xref: /freebsd/sys/vm/vm_object.c (revision e026a48c34d396fe7d0e382673a69bc047c0bfca)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD$
65  */
66 
67 /*
68  *	Virtual memory object module.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/lock.h>
74 #include <sys/mman.h>
75 #include <sys/mount.h>
76 #include <sys/kernel.h>
77 #include <sys/sysctl.h>
78 #include <sys/mutex.h>
79 #include <sys/proc.h>		/* for curproc, pageproc */
80 #include <sys/socket.h>
81 #include <sys/vnode.h>
82 #include <sys/vmmeter.h>
83 #include <sys/sx.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/uma.h>
97 
98 #define EASY_SCAN_FACTOR       8
99 
100 #define MSYNC_FLUSH_HARDSEQ	0x01
101 #define MSYNC_FLUSH_SOFTSEQ	0x02
102 
103 /*
104  * msync / VM object flushing optimizations
105  */
106 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
107 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
108         CTLFLAG_RW, &msync_flush_flags, 0, "");
109 
110 static void	vm_object_qcollapse(vm_object_t object);
111 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
112 
113 /*
114  *	Virtual memory objects maintain the actual data
115  *	associated with allocated virtual memory.  A given
116  *	page of memory exists within exactly one object.
117  *
118  *	An object is only deallocated when all "references"
119  *	are given up.  Only one "reference" to a given
120  *	region of an object should be writeable.
121  *
122  *	Associated with each object is a list of all resident
123  *	memory pages belonging to that object; this list is
124  *	maintained by the "vm_page" module, and locked by the object's
125  *	lock.
126  *
127  *	Each object also records a "pager" routine which is
128  *	used to retrieve (and store) pages to the proper backing
129  *	storage.  In addition, objects may be backed by other
130  *	objects from which they were virtual-copied.
131  *
132  *	The only items within the object structure which are
133  *	modified after time of creation are:
134  *		reference count		locked by object's lock
135  *		pager routine		locked by object's lock
136  *
137  */
138 
139 struct object_q vm_object_list;
140 struct mtx vm_object_list_mtx;	/* lock for object list and count */
141 vm_object_t kernel_object;
142 vm_object_t kmem_object;
143 static struct vm_object kernel_object_store;
144 static struct vm_object kmem_object_store;
145 extern int vm_pageout_page_count;
146 
147 static long object_collapses;
148 static long object_bypasses;
149 static int next_index;
150 static uma_zone_t obj_zone;
151 #define VM_OBJECTS_INIT 256
152 
153 static void vm_object_zinit(void *mem, int size);
154 
155 #ifdef INVARIANTS
156 static void vm_object_zdtor(void *mem, int size, void *arg);
157 
158 static void
159 vm_object_zdtor(void *mem, int size, void *arg)
160 {
161 	vm_object_t object;
162 
163 	object = (vm_object_t)mem;
164 	KASSERT(object->paging_in_progress == 0,
165 	    ("object %p paging_in_progress = %d",
166 	    object, object->paging_in_progress));
167 	KASSERT(object->resident_page_count == 0,
168 	    ("object %p resident_page_count = %d",
169 	    object, object->resident_page_count));
170 	KASSERT(object->shadow_count == 0,
171 	    ("object %p shadow_count = %d",
172 	    object, object->shadow_count));
173 }
174 #endif
175 
176 static void
177 vm_object_zinit(void *mem, int size)
178 {
179 	vm_object_t object;
180 
181 	object = (vm_object_t)mem;
182 
183 	/* These are true for any object that has been freed */
184 	object->paging_in_progress = 0;
185 	object->resident_page_count = 0;
186 	object->shadow_count = 0;
187 }
188 
189 void
190 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
191 {
192 	static int object_hash_rand;
193 	int exp, incr;
194 
195 	TAILQ_INIT(&object->memq);
196 	TAILQ_INIT(&object->shadow_head);
197 
198 	object->type = type;
199 	object->size = size;
200 	object->ref_count = 1;
201 	object->flags = 0;
202 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
203 		vm_object_set_flag(object, OBJ_ONEMAPPING);
204 	if (size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
205 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
206 	else
207 		incr = size;
208 	do
209 		object->pg_color = next_index;
210 	while (!atomic_cmpset_int(&next_index, object->pg_color,
211 				  (object->pg_color + incr) & PQ_L2_MASK));
212 	object->handle = NULL;
213 	object->backing_object = NULL;
214 	object->backing_object_offset = (vm_ooffset_t) 0;
215 	/*
216 	 * Try to generate a number that will spread objects out in the
217 	 * hash table.  We 'wipe' new objects across the hash in 128 page
218 	 * increments plus 1 more to offset it a little more by the time
219 	 * it wraps around.
220 	 */
221 	do {
222 		exp = object_hash_rand;
223 		object->hash_rand = exp - 129;
224 	} while (!atomic_cmpset_int(&object_hash_rand, exp, object->hash_rand));
225 
226 	object->generation++;		/* atomicity needed? XXX */
227 
228 	mtx_lock(&vm_object_list_mtx);
229 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
230 	mtx_unlock(&vm_object_list_mtx);
231 }
232 
233 /*
234  *	vm_object_init:
235  *
236  *	Initialize the VM objects module.
237  */
238 void
239 vm_object_init(void)
240 {
241 	TAILQ_INIT(&vm_object_list);
242 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
243 
244 	kernel_object = &kernel_object_store;
245 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
246 	    kernel_object);
247 
248 	kmem_object = &kmem_object_store;
249 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
250 	    kmem_object);
251 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
252 #ifdef INVARIANTS
253 	    vm_object_zdtor,
254 #else
255 	    NULL,
256 #endif
257 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
258 	uma_prealloc(obj_zone, VM_OBJECTS_INIT);
259 }
260 
261 void
262 vm_object_init2(void)
263 {
264 }
265 
266 void
267 vm_object_set_flag(vm_object_t object, u_short bits)
268 {
269 	object->flags |= bits;
270 }
271 
272 void
273 vm_object_clear_flag(vm_object_t object, u_short bits)
274 {
275 	GIANT_REQUIRED;
276 	object->flags &= ~bits;
277 }
278 
279 void
280 vm_object_pip_add(vm_object_t object, short i)
281 {
282 	GIANT_REQUIRED;
283 	object->paging_in_progress += i;
284 }
285 
286 void
287 vm_object_pip_subtract(vm_object_t object, short i)
288 {
289 	GIANT_REQUIRED;
290 	object->paging_in_progress -= i;
291 }
292 
293 void
294 vm_object_pip_wakeup(vm_object_t object)
295 {
296 	GIANT_REQUIRED;
297 	object->paging_in_progress--;
298 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
299 		vm_object_clear_flag(object, OBJ_PIPWNT);
300 		wakeup(object);
301 	}
302 }
303 
304 void
305 vm_object_pip_wakeupn(vm_object_t object, short i)
306 {
307 	GIANT_REQUIRED;
308 	if (i)
309 		object->paging_in_progress -= i;
310 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
311 		vm_object_clear_flag(object, OBJ_PIPWNT);
312 		wakeup(object);
313 	}
314 }
315 
316 void
317 vm_object_pip_sleep(vm_object_t object, char *waitid)
318 {
319 	GIANT_REQUIRED;
320 	if (object->paging_in_progress) {
321 		int s = splvm();
322 		if (object->paging_in_progress) {
323 			vm_object_set_flag(object, OBJ_PIPWNT);
324 			tsleep(object, PVM, waitid, 0);
325 		}
326 		splx(s);
327 	}
328 }
329 
330 void
331 vm_object_pip_wait(vm_object_t object, char *waitid)
332 {
333 	GIANT_REQUIRED;
334 	while (object->paging_in_progress)
335 		vm_object_pip_sleep(object, waitid);
336 }
337 
338 /*
339  *	vm_object_allocate_wait
340  *
341  *	Return a new object with the given size, and give the user the
342  *	option of waiting for it to complete or failing if the needed
343  *	memory isn't available.
344  */
345 vm_object_t
346 vm_object_allocate_wait(objtype_t type, vm_pindex_t size, int flags)
347 {
348 	vm_object_t result;
349 
350 	result = (vm_object_t) uma_zalloc(obj_zone, flags);
351 
352 	if (result != NULL)
353 		_vm_object_allocate(type, size, result);
354 
355 	return (result);
356 }
357 
358 /*
359  *	vm_object_allocate:
360  *
361  *	Returns a new object with the given size.
362  */
363 vm_object_t
364 vm_object_allocate(objtype_t type, vm_pindex_t size)
365 {
366 	return(vm_object_allocate_wait(type, size, M_WAITOK));
367 }
368 
369 
370 /*
371  *	vm_object_reference:
372  *
373  *	Gets another reference to the given object.
374  */
375 void
376 vm_object_reference(vm_object_t object)
377 {
378 	if (object == NULL)
379 		return;
380 
381 	mtx_lock(&Giant);
382 #if 0
383 	/* object can be re-referenced during final cleaning */
384 	KASSERT(!(object->flags & OBJ_DEAD),
385 	    ("vm_object_reference: attempting to reference dead obj"));
386 #endif
387 
388 	object->ref_count++;
389 	if (object->type == OBJT_VNODE) {
390 		while (vget((struct vnode *) object->handle, LK_RETRY|LK_NOOBJ, curthread)) {
391 			printf("vm_object_reference: delay in getting object\n");
392 		}
393 	}
394 	mtx_unlock(&Giant);
395 }
396 
397 /*
398  * handle deallocating a object of type OBJT_VNODE
399  */
400 void
401 vm_object_vndeallocate(vm_object_t object)
402 {
403 	struct vnode *vp = (struct vnode *) object->handle;
404 
405 	GIANT_REQUIRED;
406 	KASSERT(object->type == OBJT_VNODE,
407 	    ("vm_object_vndeallocate: not a vnode object"));
408 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
409 #ifdef INVARIANTS
410 	if (object->ref_count == 0) {
411 		vprint("vm_object_vndeallocate", vp);
412 		panic("vm_object_vndeallocate: bad object reference count");
413 	}
414 #endif
415 
416 	object->ref_count--;
417 	if (object->ref_count == 0) {
418 		vp->v_flag &= ~VTEXT;
419 #ifdef ENABLE_VFS_IOOPT
420 		vm_object_clear_flag(object, OBJ_OPT);
421 #endif
422 	}
423 	/*
424 	 * vrele may need a vop lock
425 	 */
426 	vrele(vp);
427 }
428 
429 /*
430  *	vm_object_deallocate:
431  *
432  *	Release a reference to the specified object,
433  *	gained either through a vm_object_allocate
434  *	or a vm_object_reference call.  When all references
435  *	are gone, storage associated with this object
436  *	may be relinquished.
437  *
438  *	No object may be locked.
439  */
440 void
441 vm_object_deallocate(vm_object_t object)
442 {
443 	vm_object_t temp;
444 
445 	mtx_lock(&Giant);
446 	while (object != NULL) {
447 
448 		if (object->type == OBJT_VNODE) {
449 			vm_object_vndeallocate(object);
450 			mtx_unlock(&Giant);
451 			return;
452 		}
453 
454 		KASSERT(object->ref_count != 0,
455 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
456 
457 		/*
458 		 * If the reference count goes to 0 we start calling
459 		 * vm_object_terminate() on the object chain.
460 		 * A ref count of 1 may be a special case depending on the
461 		 * shadow count being 0 or 1.
462 		 */
463 		object->ref_count--;
464 		if (object->ref_count > 1) {
465 			mtx_unlock(&Giant);
466 			return;
467 		} else if (object->ref_count == 1) {
468 			if (object->shadow_count == 0) {
469 				vm_object_set_flag(object, OBJ_ONEMAPPING);
470 			} else if ((object->shadow_count == 1) &&
471 			    (object->handle == NULL) &&
472 			    (object->type == OBJT_DEFAULT ||
473 			     object->type == OBJT_SWAP)) {
474 				vm_object_t robject;
475 
476 				robject = TAILQ_FIRST(&object->shadow_head);
477 				KASSERT(robject != NULL,
478 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
479 					 object->ref_count,
480 					 object->shadow_count));
481 				if ((robject->handle == NULL) &&
482 				    (robject->type == OBJT_DEFAULT ||
483 				     robject->type == OBJT_SWAP)) {
484 
485 					robject->ref_count++;
486 
487 					while (
488 						robject->paging_in_progress ||
489 						object->paging_in_progress
490 					) {
491 						vm_object_pip_sleep(robject, "objde1");
492 						vm_object_pip_sleep(object, "objde2");
493 					}
494 
495 					if (robject->ref_count == 1) {
496 						robject->ref_count--;
497 						object = robject;
498 						goto doterm;
499 					}
500 
501 					object = robject;
502 					vm_object_collapse(object);
503 					continue;
504 				}
505 			}
506 			mtx_unlock(&Giant);
507 			return;
508 		}
509 doterm:
510 		temp = object->backing_object;
511 		if (temp) {
512 			TAILQ_REMOVE(&temp->shadow_head, object, shadow_list);
513 			temp->shadow_count--;
514 #ifdef ENABLE_VFS_IOOPT
515 			if (temp->ref_count == 0)
516 				vm_object_clear_flag(temp, OBJ_OPT);
517 #endif
518 			temp->generation++;
519 			object->backing_object = NULL;
520 		}
521 		/*
522 		 * Don't double-terminate, we could be in a termination
523 		 * recursion due to the terminate having to sync data
524 		 * to disk.
525 		 */
526 		if ((object->flags & OBJ_DEAD) == 0)
527 			vm_object_terminate(object);
528 		object = temp;
529 	}
530 	mtx_unlock(&Giant);
531 }
532 
533 /*
534  *	vm_object_terminate actually destroys the specified object, freeing
535  *	up all previously used resources.
536  *
537  *	The object must be locked.
538  *	This routine may block.
539  */
540 void
541 vm_object_terminate(vm_object_t object)
542 {
543 	vm_page_t p;
544 	int s;
545 
546 	GIANT_REQUIRED;
547 
548 	/*
549 	 * Make sure no one uses us.
550 	 */
551 	vm_object_set_flag(object, OBJ_DEAD);
552 
553 	/*
554 	 * wait for the pageout daemon to be done with the object
555 	 */
556 	vm_object_pip_wait(object, "objtrm");
557 
558 	KASSERT(!object->paging_in_progress,
559 		("vm_object_terminate: pageout in progress"));
560 
561 	/*
562 	 * Clean and free the pages, as appropriate. All references to the
563 	 * object are gone, so we don't need to lock it.
564 	 */
565 	if (object->type == OBJT_VNODE) {
566 		struct vnode *vp;
567 
568 #ifdef ENABLE_VFS_IOOPT
569 		/*
570 		 * Freeze optimized copies.
571 		 */
572 		vm_freeze_copyopts(object, 0, object->size);
573 #endif
574 		/*
575 		 * Clean pages and flush buffers.
576 		 */
577 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
578 
579 		vp = (struct vnode *) object->handle;
580 		vinvalbuf(vp, V_SAVE, NOCRED, NULL, 0, 0);
581 	}
582 
583 	KASSERT(object->ref_count == 0,
584 		("vm_object_terminate: object with references, ref_count=%d",
585 		object->ref_count));
586 
587 	/*
588 	 * Now free any remaining pages. For internal objects, this also
589 	 * removes them from paging queues. Don't free wired pages, just
590 	 * remove them from the object.
591 	 */
592 	s = splvm();
593 	while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
594 		KASSERT(!p->busy && (p->flags & PG_BUSY) == 0,
595 			("vm_object_terminate: freeing busy page %p "
596 			"p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
597 		if (p->wire_count == 0) {
598 			vm_page_busy(p);
599 			vm_page_free(p);
600 			cnt.v_pfree++;
601 		} else {
602 			vm_page_busy(p);
603 			vm_page_remove(p);
604 		}
605 	}
606 	splx(s);
607 
608 	/*
609 	 * Let the pager know object is dead.
610 	 */
611 	vm_pager_deallocate(object);
612 
613 	/*
614 	 * Remove the object from the global object list.
615 	 */
616 	mtx_lock(&vm_object_list_mtx);
617 	TAILQ_REMOVE(&vm_object_list, object, object_list);
618 	mtx_unlock(&vm_object_list_mtx);
619 
620 	wakeup(object);
621 
622 	/*
623 	 * Free the space for the object.
624 	 */
625 	uma_zfree(obj_zone, object);
626 }
627 
628 /*
629  *	vm_object_page_clean
630  *
631  *	Clean all dirty pages in the specified range of object.  Leaves page
632  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
633  *	write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
634  *	leaving the object dirty.
635  *
636  *	Odd semantics: if start == end, we clean everything.
637  *
638  *	The object must be locked.
639  */
640 void
641 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
642 {
643 	vm_page_t p, np;
644 	vm_pindex_t tstart, tend;
645 	vm_pindex_t pi;
646 	struct vnode *vp;
647 	int clearobjflags;
648 	int pagerflags;
649 	int curgeneration;
650 
651 	GIANT_REQUIRED;
652 
653 	if (object->type != OBJT_VNODE ||
654 		(object->flags & OBJ_MIGHTBEDIRTY) == 0)
655 		return;
656 
657 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : 0;
658 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
659 
660 	vp = object->handle;
661 
662 	vm_object_set_flag(object, OBJ_CLEANING);
663 
664 	tstart = start;
665 	if (end == 0) {
666 		tend = object->size;
667 	} else {
668 		tend = end;
669 	}
670 
671 	/*
672 	 * If the caller is smart and only msync()s a range he knows is
673 	 * dirty, we may be able to avoid an object scan.  This results in
674 	 * a phenominal improvement in performance.  We cannot do this
675 	 * as a matter of course because the object may be huge - e.g.
676 	 * the size might be in the gigabytes or terrabytes.
677 	 */
678 	if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
679 		vm_pindex_t tscan;
680 		int scanlimit;
681 		int scanreset;
682 
683 		scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
684 		if (scanreset < 16)
685 			scanreset = 16;
686 
687 		scanlimit = scanreset;
688 		tscan = tstart;
689 		while (tscan < tend) {
690 			curgeneration = object->generation;
691 			p = vm_page_lookup(object, tscan);
692 			if (p == NULL || p->valid == 0 ||
693 			    (p->queue - p->pc) == PQ_CACHE) {
694 				if (--scanlimit == 0)
695 					break;
696 				++tscan;
697 				continue;
698 			}
699 			vm_page_test_dirty(p);
700 			if ((p->dirty & p->valid) == 0) {
701 				if (--scanlimit == 0)
702 					break;
703 				++tscan;
704 				continue;
705 			}
706 			/*
707 			 * If we have been asked to skip nosync pages and
708 			 * this is a nosync page, we can't continue.
709 			 */
710 			if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
711 				if (--scanlimit == 0)
712 					break;
713 				++tscan;
714 				continue;
715 			}
716 			scanlimit = scanreset;
717 
718 			/*
719 			 * This returns 0 if it was unable to busy the first
720 			 * page (i.e. had to sleep).
721 			 */
722 			tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
723 		}
724 
725 		/*
726 		 * If everything was dirty and we flushed it successfully,
727 		 * and the requested range is not the entire object, we
728 		 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
729 		 * return immediately.
730 		 */
731 		if (tscan >= tend && (tstart || tend < object->size)) {
732 			vm_object_clear_flag(object, OBJ_CLEANING);
733 			return;
734 		}
735 	}
736 
737 	/*
738 	 * Generally set CLEANCHK interlock and make the page read-only so
739 	 * we can then clear the object flags.
740 	 *
741 	 * However, if this is a nosync mmap then the object is likely to
742 	 * stay dirty so do not mess with the page and do not clear the
743 	 * object flags.
744 	 */
745 	clearobjflags = 1;
746 
747 	TAILQ_FOREACH(p, &object->memq, listq) {
748 		vm_page_flag_set(p, PG_CLEANCHK);
749 		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
750 			clearobjflags = 0;
751 		else
752 			vm_page_protect(p, VM_PROT_READ);
753 	}
754 
755 	if (clearobjflags && (tstart == 0) && (tend == object->size)) {
756 		struct vnode *vp;
757 
758 		vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
759 		if (object->type == OBJT_VNODE &&
760 		    (vp = (struct vnode *)object->handle) != NULL) {
761 			if (vp->v_flag & VOBJDIRTY) {
762 				mtx_lock(&vp->v_interlock);
763 				vp->v_flag &= ~VOBJDIRTY;
764 				mtx_unlock(&vp->v_interlock);
765 			}
766 		}
767 	}
768 
769 rescan:
770 	curgeneration = object->generation;
771 
772 	for (p = TAILQ_FIRST(&object->memq); p; p = np) {
773 		int n;
774 
775 		np = TAILQ_NEXT(p, listq);
776 
777 again:
778 		pi = p->pindex;
779 		if (((p->flags & PG_CLEANCHK) == 0) ||
780 			(pi < tstart) || (pi >= tend) ||
781 			(p->valid == 0) ||
782 			((p->queue - p->pc) == PQ_CACHE)) {
783 			vm_page_flag_clear(p, PG_CLEANCHK);
784 			continue;
785 		}
786 
787 		vm_page_test_dirty(p);
788 		if ((p->dirty & p->valid) == 0) {
789 			vm_page_flag_clear(p, PG_CLEANCHK);
790 			continue;
791 		}
792 
793 		/*
794 		 * If we have been asked to skip nosync pages and this is a
795 		 * nosync page, skip it.  Note that the object flags were
796 		 * not cleared in this case so we do not have to set them.
797 		 */
798 		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
799 			vm_page_flag_clear(p, PG_CLEANCHK);
800 			continue;
801 		}
802 
803 		n = vm_object_page_collect_flush(object, p,
804 			curgeneration, pagerflags);
805 		if (n == 0)
806 			goto rescan;
807 
808 		if (object->generation != curgeneration)
809 			goto rescan;
810 
811 		/*
812 		 * Try to optimize the next page.  If we can't we pick up
813 		 * our (random) scan where we left off.
814 		 */
815 		if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
816 			if ((p = vm_page_lookup(object, pi + n)) != NULL)
817 				goto again;
818 		}
819 	}
820 
821 #if 0
822 	VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
823 #endif
824 
825 	vm_object_clear_flag(object, OBJ_CLEANING);
826 	return;
827 }
828 
829 static int
830 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
831 {
832 	int runlen;
833 	int s;
834 	int maxf;
835 	int chkb;
836 	int maxb;
837 	int i;
838 	vm_pindex_t pi;
839 	vm_page_t maf[vm_pageout_page_count];
840 	vm_page_t mab[vm_pageout_page_count];
841 	vm_page_t ma[vm_pageout_page_count];
842 
843 	s = splvm();
844 	pi = p->pindex;
845 	while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
846 		if (object->generation != curgeneration) {
847 			splx(s);
848 			return(0);
849 		}
850 	}
851 
852 	maxf = 0;
853 	for(i = 1; i < vm_pageout_page_count; i++) {
854 		vm_page_t tp;
855 
856 		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
857 			if ((tp->flags & PG_BUSY) ||
858 				(tp->flags & PG_CLEANCHK) == 0 ||
859 				(tp->busy != 0))
860 				break;
861 			if((tp->queue - tp->pc) == PQ_CACHE) {
862 				vm_page_flag_clear(tp, PG_CLEANCHK);
863 				break;
864 			}
865 			vm_page_test_dirty(tp);
866 			if ((tp->dirty & tp->valid) == 0) {
867 				vm_page_flag_clear(tp, PG_CLEANCHK);
868 				break;
869 			}
870 			maf[ i - 1 ] = tp;
871 			maxf++;
872 			continue;
873 		}
874 		break;
875 	}
876 
877 	maxb = 0;
878 	chkb = vm_pageout_page_count -  maxf;
879 	if (chkb) {
880 		for(i = 1; i < chkb;i++) {
881 			vm_page_t tp;
882 
883 			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
884 				if ((tp->flags & PG_BUSY) ||
885 					(tp->flags & PG_CLEANCHK) == 0 ||
886 					(tp->busy != 0))
887 					break;
888 				if ((tp->queue - tp->pc) == PQ_CACHE) {
889 					vm_page_flag_clear(tp, PG_CLEANCHK);
890 					break;
891 				}
892 				vm_page_test_dirty(tp);
893 				if ((tp->dirty & tp->valid) == 0) {
894 					vm_page_flag_clear(tp, PG_CLEANCHK);
895 					break;
896 				}
897 				mab[ i - 1 ] = tp;
898 				maxb++;
899 				continue;
900 			}
901 			break;
902 		}
903 	}
904 
905 	for(i = 0; i < maxb; i++) {
906 		int index = (maxb - i) - 1;
907 		ma[index] = mab[i];
908 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
909 	}
910 	vm_page_flag_clear(p, PG_CLEANCHK);
911 	ma[maxb] = p;
912 	for(i = 0; i < maxf; i++) {
913 		int index = (maxb + i) + 1;
914 		ma[index] = maf[i];
915 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
916 	}
917 	runlen = maxb + maxf + 1;
918 
919 	splx(s);
920 	vm_pageout_flush(ma, runlen, pagerflags);
921 	for (i = 0; i < runlen; i++) {
922 		if (ma[i]->valid & ma[i]->dirty) {
923 			vm_page_protect(ma[i], VM_PROT_READ);
924 			vm_page_flag_set(ma[i], PG_CLEANCHK);
925 
926 			/*
927 			 * maxf will end up being the actual number of pages
928 			 * we wrote out contiguously, non-inclusive of the
929 			 * first page.  We do not count look-behind pages.
930 			 */
931 			if (i >= maxb + 1 && (maxf > i - maxb - 1))
932 				maxf = i - maxb - 1;
933 		}
934 	}
935 	return(maxf + 1);
936 }
937 
938 #ifdef ENABLE_VFS_IOOPT
939 /*
940  * Same as vm_object_pmap_copy, except range checking really
941  * works, and is meant for small sections of an object.
942  *
943  * This code protects resident pages by making them read-only
944  * and is typically called on a fork or split when a page
945  * is converted to copy-on-write.
946  *
947  * NOTE: If the page is already at VM_PROT_NONE, calling
948  * vm_page_protect will have no effect.
949  */
950 void
951 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
952 {
953 	vm_pindex_t idx;
954 	vm_page_t p;
955 
956 	GIANT_REQUIRED;
957 
958 	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
959 		return;
960 
961 	for (idx = start; idx < end; idx++) {
962 		p = vm_page_lookup(object, idx);
963 		if (p == NULL)
964 			continue;
965 		vm_page_protect(p, VM_PROT_READ);
966 	}
967 }
968 #endif
969 
970 /*
971  *	vm_object_pmap_remove:
972  *
973  *	Removes all physical pages in the specified
974  *	object range from all physical maps.
975  *
976  *	The object must *not* be locked.
977  */
978 void
979 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
980 {
981 	vm_page_t p;
982 
983 	GIANT_REQUIRED;
984 	if (object == NULL)
985 		return;
986 	TAILQ_FOREACH(p, &object->memq, listq) {
987 		if (p->pindex >= start && p->pindex < end)
988 			vm_page_protect(p, VM_PROT_NONE);
989 	}
990 	if ((start == 0) && (object->size == end))
991 		vm_object_clear_flag(object, OBJ_WRITEABLE);
992 }
993 
994 /*
995  *	vm_object_madvise:
996  *
997  *	Implements the madvise function at the object/page level.
998  *
999  *	MADV_WILLNEED	(any object)
1000  *
1001  *	    Activate the specified pages if they are resident.
1002  *
1003  *	MADV_DONTNEED	(any object)
1004  *
1005  *	    Deactivate the specified pages if they are resident.
1006  *
1007  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1008  *			 OBJ_ONEMAPPING only)
1009  *
1010  *	    Deactivate and clean the specified pages if they are
1011  *	    resident.  This permits the process to reuse the pages
1012  *	    without faulting or the kernel to reclaim the pages
1013  *	    without I/O.
1014  */
1015 void
1016 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1017 {
1018 	vm_pindex_t end, tpindex;
1019 	vm_object_t tobject;
1020 	vm_page_t m;
1021 
1022 	if (object == NULL)
1023 		return;
1024 
1025 	mtx_lock(&Giant);
1026 
1027 	end = pindex + count;
1028 
1029 	/*
1030 	 * Locate and adjust resident pages
1031 	 */
1032 	for (; pindex < end; pindex += 1) {
1033 relookup:
1034 		tobject = object;
1035 		tpindex = pindex;
1036 shadowlookup:
1037 		/*
1038 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1039 		 * and those pages must be OBJ_ONEMAPPING.
1040 		 */
1041 		if (advise == MADV_FREE) {
1042 			if ((tobject->type != OBJT_DEFAULT &&
1043 			     tobject->type != OBJT_SWAP) ||
1044 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1045 				continue;
1046 			}
1047 		}
1048 
1049 		m = vm_page_lookup(tobject, tpindex);
1050 
1051 		if (m == NULL) {
1052 			/*
1053 			 * There may be swap even if there is no backing page
1054 			 */
1055 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1056 				swap_pager_freespace(tobject, tpindex, 1);
1057 
1058 			/*
1059 			 * next object
1060 			 */
1061 			tobject = tobject->backing_object;
1062 			if (tobject == NULL)
1063 				continue;
1064 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1065 			goto shadowlookup;
1066 		}
1067 
1068 		/*
1069 		 * If the page is busy or not in a normal active state,
1070 		 * we skip it.  If the page is not managed there are no
1071 		 * page queues to mess with.  Things can break if we mess
1072 		 * with pages in any of the below states.
1073 		 */
1074 		if (
1075 		    m->hold_count ||
1076 		    m->wire_count ||
1077 		    (m->flags & PG_UNMANAGED) ||
1078 		    m->valid != VM_PAGE_BITS_ALL
1079 		) {
1080 			continue;
1081 		}
1082 
1083  		if (vm_page_sleep_busy(m, TRUE, "madvpo"))
1084   			goto relookup;
1085 
1086 		if (advise == MADV_WILLNEED) {
1087 			vm_page_activate(m);
1088 		} else if (advise == MADV_DONTNEED) {
1089 			vm_page_dontneed(m);
1090 		} else if (advise == MADV_FREE) {
1091 			/*
1092 			 * Mark the page clean.  This will allow the page
1093 			 * to be freed up by the system.  However, such pages
1094 			 * are often reused quickly by malloc()/free()
1095 			 * so we do not do anything that would cause
1096 			 * a page fault if we can help it.
1097 			 *
1098 			 * Specifically, we do not try to actually free
1099 			 * the page now nor do we try to put it in the
1100 			 * cache (which would cause a page fault on reuse).
1101 			 *
1102 			 * But we do make the page is freeable as we
1103 			 * can without actually taking the step of unmapping
1104 			 * it.
1105 			 */
1106 			pmap_clear_modify(m);
1107 			m->dirty = 0;
1108 			m->act_count = 0;
1109 			vm_page_dontneed(m);
1110 			if (tobject->type == OBJT_SWAP)
1111 				swap_pager_freespace(tobject, tpindex, 1);
1112 		}
1113 	}
1114 	mtx_unlock(&Giant);
1115 }
1116 
1117 /*
1118  *	vm_object_shadow:
1119  *
1120  *	Create a new object which is backed by the
1121  *	specified existing object range.  The source
1122  *	object reference is deallocated.
1123  *
1124  *	The new object and offset into that object
1125  *	are returned in the source parameters.
1126  */
1127 void
1128 vm_object_shadow(
1129 	vm_object_t *object,	/* IN/OUT */
1130 	vm_ooffset_t *offset,	/* IN/OUT */
1131 	vm_size_t length)
1132 {
1133 	vm_object_t source;
1134 	vm_object_t result;
1135 
1136 	source = *object;
1137 
1138 	mtx_lock(&Giant);
1139 	/*
1140 	 * Don't create the new object if the old object isn't shared.
1141 	 */
1142 	if (source != NULL &&
1143 	    source->ref_count == 1 &&
1144 	    source->handle == NULL &&
1145 	    (source->type == OBJT_DEFAULT ||
1146 	     source->type == OBJT_SWAP)) {
1147 		mtx_unlock(&Giant);
1148 		return;
1149 	}
1150 
1151 	/*
1152 	 * Allocate a new object with the given length
1153 	 */
1154 	result = vm_object_allocate(OBJT_DEFAULT, length);
1155 	KASSERT(result != NULL, ("vm_object_shadow: no object for shadowing"));
1156 
1157 	/*
1158 	 * The new object shadows the source object, adding a reference to it.
1159 	 * Our caller changes his reference to point to the new object,
1160 	 * removing a reference to the source object.  Net result: no change
1161 	 * of reference count.
1162 	 *
1163 	 * Try to optimize the result object's page color when shadowing
1164 	 * in order to maintain page coloring consistency in the combined
1165 	 * shadowed object.
1166 	 */
1167 	result->backing_object = source;
1168 	if (source) {
1169 		TAILQ_INSERT_TAIL(&source->shadow_head, result, shadow_list);
1170 		source->shadow_count++;
1171 		source->generation++;
1172 		if (length < source->size)
1173 			length = source->size;
1174 		if (length > PQ_L2_SIZE / 3 + PQ_PRIME1 ||
1175 		    source->generation > 1)
1176 			length = PQ_L2_SIZE / 3 + PQ_PRIME1;
1177 		result->pg_color = (source->pg_color +
1178 		    length * source->generation) & PQ_L2_MASK;
1179 		next_index = (result->pg_color + PQ_L2_SIZE / 3 + PQ_PRIME1) &
1180 		    PQ_L2_MASK;
1181 	}
1182 
1183 	/*
1184 	 * Store the offset into the source object, and fix up the offset into
1185 	 * the new object.
1186 	 */
1187 	result->backing_object_offset = *offset;
1188 
1189 	/*
1190 	 * Return the new things
1191 	 */
1192 	*offset = 0;
1193 	*object = result;
1194 
1195 	mtx_unlock(&Giant);
1196 }
1197 
1198 /*
1199  *	vm_object_split:
1200  *
1201  * Split the pages in a map entry into a new object.  This affords
1202  * easier removal of unused pages, and keeps object inheritance from
1203  * being a negative impact on memory usage.
1204  */
1205 void
1206 vm_object_split(vm_map_entry_t entry)
1207 {
1208 	vm_page_t m;
1209 	vm_object_t orig_object, new_object, source;
1210 	vm_offset_t s, e;
1211 	vm_pindex_t offidxstart, offidxend;
1212 	vm_size_t idx, size;
1213 	vm_ooffset_t offset;
1214 
1215 	GIANT_REQUIRED;
1216 
1217 	orig_object = entry->object.vm_object;
1218 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1219 		return;
1220 	if (orig_object->ref_count <= 1)
1221 		return;
1222 
1223 	offset = entry->offset;
1224 	s = entry->start;
1225 	e = entry->end;
1226 
1227 	offidxstart = OFF_TO_IDX(offset);
1228 	offidxend = offidxstart + OFF_TO_IDX(e - s);
1229 	size = offidxend - offidxstart;
1230 
1231 	new_object = vm_pager_allocate(orig_object->type,
1232 		NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
1233 	if (new_object == NULL)
1234 		return;
1235 
1236 	source = orig_object->backing_object;
1237 	if (source != NULL) {
1238 		vm_object_reference(source);	/* Referenced by new_object */
1239 		TAILQ_INSERT_TAIL(&source->shadow_head,
1240 				  new_object, shadow_list);
1241 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1242 		new_object->backing_object_offset =
1243 			orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
1244 		new_object->backing_object = source;
1245 		source->shadow_count++;
1246 		source->generation++;
1247 	}
1248 	for (idx = 0; idx < size; idx++) {
1249 	retry:
1250 		m = vm_page_lookup(orig_object, offidxstart + idx);
1251 		if (m == NULL)
1252 			continue;
1253 
1254 		/*
1255 		 * We must wait for pending I/O to complete before we can
1256 		 * rename the page.
1257 		 *
1258 		 * We do not have to VM_PROT_NONE the page as mappings should
1259 		 * not be changed by this operation.
1260 		 */
1261 		if (vm_page_sleep_busy(m, TRUE, "spltwt"))
1262 			goto retry;
1263 
1264 		vm_page_busy(m);
1265 		vm_page_rename(m, new_object, idx);
1266 		/* page automatically made dirty by rename and cache handled */
1267 		vm_page_busy(m);
1268 	}
1269 	if (orig_object->type == OBJT_SWAP) {
1270 		vm_object_pip_add(orig_object, 1);
1271 		/*
1272 		 * copy orig_object pages into new_object
1273 		 * and destroy unneeded pages in
1274 		 * shadow object.
1275 		 */
1276 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1277 		vm_object_pip_wakeup(orig_object);
1278 	}
1279 	for (idx = 0; idx < size; idx++) {
1280 		m = vm_page_lookup(new_object, idx);
1281 		if (m != NULL)
1282 			vm_page_wakeup(m);
1283 	}
1284 	entry->object.vm_object = new_object;
1285 	entry->offset = 0LL;
1286 	vm_object_deallocate(orig_object);
1287 }
1288 
1289 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1290 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1291 #define	OBSC_COLLAPSE_WAIT	0x0004
1292 
1293 static __inline int
1294 vm_object_backing_scan(vm_object_t object, int op)
1295 {
1296 	int s;
1297 	int r = 1;
1298 	vm_page_t p;
1299 	vm_object_t backing_object;
1300 	vm_pindex_t backing_offset_index;
1301 
1302 	s = splvm();
1303 	GIANT_REQUIRED;
1304 
1305 	backing_object = object->backing_object;
1306 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1307 
1308 	/*
1309 	 * Initial conditions
1310 	 */
1311 	if (op & OBSC_TEST_ALL_SHADOWED) {
1312 		/*
1313 		 * We do not want to have to test for the existence of
1314 		 * swap pages in the backing object.  XXX but with the
1315 		 * new swapper this would be pretty easy to do.
1316 		 *
1317 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1318 		 * been ZFOD faulted yet?  If we do not test for this, the
1319 		 * shadow test may succeed! XXX
1320 		 */
1321 		if (backing_object->type != OBJT_DEFAULT) {
1322 			splx(s);
1323 			return (0);
1324 		}
1325 	}
1326 	if (op & OBSC_COLLAPSE_WAIT) {
1327 		vm_object_set_flag(backing_object, OBJ_DEAD);
1328 	}
1329 
1330 	/*
1331 	 * Our scan
1332 	 */
1333 	p = TAILQ_FIRST(&backing_object->memq);
1334 	while (p) {
1335 		vm_page_t next = TAILQ_NEXT(p, listq);
1336 		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1337 
1338 		if (op & OBSC_TEST_ALL_SHADOWED) {
1339 			vm_page_t pp;
1340 
1341 			/*
1342 			 * Ignore pages outside the parent object's range
1343 			 * and outside the parent object's mapping of the
1344 			 * backing object.
1345 			 *
1346 			 * note that we do not busy the backing object's
1347 			 * page.
1348 			 */
1349 			if (
1350 			    p->pindex < backing_offset_index ||
1351 			    new_pindex >= object->size
1352 			) {
1353 				p = next;
1354 				continue;
1355 			}
1356 
1357 			/*
1358 			 * See if the parent has the page or if the parent's
1359 			 * object pager has the page.  If the parent has the
1360 			 * page but the page is not valid, the parent's
1361 			 * object pager must have the page.
1362 			 *
1363 			 * If this fails, the parent does not completely shadow
1364 			 * the object and we might as well give up now.
1365 			 */
1366 
1367 			pp = vm_page_lookup(object, new_pindex);
1368 			if (
1369 			    (pp == NULL || pp->valid == 0) &&
1370 			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1371 			) {
1372 				r = 0;
1373 				break;
1374 			}
1375 		}
1376 
1377 		/*
1378 		 * Check for busy page
1379 		 */
1380 		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1381 			vm_page_t pp;
1382 
1383 			if (op & OBSC_COLLAPSE_NOWAIT) {
1384 				if (
1385 				    (p->flags & PG_BUSY) ||
1386 				    !p->valid ||
1387 				    p->hold_count ||
1388 				    p->wire_count ||
1389 				    p->busy
1390 				) {
1391 					p = next;
1392 					continue;
1393 				}
1394 			} else if (op & OBSC_COLLAPSE_WAIT) {
1395 				if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1396 					/*
1397 					 * If we slept, anything could have
1398 					 * happened.  Since the object is
1399 					 * marked dead, the backing offset
1400 					 * should not have changed so we
1401 					 * just restart our scan.
1402 					 */
1403 					p = TAILQ_FIRST(&backing_object->memq);
1404 					continue;
1405 				}
1406 			}
1407 
1408 			/*
1409 			 * Busy the page
1410 			 */
1411 			vm_page_busy(p);
1412 
1413 			KASSERT(
1414 			    p->object == backing_object,
1415 			    ("vm_object_qcollapse(): object mismatch")
1416 			);
1417 
1418 			/*
1419 			 * Destroy any associated swap
1420 			 */
1421 			if (backing_object->type == OBJT_SWAP) {
1422 				swap_pager_freespace(
1423 				    backing_object,
1424 				    p->pindex,
1425 				    1
1426 				);
1427 			}
1428 
1429 			if (
1430 			    p->pindex < backing_offset_index ||
1431 			    new_pindex >= object->size
1432 			) {
1433 				/*
1434 				 * Page is out of the parent object's range, we
1435 				 * can simply destroy it.
1436 				 */
1437 				vm_page_protect(p, VM_PROT_NONE);
1438 				vm_page_free(p);
1439 				p = next;
1440 				continue;
1441 			}
1442 
1443 			pp = vm_page_lookup(object, new_pindex);
1444 			if (
1445 			    pp != NULL ||
1446 			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1447 			) {
1448 				/*
1449 				 * page already exists in parent OR swap exists
1450 				 * for this location in the parent.  Destroy
1451 				 * the original page from the backing object.
1452 				 *
1453 				 * Leave the parent's page alone
1454 				 */
1455 				vm_page_protect(p, VM_PROT_NONE);
1456 				vm_page_free(p);
1457 				p = next;
1458 				continue;
1459 			}
1460 
1461 			/*
1462 			 * Page does not exist in parent, rename the
1463 			 * page from the backing object to the main object.
1464 			 *
1465 			 * If the page was mapped to a process, it can remain
1466 			 * mapped through the rename.
1467 			 */
1468 			if ((p->queue - p->pc) == PQ_CACHE)
1469 				vm_page_deactivate(p);
1470 
1471 			vm_page_rename(p, object, new_pindex);
1472 			/* page automatically made dirty by rename */
1473 		}
1474 		p = next;
1475 	}
1476 	splx(s);
1477 	return (r);
1478 }
1479 
1480 
1481 /*
1482  * this version of collapse allows the operation to occur earlier and
1483  * when paging_in_progress is true for an object...  This is not a complete
1484  * operation, but should plug 99.9% of the rest of the leaks.
1485  */
1486 static void
1487 vm_object_qcollapse(vm_object_t object)
1488 {
1489 	vm_object_t backing_object = object->backing_object;
1490 
1491 	GIANT_REQUIRED;
1492 
1493 	if (backing_object->ref_count != 1)
1494 		return;
1495 
1496 	backing_object->ref_count += 2;
1497 
1498 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1499 
1500 	backing_object->ref_count -= 2;
1501 }
1502 
1503 /*
1504  *	vm_object_collapse:
1505  *
1506  *	Collapse an object with the object backing it.
1507  *	Pages in the backing object are moved into the
1508  *	parent, and the backing object is deallocated.
1509  */
1510 void
1511 vm_object_collapse(vm_object_t object)
1512 {
1513 	GIANT_REQUIRED;
1514 
1515 	while (TRUE) {
1516 		vm_object_t backing_object;
1517 
1518 		/*
1519 		 * Verify that the conditions are right for collapse:
1520 		 *
1521 		 * The object exists and the backing object exists.
1522 		 */
1523 		if (object == NULL)
1524 			break;
1525 
1526 		if ((backing_object = object->backing_object) == NULL)
1527 			break;
1528 
1529 		/*
1530 		 * we check the backing object first, because it is most likely
1531 		 * not collapsable.
1532 		 */
1533 		if (backing_object->handle != NULL ||
1534 		    (backing_object->type != OBJT_DEFAULT &&
1535 		     backing_object->type != OBJT_SWAP) ||
1536 		    (backing_object->flags & OBJ_DEAD) ||
1537 		    object->handle != NULL ||
1538 		    (object->type != OBJT_DEFAULT &&
1539 		     object->type != OBJT_SWAP) ||
1540 		    (object->flags & OBJ_DEAD)) {
1541 			break;
1542 		}
1543 
1544 		if (
1545 		    object->paging_in_progress != 0 ||
1546 		    backing_object->paging_in_progress != 0
1547 		) {
1548 			vm_object_qcollapse(object);
1549 			break;
1550 		}
1551 
1552 		/*
1553 		 * We know that we can either collapse the backing object (if
1554 		 * the parent is the only reference to it) or (perhaps) have
1555 		 * the parent bypass the object if the parent happens to shadow
1556 		 * all the resident pages in the entire backing object.
1557 		 *
1558 		 * This is ignoring pager-backed pages such as swap pages.
1559 		 * vm_object_backing_scan fails the shadowing test in this
1560 		 * case.
1561 		 */
1562 		if (backing_object->ref_count == 1) {
1563 			/*
1564 			 * If there is exactly one reference to the backing
1565 			 * object, we can collapse it into the parent.
1566 			 */
1567 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1568 
1569 			/*
1570 			 * Move the pager from backing_object to object.
1571 			 */
1572 			if (backing_object->type == OBJT_SWAP) {
1573 				vm_object_pip_add(backing_object, 1);
1574 
1575 				/*
1576 				 * scrap the paging_offset junk and do a
1577 				 * discrete copy.  This also removes major
1578 				 * assumptions about how the swap-pager
1579 				 * works from where it doesn't belong.  The
1580 				 * new swapper is able to optimize the
1581 				 * destroy-source case.
1582 				 */
1583 				vm_object_pip_add(object, 1);
1584 				swap_pager_copy(
1585 				    backing_object,
1586 				    object,
1587 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1588 				vm_object_pip_wakeup(object);
1589 
1590 				vm_object_pip_wakeup(backing_object);
1591 			}
1592 			/*
1593 			 * Object now shadows whatever backing_object did.
1594 			 * Note that the reference to
1595 			 * backing_object->backing_object moves from within
1596 			 * backing_object to within object.
1597 			 */
1598 			TAILQ_REMOVE(
1599 			    &object->backing_object->shadow_head,
1600 			    object,
1601 			    shadow_list
1602 			);
1603 			object->backing_object->shadow_count--;
1604 			object->backing_object->generation++;
1605 			if (backing_object->backing_object) {
1606 				TAILQ_REMOVE(
1607 				    &backing_object->backing_object->shadow_head,
1608 				    backing_object,
1609 				    shadow_list
1610 				);
1611 				backing_object->backing_object->shadow_count--;
1612 				backing_object->backing_object->generation++;
1613 			}
1614 			object->backing_object = backing_object->backing_object;
1615 			if (object->backing_object) {
1616 				TAILQ_INSERT_TAIL(
1617 				    &object->backing_object->shadow_head,
1618 				    object,
1619 				    shadow_list
1620 				);
1621 				object->backing_object->shadow_count++;
1622 				object->backing_object->generation++;
1623 			}
1624 
1625 			object->backing_object_offset +=
1626 			    backing_object->backing_object_offset;
1627 
1628 			/*
1629 			 * Discard backing_object.
1630 			 *
1631 			 * Since the backing object has no pages, no pager left,
1632 			 * and no object references within it, all that is
1633 			 * necessary is to dispose of it.
1634 			 */
1635 			KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1636 			KASSERT(TAILQ_FIRST(&backing_object->memq) == NULL, ("backing_object %p somehow has left over pages during collapse!", backing_object));
1637 
1638 			mtx_lock(&vm_object_list_mtx);
1639 			TAILQ_REMOVE(
1640 			    &vm_object_list,
1641 			    backing_object,
1642 			    object_list
1643 			);
1644 			mtx_unlock(&vm_object_list_mtx);
1645 
1646 			uma_zfree(obj_zone, backing_object);
1647 
1648 			object_collapses++;
1649 		} else {
1650 			vm_object_t new_backing_object;
1651 
1652 			/*
1653 			 * If we do not entirely shadow the backing object,
1654 			 * there is nothing we can do so we give up.
1655 			 */
1656 			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1657 				break;
1658 			}
1659 
1660 			/*
1661 			 * Make the parent shadow the next object in the
1662 			 * chain.  Deallocating backing_object will not remove
1663 			 * it, since its reference count is at least 2.
1664 			 */
1665 			TAILQ_REMOVE(
1666 			    &backing_object->shadow_head,
1667 			    object,
1668 			    shadow_list
1669 			);
1670 			backing_object->shadow_count--;
1671 			backing_object->generation++;
1672 
1673 			new_backing_object = backing_object->backing_object;
1674 			if ((object->backing_object = new_backing_object) != NULL) {
1675 				vm_object_reference(new_backing_object);
1676 				TAILQ_INSERT_TAIL(
1677 				    &new_backing_object->shadow_head,
1678 				    object,
1679 				    shadow_list
1680 				);
1681 				new_backing_object->shadow_count++;
1682 				new_backing_object->generation++;
1683 				object->backing_object_offset +=
1684 					backing_object->backing_object_offset;
1685 			}
1686 
1687 			/*
1688 			 * Drop the reference count on backing_object. Since
1689 			 * its ref_count was at least 2, it will not vanish;
1690 			 * so we don't need to call vm_object_deallocate, but
1691 			 * we do anyway.
1692 			 */
1693 			vm_object_deallocate(backing_object);
1694 			object_bypasses++;
1695 		}
1696 
1697 		/*
1698 		 * Try again with this object's new backing object.
1699 		 */
1700 	}
1701 }
1702 
1703 /*
1704  *	vm_object_page_remove: [internal]
1705  *
1706  *	Removes all physical pages in the specified
1707  *	object range from the object's list of pages.
1708  *
1709  *	The object must be locked.
1710  */
1711 void
1712 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, boolean_t clean_only)
1713 {
1714 	vm_page_t p, next;
1715 	vm_pindex_t size;
1716 	int all;
1717 
1718 	if (object == NULL)
1719 		return;
1720 
1721 	mtx_lock(&Giant);
1722 	if (object->resident_page_count == 0) {
1723 		mtx_unlock(&Giant);
1724 		return;
1725 	}
1726 	all = ((end == 0) && (start == 0));
1727 
1728 	/*
1729 	 * Since physically-backed objects do not use managed pages, we can't
1730 	 * remove pages from the object (we must instead remove the page
1731 	 * references, and then destroy the object).
1732 	 */
1733 	KASSERT(object->type != OBJT_PHYS, ("attempt to remove pages from a physical object"));
1734 
1735 	vm_object_pip_add(object, 1);
1736 again:
1737 	size = end - start;
1738 	if (all || size > object->resident_page_count / 4) {
1739 		for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
1740 			next = TAILQ_NEXT(p, listq);
1741 			if (all || ((start <= p->pindex) && (p->pindex < end))) {
1742 				if (p->wire_count != 0) {
1743 					vm_page_protect(p, VM_PROT_NONE);
1744 					if (!clean_only)
1745 						p->valid = 0;
1746 					continue;
1747 				}
1748 
1749 				/*
1750 				 * The busy flags are only cleared at
1751 				 * interrupt -- minimize the spl transitions
1752 				 */
1753  				if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1754  					goto again;
1755 
1756 				if (clean_only && p->valid) {
1757 					vm_page_test_dirty(p);
1758 					if (p->valid & p->dirty)
1759 						continue;
1760 				}
1761 
1762 				vm_page_busy(p);
1763 				vm_page_protect(p, VM_PROT_NONE);
1764 				vm_page_free(p);
1765 			}
1766 		}
1767 	} else {
1768 		while (size > 0) {
1769 			if ((p = vm_page_lookup(object, start)) != 0) {
1770 
1771 				if (p->wire_count != 0) {
1772 					vm_page_protect(p, VM_PROT_NONE);
1773 					if (!clean_only)
1774 						p->valid = 0;
1775 					start += 1;
1776 					size -= 1;
1777 					continue;
1778 				}
1779 
1780 				/*
1781 				 * The busy flags are only cleared at
1782 				 * interrupt -- minimize the spl transitions
1783 				 */
1784  				if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1785 					goto again;
1786 
1787 				if (clean_only && p->valid) {
1788 					vm_page_test_dirty(p);
1789 					if (p->valid & p->dirty) {
1790 						start += 1;
1791 						size -= 1;
1792 						continue;
1793 					}
1794 				}
1795 
1796 				vm_page_busy(p);
1797 				vm_page_protect(p, VM_PROT_NONE);
1798 				vm_page_free(p);
1799 			}
1800 			start += 1;
1801 			size -= 1;
1802 		}
1803 	}
1804 	vm_object_pip_wakeup(object);
1805 	mtx_unlock(&Giant);
1806 }
1807 
1808 /*
1809  *	Routine:	vm_object_coalesce
1810  *	Function:	Coalesces two objects backing up adjoining
1811  *			regions of memory into a single object.
1812  *
1813  *	returns TRUE if objects were combined.
1814  *
1815  *	NOTE:	Only works at the moment if the second object is NULL -
1816  *		if it's not, which object do we lock first?
1817  *
1818  *	Parameters:
1819  *		prev_object	First object to coalesce
1820  *		prev_offset	Offset into prev_object
1821  *		next_object	Second object into coalesce
1822  *		next_offset	Offset into next_object
1823  *
1824  *		prev_size	Size of reference to prev_object
1825  *		next_size	Size of reference to next_object
1826  *
1827  *	Conditions:
1828  *	The object must *not* be locked.
1829  */
1830 boolean_t
1831 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1832 	vm_size_t prev_size, vm_size_t next_size)
1833 {
1834 	vm_pindex_t next_pindex;
1835 
1836 	if (prev_object == NULL)
1837 		return (TRUE);
1838 	mtx_lock(&Giant);
1839 	if (prev_object->type != OBJT_DEFAULT &&
1840 	    prev_object->type != OBJT_SWAP) {
1841 		mtx_unlock(&Giant);
1842 		return (FALSE);
1843 	}
1844 
1845 	/*
1846 	 * Try to collapse the object first
1847 	 */
1848 	vm_object_collapse(prev_object);
1849 
1850 	/*
1851 	 * Can't coalesce if: . more than one reference . paged out . shadows
1852 	 * another object . has a copy elsewhere (any of which mean that the
1853 	 * pages not mapped to prev_entry may be in use anyway)
1854 	 */
1855 	if (prev_object->backing_object != NULL) {
1856 		mtx_unlock(&Giant);
1857 		return (FALSE);
1858 	}
1859 
1860 	prev_size >>= PAGE_SHIFT;
1861 	next_size >>= PAGE_SHIFT;
1862 	next_pindex = prev_pindex + prev_size;
1863 
1864 	if ((prev_object->ref_count > 1) &&
1865 	    (prev_object->size != next_pindex)) {
1866 		mtx_unlock(&Giant);
1867 		return (FALSE);
1868 	}
1869 
1870 	/*
1871 	 * Remove any pages that may still be in the object from a previous
1872 	 * deallocation.
1873 	 */
1874 	if (next_pindex < prev_object->size) {
1875 		vm_object_page_remove(prev_object,
1876 				      next_pindex,
1877 				      next_pindex + next_size, FALSE);
1878 		if (prev_object->type == OBJT_SWAP)
1879 			swap_pager_freespace(prev_object,
1880 					     next_pindex, next_size);
1881 	}
1882 
1883 	/*
1884 	 * Extend the object if necessary.
1885 	 */
1886 	if (next_pindex + next_size > prev_object->size)
1887 		prev_object->size = next_pindex + next_size;
1888 
1889 	mtx_unlock(&Giant);
1890 	return (TRUE);
1891 }
1892 
1893 void
1894 vm_object_set_writeable_dirty(vm_object_t object)
1895 {
1896 	struct vnode *vp;
1897 
1898 	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1899 	if (object->type == OBJT_VNODE &&
1900 	    (vp = (struct vnode *)object->handle) != NULL) {
1901 		if ((vp->v_flag & VOBJDIRTY) == 0) {
1902 			mtx_lock(&vp->v_interlock);
1903 			vp->v_flag |= VOBJDIRTY;
1904 			mtx_unlock(&vp->v_interlock);
1905 		}
1906 	}
1907 }
1908 
1909 #ifdef ENABLE_VFS_IOOPT
1910 /*
1911  * Experimental support for zero-copy I/O
1912  *
1913  * Performs the copy_on_write operations necessary to allow the virtual copies
1914  * into user space to work.  This has to be called for write(2) system calls
1915  * from other processes, file unlinking, and file size shrinkage.
1916  */
1917 void
1918 vm_freeze_copyopts(vm_object_t object, vm_pindex_t froma, vm_pindex_t toa)
1919 {
1920 	int rv;
1921 	vm_object_t robject;
1922 	vm_pindex_t idx;
1923 
1924 	GIANT_REQUIRED;
1925 	if ((object == NULL) ||
1926 		((object->flags & OBJ_OPT) == 0))
1927 		return;
1928 
1929 	if (object->shadow_count > object->ref_count)
1930 		panic("vm_freeze_copyopts: sc > rc");
1931 
1932 	while ((robject = TAILQ_FIRST(&object->shadow_head)) != NULL) {
1933 		vm_pindex_t bo_pindex;
1934 		vm_page_t m_in, m_out;
1935 
1936 		bo_pindex = OFF_TO_IDX(robject->backing_object_offset);
1937 
1938 		vm_object_reference(robject);
1939 
1940 		vm_object_pip_wait(robject, "objfrz");
1941 
1942 		if (robject->ref_count == 1) {
1943 			vm_object_deallocate(robject);
1944 			continue;
1945 		}
1946 
1947 		vm_object_pip_add(robject, 1);
1948 
1949 		for (idx = 0; idx < robject->size; idx++) {
1950 
1951 			m_out = vm_page_grab(robject, idx,
1952 						VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1953 
1954 			if (m_out->valid == 0) {
1955 				m_in = vm_page_grab(object, bo_pindex + idx,
1956 						VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1957 				if (m_in->valid == 0) {
1958 					rv = vm_pager_get_pages(object, &m_in, 1, 0);
1959 					if (rv != VM_PAGER_OK) {
1960 						printf("vm_freeze_copyopts: cannot read page from file: %lx\n", (long)m_in->pindex);
1961 						continue;
1962 					}
1963 					vm_page_deactivate(m_in);
1964 				}
1965 
1966 				vm_page_protect(m_in, VM_PROT_NONE);
1967 				pmap_copy_page(m_in, m_out);
1968 				m_out->valid = m_in->valid;
1969 				vm_page_dirty(m_out);
1970 				vm_page_activate(m_out);
1971 				vm_page_wakeup(m_in);
1972 			}
1973 			vm_page_wakeup(m_out);
1974 		}
1975 
1976 		object->shadow_count--;
1977 		object->ref_count--;
1978 		TAILQ_REMOVE(&object->shadow_head, robject, shadow_list);
1979 		robject->backing_object = NULL;
1980 		robject->backing_object_offset = 0;
1981 
1982 		vm_object_pip_wakeup(robject);
1983 		vm_object_deallocate(robject);
1984 	}
1985 
1986 	vm_object_clear_flag(object, OBJ_OPT);
1987 }
1988 #endif
1989 
1990 #include "opt_ddb.h"
1991 #ifdef DDB
1992 #include <sys/kernel.h>
1993 
1994 #include <sys/cons.h>
1995 
1996 #include <ddb/ddb.h>
1997 
1998 static int
1999 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2000 {
2001 	vm_map_t tmpm;
2002 	vm_map_entry_t tmpe;
2003 	vm_object_t obj;
2004 	int entcount;
2005 
2006 	if (map == 0)
2007 		return 0;
2008 
2009 	if (entry == 0) {
2010 		tmpe = map->header.next;
2011 		entcount = map->nentries;
2012 		while (entcount-- && (tmpe != &map->header)) {
2013 			if (_vm_object_in_map(map, object, tmpe)) {
2014 				return 1;
2015 			}
2016 			tmpe = tmpe->next;
2017 		}
2018 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2019 		tmpm = entry->object.sub_map;
2020 		tmpe = tmpm->header.next;
2021 		entcount = tmpm->nentries;
2022 		while (entcount-- && tmpe != &tmpm->header) {
2023 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2024 				return 1;
2025 			}
2026 			tmpe = tmpe->next;
2027 		}
2028 	} else if ((obj = entry->object.vm_object) != NULL) {
2029 		for (; obj; obj = obj->backing_object)
2030 			if (obj == object) {
2031 				return 1;
2032 			}
2033 	}
2034 	return 0;
2035 }
2036 
2037 static int
2038 vm_object_in_map(vm_object_t object)
2039 {
2040 	struct proc *p;
2041 
2042 	/* sx_slock(&allproc_lock); */
2043 	LIST_FOREACH(p, &allproc, p_list) {
2044 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2045 			continue;
2046 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2047 			/* sx_sunlock(&allproc_lock); */
2048 			return 1;
2049 		}
2050 	}
2051 	/* sx_sunlock(&allproc_lock); */
2052 	if (_vm_object_in_map(kernel_map, object, 0))
2053 		return 1;
2054 	if (_vm_object_in_map(kmem_map, object, 0))
2055 		return 1;
2056 	if (_vm_object_in_map(pager_map, object, 0))
2057 		return 1;
2058 	if (_vm_object_in_map(buffer_map, object, 0))
2059 		return 1;
2060 	return 0;
2061 }
2062 
2063 DB_SHOW_COMMAND(vmochk, vm_object_check)
2064 {
2065 	vm_object_t object;
2066 
2067 	/*
2068 	 * make sure that internal objs are in a map somewhere
2069 	 * and none have zero ref counts.
2070 	 */
2071 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2072 		if (object->handle == NULL &&
2073 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2074 			if (object->ref_count == 0) {
2075 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2076 					(long)object->size);
2077 			}
2078 			if (!vm_object_in_map(object)) {
2079 				db_printf(
2080 			"vmochk: internal obj is not in a map: "
2081 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2082 				    object->ref_count, (u_long)object->size,
2083 				    (u_long)object->size,
2084 				    (void *)object->backing_object);
2085 			}
2086 		}
2087 	}
2088 }
2089 
2090 /*
2091  *	vm_object_print:	[ debug ]
2092  */
2093 DB_SHOW_COMMAND(object, vm_object_print_static)
2094 {
2095 	/* XXX convert args. */
2096 	vm_object_t object = (vm_object_t)addr;
2097 	boolean_t full = have_addr;
2098 
2099 	vm_page_t p;
2100 
2101 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2102 #define	count	was_count
2103 
2104 	int count;
2105 
2106 	if (object == NULL)
2107 		return;
2108 
2109 	db_iprintf(
2110 	    "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
2111 	    object, (int)object->type, (u_long)object->size,
2112 	    object->resident_page_count, object->ref_count, object->flags);
2113 	/*
2114 	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
2115 	 */
2116 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
2117 	    object->shadow_count,
2118 	    object->backing_object ? object->backing_object->ref_count : 0,
2119 	    object->backing_object, (long)object->backing_object_offset);
2120 
2121 	if (!full)
2122 		return;
2123 
2124 	db_indent += 2;
2125 	count = 0;
2126 	TAILQ_FOREACH(p, &object->memq, listq) {
2127 		if (count == 0)
2128 			db_iprintf("memory:=");
2129 		else if (count == 6) {
2130 			db_printf("\n");
2131 			db_iprintf(" ...");
2132 			count = 0;
2133 		} else
2134 			db_printf(",");
2135 		count++;
2136 
2137 		db_printf("(off=0x%lx,page=0x%lx)",
2138 		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
2139 	}
2140 	if (count != 0)
2141 		db_printf("\n");
2142 	db_indent -= 2;
2143 }
2144 
2145 /* XXX. */
2146 #undef count
2147 
2148 /* XXX need this non-static entry for calling from vm_map_print. */
2149 void
2150 vm_object_print(
2151         /* db_expr_t */ long addr,
2152 	boolean_t have_addr,
2153 	/* db_expr_t */ long count,
2154 	char *modif)
2155 {
2156 	vm_object_print_static(addr, have_addr, count, modif);
2157 }
2158 
2159 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2160 {
2161 	vm_object_t object;
2162 	int nl = 0;
2163 	int c;
2164 
2165 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2166 		vm_pindex_t idx, fidx;
2167 		vm_pindex_t osize;
2168 		vm_offset_t pa = -1, padiff;
2169 		int rcount;
2170 		vm_page_t m;
2171 
2172 		db_printf("new object: %p\n", (void *)object);
2173 		if (nl > 18) {
2174 			c = cngetc();
2175 			if (c != ' ')
2176 				return;
2177 			nl = 0;
2178 		}
2179 		nl++;
2180 		rcount = 0;
2181 		fidx = 0;
2182 		osize = object->size;
2183 		if (osize > 128)
2184 			osize = 128;
2185 		for (idx = 0; idx < osize; idx++) {
2186 			m = vm_page_lookup(object, idx);
2187 			if (m == NULL) {
2188 				if (rcount) {
2189 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2190 						(long)fidx, rcount, (long)pa);
2191 					if (nl > 18) {
2192 						c = cngetc();
2193 						if (c != ' ')
2194 							return;
2195 						nl = 0;
2196 					}
2197 					nl++;
2198 					rcount = 0;
2199 				}
2200 				continue;
2201 			}
2202 
2203 
2204 			if (rcount &&
2205 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2206 				++rcount;
2207 				continue;
2208 			}
2209 			if (rcount) {
2210 				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2211 				padiff >>= PAGE_SHIFT;
2212 				padiff &= PQ_L2_MASK;
2213 				if (padiff == 0) {
2214 					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2215 					++rcount;
2216 					continue;
2217 				}
2218 				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2219 					(long)fidx, rcount, (long)pa);
2220 				db_printf("pd(%ld)\n", (long)padiff);
2221 				if (nl > 18) {
2222 					c = cngetc();
2223 					if (c != ' ')
2224 						return;
2225 					nl = 0;
2226 				}
2227 				nl++;
2228 			}
2229 			fidx = idx;
2230 			pa = VM_PAGE_TO_PHYS(m);
2231 			rcount = 1;
2232 		}
2233 		if (rcount) {
2234 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2235 				(long)fidx, rcount, (long)pa);
2236 			if (nl > 18) {
2237 				c = cngetc();
2238 				if (c != ' ')
2239 					return;
2240 				nl = 0;
2241 			}
2242 			nl++;
2243 		}
2244 	}
2245 }
2246 #endif /* DDB */
2247