xref: /freebsd/sys/vm/vm_object.c (revision dac87cc0575c53e0771c09dadb3650e61206ebbe)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory object module.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include "opt_vm.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/cpuset.h>
75 #include <sys/lock.h>
76 #include <sys/mman.h>
77 #include <sys/mount.h>
78 #include <sys/kernel.h>
79 #include <sys/pctrie.h>
80 #include <sys/sysctl.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>		/* for curproc, pageproc */
83 #include <sys/refcount.h>
84 #include <sys/socket.h>
85 #include <sys/resourcevar.h>
86 #include <sys/rwlock.h>
87 #include <sys/user.h>
88 #include <sys/vnode.h>
89 #include <sys/vmmeter.h>
90 #include <sys/sx.h>
91 
92 #include <vm/vm.h>
93 #include <vm/vm_param.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_pageout.h>
99 #include <vm/vm_pager.h>
100 #include <vm/vm_phys.h>
101 #include <vm/vm_pagequeue.h>
102 #include <vm/swap_pager.h>
103 #include <vm/vm_kern.h>
104 #include <vm/vm_extern.h>
105 #include <vm/vm_radix.h>
106 #include <vm/vm_reserv.h>
107 #include <vm/uma.h>
108 
109 static int old_msync;
110 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
111     "Use old (insecure) msync behavior");
112 
113 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
114 		    int pagerflags, int flags, boolean_t *clearobjflags,
115 		    boolean_t *eio);
116 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
117 		    boolean_t *clearobjflags);
118 static void	vm_object_qcollapse(vm_object_t object);
119 static void	vm_object_vndeallocate(vm_object_t object);
120 
121 /*
122  *	Virtual memory objects maintain the actual data
123  *	associated with allocated virtual memory.  A given
124  *	page of memory exists within exactly one object.
125  *
126  *	An object is only deallocated when all "references"
127  *	are given up.  Only one "reference" to a given
128  *	region of an object should be writeable.
129  *
130  *	Associated with each object is a list of all resident
131  *	memory pages belonging to that object; this list is
132  *	maintained by the "vm_page" module, and locked by the object's
133  *	lock.
134  *
135  *	Each object also records a "pager" routine which is
136  *	used to retrieve (and store) pages to the proper backing
137  *	storage.  In addition, objects may be backed by other
138  *	objects from which they were virtual-copied.
139  *
140  *	The only items within the object structure which are
141  *	modified after time of creation are:
142  *		reference count		locked by object's lock
143  *		pager routine		locked by object's lock
144  *
145  */
146 
147 struct object_q vm_object_list;
148 struct mtx vm_object_list_mtx;	/* lock for object list and count */
149 
150 struct vm_object kernel_object_store;
151 
152 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
153     "VM object stats");
154 
155 static counter_u64_t object_collapses = EARLY_COUNTER;
156 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
157     &object_collapses,
158     "VM object collapses");
159 
160 static counter_u64_t object_bypasses = EARLY_COUNTER;
161 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
162     &object_bypasses,
163     "VM object bypasses");
164 
165 static void
166 counter_startup(void)
167 {
168 
169 	object_collapses = counter_u64_alloc(M_WAITOK);
170 	object_bypasses = counter_u64_alloc(M_WAITOK);
171 }
172 SYSINIT(object_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
173 
174 static uma_zone_t obj_zone;
175 
176 static int vm_object_zinit(void *mem, int size, int flags);
177 
178 #ifdef INVARIANTS
179 static void vm_object_zdtor(void *mem, int size, void *arg);
180 
181 static void
182 vm_object_zdtor(void *mem, int size, void *arg)
183 {
184 	vm_object_t object;
185 
186 	object = (vm_object_t)mem;
187 	KASSERT(object->ref_count == 0,
188 	    ("object %p ref_count = %d", object, object->ref_count));
189 	KASSERT(TAILQ_EMPTY(&object->memq),
190 	    ("object %p has resident pages in its memq", object));
191 	KASSERT(vm_radix_is_empty(&object->rtree),
192 	    ("object %p has resident pages in its trie", object));
193 #if VM_NRESERVLEVEL > 0
194 	KASSERT(LIST_EMPTY(&object->rvq),
195 	    ("object %p has reservations",
196 	    object));
197 #endif
198 	KASSERT(object->paging_in_progress == 0,
199 	    ("object %p paging_in_progress = %d",
200 	    object, object->paging_in_progress));
201 	KASSERT(object->resident_page_count == 0,
202 	    ("object %p resident_page_count = %d",
203 	    object, object->resident_page_count));
204 	KASSERT(object->shadow_count == 0,
205 	    ("object %p shadow_count = %d",
206 	    object, object->shadow_count));
207 	KASSERT(object->type == OBJT_DEAD,
208 	    ("object %p has non-dead type %d",
209 	    object, object->type));
210 }
211 #endif
212 
213 static int
214 vm_object_zinit(void *mem, int size, int flags)
215 {
216 	vm_object_t object;
217 
218 	object = (vm_object_t)mem;
219 	rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
220 
221 	/* These are true for any object that has been freed */
222 	object->type = OBJT_DEAD;
223 	object->ref_count = 0;
224 	vm_radix_init(&object->rtree);
225 	refcount_init(&object->paging_in_progress, 0);
226 	object->resident_page_count = 0;
227 	object->shadow_count = 0;
228 	object->flags = OBJ_DEAD;
229 
230 	mtx_lock(&vm_object_list_mtx);
231 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
232 	mtx_unlock(&vm_object_list_mtx);
233 	return (0);
234 }
235 
236 static void
237 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
238 {
239 
240 	TAILQ_INIT(&object->memq);
241 	LIST_INIT(&object->shadow_head);
242 
243 	object->type = type;
244 	if (type == OBJT_SWAP)
245 		pctrie_init(&object->un_pager.swp.swp_blks);
246 
247 	/*
248 	 * Ensure that swap_pager_swapoff() iteration over object_list
249 	 * sees up to date type and pctrie head if it observed
250 	 * non-dead object.
251 	 */
252 	atomic_thread_fence_rel();
253 
254 	switch (type) {
255 	case OBJT_DEAD:
256 		panic("_vm_object_allocate: can't create OBJT_DEAD");
257 	case OBJT_DEFAULT:
258 	case OBJT_SWAP:
259 		object->flags = OBJ_ONEMAPPING;
260 		break;
261 	case OBJT_DEVICE:
262 	case OBJT_SG:
263 		object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
264 		break;
265 	case OBJT_MGTDEVICE:
266 		object->flags = OBJ_FICTITIOUS;
267 		break;
268 	case OBJT_PHYS:
269 		object->flags = OBJ_UNMANAGED;
270 		break;
271 	case OBJT_VNODE:
272 		object->flags = 0;
273 		break;
274 	default:
275 		panic("_vm_object_allocate: type %d is undefined", type);
276 	}
277 	object->size = size;
278 	object->domain.dr_policy = NULL;
279 	object->generation = 1;
280 	object->ref_count = 1;
281 	object->memattr = VM_MEMATTR_DEFAULT;
282 	object->cred = NULL;
283 	object->charge = 0;
284 	object->handle = NULL;
285 	object->backing_object = NULL;
286 	object->backing_object_offset = (vm_ooffset_t) 0;
287 #if VM_NRESERVLEVEL > 0
288 	LIST_INIT(&object->rvq);
289 #endif
290 	umtx_shm_object_init(object);
291 }
292 
293 /*
294  *	vm_object_init:
295  *
296  *	Initialize the VM objects module.
297  */
298 void
299 vm_object_init(void)
300 {
301 	TAILQ_INIT(&vm_object_list);
302 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
303 
304 	rw_init(&kernel_object->lock, "kernel vm object");
305 	_vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
306 	    VM_MIN_KERNEL_ADDRESS), kernel_object);
307 #if VM_NRESERVLEVEL > 0
308 	kernel_object->flags |= OBJ_COLORED;
309 	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
310 #endif
311 
312 	/*
313 	 * The lock portion of struct vm_object must be type stable due
314 	 * to vm_pageout_fallback_object_lock locking a vm object
315 	 * without holding any references to it.
316 	 */
317 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
318 #ifdef INVARIANTS
319 	    vm_object_zdtor,
320 #else
321 	    NULL,
322 #endif
323 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
324 
325 	vm_radix_zinit();
326 }
327 
328 void
329 vm_object_clear_flag(vm_object_t object, u_short bits)
330 {
331 
332 	VM_OBJECT_ASSERT_WLOCKED(object);
333 	object->flags &= ~bits;
334 }
335 
336 /*
337  *	Sets the default memory attribute for the specified object.  Pages
338  *	that are allocated to this object are by default assigned this memory
339  *	attribute.
340  *
341  *	Presently, this function must be called before any pages are allocated
342  *	to the object.  In the future, this requirement may be relaxed for
343  *	"default" and "swap" objects.
344  */
345 int
346 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
347 {
348 
349 	VM_OBJECT_ASSERT_WLOCKED(object);
350 	switch (object->type) {
351 	case OBJT_DEFAULT:
352 	case OBJT_DEVICE:
353 	case OBJT_MGTDEVICE:
354 	case OBJT_PHYS:
355 	case OBJT_SG:
356 	case OBJT_SWAP:
357 	case OBJT_VNODE:
358 		if (!TAILQ_EMPTY(&object->memq))
359 			return (KERN_FAILURE);
360 		break;
361 	case OBJT_DEAD:
362 		return (KERN_INVALID_ARGUMENT);
363 	default:
364 		panic("vm_object_set_memattr: object %p is of undefined type",
365 		    object);
366 	}
367 	object->memattr = memattr;
368 	return (KERN_SUCCESS);
369 }
370 
371 void
372 vm_object_pip_add(vm_object_t object, short i)
373 {
374 
375 	refcount_acquiren(&object->paging_in_progress, i);
376 }
377 
378 void
379 vm_object_pip_wakeup(vm_object_t object)
380 {
381 
382 	refcount_release(&object->paging_in_progress);
383 }
384 
385 void
386 vm_object_pip_wakeupn(vm_object_t object, short i)
387 {
388 
389 	refcount_releasen(&object->paging_in_progress, i);
390 }
391 
392 void
393 vm_object_pip_wait(vm_object_t object, char *waitid)
394 {
395 
396 	VM_OBJECT_ASSERT_WLOCKED(object);
397 
398 	while (object->paging_in_progress) {
399 		VM_OBJECT_WUNLOCK(object);
400 		refcount_wait(&object->paging_in_progress, waitid, PVM);
401 		VM_OBJECT_WLOCK(object);
402 	}
403 }
404 
405 void
406 vm_object_pip_wait_unlocked(vm_object_t object, char *waitid)
407 {
408 
409 	VM_OBJECT_ASSERT_UNLOCKED(object);
410 
411 	while (object->paging_in_progress)
412 		refcount_wait(&object->paging_in_progress, waitid, PVM);
413 }
414 
415 /*
416  *	vm_object_allocate:
417  *
418  *	Returns a new object with the given size.
419  */
420 vm_object_t
421 vm_object_allocate(objtype_t type, vm_pindex_t size)
422 {
423 	vm_object_t object;
424 
425 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
426 	_vm_object_allocate(type, size, object);
427 	return (object);
428 }
429 
430 
431 /*
432  *	vm_object_reference:
433  *
434  *	Gets another reference to the given object.  Note: OBJ_DEAD
435  *	objects can be referenced during final cleaning.
436  */
437 void
438 vm_object_reference(vm_object_t object)
439 {
440 	if (object == NULL)
441 		return;
442 	VM_OBJECT_WLOCK(object);
443 	vm_object_reference_locked(object);
444 	VM_OBJECT_WUNLOCK(object);
445 }
446 
447 /*
448  *	vm_object_reference_locked:
449  *
450  *	Gets another reference to the given object.
451  *
452  *	The object must be locked.
453  */
454 void
455 vm_object_reference_locked(vm_object_t object)
456 {
457 	struct vnode *vp;
458 
459 	VM_OBJECT_ASSERT_WLOCKED(object);
460 	object->ref_count++;
461 	if (object->type == OBJT_VNODE) {
462 		vp = object->handle;
463 		vref(vp);
464 	}
465 }
466 
467 /*
468  * Handle deallocating an object of type OBJT_VNODE.
469  */
470 static void
471 vm_object_vndeallocate(vm_object_t object)
472 {
473 	struct vnode *vp = (struct vnode *) object->handle;
474 
475 	VM_OBJECT_ASSERT_WLOCKED(object);
476 	KASSERT(object->type == OBJT_VNODE,
477 	    ("vm_object_vndeallocate: not a vnode object"));
478 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
479 #ifdef INVARIANTS
480 	if (object->ref_count == 0) {
481 		vn_printf(vp, "vm_object_vndeallocate ");
482 		panic("vm_object_vndeallocate: bad object reference count");
483 	}
484 #endif
485 
486 	if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
487 		umtx_shm_object_terminated(object);
488 
489 	object->ref_count--;
490 
491 	/* vrele may need the vnode lock. */
492 	VM_OBJECT_WUNLOCK(object);
493 	vrele(vp);
494 }
495 
496 /*
497  *	vm_object_deallocate:
498  *
499  *	Release a reference to the specified object,
500  *	gained either through a vm_object_allocate
501  *	or a vm_object_reference call.  When all references
502  *	are gone, storage associated with this object
503  *	may be relinquished.
504  *
505  *	No object may be locked.
506  */
507 void
508 vm_object_deallocate(vm_object_t object)
509 {
510 	vm_object_t temp;
511 	struct vnode *vp;
512 
513 	while (object != NULL) {
514 		VM_OBJECT_WLOCK(object);
515 		if (object->type == OBJT_VNODE) {
516 			vm_object_vndeallocate(object);
517 			return;
518 		}
519 
520 		KASSERT(object->ref_count != 0,
521 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
522 
523 		/*
524 		 * If the reference count goes to 0 we start calling
525 		 * vm_object_terminate() on the object chain.
526 		 * A ref count of 1 may be a special case depending on the
527 		 * shadow count being 0 or 1.
528 		 */
529 		object->ref_count--;
530 		if (object->ref_count > 1) {
531 			VM_OBJECT_WUNLOCK(object);
532 			return;
533 		} else if (object->ref_count == 1) {
534 			if (object->type == OBJT_SWAP &&
535 			    (object->flags & OBJ_TMPFS) != 0) {
536 				vp = object->un_pager.swp.swp_tmpfs;
537 				vhold(vp);
538 				VM_OBJECT_WUNLOCK(object);
539 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
540 				VM_OBJECT_WLOCK(object);
541 				if (object->type == OBJT_DEAD ||
542 				    object->ref_count != 1) {
543 					VM_OBJECT_WUNLOCK(object);
544 					VOP_UNLOCK(vp, 0);
545 					vdrop(vp);
546 					return;
547 				}
548 				if ((object->flags & OBJ_TMPFS) != 0)
549 					VOP_UNSET_TEXT(vp);
550 				VOP_UNLOCK(vp, 0);
551 				vdrop(vp);
552 			}
553 			if (object->shadow_count == 0 &&
554 			    object->handle == NULL &&
555 			    (object->type == OBJT_DEFAULT ||
556 			    (object->type == OBJT_SWAP &&
557 			    (object->flags & OBJ_TMPFS_NODE) == 0))) {
558 				vm_object_set_flag(object, OBJ_ONEMAPPING);
559 			} else if ((object->shadow_count == 1) &&
560 			    (object->handle == NULL) &&
561 			    (object->type == OBJT_DEFAULT ||
562 			     object->type == OBJT_SWAP)) {
563 				vm_object_t robject;
564 
565 				robject = LIST_FIRST(&object->shadow_head);
566 				KASSERT(robject != NULL,
567 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
568 					 object->ref_count,
569 					 object->shadow_count));
570 				KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
571 				    ("shadowed tmpfs v_object %p", object));
572 				if (!VM_OBJECT_TRYWLOCK(robject)) {
573 					/*
574 					 * Avoid a potential deadlock.
575 					 */
576 					object->ref_count++;
577 					VM_OBJECT_WUNLOCK(object);
578 					/*
579 					 * More likely than not the thread
580 					 * holding robject's lock has lower
581 					 * priority than the current thread.
582 					 * Let the lower priority thread run.
583 					 */
584 					pause("vmo_de", 1);
585 					continue;
586 				}
587 				/*
588 				 * Collapse object into its shadow unless its
589 				 * shadow is dead.  In that case, object will
590 				 * be deallocated by the thread that is
591 				 * deallocating its shadow.
592 				 */
593 				if ((robject->flags & OBJ_DEAD) == 0 &&
594 				    (robject->handle == NULL) &&
595 				    (robject->type == OBJT_DEFAULT ||
596 				     robject->type == OBJT_SWAP)) {
597 
598 					robject->ref_count++;
599 retry:
600 					if (robject->paging_in_progress) {
601 						VM_OBJECT_WUNLOCK(object);
602 						vm_object_pip_wait(robject,
603 						    "objde1");
604 						temp = robject->backing_object;
605 						if (object == temp) {
606 							VM_OBJECT_WLOCK(object);
607 							goto retry;
608 						}
609 					} else if (object->paging_in_progress) {
610 						VM_OBJECT_WUNLOCK(robject);
611 						VM_OBJECT_WUNLOCK(object);
612 						refcount_wait(
613 						    &object->paging_in_progress,
614 						    "objde2", PVM);
615 						VM_OBJECT_WLOCK(robject);
616 						temp = robject->backing_object;
617 						if (object == temp) {
618 							VM_OBJECT_WLOCK(object);
619 							goto retry;
620 						}
621 					} else
622 						VM_OBJECT_WUNLOCK(object);
623 
624 					if (robject->ref_count == 1) {
625 						robject->ref_count--;
626 						object = robject;
627 						goto doterm;
628 					}
629 					object = robject;
630 					vm_object_collapse(object);
631 					VM_OBJECT_WUNLOCK(object);
632 					continue;
633 				}
634 				VM_OBJECT_WUNLOCK(robject);
635 			}
636 			VM_OBJECT_WUNLOCK(object);
637 			return;
638 		}
639 doterm:
640 		umtx_shm_object_terminated(object);
641 		temp = object->backing_object;
642 		if (temp != NULL) {
643 			KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
644 			    ("shadowed tmpfs v_object 2 %p", object));
645 			VM_OBJECT_WLOCK(temp);
646 			LIST_REMOVE(object, shadow_list);
647 			temp->shadow_count--;
648 			VM_OBJECT_WUNLOCK(temp);
649 			object->backing_object = NULL;
650 		}
651 		/*
652 		 * Don't double-terminate, we could be in a termination
653 		 * recursion due to the terminate having to sync data
654 		 * to disk.
655 		 */
656 		if ((object->flags & OBJ_DEAD) == 0)
657 			vm_object_terminate(object);
658 		else
659 			VM_OBJECT_WUNLOCK(object);
660 		object = temp;
661 	}
662 }
663 
664 /*
665  *	vm_object_destroy removes the object from the global object list
666  *      and frees the space for the object.
667  */
668 void
669 vm_object_destroy(vm_object_t object)
670 {
671 
672 	/*
673 	 * Release the allocation charge.
674 	 */
675 	if (object->cred != NULL) {
676 		swap_release_by_cred(object->charge, object->cred);
677 		object->charge = 0;
678 		crfree(object->cred);
679 		object->cred = NULL;
680 	}
681 
682 	/*
683 	 * Free the space for the object.
684 	 */
685 	uma_zfree(obj_zone, object);
686 }
687 
688 /*
689  *	vm_object_terminate_pages removes any remaining pageable pages
690  *	from the object and resets the object to an empty state.
691  */
692 static void
693 vm_object_terminate_pages(vm_object_t object)
694 {
695 	vm_page_t p, p_next;
696 	struct mtx *mtx;
697 
698 	VM_OBJECT_ASSERT_WLOCKED(object);
699 
700 	mtx = NULL;
701 
702 	/*
703 	 * Free any remaining pageable pages.  This also removes them from the
704 	 * paging queues.  However, don't free wired pages, just remove them
705 	 * from the object.  Rather than incrementally removing each page from
706 	 * the object, the page and object are reset to any empty state.
707 	 */
708 	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
709 		vm_page_assert_unbusied(p);
710 		if ((object->flags & OBJ_UNMANAGED) == 0)
711 			/*
712 			 * vm_page_free_prep() only needs the page
713 			 * lock for managed pages.
714 			 */
715 			vm_page_change_lock(p, &mtx);
716 		p->object = NULL;
717 		if (vm_page_wired(p))
718 			continue;
719 		VM_CNT_INC(v_pfree);
720 		vm_page_free(p);
721 	}
722 	if (mtx != NULL)
723 		mtx_unlock(mtx);
724 
725 	/*
726 	 * If the object contained any pages, then reset it to an empty state.
727 	 * None of the object's fields, including "resident_page_count", were
728 	 * modified by the preceding loop.
729 	 */
730 	if (object->resident_page_count != 0) {
731 		vm_radix_reclaim_allnodes(&object->rtree);
732 		TAILQ_INIT(&object->memq);
733 		object->resident_page_count = 0;
734 		if (object->type == OBJT_VNODE)
735 			vdrop(object->handle);
736 	}
737 }
738 
739 /*
740  *	vm_object_terminate actually destroys the specified object, freeing
741  *	up all previously used resources.
742  *
743  *	The object must be locked.
744  *	This routine may block.
745  */
746 void
747 vm_object_terminate(vm_object_t object)
748 {
749 
750 	VM_OBJECT_ASSERT_WLOCKED(object);
751 
752 	/*
753 	 * Make sure no one uses us.
754 	 */
755 	vm_object_set_flag(object, OBJ_DEAD);
756 
757 	/*
758 	 * Clean and free the pages, as appropriate. All references to the
759 	 * object are gone, so we don't need to lock it.
760 	 */
761 	if (object->type == OBJT_VNODE) {
762 		struct vnode *vp = (struct vnode *)object->handle;
763 
764 		/*
765 		 * Clean pages and flush buffers.
766 		 */
767 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
768 		VM_OBJECT_WUNLOCK(object);
769 
770 		vinvalbuf(vp, V_SAVE, 0, 0);
771 
772 		BO_LOCK(&vp->v_bufobj);
773 		vp->v_bufobj.bo_flag |= BO_DEAD;
774 		BO_UNLOCK(&vp->v_bufobj);
775 
776 		VM_OBJECT_WLOCK(object);
777 	}
778 
779 	/*
780 	 * wait for the pageout daemon to be done with the object
781 	 */
782 	vm_object_pip_wait(object, "objtrm");
783 
784 	KASSERT(!object->paging_in_progress,
785 		("vm_object_terminate: pageout in progress"));
786 
787 	KASSERT(object->ref_count == 0,
788 		("vm_object_terminate: object with references, ref_count=%d",
789 		object->ref_count));
790 
791 	if ((object->flags & OBJ_PG_DTOR) == 0)
792 		vm_object_terminate_pages(object);
793 
794 #if VM_NRESERVLEVEL > 0
795 	if (__predict_false(!LIST_EMPTY(&object->rvq)))
796 		vm_reserv_break_all(object);
797 #endif
798 
799 	KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
800 	    object->type == OBJT_SWAP,
801 	    ("%s: non-swap obj %p has cred", __func__, object));
802 
803 	/*
804 	 * Let the pager know object is dead.
805 	 */
806 	vm_pager_deallocate(object);
807 	VM_OBJECT_WUNLOCK(object);
808 
809 	vm_object_destroy(object);
810 }
811 
812 /*
813  * Make the page read-only so that we can clear the object flags.  However, if
814  * this is a nosync mmap then the object is likely to stay dirty so do not
815  * mess with the page and do not clear the object flags.  Returns TRUE if the
816  * page should be flushed, and FALSE otherwise.
817  */
818 static boolean_t
819 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
820 {
821 
822 	/*
823 	 * If we have been asked to skip nosync pages and this is a
824 	 * nosync page, skip it.  Note that the object flags were not
825 	 * cleared in this case so we do not have to set them.
826 	 */
827 	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
828 		*clearobjflags = FALSE;
829 		return (FALSE);
830 	} else {
831 		pmap_remove_write(p);
832 		return (p->dirty != 0);
833 	}
834 }
835 
836 /*
837  *	vm_object_page_clean
838  *
839  *	Clean all dirty pages in the specified range of object.  Leaves page
840  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
841  *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
842  *	leaving the object dirty.
843  *
844  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
845  *	synchronous clustering mode implementation.
846  *
847  *	Odd semantics: if start == end, we clean everything.
848  *
849  *	The object must be locked.
850  *
851  *	Returns FALSE if some page from the range was not written, as
852  *	reported by the pager, and TRUE otherwise.
853  */
854 boolean_t
855 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
856     int flags)
857 {
858 	vm_page_t np, p;
859 	vm_pindex_t pi, tend, tstart;
860 	int curgeneration, n, pagerflags;
861 	boolean_t clearobjflags, eio, res;
862 
863 	VM_OBJECT_ASSERT_WLOCKED(object);
864 
865 	/*
866 	 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
867 	 * objects.  The check below prevents the function from
868 	 * operating on non-vnode objects.
869 	 */
870 	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
871 	    object->resident_page_count == 0)
872 		return (TRUE);
873 
874 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
875 	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
876 	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
877 
878 	tstart = OFF_TO_IDX(start);
879 	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
880 	clearobjflags = tstart == 0 && tend >= object->size;
881 	res = TRUE;
882 
883 rescan:
884 	curgeneration = object->generation;
885 
886 	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
887 		pi = p->pindex;
888 		if (pi >= tend)
889 			break;
890 		np = TAILQ_NEXT(p, listq);
891 		if (p->valid == 0)
892 			continue;
893 		if (vm_page_sleep_if_busy(p, "vpcwai")) {
894 			if (object->generation != curgeneration) {
895 				if ((flags & OBJPC_SYNC) != 0)
896 					goto rescan;
897 				else
898 					clearobjflags = FALSE;
899 			}
900 			np = vm_page_find_least(object, pi);
901 			continue;
902 		}
903 		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
904 			continue;
905 
906 		n = vm_object_page_collect_flush(object, p, pagerflags,
907 		    flags, &clearobjflags, &eio);
908 		if (eio) {
909 			res = FALSE;
910 			clearobjflags = FALSE;
911 		}
912 		if (object->generation != curgeneration) {
913 			if ((flags & OBJPC_SYNC) != 0)
914 				goto rescan;
915 			else
916 				clearobjflags = FALSE;
917 		}
918 
919 		/*
920 		 * If the VOP_PUTPAGES() did a truncated write, so
921 		 * that even the first page of the run is not fully
922 		 * written, vm_pageout_flush() returns 0 as the run
923 		 * length.  Since the condition that caused truncated
924 		 * write may be permanent, e.g. exhausted free space,
925 		 * accepting n == 0 would cause an infinite loop.
926 		 *
927 		 * Forwarding the iterator leaves the unwritten page
928 		 * behind, but there is not much we can do there if
929 		 * filesystem refuses to write it.
930 		 */
931 		if (n == 0) {
932 			n = 1;
933 			clearobjflags = FALSE;
934 		}
935 		np = vm_page_find_least(object, pi + n);
936 	}
937 #if 0
938 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
939 #endif
940 
941 	if (clearobjflags)
942 		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
943 	return (res);
944 }
945 
946 static int
947 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
948     int flags, boolean_t *clearobjflags, boolean_t *eio)
949 {
950 	vm_page_t ma[vm_pageout_page_count], p_first, tp;
951 	int count, i, mreq, runlen;
952 
953 	vm_page_lock_assert(p, MA_NOTOWNED);
954 	VM_OBJECT_ASSERT_WLOCKED(object);
955 
956 	count = 1;
957 	mreq = 0;
958 
959 	for (tp = p; count < vm_pageout_page_count; count++) {
960 		tp = vm_page_next(tp);
961 		if (tp == NULL || vm_page_busied(tp))
962 			break;
963 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
964 			break;
965 	}
966 
967 	for (p_first = p; count < vm_pageout_page_count; count++) {
968 		tp = vm_page_prev(p_first);
969 		if (tp == NULL || vm_page_busied(tp))
970 			break;
971 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
972 			break;
973 		p_first = tp;
974 		mreq++;
975 	}
976 
977 	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
978 		ma[i] = tp;
979 
980 	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
981 	return (runlen);
982 }
983 
984 /*
985  * Note that there is absolutely no sense in writing out
986  * anonymous objects, so we track down the vnode object
987  * to write out.
988  * We invalidate (remove) all pages from the address space
989  * for semantic correctness.
990  *
991  * If the backing object is a device object with unmanaged pages, then any
992  * mappings to the specified range of pages must be removed before this
993  * function is called.
994  *
995  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
996  * may start out with a NULL object.
997  */
998 boolean_t
999 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1000     boolean_t syncio, boolean_t invalidate)
1001 {
1002 	vm_object_t backing_object;
1003 	struct vnode *vp;
1004 	struct mount *mp;
1005 	int error, flags, fsync_after;
1006 	boolean_t res;
1007 
1008 	if (object == NULL)
1009 		return (TRUE);
1010 	res = TRUE;
1011 	error = 0;
1012 	VM_OBJECT_WLOCK(object);
1013 	while ((backing_object = object->backing_object) != NULL) {
1014 		VM_OBJECT_WLOCK(backing_object);
1015 		offset += object->backing_object_offset;
1016 		VM_OBJECT_WUNLOCK(object);
1017 		object = backing_object;
1018 		if (object->size < OFF_TO_IDX(offset + size))
1019 			size = IDX_TO_OFF(object->size) - offset;
1020 	}
1021 	/*
1022 	 * Flush pages if writing is allowed, invalidate them
1023 	 * if invalidation requested.  Pages undergoing I/O
1024 	 * will be ignored by vm_object_page_remove().
1025 	 *
1026 	 * We cannot lock the vnode and then wait for paging
1027 	 * to complete without deadlocking against vm_fault.
1028 	 * Instead we simply call vm_object_page_remove() and
1029 	 * allow it to block internally on a page-by-page
1030 	 * basis when it encounters pages undergoing async
1031 	 * I/O.
1032 	 */
1033 	if (object->type == OBJT_VNODE &&
1034 	    (object->flags & OBJ_MIGHTBEDIRTY) != 0 &&
1035 	    ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1036 		VM_OBJECT_WUNLOCK(object);
1037 		(void) vn_start_write(vp, &mp, V_WAIT);
1038 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1039 		if (syncio && !invalidate && offset == 0 &&
1040 		    atop(size) == object->size) {
1041 			/*
1042 			 * If syncing the whole mapping of the file,
1043 			 * it is faster to schedule all the writes in
1044 			 * async mode, also allowing the clustering,
1045 			 * and then wait for i/o to complete.
1046 			 */
1047 			flags = 0;
1048 			fsync_after = TRUE;
1049 		} else {
1050 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1051 			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1052 			fsync_after = FALSE;
1053 		}
1054 		VM_OBJECT_WLOCK(object);
1055 		res = vm_object_page_clean(object, offset, offset + size,
1056 		    flags);
1057 		VM_OBJECT_WUNLOCK(object);
1058 		if (fsync_after)
1059 			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1060 		VOP_UNLOCK(vp, 0);
1061 		vn_finished_write(mp);
1062 		if (error != 0)
1063 			res = FALSE;
1064 		VM_OBJECT_WLOCK(object);
1065 	}
1066 	if ((object->type == OBJT_VNODE ||
1067 	     object->type == OBJT_DEVICE) && invalidate) {
1068 		if (object->type == OBJT_DEVICE)
1069 			/*
1070 			 * The option OBJPR_NOTMAPPED must be passed here
1071 			 * because vm_object_page_remove() cannot remove
1072 			 * unmanaged mappings.
1073 			 */
1074 			flags = OBJPR_NOTMAPPED;
1075 		else if (old_msync)
1076 			flags = 0;
1077 		else
1078 			flags = OBJPR_CLEANONLY;
1079 		vm_object_page_remove(object, OFF_TO_IDX(offset),
1080 		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1081 	}
1082 	VM_OBJECT_WUNLOCK(object);
1083 	return (res);
1084 }
1085 
1086 /*
1087  * Determine whether the given advice can be applied to the object.  Advice is
1088  * not applied to unmanaged pages since they never belong to page queues, and
1089  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1090  * have been mapped at most once.
1091  */
1092 static bool
1093 vm_object_advice_applies(vm_object_t object, int advice)
1094 {
1095 
1096 	if ((object->flags & OBJ_UNMANAGED) != 0)
1097 		return (false);
1098 	if (advice != MADV_FREE)
1099 		return (true);
1100 	return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) &&
1101 	    (object->flags & OBJ_ONEMAPPING) != 0);
1102 }
1103 
1104 static void
1105 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1106     vm_size_t size)
1107 {
1108 
1109 	if (advice == MADV_FREE && object->type == OBJT_SWAP)
1110 		swap_pager_freespace(object, pindex, size);
1111 }
1112 
1113 /*
1114  *	vm_object_madvise:
1115  *
1116  *	Implements the madvise function at the object/page level.
1117  *
1118  *	MADV_WILLNEED	(any object)
1119  *
1120  *	    Activate the specified pages if they are resident.
1121  *
1122  *	MADV_DONTNEED	(any object)
1123  *
1124  *	    Deactivate the specified pages if they are resident.
1125  *
1126  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1127  *			 OBJ_ONEMAPPING only)
1128  *
1129  *	    Deactivate and clean the specified pages if they are
1130  *	    resident.  This permits the process to reuse the pages
1131  *	    without faulting or the kernel to reclaim the pages
1132  *	    without I/O.
1133  */
1134 void
1135 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1136     int advice)
1137 {
1138 	vm_pindex_t tpindex;
1139 	vm_object_t backing_object, tobject;
1140 	vm_page_t m, tm;
1141 
1142 	if (object == NULL)
1143 		return;
1144 
1145 relookup:
1146 	VM_OBJECT_WLOCK(object);
1147 	if (!vm_object_advice_applies(object, advice)) {
1148 		VM_OBJECT_WUNLOCK(object);
1149 		return;
1150 	}
1151 	for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1152 		tobject = object;
1153 
1154 		/*
1155 		 * If the next page isn't resident in the top-level object, we
1156 		 * need to search the shadow chain.  When applying MADV_FREE, we
1157 		 * take care to release any swap space used to store
1158 		 * non-resident pages.
1159 		 */
1160 		if (m == NULL || pindex < m->pindex) {
1161 			/*
1162 			 * Optimize a common case: if the top-level object has
1163 			 * no backing object, we can skip over the non-resident
1164 			 * range in constant time.
1165 			 */
1166 			if (object->backing_object == NULL) {
1167 				tpindex = (m != NULL && m->pindex < end) ?
1168 				    m->pindex : end;
1169 				vm_object_madvise_freespace(object, advice,
1170 				    pindex, tpindex - pindex);
1171 				if ((pindex = tpindex) == end)
1172 					break;
1173 				goto next_page;
1174 			}
1175 
1176 			tpindex = pindex;
1177 			do {
1178 				vm_object_madvise_freespace(tobject, advice,
1179 				    tpindex, 1);
1180 				/*
1181 				 * Prepare to search the next object in the
1182 				 * chain.
1183 				 */
1184 				backing_object = tobject->backing_object;
1185 				if (backing_object == NULL)
1186 					goto next_pindex;
1187 				VM_OBJECT_WLOCK(backing_object);
1188 				tpindex +=
1189 				    OFF_TO_IDX(tobject->backing_object_offset);
1190 				if (tobject != object)
1191 					VM_OBJECT_WUNLOCK(tobject);
1192 				tobject = backing_object;
1193 				if (!vm_object_advice_applies(tobject, advice))
1194 					goto next_pindex;
1195 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
1196 			    NULL);
1197 		} else {
1198 next_page:
1199 			tm = m;
1200 			m = TAILQ_NEXT(m, listq);
1201 		}
1202 
1203 		/*
1204 		 * If the page is not in a normal state, skip it.
1205 		 */
1206 		if (tm->valid != VM_PAGE_BITS_ALL)
1207 			goto next_pindex;
1208 		vm_page_lock(tm);
1209 		if (vm_page_wired(tm)) {
1210 			vm_page_unlock(tm);
1211 			goto next_pindex;
1212 		}
1213 		KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1214 		    ("vm_object_madvise: page %p is fictitious", tm));
1215 		KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1216 		    ("vm_object_madvise: page %p is not managed", tm));
1217 		if (vm_page_busied(tm)) {
1218 			if (object != tobject)
1219 				VM_OBJECT_WUNLOCK(tobject);
1220 			VM_OBJECT_WUNLOCK(object);
1221 			if (advice == MADV_WILLNEED) {
1222 				/*
1223 				 * Reference the page before unlocking and
1224 				 * sleeping so that the page daemon is less
1225 				 * likely to reclaim it.
1226 				 */
1227 				vm_page_aflag_set(tm, PGA_REFERENCED);
1228 			}
1229 			vm_page_busy_sleep(tm, "madvpo", false);
1230   			goto relookup;
1231 		}
1232 		vm_page_advise(tm, advice);
1233 		vm_page_unlock(tm);
1234 		vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1235 next_pindex:
1236 		if (tobject != object)
1237 			VM_OBJECT_WUNLOCK(tobject);
1238 	}
1239 	VM_OBJECT_WUNLOCK(object);
1240 }
1241 
1242 /*
1243  *	vm_object_shadow:
1244  *
1245  *	Create a new object which is backed by the
1246  *	specified existing object range.  The source
1247  *	object reference is deallocated.
1248  *
1249  *	The new object and offset into that object
1250  *	are returned in the source parameters.
1251  */
1252 void
1253 vm_object_shadow(
1254 	vm_object_t *object,	/* IN/OUT */
1255 	vm_ooffset_t *offset,	/* IN/OUT */
1256 	vm_size_t length)
1257 {
1258 	vm_object_t source;
1259 	vm_object_t result;
1260 
1261 	source = *object;
1262 
1263 	/*
1264 	 * Don't create the new object if the old object isn't shared.
1265 	 */
1266 	if (source != NULL) {
1267 		VM_OBJECT_WLOCK(source);
1268 		if (source->ref_count == 1 &&
1269 		    source->handle == NULL &&
1270 		    (source->type == OBJT_DEFAULT ||
1271 		     source->type == OBJT_SWAP)) {
1272 			VM_OBJECT_WUNLOCK(source);
1273 			return;
1274 		}
1275 		VM_OBJECT_WUNLOCK(source);
1276 	}
1277 
1278 	/*
1279 	 * Allocate a new object with the given length.
1280 	 */
1281 	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1282 
1283 	/*
1284 	 * The new object shadows the source object, adding a reference to it.
1285 	 * Our caller changes his reference to point to the new object,
1286 	 * removing a reference to the source object.  Net result: no change
1287 	 * of reference count.
1288 	 *
1289 	 * Try to optimize the result object's page color when shadowing
1290 	 * in order to maintain page coloring consistency in the combined
1291 	 * shadowed object.
1292 	 */
1293 	result->backing_object = source;
1294 	/*
1295 	 * Store the offset into the source object, and fix up the offset into
1296 	 * the new object.
1297 	 */
1298 	result->backing_object_offset = *offset;
1299 	if (source != NULL) {
1300 		VM_OBJECT_WLOCK(source);
1301 		result->domain = source->domain;
1302 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1303 		source->shadow_count++;
1304 #if VM_NRESERVLEVEL > 0
1305 		result->flags |= source->flags & OBJ_COLORED;
1306 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1307 		    ((1 << (VM_NFREEORDER - 1)) - 1);
1308 #endif
1309 		VM_OBJECT_WUNLOCK(source);
1310 	}
1311 
1312 
1313 	/*
1314 	 * Return the new things
1315 	 */
1316 	*offset = 0;
1317 	*object = result;
1318 }
1319 
1320 /*
1321  *	vm_object_split:
1322  *
1323  * Split the pages in a map entry into a new object.  This affords
1324  * easier removal of unused pages, and keeps object inheritance from
1325  * being a negative impact on memory usage.
1326  */
1327 void
1328 vm_object_split(vm_map_entry_t entry)
1329 {
1330 	vm_page_t m, m_next;
1331 	vm_object_t orig_object, new_object, source;
1332 	vm_pindex_t idx, offidxstart;
1333 	vm_size_t size;
1334 
1335 	orig_object = entry->object.vm_object;
1336 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1337 		return;
1338 	if (orig_object->ref_count <= 1)
1339 		return;
1340 	VM_OBJECT_WUNLOCK(orig_object);
1341 
1342 	offidxstart = OFF_TO_IDX(entry->offset);
1343 	size = atop(entry->end - entry->start);
1344 
1345 	/*
1346 	 * If swap_pager_copy() is later called, it will convert new_object
1347 	 * into a swap object.
1348 	 */
1349 	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1350 
1351 	/*
1352 	 * At this point, the new object is still private, so the order in
1353 	 * which the original and new objects are locked does not matter.
1354 	 */
1355 	VM_OBJECT_WLOCK(new_object);
1356 	VM_OBJECT_WLOCK(orig_object);
1357 	new_object->domain = orig_object->domain;
1358 	source = orig_object->backing_object;
1359 	if (source != NULL) {
1360 		VM_OBJECT_WLOCK(source);
1361 		if ((source->flags & OBJ_DEAD) != 0) {
1362 			VM_OBJECT_WUNLOCK(source);
1363 			VM_OBJECT_WUNLOCK(orig_object);
1364 			VM_OBJECT_WUNLOCK(new_object);
1365 			vm_object_deallocate(new_object);
1366 			VM_OBJECT_WLOCK(orig_object);
1367 			return;
1368 		}
1369 		LIST_INSERT_HEAD(&source->shadow_head,
1370 				  new_object, shadow_list);
1371 		source->shadow_count++;
1372 		vm_object_reference_locked(source);	/* for new_object */
1373 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1374 		VM_OBJECT_WUNLOCK(source);
1375 		new_object->backing_object_offset =
1376 			orig_object->backing_object_offset + entry->offset;
1377 		new_object->backing_object = source;
1378 	}
1379 	if (orig_object->cred != NULL) {
1380 		new_object->cred = orig_object->cred;
1381 		crhold(orig_object->cred);
1382 		new_object->charge = ptoa(size);
1383 		KASSERT(orig_object->charge >= ptoa(size),
1384 		    ("orig_object->charge < 0"));
1385 		orig_object->charge -= ptoa(size);
1386 	}
1387 retry:
1388 	m = vm_page_find_least(orig_object, offidxstart);
1389 	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1390 	    m = m_next) {
1391 		m_next = TAILQ_NEXT(m, listq);
1392 
1393 		/*
1394 		 * We must wait for pending I/O to complete before we can
1395 		 * rename the page.
1396 		 *
1397 		 * We do not have to VM_PROT_NONE the page as mappings should
1398 		 * not be changed by this operation.
1399 		 */
1400 		if (vm_page_busied(m)) {
1401 			VM_OBJECT_WUNLOCK(new_object);
1402 			vm_page_lock(m);
1403 			VM_OBJECT_WUNLOCK(orig_object);
1404 			vm_page_busy_sleep(m, "spltwt", false);
1405 			VM_OBJECT_WLOCK(orig_object);
1406 			VM_OBJECT_WLOCK(new_object);
1407 			goto retry;
1408 		}
1409 
1410 		/* vm_page_rename() will dirty the page. */
1411 		if (vm_page_rename(m, new_object, idx)) {
1412 			VM_OBJECT_WUNLOCK(new_object);
1413 			VM_OBJECT_WUNLOCK(orig_object);
1414 			vm_radix_wait();
1415 			VM_OBJECT_WLOCK(orig_object);
1416 			VM_OBJECT_WLOCK(new_object);
1417 			goto retry;
1418 		}
1419 #if VM_NRESERVLEVEL > 0
1420 		/*
1421 		 * If some of the reservation's allocated pages remain with
1422 		 * the original object, then transferring the reservation to
1423 		 * the new object is neither particularly beneficial nor
1424 		 * particularly harmful as compared to leaving the reservation
1425 		 * with the original object.  If, however, all of the
1426 		 * reservation's allocated pages are transferred to the new
1427 		 * object, then transferring the reservation is typically
1428 		 * beneficial.  Determining which of these two cases applies
1429 		 * would be more costly than unconditionally renaming the
1430 		 * reservation.
1431 		 */
1432 		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1433 #endif
1434 		if (orig_object->type == OBJT_SWAP)
1435 			vm_page_xbusy(m);
1436 	}
1437 	if (orig_object->type == OBJT_SWAP) {
1438 		/*
1439 		 * swap_pager_copy() can sleep, in which case the orig_object's
1440 		 * and new_object's locks are released and reacquired.
1441 		 */
1442 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1443 		TAILQ_FOREACH(m, &new_object->memq, listq)
1444 			vm_page_xunbusy(m);
1445 	}
1446 	VM_OBJECT_WUNLOCK(orig_object);
1447 	VM_OBJECT_WUNLOCK(new_object);
1448 	entry->object.vm_object = new_object;
1449 	entry->offset = 0LL;
1450 	vm_object_deallocate(orig_object);
1451 	VM_OBJECT_WLOCK(new_object);
1452 }
1453 
1454 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1455 #define	OBSC_COLLAPSE_WAIT	0x0004
1456 
1457 static vm_page_t
1458 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1459     int op)
1460 {
1461 	vm_object_t backing_object;
1462 
1463 	VM_OBJECT_ASSERT_WLOCKED(object);
1464 	backing_object = object->backing_object;
1465 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1466 
1467 	KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1468 	KASSERT(p == NULL || p->object == object || p->object == backing_object,
1469 	    ("invalid ownership %p %p %p", p, object, backing_object));
1470 	if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1471 		return (next);
1472 	if (p != NULL)
1473 		vm_page_lock(p);
1474 	VM_OBJECT_WUNLOCK(object);
1475 	VM_OBJECT_WUNLOCK(backing_object);
1476 	/* The page is only NULL when rename fails. */
1477 	if (p == NULL)
1478 		vm_radix_wait();
1479 	else
1480 		vm_page_busy_sleep(p, "vmocol", false);
1481 	VM_OBJECT_WLOCK(object);
1482 	VM_OBJECT_WLOCK(backing_object);
1483 	return (TAILQ_FIRST(&backing_object->memq));
1484 }
1485 
1486 static bool
1487 vm_object_scan_all_shadowed(vm_object_t object)
1488 {
1489 	vm_object_t backing_object;
1490 	vm_page_t p, pp;
1491 	vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1492 
1493 	VM_OBJECT_ASSERT_WLOCKED(object);
1494 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1495 
1496 	backing_object = object->backing_object;
1497 
1498 	if (backing_object->type != OBJT_DEFAULT &&
1499 	    backing_object->type != OBJT_SWAP)
1500 		return (false);
1501 
1502 	pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1503 	p = vm_page_find_least(backing_object, pi);
1504 	ps = swap_pager_find_least(backing_object, pi);
1505 
1506 	/*
1507 	 * Only check pages inside the parent object's range and
1508 	 * inside the parent object's mapping of the backing object.
1509 	 */
1510 	for (;; pi++) {
1511 		if (p != NULL && p->pindex < pi)
1512 			p = TAILQ_NEXT(p, listq);
1513 		if (ps < pi)
1514 			ps = swap_pager_find_least(backing_object, pi);
1515 		if (p == NULL && ps >= backing_object->size)
1516 			break;
1517 		else if (p == NULL)
1518 			pi = ps;
1519 		else
1520 			pi = MIN(p->pindex, ps);
1521 
1522 		new_pindex = pi - backing_offset_index;
1523 		if (new_pindex >= object->size)
1524 			break;
1525 
1526 		/*
1527 		 * See if the parent has the page or if the parent's object
1528 		 * pager has the page.  If the parent has the page but the page
1529 		 * is not valid, the parent's object pager must have the page.
1530 		 *
1531 		 * If this fails, the parent does not completely shadow the
1532 		 * object and we might as well give up now.
1533 		 */
1534 		pp = vm_page_lookup(object, new_pindex);
1535 		if ((pp == NULL || pp->valid == 0) &&
1536 		    !vm_pager_has_page(object, new_pindex, NULL, NULL))
1537 			return (false);
1538 	}
1539 	return (true);
1540 }
1541 
1542 static bool
1543 vm_object_collapse_scan(vm_object_t object, int op)
1544 {
1545 	vm_object_t backing_object;
1546 	vm_page_t next, p, pp;
1547 	vm_pindex_t backing_offset_index, new_pindex;
1548 
1549 	VM_OBJECT_ASSERT_WLOCKED(object);
1550 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1551 
1552 	backing_object = object->backing_object;
1553 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1554 
1555 	/*
1556 	 * Initial conditions
1557 	 */
1558 	if ((op & OBSC_COLLAPSE_WAIT) != 0)
1559 		vm_object_set_flag(backing_object, OBJ_DEAD);
1560 
1561 	/*
1562 	 * Our scan
1563 	 */
1564 	for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1565 		next = TAILQ_NEXT(p, listq);
1566 		new_pindex = p->pindex - backing_offset_index;
1567 
1568 		/*
1569 		 * Check for busy page
1570 		 */
1571 		if (vm_page_busied(p)) {
1572 			next = vm_object_collapse_scan_wait(object, p, next, op);
1573 			continue;
1574 		}
1575 
1576 		KASSERT(p->object == backing_object,
1577 		    ("vm_object_collapse_scan: object mismatch"));
1578 
1579 		if (p->pindex < backing_offset_index ||
1580 		    new_pindex >= object->size) {
1581 			if (backing_object->type == OBJT_SWAP)
1582 				swap_pager_freespace(backing_object, p->pindex,
1583 				    1);
1584 
1585 			/*
1586 			 * Page is out of the parent object's range, we can
1587 			 * simply destroy it.
1588 			 */
1589 			vm_page_lock(p);
1590 			KASSERT(!pmap_page_is_mapped(p),
1591 			    ("freeing mapped page %p", p));
1592 			if (vm_page_remove(p))
1593 				vm_page_free(p);
1594 			vm_page_unlock(p);
1595 			continue;
1596 		}
1597 
1598 		pp = vm_page_lookup(object, new_pindex);
1599 		if (pp != NULL && vm_page_busied(pp)) {
1600 			/*
1601 			 * The page in the parent is busy and possibly not
1602 			 * (yet) valid.  Until its state is finalized by the
1603 			 * busy bit owner, we can't tell whether it shadows the
1604 			 * original page.  Therefore, we must either skip it
1605 			 * and the original (backing_object) page or wait for
1606 			 * its state to be finalized.
1607 			 *
1608 			 * This is due to a race with vm_fault() where we must
1609 			 * unbusy the original (backing_obj) page before we can
1610 			 * (re)lock the parent.  Hence we can get here.
1611 			 */
1612 			next = vm_object_collapse_scan_wait(object, pp, next,
1613 			    op);
1614 			continue;
1615 		}
1616 
1617 		KASSERT(pp == NULL || pp->valid != 0,
1618 		    ("unbusy invalid page %p", pp));
1619 
1620 		if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1621 			NULL)) {
1622 			/*
1623 			 * The page already exists in the parent OR swap exists
1624 			 * for this location in the parent.  Leave the parent's
1625 			 * page alone.  Destroy the original page from the
1626 			 * backing object.
1627 			 */
1628 			if (backing_object->type == OBJT_SWAP)
1629 				swap_pager_freespace(backing_object, p->pindex,
1630 				    1);
1631 			vm_page_lock(p);
1632 			KASSERT(!pmap_page_is_mapped(p),
1633 			    ("freeing mapped page %p", p));
1634 			if (vm_page_remove(p))
1635 				vm_page_free(p);
1636 			vm_page_unlock(p);
1637 			continue;
1638 		}
1639 
1640 		/*
1641 		 * Page does not exist in parent, rename the page from the
1642 		 * backing object to the main object.
1643 		 *
1644 		 * If the page was mapped to a process, it can remain mapped
1645 		 * through the rename.  vm_page_rename() will dirty the page.
1646 		 */
1647 		if (vm_page_rename(p, object, new_pindex)) {
1648 			next = vm_object_collapse_scan_wait(object, NULL, next,
1649 			    op);
1650 			continue;
1651 		}
1652 
1653 		/* Use the old pindex to free the right page. */
1654 		if (backing_object->type == OBJT_SWAP)
1655 			swap_pager_freespace(backing_object,
1656 			    new_pindex + backing_offset_index, 1);
1657 
1658 #if VM_NRESERVLEVEL > 0
1659 		/*
1660 		 * Rename the reservation.
1661 		 */
1662 		vm_reserv_rename(p, object, backing_object,
1663 		    backing_offset_index);
1664 #endif
1665 	}
1666 	return (true);
1667 }
1668 
1669 
1670 /*
1671  * this version of collapse allows the operation to occur earlier and
1672  * when paging_in_progress is true for an object...  This is not a complete
1673  * operation, but should plug 99.9% of the rest of the leaks.
1674  */
1675 static void
1676 vm_object_qcollapse(vm_object_t object)
1677 {
1678 	vm_object_t backing_object = object->backing_object;
1679 
1680 	VM_OBJECT_ASSERT_WLOCKED(object);
1681 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1682 
1683 	if (backing_object->ref_count != 1)
1684 		return;
1685 
1686 	vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1687 }
1688 
1689 /*
1690  *	vm_object_collapse:
1691  *
1692  *	Collapse an object with the object backing it.
1693  *	Pages in the backing object are moved into the
1694  *	parent, and the backing object is deallocated.
1695  */
1696 void
1697 vm_object_collapse(vm_object_t object)
1698 {
1699 	vm_object_t backing_object, new_backing_object;
1700 
1701 	VM_OBJECT_ASSERT_WLOCKED(object);
1702 
1703 	while (TRUE) {
1704 		/*
1705 		 * Verify that the conditions are right for collapse:
1706 		 *
1707 		 * The object exists and the backing object exists.
1708 		 */
1709 		if ((backing_object = object->backing_object) == NULL)
1710 			break;
1711 
1712 		/*
1713 		 * we check the backing object first, because it is most likely
1714 		 * not collapsable.
1715 		 */
1716 		VM_OBJECT_WLOCK(backing_object);
1717 		if (backing_object->handle != NULL ||
1718 		    (backing_object->type != OBJT_DEFAULT &&
1719 		    backing_object->type != OBJT_SWAP) ||
1720 		    (backing_object->flags & (OBJ_DEAD | OBJ_NOSPLIT)) != 0 ||
1721 		    object->handle != NULL ||
1722 		    (object->type != OBJT_DEFAULT &&
1723 		     object->type != OBJT_SWAP) ||
1724 		    (object->flags & OBJ_DEAD)) {
1725 			VM_OBJECT_WUNLOCK(backing_object);
1726 			break;
1727 		}
1728 
1729 		if (object->paging_in_progress != 0 ||
1730 		    backing_object->paging_in_progress != 0) {
1731 			vm_object_qcollapse(object);
1732 			VM_OBJECT_WUNLOCK(backing_object);
1733 			break;
1734 		}
1735 
1736 		/*
1737 		 * We know that we can either collapse the backing object (if
1738 		 * the parent is the only reference to it) or (perhaps) have
1739 		 * the parent bypass the object if the parent happens to shadow
1740 		 * all the resident pages in the entire backing object.
1741 		 *
1742 		 * This is ignoring pager-backed pages such as swap pages.
1743 		 * vm_object_collapse_scan fails the shadowing test in this
1744 		 * case.
1745 		 */
1746 		if (backing_object->ref_count == 1) {
1747 			vm_object_pip_add(object, 1);
1748 			vm_object_pip_add(backing_object, 1);
1749 
1750 			/*
1751 			 * If there is exactly one reference to the backing
1752 			 * object, we can collapse it into the parent.
1753 			 */
1754 			vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1755 
1756 #if VM_NRESERVLEVEL > 0
1757 			/*
1758 			 * Break any reservations from backing_object.
1759 			 */
1760 			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1761 				vm_reserv_break_all(backing_object);
1762 #endif
1763 
1764 			/*
1765 			 * Move the pager from backing_object to object.
1766 			 */
1767 			if (backing_object->type == OBJT_SWAP) {
1768 				/*
1769 				 * swap_pager_copy() can sleep, in which case
1770 				 * the backing_object's and object's locks are
1771 				 * released and reacquired.
1772 				 * Since swap_pager_copy() is being asked to
1773 				 * destroy the source, it will change the
1774 				 * backing_object's type to OBJT_DEFAULT.
1775 				 */
1776 				swap_pager_copy(
1777 				    backing_object,
1778 				    object,
1779 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1780 			}
1781 			/*
1782 			 * Object now shadows whatever backing_object did.
1783 			 * Note that the reference to
1784 			 * backing_object->backing_object moves from within
1785 			 * backing_object to within object.
1786 			 */
1787 			LIST_REMOVE(object, shadow_list);
1788 			backing_object->shadow_count--;
1789 			if (backing_object->backing_object) {
1790 				VM_OBJECT_WLOCK(backing_object->backing_object);
1791 				LIST_REMOVE(backing_object, shadow_list);
1792 				LIST_INSERT_HEAD(
1793 				    &backing_object->backing_object->shadow_head,
1794 				    object, shadow_list);
1795 				/*
1796 				 * The shadow_count has not changed.
1797 				 */
1798 				VM_OBJECT_WUNLOCK(backing_object->backing_object);
1799 			}
1800 			object->backing_object = backing_object->backing_object;
1801 			object->backing_object_offset +=
1802 			    backing_object->backing_object_offset;
1803 
1804 			/*
1805 			 * Discard backing_object.
1806 			 *
1807 			 * Since the backing object has no pages, no pager left,
1808 			 * and no object references within it, all that is
1809 			 * necessary is to dispose of it.
1810 			 */
1811 			KASSERT(backing_object->ref_count == 1, (
1812 "backing_object %p was somehow re-referenced during collapse!",
1813 			    backing_object));
1814 			vm_object_pip_wakeup(backing_object);
1815 			backing_object->type = OBJT_DEAD;
1816 			backing_object->ref_count = 0;
1817 			VM_OBJECT_WUNLOCK(backing_object);
1818 			vm_object_destroy(backing_object);
1819 
1820 			vm_object_pip_wakeup(object);
1821 			counter_u64_add(object_collapses, 1);
1822 		} else {
1823 			/*
1824 			 * If we do not entirely shadow the backing object,
1825 			 * there is nothing we can do so we give up.
1826 			 */
1827 			if (object->resident_page_count != object->size &&
1828 			    !vm_object_scan_all_shadowed(object)) {
1829 				VM_OBJECT_WUNLOCK(backing_object);
1830 				break;
1831 			}
1832 
1833 			/*
1834 			 * Make the parent shadow the next object in the
1835 			 * chain.  Deallocating backing_object will not remove
1836 			 * it, since its reference count is at least 2.
1837 			 */
1838 			LIST_REMOVE(object, shadow_list);
1839 			backing_object->shadow_count--;
1840 
1841 			new_backing_object = backing_object->backing_object;
1842 			if ((object->backing_object = new_backing_object) != NULL) {
1843 				VM_OBJECT_WLOCK(new_backing_object);
1844 				LIST_INSERT_HEAD(
1845 				    &new_backing_object->shadow_head,
1846 				    object,
1847 				    shadow_list
1848 				);
1849 				new_backing_object->shadow_count++;
1850 				vm_object_reference_locked(new_backing_object);
1851 				VM_OBJECT_WUNLOCK(new_backing_object);
1852 				object->backing_object_offset +=
1853 					backing_object->backing_object_offset;
1854 			}
1855 
1856 			/*
1857 			 * Drop the reference count on backing_object. Since
1858 			 * its ref_count was at least 2, it will not vanish.
1859 			 */
1860 			backing_object->ref_count--;
1861 			VM_OBJECT_WUNLOCK(backing_object);
1862 			counter_u64_add(object_bypasses, 1);
1863 		}
1864 
1865 		/*
1866 		 * Try again with this object's new backing object.
1867 		 */
1868 	}
1869 }
1870 
1871 /*
1872  *	vm_object_page_remove:
1873  *
1874  *	For the given object, either frees or invalidates each of the
1875  *	specified pages.  In general, a page is freed.  However, if a page is
1876  *	wired for any reason other than the existence of a managed, wired
1877  *	mapping, then it may be invalidated but not removed from the object.
1878  *	Pages are specified by the given range ["start", "end") and the option
1879  *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1880  *	extends from "start" to the end of the object.  If the option
1881  *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1882  *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1883  *	specified, then the pages within the specified range must have no
1884  *	mappings.  Otherwise, if this option is not specified, any mappings to
1885  *	the specified pages are removed before the pages are freed or
1886  *	invalidated.
1887  *
1888  *	In general, this operation should only be performed on objects that
1889  *	contain managed pages.  There are, however, two exceptions.  First, it
1890  *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1891  *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1892  *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1893  *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1894  *
1895  *	The object must be locked.
1896  */
1897 void
1898 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1899     int options)
1900 {
1901 	vm_page_t p, next;
1902 	struct mtx *mtx;
1903 
1904 	VM_OBJECT_ASSERT_WLOCKED(object);
1905 	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1906 	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1907 	    ("vm_object_page_remove: illegal options for object %p", object));
1908 	if (object->resident_page_count == 0)
1909 		return;
1910 	vm_object_pip_add(object, 1);
1911 again:
1912 	p = vm_page_find_least(object, start);
1913 	mtx = NULL;
1914 
1915 	/*
1916 	 * Here, the variable "p" is either (1) the page with the least pindex
1917 	 * greater than or equal to the parameter "start" or (2) NULL.
1918 	 */
1919 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1920 		next = TAILQ_NEXT(p, listq);
1921 
1922 		/*
1923 		 * If the page is wired for any reason besides the existence
1924 		 * of managed, wired mappings, then it cannot be freed.  For
1925 		 * example, fictitious pages, which represent device memory,
1926 		 * are inherently wired and cannot be freed.  They can,
1927 		 * however, be invalidated if the option OBJPR_CLEANONLY is
1928 		 * not specified.
1929 		 */
1930 		vm_page_change_lock(p, &mtx);
1931 		if (vm_page_xbusied(p)) {
1932 			VM_OBJECT_WUNLOCK(object);
1933 			vm_page_busy_sleep(p, "vmopax", true);
1934 			VM_OBJECT_WLOCK(object);
1935 			goto again;
1936 		}
1937 		if (vm_page_wired(p)) {
1938 			if ((options & OBJPR_NOTMAPPED) == 0 &&
1939 			    object->ref_count != 0)
1940 				pmap_remove_all(p);
1941 			if ((options & OBJPR_CLEANONLY) == 0) {
1942 				p->valid = 0;
1943 				vm_page_undirty(p);
1944 			}
1945 			continue;
1946 		}
1947 		if (vm_page_busied(p)) {
1948 			VM_OBJECT_WUNLOCK(object);
1949 			vm_page_busy_sleep(p, "vmopar", false);
1950 			VM_OBJECT_WLOCK(object);
1951 			goto again;
1952 		}
1953 		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1954 		    ("vm_object_page_remove: page %p is fictitious", p));
1955 		if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1956 			if ((options & OBJPR_NOTMAPPED) == 0 &&
1957 			    object->ref_count != 0)
1958 				pmap_remove_write(p);
1959 			if (p->dirty != 0)
1960 				continue;
1961 		}
1962 		if ((options & OBJPR_NOTMAPPED) == 0 && object->ref_count != 0)
1963 			pmap_remove_all(p);
1964 		vm_page_free(p);
1965 	}
1966 	if (mtx != NULL)
1967 		mtx_unlock(mtx);
1968 	vm_object_pip_wakeup(object);
1969 }
1970 
1971 /*
1972  *	vm_object_page_noreuse:
1973  *
1974  *	For the given object, attempt to move the specified pages to
1975  *	the head of the inactive queue.  This bypasses regular LRU
1976  *	operation and allows the pages to be reused quickly under memory
1977  *	pressure.  If a page is wired for any reason, then it will not
1978  *	be queued.  Pages are specified by the range ["start", "end").
1979  *	As a special case, if "end" is zero, then the range extends from
1980  *	"start" to the end of the object.
1981  *
1982  *	This operation should only be performed on objects that
1983  *	contain non-fictitious, managed pages.
1984  *
1985  *	The object must be locked.
1986  */
1987 void
1988 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1989 {
1990 	struct mtx *mtx;
1991 	vm_page_t p, next;
1992 
1993 	VM_OBJECT_ASSERT_LOCKED(object);
1994 	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
1995 	    ("vm_object_page_noreuse: illegal object %p", object));
1996 	if (object->resident_page_count == 0)
1997 		return;
1998 	p = vm_page_find_least(object, start);
1999 
2000 	/*
2001 	 * Here, the variable "p" is either (1) the page with the least pindex
2002 	 * greater than or equal to the parameter "start" or (2) NULL.
2003 	 */
2004 	mtx = NULL;
2005 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2006 		next = TAILQ_NEXT(p, listq);
2007 		vm_page_change_lock(p, &mtx);
2008 		vm_page_deactivate_noreuse(p);
2009 	}
2010 	if (mtx != NULL)
2011 		mtx_unlock(mtx);
2012 }
2013 
2014 /*
2015  *	Populate the specified range of the object with valid pages.  Returns
2016  *	TRUE if the range is successfully populated and FALSE otherwise.
2017  *
2018  *	Note: This function should be optimized to pass a larger array of
2019  *	pages to vm_pager_get_pages() before it is applied to a non-
2020  *	OBJT_DEVICE object.
2021  *
2022  *	The object must be locked.
2023  */
2024 boolean_t
2025 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2026 {
2027 	vm_page_t m;
2028 	vm_pindex_t pindex;
2029 	int rv;
2030 
2031 	VM_OBJECT_ASSERT_WLOCKED(object);
2032 	for (pindex = start; pindex < end; pindex++) {
2033 		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2034 		if (m->valid != VM_PAGE_BITS_ALL) {
2035 			rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
2036 			if (rv != VM_PAGER_OK) {
2037 				vm_page_lock(m);
2038 				vm_page_free(m);
2039 				vm_page_unlock(m);
2040 				break;
2041 			}
2042 		}
2043 		/*
2044 		 * Keep "m" busy because a subsequent iteration may unlock
2045 		 * the object.
2046 		 */
2047 	}
2048 	if (pindex > start) {
2049 		m = vm_page_lookup(object, start);
2050 		while (m != NULL && m->pindex < pindex) {
2051 			vm_page_xunbusy(m);
2052 			m = TAILQ_NEXT(m, listq);
2053 		}
2054 	}
2055 	return (pindex == end);
2056 }
2057 
2058 /*
2059  *	Routine:	vm_object_coalesce
2060  *	Function:	Coalesces two objects backing up adjoining
2061  *			regions of memory into a single object.
2062  *
2063  *	returns TRUE if objects were combined.
2064  *
2065  *	NOTE:	Only works at the moment if the second object is NULL -
2066  *		if it's not, which object do we lock first?
2067  *
2068  *	Parameters:
2069  *		prev_object	First object to coalesce
2070  *		prev_offset	Offset into prev_object
2071  *		prev_size	Size of reference to prev_object
2072  *		next_size	Size of reference to the second object
2073  *		reserved	Indicator that extension region has
2074  *				swap accounted for
2075  *
2076  *	Conditions:
2077  *	The object must *not* be locked.
2078  */
2079 boolean_t
2080 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2081     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2082 {
2083 	vm_pindex_t next_pindex;
2084 
2085 	if (prev_object == NULL)
2086 		return (TRUE);
2087 	VM_OBJECT_WLOCK(prev_object);
2088 	if ((prev_object->type != OBJT_DEFAULT &&
2089 	    prev_object->type != OBJT_SWAP) ||
2090 	    (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2091 		VM_OBJECT_WUNLOCK(prev_object);
2092 		return (FALSE);
2093 	}
2094 
2095 	/*
2096 	 * Try to collapse the object first
2097 	 */
2098 	vm_object_collapse(prev_object);
2099 
2100 	/*
2101 	 * Can't coalesce if: . more than one reference . paged out . shadows
2102 	 * another object . has a copy elsewhere (any of which mean that the
2103 	 * pages not mapped to prev_entry may be in use anyway)
2104 	 */
2105 	if (prev_object->backing_object != NULL) {
2106 		VM_OBJECT_WUNLOCK(prev_object);
2107 		return (FALSE);
2108 	}
2109 
2110 	prev_size >>= PAGE_SHIFT;
2111 	next_size >>= PAGE_SHIFT;
2112 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2113 
2114 	if (prev_object->ref_count > 1 &&
2115 	    prev_object->size != next_pindex &&
2116 	    (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2117 		VM_OBJECT_WUNLOCK(prev_object);
2118 		return (FALSE);
2119 	}
2120 
2121 	/*
2122 	 * Account for the charge.
2123 	 */
2124 	if (prev_object->cred != NULL) {
2125 
2126 		/*
2127 		 * If prev_object was charged, then this mapping,
2128 		 * although not charged now, may become writable
2129 		 * later. Non-NULL cred in the object would prevent
2130 		 * swap reservation during enabling of the write
2131 		 * access, so reserve swap now. Failed reservation
2132 		 * cause allocation of the separate object for the map
2133 		 * entry, and swap reservation for this entry is
2134 		 * managed in appropriate time.
2135 		 */
2136 		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2137 		    prev_object->cred)) {
2138 			VM_OBJECT_WUNLOCK(prev_object);
2139 			return (FALSE);
2140 		}
2141 		prev_object->charge += ptoa(next_size);
2142 	}
2143 
2144 	/*
2145 	 * Remove any pages that may still be in the object from a previous
2146 	 * deallocation.
2147 	 */
2148 	if (next_pindex < prev_object->size) {
2149 		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2150 		    next_size, 0);
2151 		if (prev_object->type == OBJT_SWAP)
2152 			swap_pager_freespace(prev_object,
2153 					     next_pindex, next_size);
2154 #if 0
2155 		if (prev_object->cred != NULL) {
2156 			KASSERT(prev_object->charge >=
2157 			    ptoa(prev_object->size - next_pindex),
2158 			    ("object %p overcharged 1 %jx %jx", prev_object,
2159 				(uintmax_t)next_pindex, (uintmax_t)next_size));
2160 			prev_object->charge -= ptoa(prev_object->size -
2161 			    next_pindex);
2162 		}
2163 #endif
2164 	}
2165 
2166 	/*
2167 	 * Extend the object if necessary.
2168 	 */
2169 	if (next_pindex + next_size > prev_object->size)
2170 		prev_object->size = next_pindex + next_size;
2171 
2172 	VM_OBJECT_WUNLOCK(prev_object);
2173 	return (TRUE);
2174 }
2175 
2176 void
2177 vm_object_set_writeable_dirty(vm_object_t object)
2178 {
2179 
2180 	VM_OBJECT_ASSERT_WLOCKED(object);
2181 	if (object->type != OBJT_VNODE) {
2182 		if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2183 			KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2184 			vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2185 		}
2186 		return;
2187 	}
2188 	object->generation++;
2189 	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2190 		return;
2191 	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2192 }
2193 
2194 /*
2195  *	vm_object_unwire:
2196  *
2197  *	For each page offset within the specified range of the given object,
2198  *	find the highest-level page in the shadow chain and unwire it.  A page
2199  *	must exist at every page offset, and the highest-level page must be
2200  *	wired.
2201  */
2202 void
2203 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2204     uint8_t queue)
2205 {
2206 	vm_object_t tobject, t1object;
2207 	vm_page_t m, tm;
2208 	vm_pindex_t end_pindex, pindex, tpindex;
2209 	int depth, locked_depth;
2210 
2211 	KASSERT((offset & PAGE_MASK) == 0,
2212 	    ("vm_object_unwire: offset is not page aligned"));
2213 	KASSERT((length & PAGE_MASK) == 0,
2214 	    ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2215 	/* The wired count of a fictitious page never changes. */
2216 	if ((object->flags & OBJ_FICTITIOUS) != 0)
2217 		return;
2218 	pindex = OFF_TO_IDX(offset);
2219 	end_pindex = pindex + atop(length);
2220 again:
2221 	locked_depth = 1;
2222 	VM_OBJECT_RLOCK(object);
2223 	m = vm_page_find_least(object, pindex);
2224 	while (pindex < end_pindex) {
2225 		if (m == NULL || pindex < m->pindex) {
2226 			/*
2227 			 * The first object in the shadow chain doesn't
2228 			 * contain a page at the current index.  Therefore,
2229 			 * the page must exist in a backing object.
2230 			 */
2231 			tobject = object;
2232 			tpindex = pindex;
2233 			depth = 0;
2234 			do {
2235 				tpindex +=
2236 				    OFF_TO_IDX(tobject->backing_object_offset);
2237 				tobject = tobject->backing_object;
2238 				KASSERT(tobject != NULL,
2239 				    ("vm_object_unwire: missing page"));
2240 				if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2241 					goto next_page;
2242 				depth++;
2243 				if (depth == locked_depth) {
2244 					locked_depth++;
2245 					VM_OBJECT_RLOCK(tobject);
2246 				}
2247 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
2248 			    NULL);
2249 		} else {
2250 			tm = m;
2251 			m = TAILQ_NEXT(m, listq);
2252 		}
2253 		vm_page_lock(tm);
2254 		if (vm_page_xbusied(tm)) {
2255 			for (tobject = object; locked_depth >= 1;
2256 			    locked_depth--) {
2257 				t1object = tobject->backing_object;
2258 				VM_OBJECT_RUNLOCK(tobject);
2259 				tobject = t1object;
2260 			}
2261 			vm_page_busy_sleep(tm, "unwbo", true);
2262 			goto again;
2263 		}
2264 		vm_page_unwire(tm, queue);
2265 		vm_page_unlock(tm);
2266 next_page:
2267 		pindex++;
2268 	}
2269 	/* Release the accumulated object locks. */
2270 	for (tobject = object; locked_depth >= 1; locked_depth--) {
2271 		t1object = tobject->backing_object;
2272 		VM_OBJECT_RUNLOCK(tobject);
2273 		tobject = t1object;
2274 	}
2275 }
2276 
2277 /*
2278  * Return the vnode for the given object, or NULL if none exists.
2279  * For tmpfs objects, the function may return NULL if there is
2280  * no vnode allocated at the time of the call.
2281  */
2282 struct vnode *
2283 vm_object_vnode(vm_object_t object)
2284 {
2285 	struct vnode *vp;
2286 
2287 	VM_OBJECT_ASSERT_LOCKED(object);
2288 	if (object->type == OBJT_VNODE) {
2289 		vp = object->handle;
2290 		KASSERT(vp != NULL, ("%s: OBJT_VNODE has no vnode", __func__));
2291 	} else if (object->type == OBJT_SWAP &&
2292 	    (object->flags & OBJ_TMPFS) != 0) {
2293 		vp = object->un_pager.swp.swp_tmpfs;
2294 		KASSERT(vp != NULL, ("%s: OBJT_TMPFS has no vnode", __func__));
2295 	} else {
2296 		vp = NULL;
2297 	}
2298 	return (vp);
2299 }
2300 
2301 /*
2302  * Return the kvme type of the given object.
2303  * If vpp is not NULL, set it to the object's vm_object_vnode() or NULL.
2304  */
2305 int
2306 vm_object_kvme_type(vm_object_t object, struct vnode **vpp)
2307 {
2308 
2309 	VM_OBJECT_ASSERT_LOCKED(object);
2310 	if (vpp != NULL)
2311 		*vpp = vm_object_vnode(object);
2312 	switch (object->type) {
2313 	case OBJT_DEFAULT:
2314 		return (KVME_TYPE_DEFAULT);
2315 	case OBJT_VNODE:
2316 		return (KVME_TYPE_VNODE);
2317 	case OBJT_SWAP:
2318 		if ((object->flags & OBJ_TMPFS_NODE) != 0)
2319 			return (KVME_TYPE_VNODE);
2320 		return (KVME_TYPE_SWAP);
2321 	case OBJT_DEVICE:
2322 		return (KVME_TYPE_DEVICE);
2323 	case OBJT_PHYS:
2324 		return (KVME_TYPE_PHYS);
2325 	case OBJT_DEAD:
2326 		return (KVME_TYPE_DEAD);
2327 	case OBJT_SG:
2328 		return (KVME_TYPE_SG);
2329 	case OBJT_MGTDEVICE:
2330 		return (KVME_TYPE_MGTDEVICE);
2331 	default:
2332 		return (KVME_TYPE_UNKNOWN);
2333 	}
2334 }
2335 
2336 static int
2337 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2338 {
2339 	struct kinfo_vmobject *kvo;
2340 	char *fullpath, *freepath;
2341 	struct vnode *vp;
2342 	struct vattr va;
2343 	vm_object_t obj;
2344 	vm_page_t m;
2345 	int count, error;
2346 
2347 	if (req->oldptr == NULL) {
2348 		/*
2349 		 * If an old buffer has not been provided, generate an
2350 		 * estimate of the space needed for a subsequent call.
2351 		 */
2352 		mtx_lock(&vm_object_list_mtx);
2353 		count = 0;
2354 		TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2355 			if (obj->type == OBJT_DEAD)
2356 				continue;
2357 			count++;
2358 		}
2359 		mtx_unlock(&vm_object_list_mtx);
2360 		return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2361 		    count * 11 / 10));
2362 	}
2363 
2364 	kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2365 	error = 0;
2366 
2367 	/*
2368 	 * VM objects are type stable and are never removed from the
2369 	 * list once added.  This allows us to safely read obj->object_list
2370 	 * after reacquiring the VM object lock.
2371 	 */
2372 	mtx_lock(&vm_object_list_mtx);
2373 	TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2374 		if (obj->type == OBJT_DEAD)
2375 			continue;
2376 		VM_OBJECT_RLOCK(obj);
2377 		if (obj->type == OBJT_DEAD) {
2378 			VM_OBJECT_RUNLOCK(obj);
2379 			continue;
2380 		}
2381 		mtx_unlock(&vm_object_list_mtx);
2382 		kvo->kvo_size = ptoa(obj->size);
2383 		kvo->kvo_resident = obj->resident_page_count;
2384 		kvo->kvo_ref_count = obj->ref_count;
2385 		kvo->kvo_shadow_count = obj->shadow_count;
2386 		kvo->kvo_memattr = obj->memattr;
2387 		kvo->kvo_active = 0;
2388 		kvo->kvo_inactive = 0;
2389 		TAILQ_FOREACH(m, &obj->memq, listq) {
2390 			/*
2391 			 * A page may belong to the object but be
2392 			 * dequeued and set to PQ_NONE while the
2393 			 * object lock is not held.  This makes the
2394 			 * reads of m->queue below racy, and we do not
2395 			 * count pages set to PQ_NONE.  However, this
2396 			 * sysctl is only meant to give an
2397 			 * approximation of the system anyway.
2398 			 */
2399 			if (m->queue == PQ_ACTIVE)
2400 				kvo->kvo_active++;
2401 			else if (m->queue == PQ_INACTIVE)
2402 				kvo->kvo_inactive++;
2403 		}
2404 
2405 		kvo->kvo_vn_fileid = 0;
2406 		kvo->kvo_vn_fsid = 0;
2407 		kvo->kvo_vn_fsid_freebsd11 = 0;
2408 		freepath = NULL;
2409 		fullpath = "";
2410 		kvo->kvo_type = vm_object_kvme_type(obj, &vp);
2411 		if (vp != NULL)
2412 			vref(vp);
2413 		VM_OBJECT_RUNLOCK(obj);
2414 		if (vp != NULL) {
2415 			vn_fullpath(curthread, vp, &fullpath, &freepath);
2416 			vn_lock(vp, LK_SHARED | LK_RETRY);
2417 			if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2418 				kvo->kvo_vn_fileid = va.va_fileid;
2419 				kvo->kvo_vn_fsid = va.va_fsid;
2420 				kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2421 								/* truncate */
2422 			}
2423 			vput(vp);
2424 		}
2425 
2426 		strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2427 		if (freepath != NULL)
2428 			free(freepath, M_TEMP);
2429 
2430 		/* Pack record size down */
2431 		kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2432 		    + strlen(kvo->kvo_path) + 1;
2433 		kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2434 		    sizeof(uint64_t));
2435 		error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2436 		mtx_lock(&vm_object_list_mtx);
2437 		if (error)
2438 			break;
2439 	}
2440 	mtx_unlock(&vm_object_list_mtx);
2441 	free(kvo, M_TEMP);
2442 	return (error);
2443 }
2444 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2445     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2446     "List of VM objects");
2447 
2448 #include "opt_ddb.h"
2449 #ifdef DDB
2450 #include <sys/kernel.h>
2451 
2452 #include <sys/cons.h>
2453 
2454 #include <ddb/ddb.h>
2455 
2456 static int
2457 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2458 {
2459 	vm_map_t tmpm;
2460 	vm_map_entry_t tmpe;
2461 	vm_object_t obj;
2462 	int entcount;
2463 
2464 	if (map == 0)
2465 		return 0;
2466 
2467 	if (entry == 0) {
2468 		tmpe = map->header.next;
2469 		entcount = map->nentries;
2470 		while (entcount-- && (tmpe != &map->header)) {
2471 			if (_vm_object_in_map(map, object, tmpe)) {
2472 				return 1;
2473 			}
2474 			tmpe = tmpe->next;
2475 		}
2476 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2477 		tmpm = entry->object.sub_map;
2478 		tmpe = tmpm->header.next;
2479 		entcount = tmpm->nentries;
2480 		while (entcount-- && tmpe != &tmpm->header) {
2481 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2482 				return 1;
2483 			}
2484 			tmpe = tmpe->next;
2485 		}
2486 	} else if ((obj = entry->object.vm_object) != NULL) {
2487 		for (; obj; obj = obj->backing_object)
2488 			if (obj == object) {
2489 				return 1;
2490 			}
2491 	}
2492 	return 0;
2493 }
2494 
2495 static int
2496 vm_object_in_map(vm_object_t object)
2497 {
2498 	struct proc *p;
2499 
2500 	/* sx_slock(&allproc_lock); */
2501 	FOREACH_PROC_IN_SYSTEM(p) {
2502 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2503 			continue;
2504 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2505 			/* sx_sunlock(&allproc_lock); */
2506 			return 1;
2507 		}
2508 	}
2509 	/* sx_sunlock(&allproc_lock); */
2510 	if (_vm_object_in_map(kernel_map, object, 0))
2511 		return 1;
2512 	return 0;
2513 }
2514 
2515 DB_SHOW_COMMAND(vmochk, vm_object_check)
2516 {
2517 	vm_object_t object;
2518 
2519 	/*
2520 	 * make sure that internal objs are in a map somewhere
2521 	 * and none have zero ref counts.
2522 	 */
2523 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2524 		if (object->handle == NULL &&
2525 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2526 			if (object->ref_count == 0) {
2527 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2528 					(long)object->size);
2529 			}
2530 			if (!vm_object_in_map(object)) {
2531 				db_printf(
2532 			"vmochk: internal obj is not in a map: "
2533 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2534 				    object->ref_count, (u_long)object->size,
2535 				    (u_long)object->size,
2536 				    (void *)object->backing_object);
2537 			}
2538 		}
2539 	}
2540 }
2541 
2542 /*
2543  *	vm_object_print:	[ debug ]
2544  */
2545 DB_SHOW_COMMAND(object, vm_object_print_static)
2546 {
2547 	/* XXX convert args. */
2548 	vm_object_t object = (vm_object_t)addr;
2549 	boolean_t full = have_addr;
2550 
2551 	vm_page_t p;
2552 
2553 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2554 #define	count	was_count
2555 
2556 	int count;
2557 
2558 	if (object == NULL)
2559 		return;
2560 
2561 	db_iprintf(
2562 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2563 	    object, (int)object->type, (uintmax_t)object->size,
2564 	    object->resident_page_count, object->ref_count, object->flags,
2565 	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2566 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2567 	    object->shadow_count,
2568 	    object->backing_object ? object->backing_object->ref_count : 0,
2569 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2570 
2571 	if (!full)
2572 		return;
2573 
2574 	db_indent += 2;
2575 	count = 0;
2576 	TAILQ_FOREACH(p, &object->memq, listq) {
2577 		if (count == 0)
2578 			db_iprintf("memory:=");
2579 		else if (count == 6) {
2580 			db_printf("\n");
2581 			db_iprintf(" ...");
2582 			count = 0;
2583 		} else
2584 			db_printf(",");
2585 		count++;
2586 
2587 		db_printf("(off=0x%jx,page=0x%jx)",
2588 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2589 	}
2590 	if (count != 0)
2591 		db_printf("\n");
2592 	db_indent -= 2;
2593 }
2594 
2595 /* XXX. */
2596 #undef count
2597 
2598 /* XXX need this non-static entry for calling from vm_map_print. */
2599 void
2600 vm_object_print(
2601         /* db_expr_t */ long addr,
2602 	boolean_t have_addr,
2603 	/* db_expr_t */ long count,
2604 	char *modif)
2605 {
2606 	vm_object_print_static(addr, have_addr, count, modif);
2607 }
2608 
2609 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2610 {
2611 	vm_object_t object;
2612 	vm_pindex_t fidx;
2613 	vm_paddr_t pa;
2614 	vm_page_t m, prev_m;
2615 	int rcount, nl, c;
2616 
2617 	nl = 0;
2618 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2619 		db_printf("new object: %p\n", (void *)object);
2620 		if (nl > 18) {
2621 			c = cngetc();
2622 			if (c != ' ')
2623 				return;
2624 			nl = 0;
2625 		}
2626 		nl++;
2627 		rcount = 0;
2628 		fidx = 0;
2629 		pa = -1;
2630 		TAILQ_FOREACH(m, &object->memq, listq) {
2631 			if (m->pindex > 128)
2632 				break;
2633 			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2634 			    prev_m->pindex + 1 != m->pindex) {
2635 				if (rcount) {
2636 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2637 						(long)fidx, rcount, (long)pa);
2638 					if (nl > 18) {
2639 						c = cngetc();
2640 						if (c != ' ')
2641 							return;
2642 						nl = 0;
2643 					}
2644 					nl++;
2645 					rcount = 0;
2646 				}
2647 			}
2648 			if (rcount &&
2649 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2650 				++rcount;
2651 				continue;
2652 			}
2653 			if (rcount) {
2654 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2655 					(long)fidx, rcount, (long)pa);
2656 				if (nl > 18) {
2657 					c = cngetc();
2658 					if (c != ' ')
2659 						return;
2660 					nl = 0;
2661 				}
2662 				nl++;
2663 			}
2664 			fidx = m->pindex;
2665 			pa = VM_PAGE_TO_PHYS(m);
2666 			rcount = 1;
2667 		}
2668 		if (rcount) {
2669 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2670 				(long)fidx, rcount, (long)pa);
2671 			if (nl > 18) {
2672 				c = cngetc();
2673 				if (c != ' ')
2674 					return;
2675 				nl = 0;
2676 			}
2677 			nl++;
2678 		}
2679 	}
2680 }
2681 #endif /* DDB */
2682