
82 #include <sys/vmmeter.h>
83 #include <sys/sx.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/uma.h>
97 
98 #define EASY_SCAN_FACTOR       8
99 
100 #define MSYNC_FLUSH_HARDSEQ	0x01
101 #define MSYNC_FLUSH_SOFTSEQ	0x02
102 
103 /*
104  * msync / VM object flushing optimizations
105  */
106 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
107 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
108         CTLFLAG_RW, &msync_flush_flags, 0, "");
109 
110 static void	vm_object_qcollapse(vm_object_t object);
111 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
112 static void	vm_object_pip_sleep(vm_object_t object, char *waitid);
113 
114 /*
115  *	Virtual memory objects maintain the actual data
116  *	associated with allocated virtual memory.  A given
117  *	page of memory exists within exactly one object.
118  *
119  *	An object is only deallocated when all "references"
120  *	are given up.  Only one "reference" to a given
121  *	region of an object should be writeable.
122  *
123  *	Associated with each object is a list of all resident
124  *	memory pages belonging to that object; this list is
125  *	maintained by the "vm_page" module, and locked by the object's
126  *	lock.
127  *
128  *	Each object also records a "pager" routine which is
129  *	used to retrieve (and store) pages to the proper backing
130  *	storage.  In addition, objects may be backed by other
131  *	objects from which they were virtual-copied.
132  *
133  *	The only items within the object structure which are
134  *	modified after time of creation are:
135  *		reference count		locked by object's lock
136  *		pager routine		locked by object's lock
137  *
138  */
139 
140 struct object_q vm_object_list;
141 struct mtx vm_object_list_mtx;	/* lock for object list and count */
142 vm_object_t kernel_object;
143 vm_object_t kmem_object;
144 static struct vm_object kernel_object_store;
145 static struct vm_object kmem_object_store;
146 extern int vm_pageout_page_count;
147 
148 static long object_collapses;
149 static long object_bypasses;
150 static int next_index;
151 static uma_zone_t obj_zone;
152 #define VM_OBJECTS_INIT 256
153 
154 static void vm_object_zinit(void *mem, int size);
155 
156 #ifdef INVARIANTS
157 static void vm_object_zdtor(void *mem, int size, void *arg);
158 
159 static void
160 vm_object_zdtor(void *mem, int size, void *arg)
161 {
162 	vm_object_t object;
163 
164 	object = (vm_object_t)mem;
165 	KASSERT(object->paging_in_progress == 0,
166 	    ("object %p paging_in_progress = %d",
167 	    object, object->paging_in_progress));
168 	KASSERT(object->resident_page_count == 0,
169 	    ("object %p resident_page_count = %d",
170 	    object, object->resident_page_count));
171 	KASSERT(object->shadow_count == 0,
172 	    ("object %p shadow_count = %d",
173 	    object, object->shadow_count));
174 }
175 #endif
176 
177 static void
178 vm_object_zinit(void *mem, int size)
179 {
180 	vm_object_t object;
181 
182 	object = (vm_object_t)mem;
183 	bzero(&object->mtx, sizeof(object->mtx));
184 
185 	/* These are true for any object that has been freed */
186 	object->paging_in_progress = 0;
187 	object->resident_page_count = 0;
188 	object->shadow_count = 0;
189 }
190 
191 void
192 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
193 {
194 	int incr;
195 
196 	mtx_init(&object->mtx, "vm object", NULL, MTX_DEF);
197 
198 	TAILQ_INIT(&object->memq);
199 	TAILQ_INIT(&object->shadow_head);
200 
201 	object->root = NULL;
202 	object->type = type;
203 	object->size = size;
204 	object->ref_count = 1;
205 	object->flags = 0;
206 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
207 		vm_object_set_flag(object, OBJ_ONEMAPPING);
208 	if (size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
209 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
210 	else
211 		incr = size;
212 	do
213 		object->pg_color = next_index;
214 	while (!atomic_cmpset_int(&next_index, object->pg_color,
215 				  (object->pg_color + incr) & PQ_L2_MASK));
216 	object->handle = NULL;
217 	object->backing_object = NULL;
218 	object->backing_object_offset = (vm_ooffset_t) 0;
219 
220 	atomic_add_int(&object->generation, 1);
221 
222 	mtx_lock(&vm_object_list_mtx);
223 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
224 	mtx_unlock(&vm_object_list_mtx);
225 }
226 
227 /*
228  *	vm_object_init:
229  *
230  *	Initialize the VM objects module.
231  */
232 void
233 vm_object_init(void)
234 {
235 	TAILQ_INIT(&vm_object_list);
236 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
237 
238 	kernel_object = &kernel_object_store;
239 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
240 	    kernel_object);
241 
242 	kmem_object = &kmem_object_store;
243 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
244 	    kmem_object);
245 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
246 #ifdef INVARIANTS
247 	    vm_object_zdtor,
248 #else
249 	    NULL,
250 #endif
251 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
252 	uma_prealloc(obj_zone, VM_OBJECTS_INIT);
253 }
254 
255 void
256 vm_object_set_flag(vm_object_t object, u_short bits)
257 {
258 	object->flags |= bits;
259 }
260 
261 void
262 vm_object_clear_flag(vm_object_t object, u_short bits)
263 {
264 
265 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
266 	object->flags &= ~bits;
267 }
268 
269 void
270 vm_object_pip_add(vm_object_t object, short i)
271 {
272 
273 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
274 	object->paging_in_progress += i;
275 }
276 
277 void
278 vm_object_pip_subtract(vm_object_t object, short i)
279 {
280 
281 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
282 	object->paging_in_progress -= i;
283 }
284 
285 void
286 vm_object_pip_wakeup(vm_object_t object)
287 {
288 
289 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
290 	object->paging_in_progress--;
291 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
292 		vm_object_clear_flag(object, OBJ_PIPWNT);
293 		wakeup(object);
294 	}
295 }
296 
297 void
298 vm_object_pip_wakeupn(vm_object_t object, short i)
299 {
300 
301 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
302 	if (i)
303 		object->paging_in_progress -= i;
304 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
305 		vm_object_clear_flag(object, OBJ_PIPWNT);
306 		wakeup(object);
307 	}
308 }
309 
310 static void
311 vm_object_pip_sleep(vm_object_t object, char *waitid)
312 {
313 	GIANT_REQUIRED;
314 	if (object->paging_in_progress) {
315 		int s = splvm();
316 		if (object->paging_in_progress) {
317 			vm_object_set_flag(object, OBJ_PIPWNT);
318 			tsleep(object, PVM, waitid, 0);
319 		}
320 		splx(s);
321 	}
322 }
323 
324 void
325 vm_object_pip_wait(vm_object_t object, char *waitid)
326 {
327 
328 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
329 	while (object->paging_in_progress) {
330 		object->flags |= OBJ_PIPWNT;
331 		msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
332 	}
333 }
334 
335 /*
336  *	vm_object_allocate_wait
337  *
338  *	Return a new object with the given size, and give the user the
339  *	option of waiting for it to complete or failing if the needed
340  *	memory isn't available.
341  */
342 vm_object_t
343 vm_object_allocate_wait(objtype_t type, vm_pindex_t size, int flags)
344 {
345 	vm_object_t result;
346 
347 	result = (vm_object_t) uma_zalloc(obj_zone, flags);
348 
349 	if (result != NULL)
350 		_vm_object_allocate(type, size, result);
351 
352 	return (result);
353 }
354 
355 /*
356  *	vm_object_allocate:
357  *
358  *	Returns a new object with the given size.
359  */
360 vm_object_t
361 vm_object_allocate(objtype_t type, vm_pindex_t size)
362 {
363 	return(vm_object_allocate_wait(type, size, M_WAITOK));
364 }
365 
366 
367 /*
368  *	vm_object_reference:
369  *
370  *	Gets another reference to the given object.
371  */
372 void
373 vm_object_reference(vm_object_t object)
374 {
375 	if (object == NULL)
376 		return;
377 
378 	vm_object_lock(object);
379 #if 0
380 	/* object can be re-referenced during final cleaning */
381 	KASSERT(!(object->flags & OBJ_DEAD),
382 	    ("vm_object_reference: attempting to reference dead obj"));
383 #endif
384 
385 	object->ref_count++;
386 	if (object->type == OBJT_VNODE) {
387 		while (vget((struct vnode *) object->handle, LK_RETRY, curthread)) {
388 			printf("vm_object_reference: delay in getting object\n");
389 		}
390 	}
391 	vm_object_unlock(object);
392 }
393 
394 /*
395  * Handle deallocating an object of type OBJT_VNODE.
396  */
397 void
398 vm_object_vndeallocate(vm_object_t object)
399 {
400 	struct vnode *vp = (struct vnode *) object->handle;
401 
402 	GIANT_REQUIRED;
403 	KASSERT(object->type == OBJT_VNODE,
404 	    ("vm_object_vndeallocate: not a vnode object"));
405 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
406 #ifdef INVARIANTS
407 	if (object->ref_count == 0) {
408 		vprint("vm_object_vndeallocate", vp);
409 		panic("vm_object_vndeallocate: bad object reference count");
410 	}
411 #endif
412 
413 	object->ref_count--;
414 	if (object->ref_count == 0) {
415 		mp_fixme("Unlocked vflag access.");
416 		vp->v_vflag &= ~VV_TEXT;
417 	}
418 	/*
419 	 * vrele may need a vop lock
420 	 */
421 	vrele(vp);
422 }
423 
424 /*
425  *	vm_object_deallocate:
426  *
427  *	Release a reference to the specified object,
428  *	gained either through a vm_object_allocate
429  *	or a vm_object_reference call.  When all references
430  *	are gone, storage associated with this object
431  *	may be relinquished.
432  *
433  *	No object may be locked.
434  */
435 void
436 vm_object_deallocate(vm_object_t object)
437 {
438 	vm_object_t temp;
439 
440 	vm_object_lock(object);
441 	while (object != NULL) {
442 
443 		if (object->type == OBJT_VNODE) {
444 			vm_object_vndeallocate(object);
445 			vm_object_unlock(object);
446 			return;
447 		}
448 
449 		KASSERT(object->ref_count != 0,
450 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
451 
452 		/*
453 		 * If the reference count goes to 0 we start calling
454 		 * vm_object_terminate() on the object chain.
455 		 * A ref count of 1 may be a special case depending on the
456 		 * shadow count being 0 or 1.
457 		 */
458 		object->ref_count--;
459 		if (object->ref_count > 1) {
460 			vm_object_unlock(object);
461 			return;
462 		} else if (object->ref_count == 1) {
463 			if (object->shadow_count == 0) {
464 				vm_object_set_flag(object, OBJ_ONEMAPPING);
465 			} else if ((object->shadow_count == 1) &&
466 			    (object->handle == NULL) &&
467 			    (object->type == OBJT_DEFAULT ||
468 			     object->type == OBJT_SWAP)) {
469 				vm_object_t robject;
470 
471 				robject = TAILQ_FIRST(&object->shadow_head);
472 				KASSERT(robject != NULL,
473 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
474 					 object->ref_count,
475 					 object->shadow_count));
476 				if ((robject->handle == NULL) &&
477 				    (robject->type == OBJT_DEFAULT ||
478 				     robject->type == OBJT_SWAP)) {
479 
480 					robject->ref_count++;
481 
482 					while (
483 						robject->paging_in_progress ||
484 						object->paging_in_progress
485 					) {
486 						vm_object_pip_sleep(robject, "objde1");
487 						vm_object_pip_sleep(object, "objde2");
488 					}
489 
490 					if (robject->ref_count == 1) {
491 						robject->ref_count--;
492 						object = robject;
493 						goto doterm;
494 					}
495 
496 					object = robject;
497 					vm_object_collapse(object);
498 					continue;
499 				}
500 			}
501 			vm_object_unlock(object);
502 			return;
503 		}
504 doterm:
505 		VM_OBJECT_LOCK(object);
506 		temp = object->backing_object;
507 		if (temp) {
508 			TAILQ_REMOVE(&temp->shadow_head, object, shadow_list);
509 			temp->shadow_count--;
510 			temp->generation++;
511 			object->backing_object = NULL;
512 		}
513 		/*
514 		 * Don't double-terminate, we could be in a termination
515 		 * recursion due to the terminate having to sync data
516 		 * to disk.
517 		 */
518 		if ((object->flags & OBJ_DEAD) == 0)
519 			vm_object_terminate(object);
520 		else
521 			VM_OBJECT_UNLOCK(object);
522 		object = temp;
523 	}
524 	vm_object_unlock(object);
525 }
526 
527 /*
528  *	vm_object_terminate actually destroys the specified object, freeing
529  *	up all previously used resources.
530  *
531  *	The object must be locked.
532  *	This routine may block.
533  */
534 void
535 vm_object_terminate(vm_object_t object)
536 {
537 	vm_page_t p;
538 	int s;
539 
540 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
541 
542 	/*
543 	 * Make sure no one uses us.
544 	 */
545 	vm_object_set_flag(object, OBJ_DEAD);
546 
547 	/*
548 	 * wait for the pageout daemon to be done with the object
549 	 */
550 	vm_object_pip_wait(object, "objtrm");
551 	VM_OBJECT_UNLOCK(object);
552 
553 	KASSERT(!object->paging_in_progress,
554 		("vm_object_terminate: pageout in progress"));
555 
556 	/*
557 	 * Clean and free the pages, as appropriate. All references to the
558 	 * object are gone, so we don't need to lock it.
559 	 */
560 	if (object->type == OBJT_VNODE) {
561 		struct vnode *vp;
562 
563 		/*
564 		 * Clean pages and flush buffers.
565 		 */
566 		VM_OBJECT_LOCK(object);
567 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
568 		VM_OBJECT_UNLOCK(object);
569 
570 		vp = (struct vnode *) object->handle;
571 		vinvalbuf(vp, V_SAVE, NOCRED, NULL, 0, 0);
572 	}
573 
574 	KASSERT(object->ref_count == 0,
575 		("vm_object_terminate: object with references, ref_count=%d",
576 		object->ref_count));
577 
578 	/*
579 	 * Now free any remaining pages. For internal objects, this also
580 	 * removes them from paging queues. Don't free wired pages, just
581 	 * remove them from the object.
582 	 */
583 	s = splvm();
584 	vm_page_lock_queues();
585 	while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
586 		KASSERT(!p->busy && (p->flags & PG_BUSY) == 0,
587 			("vm_object_terminate: freeing busy page %p "
588 			"p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
589 		if (p->wire_count == 0) {
590 			vm_page_busy(p);
591 			vm_page_free(p);
592 			cnt.v_pfree++;
593 		} else {
594 			vm_page_busy(p);
595 			vm_page_remove(p);
596 		}
597 	}
598 	vm_page_unlock_queues();
599 	splx(s);
600 
601 	/*
602 	 * Let the pager know object is dead.
603 	 */
604 	vm_pager_deallocate(object);
605 
606 	/*
607 	 * Remove the object from the global object list.
608 	 */
609 	mtx_lock(&vm_object_list_mtx);
610 	TAILQ_REMOVE(&vm_object_list, object, object_list);
611 	mtx_unlock(&vm_object_list_mtx);
612 
613 	mtx_destroy(&object->mtx);
614 	wakeup(object);
615 
616 	/*
617 	 * Free the space for the object.
618 	 */
619 	uma_zfree(obj_zone, object);
620 }
621 
622 /*
623  *	vm_object_page_clean
624  *
625  *	Clean all dirty pages in the specified range of object.  Leaves page
626  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
627  *	write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
628  *	leaving the object dirty.
629  *
630  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
631  *	synchronous clustering mode implementation.
632  *
633  *	Odd semantics: if start == end, we clean everything.
634  *
635  *	The object must be locked.
636  */
637 void
638 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
639 {
640 	vm_page_t p, np;
641 	vm_pindex_t tstart, tend;
642 	vm_pindex_t pi;
643 	struct vnode *vp;
644 	int clearobjflags;
645 	int pagerflags;
646 	int curgeneration;
647 
648 	GIANT_REQUIRED;
649 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
650 	if (object->type != OBJT_VNODE ||
651 		(object->flags & OBJ_MIGHTBEDIRTY) == 0)
652 		return;
653 
654 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
655 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
656 
657 	vp = object->handle;
658 
659 	vm_object_set_flag(object, OBJ_CLEANING);
660 
661 	tstart = start;
662 	if (end == 0) {
663 		tend = object->size;
664 	} else {
665 		tend = end;
666 	}
667 
668 	vm_page_lock_queues();
669 	/*
670 	 * If the caller is smart and only msync()s a range he knows is
671 	 * dirty, we may be able to avoid an object scan.  This results in
672 	 * a phenominal improvement in performance.  We cannot do this
673 	 * as a matter of course because the object may be huge - e.g.
674 	 * the size might be in the gigabytes or terrabytes.
675 	 */
676 	if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
677 		vm_pindex_t tscan;
678 		int scanlimit;
679 		int scanreset;
680 
681 		scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
682 		if (scanreset < 16)
683 			scanreset = 16;
684 		pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
685 
686 		scanlimit = scanreset;
687 		tscan = tstart;
688 		while (tscan < tend) {
689 			curgeneration = object->generation;
690 			p = vm_page_lookup(object, tscan);
691 			if (p == NULL || p->valid == 0 ||
692 			    (p->queue - p->pc) == PQ_CACHE) {
693 				if (--scanlimit == 0)
694 					break;
695 				++tscan;
696 				continue;
697 			}
698 			vm_page_test_dirty(p);
699 			if ((p->dirty & p->valid) == 0) {
700 				if (--scanlimit == 0)
701 					break;
702 				++tscan;
703 				continue;
704 			}
705 			/*
706 			 * If we have been asked to skip nosync pages and
707 			 * this is a nosync page, we can't continue.
708 			 */
709 			if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
710 				if (--scanlimit == 0)
711 					break;
712 				++tscan;
713 				continue;
714 			}
715 			scanlimit = scanreset;
716 
717 			/*
718 			 * This returns 0 if it was unable to busy the first
719 			 * page (i.e. had to sleep).
720 			 */
721 			tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
722 		}
723 
724 		/*
725 		 * If everything was dirty and we flushed it successfully,
726 		 * and the requested range is not the entire object, we
727 		 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
728 		 * return immediately.
729 		 */
730 		if (tscan >= tend && (tstart || tend < object->size)) {
731 			vm_page_unlock_queues();
732 			vm_object_clear_flag(object, OBJ_CLEANING);
733 			return;
734 		}
735 		pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
736 	}
737 
738 	/*
739 	 * Generally set CLEANCHK interlock and make the page read-only so
740 	 * we can then clear the object flags.
741 	 *
742 	 * However, if this is a nosync mmap then the object is likely to
743 	 * stay dirty so do not mess with the page and do not clear the
744 	 * object flags.
745 	 */
746 	clearobjflags = 1;
747 	TAILQ_FOREACH(p, &object->memq, listq) {
748 		vm_page_flag_set(p, PG_CLEANCHK);
749 		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
750 			clearobjflags = 0;
751 		else
752 			pmap_page_protect(p, VM_PROT_READ);
753 	}
754 
755 	if (clearobjflags && (tstart == 0) && (tend == object->size)) {
756 		struct vnode *vp;
757 
758 		vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
759 		if (object->type == OBJT_VNODE &&
760 		    (vp = (struct vnode *)object->handle) != NULL) {
761 			VI_LOCK(vp);
762 			if (vp->v_iflag & VI_OBJDIRTY)
763 				vp->v_iflag &= ~VI_OBJDIRTY;
764 			VI_UNLOCK(vp);
765 		}
766 	}
767 
768 rescan:
769 	curgeneration = object->generation;
770 
771 	for (p = TAILQ_FIRST(&object->memq); p; p = np) {
772 		int n;
773 
774 		np = TAILQ_NEXT(p, listq);
775 
776 again:
777 		pi = p->pindex;
778 		if (((p->flags & PG_CLEANCHK) == 0) ||
779 			(pi < tstart) || (pi >= tend) ||
780 			(p->valid == 0) ||
781 			((p->queue - p->pc) == PQ_CACHE)) {
782 			vm_page_flag_clear(p, PG_CLEANCHK);
783 			continue;
784 		}
785 
786 		vm_page_test_dirty(p);
787 		if ((p->dirty & p->valid) == 0) {
788 			vm_page_flag_clear(p, PG_CLEANCHK);
789 			continue;
790 		}
791 
792 		/*
793 		 * If we have been asked to skip nosync pages and this is a
794 		 * nosync page, skip it.  Note that the object flags were
795 		 * not cleared in this case so we do not have to set them.
796 		 */
797 		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
798 			vm_page_flag_clear(p, PG_CLEANCHK);
799 			continue;
800 		}
801 
802 		n = vm_object_page_collect_flush(object, p,
803 			curgeneration, pagerflags);
804 		if (n == 0)
805 			goto rescan;
806 
807 		if (object->generation != curgeneration)
808 			goto rescan;
809 
810 		/*
811 		 * Try to optimize the next page.  If we can't we pick up
812 		 * our (random) scan where we left off.
813 		 */
814 		if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
815 			if ((p = vm_page_lookup(object, pi + n)) != NULL)
816 				goto again;
817 		}
818 	}
819 	vm_page_unlock_queues();
820 #if 0
821 	VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
822 #endif
823 
824 	vm_object_clear_flag(object, OBJ_CLEANING);
825 	return;
826 }
827 
828 static int
829 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
830 {
831 	int runlen;
832 	int s;
833 	int maxf;
834 	int chkb;
835 	int maxb;
836 	int i;
837 	vm_pindex_t pi;
838 	vm_page_t maf[vm_pageout_page_count];
839 	vm_page_t mab[vm_pageout_page_count];
840 	vm_page_t ma[vm_pageout_page_count];
841 
842 	s = splvm();
843 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
844 	pi = p->pindex;
845 	while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
846 		vm_page_lock_queues();
847 		if (object->generation != curgeneration) {
848 			splx(s);
849 			return(0);
850 		}
851 	}
852 	maxf = 0;
853 	for(i = 1; i < vm_pageout_page_count; i++) {
854 		vm_page_t tp;
855 
856 		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
857 			if ((tp->flags & PG_BUSY) ||
858 				((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
859 				 (tp->flags & PG_CLEANCHK) == 0) ||
860 				(tp->busy != 0))
861 				break;
862 			if((tp->queue - tp->pc) == PQ_CACHE) {
863 				vm_page_flag_clear(tp, PG_CLEANCHK);
864 				break;
865 			}
866 			vm_page_test_dirty(tp);
867 			if ((tp->dirty & tp->valid) == 0) {
868 				vm_page_flag_clear(tp, PG_CLEANCHK);
869 				break;
870 			}
871 			maf[ i - 1 ] = tp;
872 			maxf++;
873 			continue;
874 		}
875 		break;
876 	}
877 
878 	maxb = 0;
879 	chkb = vm_pageout_page_count -  maxf;
880 	if (chkb) {
881 		for(i = 1; i < chkb;i++) {
882 			vm_page_t tp;
883 
884 			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
885 				if ((tp->flags & PG_BUSY) ||
886 					((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
887 					 (tp->flags & PG_CLEANCHK) == 0) ||
888 					(tp->busy != 0))
889 					break;
890 				if ((tp->queue - tp->pc) == PQ_CACHE) {
891 					vm_page_flag_clear(tp, PG_CLEANCHK);
892 					break;
893 				}
894 				vm_page_test_dirty(tp);
895 				if ((tp->dirty & tp->valid) == 0) {
896 					vm_page_flag_clear(tp, PG_CLEANCHK);
897 					break;
898 				}
899 				mab[ i - 1 ] = tp;
900 				maxb++;
901 				continue;
902 			}
903 			break;
904 		}
905 	}
906 
907 	for(i = 0; i < maxb; i++) {
908 		int index = (maxb - i) - 1;
909 		ma[index] = mab[i];
910 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
911 	}
912 	vm_page_flag_clear(p, PG_CLEANCHK);
913 	ma[maxb] = p;
914 	for(i = 0; i < maxf; i++) {
915 		int index = (maxb + i) + 1;
916 		ma[index] = maf[i];
917 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
918 	}
919 	runlen = maxb + maxf + 1;
920 
921 	splx(s);
922 	vm_pageout_flush(ma, runlen, pagerflags, TRUE);
923 	for (i = 0; i < runlen; i++) {
924 		if (ma[i]->valid & ma[i]->dirty) {
925 			pmap_page_protect(ma[i], VM_PROT_READ);
926 			vm_page_flag_set(ma[i], PG_CLEANCHK);
927 
928 			/*
929 			 * maxf will end up being the actual number of pages
930 			 * we wrote out contiguously, non-inclusive of the
931 			 * first page.  We do not count look-behind pages.
932 			 */
933 			if (i >= maxb + 1 && (maxf > i - maxb - 1))
934 				maxf = i - maxb - 1;
935 		}
936 	}
937 	return(maxf + 1);
938 }
939 
940 /*
941  *	vm_object_madvise:
942  *
943  *	Implements the madvise function at the object/page level.
944  *
945  *	MADV_WILLNEED	(any object)
946  *
947  *	    Activate the specified pages if they are resident.
948  *
949  *	MADV_DONTNEED	(any object)
950  *
951  *	    Deactivate the specified pages if they are resident.
952  *
953  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
954  *			 OBJ_ONEMAPPING only)
955  *
956  *	    Deactivate and clean the specified pages if they are
957  *	    resident.  This permits the process to reuse the pages
958  *	    without faulting or the kernel to reclaim the pages
959  *	    without I/O.
960  */
961 void
962 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
963 {
964 	vm_pindex_t end, tpindex;
965 	vm_object_t tobject;
966 	vm_page_t m;
967 
968 	if (object == NULL)
969 		return;
970 
971 	vm_object_lock(object);
972 
973 	end = pindex + count;
974 
975 	/*
976 	 * Locate and adjust resident pages
977 	 */
978 	for (; pindex < end; pindex += 1) {
979 relookup:
980 		tobject = object;
981 		tpindex = pindex;
982 shadowlookup:
983 		/*
984 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
985 		 * and those pages must be OBJ_ONEMAPPING.
986 		 */
987 		if (advise == MADV_FREE) {
988 			if ((tobject->type != OBJT_DEFAULT &&
989 			     tobject->type != OBJT_SWAP) ||
990 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
991 				continue;
992 			}
993 		}
994 
995 		m = vm_page_lookup(tobject, tpindex);
996 
997 		if (m == NULL) {
998 			/*
999 			 * There may be swap even if there is no backing page
1000 			 */
1001 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1002 				swap_pager_freespace(tobject, tpindex, 1);
1003 
1004 			/*
1005 			 * next object
1006 			 */
1007 			tobject = tobject->backing_object;
1008 			if (tobject == NULL)
1009 				continue;
1010 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1011 			goto shadowlookup;
1012 		}
1013 
1014 		/*
1015 		 * If the page is busy or not in a normal active state,
1016 		 * we skip it.  If the page is not managed there are no
1017 		 * page queues to mess with.  Things can break if we mess
1018 		 * with pages in any of the below states.
1019 		 */
1020 		vm_page_lock_queues();
1021 		if (m->hold_count ||
1022 		    m->wire_count ||
1023 		    (m->flags & PG_UNMANAGED) ||
1024 		    m->valid != VM_PAGE_BITS_ALL) {
1025 			vm_page_unlock_queues();
1026 			continue;
1027 		}
1028  		if (vm_page_sleep_if_busy(m, TRUE, "madvpo"))
1029   			goto relookup;
1030 		if (advise == MADV_WILLNEED) {
1031 			vm_page_activate(m);
1032 		} else if (advise == MADV_DONTNEED) {
1033 			vm_page_dontneed(m);
1034 		} else if (advise == MADV_FREE) {
1035 			/*
1036 			 * Mark the page clean.  This will allow the page
1037 			 * to be freed up by the system.  However, such pages
1038 			 * are often reused quickly by malloc()/free()
1039 			 * so we do not do anything that would cause
1040 			 * a page fault if we can help it.
1041 			 *
1042 			 * Specifically, we do not try to actually free
1043 			 * the page now nor do we try to put it in the
1044 			 * cache (which would cause a page fault on reuse).
1045 			 *
1046 			 * But we do make the page is freeable as we
1047 			 * can without actually taking the step of unmapping
1048 			 * it.
1049 			 */
1050 			pmap_clear_modify(m);
1051 			m->dirty = 0;
1052 			m->act_count = 0;
1053 			vm_page_dontneed(m);
1054 		}
1055 		vm_page_unlock_queues();
1056 		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1057 			swap_pager_freespace(tobject, tpindex, 1);
1058 	}
1059 	vm_object_unlock(object);
1060 }
1061 
1062 /*
1063  *	vm_object_shadow:
1064  *
1065  *	Create a new object which is backed by the
1066  *	specified existing object range.  The source
1067  *	object reference is deallocated.
1068  *
1069  *	The new object and offset into that object
1070  *	are returned in the source parameters.
1071  */
1072 void
1073 vm_object_shadow(
1074 	vm_object_t *object,	/* IN/OUT */
1075 	vm_ooffset_t *offset,	/* IN/OUT */
1076 	vm_size_t length)
1077 {
1078 	vm_object_t source;
1079 	vm_object_t result;
1080 
1081 	GIANT_REQUIRED;
1082 
1083 	source = *object;
1084 
1085 	/*
1086 	 * Don't create the new object if the old object isn't shared.
1087 	 */
1088 	if (source != NULL) {
1089 		VM_OBJECT_LOCK(source);
1090 		if (source->ref_count == 1 &&
1091 		    source->handle == NULL &&
1092 		    (source->type == OBJT_DEFAULT ||
1093 		     source->type == OBJT_SWAP)) {
1094 			VM_OBJECT_UNLOCK(source);
1095 			return;
1096 		}
1097 		VM_OBJECT_UNLOCK(source);
1098 	}
1099 
1100 	/*
1101 	 * Allocate a new object with the given length.
1102 	 */
1103 	result = vm_object_allocate(OBJT_DEFAULT, length);
1104 
1105 	/*
1106 	 * The new object shadows the source object, adding a reference to it.
1107 	 * Our caller changes his reference to point to the new object,
1108 	 * removing a reference to the source object.  Net result: no change
1109 	 * of reference count.
1110 	 *
1111 	 * Try to optimize the result object's page color when shadowing
1112 	 * in order to maintain page coloring consistency in the combined
1113 	 * shadowed object.
1114 	 */
1115 	result->backing_object = source;
1116 	if (source != NULL) {
1117 		VM_OBJECT_LOCK(source);
1118 		TAILQ_INSERT_TAIL(&source->shadow_head, result, shadow_list);
1119 		source->shadow_count++;
1120 		source->generation++;
1121 		if (length < source->size)
1122 			length = source->size;
1123 		if (length > PQ_L2_SIZE / 3 + PQ_PRIME1 ||
1124 		    source->generation > 1)
1125 			length = PQ_L2_SIZE / 3 + PQ_PRIME1;
1126 		result->pg_color = (source->pg_color +
1127 		    length * source->generation) & PQ_L2_MASK;
1128 		VM_OBJECT_UNLOCK(source);
1129 		next_index = (result->pg_color + PQ_L2_SIZE / 3 + PQ_PRIME1) &
1130 		    PQ_L2_MASK;
1131 	}
1132 
1133 	/*
1134 	 * Store the offset into the source object, and fix up the offset into
1135 	 * the new object.
1136 	 */
1137 	result->backing_object_offset = *offset;
1138 
1139 	/*
1140 	 * Return the new things
1141 	 */
1142 	*offset = 0;
1143 	*object = result;
1144 }
1145 
1146 /*
1147  *	vm_object_split:
1148  *
1149  * Split the pages in a map entry into a new object.  This affords
1150  * easier removal of unused pages, and keeps object inheritance from
1151  * being a negative impact on memory usage.
1152  */
1153 void
1154 vm_object_split(vm_map_entry_t entry)
1155 {
1156 	vm_page_t m;
1157 	vm_object_t orig_object, new_object, source;
1158 	vm_offset_t s, e;
1159 	vm_pindex_t offidxstart, offidxend;
1160 	vm_size_t idx, size;
1161 	vm_ooffset_t offset;
1162 
1163 	GIANT_REQUIRED;
1164 
1165 	orig_object = entry->object.vm_object;
1166 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1167 		return;
1168 	if (orig_object->ref_count <= 1)
1169 		return;
1170 
1171 	offset = entry->offset;
1172 	s = entry->start;
1173 	e = entry->end;
1174 
1175 	offidxstart = OFF_TO_IDX(offset);
1176 	offidxend = offidxstart + OFF_TO_IDX(e - s);
1177 	size = offidxend - offidxstart;
1178 
1179 	new_object = vm_pager_allocate(orig_object->type,
1180 		NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
1181 	if (new_object == NULL)
1182 		return;
1183 
1184 	source = orig_object->backing_object;
1185 	if (source != NULL) {
1186 		vm_object_reference(source);	/* Referenced by new_object */
1187 		TAILQ_INSERT_TAIL(&source->shadow_head,
1188 				  new_object, shadow_list);
1189 		VM_OBJECT_LOCK(source);
1190 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1191 		VM_OBJECT_UNLOCK(source);
1192 		new_object->backing_object_offset =
1193 			orig_object->backing_object_offset + offset;
1194 		new_object->backing_object = source;
1195 		source->shadow_count++;
1196 		source->generation++;
1197 	}
1198 	for (idx = 0; idx < size; idx++) {
1199 	retry:
1200 		m = vm_page_lookup(orig_object, offidxstart + idx);
1201 		if (m == NULL)
1202 			continue;
1203 
1204 		/*
1205 		 * We must wait for pending I/O to complete before we can
1206 		 * rename the page.
1207 		 *
1208 		 * We do not have to VM_PROT_NONE the page as mappings should
1209 		 * not be changed by this operation.
1210 		 */
1211 		vm_page_lock_queues();
1212 		if (vm_page_sleep_if_busy(m, TRUE, "spltwt"))
1213 			goto retry;
1214 
1215 		vm_page_busy(m);
1216 		vm_page_rename(m, new_object, idx);
1217 		/* page automatically made dirty by rename and cache handled */
1218 		vm_page_busy(m);
1219 		vm_page_unlock_queues();
1220 	}
1221 	VM_OBJECT_LOCK(orig_object);
1222 	if (orig_object->type == OBJT_SWAP) {
1223 		vm_object_pip_add(orig_object, 1);
1224 		VM_OBJECT_UNLOCK(orig_object);
1225 		/*
1226 		 * copy orig_object pages into new_object
1227 		 * and destroy unneeded pages in
1228 		 * shadow object.
1229 		 */
1230 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1231 		VM_OBJECT_LOCK(orig_object);
1232 		vm_object_pip_wakeup(orig_object);
1233 	}
1234 	VM_OBJECT_UNLOCK(orig_object);
1235 	vm_page_lock_queues();
1236 	TAILQ_FOREACH(m, &new_object->memq, listq)
1237 		vm_page_wakeup(m);
1238 	vm_page_unlock_queues();
1239 	entry->object.vm_object = new_object;
1240 	entry->offset = 0LL;
1241 	vm_object_deallocate(orig_object);
1242 }
1243 
1244 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1245 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1246 #define	OBSC_COLLAPSE_WAIT	0x0004
1247 
1248 static __inline int
1249 vm_object_backing_scan(vm_object_t object, int op)
1250 {
1251 	int s;
1252 	int r = 1;
1253 	vm_page_t p;
1254 	vm_object_t backing_object;
1255 	vm_pindex_t backing_offset_index;
1256 
1257 	s = splvm();
1258 	GIANT_REQUIRED;
1259 
1260 	backing_object = object->backing_object;
1261 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1262 
1263 	/*
1264 	 * Initial conditions
1265 	 */
1266 	if (op & OBSC_TEST_ALL_SHADOWED) {
1267 		/*
1268 		 * We do not want to have to test for the existence of
1269 		 * swap pages in the backing object.  XXX but with the
1270 		 * new swapper this would be pretty easy to do.
1271 		 *
1272 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1273 		 * been ZFOD faulted yet?  If we do not test for this, the
1274 		 * shadow test may succeed! XXX
1275 		 */
1276 		if (backing_object->type != OBJT_DEFAULT) {
1277 			splx(s);
1278 			return (0);
1279 		}
1280 	}
1281 	if (op & OBSC_COLLAPSE_WAIT) {
1282 		vm_object_set_flag(backing_object, OBJ_DEAD);
1283 	}
1284 
1285 	/*
1286 	 * Our scan
1287 	 */
1288 	p = TAILQ_FIRST(&backing_object->memq);
1289 	while (p) {
1290 		vm_page_t next = TAILQ_NEXT(p, listq);
1291 		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1292 
1293 		if (op & OBSC_TEST_ALL_SHADOWED) {
1294 			vm_page_t pp;
1295 
1296 			/*
1297 			 * Ignore pages outside the parent object's range
1298 			 * and outside the parent object's mapping of the
1299 			 * backing object.
1300 			 *
1301 			 * note that we do not busy the backing object's
1302 			 * page.
1303 			 */
1304 			if (
1305 			    p->pindex < backing_offset_index ||
1306 			    new_pindex >= object->size
1307 			) {
1308 				p = next;
1309 				continue;
1310 			}
1311 
1312 			/*
1313 			 * See if the parent has the page or if the parent's
1314 			 * object pager has the page.  If the parent has the
1315 			 * page but the page is not valid, the parent's
1316 			 * object pager must have the page.
1317 			 *
1318 			 * If this fails, the parent does not completely shadow
1319 			 * the object and we might as well give up now.
1320 			 */
1321 
1322 			pp = vm_page_lookup(object, new_pindex);
1323 			if (
1324 			    (pp == NULL || pp->valid == 0) &&
1325 			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1326 			) {
1327 				r = 0;
1328 				break;
1329 			}
1330 		}
1331 
1332 		/*
1333 		 * Check for busy page
1334 		 */
1335 		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1336 			vm_page_t pp;
1337 
1338 			vm_page_lock_queues();
1339 			if (op & OBSC_COLLAPSE_NOWAIT) {
1340 				if ((p->flags & PG_BUSY) ||
1341 				    !p->valid ||
1342 				    p->hold_count ||
1343 				    p->wire_count ||
1344 				    p->busy) {
1345 					vm_page_unlock_queues();
1346 					p = next;
1347 					continue;
1348 				}
1349 			} else if (op & OBSC_COLLAPSE_WAIT) {
1350 				if (vm_page_sleep_if_busy(p, TRUE, "vmocol")) {
1351 					/*
1352 					 * If we slept, anything could have
1353 					 * happened.  Since the object is
1354 					 * marked dead, the backing offset
1355 					 * should not have changed so we
1356 					 * just restart our scan.
1357 					 */
1358 					p = TAILQ_FIRST(&backing_object->memq);
1359 					continue;
1360 				}
1361 			}
1362 
1363 			/*
1364 			 * Busy the page
1365 			 */
1366 			vm_page_busy(p);
1367 			vm_page_unlock_queues();
1368 
1369 			KASSERT(
1370 			    p->object == backing_object,
1371 			    ("vm_object_qcollapse(): object mismatch")
1372 			);
1373 
1374 			/*
1375 			 * Destroy any associated swap
1376 			 */
1377 			if (backing_object->type == OBJT_SWAP) {
1378 				swap_pager_freespace(
1379 				    backing_object,
1380 				    p->pindex,
1381 				    1
1382 				);
1383 			}
1384 
1385 			if (
1386 			    p->pindex < backing_offset_index ||
1387 			    new_pindex >= object->size
1388 			) {
1389 				/*
1390 				 * Page is out of the parent object's range, we
1391 				 * can simply destroy it.
1392 				 */
1393 				vm_page_lock_queues();
1394 				pmap_remove_all(p);
1395 				vm_page_free(p);
1396 				vm_page_unlock_queues();
1397 				p = next;
1398 				continue;
1399 			}
1400 
1401 			pp = vm_page_lookup(object, new_pindex);
1402 			if (
1403 			    pp != NULL ||
1404 			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1405 			) {
1406 				/*
1407 				 * page already exists in parent OR swap exists
1408 				 * for this location in the parent.  Destroy
1409 				 * the original page from the backing object.
1410 				 *
1411 				 * Leave the parent's page alone
1412 				 */
1413 				vm_page_lock_queues();
1414 				pmap_remove_all(p);
1415 				vm_page_free(p);
1416 				vm_page_unlock_queues();
1417 				p = next;
1418 				continue;
1419 			}
1420 
1421 			/*
1422 			 * Page does not exist in parent, rename the
1423 			 * page from the backing object to the main object.
1424 			 *
1425 			 * If the page was mapped to a process, it can remain
1426 			 * mapped through the rename.
1427 			 */
1428 			vm_page_lock_queues();
1429 			vm_page_rename(p, object, new_pindex);
1430 			vm_page_unlock_queues();
1431 			/* page automatically made dirty by rename */
1432 		}
1433 		p = next;
1434 	}
1435 	splx(s);
1436 	return (r);
1437 }
1438 
1439 
1440 /*
1441  * this version of collapse allows the operation to occur earlier and
1442  * when paging_in_progress is true for an object...  This is not a complete
1443  * operation, but should plug 99.9% of the rest of the leaks.
1444  */
1445 static void
1446 vm_object_qcollapse(vm_object_t object)
1447 {
1448 	vm_object_t backing_object = object->backing_object;
1449 
1450 	GIANT_REQUIRED;
1451 
1452 	if (backing_object->ref_count != 1)
1453 		return;
1454 
1455 	backing_object->ref_count += 2;
1456 
1457 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1458 
1459 	backing_object->ref_count -= 2;
1460 }
1461 
1462 /*
1463  *	vm_object_collapse:
1464  *
1465  *	Collapse an object with the object backing it.
1466  *	Pages in the backing object are moved into the
1467  *	parent, and the backing object is deallocated.
1468  */
1469 void
1470 vm_object_collapse(vm_object_t object)
1471 {
1472 	GIANT_REQUIRED;
1473 
1474 	while (TRUE) {
1475 		vm_object_t backing_object;
1476 
1477 		/*
1478 		 * Verify that the conditions are right for collapse:
1479 		 *
1480 		 * The object exists and the backing object exists.
1481 		 */
1482 		if (object == NULL)
1483 			break;
1484 
1485 		if ((backing_object = object->backing_object) == NULL)
1486 			break;
1487 
1488 		/*
1489 		 * we check the backing object first, because it is most likely
1490 		 * not collapsable.
1491 		 */
1492 		if (backing_object->handle != NULL ||
1493 		    (backing_object->type != OBJT_DEFAULT &&
1494 		     backing_object->type != OBJT_SWAP) ||
1495 		    (backing_object->flags & OBJ_DEAD) ||
1496 		    object->handle != NULL ||
1497 		    (object->type != OBJT_DEFAULT &&
1498 		     object->type != OBJT_SWAP) ||
1499 		    (object->flags & OBJ_DEAD)) {
1500 			break;
1501 		}
1502 
1503 		if (
1504 		    object->paging_in_progress != 0 ||
1505 		    backing_object->paging_in_progress != 0
1506 		) {
1507 			vm_object_qcollapse(object);
1508 			break;
1509 		}
1510 
1511 		/*
1512 		 * We know that we can either collapse the backing object (if
1513 		 * the parent is the only reference to it) or (perhaps) have
1514 		 * the parent bypass the object if the parent happens to shadow
1515 		 * all the resident pages in the entire backing object.
1516 		 *
1517 		 * This is ignoring pager-backed pages such as swap pages.
1518 		 * vm_object_backing_scan fails the shadowing test in this
1519 		 * case.
1520 		 */
1521 		if (backing_object->ref_count == 1) {
1522 			/*
1523 			 * If there is exactly one reference to the backing
1524 			 * object, we can collapse it into the parent.
1525 			 */
1526 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1527 
1528 			/*
1529 			 * Move the pager from backing_object to object.
1530 			 */
1531 			if (backing_object->type == OBJT_SWAP) {
1532 				VM_OBJECT_LOCK(backing_object);
1533 				vm_object_pip_add(backing_object, 1);
1534 				VM_OBJECT_UNLOCK(backing_object);
1535 				/*
1536 				 * scrap the paging_offset junk and do a
1537 				 * discrete copy.  This also removes major
1538 				 * assumptions about how the swap-pager
1539 				 * works from where it doesn't belong.  The
1540 				 * new swapper is able to optimize the
1541 				 * destroy-source case.
1542 				 */
1543 				VM_OBJECT_LOCK(object);
1544 				vm_object_pip_add(object, 1);
1545 				VM_OBJECT_UNLOCK(object);
1546 				swap_pager_copy(
1547 				    backing_object,
1548 				    object,
1549 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1550 				VM_OBJECT_LOCK(object);
1551 				vm_object_pip_wakeup(object);
1552 				VM_OBJECT_UNLOCK(object);
1553 
1554 				VM_OBJECT_LOCK(backing_object);
1555 				vm_object_pip_wakeup(backing_object);
1556 				VM_OBJECT_UNLOCK(backing_object);
1557 			}
1558 			/*
1559 			 * Object now shadows whatever backing_object did.
1560 			 * Note that the reference to
1561 			 * backing_object->backing_object moves from within
1562 			 * backing_object to within object.
1563 			 */
1564 			TAILQ_REMOVE(
1565 			    &object->backing_object->shadow_head,
1566 			    object,
1567 			    shadow_list
1568 			);
1569 			object->backing_object->shadow_count--;
1570 			object->backing_object->generation++;
1571 			if (backing_object->backing_object) {
1572 				TAILQ_REMOVE(
1573 				    &backing_object->backing_object->shadow_head,
1574 				    backing_object,
1575 				    shadow_list
1576 				);
1577 				backing_object->backing_object->shadow_count--;
1578 				backing_object->backing_object->generation++;
1579 			}
1580 			object->backing_object = backing_object->backing_object;
1581 			if (object->backing_object) {
1582 				TAILQ_INSERT_TAIL(
1583 				    &object->backing_object->shadow_head,
1584 				    object,
1585 				    shadow_list
1586 				);
1587 				object->backing_object->shadow_count++;
1588 				object->backing_object->generation++;
1589 			}
1590 
1591 			object->backing_object_offset +=
1592 			    backing_object->backing_object_offset;
1593 
1594 			/*
1595 			 * Discard backing_object.
1596 			 *
1597 			 * Since the backing object has no pages, no pager left,
1598 			 * and no object references within it, all that is
1599 			 * necessary is to dispose of it.
1600 			 */
1601 			KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1602 			KASSERT(TAILQ_FIRST(&backing_object->memq) == NULL, ("backing_object %p somehow has left over pages during collapse!", backing_object));
1603 
1604 			mtx_lock(&vm_object_list_mtx);
1605 			TAILQ_REMOVE(
1606 			    &vm_object_list,
1607 			    backing_object,
1608 			    object_list
1609 			);
1610 			mtx_unlock(&vm_object_list_mtx);
1611 
1612 			mtx_destroy(&backing_object->mtx);
1613 
1614 			uma_zfree(obj_zone, backing_object);
1615 
1616 			object_collapses++;
1617 		} else {
1618 			vm_object_t new_backing_object;
1619 
1620 			/*
1621 			 * If we do not entirely shadow the backing object,
1622 			 * there is nothing we can do so we give up.
1623 			 */
1624 			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1625 				break;
1626 			}
1627 
1628 			/*
1629 			 * Make the parent shadow the next object in the
1630 			 * chain.  Deallocating backing_object will not remove
1631 			 * it, since its reference count is at least 2.
1632 			 */
1633 			TAILQ_REMOVE(
1634 			    &backing_object->shadow_head,
1635 			    object,
1636 			    shadow_list
1637 			);
1638 			backing_object->shadow_count--;
1639 			backing_object->generation++;
1640 
1641 			new_backing_object = backing_object->backing_object;
1642 			if ((object->backing_object = new_backing_object) != NULL) {
1643 				vm_object_reference(new_backing_object);
1644 				TAILQ_INSERT_TAIL(
1645 				    &new_backing_object->shadow_head,
1646 				    object,
1647 				    shadow_list
1648 				);
1649 				new_backing_object->shadow_count++;
1650 				new_backing_object->generation++;
1651 				object->backing_object_offset +=
1652 					backing_object->backing_object_offset;
1653 			}
1654 
1655 			/*
1656 			 * Drop the reference count on backing_object. Since
1657 			 * its ref_count was at least 2, it will not vanish;
1658 			 * so we don't need to call vm_object_deallocate, but
1659 			 * we do anyway.
1660 			 */
1661 			vm_object_deallocate(backing_object);
1662 			object_bypasses++;
1663 		}
1664 
1665 		/*
1666 		 * Try again with this object's new backing object.
1667 		 */
1668 	}
1669 }
1670 
1671 /*
1672  *	vm_object_page_remove: [internal]
1673  *
1674  *	Removes all physical pages in the specified
1675  *	object range from the object's list of pages.
1676  *
1677  *	The object must be locked.
1678  */
1679 void
1680 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1681     boolean_t clean_only)
1682 {
1683 	vm_page_t p, next;
1684 
1685 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1686 	if (object->resident_page_count == 0)
1687 		return;
1688 
1689 	/*
1690 	 * Since physically-backed objects do not use managed pages, we can't
1691 	 * remove pages from the object (we must instead remove the page
1692 	 * references, and then destroy the object).
1693 	 */
1694 	KASSERT(object->type != OBJT_PHYS,
1695 	    ("attempt to remove pages from a physical object"));
1696 
1697 	vm_object_pip_add(object, 1);
1698 again:
1699 	vm_page_lock_queues();
1700 	if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1701 		if (p->pindex < start) {
1702 			p = vm_page_splay(start, object->root);
1703 			if ((object->root = p)->pindex < start)
1704 				p = TAILQ_NEXT(p, listq);
1705 		}
1706 	}
1707 	/*
1708 	 * Assert: the variable p is either (1) the page with the
1709 	 * least pindex greater than or equal to the parameter pindex
1710 	 * or (2) NULL.
1711 	 */
1712 	for (;
1713 	     p != NULL && p->pindex < end;
1714 	     p = next) {
1715 		next = TAILQ_NEXT(p, listq);
1716 
1717 		if (p->wire_count != 0) {
1718 			pmap_remove_all(p);
1719 			if (!clean_only)
1720 				p->valid = 0;
1721 			continue;
1722 		}
1723 		if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1724 			goto again;
1725 		if (clean_only && p->valid) {
1726 			vm_page_test_dirty(p);
1727 			if (p->valid & p->dirty)
1728 				continue;
1729 		}
1730 		vm_page_busy(p);
1731 		pmap_remove_all(p);
1732 		vm_page_free(p);
1733 	}
1734 	vm_page_unlock_queues();
1735 	vm_object_pip_wakeup(object);
1736 }
1737 
1738 /*
1739  *	Routine:	vm_object_coalesce
1740  *	Function:	Coalesces two objects backing up adjoining
1741  *			regions of memory into a single object.
1742  *
1743  *	returns TRUE if objects were combined.
1744  *
1745  *	NOTE:	Only works at the moment if the second object is NULL -
1746  *		if it's not, which object do we lock first?
1747  *
1748  *	Parameters:
1749  *		prev_object	First object to coalesce
1750  *		prev_offset	Offset into prev_object
1751  *		next_object	Second object into coalesce
1752  *		next_offset	Offset into next_object
1753  *
1754  *		prev_size	Size of reference to prev_object
1755  *		next_size	Size of reference to next_object
1756  *
1757  *	Conditions:
1758  *	The object must *not* be locked.
1759  */
1760 boolean_t
1761 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1762 	vm_size_t prev_size, vm_size_t next_size)
1763 {
1764 	vm_pindex_t next_pindex;
1765 
1766 	if (prev_object == NULL)
1767 		return (TRUE);
1768 	vm_object_lock(prev_object);
1769 	if (prev_object->type != OBJT_DEFAULT &&
1770 	    prev_object->type != OBJT_SWAP) {
1771 		vm_object_unlock(prev_object);
1772 		return (FALSE);
1773 	}
1774 
1775 	/*
1776 	 * Try to collapse the object first
1777 	 */
1778 	vm_object_collapse(prev_object);
1779 
1780 	/*
1781 	 * Can't coalesce if: . more than one reference . paged out . shadows
1782 	 * another object . has a copy elsewhere (any of which mean that the
1783 	 * pages not mapped to prev_entry may be in use anyway)
1784 	 */
1785 	if (prev_object->backing_object != NULL) {
1786 		vm_object_unlock(prev_object);
1787 		return (FALSE);
1788 	}
1789 
1790 	prev_size >>= PAGE_SHIFT;
1791 	next_size >>= PAGE_SHIFT;
1792 	next_pindex = prev_pindex + prev_size;
1793 
1794 	if ((prev_object->ref_count > 1) &&
1795 	    (prev_object->size != next_pindex)) {
1796 		vm_object_unlock(prev_object);
1797 		return (FALSE);
1798 	}
1799 
1800 	/*
1801 	 * Remove any pages that may still be in the object from a previous
1802 	 * deallocation.
1803 	 */
1804 	if (next_pindex < prev_object->size) {
1805 		VM_OBJECT_LOCK(prev_object);
1806 		vm_object_page_remove(prev_object,
1807 				      next_pindex,
1808 				      next_pindex + next_size, FALSE);
1809 		if (prev_object->type == OBJT_SWAP)
1810 			swap_pager_freespace(prev_object,
1811 					     next_pindex, next_size);
1812 		VM_OBJECT_UNLOCK(prev_object);
1813 	}
1814 
1815 	/*
1816 	 * Extend the object if necessary.
1817 	 */
1818 	if (next_pindex + next_size > prev_object->size)
1819 		prev_object->size = next_pindex + next_size;
1820 
1821 	vm_object_unlock(prev_object);
1822 	return (TRUE);
1823 }
1824 
1825 void
1826 vm_object_set_writeable_dirty(vm_object_t object)
1827 {
1828 	struct vnode *vp;
1829 
1830 	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1831 	if (object->type == OBJT_VNODE &&
1832 	    (vp = (struct vnode *)object->handle) != NULL) {
1833 		VI_LOCK(vp);
1834 		if ((vp->v_iflag & VI_OBJDIRTY) == 0)
1835 			vp->v_iflag |= VI_OBJDIRTY;
1836 		VI_UNLOCK(vp);
1837 	}
1838 }
1839 
1840 #include "opt_ddb.h"
1841 #ifdef DDB
1842 #include <sys/kernel.h>
1843 
1844 #include <sys/cons.h>
1845 
1846 #include <ddb/ddb.h>
1847 
1848 static int
1849 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1850 {
1851 	vm_map_t tmpm;
1852 	vm_map_entry_t tmpe;
1853 	vm_object_t obj;
1854 	int entcount;
1855 
1856 	if (map == 0)
1857 		return 0;
1858 
1859 	if (entry == 0) {
1860 		tmpe = map->header.next;
1861 		entcount = map->nentries;
1862 		while (entcount-- && (tmpe != &map->header)) {
1863 			if (_vm_object_in_map(map, object, tmpe)) {
1864 				return 1;
1865 			}
1866 			tmpe = tmpe->next;
1867 		}
1868 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1869 		tmpm = entry->object.sub_map;
1870 		tmpe = tmpm->header.next;
1871 		entcount = tmpm->nentries;
1872 		while (entcount-- && tmpe != &tmpm->header) {
1873 			if (_vm_object_in_map(tmpm, object, tmpe)) {
1874 				return 1;
1875 			}
1876 			tmpe = tmpe->next;
1877 		}
1878 	} else if ((obj = entry->object.vm_object) != NULL) {
1879 		for (; obj; obj = obj->backing_object)
1880 			if (obj == object) {
1881 				return 1;
1882 			}
1883 	}
1884 	return 0;
1885 }
1886 
1887 static int
1888 vm_object_in_map(vm_object_t object)
1889 {
1890 	struct proc *p;
1891 
1892 	/* sx_slock(&allproc_lock); */
1893 	LIST_FOREACH(p, &allproc, p_list) {
1894 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
1895 			continue;
1896 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
1897 			/* sx_sunlock(&allproc_lock); */
1898 			return 1;
1899 		}
1900 	}
1901 	/* sx_sunlock(&allproc_lock); */
1902 	if (_vm_object_in_map(kernel_map, object, 0))
1903 		return 1;
1904 	if (_vm_object_in_map(kmem_map, object, 0))
1905 		return 1;
1906 	if (_vm_object_in_map(pager_map, object, 0))
1907 		return 1;
1908 	if (_vm_object_in_map(buffer_map, object, 0))
1909 		return 1;
1910 	return 0;
1911 }
1912 
1913 DB_SHOW_COMMAND(vmochk, vm_object_check)
1914 {
1915 	vm_object_t object;
1916 
1917 	/*
1918 	 * make sure that internal objs are in a map somewhere
1919 	 * and none have zero ref counts.
1920 	 */
1921 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1922 		if (object->handle == NULL &&
1923 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1924 			if (object->ref_count == 0) {
1925 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
1926 					(long)object->size);
1927 			}
1928 			if (!vm_object_in_map(object)) {
1929 				db_printf(
1930 			"vmochk: internal obj is not in a map: "
1931 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1932 				    object->ref_count, (u_long)object->size,
1933 				    (u_long)object->size,
1934 				    (void *)object->backing_object);
1935 			}
1936 		}
1937 	}
1938 }
1939 
1940 /*
1941  *	vm_object_print:	[ debug ]
1942  */
1943 DB_SHOW_COMMAND(object, vm_object_print_static)
1944 {
1945 	/* XXX convert args. */
1946 	vm_object_t object = (vm_object_t)addr;
1947 	boolean_t full = have_addr;
1948 
1949 	vm_page_t p;
1950 
1951 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
1952 #define	count	was_count
1953 
1954 	int count;
1955 
1956 	if (object == NULL)
1957 		return;
1958 
1959 	db_iprintf(
1960 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x\n",
1961 	    object, (int)object->type, (uintmax_t)object->size,
1962 	    object->resident_page_count, object->ref_count, object->flags);
1963 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
1964 	    object->shadow_count,
1965 	    object->backing_object ? object->backing_object->ref_count : 0,
1966 	    object->backing_object, (uintmax_t)object->backing_object_offset);
1967 
1968 	if (!full)
1969 		return;
1970 
1971 	db_indent += 2;
1972 	count = 0;
1973 	TAILQ_FOREACH(p, &object->memq, listq) {
1974 		if (count == 0)
1975 			db_iprintf("memory:=");
1976 		else if (count == 6) {
1977 			db_printf("\n");
1978 			db_iprintf(" ...");
1979 			count = 0;
1980 		} else
1981 			db_printf(",");
1982 		count++;
1983 
1984 		db_printf("(off=0x%jx,page=0x%jx)",
1985 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
1986 	}
1987 	if (count != 0)
1988 		db_printf("\n");
1989 	db_indent -= 2;
1990 }
1991 
1992 /* XXX. */
1993 #undef count
1994 
1995 /* XXX need this non-static entry for calling from vm_map_print. */
1996 void
1997 vm_object_print(
1998         /* db_expr_t */ long addr,
1999 	boolean_t have_addr,
2000 	/* db_expr_t */ long count,
2001 	char *modif)
2002 {
2003 	vm_object_print_static(addr, have_addr, count, modif);
2004 }
2005 
2006 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2007 {
2008 	vm_object_t object;
2009 	int nl = 0;
2010 	int c;
2011 
2012 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2013 		vm_pindex_t idx, fidx;
2014 		vm_pindex_t osize;
2015 		vm_paddr_t pa = -1, padiff;
2016 		int rcount;
2017 		vm_page_t m;
2018 
2019 		db_printf("new object: %p\n", (void *)object);
2020 		if (nl > 18) {
2021 			c = cngetc();
2022 			if (c != ' ')
2023 				return;
2024 			nl = 0;
2025 		}
2026 		nl++;
2027 		rcount = 0;
2028 		fidx = 0;
2029 		osize = object->size;
2030 		if (osize > 128)
2031 			osize = 128;
2032 		for (idx = 0; idx < osize; idx++) {
2033 			m = vm_page_lookup(object, idx);
2034 			if (m == NULL) {
2035 				if (rcount) {
2036 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2037 						(long)fidx, rcount, (long)pa);
2038 					if (nl > 18) {
2039 						c = cngetc();
2040 						if (c != ' ')
2041 							return;
2042 						nl = 0;
2043 					}
2044 					nl++;
2045 					rcount = 0;
2046 				}
2047 				continue;
2048 			}
2049 
2050 
2051 			if (rcount &&
2052 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2053 				++rcount;
2054 				continue;
2055 			}
2056 			if (rcount) {
2057 				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2058 				padiff >>= PAGE_SHIFT;
2059 				padiff &= PQ_L2_MASK;
2060 				if (padiff == 0) {
2061 					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2062 					++rcount;
2063 					continue;
2064 				}
2065 				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2066 					(long)fidx, rcount, (long)pa);
2067 				db_printf("pd(%ld)\n", (long)padiff);
2068 				if (nl > 18) {
2069 					c = cngetc();
2070 					if (c != ' ')
2071 						return;
2072 					nl = 0;
2073 				}
2074 				nl++;
2075 			}
2076 			fidx = idx;
2077 			pa = VM_PAGE_TO_PHYS(m);
2078 			rcount = 1;
2079 		}
2080 		if (rcount) {
2081 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2082 				(long)fidx, rcount, (long)pa);
2083 			if (nl > 18) {
2084 				c = cngetc();
2085 				if (c != ' ')
2086 					return;
2087 				nl = 0;
2088 			}
2089 			nl++;
2090 		}
2091 	}
2092 }
2093 #endif /* DDB */
2094