1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Virtual memory object module. 65 */ 66 67 #include <sys/cdefs.h> 68 __FBSDID("$FreeBSD$"); 69 70 #include "opt_vm.h" 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/cpuset.h> 75 #include <sys/lock.h> 76 #include <sys/mman.h> 77 #include <sys/mount.h> 78 #include <sys/kernel.h> 79 #include <sys/pctrie.h> 80 #include <sys/sysctl.h> 81 #include <sys/mutex.h> 82 #include <sys/proc.h> /* for curproc, pageproc */ 83 #include <sys/refcount.h> 84 #include <sys/socket.h> 85 #include <sys/resourcevar.h> 86 #include <sys/rwlock.h> 87 #include <sys/user.h> 88 #include <sys/vnode.h> 89 #include <sys/vmmeter.h> 90 #include <sys/sx.h> 91 92 #include <vm/vm.h> 93 #include <vm/vm_param.h> 94 #include <vm/pmap.h> 95 #include <vm/vm_map.h> 96 #include <vm/vm_object.h> 97 #include <vm/vm_page.h> 98 #include <vm/vm_pageout.h> 99 #include <vm/vm_pager.h> 100 #include <vm/vm_phys.h> 101 #include <vm/vm_pagequeue.h> 102 #include <vm/swap_pager.h> 103 #include <vm/vm_kern.h> 104 #include <vm/vm_extern.h> 105 #include <vm/vm_radix.h> 106 #include <vm/vm_reserv.h> 107 #include <vm/uma.h> 108 109 static int old_msync; 110 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0, 111 "Use old (insecure) msync behavior"); 112 113 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 114 int pagerflags, int flags, boolean_t *clearobjflags, 115 boolean_t *eio); 116 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags, 117 boolean_t *clearobjflags); 118 static void vm_object_qcollapse(vm_object_t object); 119 static void vm_object_vndeallocate(vm_object_t object); 120 121 /* 122 * Virtual memory objects maintain the actual data 123 * associated with allocated virtual memory. A given 124 * page of memory exists within exactly one object. 125 * 126 * An object is only deallocated when all "references" 127 * are given up. Only one "reference" to a given 128 * region of an object should be writeable. 129 * 130 * Associated with each object is a list of all resident 131 * memory pages belonging to that object; this list is 132 * maintained by the "vm_page" module, and locked by the object's 133 * lock. 134 * 135 * Each object also records a "pager" routine which is 136 * used to retrieve (and store) pages to the proper backing 137 * storage. In addition, objects may be backed by other 138 * objects from which they were virtual-copied. 139 * 140 * The only items within the object structure which are 141 * modified after time of creation are: 142 * reference count locked by object's lock 143 * pager routine locked by object's lock 144 * 145 */ 146 147 struct object_q vm_object_list; 148 struct mtx vm_object_list_mtx; /* lock for object list and count */ 149 150 struct vm_object kernel_object_store; 151 152 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, 153 "VM object stats"); 154 155 static counter_u64_t object_collapses = EARLY_COUNTER; 156 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD, 157 &object_collapses, 158 "VM object collapses"); 159 160 static counter_u64_t object_bypasses = EARLY_COUNTER; 161 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD, 162 &object_bypasses, 163 "VM object bypasses"); 164 165 static void 166 counter_startup(void) 167 { 168 169 object_collapses = counter_u64_alloc(M_WAITOK); 170 object_bypasses = counter_u64_alloc(M_WAITOK); 171 } 172 SYSINIT(object_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL); 173 174 static uma_zone_t obj_zone; 175 176 static int vm_object_zinit(void *mem, int size, int flags); 177 178 #ifdef INVARIANTS 179 static void vm_object_zdtor(void *mem, int size, void *arg); 180 181 static void 182 vm_object_zdtor(void *mem, int size, void *arg) 183 { 184 vm_object_t object; 185 186 object = (vm_object_t)mem; 187 KASSERT(object->ref_count == 0, 188 ("object %p ref_count = %d", object, object->ref_count)); 189 KASSERT(TAILQ_EMPTY(&object->memq), 190 ("object %p has resident pages in its memq", object)); 191 KASSERT(vm_radix_is_empty(&object->rtree), 192 ("object %p has resident pages in its trie", object)); 193 #if VM_NRESERVLEVEL > 0 194 KASSERT(LIST_EMPTY(&object->rvq), 195 ("object %p has reservations", 196 object)); 197 #endif 198 KASSERT(object->paging_in_progress == 0, 199 ("object %p paging_in_progress = %d", 200 object, object->paging_in_progress)); 201 KASSERT(object->resident_page_count == 0, 202 ("object %p resident_page_count = %d", 203 object, object->resident_page_count)); 204 KASSERT(object->shadow_count == 0, 205 ("object %p shadow_count = %d", 206 object, object->shadow_count)); 207 KASSERT(object->type == OBJT_DEAD, 208 ("object %p has non-dead type %d", 209 object, object->type)); 210 } 211 #endif 212 213 static int 214 vm_object_zinit(void *mem, int size, int flags) 215 { 216 vm_object_t object; 217 218 object = (vm_object_t)mem; 219 rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW); 220 221 /* These are true for any object that has been freed */ 222 object->type = OBJT_DEAD; 223 object->ref_count = 0; 224 vm_radix_init(&object->rtree); 225 refcount_init(&object->paging_in_progress, 0); 226 object->resident_page_count = 0; 227 object->shadow_count = 0; 228 object->flags = OBJ_DEAD; 229 230 mtx_lock(&vm_object_list_mtx); 231 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 232 mtx_unlock(&vm_object_list_mtx); 233 return (0); 234 } 235 236 static void 237 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object) 238 { 239 240 TAILQ_INIT(&object->memq); 241 LIST_INIT(&object->shadow_head); 242 243 object->type = type; 244 if (type == OBJT_SWAP) 245 pctrie_init(&object->un_pager.swp.swp_blks); 246 247 /* 248 * Ensure that swap_pager_swapoff() iteration over object_list 249 * sees up to date type and pctrie head if it observed 250 * non-dead object. 251 */ 252 atomic_thread_fence_rel(); 253 254 switch (type) { 255 case OBJT_DEAD: 256 panic("_vm_object_allocate: can't create OBJT_DEAD"); 257 case OBJT_DEFAULT: 258 case OBJT_SWAP: 259 object->flags = OBJ_ONEMAPPING; 260 break; 261 case OBJT_DEVICE: 262 case OBJT_SG: 263 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED; 264 break; 265 case OBJT_MGTDEVICE: 266 object->flags = OBJ_FICTITIOUS; 267 break; 268 case OBJT_PHYS: 269 object->flags = OBJ_UNMANAGED; 270 break; 271 case OBJT_VNODE: 272 object->flags = 0; 273 break; 274 default: 275 panic("_vm_object_allocate: type %d is undefined", type); 276 } 277 object->size = size; 278 object->domain.dr_policy = NULL; 279 object->generation = 1; 280 object->ref_count = 1; 281 object->memattr = VM_MEMATTR_DEFAULT; 282 object->cred = NULL; 283 object->charge = 0; 284 object->handle = NULL; 285 object->backing_object = NULL; 286 object->backing_object_offset = (vm_ooffset_t) 0; 287 #if VM_NRESERVLEVEL > 0 288 LIST_INIT(&object->rvq); 289 #endif 290 umtx_shm_object_init(object); 291 } 292 293 /* 294 * vm_object_init: 295 * 296 * Initialize the VM objects module. 297 */ 298 void 299 vm_object_init(void) 300 { 301 TAILQ_INIT(&vm_object_list); 302 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF); 303 304 rw_init(&kernel_object->lock, "kernel vm object"); 305 _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS - 306 VM_MIN_KERNEL_ADDRESS), kernel_object); 307 #if VM_NRESERVLEVEL > 0 308 kernel_object->flags |= OBJ_COLORED; 309 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 310 #endif 311 312 /* 313 * The lock portion of struct vm_object must be type stable due 314 * to vm_pageout_fallback_object_lock locking a vm object 315 * without holding any references to it. 316 */ 317 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL, 318 #ifdef INVARIANTS 319 vm_object_zdtor, 320 #else 321 NULL, 322 #endif 323 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 324 325 vm_radix_zinit(); 326 } 327 328 void 329 vm_object_clear_flag(vm_object_t object, u_short bits) 330 { 331 332 VM_OBJECT_ASSERT_WLOCKED(object); 333 object->flags &= ~bits; 334 } 335 336 /* 337 * Sets the default memory attribute for the specified object. Pages 338 * that are allocated to this object are by default assigned this memory 339 * attribute. 340 * 341 * Presently, this function must be called before any pages are allocated 342 * to the object. In the future, this requirement may be relaxed for 343 * "default" and "swap" objects. 344 */ 345 int 346 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr) 347 { 348 349 VM_OBJECT_ASSERT_WLOCKED(object); 350 switch (object->type) { 351 case OBJT_DEFAULT: 352 case OBJT_DEVICE: 353 case OBJT_MGTDEVICE: 354 case OBJT_PHYS: 355 case OBJT_SG: 356 case OBJT_SWAP: 357 case OBJT_VNODE: 358 if (!TAILQ_EMPTY(&object->memq)) 359 return (KERN_FAILURE); 360 break; 361 case OBJT_DEAD: 362 return (KERN_INVALID_ARGUMENT); 363 default: 364 panic("vm_object_set_memattr: object %p is of undefined type", 365 object); 366 } 367 object->memattr = memattr; 368 return (KERN_SUCCESS); 369 } 370 371 void 372 vm_object_pip_add(vm_object_t object, short i) 373 { 374 375 refcount_acquiren(&object->paging_in_progress, i); 376 } 377 378 void 379 vm_object_pip_wakeup(vm_object_t object) 380 { 381 382 refcount_release(&object->paging_in_progress); 383 } 384 385 void 386 vm_object_pip_wakeupn(vm_object_t object, short i) 387 { 388 389 refcount_releasen(&object->paging_in_progress, i); 390 } 391 392 void 393 vm_object_pip_wait(vm_object_t object, char *waitid) 394 { 395 396 VM_OBJECT_ASSERT_WLOCKED(object); 397 398 while (object->paging_in_progress) { 399 VM_OBJECT_WUNLOCK(object); 400 refcount_wait(&object->paging_in_progress, waitid, PVM); 401 VM_OBJECT_WLOCK(object); 402 } 403 } 404 405 void 406 vm_object_pip_wait_unlocked(vm_object_t object, char *waitid) 407 { 408 409 VM_OBJECT_ASSERT_UNLOCKED(object); 410 411 while (object->paging_in_progress) 412 refcount_wait(&object->paging_in_progress, waitid, PVM); 413 } 414 415 /* 416 * vm_object_allocate: 417 * 418 * Returns a new object with the given size. 419 */ 420 vm_object_t 421 vm_object_allocate(objtype_t type, vm_pindex_t size) 422 { 423 vm_object_t object; 424 425 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 426 _vm_object_allocate(type, size, object); 427 return (object); 428 } 429 430 431 /* 432 * vm_object_reference: 433 * 434 * Gets another reference to the given object. Note: OBJ_DEAD 435 * objects can be referenced during final cleaning. 436 */ 437 void 438 vm_object_reference(vm_object_t object) 439 { 440 if (object == NULL) 441 return; 442 VM_OBJECT_WLOCK(object); 443 vm_object_reference_locked(object); 444 VM_OBJECT_WUNLOCK(object); 445 } 446 447 /* 448 * vm_object_reference_locked: 449 * 450 * Gets another reference to the given object. 451 * 452 * The object must be locked. 453 */ 454 void 455 vm_object_reference_locked(vm_object_t object) 456 { 457 struct vnode *vp; 458 459 VM_OBJECT_ASSERT_WLOCKED(object); 460 object->ref_count++; 461 if (object->type == OBJT_VNODE) { 462 vp = object->handle; 463 vref(vp); 464 } 465 } 466 467 /* 468 * Handle deallocating an object of type OBJT_VNODE. 469 */ 470 static void 471 vm_object_vndeallocate(vm_object_t object) 472 { 473 struct vnode *vp = (struct vnode *) object->handle; 474 475 VM_OBJECT_ASSERT_WLOCKED(object); 476 KASSERT(object->type == OBJT_VNODE, 477 ("vm_object_vndeallocate: not a vnode object")); 478 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 479 #ifdef INVARIANTS 480 if (object->ref_count == 0) { 481 vn_printf(vp, "vm_object_vndeallocate "); 482 panic("vm_object_vndeallocate: bad object reference count"); 483 } 484 #endif 485 486 if (!umtx_shm_vnobj_persistent && object->ref_count == 1) 487 umtx_shm_object_terminated(object); 488 489 object->ref_count--; 490 491 /* vrele may need the vnode lock. */ 492 VM_OBJECT_WUNLOCK(object); 493 vrele(vp); 494 } 495 496 /* 497 * vm_object_deallocate: 498 * 499 * Release a reference to the specified object, 500 * gained either through a vm_object_allocate 501 * or a vm_object_reference call. When all references 502 * are gone, storage associated with this object 503 * may be relinquished. 504 * 505 * No object may be locked. 506 */ 507 void 508 vm_object_deallocate(vm_object_t object) 509 { 510 vm_object_t temp; 511 struct vnode *vp; 512 513 while (object != NULL) { 514 VM_OBJECT_WLOCK(object); 515 if (object->type == OBJT_VNODE) { 516 vm_object_vndeallocate(object); 517 return; 518 } 519 520 KASSERT(object->ref_count != 0, 521 ("vm_object_deallocate: object deallocated too many times: %d", object->type)); 522 523 /* 524 * If the reference count goes to 0 we start calling 525 * vm_object_terminate() on the object chain. 526 * A ref count of 1 may be a special case depending on the 527 * shadow count being 0 or 1. 528 */ 529 object->ref_count--; 530 if (object->ref_count > 1) { 531 VM_OBJECT_WUNLOCK(object); 532 return; 533 } else if (object->ref_count == 1) { 534 if (object->type == OBJT_SWAP && 535 (object->flags & OBJ_TMPFS) != 0) { 536 vp = object->un_pager.swp.swp_tmpfs; 537 vhold(vp); 538 VM_OBJECT_WUNLOCK(object); 539 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 540 VM_OBJECT_WLOCK(object); 541 if (object->type == OBJT_DEAD || 542 object->ref_count != 1) { 543 VM_OBJECT_WUNLOCK(object); 544 VOP_UNLOCK(vp, 0); 545 vdrop(vp); 546 return; 547 } 548 if ((object->flags & OBJ_TMPFS) != 0) 549 VOP_UNSET_TEXT(vp); 550 VOP_UNLOCK(vp, 0); 551 vdrop(vp); 552 } 553 if (object->shadow_count == 0 && 554 object->handle == NULL && 555 (object->type == OBJT_DEFAULT || 556 (object->type == OBJT_SWAP && 557 (object->flags & OBJ_TMPFS_NODE) == 0))) { 558 vm_object_set_flag(object, OBJ_ONEMAPPING); 559 } else if ((object->shadow_count == 1) && 560 (object->handle == NULL) && 561 (object->type == OBJT_DEFAULT || 562 object->type == OBJT_SWAP)) { 563 vm_object_t robject; 564 565 robject = LIST_FIRST(&object->shadow_head); 566 KASSERT(robject != NULL, 567 ("vm_object_deallocate: ref_count: %d, shadow_count: %d", 568 object->ref_count, 569 object->shadow_count)); 570 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0, 571 ("shadowed tmpfs v_object %p", object)); 572 if (!VM_OBJECT_TRYWLOCK(robject)) { 573 /* 574 * Avoid a potential deadlock. 575 */ 576 object->ref_count++; 577 VM_OBJECT_WUNLOCK(object); 578 /* 579 * More likely than not the thread 580 * holding robject's lock has lower 581 * priority than the current thread. 582 * Let the lower priority thread run. 583 */ 584 pause("vmo_de", 1); 585 continue; 586 } 587 /* 588 * Collapse object into its shadow unless its 589 * shadow is dead. In that case, object will 590 * be deallocated by the thread that is 591 * deallocating its shadow. 592 */ 593 if ((robject->flags & OBJ_DEAD) == 0 && 594 (robject->handle == NULL) && 595 (robject->type == OBJT_DEFAULT || 596 robject->type == OBJT_SWAP)) { 597 598 robject->ref_count++; 599 retry: 600 if (robject->paging_in_progress) { 601 VM_OBJECT_WUNLOCK(object); 602 vm_object_pip_wait(robject, 603 "objde1"); 604 temp = robject->backing_object; 605 if (object == temp) { 606 VM_OBJECT_WLOCK(object); 607 goto retry; 608 } 609 } else if (object->paging_in_progress) { 610 VM_OBJECT_WUNLOCK(robject); 611 VM_OBJECT_WUNLOCK(object); 612 refcount_wait( 613 &object->paging_in_progress, 614 "objde2", PVM); 615 VM_OBJECT_WLOCK(robject); 616 temp = robject->backing_object; 617 if (object == temp) { 618 VM_OBJECT_WLOCK(object); 619 goto retry; 620 } 621 } else 622 VM_OBJECT_WUNLOCK(object); 623 624 if (robject->ref_count == 1) { 625 robject->ref_count--; 626 object = robject; 627 goto doterm; 628 } 629 object = robject; 630 vm_object_collapse(object); 631 VM_OBJECT_WUNLOCK(object); 632 continue; 633 } 634 VM_OBJECT_WUNLOCK(robject); 635 } 636 VM_OBJECT_WUNLOCK(object); 637 return; 638 } 639 doterm: 640 umtx_shm_object_terminated(object); 641 temp = object->backing_object; 642 if (temp != NULL) { 643 KASSERT((object->flags & OBJ_TMPFS_NODE) == 0, 644 ("shadowed tmpfs v_object 2 %p", object)); 645 VM_OBJECT_WLOCK(temp); 646 LIST_REMOVE(object, shadow_list); 647 temp->shadow_count--; 648 VM_OBJECT_WUNLOCK(temp); 649 object->backing_object = NULL; 650 } 651 /* 652 * Don't double-terminate, we could be in a termination 653 * recursion due to the terminate having to sync data 654 * to disk. 655 */ 656 if ((object->flags & OBJ_DEAD) == 0) 657 vm_object_terminate(object); 658 else 659 VM_OBJECT_WUNLOCK(object); 660 object = temp; 661 } 662 } 663 664 /* 665 * vm_object_destroy removes the object from the global object list 666 * and frees the space for the object. 667 */ 668 void 669 vm_object_destroy(vm_object_t object) 670 { 671 672 /* 673 * Release the allocation charge. 674 */ 675 if (object->cred != NULL) { 676 swap_release_by_cred(object->charge, object->cred); 677 object->charge = 0; 678 crfree(object->cred); 679 object->cred = NULL; 680 } 681 682 /* 683 * Free the space for the object. 684 */ 685 uma_zfree(obj_zone, object); 686 } 687 688 /* 689 * vm_object_terminate_pages removes any remaining pageable pages 690 * from the object and resets the object to an empty state. 691 */ 692 static void 693 vm_object_terminate_pages(vm_object_t object) 694 { 695 vm_page_t p, p_next; 696 struct mtx *mtx; 697 698 VM_OBJECT_ASSERT_WLOCKED(object); 699 700 mtx = NULL; 701 702 /* 703 * Free any remaining pageable pages. This also removes them from the 704 * paging queues. However, don't free wired pages, just remove them 705 * from the object. Rather than incrementally removing each page from 706 * the object, the page and object are reset to any empty state. 707 */ 708 TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) { 709 vm_page_assert_unbusied(p); 710 if ((object->flags & OBJ_UNMANAGED) == 0) 711 /* 712 * vm_page_free_prep() only needs the page 713 * lock for managed pages. 714 */ 715 vm_page_change_lock(p, &mtx); 716 p->object = NULL; 717 if (vm_page_wired(p)) 718 continue; 719 VM_CNT_INC(v_pfree); 720 vm_page_free(p); 721 } 722 if (mtx != NULL) 723 mtx_unlock(mtx); 724 725 /* 726 * If the object contained any pages, then reset it to an empty state. 727 * None of the object's fields, including "resident_page_count", were 728 * modified by the preceding loop. 729 */ 730 if (object->resident_page_count != 0) { 731 vm_radix_reclaim_allnodes(&object->rtree); 732 TAILQ_INIT(&object->memq); 733 object->resident_page_count = 0; 734 if (object->type == OBJT_VNODE) 735 vdrop(object->handle); 736 } 737 } 738 739 /* 740 * vm_object_terminate actually destroys the specified object, freeing 741 * up all previously used resources. 742 * 743 * The object must be locked. 744 * This routine may block. 745 */ 746 void 747 vm_object_terminate(vm_object_t object) 748 { 749 750 VM_OBJECT_ASSERT_WLOCKED(object); 751 752 /* 753 * Make sure no one uses us. 754 */ 755 vm_object_set_flag(object, OBJ_DEAD); 756 757 /* 758 * Clean and free the pages, as appropriate. All references to the 759 * object are gone, so we don't need to lock it. 760 */ 761 if (object->type == OBJT_VNODE) { 762 struct vnode *vp = (struct vnode *)object->handle; 763 764 /* 765 * Clean pages and flush buffers. 766 */ 767 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 768 VM_OBJECT_WUNLOCK(object); 769 770 vinvalbuf(vp, V_SAVE, 0, 0); 771 772 BO_LOCK(&vp->v_bufobj); 773 vp->v_bufobj.bo_flag |= BO_DEAD; 774 BO_UNLOCK(&vp->v_bufobj); 775 776 VM_OBJECT_WLOCK(object); 777 } 778 779 /* 780 * wait for the pageout daemon to be done with the object 781 */ 782 vm_object_pip_wait(object, "objtrm"); 783 784 KASSERT(!object->paging_in_progress, 785 ("vm_object_terminate: pageout in progress")); 786 787 KASSERT(object->ref_count == 0, 788 ("vm_object_terminate: object with references, ref_count=%d", 789 object->ref_count)); 790 791 if ((object->flags & OBJ_PG_DTOR) == 0) 792 vm_object_terminate_pages(object); 793 794 #if VM_NRESERVLEVEL > 0 795 if (__predict_false(!LIST_EMPTY(&object->rvq))) 796 vm_reserv_break_all(object); 797 #endif 798 799 KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT || 800 object->type == OBJT_SWAP, 801 ("%s: non-swap obj %p has cred", __func__, object)); 802 803 /* 804 * Let the pager know object is dead. 805 */ 806 vm_pager_deallocate(object); 807 VM_OBJECT_WUNLOCK(object); 808 809 vm_object_destroy(object); 810 } 811 812 /* 813 * Make the page read-only so that we can clear the object flags. However, if 814 * this is a nosync mmap then the object is likely to stay dirty so do not 815 * mess with the page and do not clear the object flags. Returns TRUE if the 816 * page should be flushed, and FALSE otherwise. 817 */ 818 static boolean_t 819 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags) 820 { 821 822 /* 823 * If we have been asked to skip nosync pages and this is a 824 * nosync page, skip it. Note that the object flags were not 825 * cleared in this case so we do not have to set them. 826 */ 827 if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) { 828 *clearobjflags = FALSE; 829 return (FALSE); 830 } else { 831 pmap_remove_write(p); 832 return (p->dirty != 0); 833 } 834 } 835 836 /* 837 * vm_object_page_clean 838 * 839 * Clean all dirty pages in the specified range of object. Leaves page 840 * on whatever queue it is currently on. If NOSYNC is set then do not 841 * write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC), 842 * leaving the object dirty. 843 * 844 * When stuffing pages asynchronously, allow clustering. XXX we need a 845 * synchronous clustering mode implementation. 846 * 847 * Odd semantics: if start == end, we clean everything. 848 * 849 * The object must be locked. 850 * 851 * Returns FALSE if some page from the range was not written, as 852 * reported by the pager, and TRUE otherwise. 853 */ 854 boolean_t 855 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end, 856 int flags) 857 { 858 vm_page_t np, p; 859 vm_pindex_t pi, tend, tstart; 860 int curgeneration, n, pagerflags; 861 boolean_t clearobjflags, eio, res; 862 863 VM_OBJECT_ASSERT_WLOCKED(object); 864 865 /* 866 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE 867 * objects. The check below prevents the function from 868 * operating on non-vnode objects. 869 */ 870 if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 || 871 object->resident_page_count == 0) 872 return (TRUE); 873 874 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ? 875 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 876 pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0; 877 878 tstart = OFF_TO_IDX(start); 879 tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK); 880 clearobjflags = tstart == 0 && tend >= object->size; 881 res = TRUE; 882 883 rescan: 884 curgeneration = object->generation; 885 886 for (p = vm_page_find_least(object, tstart); p != NULL; p = np) { 887 pi = p->pindex; 888 if (pi >= tend) 889 break; 890 np = TAILQ_NEXT(p, listq); 891 if (p->valid == 0) 892 continue; 893 if (vm_page_sleep_if_busy(p, "vpcwai")) { 894 if (object->generation != curgeneration) { 895 if ((flags & OBJPC_SYNC) != 0) 896 goto rescan; 897 else 898 clearobjflags = FALSE; 899 } 900 np = vm_page_find_least(object, pi); 901 continue; 902 } 903 if (!vm_object_page_remove_write(p, flags, &clearobjflags)) 904 continue; 905 906 n = vm_object_page_collect_flush(object, p, pagerflags, 907 flags, &clearobjflags, &eio); 908 if (eio) { 909 res = FALSE; 910 clearobjflags = FALSE; 911 } 912 if (object->generation != curgeneration) { 913 if ((flags & OBJPC_SYNC) != 0) 914 goto rescan; 915 else 916 clearobjflags = FALSE; 917 } 918 919 /* 920 * If the VOP_PUTPAGES() did a truncated write, so 921 * that even the first page of the run is not fully 922 * written, vm_pageout_flush() returns 0 as the run 923 * length. Since the condition that caused truncated 924 * write may be permanent, e.g. exhausted free space, 925 * accepting n == 0 would cause an infinite loop. 926 * 927 * Forwarding the iterator leaves the unwritten page 928 * behind, but there is not much we can do there if 929 * filesystem refuses to write it. 930 */ 931 if (n == 0) { 932 n = 1; 933 clearobjflags = FALSE; 934 } 935 np = vm_page_find_least(object, pi + n); 936 } 937 #if 0 938 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0); 939 #endif 940 941 if (clearobjflags) 942 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY); 943 return (res); 944 } 945 946 static int 947 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags, 948 int flags, boolean_t *clearobjflags, boolean_t *eio) 949 { 950 vm_page_t ma[vm_pageout_page_count], p_first, tp; 951 int count, i, mreq, runlen; 952 953 vm_page_lock_assert(p, MA_NOTOWNED); 954 VM_OBJECT_ASSERT_WLOCKED(object); 955 956 count = 1; 957 mreq = 0; 958 959 for (tp = p; count < vm_pageout_page_count; count++) { 960 tp = vm_page_next(tp); 961 if (tp == NULL || vm_page_busied(tp)) 962 break; 963 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 964 break; 965 } 966 967 for (p_first = p; count < vm_pageout_page_count; count++) { 968 tp = vm_page_prev(p_first); 969 if (tp == NULL || vm_page_busied(tp)) 970 break; 971 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 972 break; 973 p_first = tp; 974 mreq++; 975 } 976 977 for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++) 978 ma[i] = tp; 979 980 vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio); 981 return (runlen); 982 } 983 984 /* 985 * Note that there is absolutely no sense in writing out 986 * anonymous objects, so we track down the vnode object 987 * to write out. 988 * We invalidate (remove) all pages from the address space 989 * for semantic correctness. 990 * 991 * If the backing object is a device object with unmanaged pages, then any 992 * mappings to the specified range of pages must be removed before this 993 * function is called. 994 * 995 * Note: certain anonymous maps, such as MAP_NOSYNC maps, 996 * may start out with a NULL object. 997 */ 998 boolean_t 999 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, 1000 boolean_t syncio, boolean_t invalidate) 1001 { 1002 vm_object_t backing_object; 1003 struct vnode *vp; 1004 struct mount *mp; 1005 int error, flags, fsync_after; 1006 boolean_t res; 1007 1008 if (object == NULL) 1009 return (TRUE); 1010 res = TRUE; 1011 error = 0; 1012 VM_OBJECT_WLOCK(object); 1013 while ((backing_object = object->backing_object) != NULL) { 1014 VM_OBJECT_WLOCK(backing_object); 1015 offset += object->backing_object_offset; 1016 VM_OBJECT_WUNLOCK(object); 1017 object = backing_object; 1018 if (object->size < OFF_TO_IDX(offset + size)) 1019 size = IDX_TO_OFF(object->size) - offset; 1020 } 1021 /* 1022 * Flush pages if writing is allowed, invalidate them 1023 * if invalidation requested. Pages undergoing I/O 1024 * will be ignored by vm_object_page_remove(). 1025 * 1026 * We cannot lock the vnode and then wait for paging 1027 * to complete without deadlocking against vm_fault. 1028 * Instead we simply call vm_object_page_remove() and 1029 * allow it to block internally on a page-by-page 1030 * basis when it encounters pages undergoing async 1031 * I/O. 1032 */ 1033 if (object->type == OBJT_VNODE && 1034 (object->flags & OBJ_MIGHTBEDIRTY) != 0 && 1035 ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) { 1036 VM_OBJECT_WUNLOCK(object); 1037 (void) vn_start_write(vp, &mp, V_WAIT); 1038 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1039 if (syncio && !invalidate && offset == 0 && 1040 atop(size) == object->size) { 1041 /* 1042 * If syncing the whole mapping of the file, 1043 * it is faster to schedule all the writes in 1044 * async mode, also allowing the clustering, 1045 * and then wait for i/o to complete. 1046 */ 1047 flags = 0; 1048 fsync_after = TRUE; 1049 } else { 1050 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1051 flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0; 1052 fsync_after = FALSE; 1053 } 1054 VM_OBJECT_WLOCK(object); 1055 res = vm_object_page_clean(object, offset, offset + size, 1056 flags); 1057 VM_OBJECT_WUNLOCK(object); 1058 if (fsync_after) 1059 error = VOP_FSYNC(vp, MNT_WAIT, curthread); 1060 VOP_UNLOCK(vp, 0); 1061 vn_finished_write(mp); 1062 if (error != 0) 1063 res = FALSE; 1064 VM_OBJECT_WLOCK(object); 1065 } 1066 if ((object->type == OBJT_VNODE || 1067 object->type == OBJT_DEVICE) && invalidate) { 1068 if (object->type == OBJT_DEVICE) 1069 /* 1070 * The option OBJPR_NOTMAPPED must be passed here 1071 * because vm_object_page_remove() cannot remove 1072 * unmanaged mappings. 1073 */ 1074 flags = OBJPR_NOTMAPPED; 1075 else if (old_msync) 1076 flags = 0; 1077 else 1078 flags = OBJPR_CLEANONLY; 1079 vm_object_page_remove(object, OFF_TO_IDX(offset), 1080 OFF_TO_IDX(offset + size + PAGE_MASK), flags); 1081 } 1082 VM_OBJECT_WUNLOCK(object); 1083 return (res); 1084 } 1085 1086 /* 1087 * Determine whether the given advice can be applied to the object. Advice is 1088 * not applied to unmanaged pages since they never belong to page queues, and 1089 * since MADV_FREE is destructive, it can apply only to anonymous pages that 1090 * have been mapped at most once. 1091 */ 1092 static bool 1093 vm_object_advice_applies(vm_object_t object, int advice) 1094 { 1095 1096 if ((object->flags & OBJ_UNMANAGED) != 0) 1097 return (false); 1098 if (advice != MADV_FREE) 1099 return (true); 1100 return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) && 1101 (object->flags & OBJ_ONEMAPPING) != 0); 1102 } 1103 1104 static void 1105 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex, 1106 vm_size_t size) 1107 { 1108 1109 if (advice == MADV_FREE && object->type == OBJT_SWAP) 1110 swap_pager_freespace(object, pindex, size); 1111 } 1112 1113 /* 1114 * vm_object_madvise: 1115 * 1116 * Implements the madvise function at the object/page level. 1117 * 1118 * MADV_WILLNEED (any object) 1119 * 1120 * Activate the specified pages if they are resident. 1121 * 1122 * MADV_DONTNEED (any object) 1123 * 1124 * Deactivate the specified pages if they are resident. 1125 * 1126 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, 1127 * OBJ_ONEMAPPING only) 1128 * 1129 * Deactivate and clean the specified pages if they are 1130 * resident. This permits the process to reuse the pages 1131 * without faulting or the kernel to reclaim the pages 1132 * without I/O. 1133 */ 1134 void 1135 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end, 1136 int advice) 1137 { 1138 vm_pindex_t tpindex; 1139 vm_object_t backing_object, tobject; 1140 vm_page_t m, tm; 1141 1142 if (object == NULL) 1143 return; 1144 1145 relookup: 1146 VM_OBJECT_WLOCK(object); 1147 if (!vm_object_advice_applies(object, advice)) { 1148 VM_OBJECT_WUNLOCK(object); 1149 return; 1150 } 1151 for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) { 1152 tobject = object; 1153 1154 /* 1155 * If the next page isn't resident in the top-level object, we 1156 * need to search the shadow chain. When applying MADV_FREE, we 1157 * take care to release any swap space used to store 1158 * non-resident pages. 1159 */ 1160 if (m == NULL || pindex < m->pindex) { 1161 /* 1162 * Optimize a common case: if the top-level object has 1163 * no backing object, we can skip over the non-resident 1164 * range in constant time. 1165 */ 1166 if (object->backing_object == NULL) { 1167 tpindex = (m != NULL && m->pindex < end) ? 1168 m->pindex : end; 1169 vm_object_madvise_freespace(object, advice, 1170 pindex, tpindex - pindex); 1171 if ((pindex = tpindex) == end) 1172 break; 1173 goto next_page; 1174 } 1175 1176 tpindex = pindex; 1177 do { 1178 vm_object_madvise_freespace(tobject, advice, 1179 tpindex, 1); 1180 /* 1181 * Prepare to search the next object in the 1182 * chain. 1183 */ 1184 backing_object = tobject->backing_object; 1185 if (backing_object == NULL) 1186 goto next_pindex; 1187 VM_OBJECT_WLOCK(backing_object); 1188 tpindex += 1189 OFF_TO_IDX(tobject->backing_object_offset); 1190 if (tobject != object) 1191 VM_OBJECT_WUNLOCK(tobject); 1192 tobject = backing_object; 1193 if (!vm_object_advice_applies(tobject, advice)) 1194 goto next_pindex; 1195 } while ((tm = vm_page_lookup(tobject, tpindex)) == 1196 NULL); 1197 } else { 1198 next_page: 1199 tm = m; 1200 m = TAILQ_NEXT(m, listq); 1201 } 1202 1203 /* 1204 * If the page is not in a normal state, skip it. 1205 */ 1206 if (tm->valid != VM_PAGE_BITS_ALL) 1207 goto next_pindex; 1208 vm_page_lock(tm); 1209 if (vm_page_wired(tm)) { 1210 vm_page_unlock(tm); 1211 goto next_pindex; 1212 } 1213 KASSERT((tm->flags & PG_FICTITIOUS) == 0, 1214 ("vm_object_madvise: page %p is fictitious", tm)); 1215 KASSERT((tm->oflags & VPO_UNMANAGED) == 0, 1216 ("vm_object_madvise: page %p is not managed", tm)); 1217 if (vm_page_busied(tm)) { 1218 if (object != tobject) 1219 VM_OBJECT_WUNLOCK(tobject); 1220 VM_OBJECT_WUNLOCK(object); 1221 if (advice == MADV_WILLNEED) { 1222 /* 1223 * Reference the page before unlocking and 1224 * sleeping so that the page daemon is less 1225 * likely to reclaim it. 1226 */ 1227 vm_page_aflag_set(tm, PGA_REFERENCED); 1228 } 1229 vm_page_busy_sleep(tm, "madvpo", false); 1230 goto relookup; 1231 } 1232 vm_page_advise(tm, advice); 1233 vm_page_unlock(tm); 1234 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1); 1235 next_pindex: 1236 if (tobject != object) 1237 VM_OBJECT_WUNLOCK(tobject); 1238 } 1239 VM_OBJECT_WUNLOCK(object); 1240 } 1241 1242 /* 1243 * vm_object_shadow: 1244 * 1245 * Create a new object which is backed by the 1246 * specified existing object range. The source 1247 * object reference is deallocated. 1248 * 1249 * The new object and offset into that object 1250 * are returned in the source parameters. 1251 */ 1252 void 1253 vm_object_shadow( 1254 vm_object_t *object, /* IN/OUT */ 1255 vm_ooffset_t *offset, /* IN/OUT */ 1256 vm_size_t length) 1257 { 1258 vm_object_t source; 1259 vm_object_t result; 1260 1261 source = *object; 1262 1263 /* 1264 * Don't create the new object if the old object isn't shared. 1265 */ 1266 if (source != NULL) { 1267 VM_OBJECT_WLOCK(source); 1268 if (source->ref_count == 1 && 1269 source->handle == NULL && 1270 (source->type == OBJT_DEFAULT || 1271 source->type == OBJT_SWAP)) { 1272 VM_OBJECT_WUNLOCK(source); 1273 return; 1274 } 1275 VM_OBJECT_WUNLOCK(source); 1276 } 1277 1278 /* 1279 * Allocate a new object with the given length. 1280 */ 1281 result = vm_object_allocate(OBJT_DEFAULT, atop(length)); 1282 1283 /* 1284 * The new object shadows the source object, adding a reference to it. 1285 * Our caller changes his reference to point to the new object, 1286 * removing a reference to the source object. Net result: no change 1287 * of reference count. 1288 * 1289 * Try to optimize the result object's page color when shadowing 1290 * in order to maintain page coloring consistency in the combined 1291 * shadowed object. 1292 */ 1293 result->backing_object = source; 1294 /* 1295 * Store the offset into the source object, and fix up the offset into 1296 * the new object. 1297 */ 1298 result->backing_object_offset = *offset; 1299 if (source != NULL) { 1300 VM_OBJECT_WLOCK(source); 1301 result->domain = source->domain; 1302 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list); 1303 source->shadow_count++; 1304 #if VM_NRESERVLEVEL > 0 1305 result->flags |= source->flags & OBJ_COLORED; 1306 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & 1307 ((1 << (VM_NFREEORDER - 1)) - 1); 1308 #endif 1309 VM_OBJECT_WUNLOCK(source); 1310 } 1311 1312 1313 /* 1314 * Return the new things 1315 */ 1316 *offset = 0; 1317 *object = result; 1318 } 1319 1320 /* 1321 * vm_object_split: 1322 * 1323 * Split the pages in a map entry into a new object. This affords 1324 * easier removal of unused pages, and keeps object inheritance from 1325 * being a negative impact on memory usage. 1326 */ 1327 void 1328 vm_object_split(vm_map_entry_t entry) 1329 { 1330 vm_page_t m, m_next; 1331 vm_object_t orig_object, new_object, source; 1332 vm_pindex_t idx, offidxstart; 1333 vm_size_t size; 1334 1335 orig_object = entry->object.vm_object; 1336 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 1337 return; 1338 if (orig_object->ref_count <= 1) 1339 return; 1340 VM_OBJECT_WUNLOCK(orig_object); 1341 1342 offidxstart = OFF_TO_IDX(entry->offset); 1343 size = atop(entry->end - entry->start); 1344 1345 /* 1346 * If swap_pager_copy() is later called, it will convert new_object 1347 * into a swap object. 1348 */ 1349 new_object = vm_object_allocate(OBJT_DEFAULT, size); 1350 1351 /* 1352 * At this point, the new object is still private, so the order in 1353 * which the original and new objects are locked does not matter. 1354 */ 1355 VM_OBJECT_WLOCK(new_object); 1356 VM_OBJECT_WLOCK(orig_object); 1357 new_object->domain = orig_object->domain; 1358 source = orig_object->backing_object; 1359 if (source != NULL) { 1360 VM_OBJECT_WLOCK(source); 1361 if ((source->flags & OBJ_DEAD) != 0) { 1362 VM_OBJECT_WUNLOCK(source); 1363 VM_OBJECT_WUNLOCK(orig_object); 1364 VM_OBJECT_WUNLOCK(new_object); 1365 vm_object_deallocate(new_object); 1366 VM_OBJECT_WLOCK(orig_object); 1367 return; 1368 } 1369 LIST_INSERT_HEAD(&source->shadow_head, 1370 new_object, shadow_list); 1371 source->shadow_count++; 1372 vm_object_reference_locked(source); /* for new_object */ 1373 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1374 VM_OBJECT_WUNLOCK(source); 1375 new_object->backing_object_offset = 1376 orig_object->backing_object_offset + entry->offset; 1377 new_object->backing_object = source; 1378 } 1379 if (orig_object->cred != NULL) { 1380 new_object->cred = orig_object->cred; 1381 crhold(orig_object->cred); 1382 new_object->charge = ptoa(size); 1383 KASSERT(orig_object->charge >= ptoa(size), 1384 ("orig_object->charge < 0")); 1385 orig_object->charge -= ptoa(size); 1386 } 1387 retry: 1388 m = vm_page_find_least(orig_object, offidxstart); 1389 for (; m != NULL && (idx = m->pindex - offidxstart) < size; 1390 m = m_next) { 1391 m_next = TAILQ_NEXT(m, listq); 1392 1393 /* 1394 * We must wait for pending I/O to complete before we can 1395 * rename the page. 1396 * 1397 * We do not have to VM_PROT_NONE the page as mappings should 1398 * not be changed by this operation. 1399 */ 1400 if (vm_page_busied(m)) { 1401 VM_OBJECT_WUNLOCK(new_object); 1402 vm_page_lock(m); 1403 VM_OBJECT_WUNLOCK(orig_object); 1404 vm_page_busy_sleep(m, "spltwt", false); 1405 VM_OBJECT_WLOCK(orig_object); 1406 VM_OBJECT_WLOCK(new_object); 1407 goto retry; 1408 } 1409 1410 /* vm_page_rename() will dirty the page. */ 1411 if (vm_page_rename(m, new_object, idx)) { 1412 VM_OBJECT_WUNLOCK(new_object); 1413 VM_OBJECT_WUNLOCK(orig_object); 1414 vm_radix_wait(); 1415 VM_OBJECT_WLOCK(orig_object); 1416 VM_OBJECT_WLOCK(new_object); 1417 goto retry; 1418 } 1419 #if VM_NRESERVLEVEL > 0 1420 /* 1421 * If some of the reservation's allocated pages remain with 1422 * the original object, then transferring the reservation to 1423 * the new object is neither particularly beneficial nor 1424 * particularly harmful as compared to leaving the reservation 1425 * with the original object. If, however, all of the 1426 * reservation's allocated pages are transferred to the new 1427 * object, then transferring the reservation is typically 1428 * beneficial. Determining which of these two cases applies 1429 * would be more costly than unconditionally renaming the 1430 * reservation. 1431 */ 1432 vm_reserv_rename(m, new_object, orig_object, offidxstart); 1433 #endif 1434 if (orig_object->type == OBJT_SWAP) 1435 vm_page_xbusy(m); 1436 } 1437 if (orig_object->type == OBJT_SWAP) { 1438 /* 1439 * swap_pager_copy() can sleep, in which case the orig_object's 1440 * and new_object's locks are released and reacquired. 1441 */ 1442 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1443 TAILQ_FOREACH(m, &new_object->memq, listq) 1444 vm_page_xunbusy(m); 1445 } 1446 VM_OBJECT_WUNLOCK(orig_object); 1447 VM_OBJECT_WUNLOCK(new_object); 1448 entry->object.vm_object = new_object; 1449 entry->offset = 0LL; 1450 vm_object_deallocate(orig_object); 1451 VM_OBJECT_WLOCK(new_object); 1452 } 1453 1454 #define OBSC_COLLAPSE_NOWAIT 0x0002 1455 #define OBSC_COLLAPSE_WAIT 0x0004 1456 1457 static vm_page_t 1458 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next, 1459 int op) 1460 { 1461 vm_object_t backing_object; 1462 1463 VM_OBJECT_ASSERT_WLOCKED(object); 1464 backing_object = object->backing_object; 1465 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1466 1467 KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p)); 1468 KASSERT(p == NULL || p->object == object || p->object == backing_object, 1469 ("invalid ownership %p %p %p", p, object, backing_object)); 1470 if ((op & OBSC_COLLAPSE_NOWAIT) != 0) 1471 return (next); 1472 if (p != NULL) 1473 vm_page_lock(p); 1474 VM_OBJECT_WUNLOCK(object); 1475 VM_OBJECT_WUNLOCK(backing_object); 1476 /* The page is only NULL when rename fails. */ 1477 if (p == NULL) 1478 vm_radix_wait(); 1479 else 1480 vm_page_busy_sleep(p, "vmocol", false); 1481 VM_OBJECT_WLOCK(object); 1482 VM_OBJECT_WLOCK(backing_object); 1483 return (TAILQ_FIRST(&backing_object->memq)); 1484 } 1485 1486 static bool 1487 vm_object_scan_all_shadowed(vm_object_t object) 1488 { 1489 vm_object_t backing_object; 1490 vm_page_t p, pp; 1491 vm_pindex_t backing_offset_index, new_pindex, pi, ps; 1492 1493 VM_OBJECT_ASSERT_WLOCKED(object); 1494 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1495 1496 backing_object = object->backing_object; 1497 1498 if (backing_object->type != OBJT_DEFAULT && 1499 backing_object->type != OBJT_SWAP) 1500 return (false); 1501 1502 pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1503 p = vm_page_find_least(backing_object, pi); 1504 ps = swap_pager_find_least(backing_object, pi); 1505 1506 /* 1507 * Only check pages inside the parent object's range and 1508 * inside the parent object's mapping of the backing object. 1509 */ 1510 for (;; pi++) { 1511 if (p != NULL && p->pindex < pi) 1512 p = TAILQ_NEXT(p, listq); 1513 if (ps < pi) 1514 ps = swap_pager_find_least(backing_object, pi); 1515 if (p == NULL && ps >= backing_object->size) 1516 break; 1517 else if (p == NULL) 1518 pi = ps; 1519 else 1520 pi = MIN(p->pindex, ps); 1521 1522 new_pindex = pi - backing_offset_index; 1523 if (new_pindex >= object->size) 1524 break; 1525 1526 /* 1527 * See if the parent has the page or if the parent's object 1528 * pager has the page. If the parent has the page but the page 1529 * is not valid, the parent's object pager must have the page. 1530 * 1531 * If this fails, the parent does not completely shadow the 1532 * object and we might as well give up now. 1533 */ 1534 pp = vm_page_lookup(object, new_pindex); 1535 if ((pp == NULL || pp->valid == 0) && 1536 !vm_pager_has_page(object, new_pindex, NULL, NULL)) 1537 return (false); 1538 } 1539 return (true); 1540 } 1541 1542 static bool 1543 vm_object_collapse_scan(vm_object_t object, int op) 1544 { 1545 vm_object_t backing_object; 1546 vm_page_t next, p, pp; 1547 vm_pindex_t backing_offset_index, new_pindex; 1548 1549 VM_OBJECT_ASSERT_WLOCKED(object); 1550 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1551 1552 backing_object = object->backing_object; 1553 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1554 1555 /* 1556 * Initial conditions 1557 */ 1558 if ((op & OBSC_COLLAPSE_WAIT) != 0) 1559 vm_object_set_flag(backing_object, OBJ_DEAD); 1560 1561 /* 1562 * Our scan 1563 */ 1564 for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) { 1565 next = TAILQ_NEXT(p, listq); 1566 new_pindex = p->pindex - backing_offset_index; 1567 1568 /* 1569 * Check for busy page 1570 */ 1571 if (vm_page_busied(p)) { 1572 next = vm_object_collapse_scan_wait(object, p, next, op); 1573 continue; 1574 } 1575 1576 KASSERT(p->object == backing_object, 1577 ("vm_object_collapse_scan: object mismatch")); 1578 1579 if (p->pindex < backing_offset_index || 1580 new_pindex >= object->size) { 1581 if (backing_object->type == OBJT_SWAP) 1582 swap_pager_freespace(backing_object, p->pindex, 1583 1); 1584 1585 /* 1586 * Page is out of the parent object's range, we can 1587 * simply destroy it. 1588 */ 1589 vm_page_lock(p); 1590 KASSERT(!pmap_page_is_mapped(p), 1591 ("freeing mapped page %p", p)); 1592 if (vm_page_remove(p)) 1593 vm_page_free(p); 1594 vm_page_unlock(p); 1595 continue; 1596 } 1597 1598 pp = vm_page_lookup(object, new_pindex); 1599 if (pp != NULL && vm_page_busied(pp)) { 1600 /* 1601 * The page in the parent is busy and possibly not 1602 * (yet) valid. Until its state is finalized by the 1603 * busy bit owner, we can't tell whether it shadows the 1604 * original page. Therefore, we must either skip it 1605 * and the original (backing_object) page or wait for 1606 * its state to be finalized. 1607 * 1608 * This is due to a race with vm_fault() where we must 1609 * unbusy the original (backing_obj) page before we can 1610 * (re)lock the parent. Hence we can get here. 1611 */ 1612 next = vm_object_collapse_scan_wait(object, pp, next, 1613 op); 1614 continue; 1615 } 1616 1617 KASSERT(pp == NULL || pp->valid != 0, 1618 ("unbusy invalid page %p", pp)); 1619 1620 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL, 1621 NULL)) { 1622 /* 1623 * The page already exists in the parent OR swap exists 1624 * for this location in the parent. Leave the parent's 1625 * page alone. Destroy the original page from the 1626 * backing object. 1627 */ 1628 if (backing_object->type == OBJT_SWAP) 1629 swap_pager_freespace(backing_object, p->pindex, 1630 1); 1631 vm_page_lock(p); 1632 KASSERT(!pmap_page_is_mapped(p), 1633 ("freeing mapped page %p", p)); 1634 if (vm_page_remove(p)) 1635 vm_page_free(p); 1636 vm_page_unlock(p); 1637 continue; 1638 } 1639 1640 /* 1641 * Page does not exist in parent, rename the page from the 1642 * backing object to the main object. 1643 * 1644 * If the page was mapped to a process, it can remain mapped 1645 * through the rename. vm_page_rename() will dirty the page. 1646 */ 1647 if (vm_page_rename(p, object, new_pindex)) { 1648 next = vm_object_collapse_scan_wait(object, NULL, next, 1649 op); 1650 continue; 1651 } 1652 1653 /* Use the old pindex to free the right page. */ 1654 if (backing_object->type == OBJT_SWAP) 1655 swap_pager_freespace(backing_object, 1656 new_pindex + backing_offset_index, 1); 1657 1658 #if VM_NRESERVLEVEL > 0 1659 /* 1660 * Rename the reservation. 1661 */ 1662 vm_reserv_rename(p, object, backing_object, 1663 backing_offset_index); 1664 #endif 1665 } 1666 return (true); 1667 } 1668 1669 1670 /* 1671 * this version of collapse allows the operation to occur earlier and 1672 * when paging_in_progress is true for an object... This is not a complete 1673 * operation, but should plug 99.9% of the rest of the leaks. 1674 */ 1675 static void 1676 vm_object_qcollapse(vm_object_t object) 1677 { 1678 vm_object_t backing_object = object->backing_object; 1679 1680 VM_OBJECT_ASSERT_WLOCKED(object); 1681 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1682 1683 if (backing_object->ref_count != 1) 1684 return; 1685 1686 vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT); 1687 } 1688 1689 /* 1690 * vm_object_collapse: 1691 * 1692 * Collapse an object with the object backing it. 1693 * Pages in the backing object are moved into the 1694 * parent, and the backing object is deallocated. 1695 */ 1696 void 1697 vm_object_collapse(vm_object_t object) 1698 { 1699 vm_object_t backing_object, new_backing_object; 1700 1701 VM_OBJECT_ASSERT_WLOCKED(object); 1702 1703 while (TRUE) { 1704 /* 1705 * Verify that the conditions are right for collapse: 1706 * 1707 * The object exists and the backing object exists. 1708 */ 1709 if ((backing_object = object->backing_object) == NULL) 1710 break; 1711 1712 /* 1713 * we check the backing object first, because it is most likely 1714 * not collapsable. 1715 */ 1716 VM_OBJECT_WLOCK(backing_object); 1717 if (backing_object->handle != NULL || 1718 (backing_object->type != OBJT_DEFAULT && 1719 backing_object->type != OBJT_SWAP) || 1720 (backing_object->flags & (OBJ_DEAD | OBJ_NOSPLIT)) != 0 || 1721 object->handle != NULL || 1722 (object->type != OBJT_DEFAULT && 1723 object->type != OBJT_SWAP) || 1724 (object->flags & OBJ_DEAD)) { 1725 VM_OBJECT_WUNLOCK(backing_object); 1726 break; 1727 } 1728 1729 if (object->paging_in_progress != 0 || 1730 backing_object->paging_in_progress != 0) { 1731 vm_object_qcollapse(object); 1732 VM_OBJECT_WUNLOCK(backing_object); 1733 break; 1734 } 1735 1736 /* 1737 * We know that we can either collapse the backing object (if 1738 * the parent is the only reference to it) or (perhaps) have 1739 * the parent bypass the object if the parent happens to shadow 1740 * all the resident pages in the entire backing object. 1741 * 1742 * This is ignoring pager-backed pages such as swap pages. 1743 * vm_object_collapse_scan fails the shadowing test in this 1744 * case. 1745 */ 1746 if (backing_object->ref_count == 1) { 1747 vm_object_pip_add(object, 1); 1748 vm_object_pip_add(backing_object, 1); 1749 1750 /* 1751 * If there is exactly one reference to the backing 1752 * object, we can collapse it into the parent. 1753 */ 1754 vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT); 1755 1756 #if VM_NRESERVLEVEL > 0 1757 /* 1758 * Break any reservations from backing_object. 1759 */ 1760 if (__predict_false(!LIST_EMPTY(&backing_object->rvq))) 1761 vm_reserv_break_all(backing_object); 1762 #endif 1763 1764 /* 1765 * Move the pager from backing_object to object. 1766 */ 1767 if (backing_object->type == OBJT_SWAP) { 1768 /* 1769 * swap_pager_copy() can sleep, in which case 1770 * the backing_object's and object's locks are 1771 * released and reacquired. 1772 * Since swap_pager_copy() is being asked to 1773 * destroy the source, it will change the 1774 * backing_object's type to OBJT_DEFAULT. 1775 */ 1776 swap_pager_copy( 1777 backing_object, 1778 object, 1779 OFF_TO_IDX(object->backing_object_offset), TRUE); 1780 } 1781 /* 1782 * Object now shadows whatever backing_object did. 1783 * Note that the reference to 1784 * backing_object->backing_object moves from within 1785 * backing_object to within object. 1786 */ 1787 LIST_REMOVE(object, shadow_list); 1788 backing_object->shadow_count--; 1789 if (backing_object->backing_object) { 1790 VM_OBJECT_WLOCK(backing_object->backing_object); 1791 LIST_REMOVE(backing_object, shadow_list); 1792 LIST_INSERT_HEAD( 1793 &backing_object->backing_object->shadow_head, 1794 object, shadow_list); 1795 /* 1796 * The shadow_count has not changed. 1797 */ 1798 VM_OBJECT_WUNLOCK(backing_object->backing_object); 1799 } 1800 object->backing_object = backing_object->backing_object; 1801 object->backing_object_offset += 1802 backing_object->backing_object_offset; 1803 1804 /* 1805 * Discard backing_object. 1806 * 1807 * Since the backing object has no pages, no pager left, 1808 * and no object references within it, all that is 1809 * necessary is to dispose of it. 1810 */ 1811 KASSERT(backing_object->ref_count == 1, ( 1812 "backing_object %p was somehow re-referenced during collapse!", 1813 backing_object)); 1814 vm_object_pip_wakeup(backing_object); 1815 backing_object->type = OBJT_DEAD; 1816 backing_object->ref_count = 0; 1817 VM_OBJECT_WUNLOCK(backing_object); 1818 vm_object_destroy(backing_object); 1819 1820 vm_object_pip_wakeup(object); 1821 counter_u64_add(object_collapses, 1); 1822 } else { 1823 /* 1824 * If we do not entirely shadow the backing object, 1825 * there is nothing we can do so we give up. 1826 */ 1827 if (object->resident_page_count != object->size && 1828 !vm_object_scan_all_shadowed(object)) { 1829 VM_OBJECT_WUNLOCK(backing_object); 1830 break; 1831 } 1832 1833 /* 1834 * Make the parent shadow the next object in the 1835 * chain. Deallocating backing_object will not remove 1836 * it, since its reference count is at least 2. 1837 */ 1838 LIST_REMOVE(object, shadow_list); 1839 backing_object->shadow_count--; 1840 1841 new_backing_object = backing_object->backing_object; 1842 if ((object->backing_object = new_backing_object) != NULL) { 1843 VM_OBJECT_WLOCK(new_backing_object); 1844 LIST_INSERT_HEAD( 1845 &new_backing_object->shadow_head, 1846 object, 1847 shadow_list 1848 ); 1849 new_backing_object->shadow_count++; 1850 vm_object_reference_locked(new_backing_object); 1851 VM_OBJECT_WUNLOCK(new_backing_object); 1852 object->backing_object_offset += 1853 backing_object->backing_object_offset; 1854 } 1855 1856 /* 1857 * Drop the reference count on backing_object. Since 1858 * its ref_count was at least 2, it will not vanish. 1859 */ 1860 backing_object->ref_count--; 1861 VM_OBJECT_WUNLOCK(backing_object); 1862 counter_u64_add(object_bypasses, 1); 1863 } 1864 1865 /* 1866 * Try again with this object's new backing object. 1867 */ 1868 } 1869 } 1870 1871 /* 1872 * vm_object_page_remove: 1873 * 1874 * For the given object, either frees or invalidates each of the 1875 * specified pages. In general, a page is freed. However, if a page is 1876 * wired for any reason other than the existence of a managed, wired 1877 * mapping, then it may be invalidated but not removed from the object. 1878 * Pages are specified by the given range ["start", "end") and the option 1879 * OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range 1880 * extends from "start" to the end of the object. If the option 1881 * OBJPR_CLEANONLY is specified, then only the non-dirty pages within the 1882 * specified range are affected. If the option OBJPR_NOTMAPPED is 1883 * specified, then the pages within the specified range must have no 1884 * mappings. Otherwise, if this option is not specified, any mappings to 1885 * the specified pages are removed before the pages are freed or 1886 * invalidated. 1887 * 1888 * In general, this operation should only be performed on objects that 1889 * contain managed pages. There are, however, two exceptions. First, it 1890 * is performed on the kernel and kmem objects by vm_map_entry_delete(). 1891 * Second, it is used by msync(..., MS_INVALIDATE) to invalidate device- 1892 * backed pages. In both of these cases, the option OBJPR_CLEANONLY must 1893 * not be specified and the option OBJPR_NOTMAPPED must be specified. 1894 * 1895 * The object must be locked. 1896 */ 1897 void 1898 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 1899 int options) 1900 { 1901 vm_page_t p, next; 1902 struct mtx *mtx; 1903 1904 VM_OBJECT_ASSERT_WLOCKED(object); 1905 KASSERT((object->flags & OBJ_UNMANAGED) == 0 || 1906 (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED, 1907 ("vm_object_page_remove: illegal options for object %p", object)); 1908 if (object->resident_page_count == 0) 1909 return; 1910 vm_object_pip_add(object, 1); 1911 again: 1912 p = vm_page_find_least(object, start); 1913 mtx = NULL; 1914 1915 /* 1916 * Here, the variable "p" is either (1) the page with the least pindex 1917 * greater than or equal to the parameter "start" or (2) NULL. 1918 */ 1919 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1920 next = TAILQ_NEXT(p, listq); 1921 1922 /* 1923 * If the page is wired for any reason besides the existence 1924 * of managed, wired mappings, then it cannot be freed. For 1925 * example, fictitious pages, which represent device memory, 1926 * are inherently wired and cannot be freed. They can, 1927 * however, be invalidated if the option OBJPR_CLEANONLY is 1928 * not specified. 1929 */ 1930 vm_page_change_lock(p, &mtx); 1931 if (vm_page_xbusied(p)) { 1932 VM_OBJECT_WUNLOCK(object); 1933 vm_page_busy_sleep(p, "vmopax", true); 1934 VM_OBJECT_WLOCK(object); 1935 goto again; 1936 } 1937 if (vm_page_wired(p)) { 1938 if ((options & OBJPR_NOTMAPPED) == 0 && 1939 object->ref_count != 0) 1940 pmap_remove_all(p); 1941 if ((options & OBJPR_CLEANONLY) == 0) { 1942 p->valid = 0; 1943 vm_page_undirty(p); 1944 } 1945 continue; 1946 } 1947 if (vm_page_busied(p)) { 1948 VM_OBJECT_WUNLOCK(object); 1949 vm_page_busy_sleep(p, "vmopar", false); 1950 VM_OBJECT_WLOCK(object); 1951 goto again; 1952 } 1953 KASSERT((p->flags & PG_FICTITIOUS) == 0, 1954 ("vm_object_page_remove: page %p is fictitious", p)); 1955 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) { 1956 if ((options & OBJPR_NOTMAPPED) == 0 && 1957 object->ref_count != 0) 1958 pmap_remove_write(p); 1959 if (p->dirty != 0) 1960 continue; 1961 } 1962 if ((options & OBJPR_NOTMAPPED) == 0 && object->ref_count != 0) 1963 pmap_remove_all(p); 1964 vm_page_free(p); 1965 } 1966 if (mtx != NULL) 1967 mtx_unlock(mtx); 1968 vm_object_pip_wakeup(object); 1969 } 1970 1971 /* 1972 * vm_object_page_noreuse: 1973 * 1974 * For the given object, attempt to move the specified pages to 1975 * the head of the inactive queue. This bypasses regular LRU 1976 * operation and allows the pages to be reused quickly under memory 1977 * pressure. If a page is wired for any reason, then it will not 1978 * be queued. Pages are specified by the range ["start", "end"). 1979 * As a special case, if "end" is zero, then the range extends from 1980 * "start" to the end of the object. 1981 * 1982 * This operation should only be performed on objects that 1983 * contain non-fictitious, managed pages. 1984 * 1985 * The object must be locked. 1986 */ 1987 void 1988 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1989 { 1990 struct mtx *mtx; 1991 vm_page_t p, next; 1992 1993 VM_OBJECT_ASSERT_LOCKED(object); 1994 KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0, 1995 ("vm_object_page_noreuse: illegal object %p", object)); 1996 if (object->resident_page_count == 0) 1997 return; 1998 p = vm_page_find_least(object, start); 1999 2000 /* 2001 * Here, the variable "p" is either (1) the page with the least pindex 2002 * greater than or equal to the parameter "start" or (2) NULL. 2003 */ 2004 mtx = NULL; 2005 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 2006 next = TAILQ_NEXT(p, listq); 2007 vm_page_change_lock(p, &mtx); 2008 vm_page_deactivate_noreuse(p); 2009 } 2010 if (mtx != NULL) 2011 mtx_unlock(mtx); 2012 } 2013 2014 /* 2015 * Populate the specified range of the object with valid pages. Returns 2016 * TRUE if the range is successfully populated and FALSE otherwise. 2017 * 2018 * Note: This function should be optimized to pass a larger array of 2019 * pages to vm_pager_get_pages() before it is applied to a non- 2020 * OBJT_DEVICE object. 2021 * 2022 * The object must be locked. 2023 */ 2024 boolean_t 2025 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 2026 { 2027 vm_page_t m; 2028 vm_pindex_t pindex; 2029 int rv; 2030 2031 VM_OBJECT_ASSERT_WLOCKED(object); 2032 for (pindex = start; pindex < end; pindex++) { 2033 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL); 2034 if (m->valid != VM_PAGE_BITS_ALL) { 2035 rv = vm_pager_get_pages(object, &m, 1, NULL, NULL); 2036 if (rv != VM_PAGER_OK) { 2037 vm_page_lock(m); 2038 vm_page_free(m); 2039 vm_page_unlock(m); 2040 break; 2041 } 2042 } 2043 /* 2044 * Keep "m" busy because a subsequent iteration may unlock 2045 * the object. 2046 */ 2047 } 2048 if (pindex > start) { 2049 m = vm_page_lookup(object, start); 2050 while (m != NULL && m->pindex < pindex) { 2051 vm_page_xunbusy(m); 2052 m = TAILQ_NEXT(m, listq); 2053 } 2054 } 2055 return (pindex == end); 2056 } 2057 2058 /* 2059 * Routine: vm_object_coalesce 2060 * Function: Coalesces two objects backing up adjoining 2061 * regions of memory into a single object. 2062 * 2063 * returns TRUE if objects were combined. 2064 * 2065 * NOTE: Only works at the moment if the second object is NULL - 2066 * if it's not, which object do we lock first? 2067 * 2068 * Parameters: 2069 * prev_object First object to coalesce 2070 * prev_offset Offset into prev_object 2071 * prev_size Size of reference to prev_object 2072 * next_size Size of reference to the second object 2073 * reserved Indicator that extension region has 2074 * swap accounted for 2075 * 2076 * Conditions: 2077 * The object must *not* be locked. 2078 */ 2079 boolean_t 2080 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, 2081 vm_size_t prev_size, vm_size_t next_size, boolean_t reserved) 2082 { 2083 vm_pindex_t next_pindex; 2084 2085 if (prev_object == NULL) 2086 return (TRUE); 2087 VM_OBJECT_WLOCK(prev_object); 2088 if ((prev_object->type != OBJT_DEFAULT && 2089 prev_object->type != OBJT_SWAP) || 2090 (prev_object->flags & OBJ_TMPFS_NODE) != 0) { 2091 VM_OBJECT_WUNLOCK(prev_object); 2092 return (FALSE); 2093 } 2094 2095 /* 2096 * Try to collapse the object first 2097 */ 2098 vm_object_collapse(prev_object); 2099 2100 /* 2101 * Can't coalesce if: . more than one reference . paged out . shadows 2102 * another object . has a copy elsewhere (any of which mean that the 2103 * pages not mapped to prev_entry may be in use anyway) 2104 */ 2105 if (prev_object->backing_object != NULL) { 2106 VM_OBJECT_WUNLOCK(prev_object); 2107 return (FALSE); 2108 } 2109 2110 prev_size >>= PAGE_SHIFT; 2111 next_size >>= PAGE_SHIFT; 2112 next_pindex = OFF_TO_IDX(prev_offset) + prev_size; 2113 2114 if (prev_object->ref_count > 1 && 2115 prev_object->size != next_pindex && 2116 (prev_object->flags & OBJ_ONEMAPPING) == 0) { 2117 VM_OBJECT_WUNLOCK(prev_object); 2118 return (FALSE); 2119 } 2120 2121 /* 2122 * Account for the charge. 2123 */ 2124 if (prev_object->cred != NULL) { 2125 2126 /* 2127 * If prev_object was charged, then this mapping, 2128 * although not charged now, may become writable 2129 * later. Non-NULL cred in the object would prevent 2130 * swap reservation during enabling of the write 2131 * access, so reserve swap now. Failed reservation 2132 * cause allocation of the separate object for the map 2133 * entry, and swap reservation for this entry is 2134 * managed in appropriate time. 2135 */ 2136 if (!reserved && !swap_reserve_by_cred(ptoa(next_size), 2137 prev_object->cred)) { 2138 VM_OBJECT_WUNLOCK(prev_object); 2139 return (FALSE); 2140 } 2141 prev_object->charge += ptoa(next_size); 2142 } 2143 2144 /* 2145 * Remove any pages that may still be in the object from a previous 2146 * deallocation. 2147 */ 2148 if (next_pindex < prev_object->size) { 2149 vm_object_page_remove(prev_object, next_pindex, next_pindex + 2150 next_size, 0); 2151 if (prev_object->type == OBJT_SWAP) 2152 swap_pager_freespace(prev_object, 2153 next_pindex, next_size); 2154 #if 0 2155 if (prev_object->cred != NULL) { 2156 KASSERT(prev_object->charge >= 2157 ptoa(prev_object->size - next_pindex), 2158 ("object %p overcharged 1 %jx %jx", prev_object, 2159 (uintmax_t)next_pindex, (uintmax_t)next_size)); 2160 prev_object->charge -= ptoa(prev_object->size - 2161 next_pindex); 2162 } 2163 #endif 2164 } 2165 2166 /* 2167 * Extend the object if necessary. 2168 */ 2169 if (next_pindex + next_size > prev_object->size) 2170 prev_object->size = next_pindex + next_size; 2171 2172 VM_OBJECT_WUNLOCK(prev_object); 2173 return (TRUE); 2174 } 2175 2176 void 2177 vm_object_set_writeable_dirty(vm_object_t object) 2178 { 2179 2180 VM_OBJECT_ASSERT_WLOCKED(object); 2181 if (object->type != OBJT_VNODE) { 2182 if ((object->flags & OBJ_TMPFS_NODE) != 0) { 2183 KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs")); 2184 vm_object_set_flag(object, OBJ_TMPFS_DIRTY); 2185 } 2186 return; 2187 } 2188 object->generation++; 2189 if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) 2190 return; 2191 vm_object_set_flag(object, OBJ_MIGHTBEDIRTY); 2192 } 2193 2194 /* 2195 * vm_object_unwire: 2196 * 2197 * For each page offset within the specified range of the given object, 2198 * find the highest-level page in the shadow chain and unwire it. A page 2199 * must exist at every page offset, and the highest-level page must be 2200 * wired. 2201 */ 2202 void 2203 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length, 2204 uint8_t queue) 2205 { 2206 vm_object_t tobject, t1object; 2207 vm_page_t m, tm; 2208 vm_pindex_t end_pindex, pindex, tpindex; 2209 int depth, locked_depth; 2210 2211 KASSERT((offset & PAGE_MASK) == 0, 2212 ("vm_object_unwire: offset is not page aligned")); 2213 KASSERT((length & PAGE_MASK) == 0, 2214 ("vm_object_unwire: length is not a multiple of PAGE_SIZE")); 2215 /* The wired count of a fictitious page never changes. */ 2216 if ((object->flags & OBJ_FICTITIOUS) != 0) 2217 return; 2218 pindex = OFF_TO_IDX(offset); 2219 end_pindex = pindex + atop(length); 2220 again: 2221 locked_depth = 1; 2222 VM_OBJECT_RLOCK(object); 2223 m = vm_page_find_least(object, pindex); 2224 while (pindex < end_pindex) { 2225 if (m == NULL || pindex < m->pindex) { 2226 /* 2227 * The first object in the shadow chain doesn't 2228 * contain a page at the current index. Therefore, 2229 * the page must exist in a backing object. 2230 */ 2231 tobject = object; 2232 tpindex = pindex; 2233 depth = 0; 2234 do { 2235 tpindex += 2236 OFF_TO_IDX(tobject->backing_object_offset); 2237 tobject = tobject->backing_object; 2238 KASSERT(tobject != NULL, 2239 ("vm_object_unwire: missing page")); 2240 if ((tobject->flags & OBJ_FICTITIOUS) != 0) 2241 goto next_page; 2242 depth++; 2243 if (depth == locked_depth) { 2244 locked_depth++; 2245 VM_OBJECT_RLOCK(tobject); 2246 } 2247 } while ((tm = vm_page_lookup(tobject, tpindex)) == 2248 NULL); 2249 } else { 2250 tm = m; 2251 m = TAILQ_NEXT(m, listq); 2252 } 2253 vm_page_lock(tm); 2254 if (vm_page_xbusied(tm)) { 2255 for (tobject = object; locked_depth >= 1; 2256 locked_depth--) { 2257 t1object = tobject->backing_object; 2258 VM_OBJECT_RUNLOCK(tobject); 2259 tobject = t1object; 2260 } 2261 vm_page_busy_sleep(tm, "unwbo", true); 2262 goto again; 2263 } 2264 vm_page_unwire(tm, queue); 2265 vm_page_unlock(tm); 2266 next_page: 2267 pindex++; 2268 } 2269 /* Release the accumulated object locks. */ 2270 for (tobject = object; locked_depth >= 1; locked_depth--) { 2271 t1object = tobject->backing_object; 2272 VM_OBJECT_RUNLOCK(tobject); 2273 tobject = t1object; 2274 } 2275 } 2276 2277 /* 2278 * Return the vnode for the given object, or NULL if none exists. 2279 * For tmpfs objects, the function may return NULL if there is 2280 * no vnode allocated at the time of the call. 2281 */ 2282 struct vnode * 2283 vm_object_vnode(vm_object_t object) 2284 { 2285 struct vnode *vp; 2286 2287 VM_OBJECT_ASSERT_LOCKED(object); 2288 if (object->type == OBJT_VNODE) { 2289 vp = object->handle; 2290 KASSERT(vp != NULL, ("%s: OBJT_VNODE has no vnode", __func__)); 2291 } else if (object->type == OBJT_SWAP && 2292 (object->flags & OBJ_TMPFS) != 0) { 2293 vp = object->un_pager.swp.swp_tmpfs; 2294 KASSERT(vp != NULL, ("%s: OBJT_TMPFS has no vnode", __func__)); 2295 } else { 2296 vp = NULL; 2297 } 2298 return (vp); 2299 } 2300 2301 /* 2302 * Return the kvme type of the given object. 2303 * If vpp is not NULL, set it to the object's vm_object_vnode() or NULL. 2304 */ 2305 int 2306 vm_object_kvme_type(vm_object_t object, struct vnode **vpp) 2307 { 2308 2309 VM_OBJECT_ASSERT_LOCKED(object); 2310 if (vpp != NULL) 2311 *vpp = vm_object_vnode(object); 2312 switch (object->type) { 2313 case OBJT_DEFAULT: 2314 return (KVME_TYPE_DEFAULT); 2315 case OBJT_VNODE: 2316 return (KVME_TYPE_VNODE); 2317 case OBJT_SWAP: 2318 if ((object->flags & OBJ_TMPFS_NODE) != 0) 2319 return (KVME_TYPE_VNODE); 2320 return (KVME_TYPE_SWAP); 2321 case OBJT_DEVICE: 2322 return (KVME_TYPE_DEVICE); 2323 case OBJT_PHYS: 2324 return (KVME_TYPE_PHYS); 2325 case OBJT_DEAD: 2326 return (KVME_TYPE_DEAD); 2327 case OBJT_SG: 2328 return (KVME_TYPE_SG); 2329 case OBJT_MGTDEVICE: 2330 return (KVME_TYPE_MGTDEVICE); 2331 default: 2332 return (KVME_TYPE_UNKNOWN); 2333 } 2334 } 2335 2336 static int 2337 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS) 2338 { 2339 struct kinfo_vmobject *kvo; 2340 char *fullpath, *freepath; 2341 struct vnode *vp; 2342 struct vattr va; 2343 vm_object_t obj; 2344 vm_page_t m; 2345 int count, error; 2346 2347 if (req->oldptr == NULL) { 2348 /* 2349 * If an old buffer has not been provided, generate an 2350 * estimate of the space needed for a subsequent call. 2351 */ 2352 mtx_lock(&vm_object_list_mtx); 2353 count = 0; 2354 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2355 if (obj->type == OBJT_DEAD) 2356 continue; 2357 count++; 2358 } 2359 mtx_unlock(&vm_object_list_mtx); 2360 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) * 2361 count * 11 / 10)); 2362 } 2363 2364 kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK); 2365 error = 0; 2366 2367 /* 2368 * VM objects are type stable and are never removed from the 2369 * list once added. This allows us to safely read obj->object_list 2370 * after reacquiring the VM object lock. 2371 */ 2372 mtx_lock(&vm_object_list_mtx); 2373 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2374 if (obj->type == OBJT_DEAD) 2375 continue; 2376 VM_OBJECT_RLOCK(obj); 2377 if (obj->type == OBJT_DEAD) { 2378 VM_OBJECT_RUNLOCK(obj); 2379 continue; 2380 } 2381 mtx_unlock(&vm_object_list_mtx); 2382 kvo->kvo_size = ptoa(obj->size); 2383 kvo->kvo_resident = obj->resident_page_count; 2384 kvo->kvo_ref_count = obj->ref_count; 2385 kvo->kvo_shadow_count = obj->shadow_count; 2386 kvo->kvo_memattr = obj->memattr; 2387 kvo->kvo_active = 0; 2388 kvo->kvo_inactive = 0; 2389 TAILQ_FOREACH(m, &obj->memq, listq) { 2390 /* 2391 * A page may belong to the object but be 2392 * dequeued and set to PQ_NONE while the 2393 * object lock is not held. This makes the 2394 * reads of m->queue below racy, and we do not 2395 * count pages set to PQ_NONE. However, this 2396 * sysctl is only meant to give an 2397 * approximation of the system anyway. 2398 */ 2399 if (m->queue == PQ_ACTIVE) 2400 kvo->kvo_active++; 2401 else if (m->queue == PQ_INACTIVE) 2402 kvo->kvo_inactive++; 2403 } 2404 2405 kvo->kvo_vn_fileid = 0; 2406 kvo->kvo_vn_fsid = 0; 2407 kvo->kvo_vn_fsid_freebsd11 = 0; 2408 freepath = NULL; 2409 fullpath = ""; 2410 kvo->kvo_type = vm_object_kvme_type(obj, &vp); 2411 if (vp != NULL) 2412 vref(vp); 2413 VM_OBJECT_RUNLOCK(obj); 2414 if (vp != NULL) { 2415 vn_fullpath(curthread, vp, &fullpath, &freepath); 2416 vn_lock(vp, LK_SHARED | LK_RETRY); 2417 if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) { 2418 kvo->kvo_vn_fileid = va.va_fileid; 2419 kvo->kvo_vn_fsid = va.va_fsid; 2420 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid; 2421 /* truncate */ 2422 } 2423 vput(vp); 2424 } 2425 2426 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path)); 2427 if (freepath != NULL) 2428 free(freepath, M_TEMP); 2429 2430 /* Pack record size down */ 2431 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) 2432 + strlen(kvo->kvo_path) + 1; 2433 kvo->kvo_structsize = roundup(kvo->kvo_structsize, 2434 sizeof(uint64_t)); 2435 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize); 2436 mtx_lock(&vm_object_list_mtx); 2437 if (error) 2438 break; 2439 } 2440 mtx_unlock(&vm_object_list_mtx); 2441 free(kvo, M_TEMP); 2442 return (error); 2443 } 2444 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | 2445 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject", 2446 "List of VM objects"); 2447 2448 #include "opt_ddb.h" 2449 #ifdef DDB 2450 #include <sys/kernel.h> 2451 2452 #include <sys/cons.h> 2453 2454 #include <ddb/ddb.h> 2455 2456 static int 2457 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2458 { 2459 vm_map_t tmpm; 2460 vm_map_entry_t tmpe; 2461 vm_object_t obj; 2462 int entcount; 2463 2464 if (map == 0) 2465 return 0; 2466 2467 if (entry == 0) { 2468 tmpe = map->header.next; 2469 entcount = map->nentries; 2470 while (entcount-- && (tmpe != &map->header)) { 2471 if (_vm_object_in_map(map, object, tmpe)) { 2472 return 1; 2473 } 2474 tmpe = tmpe->next; 2475 } 2476 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2477 tmpm = entry->object.sub_map; 2478 tmpe = tmpm->header.next; 2479 entcount = tmpm->nentries; 2480 while (entcount-- && tmpe != &tmpm->header) { 2481 if (_vm_object_in_map(tmpm, object, tmpe)) { 2482 return 1; 2483 } 2484 tmpe = tmpe->next; 2485 } 2486 } else if ((obj = entry->object.vm_object) != NULL) { 2487 for (; obj; obj = obj->backing_object) 2488 if (obj == object) { 2489 return 1; 2490 } 2491 } 2492 return 0; 2493 } 2494 2495 static int 2496 vm_object_in_map(vm_object_t object) 2497 { 2498 struct proc *p; 2499 2500 /* sx_slock(&allproc_lock); */ 2501 FOREACH_PROC_IN_SYSTEM(p) { 2502 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 2503 continue; 2504 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) { 2505 /* sx_sunlock(&allproc_lock); */ 2506 return 1; 2507 } 2508 } 2509 /* sx_sunlock(&allproc_lock); */ 2510 if (_vm_object_in_map(kernel_map, object, 0)) 2511 return 1; 2512 return 0; 2513 } 2514 2515 DB_SHOW_COMMAND(vmochk, vm_object_check) 2516 { 2517 vm_object_t object; 2518 2519 /* 2520 * make sure that internal objs are in a map somewhere 2521 * and none have zero ref counts. 2522 */ 2523 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2524 if (object->handle == NULL && 2525 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2526 if (object->ref_count == 0) { 2527 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2528 (long)object->size); 2529 } 2530 if (!vm_object_in_map(object)) { 2531 db_printf( 2532 "vmochk: internal obj is not in a map: " 2533 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2534 object->ref_count, (u_long)object->size, 2535 (u_long)object->size, 2536 (void *)object->backing_object); 2537 } 2538 } 2539 } 2540 } 2541 2542 /* 2543 * vm_object_print: [ debug ] 2544 */ 2545 DB_SHOW_COMMAND(object, vm_object_print_static) 2546 { 2547 /* XXX convert args. */ 2548 vm_object_t object = (vm_object_t)addr; 2549 boolean_t full = have_addr; 2550 2551 vm_page_t p; 2552 2553 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2554 #define count was_count 2555 2556 int count; 2557 2558 if (object == NULL) 2559 return; 2560 2561 db_iprintf( 2562 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n", 2563 object, (int)object->type, (uintmax_t)object->size, 2564 object->resident_page_count, object->ref_count, object->flags, 2565 object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge); 2566 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n", 2567 object->shadow_count, 2568 object->backing_object ? object->backing_object->ref_count : 0, 2569 object->backing_object, (uintmax_t)object->backing_object_offset); 2570 2571 if (!full) 2572 return; 2573 2574 db_indent += 2; 2575 count = 0; 2576 TAILQ_FOREACH(p, &object->memq, listq) { 2577 if (count == 0) 2578 db_iprintf("memory:="); 2579 else if (count == 6) { 2580 db_printf("\n"); 2581 db_iprintf(" ..."); 2582 count = 0; 2583 } else 2584 db_printf(","); 2585 count++; 2586 2587 db_printf("(off=0x%jx,page=0x%jx)", 2588 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p)); 2589 } 2590 if (count != 0) 2591 db_printf("\n"); 2592 db_indent -= 2; 2593 } 2594 2595 /* XXX. */ 2596 #undef count 2597 2598 /* XXX need this non-static entry for calling from vm_map_print. */ 2599 void 2600 vm_object_print( 2601 /* db_expr_t */ long addr, 2602 boolean_t have_addr, 2603 /* db_expr_t */ long count, 2604 char *modif) 2605 { 2606 vm_object_print_static(addr, have_addr, count, modif); 2607 } 2608 2609 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 2610 { 2611 vm_object_t object; 2612 vm_pindex_t fidx; 2613 vm_paddr_t pa; 2614 vm_page_t m, prev_m; 2615 int rcount, nl, c; 2616 2617 nl = 0; 2618 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2619 db_printf("new object: %p\n", (void *)object); 2620 if (nl > 18) { 2621 c = cngetc(); 2622 if (c != ' ') 2623 return; 2624 nl = 0; 2625 } 2626 nl++; 2627 rcount = 0; 2628 fidx = 0; 2629 pa = -1; 2630 TAILQ_FOREACH(m, &object->memq, listq) { 2631 if (m->pindex > 128) 2632 break; 2633 if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL && 2634 prev_m->pindex + 1 != m->pindex) { 2635 if (rcount) { 2636 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2637 (long)fidx, rcount, (long)pa); 2638 if (nl > 18) { 2639 c = cngetc(); 2640 if (c != ' ') 2641 return; 2642 nl = 0; 2643 } 2644 nl++; 2645 rcount = 0; 2646 } 2647 } 2648 if (rcount && 2649 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2650 ++rcount; 2651 continue; 2652 } 2653 if (rcount) { 2654 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2655 (long)fidx, rcount, (long)pa); 2656 if (nl > 18) { 2657 c = cngetc(); 2658 if (c != ' ') 2659 return; 2660 nl = 0; 2661 } 2662 nl++; 2663 } 2664 fidx = m->pindex; 2665 pa = VM_PAGE_TO_PHYS(m); 2666 rcount = 1; 2667 } 2668 if (rcount) { 2669 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2670 (long)fidx, rcount, (long)pa); 2671 if (nl > 18) { 2672 c = cngetc(); 2673 if (c != ' ') 2674 return; 2675 nl = 0; 2676 } 2677 nl++; 2678 } 2679 } 2680 } 2681 #endif /* DDB */ 2682