xref: /freebsd/sys/vm/vm_object.c (revision e2eeea75eb8b6dd50c1298067a0655880d186734)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory object module.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include "opt_vm.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/blockcount.h>
75 #include <sys/cpuset.h>
76 #include <sys/lock.h>
77 #include <sys/mman.h>
78 #include <sys/mount.h>
79 #include <sys/kernel.h>
80 #include <sys/pctrie.h>
81 #include <sys/sysctl.h>
82 #include <sys/mutex.h>
83 #include <sys/proc.h>		/* for curproc, pageproc */
84 #include <sys/refcount.h>
85 #include <sys/socket.h>
86 #include <sys/resourcevar.h>
87 #include <sys/refcount.h>
88 #include <sys/rwlock.h>
89 #include <sys/user.h>
90 #include <sys/vnode.h>
91 #include <sys/vmmeter.h>
92 #include <sys/sx.h>
93 
94 #include <vm/vm.h>
95 #include <vm/vm_param.h>
96 #include <vm/pmap.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_pager.h>
102 #include <vm/vm_phys.h>
103 #include <vm/vm_pagequeue.h>
104 #include <vm/swap_pager.h>
105 #include <vm/vm_kern.h>
106 #include <vm/vm_extern.h>
107 #include <vm/vm_radix.h>
108 #include <vm/vm_reserv.h>
109 #include <vm/uma.h>
110 
111 static int old_msync;
112 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
113     "Use old (insecure) msync behavior");
114 
115 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
116 		    int pagerflags, int flags, boolean_t *allclean,
117 		    boolean_t *eio);
118 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
119 		    boolean_t *allclean);
120 static void	vm_object_backing_remove(vm_object_t object);
121 
122 /*
123  *	Virtual memory objects maintain the actual data
124  *	associated with allocated virtual memory.  A given
125  *	page of memory exists within exactly one object.
126  *
127  *	An object is only deallocated when all "references"
128  *	are given up.  Only one "reference" to a given
129  *	region of an object should be writeable.
130  *
131  *	Associated with each object is a list of all resident
132  *	memory pages belonging to that object; this list is
133  *	maintained by the "vm_page" module, and locked by the object's
134  *	lock.
135  *
136  *	Each object also records a "pager" routine which is
137  *	used to retrieve (and store) pages to the proper backing
138  *	storage.  In addition, objects may be backed by other
139  *	objects from which they were virtual-copied.
140  *
141  *	The only items within the object structure which are
142  *	modified after time of creation are:
143  *		reference count		locked by object's lock
144  *		pager routine		locked by object's lock
145  *
146  */
147 
148 struct object_q vm_object_list;
149 struct mtx vm_object_list_mtx;	/* lock for object list and count */
150 
151 struct vm_object kernel_object_store;
152 
153 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
154     "VM object stats");
155 
156 static COUNTER_U64_DEFINE_EARLY(object_collapses);
157 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
158     &object_collapses,
159     "VM object collapses");
160 
161 static COUNTER_U64_DEFINE_EARLY(object_bypasses);
162 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
163     &object_bypasses,
164     "VM object bypasses");
165 
166 static COUNTER_U64_DEFINE_EARLY(object_collapse_waits);
167 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapse_waits, CTLFLAG_RD,
168     &object_collapse_waits,
169     "Number of sleeps for collapse");
170 
171 static uma_zone_t obj_zone;
172 
173 static int vm_object_zinit(void *mem, int size, int flags);
174 
175 #ifdef INVARIANTS
176 static void vm_object_zdtor(void *mem, int size, void *arg);
177 
178 static void
179 vm_object_zdtor(void *mem, int size, void *arg)
180 {
181 	vm_object_t object;
182 
183 	object = (vm_object_t)mem;
184 	KASSERT(object->ref_count == 0,
185 	    ("object %p ref_count = %d", object, object->ref_count));
186 	KASSERT(TAILQ_EMPTY(&object->memq),
187 	    ("object %p has resident pages in its memq", object));
188 	KASSERT(vm_radix_is_empty(&object->rtree),
189 	    ("object %p has resident pages in its trie", object));
190 #if VM_NRESERVLEVEL > 0
191 	KASSERT(LIST_EMPTY(&object->rvq),
192 	    ("object %p has reservations",
193 	    object));
194 #endif
195 	KASSERT(!vm_object_busied(object),
196 	    ("object %p busy = %d", object, blockcount_read(&object->busy)));
197 	KASSERT(object->resident_page_count == 0,
198 	    ("object %p resident_page_count = %d",
199 	    object, object->resident_page_count));
200 	KASSERT(object->shadow_count == 0,
201 	    ("object %p shadow_count = %d",
202 	    object, object->shadow_count));
203 	KASSERT(object->type == OBJT_DEAD,
204 	    ("object %p has non-dead type %d",
205 	    object, object->type));
206 }
207 #endif
208 
209 static int
210 vm_object_zinit(void *mem, int size, int flags)
211 {
212 	vm_object_t object;
213 
214 	object = (vm_object_t)mem;
215 	rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
216 
217 	/* These are true for any object that has been freed */
218 	object->type = OBJT_DEAD;
219 	vm_radix_init(&object->rtree);
220 	refcount_init(&object->ref_count, 0);
221 	blockcount_init(&object->paging_in_progress);
222 	blockcount_init(&object->busy);
223 	object->resident_page_count = 0;
224 	object->shadow_count = 0;
225 	object->flags = OBJ_DEAD;
226 
227 	mtx_lock(&vm_object_list_mtx);
228 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
229 	mtx_unlock(&vm_object_list_mtx);
230 	return (0);
231 }
232 
233 static void
234 _vm_object_allocate(objtype_t type, vm_pindex_t size, u_short flags,
235     vm_object_t object, void *handle)
236 {
237 
238 	TAILQ_INIT(&object->memq);
239 	LIST_INIT(&object->shadow_head);
240 
241 	object->type = type;
242 	if (type == OBJT_SWAP)
243 		pctrie_init(&object->un_pager.swp.swp_blks);
244 
245 	/*
246 	 * Ensure that swap_pager_swapoff() iteration over object_list
247 	 * sees up to date type and pctrie head if it observed
248 	 * non-dead object.
249 	 */
250 	atomic_thread_fence_rel();
251 
252 	object->pg_color = 0;
253 	object->flags = flags;
254 	object->size = size;
255 	object->domain.dr_policy = NULL;
256 	object->generation = 1;
257 	object->cleangeneration = 1;
258 	refcount_init(&object->ref_count, 1);
259 	object->memattr = VM_MEMATTR_DEFAULT;
260 	object->cred = NULL;
261 	object->charge = 0;
262 	object->handle = handle;
263 	object->backing_object = NULL;
264 	object->backing_object_offset = (vm_ooffset_t) 0;
265 #if VM_NRESERVLEVEL > 0
266 	LIST_INIT(&object->rvq);
267 #endif
268 	umtx_shm_object_init(object);
269 }
270 
271 /*
272  *	vm_object_init:
273  *
274  *	Initialize the VM objects module.
275  */
276 void
277 vm_object_init(void)
278 {
279 	TAILQ_INIT(&vm_object_list);
280 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
281 
282 	rw_init(&kernel_object->lock, "kernel vm object");
283 	_vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
284 	    VM_MIN_KERNEL_ADDRESS), OBJ_UNMANAGED, kernel_object, NULL);
285 #if VM_NRESERVLEVEL > 0
286 	kernel_object->flags |= OBJ_COLORED;
287 	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
288 #endif
289 	kernel_object->un_pager.phys.ops = &default_phys_pg_ops;
290 
291 	/*
292 	 * The lock portion of struct vm_object must be type stable due
293 	 * to vm_pageout_fallback_object_lock locking a vm object
294 	 * without holding any references to it.
295 	 *
296 	 * paging_in_progress is valid always.  Lockless references to
297 	 * the objects may acquire pip and then check OBJ_DEAD.
298 	 */
299 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
300 #ifdef INVARIANTS
301 	    vm_object_zdtor,
302 #else
303 	    NULL,
304 #endif
305 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
306 
307 	vm_radix_zinit();
308 }
309 
310 void
311 vm_object_clear_flag(vm_object_t object, u_short bits)
312 {
313 
314 	VM_OBJECT_ASSERT_WLOCKED(object);
315 	object->flags &= ~bits;
316 }
317 
318 /*
319  *	Sets the default memory attribute for the specified object.  Pages
320  *	that are allocated to this object are by default assigned this memory
321  *	attribute.
322  *
323  *	Presently, this function must be called before any pages are allocated
324  *	to the object.  In the future, this requirement may be relaxed for
325  *	"default" and "swap" objects.
326  */
327 int
328 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
329 {
330 
331 	VM_OBJECT_ASSERT_WLOCKED(object);
332 	switch (object->type) {
333 	case OBJT_DEFAULT:
334 	case OBJT_DEVICE:
335 	case OBJT_MGTDEVICE:
336 	case OBJT_PHYS:
337 	case OBJT_SG:
338 	case OBJT_SWAP:
339 	case OBJT_VNODE:
340 		if (!TAILQ_EMPTY(&object->memq))
341 			return (KERN_FAILURE);
342 		break;
343 	case OBJT_DEAD:
344 		return (KERN_INVALID_ARGUMENT);
345 	default:
346 		panic("vm_object_set_memattr: object %p is of undefined type",
347 		    object);
348 	}
349 	object->memattr = memattr;
350 	return (KERN_SUCCESS);
351 }
352 
353 void
354 vm_object_pip_add(vm_object_t object, short i)
355 {
356 
357 	if (i > 0)
358 		blockcount_acquire(&object->paging_in_progress, i);
359 }
360 
361 void
362 vm_object_pip_wakeup(vm_object_t object)
363 {
364 
365 	vm_object_pip_wakeupn(object, 1);
366 }
367 
368 void
369 vm_object_pip_wakeupn(vm_object_t object, short i)
370 {
371 
372 	if (i > 0)
373 		blockcount_release(&object->paging_in_progress, i);
374 }
375 
376 /*
377  * Atomically drop the object lock and wait for pip to drain.  This protects
378  * from sleep/wakeup races due to identity changes.  The lock is not re-acquired
379  * on return.
380  */
381 static void
382 vm_object_pip_sleep(vm_object_t object, const char *waitid)
383 {
384 
385 	(void)blockcount_sleep(&object->paging_in_progress, &object->lock,
386 	    waitid, PVM | PDROP);
387 }
388 
389 void
390 vm_object_pip_wait(vm_object_t object, const char *waitid)
391 {
392 
393 	VM_OBJECT_ASSERT_WLOCKED(object);
394 
395 	blockcount_wait(&object->paging_in_progress, &object->lock, waitid,
396 	    PVM);
397 }
398 
399 void
400 vm_object_pip_wait_unlocked(vm_object_t object, const char *waitid)
401 {
402 
403 	VM_OBJECT_ASSERT_UNLOCKED(object);
404 
405 	blockcount_wait(&object->paging_in_progress, NULL, waitid, PVM);
406 }
407 
408 /*
409  *	vm_object_allocate:
410  *
411  *	Returns a new object with the given size.
412  */
413 vm_object_t
414 vm_object_allocate(objtype_t type, vm_pindex_t size)
415 {
416 	vm_object_t object;
417 	u_short flags;
418 
419 	switch (type) {
420 	case OBJT_DEAD:
421 		panic("vm_object_allocate: can't create OBJT_DEAD");
422 	case OBJT_DEFAULT:
423 	case OBJT_SWAP:
424 		flags = OBJ_COLORED;
425 		break;
426 	case OBJT_DEVICE:
427 	case OBJT_SG:
428 		flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
429 		break;
430 	case OBJT_MGTDEVICE:
431 		flags = OBJ_FICTITIOUS;
432 		break;
433 	case OBJT_PHYS:
434 		flags = OBJ_UNMANAGED;
435 		break;
436 	case OBJT_VNODE:
437 		flags = 0;
438 		break;
439 	default:
440 		panic("vm_object_allocate: type %d is undefined", type);
441 	}
442 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
443 	_vm_object_allocate(type, size, flags, object, NULL);
444 
445 	return (object);
446 }
447 
448 /*
449  *	vm_object_allocate_anon:
450  *
451  *	Returns a new default object of the given size and marked as
452  *	anonymous memory for special split/collapse handling.  Color
453  *	to be initialized by the caller.
454  */
455 vm_object_t
456 vm_object_allocate_anon(vm_pindex_t size, vm_object_t backing_object,
457     struct ucred *cred, vm_size_t charge)
458 {
459 	vm_object_t handle, object;
460 
461 	if (backing_object == NULL)
462 		handle = NULL;
463 	else if ((backing_object->flags & OBJ_ANON) != 0)
464 		handle = backing_object->handle;
465 	else
466 		handle = backing_object;
467 	object = uma_zalloc(obj_zone, M_WAITOK);
468 	_vm_object_allocate(OBJT_DEFAULT, size, OBJ_ANON | OBJ_ONEMAPPING,
469 	    object, handle);
470 	object->cred = cred;
471 	object->charge = cred != NULL ? charge : 0;
472 	return (object);
473 }
474 
475 static void
476 vm_object_reference_vnode(vm_object_t object)
477 {
478 	u_int old;
479 
480 	/*
481 	 * vnode objects need the lock for the first reference
482 	 * to serialize with vnode_object_deallocate().
483 	 */
484 	if (!refcount_acquire_if_gt(&object->ref_count, 0)) {
485 		VM_OBJECT_RLOCK(object);
486 		old = refcount_acquire(&object->ref_count);
487 		if (object->type == OBJT_VNODE && old == 0)
488 			vref(object->handle);
489 		VM_OBJECT_RUNLOCK(object);
490 	}
491 }
492 
493 /*
494  *	vm_object_reference:
495  *
496  *	Acquires a reference to the given object.
497  */
498 void
499 vm_object_reference(vm_object_t object)
500 {
501 
502 	if (object == NULL)
503 		return;
504 
505 	if (object->type == OBJT_VNODE)
506 		vm_object_reference_vnode(object);
507 	else
508 		refcount_acquire(&object->ref_count);
509 	KASSERT((object->flags & OBJ_DEAD) == 0,
510 	    ("vm_object_reference: Referenced dead object."));
511 }
512 
513 /*
514  *	vm_object_reference_locked:
515  *
516  *	Gets another reference to the given object.
517  *
518  *	The object must be locked.
519  */
520 void
521 vm_object_reference_locked(vm_object_t object)
522 {
523 	u_int old;
524 
525 	VM_OBJECT_ASSERT_LOCKED(object);
526 	old = refcount_acquire(&object->ref_count);
527 	if (object->type == OBJT_VNODE && old == 0)
528 		vref(object->handle);
529 	KASSERT((object->flags & OBJ_DEAD) == 0,
530 	    ("vm_object_reference: Referenced dead object."));
531 }
532 
533 /*
534  * Handle deallocating an object of type OBJT_VNODE.
535  */
536 static void
537 vm_object_deallocate_vnode(vm_object_t object)
538 {
539 	struct vnode *vp = (struct vnode *) object->handle;
540 	bool last;
541 
542 	KASSERT(object->type == OBJT_VNODE,
543 	    ("vm_object_deallocate_vnode: not a vnode object"));
544 	KASSERT(vp != NULL, ("vm_object_deallocate_vnode: missing vp"));
545 
546 	/* Object lock to protect handle lookup. */
547 	last = refcount_release(&object->ref_count);
548 	VM_OBJECT_RUNLOCK(object);
549 
550 	if (!last)
551 		return;
552 
553 	if (!umtx_shm_vnobj_persistent)
554 		umtx_shm_object_terminated(object);
555 
556 	/* vrele may need the vnode lock. */
557 	vrele(vp);
558 }
559 
560 /*
561  * We dropped a reference on an object and discovered that it had a
562  * single remaining shadow.  This is a sibling of the reference we
563  * dropped.  Attempt to collapse the sibling and backing object.
564  */
565 static vm_object_t
566 vm_object_deallocate_anon(vm_object_t backing_object)
567 {
568 	vm_object_t object;
569 
570 	/* Fetch the final shadow.  */
571 	object = LIST_FIRST(&backing_object->shadow_head);
572 	KASSERT(object != NULL && backing_object->shadow_count == 1,
573 	    ("vm_object_anon_deallocate: ref_count: %d, shadow_count: %d",
574 	    backing_object->ref_count, backing_object->shadow_count));
575 	KASSERT((object->flags & (OBJ_TMPFS_NODE | OBJ_ANON)) == OBJ_ANON,
576 	    ("invalid shadow object %p", object));
577 
578 	if (!VM_OBJECT_TRYWLOCK(object)) {
579 		/*
580 		 * Prevent object from disappearing since we do not have a
581 		 * reference.
582 		 */
583 		vm_object_pip_add(object, 1);
584 		VM_OBJECT_WUNLOCK(backing_object);
585 		VM_OBJECT_WLOCK(object);
586 		vm_object_pip_wakeup(object);
587 	} else
588 		VM_OBJECT_WUNLOCK(backing_object);
589 
590 	/*
591 	 * Check for a collapse/terminate race with the last reference holder.
592 	 */
593 	if ((object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) != 0 ||
594 	    !refcount_acquire_if_not_zero(&object->ref_count)) {
595 		VM_OBJECT_WUNLOCK(object);
596 		return (NULL);
597 	}
598 	backing_object = object->backing_object;
599 	if (backing_object != NULL && (backing_object->flags & OBJ_ANON) != 0)
600 		vm_object_collapse(object);
601 	VM_OBJECT_WUNLOCK(object);
602 
603 	return (object);
604 }
605 
606 /*
607  *	vm_object_deallocate:
608  *
609  *	Release a reference to the specified object,
610  *	gained either through a vm_object_allocate
611  *	or a vm_object_reference call.  When all references
612  *	are gone, storage associated with this object
613  *	may be relinquished.
614  *
615  *	No object may be locked.
616  */
617 void
618 vm_object_deallocate(vm_object_t object)
619 {
620 	vm_object_t temp;
621 	bool released;
622 
623 	while (object != NULL) {
624 		/*
625 		 * If the reference count goes to 0 we start calling
626 		 * vm_object_terminate() on the object chain.  A ref count
627 		 * of 1 may be a special case depending on the shadow count
628 		 * being 0 or 1.  These cases require a write lock on the
629 		 * object.
630 		 */
631 		if ((object->flags & OBJ_ANON) == 0)
632 			released = refcount_release_if_gt(&object->ref_count, 1);
633 		else
634 			released = refcount_release_if_gt(&object->ref_count, 2);
635 		if (released)
636 			return;
637 
638 		if (object->type == OBJT_VNODE) {
639 			VM_OBJECT_RLOCK(object);
640 			if (object->type == OBJT_VNODE) {
641 				vm_object_deallocate_vnode(object);
642 				return;
643 			}
644 			VM_OBJECT_RUNLOCK(object);
645 		}
646 
647 		VM_OBJECT_WLOCK(object);
648 		KASSERT(object->ref_count > 0,
649 		    ("vm_object_deallocate: object deallocated too many times: %d",
650 		    object->type));
651 
652 		/*
653 		 * If this is not the final reference to an anonymous
654 		 * object we may need to collapse the shadow chain.
655 		 */
656 		if (!refcount_release(&object->ref_count)) {
657 			if (object->ref_count > 1 ||
658 			    object->shadow_count == 0) {
659 				if ((object->flags & OBJ_ANON) != 0 &&
660 				    object->ref_count == 1)
661 					vm_object_set_flag(object,
662 					    OBJ_ONEMAPPING);
663 				VM_OBJECT_WUNLOCK(object);
664 				return;
665 			}
666 
667 			/* Handle collapsing last ref on anonymous objects. */
668 			object = vm_object_deallocate_anon(object);
669 			continue;
670 		}
671 
672 		/*
673 		 * Handle the final reference to an object.  We restart
674 		 * the loop with the backing object to avoid recursion.
675 		 */
676 		umtx_shm_object_terminated(object);
677 		temp = object->backing_object;
678 		if (temp != NULL) {
679 			KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
680 			    ("shadowed tmpfs v_object 2 %p", object));
681 			vm_object_backing_remove(object);
682 		}
683 
684 		KASSERT((object->flags & OBJ_DEAD) == 0,
685 		    ("vm_object_deallocate: Terminating dead object."));
686 		vm_object_set_flag(object, OBJ_DEAD);
687 		vm_object_terminate(object);
688 		object = temp;
689 	}
690 }
691 
692 /*
693  *	vm_object_destroy removes the object from the global object list
694  *      and frees the space for the object.
695  */
696 void
697 vm_object_destroy(vm_object_t object)
698 {
699 
700 	/*
701 	 * Release the allocation charge.
702 	 */
703 	if (object->cred != NULL) {
704 		swap_release_by_cred(object->charge, object->cred);
705 		object->charge = 0;
706 		crfree(object->cred);
707 		object->cred = NULL;
708 	}
709 
710 	/*
711 	 * Free the space for the object.
712 	 */
713 	uma_zfree(obj_zone, object);
714 }
715 
716 static void
717 vm_object_backing_remove_locked(vm_object_t object)
718 {
719 	vm_object_t backing_object;
720 
721 	backing_object = object->backing_object;
722 	VM_OBJECT_ASSERT_WLOCKED(object);
723 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
724 
725 	KASSERT((object->flags & OBJ_COLLAPSING) == 0,
726 	    ("vm_object_backing_remove: Removing collapsing object."));
727 
728 	if ((object->flags & OBJ_SHADOWLIST) != 0) {
729 		LIST_REMOVE(object, shadow_list);
730 		backing_object->shadow_count--;
731 		object->flags &= ~OBJ_SHADOWLIST;
732 	}
733 	object->backing_object = NULL;
734 }
735 
736 static void
737 vm_object_backing_remove(vm_object_t object)
738 {
739 	vm_object_t backing_object;
740 
741 	VM_OBJECT_ASSERT_WLOCKED(object);
742 
743 	if ((object->flags & OBJ_SHADOWLIST) != 0) {
744 		backing_object = object->backing_object;
745 		VM_OBJECT_WLOCK(backing_object);
746 		vm_object_backing_remove_locked(object);
747 		VM_OBJECT_WUNLOCK(backing_object);
748 	} else
749 		object->backing_object = NULL;
750 }
751 
752 static void
753 vm_object_backing_insert_locked(vm_object_t object, vm_object_t backing_object)
754 {
755 
756 	VM_OBJECT_ASSERT_WLOCKED(object);
757 
758 	if ((backing_object->flags & OBJ_ANON) != 0) {
759 		VM_OBJECT_ASSERT_WLOCKED(backing_object);
760 		LIST_INSERT_HEAD(&backing_object->shadow_head, object,
761 		    shadow_list);
762 		backing_object->shadow_count++;
763 		object->flags |= OBJ_SHADOWLIST;
764 	}
765 	object->backing_object = backing_object;
766 }
767 
768 static void
769 vm_object_backing_insert(vm_object_t object, vm_object_t backing_object)
770 {
771 
772 	VM_OBJECT_ASSERT_WLOCKED(object);
773 
774 	if ((backing_object->flags & OBJ_ANON) != 0) {
775 		VM_OBJECT_WLOCK(backing_object);
776 		vm_object_backing_insert_locked(object, backing_object);
777 		VM_OBJECT_WUNLOCK(backing_object);
778 	} else
779 		object->backing_object = backing_object;
780 }
781 
782 /*
783  * Insert an object into a backing_object's shadow list with an additional
784  * reference to the backing_object added.
785  */
786 static void
787 vm_object_backing_insert_ref(vm_object_t object, vm_object_t backing_object)
788 {
789 
790 	VM_OBJECT_ASSERT_WLOCKED(object);
791 
792 	if ((backing_object->flags & OBJ_ANON) != 0) {
793 		VM_OBJECT_WLOCK(backing_object);
794 		KASSERT((backing_object->flags & OBJ_DEAD) == 0,
795 		    ("shadowing dead anonymous object"));
796 		vm_object_reference_locked(backing_object);
797 		vm_object_backing_insert_locked(object, backing_object);
798 		vm_object_clear_flag(backing_object, OBJ_ONEMAPPING);
799 		VM_OBJECT_WUNLOCK(backing_object);
800 	} else {
801 		vm_object_reference(backing_object);
802 		object->backing_object = backing_object;
803 	}
804 }
805 
806 /*
807  * Transfer a backing reference from backing_object to object.
808  */
809 static void
810 vm_object_backing_transfer(vm_object_t object, vm_object_t backing_object)
811 {
812 	vm_object_t new_backing_object;
813 
814 	/*
815 	 * Note that the reference to backing_object->backing_object
816 	 * moves from within backing_object to within object.
817 	 */
818 	vm_object_backing_remove_locked(object);
819 	new_backing_object = backing_object->backing_object;
820 	if (new_backing_object == NULL)
821 		return;
822 	if ((new_backing_object->flags & OBJ_ANON) != 0) {
823 		VM_OBJECT_WLOCK(new_backing_object);
824 		vm_object_backing_remove_locked(backing_object);
825 		vm_object_backing_insert_locked(object, new_backing_object);
826 		VM_OBJECT_WUNLOCK(new_backing_object);
827 	} else {
828 		object->backing_object = new_backing_object;
829 		backing_object->backing_object = NULL;
830 	}
831 }
832 
833 /*
834  * Wait for a concurrent collapse to settle.
835  */
836 static void
837 vm_object_collapse_wait(vm_object_t object)
838 {
839 
840 	VM_OBJECT_ASSERT_WLOCKED(object);
841 
842 	while ((object->flags & OBJ_COLLAPSING) != 0) {
843 		vm_object_pip_wait(object, "vmcolwait");
844 		counter_u64_add(object_collapse_waits, 1);
845 	}
846 }
847 
848 /*
849  * Waits for a backing object to clear a pending collapse and returns
850  * it locked if it is an ANON object.
851  */
852 static vm_object_t
853 vm_object_backing_collapse_wait(vm_object_t object)
854 {
855 	vm_object_t backing_object;
856 
857 	VM_OBJECT_ASSERT_WLOCKED(object);
858 
859 	for (;;) {
860 		backing_object = object->backing_object;
861 		if (backing_object == NULL ||
862 		    (backing_object->flags & OBJ_ANON) == 0)
863 			return (NULL);
864 		VM_OBJECT_WLOCK(backing_object);
865 		if ((backing_object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) == 0)
866 			break;
867 		VM_OBJECT_WUNLOCK(object);
868 		vm_object_pip_sleep(backing_object, "vmbckwait");
869 		counter_u64_add(object_collapse_waits, 1);
870 		VM_OBJECT_WLOCK(object);
871 	}
872 	return (backing_object);
873 }
874 
875 /*
876  *	vm_object_terminate_pages removes any remaining pageable pages
877  *	from the object and resets the object to an empty state.
878  */
879 static void
880 vm_object_terminate_pages(vm_object_t object)
881 {
882 	vm_page_t p, p_next;
883 
884 	VM_OBJECT_ASSERT_WLOCKED(object);
885 
886 	/*
887 	 * Free any remaining pageable pages.  This also removes them from the
888 	 * paging queues.  However, don't free wired pages, just remove them
889 	 * from the object.  Rather than incrementally removing each page from
890 	 * the object, the page and object are reset to any empty state.
891 	 */
892 	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
893 		vm_page_assert_unbusied(p);
894 		KASSERT(p->object == object &&
895 		    (p->ref_count & VPRC_OBJREF) != 0,
896 		    ("vm_object_terminate_pages: page %p is inconsistent", p));
897 
898 		p->object = NULL;
899 		if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) {
900 			VM_CNT_INC(v_pfree);
901 			vm_page_free(p);
902 		}
903 	}
904 
905 	/*
906 	 * If the object contained any pages, then reset it to an empty state.
907 	 * None of the object's fields, including "resident_page_count", were
908 	 * modified by the preceding loop.
909 	 */
910 	if (object->resident_page_count != 0) {
911 		vm_radix_reclaim_allnodes(&object->rtree);
912 		TAILQ_INIT(&object->memq);
913 		object->resident_page_count = 0;
914 		if (object->type == OBJT_VNODE)
915 			vdrop(object->handle);
916 	}
917 }
918 
919 /*
920  *	vm_object_terminate actually destroys the specified object, freeing
921  *	up all previously used resources.
922  *
923  *	The object must be locked.
924  *	This routine may block.
925  */
926 void
927 vm_object_terminate(vm_object_t object)
928 {
929 
930 	VM_OBJECT_ASSERT_WLOCKED(object);
931 	KASSERT((object->flags & OBJ_DEAD) != 0,
932 	    ("terminating non-dead obj %p", object));
933 	KASSERT((object->flags & OBJ_COLLAPSING) == 0,
934 	    ("terminating collapsing obj %p", object));
935 	KASSERT(object->backing_object == NULL,
936 	    ("terminating shadow obj %p", object));
937 
938 	/*
939 	 * Wait for the pageout daemon and other current users to be
940 	 * done with the object.  Note that new paging_in_progress
941 	 * users can come after this wait, but they must check
942 	 * OBJ_DEAD flag set (without unlocking the object), and avoid
943 	 * the object being terminated.
944 	 */
945 	vm_object_pip_wait(object, "objtrm");
946 
947 	KASSERT(object->ref_count == 0,
948 	    ("vm_object_terminate: object with references, ref_count=%d",
949 	    object->ref_count));
950 
951 	if ((object->flags & OBJ_PG_DTOR) == 0)
952 		vm_object_terminate_pages(object);
953 
954 #if VM_NRESERVLEVEL > 0
955 	if (__predict_false(!LIST_EMPTY(&object->rvq)))
956 		vm_reserv_break_all(object);
957 #endif
958 
959 	KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
960 	    object->type == OBJT_SWAP,
961 	    ("%s: non-swap obj %p has cred", __func__, object));
962 
963 	/*
964 	 * Let the pager know object is dead.
965 	 */
966 	vm_pager_deallocate(object);
967 	VM_OBJECT_WUNLOCK(object);
968 
969 	vm_object_destroy(object);
970 }
971 
972 /*
973  * Make the page read-only so that we can clear the object flags.  However, if
974  * this is a nosync mmap then the object is likely to stay dirty so do not
975  * mess with the page and do not clear the object flags.  Returns TRUE if the
976  * page should be flushed, and FALSE otherwise.
977  */
978 static boolean_t
979 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean)
980 {
981 
982 	vm_page_assert_busied(p);
983 
984 	/*
985 	 * If we have been asked to skip nosync pages and this is a
986 	 * nosync page, skip it.  Note that the object flags were not
987 	 * cleared in this case so we do not have to set them.
988 	 */
989 	if ((flags & OBJPC_NOSYNC) != 0 && (p->a.flags & PGA_NOSYNC) != 0) {
990 		*allclean = FALSE;
991 		return (FALSE);
992 	} else {
993 		pmap_remove_write(p);
994 		return (p->dirty != 0);
995 	}
996 }
997 
998 /*
999  *	vm_object_page_clean
1000  *
1001  *	Clean all dirty pages in the specified range of object.  Leaves page
1002  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
1003  *	write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC),
1004  *	leaving the object dirty.
1005  *
1006  *	For swap objects backing tmpfs regular files, do not flush anything,
1007  *	but remove write protection on the mapped pages to update mtime through
1008  *	mmaped writes.
1009  *
1010  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
1011  *	synchronous clustering mode implementation.
1012  *
1013  *	Odd semantics: if start == end, we clean everything.
1014  *
1015  *	The object must be locked.
1016  *
1017  *	Returns FALSE if some page from the range was not written, as
1018  *	reported by the pager, and TRUE otherwise.
1019  */
1020 boolean_t
1021 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
1022     int flags)
1023 {
1024 	vm_page_t np, p;
1025 	vm_pindex_t pi, tend, tstart;
1026 	int curgeneration, n, pagerflags;
1027 	boolean_t eio, res, allclean;
1028 
1029 	VM_OBJECT_ASSERT_WLOCKED(object);
1030 
1031 	if (!vm_object_mightbedirty(object) || object->resident_page_count == 0)
1032 		return (TRUE);
1033 
1034 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
1035 	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1036 	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
1037 
1038 	tstart = OFF_TO_IDX(start);
1039 	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
1040 	allclean = tstart == 0 && tend >= object->size;
1041 	res = TRUE;
1042 
1043 rescan:
1044 	curgeneration = object->generation;
1045 
1046 	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
1047 		pi = p->pindex;
1048 		if (pi >= tend)
1049 			break;
1050 		np = TAILQ_NEXT(p, listq);
1051 		if (vm_page_none_valid(p))
1052 			continue;
1053 		if (vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL) == 0) {
1054 			if (object->generation != curgeneration &&
1055 			    (flags & OBJPC_SYNC) != 0)
1056 				goto rescan;
1057 			np = vm_page_find_least(object, pi);
1058 			continue;
1059 		}
1060 		if (!vm_object_page_remove_write(p, flags, &allclean)) {
1061 			vm_page_xunbusy(p);
1062 			continue;
1063 		}
1064 		if (object->type == OBJT_VNODE) {
1065 			n = vm_object_page_collect_flush(object, p, pagerflags,
1066 			    flags, &allclean, &eio);
1067 			if (eio) {
1068 				res = FALSE;
1069 				allclean = FALSE;
1070 			}
1071 			if (object->generation != curgeneration &&
1072 			    (flags & OBJPC_SYNC) != 0)
1073 				goto rescan;
1074 
1075 			/*
1076 			 * If the VOP_PUTPAGES() did a truncated write, so
1077 			 * that even the first page of the run is not fully
1078 			 * written, vm_pageout_flush() returns 0 as the run
1079 			 * length.  Since the condition that caused truncated
1080 			 * write may be permanent, e.g. exhausted free space,
1081 			 * accepting n == 0 would cause an infinite loop.
1082 			 *
1083 			 * Forwarding the iterator leaves the unwritten page
1084 			 * behind, but there is not much we can do there if
1085 			 * filesystem refuses to write it.
1086 			 */
1087 			if (n == 0) {
1088 				n = 1;
1089 				allclean = FALSE;
1090 			}
1091 		} else {
1092 			n = 1;
1093 			vm_page_xunbusy(p);
1094 		}
1095 		np = vm_page_find_least(object, pi + n);
1096 	}
1097 #if 0
1098 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
1099 #endif
1100 
1101 	/*
1102 	 * Leave updating cleangeneration for tmpfs objects to tmpfs
1103 	 * scan.  It needs to update mtime, which happens for other
1104 	 * filesystems during page writeouts.
1105 	 */
1106 	if (allclean && object->type == OBJT_VNODE)
1107 		object->cleangeneration = curgeneration;
1108 	return (res);
1109 }
1110 
1111 static int
1112 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
1113     int flags, boolean_t *allclean, boolean_t *eio)
1114 {
1115 	vm_page_t ma[vm_pageout_page_count], p_first, tp;
1116 	int count, i, mreq, runlen;
1117 
1118 	vm_page_lock_assert(p, MA_NOTOWNED);
1119 	vm_page_assert_xbusied(p);
1120 	VM_OBJECT_ASSERT_WLOCKED(object);
1121 
1122 	count = 1;
1123 	mreq = 0;
1124 
1125 	for (tp = p; count < vm_pageout_page_count; count++) {
1126 		tp = vm_page_next(tp);
1127 		if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1128 			break;
1129 		if (!vm_object_page_remove_write(tp, flags, allclean)) {
1130 			vm_page_xunbusy(tp);
1131 			break;
1132 		}
1133 	}
1134 
1135 	for (p_first = p; count < vm_pageout_page_count; count++) {
1136 		tp = vm_page_prev(p_first);
1137 		if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1138 			break;
1139 		if (!vm_object_page_remove_write(tp, flags, allclean)) {
1140 			vm_page_xunbusy(tp);
1141 			break;
1142 		}
1143 		p_first = tp;
1144 		mreq++;
1145 	}
1146 
1147 	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
1148 		ma[i] = tp;
1149 
1150 	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
1151 	return (runlen);
1152 }
1153 
1154 /*
1155  * Note that there is absolutely no sense in writing out
1156  * anonymous objects, so we track down the vnode object
1157  * to write out.
1158  * We invalidate (remove) all pages from the address space
1159  * for semantic correctness.
1160  *
1161  * If the backing object is a device object with unmanaged pages, then any
1162  * mappings to the specified range of pages must be removed before this
1163  * function is called.
1164  *
1165  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1166  * may start out with a NULL object.
1167  */
1168 boolean_t
1169 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1170     boolean_t syncio, boolean_t invalidate)
1171 {
1172 	vm_object_t backing_object;
1173 	struct vnode *vp;
1174 	struct mount *mp;
1175 	int error, flags, fsync_after;
1176 	boolean_t res;
1177 
1178 	if (object == NULL)
1179 		return (TRUE);
1180 	res = TRUE;
1181 	error = 0;
1182 	VM_OBJECT_WLOCK(object);
1183 	while ((backing_object = object->backing_object) != NULL) {
1184 		VM_OBJECT_WLOCK(backing_object);
1185 		offset += object->backing_object_offset;
1186 		VM_OBJECT_WUNLOCK(object);
1187 		object = backing_object;
1188 		if (object->size < OFF_TO_IDX(offset + size))
1189 			size = IDX_TO_OFF(object->size) - offset;
1190 	}
1191 	/*
1192 	 * Flush pages if writing is allowed, invalidate them
1193 	 * if invalidation requested.  Pages undergoing I/O
1194 	 * will be ignored by vm_object_page_remove().
1195 	 *
1196 	 * We cannot lock the vnode and then wait for paging
1197 	 * to complete without deadlocking against vm_fault.
1198 	 * Instead we simply call vm_object_page_remove() and
1199 	 * allow it to block internally on a page-by-page
1200 	 * basis when it encounters pages undergoing async
1201 	 * I/O.
1202 	 */
1203 	if (object->type == OBJT_VNODE &&
1204 	    vm_object_mightbedirty(object) != 0 &&
1205 	    ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1206 		VM_OBJECT_WUNLOCK(object);
1207 		(void) vn_start_write(vp, &mp, V_WAIT);
1208 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1209 		if (syncio && !invalidate && offset == 0 &&
1210 		    atop(size) == object->size) {
1211 			/*
1212 			 * If syncing the whole mapping of the file,
1213 			 * it is faster to schedule all the writes in
1214 			 * async mode, also allowing the clustering,
1215 			 * and then wait for i/o to complete.
1216 			 */
1217 			flags = 0;
1218 			fsync_after = TRUE;
1219 		} else {
1220 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1221 			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1222 			fsync_after = FALSE;
1223 		}
1224 		VM_OBJECT_WLOCK(object);
1225 		res = vm_object_page_clean(object, offset, offset + size,
1226 		    flags);
1227 		VM_OBJECT_WUNLOCK(object);
1228 		if (fsync_after)
1229 			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1230 		VOP_UNLOCK(vp);
1231 		vn_finished_write(mp);
1232 		if (error != 0)
1233 			res = FALSE;
1234 		VM_OBJECT_WLOCK(object);
1235 	}
1236 	if ((object->type == OBJT_VNODE ||
1237 	     object->type == OBJT_DEVICE) && invalidate) {
1238 		if (object->type == OBJT_DEVICE)
1239 			/*
1240 			 * The option OBJPR_NOTMAPPED must be passed here
1241 			 * because vm_object_page_remove() cannot remove
1242 			 * unmanaged mappings.
1243 			 */
1244 			flags = OBJPR_NOTMAPPED;
1245 		else if (old_msync)
1246 			flags = 0;
1247 		else
1248 			flags = OBJPR_CLEANONLY;
1249 		vm_object_page_remove(object, OFF_TO_IDX(offset),
1250 		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1251 	}
1252 	VM_OBJECT_WUNLOCK(object);
1253 	return (res);
1254 }
1255 
1256 /*
1257  * Determine whether the given advice can be applied to the object.  Advice is
1258  * not applied to unmanaged pages since they never belong to page queues, and
1259  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1260  * have been mapped at most once.
1261  */
1262 static bool
1263 vm_object_advice_applies(vm_object_t object, int advice)
1264 {
1265 
1266 	if ((object->flags & OBJ_UNMANAGED) != 0)
1267 		return (false);
1268 	if (advice != MADV_FREE)
1269 		return (true);
1270 	return ((object->flags & (OBJ_ONEMAPPING | OBJ_ANON)) ==
1271 	    (OBJ_ONEMAPPING | OBJ_ANON));
1272 }
1273 
1274 static void
1275 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1276     vm_size_t size)
1277 {
1278 
1279 	if (advice == MADV_FREE && object->type == OBJT_SWAP)
1280 		swap_pager_freespace(object, pindex, size);
1281 }
1282 
1283 /*
1284  *	vm_object_madvise:
1285  *
1286  *	Implements the madvise function at the object/page level.
1287  *
1288  *	MADV_WILLNEED	(any object)
1289  *
1290  *	    Activate the specified pages if they are resident.
1291  *
1292  *	MADV_DONTNEED	(any object)
1293  *
1294  *	    Deactivate the specified pages if they are resident.
1295  *
1296  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1297  *			 OBJ_ONEMAPPING only)
1298  *
1299  *	    Deactivate and clean the specified pages if they are
1300  *	    resident.  This permits the process to reuse the pages
1301  *	    without faulting or the kernel to reclaim the pages
1302  *	    without I/O.
1303  */
1304 void
1305 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1306     int advice)
1307 {
1308 	vm_pindex_t tpindex;
1309 	vm_object_t backing_object, tobject;
1310 	vm_page_t m, tm;
1311 
1312 	if (object == NULL)
1313 		return;
1314 
1315 relookup:
1316 	VM_OBJECT_WLOCK(object);
1317 	if (!vm_object_advice_applies(object, advice)) {
1318 		VM_OBJECT_WUNLOCK(object);
1319 		return;
1320 	}
1321 	for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1322 		tobject = object;
1323 
1324 		/*
1325 		 * If the next page isn't resident in the top-level object, we
1326 		 * need to search the shadow chain.  When applying MADV_FREE, we
1327 		 * take care to release any swap space used to store
1328 		 * non-resident pages.
1329 		 */
1330 		if (m == NULL || pindex < m->pindex) {
1331 			/*
1332 			 * Optimize a common case: if the top-level object has
1333 			 * no backing object, we can skip over the non-resident
1334 			 * range in constant time.
1335 			 */
1336 			if (object->backing_object == NULL) {
1337 				tpindex = (m != NULL && m->pindex < end) ?
1338 				    m->pindex : end;
1339 				vm_object_madvise_freespace(object, advice,
1340 				    pindex, tpindex - pindex);
1341 				if ((pindex = tpindex) == end)
1342 					break;
1343 				goto next_page;
1344 			}
1345 
1346 			tpindex = pindex;
1347 			do {
1348 				vm_object_madvise_freespace(tobject, advice,
1349 				    tpindex, 1);
1350 				/*
1351 				 * Prepare to search the next object in the
1352 				 * chain.
1353 				 */
1354 				backing_object = tobject->backing_object;
1355 				if (backing_object == NULL)
1356 					goto next_pindex;
1357 				VM_OBJECT_WLOCK(backing_object);
1358 				tpindex +=
1359 				    OFF_TO_IDX(tobject->backing_object_offset);
1360 				if (tobject != object)
1361 					VM_OBJECT_WUNLOCK(tobject);
1362 				tobject = backing_object;
1363 				if (!vm_object_advice_applies(tobject, advice))
1364 					goto next_pindex;
1365 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
1366 			    NULL);
1367 		} else {
1368 next_page:
1369 			tm = m;
1370 			m = TAILQ_NEXT(m, listq);
1371 		}
1372 
1373 		/*
1374 		 * If the page is not in a normal state, skip it.  The page
1375 		 * can not be invalidated while the object lock is held.
1376 		 */
1377 		if (!vm_page_all_valid(tm) || vm_page_wired(tm))
1378 			goto next_pindex;
1379 		KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1380 		    ("vm_object_madvise: page %p is fictitious", tm));
1381 		KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1382 		    ("vm_object_madvise: page %p is not managed", tm));
1383 		if (vm_page_tryxbusy(tm) == 0) {
1384 			if (object != tobject)
1385 				VM_OBJECT_WUNLOCK(object);
1386 			if (advice == MADV_WILLNEED) {
1387 				/*
1388 				 * Reference the page before unlocking and
1389 				 * sleeping so that the page daemon is less
1390 				 * likely to reclaim it.
1391 				 */
1392 				vm_page_aflag_set(tm, PGA_REFERENCED);
1393 			}
1394 			vm_page_busy_sleep(tm, "madvpo", false);
1395   			goto relookup;
1396 		}
1397 		vm_page_advise(tm, advice);
1398 		vm_page_xunbusy(tm);
1399 		vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1400 next_pindex:
1401 		if (tobject != object)
1402 			VM_OBJECT_WUNLOCK(tobject);
1403 	}
1404 	VM_OBJECT_WUNLOCK(object);
1405 }
1406 
1407 /*
1408  *	vm_object_shadow:
1409  *
1410  *	Create a new object which is backed by the
1411  *	specified existing object range.  The source
1412  *	object reference is deallocated.
1413  *
1414  *	The new object and offset into that object
1415  *	are returned in the source parameters.
1416  */
1417 void
1418 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length,
1419     struct ucred *cred, bool shared)
1420 {
1421 	vm_object_t source;
1422 	vm_object_t result;
1423 
1424 	source = *object;
1425 
1426 	/*
1427 	 * Don't create the new object if the old object isn't shared.
1428 	 *
1429 	 * If we hold the only reference we can guarantee that it won't
1430 	 * increase while we have the map locked.  Otherwise the race is
1431 	 * harmless and we will end up with an extra shadow object that
1432 	 * will be collapsed later.
1433 	 */
1434 	if (source != NULL && source->ref_count == 1 &&
1435 	    (source->flags & OBJ_ANON) != 0)
1436 		return;
1437 
1438 	/*
1439 	 * Allocate a new object with the given length.
1440 	 */
1441 	result = vm_object_allocate_anon(atop(length), source, cred, length);
1442 
1443 	/*
1444 	 * Store the offset into the source object, and fix up the offset into
1445 	 * the new object.
1446 	 */
1447 	result->backing_object_offset = *offset;
1448 
1449 	if (shared || source != NULL) {
1450 		VM_OBJECT_WLOCK(result);
1451 
1452 		/*
1453 		 * The new object shadows the source object, adding a
1454 		 * reference to it.  Our caller changes his reference
1455 		 * to point to the new object, removing a reference to
1456 		 * the source object.  Net result: no change of
1457 		 * reference count, unless the caller needs to add one
1458 		 * more reference due to forking a shared map entry.
1459 		 */
1460 		if (shared) {
1461 			vm_object_reference_locked(result);
1462 			vm_object_clear_flag(result, OBJ_ONEMAPPING);
1463 		}
1464 
1465 		/*
1466 		 * Try to optimize the result object's page color when
1467 		 * shadowing in order to maintain page coloring
1468 		 * consistency in the combined shadowed object.
1469 		 */
1470 		if (source != NULL) {
1471 			vm_object_backing_insert(result, source);
1472 			result->domain = source->domain;
1473 #if VM_NRESERVLEVEL > 0
1474 			result->flags |= source->flags & OBJ_COLORED;
1475 			result->pg_color = (source->pg_color +
1476 			    OFF_TO_IDX(*offset)) & ((1 << (VM_NFREEORDER -
1477 			    1)) - 1);
1478 #endif
1479 		}
1480 		VM_OBJECT_WUNLOCK(result);
1481 	}
1482 
1483 	/*
1484 	 * Return the new things
1485 	 */
1486 	*offset = 0;
1487 	*object = result;
1488 }
1489 
1490 /*
1491  *	vm_object_split:
1492  *
1493  * Split the pages in a map entry into a new object.  This affords
1494  * easier removal of unused pages, and keeps object inheritance from
1495  * being a negative impact on memory usage.
1496  */
1497 void
1498 vm_object_split(vm_map_entry_t entry)
1499 {
1500 	vm_page_t m, m_busy, m_next;
1501 	vm_object_t orig_object, new_object, backing_object;
1502 	vm_pindex_t idx, offidxstart;
1503 	vm_size_t size;
1504 
1505 	orig_object = entry->object.vm_object;
1506 	KASSERT((orig_object->flags & OBJ_ONEMAPPING) != 0,
1507 	    ("vm_object_split:  Splitting object with multiple mappings."));
1508 	if ((orig_object->flags & OBJ_ANON) == 0)
1509 		return;
1510 	if (orig_object->ref_count <= 1)
1511 		return;
1512 	VM_OBJECT_WUNLOCK(orig_object);
1513 
1514 	offidxstart = OFF_TO_IDX(entry->offset);
1515 	size = atop(entry->end - entry->start);
1516 
1517 	/*
1518 	 * If swap_pager_copy() is later called, it will convert new_object
1519 	 * into a swap object.
1520 	 */
1521 	new_object = vm_object_allocate_anon(size, orig_object,
1522 	    orig_object->cred, ptoa(size));
1523 
1524 	/*
1525 	 * We must wait for the orig_object to complete any in-progress
1526 	 * collapse so that the swap blocks are stable below.  The
1527 	 * additional reference on backing_object by new object will
1528 	 * prevent further collapse operations until split completes.
1529 	 */
1530 	VM_OBJECT_WLOCK(orig_object);
1531 	vm_object_collapse_wait(orig_object);
1532 
1533 	/*
1534 	 * At this point, the new object is still private, so the order in
1535 	 * which the original and new objects are locked does not matter.
1536 	 */
1537 	VM_OBJECT_WLOCK(new_object);
1538 	new_object->domain = orig_object->domain;
1539 	backing_object = orig_object->backing_object;
1540 	if (backing_object != NULL) {
1541 		vm_object_backing_insert_ref(new_object, backing_object);
1542 		new_object->backing_object_offset =
1543 		    orig_object->backing_object_offset + entry->offset;
1544 	}
1545 	if (orig_object->cred != NULL) {
1546 		crhold(orig_object->cred);
1547 		KASSERT(orig_object->charge >= ptoa(size),
1548 		    ("orig_object->charge < 0"));
1549 		orig_object->charge -= ptoa(size);
1550 	}
1551 
1552 	/*
1553 	 * Mark the split operation so that swap_pager_getpages() knows
1554 	 * that the object is in transition.
1555 	 */
1556 	vm_object_set_flag(orig_object, OBJ_SPLIT);
1557 	m_busy = NULL;
1558 #ifdef INVARIANTS
1559 	idx = 0;
1560 #endif
1561 retry:
1562 	m = vm_page_find_least(orig_object, offidxstart);
1563 	KASSERT(m == NULL || idx <= m->pindex - offidxstart,
1564 	    ("%s: object %p was repopulated", __func__, orig_object));
1565 	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1566 	    m = m_next) {
1567 		m_next = TAILQ_NEXT(m, listq);
1568 
1569 		/*
1570 		 * We must wait for pending I/O to complete before we can
1571 		 * rename the page.
1572 		 *
1573 		 * We do not have to VM_PROT_NONE the page as mappings should
1574 		 * not be changed by this operation.
1575 		 */
1576 		if (vm_page_tryxbusy(m) == 0) {
1577 			VM_OBJECT_WUNLOCK(new_object);
1578 			vm_page_sleep_if_busy(m, "spltwt");
1579 			VM_OBJECT_WLOCK(new_object);
1580 			goto retry;
1581 		}
1582 
1583 		/*
1584 		 * The page was left invalid.  Likely placed there by
1585 		 * an incomplete fault.  Just remove and ignore.
1586 		 */
1587 		if (vm_page_none_valid(m)) {
1588 			if (vm_page_remove(m))
1589 				vm_page_free(m);
1590 			continue;
1591 		}
1592 
1593 		/* vm_page_rename() will dirty the page. */
1594 		if (vm_page_rename(m, new_object, idx)) {
1595 			vm_page_xunbusy(m);
1596 			VM_OBJECT_WUNLOCK(new_object);
1597 			VM_OBJECT_WUNLOCK(orig_object);
1598 			vm_radix_wait();
1599 			VM_OBJECT_WLOCK(orig_object);
1600 			VM_OBJECT_WLOCK(new_object);
1601 			goto retry;
1602 		}
1603 
1604 #if VM_NRESERVLEVEL > 0
1605 		/*
1606 		 * If some of the reservation's allocated pages remain with
1607 		 * the original object, then transferring the reservation to
1608 		 * the new object is neither particularly beneficial nor
1609 		 * particularly harmful as compared to leaving the reservation
1610 		 * with the original object.  If, however, all of the
1611 		 * reservation's allocated pages are transferred to the new
1612 		 * object, then transferring the reservation is typically
1613 		 * beneficial.  Determining which of these two cases applies
1614 		 * would be more costly than unconditionally renaming the
1615 		 * reservation.
1616 		 */
1617 		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1618 #endif
1619 
1620 		/*
1621 		 * orig_object's type may change while sleeping, so keep track
1622 		 * of the beginning of the busied range.
1623 		 */
1624 		if (orig_object->type != OBJT_SWAP)
1625 			vm_page_xunbusy(m);
1626 		else if (m_busy == NULL)
1627 			m_busy = m;
1628 	}
1629 	if (orig_object->type == OBJT_SWAP) {
1630 		/*
1631 		 * swap_pager_copy() can sleep, in which case the orig_object's
1632 		 * and new_object's locks are released and reacquired.
1633 		 */
1634 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1635 		if (m_busy != NULL)
1636 			TAILQ_FOREACH_FROM(m_busy, &new_object->memq, listq)
1637 				vm_page_xunbusy(m_busy);
1638 	}
1639 	vm_object_clear_flag(orig_object, OBJ_SPLIT);
1640 	VM_OBJECT_WUNLOCK(orig_object);
1641 	VM_OBJECT_WUNLOCK(new_object);
1642 	entry->object.vm_object = new_object;
1643 	entry->offset = 0LL;
1644 	vm_object_deallocate(orig_object);
1645 	VM_OBJECT_WLOCK(new_object);
1646 }
1647 
1648 static vm_page_t
1649 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p)
1650 {
1651 	vm_object_t backing_object;
1652 
1653 	VM_OBJECT_ASSERT_WLOCKED(object);
1654 	backing_object = object->backing_object;
1655 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1656 
1657 	KASSERT(p == NULL || p->object == object || p->object == backing_object,
1658 	    ("invalid ownership %p %p %p", p, object, backing_object));
1659 	/* The page is only NULL when rename fails. */
1660 	if (p == NULL) {
1661 		VM_OBJECT_WUNLOCK(object);
1662 		VM_OBJECT_WUNLOCK(backing_object);
1663 		vm_radix_wait();
1664 	} else {
1665 		if (p->object == object)
1666 			VM_OBJECT_WUNLOCK(backing_object);
1667 		else
1668 			VM_OBJECT_WUNLOCK(object);
1669 		vm_page_busy_sleep(p, "vmocol", false);
1670 	}
1671 	VM_OBJECT_WLOCK(object);
1672 	VM_OBJECT_WLOCK(backing_object);
1673 	return (TAILQ_FIRST(&backing_object->memq));
1674 }
1675 
1676 static bool
1677 vm_object_scan_all_shadowed(vm_object_t object)
1678 {
1679 	vm_object_t backing_object;
1680 	vm_page_t p, pp;
1681 	vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1682 
1683 	VM_OBJECT_ASSERT_WLOCKED(object);
1684 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1685 
1686 	backing_object = object->backing_object;
1687 
1688 	if ((backing_object->flags & OBJ_ANON) == 0)
1689 		return (false);
1690 
1691 	pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1692 	p = vm_page_find_least(backing_object, pi);
1693 	ps = swap_pager_find_least(backing_object, pi);
1694 
1695 	/*
1696 	 * Only check pages inside the parent object's range and
1697 	 * inside the parent object's mapping of the backing object.
1698 	 */
1699 	for (;; pi++) {
1700 		if (p != NULL && p->pindex < pi)
1701 			p = TAILQ_NEXT(p, listq);
1702 		if (ps < pi)
1703 			ps = swap_pager_find_least(backing_object, pi);
1704 		if (p == NULL && ps >= backing_object->size)
1705 			break;
1706 		else if (p == NULL)
1707 			pi = ps;
1708 		else
1709 			pi = MIN(p->pindex, ps);
1710 
1711 		new_pindex = pi - backing_offset_index;
1712 		if (new_pindex >= object->size)
1713 			break;
1714 
1715 		if (p != NULL) {
1716 			/*
1717 			 * If the backing object page is busy a
1718 			 * grandparent or older page may still be
1719 			 * undergoing CoW.  It is not safe to collapse
1720 			 * the backing object until it is quiesced.
1721 			 */
1722 			if (vm_page_tryxbusy(p) == 0)
1723 				return (false);
1724 
1725 			/*
1726 			 * We raced with the fault handler that left
1727 			 * newly allocated invalid page on the object
1728 			 * queue and retried.
1729 			 */
1730 			if (!vm_page_all_valid(p))
1731 				goto unbusy_ret;
1732 		}
1733 
1734 		/*
1735 		 * See if the parent has the page or if the parent's object
1736 		 * pager has the page.  If the parent has the page but the page
1737 		 * is not valid, the parent's object pager must have the page.
1738 		 *
1739 		 * If this fails, the parent does not completely shadow the
1740 		 * object and we might as well give up now.
1741 		 */
1742 		pp = vm_page_lookup(object, new_pindex);
1743 
1744 		/*
1745 		 * The valid check here is stable due to object lock
1746 		 * being required to clear valid and initiate paging.
1747 		 * Busy of p disallows fault handler to validate pp.
1748 		 */
1749 		if ((pp == NULL || vm_page_none_valid(pp)) &&
1750 		    !vm_pager_has_page(object, new_pindex, NULL, NULL))
1751 			goto unbusy_ret;
1752 		if (p != NULL)
1753 			vm_page_xunbusy(p);
1754 	}
1755 	return (true);
1756 
1757 unbusy_ret:
1758 	if (p != NULL)
1759 		vm_page_xunbusy(p);
1760 	return (false);
1761 }
1762 
1763 static void
1764 vm_object_collapse_scan(vm_object_t object)
1765 {
1766 	vm_object_t backing_object;
1767 	vm_page_t next, p, pp;
1768 	vm_pindex_t backing_offset_index, new_pindex;
1769 
1770 	VM_OBJECT_ASSERT_WLOCKED(object);
1771 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1772 
1773 	backing_object = object->backing_object;
1774 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1775 
1776 	/*
1777 	 * Our scan
1778 	 */
1779 	for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1780 		next = TAILQ_NEXT(p, listq);
1781 		new_pindex = p->pindex - backing_offset_index;
1782 
1783 		/*
1784 		 * Check for busy page
1785 		 */
1786 		if (vm_page_tryxbusy(p) == 0) {
1787 			next = vm_object_collapse_scan_wait(object, p);
1788 			continue;
1789 		}
1790 
1791 		KASSERT(object->backing_object == backing_object,
1792 		    ("vm_object_collapse_scan: backing object mismatch %p != %p",
1793 		    object->backing_object, backing_object));
1794 		KASSERT(p->object == backing_object,
1795 		    ("vm_object_collapse_scan: object mismatch %p != %p",
1796 		    p->object, backing_object));
1797 
1798 		if (p->pindex < backing_offset_index ||
1799 		    new_pindex >= object->size) {
1800 			if (backing_object->type == OBJT_SWAP)
1801 				swap_pager_freespace(backing_object, p->pindex,
1802 				    1);
1803 
1804 			KASSERT(!pmap_page_is_mapped(p),
1805 			    ("freeing mapped page %p", p));
1806 			if (vm_page_remove(p))
1807 				vm_page_free(p);
1808 			continue;
1809 		}
1810 
1811 		if (!vm_page_all_valid(p)) {
1812 			KASSERT(!pmap_page_is_mapped(p),
1813 			    ("freeing mapped page %p", p));
1814 			if (vm_page_remove(p))
1815 				vm_page_free(p);
1816 			continue;
1817 		}
1818 
1819 		pp = vm_page_lookup(object, new_pindex);
1820 		if (pp != NULL && vm_page_tryxbusy(pp) == 0) {
1821 			vm_page_xunbusy(p);
1822 			/*
1823 			 * The page in the parent is busy and possibly not
1824 			 * (yet) valid.  Until its state is finalized by the
1825 			 * busy bit owner, we can't tell whether it shadows the
1826 			 * original page.
1827 			 */
1828 			next = vm_object_collapse_scan_wait(object, pp);
1829 			continue;
1830 		}
1831 
1832 		if (pp != NULL && vm_page_none_valid(pp)) {
1833 			/*
1834 			 * The page was invalid in the parent.  Likely placed
1835 			 * there by an incomplete fault.  Just remove and
1836 			 * ignore.  p can replace it.
1837 			 */
1838 			if (vm_page_remove(pp))
1839 				vm_page_free(pp);
1840 			pp = NULL;
1841 		}
1842 
1843 		if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1844 			NULL)) {
1845 			/*
1846 			 * The page already exists in the parent OR swap exists
1847 			 * for this location in the parent.  Leave the parent's
1848 			 * page alone.  Destroy the original page from the
1849 			 * backing object.
1850 			 */
1851 			if (backing_object->type == OBJT_SWAP)
1852 				swap_pager_freespace(backing_object, p->pindex,
1853 				    1);
1854 			KASSERT(!pmap_page_is_mapped(p),
1855 			    ("freeing mapped page %p", p));
1856 			if (vm_page_remove(p))
1857 				vm_page_free(p);
1858 			if (pp != NULL)
1859 				vm_page_xunbusy(pp);
1860 			continue;
1861 		}
1862 
1863 		/*
1864 		 * Page does not exist in parent, rename the page from the
1865 		 * backing object to the main object.
1866 		 *
1867 		 * If the page was mapped to a process, it can remain mapped
1868 		 * through the rename.  vm_page_rename() will dirty the page.
1869 		 */
1870 		if (vm_page_rename(p, object, new_pindex)) {
1871 			vm_page_xunbusy(p);
1872 			next = vm_object_collapse_scan_wait(object, NULL);
1873 			continue;
1874 		}
1875 
1876 		/* Use the old pindex to free the right page. */
1877 		if (backing_object->type == OBJT_SWAP)
1878 			swap_pager_freespace(backing_object,
1879 			    new_pindex + backing_offset_index, 1);
1880 
1881 #if VM_NRESERVLEVEL > 0
1882 		/*
1883 		 * Rename the reservation.
1884 		 */
1885 		vm_reserv_rename(p, object, backing_object,
1886 		    backing_offset_index);
1887 #endif
1888 		vm_page_xunbusy(p);
1889 	}
1890 	return;
1891 }
1892 
1893 /*
1894  *	vm_object_collapse:
1895  *
1896  *	Collapse an object with the object backing it.
1897  *	Pages in the backing object are moved into the
1898  *	parent, and the backing object is deallocated.
1899  */
1900 void
1901 vm_object_collapse(vm_object_t object)
1902 {
1903 	vm_object_t backing_object, new_backing_object;
1904 
1905 	VM_OBJECT_ASSERT_WLOCKED(object);
1906 
1907 	while (TRUE) {
1908 		KASSERT((object->flags & (OBJ_DEAD | OBJ_ANON)) == OBJ_ANON,
1909 		    ("collapsing invalid object"));
1910 
1911 		/*
1912 		 * Wait for the backing_object to finish any pending
1913 		 * collapse so that the caller sees the shortest possible
1914 		 * shadow chain.
1915 		 */
1916 		backing_object = vm_object_backing_collapse_wait(object);
1917 		if (backing_object == NULL)
1918 			return;
1919 
1920 		KASSERT(object->ref_count > 0 &&
1921 		    object->ref_count > object->shadow_count,
1922 		    ("collapse with invalid ref %d or shadow %d count.",
1923 		    object->ref_count, object->shadow_count));
1924 		KASSERT((backing_object->flags &
1925 		    (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1926 		    ("vm_object_collapse: Backing object already collapsing."));
1927 		KASSERT((object->flags & (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1928 		    ("vm_object_collapse: object is already collapsing."));
1929 
1930 		/*
1931 		 * We know that we can either collapse the backing object if
1932 		 * the parent is the only reference to it, or (perhaps) have
1933 		 * the parent bypass the object if the parent happens to shadow
1934 		 * all the resident pages in the entire backing object.
1935 		 */
1936 		if (backing_object->ref_count == 1) {
1937 			KASSERT(backing_object->shadow_count == 1,
1938 			    ("vm_object_collapse: shadow_count: %d",
1939 			    backing_object->shadow_count));
1940 			vm_object_pip_add(object, 1);
1941 			vm_object_set_flag(object, OBJ_COLLAPSING);
1942 			vm_object_pip_add(backing_object, 1);
1943 			vm_object_set_flag(backing_object, OBJ_DEAD);
1944 
1945 			/*
1946 			 * If there is exactly one reference to the backing
1947 			 * object, we can collapse it into the parent.
1948 			 */
1949 			vm_object_collapse_scan(object);
1950 
1951 #if VM_NRESERVLEVEL > 0
1952 			/*
1953 			 * Break any reservations from backing_object.
1954 			 */
1955 			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1956 				vm_reserv_break_all(backing_object);
1957 #endif
1958 
1959 			/*
1960 			 * Move the pager from backing_object to object.
1961 			 */
1962 			if (backing_object->type == OBJT_SWAP) {
1963 				/*
1964 				 * swap_pager_copy() can sleep, in which case
1965 				 * the backing_object's and object's locks are
1966 				 * released and reacquired.
1967 				 * Since swap_pager_copy() is being asked to
1968 				 * destroy backing_object, it will change the
1969 				 * type to OBJT_DEFAULT.
1970 				 */
1971 				swap_pager_copy(
1972 				    backing_object,
1973 				    object,
1974 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1975 			}
1976 
1977 			/*
1978 			 * Object now shadows whatever backing_object did.
1979 			 */
1980 			vm_object_clear_flag(object, OBJ_COLLAPSING);
1981 			vm_object_backing_transfer(object, backing_object);
1982 			object->backing_object_offset +=
1983 			    backing_object->backing_object_offset;
1984 			VM_OBJECT_WUNLOCK(object);
1985 			vm_object_pip_wakeup(object);
1986 
1987 			/*
1988 			 * Discard backing_object.
1989 			 *
1990 			 * Since the backing object has no pages, no pager left,
1991 			 * and no object references within it, all that is
1992 			 * necessary is to dispose of it.
1993 			 */
1994 			KASSERT(backing_object->ref_count == 1, (
1995 "backing_object %p was somehow re-referenced during collapse!",
1996 			    backing_object));
1997 			vm_object_pip_wakeup(backing_object);
1998 			(void)refcount_release(&backing_object->ref_count);
1999 			vm_object_terminate(backing_object);
2000 			counter_u64_add(object_collapses, 1);
2001 			VM_OBJECT_WLOCK(object);
2002 		} else {
2003 			/*
2004 			 * If we do not entirely shadow the backing object,
2005 			 * there is nothing we can do so we give up.
2006 			 *
2007 			 * The object lock and backing_object lock must not
2008 			 * be dropped during this sequence.
2009 			 */
2010 			if (!vm_object_scan_all_shadowed(object)) {
2011 				VM_OBJECT_WUNLOCK(backing_object);
2012 				break;
2013 			}
2014 
2015 			/*
2016 			 * Make the parent shadow the next object in the
2017 			 * chain.  Deallocating backing_object will not remove
2018 			 * it, since its reference count is at least 2.
2019 			 */
2020 			vm_object_backing_remove_locked(object);
2021 			new_backing_object = backing_object->backing_object;
2022 			if (new_backing_object != NULL) {
2023 				vm_object_backing_insert_ref(object,
2024 				    new_backing_object);
2025 				object->backing_object_offset +=
2026 				    backing_object->backing_object_offset;
2027 			}
2028 
2029 			/*
2030 			 * Drop the reference count on backing_object. Since
2031 			 * its ref_count was at least 2, it will not vanish.
2032 			 */
2033 			(void)refcount_release(&backing_object->ref_count);
2034 			KASSERT(backing_object->ref_count >= 1, (
2035 "backing_object %p was somehow dereferenced during collapse!",
2036 			    backing_object));
2037 			VM_OBJECT_WUNLOCK(backing_object);
2038 			counter_u64_add(object_bypasses, 1);
2039 		}
2040 
2041 		/*
2042 		 * Try again with this object's new backing object.
2043 		 */
2044 	}
2045 }
2046 
2047 /*
2048  *	vm_object_page_remove:
2049  *
2050  *	For the given object, either frees or invalidates each of the
2051  *	specified pages.  In general, a page is freed.  However, if a page is
2052  *	wired for any reason other than the existence of a managed, wired
2053  *	mapping, then it may be invalidated but not removed from the object.
2054  *	Pages are specified by the given range ["start", "end") and the option
2055  *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
2056  *	extends from "start" to the end of the object.  If the option
2057  *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
2058  *	specified range are affected.  If the option OBJPR_NOTMAPPED is
2059  *	specified, then the pages within the specified range must have no
2060  *	mappings.  Otherwise, if this option is not specified, any mappings to
2061  *	the specified pages are removed before the pages are freed or
2062  *	invalidated.
2063  *
2064  *	In general, this operation should only be performed on objects that
2065  *	contain managed pages.  There are, however, two exceptions.  First, it
2066  *	is performed on the kernel and kmem objects by vm_map_entry_delete().
2067  *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
2068  *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
2069  *	not be specified and the option OBJPR_NOTMAPPED must be specified.
2070  *
2071  *	The object must be locked.
2072  */
2073 void
2074 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2075     int options)
2076 {
2077 	vm_page_t p, next;
2078 
2079 	VM_OBJECT_ASSERT_WLOCKED(object);
2080 	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
2081 	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
2082 	    ("vm_object_page_remove: illegal options for object %p", object));
2083 	if (object->resident_page_count == 0)
2084 		return;
2085 	vm_object_pip_add(object, 1);
2086 again:
2087 	p = vm_page_find_least(object, start);
2088 
2089 	/*
2090 	 * Here, the variable "p" is either (1) the page with the least pindex
2091 	 * greater than or equal to the parameter "start" or (2) NULL.
2092 	 */
2093 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2094 		next = TAILQ_NEXT(p, listq);
2095 
2096 		/*
2097 		 * If the page is wired for any reason besides the existence
2098 		 * of managed, wired mappings, then it cannot be freed.  For
2099 		 * example, fictitious pages, which represent device memory,
2100 		 * are inherently wired and cannot be freed.  They can,
2101 		 * however, be invalidated if the option OBJPR_CLEANONLY is
2102 		 * not specified.
2103 		 */
2104 		if (vm_page_tryxbusy(p) == 0) {
2105 			vm_page_sleep_if_busy(p, "vmopar");
2106 			goto again;
2107 		}
2108 		if (vm_page_wired(p)) {
2109 wired:
2110 			if ((options & OBJPR_NOTMAPPED) == 0 &&
2111 			    object->ref_count != 0)
2112 				pmap_remove_all(p);
2113 			if ((options & OBJPR_CLEANONLY) == 0) {
2114 				vm_page_invalid(p);
2115 				vm_page_undirty(p);
2116 			}
2117 			vm_page_xunbusy(p);
2118 			continue;
2119 		}
2120 		KASSERT((p->flags & PG_FICTITIOUS) == 0,
2121 		    ("vm_object_page_remove: page %p is fictitious", p));
2122 		if ((options & OBJPR_CLEANONLY) != 0 &&
2123 		    !vm_page_none_valid(p)) {
2124 			if ((options & OBJPR_NOTMAPPED) == 0 &&
2125 			    object->ref_count != 0 &&
2126 			    !vm_page_try_remove_write(p))
2127 				goto wired;
2128 			if (p->dirty != 0) {
2129 				vm_page_xunbusy(p);
2130 				continue;
2131 			}
2132 		}
2133 		if ((options & OBJPR_NOTMAPPED) == 0 &&
2134 		    object->ref_count != 0 && !vm_page_try_remove_all(p))
2135 			goto wired;
2136 		vm_page_free(p);
2137 	}
2138 	vm_object_pip_wakeup(object);
2139 
2140 	if (object->type == OBJT_SWAP) {
2141 		if (end == 0)
2142 			end = object->size;
2143 		swap_pager_freespace(object, start, end - start);
2144 	}
2145 }
2146 
2147 /*
2148  *	vm_object_page_noreuse:
2149  *
2150  *	For the given object, attempt to move the specified pages to
2151  *	the head of the inactive queue.  This bypasses regular LRU
2152  *	operation and allows the pages to be reused quickly under memory
2153  *	pressure.  If a page is wired for any reason, then it will not
2154  *	be queued.  Pages are specified by the range ["start", "end").
2155  *	As a special case, if "end" is zero, then the range extends from
2156  *	"start" to the end of the object.
2157  *
2158  *	This operation should only be performed on objects that
2159  *	contain non-fictitious, managed pages.
2160  *
2161  *	The object must be locked.
2162  */
2163 void
2164 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2165 {
2166 	vm_page_t p, next;
2167 
2168 	VM_OBJECT_ASSERT_LOCKED(object);
2169 	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2170 	    ("vm_object_page_noreuse: illegal object %p", object));
2171 	if (object->resident_page_count == 0)
2172 		return;
2173 	p = vm_page_find_least(object, start);
2174 
2175 	/*
2176 	 * Here, the variable "p" is either (1) the page with the least pindex
2177 	 * greater than or equal to the parameter "start" or (2) NULL.
2178 	 */
2179 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2180 		next = TAILQ_NEXT(p, listq);
2181 		vm_page_deactivate_noreuse(p);
2182 	}
2183 }
2184 
2185 /*
2186  *	Populate the specified range of the object with valid pages.  Returns
2187  *	TRUE if the range is successfully populated and FALSE otherwise.
2188  *
2189  *	Note: This function should be optimized to pass a larger array of
2190  *	pages to vm_pager_get_pages() before it is applied to a non-
2191  *	OBJT_DEVICE object.
2192  *
2193  *	The object must be locked.
2194  */
2195 boolean_t
2196 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2197 {
2198 	vm_page_t m;
2199 	vm_pindex_t pindex;
2200 	int rv;
2201 
2202 	VM_OBJECT_ASSERT_WLOCKED(object);
2203 	for (pindex = start; pindex < end; pindex++) {
2204 		rv = vm_page_grab_valid(&m, object, pindex, VM_ALLOC_NORMAL);
2205 		if (rv != VM_PAGER_OK)
2206 			break;
2207 
2208 		/*
2209 		 * Keep "m" busy because a subsequent iteration may unlock
2210 		 * the object.
2211 		 */
2212 	}
2213 	if (pindex > start) {
2214 		m = vm_page_lookup(object, start);
2215 		while (m != NULL && m->pindex < pindex) {
2216 			vm_page_xunbusy(m);
2217 			m = TAILQ_NEXT(m, listq);
2218 		}
2219 	}
2220 	return (pindex == end);
2221 }
2222 
2223 /*
2224  *	Routine:	vm_object_coalesce
2225  *	Function:	Coalesces two objects backing up adjoining
2226  *			regions of memory into a single object.
2227  *
2228  *	returns TRUE if objects were combined.
2229  *
2230  *	NOTE:	Only works at the moment if the second object is NULL -
2231  *		if it's not, which object do we lock first?
2232  *
2233  *	Parameters:
2234  *		prev_object	First object to coalesce
2235  *		prev_offset	Offset into prev_object
2236  *		prev_size	Size of reference to prev_object
2237  *		next_size	Size of reference to the second object
2238  *		reserved	Indicator that extension region has
2239  *				swap accounted for
2240  *
2241  *	Conditions:
2242  *	The object must *not* be locked.
2243  */
2244 boolean_t
2245 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2246     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2247 {
2248 	vm_pindex_t next_pindex;
2249 
2250 	if (prev_object == NULL)
2251 		return (TRUE);
2252 	if ((prev_object->flags & OBJ_ANON) == 0)
2253 		return (FALSE);
2254 
2255 	VM_OBJECT_WLOCK(prev_object);
2256 	/*
2257 	 * Try to collapse the object first.
2258 	 */
2259 	vm_object_collapse(prev_object);
2260 
2261 	/*
2262 	 * Can't coalesce if: . more than one reference . paged out . shadows
2263 	 * another object . has a copy elsewhere (any of which mean that the
2264 	 * pages not mapped to prev_entry may be in use anyway)
2265 	 */
2266 	if (prev_object->backing_object != NULL) {
2267 		VM_OBJECT_WUNLOCK(prev_object);
2268 		return (FALSE);
2269 	}
2270 
2271 	prev_size >>= PAGE_SHIFT;
2272 	next_size >>= PAGE_SHIFT;
2273 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2274 
2275 	if (prev_object->ref_count > 1 &&
2276 	    prev_object->size != next_pindex &&
2277 	    (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2278 		VM_OBJECT_WUNLOCK(prev_object);
2279 		return (FALSE);
2280 	}
2281 
2282 	/*
2283 	 * Account for the charge.
2284 	 */
2285 	if (prev_object->cred != NULL) {
2286 		/*
2287 		 * If prev_object was charged, then this mapping,
2288 		 * although not charged now, may become writable
2289 		 * later. Non-NULL cred in the object would prevent
2290 		 * swap reservation during enabling of the write
2291 		 * access, so reserve swap now. Failed reservation
2292 		 * cause allocation of the separate object for the map
2293 		 * entry, and swap reservation for this entry is
2294 		 * managed in appropriate time.
2295 		 */
2296 		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2297 		    prev_object->cred)) {
2298 			VM_OBJECT_WUNLOCK(prev_object);
2299 			return (FALSE);
2300 		}
2301 		prev_object->charge += ptoa(next_size);
2302 	}
2303 
2304 	/*
2305 	 * Remove any pages that may still be in the object from a previous
2306 	 * deallocation.
2307 	 */
2308 	if (next_pindex < prev_object->size) {
2309 		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2310 		    next_size, 0);
2311 #if 0
2312 		if (prev_object->cred != NULL) {
2313 			KASSERT(prev_object->charge >=
2314 			    ptoa(prev_object->size - next_pindex),
2315 			    ("object %p overcharged 1 %jx %jx", prev_object,
2316 				(uintmax_t)next_pindex, (uintmax_t)next_size));
2317 			prev_object->charge -= ptoa(prev_object->size -
2318 			    next_pindex);
2319 		}
2320 #endif
2321 	}
2322 
2323 	/*
2324 	 * Extend the object if necessary.
2325 	 */
2326 	if (next_pindex + next_size > prev_object->size)
2327 		prev_object->size = next_pindex + next_size;
2328 
2329 	VM_OBJECT_WUNLOCK(prev_object);
2330 	return (TRUE);
2331 }
2332 
2333 void
2334 vm_object_set_writeable_dirty(vm_object_t object)
2335 {
2336 
2337 	/* Only set for vnodes & tmpfs */
2338 	if (object->type != OBJT_VNODE &&
2339 	    (object->flags & OBJ_TMPFS_NODE) == 0)
2340 		return;
2341 	atomic_add_int(&object->generation, 1);
2342 }
2343 
2344 /*
2345  *	vm_object_unwire:
2346  *
2347  *	For each page offset within the specified range of the given object,
2348  *	find the highest-level page in the shadow chain and unwire it.  A page
2349  *	must exist at every page offset, and the highest-level page must be
2350  *	wired.
2351  */
2352 void
2353 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2354     uint8_t queue)
2355 {
2356 	vm_object_t tobject, t1object;
2357 	vm_page_t m, tm;
2358 	vm_pindex_t end_pindex, pindex, tpindex;
2359 	int depth, locked_depth;
2360 
2361 	KASSERT((offset & PAGE_MASK) == 0,
2362 	    ("vm_object_unwire: offset is not page aligned"));
2363 	KASSERT((length & PAGE_MASK) == 0,
2364 	    ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2365 	/* The wired count of a fictitious page never changes. */
2366 	if ((object->flags & OBJ_FICTITIOUS) != 0)
2367 		return;
2368 	pindex = OFF_TO_IDX(offset);
2369 	end_pindex = pindex + atop(length);
2370 again:
2371 	locked_depth = 1;
2372 	VM_OBJECT_RLOCK(object);
2373 	m = vm_page_find_least(object, pindex);
2374 	while (pindex < end_pindex) {
2375 		if (m == NULL || pindex < m->pindex) {
2376 			/*
2377 			 * The first object in the shadow chain doesn't
2378 			 * contain a page at the current index.  Therefore,
2379 			 * the page must exist in a backing object.
2380 			 */
2381 			tobject = object;
2382 			tpindex = pindex;
2383 			depth = 0;
2384 			do {
2385 				tpindex +=
2386 				    OFF_TO_IDX(tobject->backing_object_offset);
2387 				tobject = tobject->backing_object;
2388 				KASSERT(tobject != NULL,
2389 				    ("vm_object_unwire: missing page"));
2390 				if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2391 					goto next_page;
2392 				depth++;
2393 				if (depth == locked_depth) {
2394 					locked_depth++;
2395 					VM_OBJECT_RLOCK(tobject);
2396 				}
2397 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
2398 			    NULL);
2399 		} else {
2400 			tm = m;
2401 			m = TAILQ_NEXT(m, listq);
2402 		}
2403 		if (vm_page_trysbusy(tm) == 0) {
2404 			for (tobject = object; locked_depth >= 1;
2405 			    locked_depth--) {
2406 				t1object = tobject->backing_object;
2407 				if (tm->object != tobject)
2408 					VM_OBJECT_RUNLOCK(tobject);
2409 				tobject = t1object;
2410 			}
2411 			vm_page_busy_sleep(tm, "unwbo", true);
2412 			goto again;
2413 		}
2414 		vm_page_unwire(tm, queue);
2415 		vm_page_sunbusy(tm);
2416 next_page:
2417 		pindex++;
2418 	}
2419 	/* Release the accumulated object locks. */
2420 	for (tobject = object; locked_depth >= 1; locked_depth--) {
2421 		t1object = tobject->backing_object;
2422 		VM_OBJECT_RUNLOCK(tobject);
2423 		tobject = t1object;
2424 	}
2425 }
2426 
2427 /*
2428  * Return the vnode for the given object, or NULL if none exists.
2429  * For tmpfs objects, the function may return NULL if there is
2430  * no vnode allocated at the time of the call.
2431  */
2432 struct vnode *
2433 vm_object_vnode(vm_object_t object)
2434 {
2435 	struct vnode *vp;
2436 
2437 	VM_OBJECT_ASSERT_LOCKED(object);
2438 	if (object->type == OBJT_VNODE) {
2439 		vp = object->handle;
2440 		KASSERT(vp != NULL, ("%s: OBJT_VNODE has no vnode", __func__));
2441 	} else if (object->type == OBJT_SWAP &&
2442 	    (object->flags & OBJ_TMPFS) != 0) {
2443 		vp = object->un_pager.swp.swp_tmpfs;
2444 		KASSERT(vp != NULL, ("%s: OBJT_TMPFS has no vnode", __func__));
2445 	} else {
2446 		vp = NULL;
2447 	}
2448 	return (vp);
2449 }
2450 
2451 /*
2452  * Busy the vm object.  This prevents new pages belonging to the object from
2453  * becoming busy.  Existing pages persist as busy.  Callers are responsible
2454  * for checking page state before proceeding.
2455  */
2456 void
2457 vm_object_busy(vm_object_t obj)
2458 {
2459 
2460 	VM_OBJECT_ASSERT_LOCKED(obj);
2461 
2462 	blockcount_acquire(&obj->busy, 1);
2463 	/* The fence is required to order loads of page busy. */
2464 	atomic_thread_fence_acq_rel();
2465 }
2466 
2467 void
2468 vm_object_unbusy(vm_object_t obj)
2469 {
2470 
2471 	blockcount_release(&obj->busy, 1);
2472 }
2473 
2474 void
2475 vm_object_busy_wait(vm_object_t obj, const char *wmesg)
2476 {
2477 
2478 	VM_OBJECT_ASSERT_UNLOCKED(obj);
2479 
2480 	(void)blockcount_sleep(&obj->busy, NULL, wmesg, PVM);
2481 }
2482 
2483 /*
2484  * Return the kvme type of the given object.
2485  * If vpp is not NULL, set it to the object's vm_object_vnode() or NULL.
2486  */
2487 int
2488 vm_object_kvme_type(vm_object_t object, struct vnode **vpp)
2489 {
2490 
2491 	VM_OBJECT_ASSERT_LOCKED(object);
2492 	if (vpp != NULL)
2493 		*vpp = vm_object_vnode(object);
2494 	switch (object->type) {
2495 	case OBJT_DEFAULT:
2496 		return (KVME_TYPE_DEFAULT);
2497 	case OBJT_VNODE:
2498 		return (KVME_TYPE_VNODE);
2499 	case OBJT_SWAP:
2500 		if ((object->flags & OBJ_TMPFS_NODE) != 0)
2501 			return (KVME_TYPE_VNODE);
2502 		return (KVME_TYPE_SWAP);
2503 	case OBJT_DEVICE:
2504 		return (KVME_TYPE_DEVICE);
2505 	case OBJT_PHYS:
2506 		return (KVME_TYPE_PHYS);
2507 	case OBJT_DEAD:
2508 		return (KVME_TYPE_DEAD);
2509 	case OBJT_SG:
2510 		return (KVME_TYPE_SG);
2511 	case OBJT_MGTDEVICE:
2512 		return (KVME_TYPE_MGTDEVICE);
2513 	default:
2514 		return (KVME_TYPE_UNKNOWN);
2515 	}
2516 }
2517 
2518 static int
2519 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2520 {
2521 	struct kinfo_vmobject *kvo;
2522 	char *fullpath, *freepath;
2523 	struct vnode *vp;
2524 	struct vattr va;
2525 	vm_object_t obj;
2526 	vm_page_t m;
2527 	int count, error;
2528 
2529 	if (req->oldptr == NULL) {
2530 		/*
2531 		 * If an old buffer has not been provided, generate an
2532 		 * estimate of the space needed for a subsequent call.
2533 		 */
2534 		mtx_lock(&vm_object_list_mtx);
2535 		count = 0;
2536 		TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2537 			if (obj->type == OBJT_DEAD)
2538 				continue;
2539 			count++;
2540 		}
2541 		mtx_unlock(&vm_object_list_mtx);
2542 		return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2543 		    count * 11 / 10));
2544 	}
2545 
2546 	kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2547 	error = 0;
2548 
2549 	/*
2550 	 * VM objects are type stable and are never removed from the
2551 	 * list once added.  This allows us to safely read obj->object_list
2552 	 * after reacquiring the VM object lock.
2553 	 */
2554 	mtx_lock(&vm_object_list_mtx);
2555 	TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2556 		if (obj->type == OBJT_DEAD)
2557 			continue;
2558 		VM_OBJECT_RLOCK(obj);
2559 		if (obj->type == OBJT_DEAD) {
2560 			VM_OBJECT_RUNLOCK(obj);
2561 			continue;
2562 		}
2563 		mtx_unlock(&vm_object_list_mtx);
2564 		kvo->kvo_size = ptoa(obj->size);
2565 		kvo->kvo_resident = obj->resident_page_count;
2566 		kvo->kvo_ref_count = obj->ref_count;
2567 		kvo->kvo_shadow_count = obj->shadow_count;
2568 		kvo->kvo_memattr = obj->memattr;
2569 		kvo->kvo_active = 0;
2570 		kvo->kvo_inactive = 0;
2571 		TAILQ_FOREACH(m, &obj->memq, listq) {
2572 			/*
2573 			 * A page may belong to the object but be
2574 			 * dequeued and set to PQ_NONE while the
2575 			 * object lock is not held.  This makes the
2576 			 * reads of m->queue below racy, and we do not
2577 			 * count pages set to PQ_NONE.  However, this
2578 			 * sysctl is only meant to give an
2579 			 * approximation of the system anyway.
2580 			 */
2581 			if (m->a.queue == PQ_ACTIVE)
2582 				kvo->kvo_active++;
2583 			else if (m->a.queue == PQ_INACTIVE)
2584 				kvo->kvo_inactive++;
2585 		}
2586 
2587 		kvo->kvo_vn_fileid = 0;
2588 		kvo->kvo_vn_fsid = 0;
2589 		kvo->kvo_vn_fsid_freebsd11 = 0;
2590 		freepath = NULL;
2591 		fullpath = "";
2592 		kvo->kvo_type = vm_object_kvme_type(obj, &vp);
2593 		if (vp != NULL)
2594 			vref(vp);
2595 		VM_OBJECT_RUNLOCK(obj);
2596 		if (vp != NULL) {
2597 			vn_fullpath(vp, &fullpath, &freepath);
2598 			vn_lock(vp, LK_SHARED | LK_RETRY);
2599 			if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2600 				kvo->kvo_vn_fileid = va.va_fileid;
2601 				kvo->kvo_vn_fsid = va.va_fsid;
2602 				kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2603 								/* truncate */
2604 			}
2605 			vput(vp);
2606 		}
2607 
2608 		strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2609 		if (freepath != NULL)
2610 			free(freepath, M_TEMP);
2611 
2612 		/* Pack record size down */
2613 		kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2614 		    + strlen(kvo->kvo_path) + 1;
2615 		kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2616 		    sizeof(uint64_t));
2617 		error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2618 		mtx_lock(&vm_object_list_mtx);
2619 		if (error)
2620 			break;
2621 	}
2622 	mtx_unlock(&vm_object_list_mtx);
2623 	free(kvo, M_TEMP);
2624 	return (error);
2625 }
2626 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2627     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2628     "List of VM objects");
2629 
2630 #include "opt_ddb.h"
2631 #ifdef DDB
2632 #include <sys/kernel.h>
2633 
2634 #include <sys/cons.h>
2635 
2636 #include <ddb/ddb.h>
2637 
2638 static int
2639 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2640 {
2641 	vm_map_t tmpm;
2642 	vm_map_entry_t tmpe;
2643 	vm_object_t obj;
2644 
2645 	if (map == 0)
2646 		return 0;
2647 
2648 	if (entry == 0) {
2649 		VM_MAP_ENTRY_FOREACH(tmpe, map) {
2650 			if (_vm_object_in_map(map, object, tmpe)) {
2651 				return 1;
2652 			}
2653 		}
2654 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2655 		tmpm = entry->object.sub_map;
2656 		VM_MAP_ENTRY_FOREACH(tmpe, tmpm) {
2657 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2658 				return 1;
2659 			}
2660 		}
2661 	} else if ((obj = entry->object.vm_object) != NULL) {
2662 		for (; obj; obj = obj->backing_object)
2663 			if (obj == object) {
2664 				return 1;
2665 			}
2666 	}
2667 	return 0;
2668 }
2669 
2670 static int
2671 vm_object_in_map(vm_object_t object)
2672 {
2673 	struct proc *p;
2674 
2675 	/* sx_slock(&allproc_lock); */
2676 	FOREACH_PROC_IN_SYSTEM(p) {
2677 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2678 			continue;
2679 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2680 			/* sx_sunlock(&allproc_lock); */
2681 			return 1;
2682 		}
2683 	}
2684 	/* sx_sunlock(&allproc_lock); */
2685 	if (_vm_object_in_map(kernel_map, object, 0))
2686 		return 1;
2687 	return 0;
2688 }
2689 
2690 DB_SHOW_COMMAND(vmochk, vm_object_check)
2691 {
2692 	vm_object_t object;
2693 
2694 	/*
2695 	 * make sure that internal objs are in a map somewhere
2696 	 * and none have zero ref counts.
2697 	 */
2698 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2699 		if ((object->flags & OBJ_ANON) != 0) {
2700 			if (object->ref_count == 0) {
2701 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2702 					(long)object->size);
2703 			}
2704 			if (!vm_object_in_map(object)) {
2705 				db_printf(
2706 			"vmochk: internal obj is not in a map: "
2707 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2708 				    object->ref_count, (u_long)object->size,
2709 				    (u_long)object->size,
2710 				    (void *)object->backing_object);
2711 			}
2712 		}
2713 		if (db_pager_quit)
2714 			return;
2715 	}
2716 }
2717 
2718 /*
2719  *	vm_object_print:	[ debug ]
2720  */
2721 DB_SHOW_COMMAND(object, vm_object_print_static)
2722 {
2723 	/* XXX convert args. */
2724 	vm_object_t object = (vm_object_t)addr;
2725 	boolean_t full = have_addr;
2726 
2727 	vm_page_t p;
2728 
2729 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2730 #define	count	was_count
2731 
2732 	int count;
2733 
2734 	if (object == NULL)
2735 		return;
2736 
2737 	db_iprintf(
2738 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2739 	    object, (int)object->type, (uintmax_t)object->size,
2740 	    object->resident_page_count, object->ref_count, object->flags,
2741 	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2742 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2743 	    object->shadow_count,
2744 	    object->backing_object ? object->backing_object->ref_count : 0,
2745 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2746 
2747 	if (!full)
2748 		return;
2749 
2750 	db_indent += 2;
2751 	count = 0;
2752 	TAILQ_FOREACH(p, &object->memq, listq) {
2753 		if (count == 0)
2754 			db_iprintf("memory:=");
2755 		else if (count == 6) {
2756 			db_printf("\n");
2757 			db_iprintf(" ...");
2758 			count = 0;
2759 		} else
2760 			db_printf(",");
2761 		count++;
2762 
2763 		db_printf("(off=0x%jx,page=0x%jx)",
2764 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2765 
2766 		if (db_pager_quit)
2767 			break;
2768 	}
2769 	if (count != 0)
2770 		db_printf("\n");
2771 	db_indent -= 2;
2772 }
2773 
2774 /* XXX. */
2775 #undef count
2776 
2777 /* XXX need this non-static entry for calling from vm_map_print. */
2778 void
2779 vm_object_print(
2780         /* db_expr_t */ long addr,
2781 	boolean_t have_addr,
2782 	/* db_expr_t */ long count,
2783 	char *modif)
2784 {
2785 	vm_object_print_static(addr, have_addr, count, modif);
2786 }
2787 
2788 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2789 {
2790 	vm_object_t object;
2791 	vm_pindex_t fidx;
2792 	vm_paddr_t pa;
2793 	vm_page_t m, prev_m;
2794 	int rcount, nl, c;
2795 
2796 	nl = 0;
2797 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2798 		db_printf("new object: %p\n", (void *)object);
2799 		if (nl > 18) {
2800 			c = cngetc();
2801 			if (c != ' ')
2802 				return;
2803 			nl = 0;
2804 		}
2805 		nl++;
2806 		rcount = 0;
2807 		fidx = 0;
2808 		pa = -1;
2809 		TAILQ_FOREACH(m, &object->memq, listq) {
2810 			if (m->pindex > 128)
2811 				break;
2812 			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2813 			    prev_m->pindex + 1 != m->pindex) {
2814 				if (rcount) {
2815 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2816 						(long)fidx, rcount, (long)pa);
2817 					if (nl > 18) {
2818 						c = cngetc();
2819 						if (c != ' ')
2820 							return;
2821 						nl = 0;
2822 					}
2823 					nl++;
2824 					rcount = 0;
2825 				}
2826 			}
2827 			if (rcount &&
2828 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2829 				++rcount;
2830 				continue;
2831 			}
2832 			if (rcount) {
2833 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2834 					(long)fidx, rcount, (long)pa);
2835 				if (nl > 18) {
2836 					c = cngetc();
2837 					if (c != ' ')
2838 						return;
2839 					nl = 0;
2840 				}
2841 				nl++;
2842 			}
2843 			fidx = m->pindex;
2844 			pa = VM_PAGE_TO_PHYS(m);
2845 			rcount = 1;
2846 		}
2847 		if (rcount) {
2848 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2849 				(long)fidx, rcount, (long)pa);
2850 			if (nl > 18) {
2851 				c = cngetc();
2852 				if (c != ' ')
2853 					return;
2854 				nl = 0;
2855 			}
2856 			nl++;
2857 		}
2858 	}
2859 }
2860 #endif /* DDB */
2861