1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $FreeBSD$ 65 */ 66 67 /* 68 * Virtual memory object module. 69 */ 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/proc.h> /* for curproc, pageproc */ 74 #include <sys/vnode.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/mount.h> 78 79 #include <vm/vm.h> 80 #include <vm/vm_param.h> 81 #include <vm/pmap.h> 82 #include <vm/vm_map.h> 83 #include <vm/vm_object.h> 84 #include <vm/vm_page.h> 85 #include <vm/vm_pageout.h> 86 #include <vm/vm_pager.h> 87 #include <vm/swap_pager.h> 88 #include <vm/vm_kern.h> 89 #include <vm/vm_extern.h> 90 #include <vm/vm_zone.h> 91 92 static void vm_object_qcollapse __P((vm_object_t object)); 93 94 /* 95 * Virtual memory objects maintain the actual data 96 * associated with allocated virtual memory. A given 97 * page of memory exists within exactly one object. 98 * 99 * An object is only deallocated when all "references" 100 * are given up. Only one "reference" to a given 101 * region of an object should be writeable. 102 * 103 * Associated with each object is a list of all resident 104 * memory pages belonging to that object; this list is 105 * maintained by the "vm_page" module, and locked by the object's 106 * lock. 107 * 108 * Each object also records a "pager" routine which is 109 * used to retrieve (and store) pages to the proper backing 110 * storage. In addition, objects may be backed by other 111 * objects from which they were virtual-copied. 112 * 113 * The only items within the object structure which are 114 * modified after time of creation are: 115 * reference count locked by object's lock 116 * pager routine locked by object's lock 117 * 118 */ 119 120 struct object_q vm_object_list; 121 #ifndef NULL_SIMPLELOCKS 122 static struct simplelock vm_object_list_lock; 123 #endif 124 static long vm_object_count; /* count of all objects */ 125 vm_object_t kernel_object; 126 vm_object_t kmem_object; 127 static struct vm_object kernel_object_store; 128 static struct vm_object kmem_object_store; 129 extern int vm_pageout_page_count; 130 131 static long object_collapses; 132 static long object_bypasses; 133 static int next_index; 134 static vm_zone_t obj_zone; 135 static struct vm_zone obj_zone_store; 136 static int object_hash_rand; 137 #define VM_OBJECTS_INIT 256 138 static struct vm_object vm_objects_init[VM_OBJECTS_INIT]; 139 140 void 141 _vm_object_allocate(type, size, object) 142 objtype_t type; 143 vm_size_t size; 144 vm_object_t object; 145 { 146 int incr; 147 TAILQ_INIT(&object->memq); 148 TAILQ_INIT(&object->shadow_head); 149 150 object->type = type; 151 object->size = size; 152 object->ref_count = 1; 153 object->flags = 0; 154 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP)) 155 vm_object_set_flag(object, OBJ_ONEMAPPING); 156 object->paging_in_progress = 0; 157 object->resident_page_count = 0; 158 object->shadow_count = 0; 159 object->pg_color = next_index; 160 if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1)) 161 incr = PQ_L2_SIZE / 3 + PQ_PRIME1; 162 else 163 incr = size; 164 next_index = (next_index + incr) & PQ_L2_MASK; 165 object->handle = NULL; 166 object->backing_object = NULL; 167 object->backing_object_offset = (vm_ooffset_t) 0; 168 /* 169 * Try to generate a number that will spread objects out in the 170 * hash table. We 'wipe' new objects across the hash in 128 page 171 * increments plus 1 more to offset it a little more by the time 172 * it wraps around. 173 */ 174 object->hash_rand = object_hash_rand - 129; 175 176 object->generation++; 177 178 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 179 vm_object_count++; 180 object_hash_rand = object->hash_rand; 181 } 182 183 /* 184 * vm_object_init: 185 * 186 * Initialize the VM objects module. 187 */ 188 void 189 vm_object_init() 190 { 191 TAILQ_INIT(&vm_object_list); 192 simple_lock_init(&vm_object_list_lock); 193 vm_object_count = 0; 194 195 kernel_object = &kernel_object_store; 196 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 197 kernel_object); 198 199 kmem_object = &kmem_object_store; 200 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 201 kmem_object); 202 203 obj_zone = &obj_zone_store; 204 zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object), 205 vm_objects_init, VM_OBJECTS_INIT); 206 } 207 208 void 209 vm_object_init2() { 210 zinitna(obj_zone, NULL, NULL, 0, 0, 0, 1); 211 } 212 213 /* 214 * vm_object_allocate: 215 * 216 * Returns a new object with the given size. 217 */ 218 219 vm_object_t 220 vm_object_allocate(type, size) 221 objtype_t type; 222 vm_size_t size; 223 { 224 vm_object_t result; 225 226 result = (vm_object_t) zalloc(obj_zone); 227 228 _vm_object_allocate(type, size, result); 229 230 return (result); 231 } 232 233 234 /* 235 * vm_object_reference: 236 * 237 * Gets another reference to the given object. 238 */ 239 void 240 vm_object_reference(object) 241 vm_object_t object; 242 { 243 if (object == NULL) 244 return; 245 246 KASSERT(!(object->flags & OBJ_DEAD), 247 ("vm_object_reference: attempting to reference dead obj")); 248 249 object->ref_count++; 250 if (object->type == OBJT_VNODE) { 251 while (vget((struct vnode *) object->handle, LK_RETRY|LK_NOOBJ, curproc)) { 252 #if !defined(MAX_PERF) 253 printf("vm_object_reference: delay in getting object\n"); 254 #endif 255 } 256 } 257 } 258 259 void 260 vm_object_vndeallocate(object) 261 vm_object_t object; 262 { 263 struct vnode *vp = (struct vnode *) object->handle; 264 265 KASSERT(object->type == OBJT_VNODE, 266 ("vm_object_vndeallocate: not a vnode object")); 267 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 268 #ifdef INVARIANTS 269 if (object->ref_count == 0) { 270 vprint("vm_object_vndeallocate", vp); 271 panic("vm_object_vndeallocate: bad object reference count"); 272 } 273 #endif 274 275 object->ref_count--; 276 if (object->ref_count == 0) { 277 vp->v_flag &= ~VTEXT; 278 vm_object_clear_flag(object, OBJ_OPT); 279 } 280 vrele(vp); 281 } 282 283 /* 284 * vm_object_deallocate: 285 * 286 * Release a reference to the specified object, 287 * gained either through a vm_object_allocate 288 * or a vm_object_reference call. When all references 289 * are gone, storage associated with this object 290 * may be relinquished. 291 * 292 * No object may be locked. 293 */ 294 void 295 vm_object_deallocate(object) 296 vm_object_t object; 297 { 298 vm_object_t temp; 299 300 while (object != NULL) { 301 302 if (object->type == OBJT_VNODE) { 303 vm_object_vndeallocate(object); 304 return; 305 } 306 307 if (object->ref_count == 0) { 308 panic("vm_object_deallocate: object deallocated too many times: %d", object->type); 309 } else if (object->ref_count > 2) { 310 object->ref_count--; 311 return; 312 } 313 314 /* 315 * Here on ref_count of one or two, which are special cases for 316 * objects. 317 */ 318 if ((object->ref_count == 2) && (object->shadow_count == 0)) { 319 vm_object_set_flag(object, OBJ_ONEMAPPING); 320 object->ref_count--; 321 return; 322 } else if ((object->ref_count == 2) && (object->shadow_count == 1)) { 323 object->ref_count--; 324 if ((object->handle == NULL) && 325 (object->type == OBJT_DEFAULT || 326 object->type == OBJT_SWAP)) { 327 vm_object_t robject; 328 329 robject = TAILQ_FIRST(&object->shadow_head); 330 KASSERT(robject != NULL, 331 ("vm_object_deallocate: ref_count: %d, shadow_count: %d", 332 object->ref_count, 333 object->shadow_count)); 334 if ((robject->handle == NULL) && 335 (robject->type == OBJT_DEFAULT || 336 robject->type == OBJT_SWAP)) { 337 338 robject->ref_count++; 339 340 while ( 341 robject->paging_in_progress || 342 object->paging_in_progress 343 ) { 344 vm_object_pip_sleep(robject, "objde1"); 345 vm_object_pip_sleep(object, "objde2"); 346 } 347 348 if (robject->ref_count == 1) { 349 robject->ref_count--; 350 object = robject; 351 goto doterm; 352 } 353 354 object = robject; 355 vm_object_collapse(object); 356 continue; 357 } 358 } 359 360 return; 361 362 } else { 363 object->ref_count--; 364 if (object->ref_count != 0) 365 return; 366 } 367 368 doterm: 369 370 temp = object->backing_object; 371 if (temp) { 372 TAILQ_REMOVE(&temp->shadow_head, object, shadow_list); 373 temp->shadow_count--; 374 if (temp->ref_count == 0) 375 vm_object_clear_flag(temp, OBJ_OPT); 376 temp->generation++; 377 object->backing_object = NULL; 378 } 379 vm_object_terminate(object); 380 /* unlocks and deallocates object */ 381 object = temp; 382 } 383 } 384 385 /* 386 * vm_object_terminate actually destroys the specified object, freeing 387 * up all previously used resources. 388 * 389 * The object must be locked. 390 * This routine may block. 391 */ 392 void 393 vm_object_terminate(object) 394 vm_object_t object; 395 { 396 vm_page_t p; 397 int s; 398 399 /* 400 * Make sure no one uses us. 401 */ 402 vm_object_set_flag(object, OBJ_DEAD); 403 404 /* 405 * wait for the pageout daemon to be done with the object 406 */ 407 vm_object_pip_wait(object, "objtrm"); 408 409 KASSERT(!object->paging_in_progress, 410 ("vm_object_terminate: pageout in progress")); 411 412 /* 413 * Clean and free the pages, as appropriate. All references to the 414 * object are gone, so we don't need to lock it. 415 */ 416 if (object->type == OBJT_VNODE) { 417 struct vnode *vp; 418 419 /* 420 * Freeze optimized copies. 421 */ 422 vm_freeze_copyopts(object, 0, object->size); 423 424 /* 425 * Clean pages and flush buffers. 426 */ 427 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 428 429 vp = (struct vnode *) object->handle; 430 vinvalbuf(vp, V_SAVE, NOCRED, NULL, 0, 0); 431 } 432 433 if (object->ref_count != 0) 434 panic("vm_object_terminate: object with references, ref_count=%d", object->ref_count); 435 436 /* 437 * Now free any remaining pages. For internal objects, this also 438 * removes them from paging queues. Don't free wired pages, just 439 * remove them from the object. 440 */ 441 s = splvm(); 442 while ((p = TAILQ_FIRST(&object->memq)) != NULL) { 443 #if !defined(MAX_PERF) 444 if (p->busy || (p->flags & PG_BUSY)) 445 panic("vm_object_terminate: freeing busy page %p\n", p); 446 #endif 447 if (p->wire_count == 0) { 448 vm_page_busy(p); 449 vm_page_free(p); 450 cnt.v_pfree++; 451 } else { 452 vm_page_busy(p); 453 vm_page_remove(p); 454 } 455 } 456 splx(s); 457 458 /* 459 * Let the pager know object is dead. 460 */ 461 vm_pager_deallocate(object); 462 463 /* 464 * Remove the object from the global object list. 465 */ 466 simple_lock(&vm_object_list_lock); 467 TAILQ_REMOVE(&vm_object_list, object, object_list); 468 simple_unlock(&vm_object_list_lock); 469 470 wakeup(object); 471 472 /* 473 * Free the space for the object. 474 */ 475 zfree(obj_zone, object); 476 } 477 478 /* 479 * vm_object_page_clean 480 * 481 * Clean all dirty pages in the specified range of object. Leaves page 482 * on whatever queue it is currently on. If NOSYNC is set then do not 483 * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC), 484 * leaving the object dirty. 485 * 486 * Odd semantics: if start == end, we clean everything. 487 * 488 * The object must be locked. 489 */ 490 491 void 492 vm_object_page_clean(object, start, end, flags) 493 vm_object_t object; 494 vm_pindex_t start; 495 vm_pindex_t end; 496 int flags; 497 { 498 vm_page_t p, np, tp; 499 vm_offset_t tstart, tend; 500 vm_pindex_t pi; 501 int s; 502 struct vnode *vp; 503 int runlen; 504 int maxf; 505 int chkb; 506 int maxb; 507 int i; 508 int clearobjflags; 509 int pagerflags; 510 vm_page_t maf[vm_pageout_page_count]; 511 vm_page_t mab[vm_pageout_page_count]; 512 vm_page_t ma[vm_pageout_page_count]; 513 int curgeneration; 514 515 if (object->type != OBJT_VNODE || 516 (object->flags & OBJ_MIGHTBEDIRTY) == 0) 517 return; 518 519 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : 0; 520 pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0; 521 522 vp = object->handle; 523 524 vm_object_set_flag(object, OBJ_CLEANING); 525 526 tstart = start; 527 if (end == 0) { 528 tend = object->size; 529 } else { 530 tend = end; 531 } 532 533 /* 534 * Generally set CLEANCHK interlock and make the page read-only so 535 * we can then clear the object flags. 536 * 537 * However, if this is a nosync mmap then the object is likely to 538 * stay dirty so do not mess with the page and do not clear the 539 * object flags. 540 */ 541 542 clearobjflags = 1; 543 544 for(p = TAILQ_FIRST(&object->memq); p; p = TAILQ_NEXT(p, listq)) { 545 vm_page_flag_set(p, PG_CLEANCHK); 546 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) 547 clearobjflags = 0; 548 else 549 vm_page_protect(p, VM_PROT_READ); 550 } 551 552 if (clearobjflags && (tstart == 0) && (tend == object->size)) { 553 vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY); 554 } 555 556 rescan: 557 curgeneration = object->generation; 558 559 for(p = TAILQ_FIRST(&object->memq); p; p = np) { 560 np = TAILQ_NEXT(p, listq); 561 562 pi = p->pindex; 563 if (((p->flags & PG_CLEANCHK) == 0) || 564 (pi < tstart) || (pi >= tend) || 565 (p->valid == 0) || 566 ((p->queue - p->pc) == PQ_CACHE)) { 567 vm_page_flag_clear(p, PG_CLEANCHK); 568 continue; 569 } 570 571 vm_page_test_dirty(p); 572 if ((p->dirty & p->valid) == 0) { 573 vm_page_flag_clear(p, PG_CLEANCHK); 574 continue; 575 } 576 577 /* 578 * If we have been asked to skip nosync pages and this is a 579 * nosync page, skip it. Note that the object flags were 580 * not cleared in this case so we do not have to set them. 581 */ 582 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) { 583 vm_page_flag_clear(p, PG_CLEANCHK); 584 continue; 585 } 586 587 s = splvm(); 588 while (vm_page_sleep_busy(p, TRUE, "vpcwai")) { 589 if (object->generation != curgeneration) { 590 splx(s); 591 goto rescan; 592 } 593 } 594 595 maxf = 0; 596 for(i=1;i<vm_pageout_page_count;i++) { 597 if ((tp = vm_page_lookup(object, pi + i)) != NULL) { 598 if ((tp->flags & PG_BUSY) || 599 (tp->flags & PG_CLEANCHK) == 0 || 600 (tp->busy != 0)) 601 break; 602 if((tp->queue - tp->pc) == PQ_CACHE) { 603 vm_page_flag_clear(tp, PG_CLEANCHK); 604 break; 605 } 606 vm_page_test_dirty(tp); 607 if ((tp->dirty & tp->valid) == 0) { 608 vm_page_flag_clear(tp, PG_CLEANCHK); 609 break; 610 } 611 maf[ i - 1 ] = tp; 612 maxf++; 613 continue; 614 } 615 break; 616 } 617 618 maxb = 0; 619 chkb = vm_pageout_page_count - maxf; 620 if (chkb) { 621 for(i = 1; i < chkb;i++) { 622 if ((tp = vm_page_lookup(object, pi - i)) != NULL) { 623 if ((tp->flags & PG_BUSY) || 624 (tp->flags & PG_CLEANCHK) == 0 || 625 (tp->busy != 0)) 626 break; 627 if((tp->queue - tp->pc) == PQ_CACHE) { 628 vm_page_flag_clear(tp, PG_CLEANCHK); 629 break; 630 } 631 vm_page_test_dirty(tp); 632 if ((tp->dirty & tp->valid) == 0) { 633 vm_page_flag_clear(tp, PG_CLEANCHK); 634 break; 635 } 636 mab[ i - 1 ] = tp; 637 maxb++; 638 continue; 639 } 640 break; 641 } 642 } 643 644 for(i=0;i<maxb;i++) { 645 int index = (maxb - i) - 1; 646 ma[index] = mab[i]; 647 vm_page_flag_clear(ma[index], PG_CLEANCHK); 648 } 649 vm_page_flag_clear(p, PG_CLEANCHK); 650 ma[maxb] = p; 651 for(i=0;i<maxf;i++) { 652 int index = (maxb + i) + 1; 653 ma[index] = maf[i]; 654 vm_page_flag_clear(ma[index], PG_CLEANCHK); 655 } 656 runlen = maxb + maxf + 1; 657 658 splx(s); 659 vm_pageout_flush(ma, runlen, pagerflags); 660 for (i = 0; i<runlen; i++) { 661 if (ma[i]->valid & ma[i]->dirty) { 662 vm_page_protect(ma[i], VM_PROT_READ); 663 vm_page_flag_set(ma[i], PG_CLEANCHK); 664 } 665 } 666 if (object->generation != curgeneration) 667 goto rescan; 668 } 669 670 #if 0 671 VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc); 672 #endif 673 674 vm_object_clear_flag(object, OBJ_CLEANING); 675 return; 676 } 677 678 #ifdef not_used 679 /* XXX I cannot tell if this should be an exported symbol */ 680 /* 681 * vm_object_deactivate_pages 682 * 683 * Deactivate all pages in the specified object. (Keep its pages 684 * in memory even though it is no longer referenced.) 685 * 686 * The object must be locked. 687 */ 688 static void 689 vm_object_deactivate_pages(object) 690 vm_object_t object; 691 { 692 vm_page_t p, next; 693 694 for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) { 695 next = TAILQ_NEXT(p, listq); 696 vm_page_deactivate(p); 697 } 698 } 699 #endif 700 701 /* 702 * Same as vm_object_pmap_copy, except range checking really 703 * works, and is meant for small sections of an object. 704 * 705 * This code protects resident pages by making them read-only 706 * and is typically called on a fork or split when a page 707 * is converted to copy-on-write. 708 * 709 * NOTE: If the page is already at VM_PROT_NONE, calling 710 * vm_page_protect will have no effect. 711 */ 712 713 void 714 vm_object_pmap_copy_1(object, start, end) 715 vm_object_t object; 716 vm_pindex_t start; 717 vm_pindex_t end; 718 { 719 vm_pindex_t idx; 720 vm_page_t p; 721 722 if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0) 723 return; 724 725 for (idx = start; idx < end; idx++) { 726 p = vm_page_lookup(object, idx); 727 if (p == NULL) 728 continue; 729 vm_page_protect(p, VM_PROT_READ); 730 } 731 } 732 733 /* 734 * vm_object_pmap_remove: 735 * 736 * Removes all physical pages in the specified 737 * object range from all physical maps. 738 * 739 * The object must *not* be locked. 740 */ 741 void 742 vm_object_pmap_remove(object, start, end) 743 vm_object_t object; 744 vm_pindex_t start; 745 vm_pindex_t end; 746 { 747 vm_page_t p; 748 749 if (object == NULL) 750 return; 751 for (p = TAILQ_FIRST(&object->memq); 752 p != NULL; 753 p = TAILQ_NEXT(p, listq)) { 754 if (p->pindex >= start && p->pindex < end) 755 vm_page_protect(p, VM_PROT_NONE); 756 } 757 if ((start == 0) && (object->size == end)) 758 vm_object_clear_flag(object, OBJ_WRITEABLE); 759 } 760 761 /* 762 * vm_object_madvise: 763 * 764 * Implements the madvise function at the object/page level. 765 * 766 * MADV_WILLNEED (any object) 767 * 768 * Activate the specified pages if they are resident. 769 * 770 * MADV_DONTNEED (any object) 771 * 772 * Deactivate the specified pages if they are resident. 773 * 774 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, 775 * OBJ_ONEMAPPING only) 776 * 777 * Deactivate and clean the specified pages if they are 778 * resident. This permits the process to reuse the pages 779 * without faulting or the kernel to reclaim the pages 780 * without I/O. 781 */ 782 void 783 vm_object_madvise(object, pindex, count, advise) 784 vm_object_t object; 785 vm_pindex_t pindex; 786 int count; 787 int advise; 788 { 789 vm_pindex_t end, tpindex; 790 vm_object_t tobject; 791 vm_page_t m; 792 793 if (object == NULL) 794 return; 795 796 end = pindex + count; 797 798 /* 799 * Locate and adjust resident pages 800 */ 801 802 for (; pindex < end; pindex += 1) { 803 relookup: 804 tobject = object; 805 tpindex = pindex; 806 shadowlookup: 807 /* 808 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages 809 * and those pages must be OBJ_ONEMAPPING. 810 */ 811 if (advise == MADV_FREE) { 812 if ((tobject->type != OBJT_DEFAULT && 813 tobject->type != OBJT_SWAP) || 814 (tobject->flags & OBJ_ONEMAPPING) == 0) { 815 continue; 816 } 817 } 818 819 m = vm_page_lookup(tobject, tpindex); 820 821 if (m == NULL) { 822 /* 823 * There may be swap even if there is no backing page 824 */ 825 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 826 swap_pager_freespace(tobject, tpindex, 1); 827 828 /* 829 * next object 830 */ 831 tobject = tobject->backing_object; 832 if (tobject == NULL) 833 continue; 834 tpindex += OFF_TO_IDX(tobject->backing_object_offset); 835 goto shadowlookup; 836 } 837 838 /* 839 * If the page is busy or not in a normal active state, 840 * we skip it. Things can break if we mess with pages 841 * in any of the below states. 842 */ 843 if ( 844 m->hold_count || 845 m->wire_count || 846 m->valid != VM_PAGE_BITS_ALL 847 ) { 848 continue; 849 } 850 851 if (vm_page_sleep_busy(m, TRUE, "madvpo")) 852 goto relookup; 853 854 if (advise == MADV_WILLNEED) { 855 vm_page_activate(m); 856 } else if (advise == MADV_DONTNEED) { 857 vm_page_dontneed(m); 858 } else if (advise == MADV_FREE) { 859 /* 860 * Mark the page clean. This will allow the page 861 * to be freed up by the system. However, such pages 862 * are often reused quickly by malloc()/free() 863 * so we do not do anything that would cause 864 * a page fault if we can help it. 865 * 866 * Specifically, we do not try to actually free 867 * the page now nor do we try to put it in the 868 * cache (which would cause a page fault on reuse). 869 * 870 * But we do make the page is freeable as we 871 * can without actually taking the step of unmapping 872 * it. 873 */ 874 pmap_clear_modify(VM_PAGE_TO_PHYS(m)); 875 m->dirty = 0; 876 m->act_count = 0; 877 vm_page_dontneed(m); 878 if (tobject->type == OBJT_SWAP) 879 swap_pager_freespace(tobject, tpindex, 1); 880 } 881 } 882 } 883 884 /* 885 * vm_object_shadow: 886 * 887 * Create a new object which is backed by the 888 * specified existing object range. The source 889 * object reference is deallocated. 890 * 891 * The new object and offset into that object 892 * are returned in the source parameters. 893 */ 894 895 void 896 vm_object_shadow(object, offset, length) 897 vm_object_t *object; /* IN/OUT */ 898 vm_ooffset_t *offset; /* IN/OUT */ 899 vm_size_t length; 900 { 901 vm_object_t source; 902 vm_object_t result; 903 904 source = *object; 905 906 /* 907 * Don't create the new object if the old object isn't shared. 908 */ 909 910 if (source != NULL && 911 source->ref_count == 1 && 912 source->handle == NULL && 913 (source->type == OBJT_DEFAULT || 914 source->type == OBJT_SWAP)) 915 return; 916 917 KASSERT((source->flags & OBJ_ONEMAPPING) == 0, 918 ("vm_object_shadow: source object has OBJ_ONEMAPPING set.\n")); 919 920 /* 921 * Allocate a new object with the given length 922 */ 923 924 if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL) 925 panic("vm_object_shadow: no object for shadowing"); 926 927 /* 928 * The new object shadows the source object, adding a reference to it. 929 * Our caller changes his reference to point to the new object, 930 * removing a reference to the source object. Net result: no change 931 * of reference count. 932 * 933 * Try to optimize the result object's page color when shadowing 934 * in order to maintain page coloring consistancy in the combined 935 * shadowed object. 936 */ 937 result->backing_object = source; 938 if (source) { 939 TAILQ_INSERT_TAIL(&source->shadow_head, result, shadow_list); 940 source->shadow_count++; 941 source->generation++; 942 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK; 943 } 944 945 /* 946 * Store the offset into the source object, and fix up the offset into 947 * the new object. 948 */ 949 950 result->backing_object_offset = *offset; 951 952 /* 953 * Return the new things 954 */ 955 956 *offset = 0; 957 *object = result; 958 } 959 960 #define OBSC_TEST_ALL_SHADOWED 0x0001 961 #define OBSC_COLLAPSE_NOWAIT 0x0002 962 #define OBSC_COLLAPSE_WAIT 0x0004 963 964 static __inline int 965 vm_object_backing_scan(vm_object_t object, int op) 966 { 967 int s; 968 int r = 1; 969 vm_page_t p; 970 vm_object_t backing_object; 971 vm_pindex_t backing_offset_index; 972 973 s = splvm(); 974 975 backing_object = object->backing_object; 976 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 977 978 /* 979 * Initial conditions 980 */ 981 982 if (op & OBSC_TEST_ALL_SHADOWED) { 983 /* 984 * We do not want to have to test for the existance of 985 * swap pages in the backing object. XXX but with the 986 * new swapper this would be pretty easy to do. 987 * 988 * XXX what about anonymous MAP_SHARED memory that hasn't 989 * been ZFOD faulted yet? If we do not test for this, the 990 * shadow test may succeed! XXX 991 */ 992 if (backing_object->type != OBJT_DEFAULT) { 993 splx(s); 994 return(0); 995 } 996 } 997 if (op & OBSC_COLLAPSE_WAIT) { 998 vm_object_set_flag(backing_object, OBJ_DEAD); 999 } 1000 1001 /* 1002 * Our scan 1003 */ 1004 1005 p = TAILQ_FIRST(&backing_object->memq); 1006 while (p) { 1007 vm_page_t next = TAILQ_NEXT(p, listq); 1008 vm_pindex_t new_pindex = p->pindex - backing_offset_index; 1009 1010 if (op & OBSC_TEST_ALL_SHADOWED) { 1011 vm_page_t pp; 1012 1013 /* 1014 * Ignore pages outside the parent object's range 1015 * and outside the parent object's mapping of the 1016 * backing object. 1017 * 1018 * note that we do not busy the backing object's 1019 * page. 1020 */ 1021 1022 if ( 1023 p->pindex < backing_offset_index || 1024 new_pindex >= object->size 1025 ) { 1026 p = next; 1027 continue; 1028 } 1029 1030 /* 1031 * See if the parent has the page or if the parent's 1032 * object pager has the page. If the parent has the 1033 * page but the page is not valid, the parent's 1034 * object pager must have the page. 1035 * 1036 * If this fails, the parent does not completely shadow 1037 * the object and we might as well give up now. 1038 */ 1039 1040 pp = vm_page_lookup(object, new_pindex); 1041 if ( 1042 (pp == NULL || pp->valid == 0) && 1043 !vm_pager_has_page(object, new_pindex, NULL, NULL) 1044 ) { 1045 r = 0; 1046 break; 1047 } 1048 } 1049 1050 /* 1051 * Check for busy page 1052 */ 1053 1054 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) { 1055 vm_page_t pp; 1056 1057 if (op & OBSC_COLLAPSE_NOWAIT) { 1058 if ( 1059 (p->flags & PG_BUSY) || 1060 !p->valid || 1061 p->hold_count || 1062 p->wire_count || 1063 p->busy 1064 ) { 1065 p = next; 1066 continue; 1067 } 1068 } else if (op & OBSC_COLLAPSE_WAIT) { 1069 if (vm_page_sleep_busy(p, TRUE, "vmocol")) { 1070 /* 1071 * If we slept, anything could have 1072 * happened. Since the object is 1073 * marked dead, the backing offset 1074 * should not have changed so we 1075 * just restart our scan. 1076 */ 1077 p = TAILQ_FIRST(&backing_object->memq); 1078 continue; 1079 } 1080 } 1081 1082 /* 1083 * Busy the page 1084 */ 1085 vm_page_busy(p); 1086 1087 KASSERT( 1088 p->object == backing_object, 1089 ("vm_object_qcollapse(): object mismatch") 1090 ); 1091 1092 /* 1093 * Destroy any associated swap 1094 */ 1095 if (backing_object->type == OBJT_SWAP) { 1096 swap_pager_freespace( 1097 backing_object, 1098 p->pindex, 1099 1 1100 ); 1101 } 1102 1103 if ( 1104 p->pindex < backing_offset_index || 1105 new_pindex >= object->size 1106 ) { 1107 /* 1108 * Page is out of the parent object's range, we 1109 * can simply destroy it. 1110 */ 1111 vm_page_protect(p, VM_PROT_NONE); 1112 vm_page_free(p); 1113 p = next; 1114 continue; 1115 } 1116 1117 pp = vm_page_lookup(object, new_pindex); 1118 if ( 1119 pp != NULL || 1120 vm_pager_has_page(object, new_pindex, NULL, NULL) 1121 ) { 1122 /* 1123 * page already exists in parent OR swap exists 1124 * for this location in the parent. Destroy 1125 * the original page from the backing object. 1126 * 1127 * Leave the parent's page alone 1128 */ 1129 vm_page_protect(p, VM_PROT_NONE); 1130 vm_page_free(p); 1131 p = next; 1132 continue; 1133 } 1134 1135 /* 1136 * Page does not exist in parent, rename the 1137 * page from the backing object to the main object. 1138 * 1139 * If the page was mapped to a process, it can remain 1140 * mapped through the rename. 1141 */ 1142 if ((p->queue - p->pc) == PQ_CACHE) 1143 vm_page_deactivate(p); 1144 1145 vm_page_rename(p, object, new_pindex); 1146 /* page automatically made dirty by rename */ 1147 } 1148 p = next; 1149 } 1150 splx(s); 1151 return(r); 1152 } 1153 1154 1155 /* 1156 * this version of collapse allows the operation to occur earlier and 1157 * when paging_in_progress is true for an object... This is not a complete 1158 * operation, but should plug 99.9% of the rest of the leaks. 1159 */ 1160 static void 1161 vm_object_qcollapse(object) 1162 vm_object_t object; 1163 { 1164 vm_object_t backing_object = object->backing_object; 1165 1166 if (backing_object->ref_count != 1) 1167 return; 1168 1169 backing_object->ref_count += 2; 1170 1171 vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT); 1172 1173 backing_object->ref_count -= 2; 1174 } 1175 1176 /* 1177 * vm_object_collapse: 1178 * 1179 * Collapse an object with the object backing it. 1180 * Pages in the backing object are moved into the 1181 * parent, and the backing object is deallocated. 1182 */ 1183 void 1184 vm_object_collapse(object) 1185 vm_object_t object; 1186 { 1187 while (TRUE) { 1188 vm_object_t backing_object; 1189 1190 /* 1191 * Verify that the conditions are right for collapse: 1192 * 1193 * The object exists and the backing object exists. 1194 */ 1195 if (object == NULL) 1196 break; 1197 1198 if ((backing_object = object->backing_object) == NULL) 1199 break; 1200 1201 /* 1202 * we check the backing object first, because it is most likely 1203 * not collapsable. 1204 */ 1205 if (backing_object->handle != NULL || 1206 (backing_object->type != OBJT_DEFAULT && 1207 backing_object->type != OBJT_SWAP) || 1208 (backing_object->flags & OBJ_DEAD) || 1209 object->handle != NULL || 1210 (object->type != OBJT_DEFAULT && 1211 object->type != OBJT_SWAP) || 1212 (object->flags & OBJ_DEAD)) { 1213 break; 1214 } 1215 1216 if ( 1217 object->paging_in_progress != 0 || 1218 backing_object->paging_in_progress != 0 1219 ) { 1220 vm_object_qcollapse(object); 1221 break; 1222 } 1223 1224 /* 1225 * We know that we can either collapse the backing object (if 1226 * the parent is the only reference to it) or (perhaps) have 1227 * the parent bypass the object if the parent happens to shadow 1228 * all the resident pages in the entire backing object. 1229 * 1230 * This is ignoring pager-backed pages such as swap pages. 1231 * vm_object_backing_scan fails the shadowing test in this 1232 * case. 1233 */ 1234 1235 if (backing_object->ref_count == 1) { 1236 /* 1237 * If there is exactly one reference to the backing 1238 * object, we can collapse it into the parent. 1239 */ 1240 1241 vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT); 1242 1243 /* 1244 * Move the pager from backing_object to object. 1245 */ 1246 1247 if (backing_object->type == OBJT_SWAP) { 1248 vm_object_pip_add(backing_object, 1); 1249 1250 /* 1251 * scrap the paging_offset junk and do a 1252 * discrete copy. This also removes major 1253 * assumptions about how the swap-pager 1254 * works from where it doesn't belong. The 1255 * new swapper is able to optimize the 1256 * destroy-source case. 1257 */ 1258 1259 vm_object_pip_add(object, 1); 1260 swap_pager_copy( 1261 backing_object, 1262 object, 1263 OFF_TO_IDX(object->backing_object_offset), TRUE); 1264 vm_object_pip_wakeup(object); 1265 1266 vm_object_pip_wakeup(backing_object); 1267 } 1268 /* 1269 * Object now shadows whatever backing_object did. 1270 * Note that the reference to 1271 * backing_object->backing_object moves from within 1272 * backing_object to within object. 1273 */ 1274 1275 TAILQ_REMOVE( 1276 &object->backing_object->shadow_head, 1277 object, 1278 shadow_list 1279 ); 1280 object->backing_object->shadow_count--; 1281 object->backing_object->generation++; 1282 if (backing_object->backing_object) { 1283 TAILQ_REMOVE( 1284 &backing_object->backing_object->shadow_head, 1285 backing_object, 1286 shadow_list 1287 ); 1288 backing_object->backing_object->shadow_count--; 1289 backing_object->backing_object->generation++; 1290 } 1291 object->backing_object = backing_object->backing_object; 1292 if (object->backing_object) { 1293 TAILQ_INSERT_TAIL( 1294 &object->backing_object->shadow_head, 1295 object, 1296 shadow_list 1297 ); 1298 object->backing_object->shadow_count++; 1299 object->backing_object->generation++; 1300 } 1301 1302 object->backing_object_offset += 1303 backing_object->backing_object_offset; 1304 1305 /* 1306 * Discard backing_object. 1307 * 1308 * Since the backing object has no pages, no pager left, 1309 * and no object references within it, all that is 1310 * necessary is to dispose of it. 1311 */ 1312 1313 TAILQ_REMOVE( 1314 &vm_object_list, 1315 backing_object, 1316 object_list 1317 ); 1318 vm_object_count--; 1319 1320 zfree(obj_zone, backing_object); 1321 1322 object_collapses++; 1323 } else { 1324 vm_object_t new_backing_object; 1325 1326 /* 1327 * If we do not entirely shadow the backing object, 1328 * there is nothing we can do so we give up. 1329 */ 1330 1331 if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) { 1332 break; 1333 } 1334 1335 /* 1336 * Make the parent shadow the next object in the 1337 * chain. Deallocating backing_object will not remove 1338 * it, since its reference count is at least 2. 1339 */ 1340 1341 TAILQ_REMOVE( 1342 &backing_object->shadow_head, 1343 object, 1344 shadow_list 1345 ); 1346 backing_object->shadow_count--; 1347 backing_object->generation++; 1348 1349 new_backing_object = backing_object->backing_object; 1350 if ((object->backing_object = new_backing_object) != NULL) { 1351 vm_object_reference(new_backing_object); 1352 TAILQ_INSERT_TAIL( 1353 &new_backing_object->shadow_head, 1354 object, 1355 shadow_list 1356 ); 1357 new_backing_object->shadow_count++; 1358 new_backing_object->generation++; 1359 object->backing_object_offset += 1360 backing_object->backing_object_offset; 1361 } 1362 1363 /* 1364 * Drop the reference count on backing_object. Since 1365 * its ref_count was at least 2, it will not vanish; 1366 * so we don't need to call vm_object_deallocate, but 1367 * we do anyway. 1368 */ 1369 vm_object_deallocate(backing_object); 1370 object_bypasses++; 1371 } 1372 1373 /* 1374 * Try again with this object's new backing object. 1375 */ 1376 } 1377 } 1378 1379 /* 1380 * vm_object_page_remove: [internal] 1381 * 1382 * Removes all physical pages in the specified 1383 * object range from the object's list of pages. 1384 * 1385 * The object must be locked. 1386 */ 1387 void 1388 vm_object_page_remove(object, start, end, clean_only) 1389 vm_object_t object; 1390 vm_pindex_t start; 1391 vm_pindex_t end; 1392 boolean_t clean_only; 1393 { 1394 vm_page_t p, next; 1395 unsigned int size; 1396 int all; 1397 1398 if (object == NULL || 1399 object->resident_page_count == 0) 1400 return; 1401 1402 all = ((end == 0) && (start == 0)); 1403 1404 vm_object_pip_add(object, 1); 1405 again: 1406 size = end - start; 1407 if (all || size > object->resident_page_count / 4) { 1408 for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) { 1409 next = TAILQ_NEXT(p, listq); 1410 if (all || ((start <= p->pindex) && (p->pindex < end))) { 1411 if (p->wire_count != 0) { 1412 vm_page_protect(p, VM_PROT_NONE); 1413 if (!clean_only) 1414 p->valid = 0; 1415 continue; 1416 } 1417 1418 /* 1419 * The busy flags are only cleared at 1420 * interrupt -- minimize the spl transitions 1421 */ 1422 1423 if (vm_page_sleep_busy(p, TRUE, "vmopar")) 1424 goto again; 1425 1426 if (clean_only && p->valid) { 1427 vm_page_test_dirty(p); 1428 if (p->valid & p->dirty) 1429 continue; 1430 } 1431 1432 vm_page_busy(p); 1433 vm_page_protect(p, VM_PROT_NONE); 1434 vm_page_free(p); 1435 } 1436 } 1437 } else { 1438 while (size > 0) { 1439 if ((p = vm_page_lookup(object, start)) != 0) { 1440 1441 if (p->wire_count != 0) { 1442 vm_page_protect(p, VM_PROT_NONE); 1443 if (!clean_only) 1444 p->valid = 0; 1445 start += 1; 1446 size -= 1; 1447 continue; 1448 } 1449 1450 /* 1451 * The busy flags are only cleared at 1452 * interrupt -- minimize the spl transitions 1453 */ 1454 if (vm_page_sleep_busy(p, TRUE, "vmopar")) 1455 goto again; 1456 1457 if (clean_only && p->valid) { 1458 vm_page_test_dirty(p); 1459 if (p->valid & p->dirty) { 1460 start += 1; 1461 size -= 1; 1462 continue; 1463 } 1464 } 1465 1466 vm_page_busy(p); 1467 vm_page_protect(p, VM_PROT_NONE); 1468 vm_page_free(p); 1469 } 1470 start += 1; 1471 size -= 1; 1472 } 1473 } 1474 vm_object_pip_wakeup(object); 1475 } 1476 1477 /* 1478 * Routine: vm_object_coalesce 1479 * Function: Coalesces two objects backing up adjoining 1480 * regions of memory into a single object. 1481 * 1482 * returns TRUE if objects were combined. 1483 * 1484 * NOTE: Only works at the moment if the second object is NULL - 1485 * if it's not, which object do we lock first? 1486 * 1487 * Parameters: 1488 * prev_object First object to coalesce 1489 * prev_offset Offset into prev_object 1490 * next_object Second object into coalesce 1491 * next_offset Offset into next_object 1492 * 1493 * prev_size Size of reference to prev_object 1494 * next_size Size of reference to next_object 1495 * 1496 * Conditions: 1497 * The object must *not* be locked. 1498 */ 1499 boolean_t 1500 vm_object_coalesce(prev_object, prev_pindex, prev_size, next_size) 1501 vm_object_t prev_object; 1502 vm_pindex_t prev_pindex; 1503 vm_size_t prev_size, next_size; 1504 { 1505 vm_pindex_t next_pindex; 1506 1507 if (prev_object == NULL) { 1508 return (TRUE); 1509 } 1510 1511 if (prev_object->type != OBJT_DEFAULT && 1512 prev_object->type != OBJT_SWAP) { 1513 return (FALSE); 1514 } 1515 1516 /* 1517 * Try to collapse the object first 1518 */ 1519 vm_object_collapse(prev_object); 1520 1521 /* 1522 * Can't coalesce if: . more than one reference . paged out . shadows 1523 * another object . has a copy elsewhere (any of which mean that the 1524 * pages not mapped to prev_entry may be in use anyway) 1525 */ 1526 1527 if (prev_object->backing_object != NULL) { 1528 return (FALSE); 1529 } 1530 1531 prev_size >>= PAGE_SHIFT; 1532 next_size >>= PAGE_SHIFT; 1533 next_pindex = prev_pindex + prev_size; 1534 1535 if ((prev_object->ref_count > 1) && 1536 (prev_object->size != next_pindex)) { 1537 return (FALSE); 1538 } 1539 1540 /* 1541 * Remove any pages that may still be in the object from a previous 1542 * deallocation. 1543 */ 1544 if (next_pindex < prev_object->size) { 1545 vm_object_page_remove(prev_object, 1546 next_pindex, 1547 next_pindex + next_size, FALSE); 1548 if (prev_object->type == OBJT_SWAP) 1549 swap_pager_freespace(prev_object, 1550 next_pindex, next_size); 1551 } 1552 1553 /* 1554 * Extend the object if necessary. 1555 */ 1556 if (next_pindex + next_size > prev_object->size) 1557 prev_object->size = next_pindex + next_size; 1558 1559 return (TRUE); 1560 } 1561 1562 #include "opt_ddb.h" 1563 #ifdef DDB 1564 #include <sys/kernel.h> 1565 1566 #include <sys/cons.h> 1567 1568 #include <ddb/ddb.h> 1569 1570 static int _vm_object_in_map __P((vm_map_t map, vm_object_t object, 1571 vm_map_entry_t entry)); 1572 static int vm_object_in_map __P((vm_object_t object)); 1573 1574 static int 1575 _vm_object_in_map(map, object, entry) 1576 vm_map_t map; 1577 vm_object_t object; 1578 vm_map_entry_t entry; 1579 { 1580 vm_map_t tmpm; 1581 vm_map_entry_t tmpe; 1582 vm_object_t obj; 1583 int entcount; 1584 1585 if (map == 0) 1586 return 0; 1587 1588 if (entry == 0) { 1589 tmpe = map->header.next; 1590 entcount = map->nentries; 1591 while (entcount-- && (tmpe != &map->header)) { 1592 if( _vm_object_in_map(map, object, tmpe)) { 1593 return 1; 1594 } 1595 tmpe = tmpe->next; 1596 } 1597 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 1598 tmpm = entry->object.sub_map; 1599 tmpe = tmpm->header.next; 1600 entcount = tmpm->nentries; 1601 while (entcount-- && tmpe != &tmpm->header) { 1602 if( _vm_object_in_map(tmpm, object, tmpe)) { 1603 return 1; 1604 } 1605 tmpe = tmpe->next; 1606 } 1607 } else if ((obj = entry->object.vm_object) != NULL) { 1608 for(; obj; obj=obj->backing_object) 1609 if( obj == object) { 1610 return 1; 1611 } 1612 } 1613 return 0; 1614 } 1615 1616 static int 1617 vm_object_in_map( object) 1618 vm_object_t object; 1619 { 1620 struct proc *p; 1621 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) { 1622 if( !p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 1623 continue; 1624 if( _vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) 1625 return 1; 1626 } 1627 if( _vm_object_in_map( kernel_map, object, 0)) 1628 return 1; 1629 if( _vm_object_in_map( kmem_map, object, 0)) 1630 return 1; 1631 if( _vm_object_in_map( pager_map, object, 0)) 1632 return 1; 1633 if( _vm_object_in_map( buffer_map, object, 0)) 1634 return 1; 1635 if( _vm_object_in_map( mb_map, object, 0)) 1636 return 1; 1637 return 0; 1638 } 1639 1640 DB_SHOW_COMMAND(vmochk, vm_object_check) 1641 { 1642 vm_object_t object; 1643 1644 /* 1645 * make sure that internal objs are in a map somewhere 1646 * and none have zero ref counts. 1647 */ 1648 for (object = TAILQ_FIRST(&vm_object_list); 1649 object != NULL; 1650 object = TAILQ_NEXT(object, object_list)) { 1651 if (object->handle == NULL && 1652 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 1653 if (object->ref_count == 0) { 1654 db_printf("vmochk: internal obj has zero ref count: %ld\n", 1655 (long)object->size); 1656 } 1657 if (!vm_object_in_map(object)) { 1658 db_printf( 1659 "vmochk: internal obj is not in a map: " 1660 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 1661 object->ref_count, (u_long)object->size, 1662 (u_long)object->size, 1663 (void *)object->backing_object); 1664 } 1665 } 1666 } 1667 } 1668 1669 /* 1670 * vm_object_print: [ debug ] 1671 */ 1672 DB_SHOW_COMMAND(object, vm_object_print_static) 1673 { 1674 /* XXX convert args. */ 1675 vm_object_t object = (vm_object_t)addr; 1676 boolean_t full = have_addr; 1677 1678 vm_page_t p; 1679 1680 /* XXX count is an (unused) arg. Avoid shadowing it. */ 1681 #define count was_count 1682 1683 int count; 1684 1685 if (object == NULL) 1686 return; 1687 1688 db_iprintf( 1689 "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n", 1690 object, (int)object->type, (u_long)object->size, 1691 object->resident_page_count, object->ref_count, object->flags); 1692 /* 1693 * XXX no %qd in kernel. Truncate object->backing_object_offset. 1694 */ 1695 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n", 1696 object->shadow_count, 1697 object->backing_object ? object->backing_object->ref_count : 0, 1698 object->backing_object, (long)object->backing_object_offset); 1699 1700 if (!full) 1701 return; 1702 1703 db_indent += 2; 1704 count = 0; 1705 for (p = TAILQ_FIRST(&object->memq); p != NULL; p = TAILQ_NEXT(p, listq)) { 1706 if (count == 0) 1707 db_iprintf("memory:="); 1708 else if (count == 6) { 1709 db_printf("\n"); 1710 db_iprintf(" ..."); 1711 count = 0; 1712 } else 1713 db_printf(","); 1714 count++; 1715 1716 db_printf("(off=0x%lx,page=0x%lx)", 1717 (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p)); 1718 } 1719 if (count != 0) 1720 db_printf("\n"); 1721 db_indent -= 2; 1722 } 1723 1724 /* XXX. */ 1725 #undef count 1726 1727 /* XXX need this non-static entry for calling from vm_map_print. */ 1728 void 1729 vm_object_print(addr, have_addr, count, modif) 1730 /* db_expr_t */ long addr; 1731 boolean_t have_addr; 1732 /* db_expr_t */ long count; 1733 char *modif; 1734 { 1735 vm_object_print_static(addr, have_addr, count, modif); 1736 } 1737 1738 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 1739 { 1740 vm_object_t object; 1741 int nl = 0; 1742 int c; 1743 for (object = TAILQ_FIRST(&vm_object_list); 1744 object != NULL; 1745 object = TAILQ_NEXT(object, object_list)) { 1746 vm_pindex_t idx, fidx; 1747 vm_pindex_t osize; 1748 vm_offset_t pa = -1, padiff; 1749 int rcount; 1750 vm_page_t m; 1751 1752 db_printf("new object: %p\n", (void *)object); 1753 if ( nl > 18) { 1754 c = cngetc(); 1755 if (c != ' ') 1756 return; 1757 nl = 0; 1758 } 1759 nl++; 1760 rcount = 0; 1761 fidx = 0; 1762 osize = object->size; 1763 if (osize > 128) 1764 osize = 128; 1765 for(idx=0;idx<osize;idx++) { 1766 m = vm_page_lookup(object, idx); 1767 if (m == NULL) { 1768 if (rcount) { 1769 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 1770 (long)fidx, rcount, (long)pa); 1771 if ( nl > 18) { 1772 c = cngetc(); 1773 if (c != ' ') 1774 return; 1775 nl = 0; 1776 } 1777 nl++; 1778 rcount = 0; 1779 } 1780 continue; 1781 } 1782 1783 1784 if (rcount && 1785 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 1786 ++rcount; 1787 continue; 1788 } 1789 if (rcount) { 1790 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m); 1791 padiff >>= PAGE_SHIFT; 1792 padiff &= PQ_L2_MASK; 1793 if (padiff == 0) { 1794 pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE; 1795 ++rcount; 1796 continue; 1797 } 1798 db_printf(" index(%ld)run(%d)pa(0x%lx)", 1799 (long)fidx, rcount, (long)pa); 1800 db_printf("pd(%ld)\n", (long)padiff); 1801 if ( nl > 18) { 1802 c = cngetc(); 1803 if (c != ' ') 1804 return; 1805 nl = 0; 1806 } 1807 nl++; 1808 } 1809 fidx = idx; 1810 pa = VM_PAGE_TO_PHYS(m); 1811 rcount = 1; 1812 } 1813 if (rcount) { 1814 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 1815 (long)fidx, rcount, (long)pa); 1816 if ( nl > 18) { 1817 c = cngetc(); 1818 if (c != ' ') 1819 return; 1820 nl = 0; 1821 } 1822 nl++; 1823 } 1824 } 1825 } 1826 #endif /* DDB */ 1827