1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory object module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_vm.h" 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/lock.h> 73 #include <sys/mman.h> 74 #include <sys/mount.h> 75 #include <sys/kernel.h> 76 #include <sys/pctrie.h> 77 #include <sys/sysctl.h> 78 #include <sys/mutex.h> 79 #include <sys/proc.h> /* for curproc, pageproc */ 80 #include <sys/socket.h> 81 #include <sys/resourcevar.h> 82 #include <sys/rwlock.h> 83 #include <sys/user.h> 84 #include <sys/vnode.h> 85 #include <sys/vmmeter.h> 86 #include <sys/sx.h> 87 88 #include <vm/vm.h> 89 #include <vm/vm_param.h> 90 #include <vm/pmap.h> 91 #include <vm/vm_map.h> 92 #include <vm/vm_object.h> 93 #include <vm/vm_page.h> 94 #include <vm/vm_pageout.h> 95 #include <vm/vm_pager.h> 96 #include <vm/swap_pager.h> 97 #include <vm/vm_kern.h> 98 #include <vm/vm_extern.h> 99 #include <vm/vm_radix.h> 100 #include <vm/vm_reserv.h> 101 #include <vm/uma.h> 102 103 static int old_msync; 104 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0, 105 "Use old (insecure) msync behavior"); 106 107 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 108 int pagerflags, int flags, boolean_t *clearobjflags, 109 boolean_t *eio); 110 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags, 111 boolean_t *clearobjflags); 112 static void vm_object_qcollapse(vm_object_t object); 113 static void vm_object_vndeallocate(vm_object_t object); 114 115 /* 116 * Virtual memory objects maintain the actual data 117 * associated with allocated virtual memory. A given 118 * page of memory exists within exactly one object. 119 * 120 * An object is only deallocated when all "references" 121 * are given up. Only one "reference" to a given 122 * region of an object should be writeable. 123 * 124 * Associated with each object is a list of all resident 125 * memory pages belonging to that object; this list is 126 * maintained by the "vm_page" module, and locked by the object's 127 * lock. 128 * 129 * Each object also records a "pager" routine which is 130 * used to retrieve (and store) pages to the proper backing 131 * storage. In addition, objects may be backed by other 132 * objects from which they were virtual-copied. 133 * 134 * The only items within the object structure which are 135 * modified after time of creation are: 136 * reference count locked by object's lock 137 * pager routine locked by object's lock 138 * 139 */ 140 141 struct object_q vm_object_list; 142 struct mtx vm_object_list_mtx; /* lock for object list and count */ 143 144 struct vm_object kernel_object_store; 145 struct vm_object kmem_object_store; 146 147 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, 148 "VM object stats"); 149 150 static long object_collapses; 151 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD, 152 &object_collapses, 0, "VM object collapses"); 153 154 static long object_bypasses; 155 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD, 156 &object_bypasses, 0, "VM object bypasses"); 157 158 static uma_zone_t obj_zone; 159 160 static int vm_object_zinit(void *mem, int size, int flags); 161 162 #ifdef INVARIANTS 163 static void vm_object_zdtor(void *mem, int size, void *arg); 164 165 static void 166 vm_object_zdtor(void *mem, int size, void *arg) 167 { 168 vm_object_t object; 169 170 object = (vm_object_t)mem; 171 KASSERT(object->ref_count == 0, 172 ("object %p ref_count = %d", object, object->ref_count)); 173 KASSERT(TAILQ_EMPTY(&object->memq), 174 ("object %p has resident pages in its memq", object)); 175 KASSERT(vm_radix_is_empty(&object->rtree), 176 ("object %p has resident pages in its trie", object)); 177 #if VM_NRESERVLEVEL > 0 178 KASSERT(LIST_EMPTY(&object->rvq), 179 ("object %p has reservations", 180 object)); 181 #endif 182 KASSERT(object->paging_in_progress == 0, 183 ("object %p paging_in_progress = %d", 184 object, object->paging_in_progress)); 185 KASSERT(object->resident_page_count == 0, 186 ("object %p resident_page_count = %d", 187 object, object->resident_page_count)); 188 KASSERT(object->shadow_count == 0, 189 ("object %p shadow_count = %d", 190 object, object->shadow_count)); 191 KASSERT(object->type == OBJT_DEAD, 192 ("object %p has non-dead type %d", 193 object, object->type)); 194 } 195 #endif 196 197 static int 198 vm_object_zinit(void *mem, int size, int flags) 199 { 200 vm_object_t object; 201 202 object = (vm_object_t)mem; 203 rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW); 204 205 /* These are true for any object that has been freed */ 206 object->type = OBJT_DEAD; 207 object->ref_count = 0; 208 vm_radix_init(&object->rtree); 209 object->paging_in_progress = 0; 210 object->resident_page_count = 0; 211 object->shadow_count = 0; 212 object->flags = OBJ_DEAD; 213 214 mtx_lock(&vm_object_list_mtx); 215 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 216 mtx_unlock(&vm_object_list_mtx); 217 return (0); 218 } 219 220 static void 221 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object) 222 { 223 224 TAILQ_INIT(&object->memq); 225 LIST_INIT(&object->shadow_head); 226 227 object->type = type; 228 if (type == OBJT_SWAP) 229 pctrie_init(&object->un_pager.swp.swp_blks); 230 231 /* 232 * Ensure that swap_pager_swapoff() iteration over object_list 233 * sees up to date type and pctrie head if it observed 234 * non-dead object. 235 */ 236 atomic_thread_fence_rel(); 237 238 switch (type) { 239 case OBJT_DEAD: 240 panic("_vm_object_allocate: can't create OBJT_DEAD"); 241 case OBJT_DEFAULT: 242 case OBJT_SWAP: 243 object->flags = OBJ_ONEMAPPING; 244 break; 245 case OBJT_DEVICE: 246 case OBJT_SG: 247 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED; 248 break; 249 case OBJT_MGTDEVICE: 250 object->flags = OBJ_FICTITIOUS; 251 break; 252 case OBJT_PHYS: 253 object->flags = OBJ_UNMANAGED; 254 break; 255 case OBJT_VNODE: 256 object->flags = 0; 257 break; 258 default: 259 panic("_vm_object_allocate: type %d is undefined", type); 260 } 261 object->size = size; 262 object->generation = 1; 263 object->ref_count = 1; 264 object->memattr = VM_MEMATTR_DEFAULT; 265 object->cred = NULL; 266 object->charge = 0; 267 object->handle = NULL; 268 object->backing_object = NULL; 269 object->backing_object_offset = (vm_ooffset_t) 0; 270 #if VM_NRESERVLEVEL > 0 271 LIST_INIT(&object->rvq); 272 #endif 273 umtx_shm_object_init(object); 274 } 275 276 /* 277 * vm_object_init: 278 * 279 * Initialize the VM objects module. 280 */ 281 void 282 vm_object_init(void) 283 { 284 TAILQ_INIT(&vm_object_list); 285 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF); 286 287 rw_init(&kernel_object->lock, "kernel vm object"); 288 _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS - 289 VM_MIN_KERNEL_ADDRESS), kernel_object); 290 #if VM_NRESERVLEVEL > 0 291 kernel_object->flags |= OBJ_COLORED; 292 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 293 #endif 294 295 rw_init(&kmem_object->lock, "kmem vm object"); 296 _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS - 297 VM_MIN_KERNEL_ADDRESS), kmem_object); 298 #if VM_NRESERVLEVEL > 0 299 kmem_object->flags |= OBJ_COLORED; 300 kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 301 #endif 302 303 /* 304 * The lock portion of struct vm_object must be type stable due 305 * to vm_pageout_fallback_object_lock locking a vm object 306 * without holding any references to it. 307 */ 308 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL, 309 #ifdef INVARIANTS 310 vm_object_zdtor, 311 #else 312 NULL, 313 #endif 314 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 315 316 vm_radix_zinit(); 317 } 318 319 void 320 vm_object_clear_flag(vm_object_t object, u_short bits) 321 { 322 323 VM_OBJECT_ASSERT_WLOCKED(object); 324 object->flags &= ~bits; 325 } 326 327 /* 328 * Sets the default memory attribute for the specified object. Pages 329 * that are allocated to this object are by default assigned this memory 330 * attribute. 331 * 332 * Presently, this function must be called before any pages are allocated 333 * to the object. In the future, this requirement may be relaxed for 334 * "default" and "swap" objects. 335 */ 336 int 337 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr) 338 { 339 340 VM_OBJECT_ASSERT_WLOCKED(object); 341 switch (object->type) { 342 case OBJT_DEFAULT: 343 case OBJT_DEVICE: 344 case OBJT_MGTDEVICE: 345 case OBJT_PHYS: 346 case OBJT_SG: 347 case OBJT_SWAP: 348 case OBJT_VNODE: 349 if (!TAILQ_EMPTY(&object->memq)) 350 return (KERN_FAILURE); 351 break; 352 case OBJT_DEAD: 353 return (KERN_INVALID_ARGUMENT); 354 default: 355 panic("vm_object_set_memattr: object %p is of undefined type", 356 object); 357 } 358 object->memattr = memattr; 359 return (KERN_SUCCESS); 360 } 361 362 void 363 vm_object_pip_add(vm_object_t object, short i) 364 { 365 366 VM_OBJECT_ASSERT_WLOCKED(object); 367 object->paging_in_progress += i; 368 } 369 370 void 371 vm_object_pip_subtract(vm_object_t object, short i) 372 { 373 374 VM_OBJECT_ASSERT_WLOCKED(object); 375 object->paging_in_progress -= i; 376 } 377 378 void 379 vm_object_pip_wakeup(vm_object_t object) 380 { 381 382 VM_OBJECT_ASSERT_WLOCKED(object); 383 object->paging_in_progress--; 384 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 385 vm_object_clear_flag(object, OBJ_PIPWNT); 386 wakeup(object); 387 } 388 } 389 390 void 391 vm_object_pip_wakeupn(vm_object_t object, short i) 392 { 393 394 VM_OBJECT_ASSERT_WLOCKED(object); 395 if (i) 396 object->paging_in_progress -= i; 397 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 398 vm_object_clear_flag(object, OBJ_PIPWNT); 399 wakeup(object); 400 } 401 } 402 403 void 404 vm_object_pip_wait(vm_object_t object, char *waitid) 405 { 406 407 VM_OBJECT_ASSERT_WLOCKED(object); 408 while (object->paging_in_progress) { 409 object->flags |= OBJ_PIPWNT; 410 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0); 411 } 412 } 413 414 /* 415 * vm_object_allocate: 416 * 417 * Returns a new object with the given size. 418 */ 419 vm_object_t 420 vm_object_allocate(objtype_t type, vm_pindex_t size) 421 { 422 vm_object_t object; 423 424 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 425 _vm_object_allocate(type, size, object); 426 return (object); 427 } 428 429 430 /* 431 * vm_object_reference: 432 * 433 * Gets another reference to the given object. Note: OBJ_DEAD 434 * objects can be referenced during final cleaning. 435 */ 436 void 437 vm_object_reference(vm_object_t object) 438 { 439 if (object == NULL) 440 return; 441 VM_OBJECT_WLOCK(object); 442 vm_object_reference_locked(object); 443 VM_OBJECT_WUNLOCK(object); 444 } 445 446 /* 447 * vm_object_reference_locked: 448 * 449 * Gets another reference to the given object. 450 * 451 * The object must be locked. 452 */ 453 void 454 vm_object_reference_locked(vm_object_t object) 455 { 456 struct vnode *vp; 457 458 VM_OBJECT_ASSERT_WLOCKED(object); 459 object->ref_count++; 460 if (object->type == OBJT_VNODE) { 461 vp = object->handle; 462 vref(vp); 463 } 464 } 465 466 /* 467 * Handle deallocating an object of type OBJT_VNODE. 468 */ 469 static void 470 vm_object_vndeallocate(vm_object_t object) 471 { 472 struct vnode *vp = (struct vnode *) object->handle; 473 474 VM_OBJECT_ASSERT_WLOCKED(object); 475 KASSERT(object->type == OBJT_VNODE, 476 ("vm_object_vndeallocate: not a vnode object")); 477 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 478 #ifdef INVARIANTS 479 if (object->ref_count == 0) { 480 vn_printf(vp, "vm_object_vndeallocate "); 481 panic("vm_object_vndeallocate: bad object reference count"); 482 } 483 #endif 484 485 if (!umtx_shm_vnobj_persistent && object->ref_count == 1) 486 umtx_shm_object_terminated(object); 487 488 /* 489 * The test for text of vp vnode does not need a bypass to 490 * reach right VV_TEXT there, since it is obtained from 491 * object->handle. 492 */ 493 if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) { 494 object->ref_count--; 495 VM_OBJECT_WUNLOCK(object); 496 /* vrele may need the vnode lock. */ 497 vrele(vp); 498 } else { 499 vhold(vp); 500 VM_OBJECT_WUNLOCK(object); 501 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 502 vdrop(vp); 503 VM_OBJECT_WLOCK(object); 504 object->ref_count--; 505 if (object->type == OBJT_DEAD) { 506 VM_OBJECT_WUNLOCK(object); 507 VOP_UNLOCK(vp, 0); 508 } else { 509 if (object->ref_count == 0) 510 VOP_UNSET_TEXT(vp); 511 VM_OBJECT_WUNLOCK(object); 512 vput(vp); 513 } 514 } 515 } 516 517 /* 518 * vm_object_deallocate: 519 * 520 * Release a reference to the specified object, 521 * gained either through a vm_object_allocate 522 * or a vm_object_reference call. When all references 523 * are gone, storage associated with this object 524 * may be relinquished. 525 * 526 * No object may be locked. 527 */ 528 void 529 vm_object_deallocate(vm_object_t object) 530 { 531 vm_object_t temp; 532 struct vnode *vp; 533 534 while (object != NULL) { 535 VM_OBJECT_WLOCK(object); 536 if (object->type == OBJT_VNODE) { 537 vm_object_vndeallocate(object); 538 return; 539 } 540 541 KASSERT(object->ref_count != 0, 542 ("vm_object_deallocate: object deallocated too many times: %d", object->type)); 543 544 /* 545 * If the reference count goes to 0 we start calling 546 * vm_object_terminate() on the object chain. 547 * A ref count of 1 may be a special case depending on the 548 * shadow count being 0 or 1. 549 */ 550 object->ref_count--; 551 if (object->ref_count > 1) { 552 VM_OBJECT_WUNLOCK(object); 553 return; 554 } else if (object->ref_count == 1) { 555 if (object->type == OBJT_SWAP && 556 (object->flags & OBJ_TMPFS) != 0) { 557 vp = object->un_pager.swp.swp_tmpfs; 558 vhold(vp); 559 VM_OBJECT_WUNLOCK(object); 560 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 561 VM_OBJECT_WLOCK(object); 562 if (object->type == OBJT_DEAD || 563 object->ref_count != 1) { 564 VM_OBJECT_WUNLOCK(object); 565 VOP_UNLOCK(vp, 0); 566 vdrop(vp); 567 return; 568 } 569 if ((object->flags & OBJ_TMPFS) != 0) 570 VOP_UNSET_TEXT(vp); 571 VOP_UNLOCK(vp, 0); 572 vdrop(vp); 573 } 574 if (object->shadow_count == 0 && 575 object->handle == NULL && 576 (object->type == OBJT_DEFAULT || 577 (object->type == OBJT_SWAP && 578 (object->flags & OBJ_TMPFS_NODE) == 0))) { 579 vm_object_set_flag(object, OBJ_ONEMAPPING); 580 } else if ((object->shadow_count == 1) && 581 (object->handle == NULL) && 582 (object->type == OBJT_DEFAULT || 583 object->type == OBJT_SWAP)) { 584 vm_object_t robject; 585 586 robject = LIST_FIRST(&object->shadow_head); 587 KASSERT(robject != NULL, 588 ("vm_object_deallocate: ref_count: %d, shadow_count: %d", 589 object->ref_count, 590 object->shadow_count)); 591 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0, 592 ("shadowed tmpfs v_object %p", object)); 593 if (!VM_OBJECT_TRYWLOCK(robject)) { 594 /* 595 * Avoid a potential deadlock. 596 */ 597 object->ref_count++; 598 VM_OBJECT_WUNLOCK(object); 599 /* 600 * More likely than not the thread 601 * holding robject's lock has lower 602 * priority than the current thread. 603 * Let the lower priority thread run. 604 */ 605 pause("vmo_de", 1); 606 continue; 607 } 608 /* 609 * Collapse object into its shadow unless its 610 * shadow is dead. In that case, object will 611 * be deallocated by the thread that is 612 * deallocating its shadow. 613 */ 614 if ((robject->flags & OBJ_DEAD) == 0 && 615 (robject->handle == NULL) && 616 (robject->type == OBJT_DEFAULT || 617 robject->type == OBJT_SWAP)) { 618 619 robject->ref_count++; 620 retry: 621 if (robject->paging_in_progress) { 622 VM_OBJECT_WUNLOCK(object); 623 vm_object_pip_wait(robject, 624 "objde1"); 625 temp = robject->backing_object; 626 if (object == temp) { 627 VM_OBJECT_WLOCK(object); 628 goto retry; 629 } 630 } else if (object->paging_in_progress) { 631 VM_OBJECT_WUNLOCK(robject); 632 object->flags |= OBJ_PIPWNT; 633 VM_OBJECT_SLEEP(object, object, 634 PDROP | PVM, "objde2", 0); 635 VM_OBJECT_WLOCK(robject); 636 temp = robject->backing_object; 637 if (object == temp) { 638 VM_OBJECT_WLOCK(object); 639 goto retry; 640 } 641 } else 642 VM_OBJECT_WUNLOCK(object); 643 644 if (robject->ref_count == 1) { 645 robject->ref_count--; 646 object = robject; 647 goto doterm; 648 } 649 object = robject; 650 vm_object_collapse(object); 651 VM_OBJECT_WUNLOCK(object); 652 continue; 653 } 654 VM_OBJECT_WUNLOCK(robject); 655 } 656 VM_OBJECT_WUNLOCK(object); 657 return; 658 } 659 doterm: 660 umtx_shm_object_terminated(object); 661 temp = object->backing_object; 662 if (temp != NULL) { 663 KASSERT((object->flags & OBJ_TMPFS_NODE) == 0, 664 ("shadowed tmpfs v_object 2 %p", object)); 665 VM_OBJECT_WLOCK(temp); 666 LIST_REMOVE(object, shadow_list); 667 temp->shadow_count--; 668 VM_OBJECT_WUNLOCK(temp); 669 object->backing_object = NULL; 670 } 671 /* 672 * Don't double-terminate, we could be in a termination 673 * recursion due to the terminate having to sync data 674 * to disk. 675 */ 676 if ((object->flags & OBJ_DEAD) == 0) 677 vm_object_terminate(object); 678 else 679 VM_OBJECT_WUNLOCK(object); 680 object = temp; 681 } 682 } 683 684 /* 685 * vm_object_destroy removes the object from the global object list 686 * and frees the space for the object. 687 */ 688 void 689 vm_object_destroy(vm_object_t object) 690 { 691 692 /* 693 * Release the allocation charge. 694 */ 695 if (object->cred != NULL) { 696 swap_release_by_cred(object->charge, object->cred); 697 object->charge = 0; 698 crfree(object->cred); 699 object->cred = NULL; 700 } 701 702 /* 703 * Free the space for the object. 704 */ 705 uma_zfree(obj_zone, object); 706 } 707 708 /* 709 * vm_object_terminate_pages removes any remaining pageable pages 710 * from the object and resets the object to an empty state. 711 */ 712 static void 713 vm_object_terminate_pages(vm_object_t object) 714 { 715 vm_page_t p, p_next; 716 717 VM_OBJECT_ASSERT_WLOCKED(object); 718 719 /* 720 * Free any remaining pageable pages. This also removes them from the 721 * paging queues. However, don't free wired pages, just remove them 722 * from the object. Rather than incrementally removing each page from 723 * the object, the page and object are reset to any empty state. 724 */ 725 TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) { 726 vm_page_assert_unbusied(p); 727 vm_page_lock(p); 728 /* 729 * Optimize the page's removal from the object by resetting 730 * its "object" field. Specifically, if the page is not 731 * wired, then the effect of this assignment is that 732 * vm_page_free()'s call to vm_page_remove() will return 733 * immediately without modifying the page or the object. 734 */ 735 p->object = NULL; 736 if (p->wire_count == 0) { 737 vm_page_free(p); 738 VM_CNT_INC(v_pfree); 739 } 740 vm_page_unlock(p); 741 } 742 /* 743 * If the object contained any pages, then reset it to an empty state. 744 * None of the object's fields, including "resident_page_count", were 745 * modified by the preceding loop. 746 */ 747 if (object->resident_page_count != 0) { 748 vm_radix_reclaim_allnodes(&object->rtree); 749 TAILQ_INIT(&object->memq); 750 object->resident_page_count = 0; 751 if (object->type == OBJT_VNODE) 752 vdrop(object->handle); 753 } 754 } 755 756 /* 757 * vm_object_terminate actually destroys the specified object, freeing 758 * up all previously used resources. 759 * 760 * The object must be locked. 761 * This routine may block. 762 */ 763 void 764 vm_object_terminate(vm_object_t object) 765 { 766 767 VM_OBJECT_ASSERT_WLOCKED(object); 768 769 /* 770 * Make sure no one uses us. 771 */ 772 vm_object_set_flag(object, OBJ_DEAD); 773 774 /* 775 * wait for the pageout daemon to be done with the object 776 */ 777 vm_object_pip_wait(object, "objtrm"); 778 779 KASSERT(!object->paging_in_progress, 780 ("vm_object_terminate: pageout in progress")); 781 782 /* 783 * Clean and free the pages, as appropriate. All references to the 784 * object are gone, so we don't need to lock it. 785 */ 786 if (object->type == OBJT_VNODE) { 787 struct vnode *vp = (struct vnode *)object->handle; 788 789 /* 790 * Clean pages and flush buffers. 791 */ 792 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 793 VM_OBJECT_WUNLOCK(object); 794 795 vinvalbuf(vp, V_SAVE, 0, 0); 796 797 BO_LOCK(&vp->v_bufobj); 798 vp->v_bufobj.bo_flag |= BO_DEAD; 799 BO_UNLOCK(&vp->v_bufobj); 800 801 VM_OBJECT_WLOCK(object); 802 } 803 804 KASSERT(object->ref_count == 0, 805 ("vm_object_terminate: object with references, ref_count=%d", 806 object->ref_count)); 807 808 if ((object->flags & OBJ_PG_DTOR) == 0) 809 vm_object_terminate_pages(object); 810 811 #if VM_NRESERVLEVEL > 0 812 if (__predict_false(!LIST_EMPTY(&object->rvq))) 813 vm_reserv_break_all(object); 814 #endif 815 816 KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT || 817 object->type == OBJT_SWAP, 818 ("%s: non-swap obj %p has cred", __func__, object)); 819 820 /* 821 * Let the pager know object is dead. 822 */ 823 vm_pager_deallocate(object); 824 VM_OBJECT_WUNLOCK(object); 825 826 vm_object_destroy(object); 827 } 828 829 /* 830 * Make the page read-only so that we can clear the object flags. However, if 831 * this is a nosync mmap then the object is likely to stay dirty so do not 832 * mess with the page and do not clear the object flags. Returns TRUE if the 833 * page should be flushed, and FALSE otherwise. 834 */ 835 static boolean_t 836 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags) 837 { 838 839 /* 840 * If we have been asked to skip nosync pages and this is a 841 * nosync page, skip it. Note that the object flags were not 842 * cleared in this case so we do not have to set them. 843 */ 844 if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) { 845 *clearobjflags = FALSE; 846 return (FALSE); 847 } else { 848 pmap_remove_write(p); 849 return (p->dirty != 0); 850 } 851 } 852 853 /* 854 * vm_object_page_clean 855 * 856 * Clean all dirty pages in the specified range of object. Leaves page 857 * on whatever queue it is currently on. If NOSYNC is set then do not 858 * write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC), 859 * leaving the object dirty. 860 * 861 * When stuffing pages asynchronously, allow clustering. XXX we need a 862 * synchronous clustering mode implementation. 863 * 864 * Odd semantics: if start == end, we clean everything. 865 * 866 * The object must be locked. 867 * 868 * Returns FALSE if some page from the range was not written, as 869 * reported by the pager, and TRUE otherwise. 870 */ 871 boolean_t 872 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end, 873 int flags) 874 { 875 vm_page_t np, p; 876 vm_pindex_t pi, tend, tstart; 877 int curgeneration, n, pagerflags; 878 boolean_t clearobjflags, eio, res; 879 880 VM_OBJECT_ASSERT_WLOCKED(object); 881 882 /* 883 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE 884 * objects. The check below prevents the function from 885 * operating on non-vnode objects. 886 */ 887 if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 || 888 object->resident_page_count == 0) 889 return (TRUE); 890 891 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ? 892 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 893 pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0; 894 895 tstart = OFF_TO_IDX(start); 896 tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK); 897 clearobjflags = tstart == 0 && tend >= object->size; 898 res = TRUE; 899 900 rescan: 901 curgeneration = object->generation; 902 903 for (p = vm_page_find_least(object, tstart); p != NULL; p = np) { 904 pi = p->pindex; 905 if (pi >= tend) 906 break; 907 np = TAILQ_NEXT(p, listq); 908 if (p->valid == 0) 909 continue; 910 if (vm_page_sleep_if_busy(p, "vpcwai")) { 911 if (object->generation != curgeneration) { 912 if ((flags & OBJPC_SYNC) != 0) 913 goto rescan; 914 else 915 clearobjflags = FALSE; 916 } 917 np = vm_page_find_least(object, pi); 918 continue; 919 } 920 if (!vm_object_page_remove_write(p, flags, &clearobjflags)) 921 continue; 922 923 n = vm_object_page_collect_flush(object, p, pagerflags, 924 flags, &clearobjflags, &eio); 925 if (eio) { 926 res = FALSE; 927 clearobjflags = FALSE; 928 } 929 if (object->generation != curgeneration) { 930 if ((flags & OBJPC_SYNC) != 0) 931 goto rescan; 932 else 933 clearobjflags = FALSE; 934 } 935 936 /* 937 * If the VOP_PUTPAGES() did a truncated write, so 938 * that even the first page of the run is not fully 939 * written, vm_pageout_flush() returns 0 as the run 940 * length. Since the condition that caused truncated 941 * write may be permanent, e.g. exhausted free space, 942 * accepting n == 0 would cause an infinite loop. 943 * 944 * Forwarding the iterator leaves the unwritten page 945 * behind, but there is not much we can do there if 946 * filesystem refuses to write it. 947 */ 948 if (n == 0) { 949 n = 1; 950 clearobjflags = FALSE; 951 } 952 np = vm_page_find_least(object, pi + n); 953 } 954 #if 0 955 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0); 956 #endif 957 958 if (clearobjflags) 959 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY); 960 return (res); 961 } 962 963 static int 964 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags, 965 int flags, boolean_t *clearobjflags, boolean_t *eio) 966 { 967 vm_page_t ma[vm_pageout_page_count], p_first, tp; 968 int count, i, mreq, runlen; 969 970 vm_page_lock_assert(p, MA_NOTOWNED); 971 VM_OBJECT_ASSERT_WLOCKED(object); 972 973 count = 1; 974 mreq = 0; 975 976 for (tp = p; count < vm_pageout_page_count; count++) { 977 tp = vm_page_next(tp); 978 if (tp == NULL || vm_page_busied(tp)) 979 break; 980 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 981 break; 982 } 983 984 for (p_first = p; count < vm_pageout_page_count; count++) { 985 tp = vm_page_prev(p_first); 986 if (tp == NULL || vm_page_busied(tp)) 987 break; 988 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 989 break; 990 p_first = tp; 991 mreq++; 992 } 993 994 for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++) 995 ma[i] = tp; 996 997 vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio); 998 return (runlen); 999 } 1000 1001 /* 1002 * Note that there is absolutely no sense in writing out 1003 * anonymous objects, so we track down the vnode object 1004 * to write out. 1005 * We invalidate (remove) all pages from the address space 1006 * for semantic correctness. 1007 * 1008 * If the backing object is a device object with unmanaged pages, then any 1009 * mappings to the specified range of pages must be removed before this 1010 * function is called. 1011 * 1012 * Note: certain anonymous maps, such as MAP_NOSYNC maps, 1013 * may start out with a NULL object. 1014 */ 1015 boolean_t 1016 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, 1017 boolean_t syncio, boolean_t invalidate) 1018 { 1019 vm_object_t backing_object; 1020 struct vnode *vp; 1021 struct mount *mp; 1022 int error, flags, fsync_after; 1023 boolean_t res; 1024 1025 if (object == NULL) 1026 return (TRUE); 1027 res = TRUE; 1028 error = 0; 1029 VM_OBJECT_WLOCK(object); 1030 while ((backing_object = object->backing_object) != NULL) { 1031 VM_OBJECT_WLOCK(backing_object); 1032 offset += object->backing_object_offset; 1033 VM_OBJECT_WUNLOCK(object); 1034 object = backing_object; 1035 if (object->size < OFF_TO_IDX(offset + size)) 1036 size = IDX_TO_OFF(object->size) - offset; 1037 } 1038 /* 1039 * Flush pages if writing is allowed, invalidate them 1040 * if invalidation requested. Pages undergoing I/O 1041 * will be ignored by vm_object_page_remove(). 1042 * 1043 * We cannot lock the vnode and then wait for paging 1044 * to complete without deadlocking against vm_fault. 1045 * Instead we simply call vm_object_page_remove() and 1046 * allow it to block internally on a page-by-page 1047 * basis when it encounters pages undergoing async 1048 * I/O. 1049 */ 1050 if (object->type == OBJT_VNODE && 1051 (object->flags & OBJ_MIGHTBEDIRTY) != 0) { 1052 vp = object->handle; 1053 VM_OBJECT_WUNLOCK(object); 1054 (void) vn_start_write(vp, &mp, V_WAIT); 1055 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1056 if (syncio && !invalidate && offset == 0 && 1057 atop(size) == object->size) { 1058 /* 1059 * If syncing the whole mapping of the file, 1060 * it is faster to schedule all the writes in 1061 * async mode, also allowing the clustering, 1062 * and then wait for i/o to complete. 1063 */ 1064 flags = 0; 1065 fsync_after = TRUE; 1066 } else { 1067 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1068 flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0; 1069 fsync_after = FALSE; 1070 } 1071 VM_OBJECT_WLOCK(object); 1072 res = vm_object_page_clean(object, offset, offset + size, 1073 flags); 1074 VM_OBJECT_WUNLOCK(object); 1075 if (fsync_after) 1076 error = VOP_FSYNC(vp, MNT_WAIT, curthread); 1077 VOP_UNLOCK(vp, 0); 1078 vn_finished_write(mp); 1079 if (error != 0) 1080 res = FALSE; 1081 VM_OBJECT_WLOCK(object); 1082 } 1083 if ((object->type == OBJT_VNODE || 1084 object->type == OBJT_DEVICE) && invalidate) { 1085 if (object->type == OBJT_DEVICE) 1086 /* 1087 * The option OBJPR_NOTMAPPED must be passed here 1088 * because vm_object_page_remove() cannot remove 1089 * unmanaged mappings. 1090 */ 1091 flags = OBJPR_NOTMAPPED; 1092 else if (old_msync) 1093 flags = 0; 1094 else 1095 flags = OBJPR_CLEANONLY; 1096 vm_object_page_remove(object, OFF_TO_IDX(offset), 1097 OFF_TO_IDX(offset + size + PAGE_MASK), flags); 1098 } 1099 VM_OBJECT_WUNLOCK(object); 1100 return (res); 1101 } 1102 1103 /* 1104 * Determine whether the given advice can be applied to the object. Advice is 1105 * not applied to unmanaged pages since they never belong to page queues, and 1106 * since MADV_FREE is destructive, it can apply only to anonymous pages that 1107 * have been mapped at most once. 1108 */ 1109 static bool 1110 vm_object_advice_applies(vm_object_t object, int advice) 1111 { 1112 1113 if ((object->flags & OBJ_UNMANAGED) != 0) 1114 return (false); 1115 if (advice != MADV_FREE) 1116 return (true); 1117 return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) && 1118 (object->flags & OBJ_ONEMAPPING) != 0); 1119 } 1120 1121 static void 1122 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex, 1123 vm_size_t size) 1124 { 1125 1126 if (advice == MADV_FREE && object->type == OBJT_SWAP) 1127 swap_pager_freespace(object, pindex, size); 1128 } 1129 1130 /* 1131 * vm_object_madvise: 1132 * 1133 * Implements the madvise function at the object/page level. 1134 * 1135 * MADV_WILLNEED (any object) 1136 * 1137 * Activate the specified pages if they are resident. 1138 * 1139 * MADV_DONTNEED (any object) 1140 * 1141 * Deactivate the specified pages if they are resident. 1142 * 1143 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, 1144 * OBJ_ONEMAPPING only) 1145 * 1146 * Deactivate and clean the specified pages if they are 1147 * resident. This permits the process to reuse the pages 1148 * without faulting or the kernel to reclaim the pages 1149 * without I/O. 1150 */ 1151 void 1152 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end, 1153 int advice) 1154 { 1155 vm_pindex_t tpindex; 1156 vm_object_t backing_object, tobject; 1157 vm_page_t m, tm; 1158 1159 if (object == NULL) 1160 return; 1161 1162 relookup: 1163 VM_OBJECT_WLOCK(object); 1164 if (!vm_object_advice_applies(object, advice)) { 1165 VM_OBJECT_WUNLOCK(object); 1166 return; 1167 } 1168 for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) { 1169 tobject = object; 1170 1171 /* 1172 * If the next page isn't resident in the top-level object, we 1173 * need to search the shadow chain. When applying MADV_FREE, we 1174 * take care to release any swap space used to store 1175 * non-resident pages. 1176 */ 1177 if (m == NULL || pindex < m->pindex) { 1178 /* 1179 * Optimize a common case: if the top-level object has 1180 * no backing object, we can skip over the non-resident 1181 * range in constant time. 1182 */ 1183 if (object->backing_object == NULL) { 1184 tpindex = (m != NULL && m->pindex < end) ? 1185 m->pindex : end; 1186 vm_object_madvise_freespace(object, advice, 1187 pindex, tpindex - pindex); 1188 if ((pindex = tpindex) == end) 1189 break; 1190 goto next_page; 1191 } 1192 1193 tpindex = pindex; 1194 do { 1195 vm_object_madvise_freespace(tobject, advice, 1196 tpindex, 1); 1197 /* 1198 * Prepare to search the next object in the 1199 * chain. 1200 */ 1201 backing_object = tobject->backing_object; 1202 if (backing_object == NULL) 1203 goto next_pindex; 1204 VM_OBJECT_WLOCK(backing_object); 1205 tpindex += 1206 OFF_TO_IDX(tobject->backing_object_offset); 1207 if (tobject != object) 1208 VM_OBJECT_WUNLOCK(tobject); 1209 tobject = backing_object; 1210 if (!vm_object_advice_applies(tobject, advice)) 1211 goto next_pindex; 1212 } while ((tm = vm_page_lookup(tobject, tpindex)) == 1213 NULL); 1214 } else { 1215 next_page: 1216 tm = m; 1217 m = TAILQ_NEXT(m, listq); 1218 } 1219 1220 /* 1221 * If the page is not in a normal state, skip it. 1222 */ 1223 if (tm->valid != VM_PAGE_BITS_ALL) 1224 goto next_pindex; 1225 vm_page_lock(tm); 1226 if (tm->hold_count != 0 || tm->wire_count != 0) { 1227 vm_page_unlock(tm); 1228 goto next_pindex; 1229 } 1230 KASSERT((tm->flags & PG_FICTITIOUS) == 0, 1231 ("vm_object_madvise: page %p is fictitious", tm)); 1232 KASSERT((tm->oflags & VPO_UNMANAGED) == 0, 1233 ("vm_object_madvise: page %p is not managed", tm)); 1234 if (vm_page_busied(tm)) { 1235 if (object != tobject) 1236 VM_OBJECT_WUNLOCK(tobject); 1237 VM_OBJECT_WUNLOCK(object); 1238 if (advice == MADV_WILLNEED) { 1239 /* 1240 * Reference the page before unlocking and 1241 * sleeping so that the page daemon is less 1242 * likely to reclaim it. 1243 */ 1244 vm_page_aflag_set(tm, PGA_REFERENCED); 1245 } 1246 vm_page_busy_sleep(tm, "madvpo", false); 1247 goto relookup; 1248 } 1249 vm_page_advise(tm, advice); 1250 vm_page_unlock(tm); 1251 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1); 1252 next_pindex: 1253 if (tobject != object) 1254 VM_OBJECT_WUNLOCK(tobject); 1255 } 1256 VM_OBJECT_WUNLOCK(object); 1257 } 1258 1259 /* 1260 * vm_object_shadow: 1261 * 1262 * Create a new object which is backed by the 1263 * specified existing object range. The source 1264 * object reference is deallocated. 1265 * 1266 * The new object and offset into that object 1267 * are returned in the source parameters. 1268 */ 1269 void 1270 vm_object_shadow( 1271 vm_object_t *object, /* IN/OUT */ 1272 vm_ooffset_t *offset, /* IN/OUT */ 1273 vm_size_t length) 1274 { 1275 vm_object_t source; 1276 vm_object_t result; 1277 1278 source = *object; 1279 1280 /* 1281 * Don't create the new object if the old object isn't shared. 1282 */ 1283 if (source != NULL) { 1284 VM_OBJECT_WLOCK(source); 1285 if (source->ref_count == 1 && 1286 source->handle == NULL && 1287 (source->type == OBJT_DEFAULT || 1288 source->type == OBJT_SWAP)) { 1289 VM_OBJECT_WUNLOCK(source); 1290 return; 1291 } 1292 VM_OBJECT_WUNLOCK(source); 1293 } 1294 1295 /* 1296 * Allocate a new object with the given length. 1297 */ 1298 result = vm_object_allocate(OBJT_DEFAULT, atop(length)); 1299 1300 /* 1301 * The new object shadows the source object, adding a reference to it. 1302 * Our caller changes his reference to point to the new object, 1303 * removing a reference to the source object. Net result: no change 1304 * of reference count. 1305 * 1306 * Try to optimize the result object's page color when shadowing 1307 * in order to maintain page coloring consistency in the combined 1308 * shadowed object. 1309 */ 1310 result->backing_object = source; 1311 /* 1312 * Store the offset into the source object, and fix up the offset into 1313 * the new object. 1314 */ 1315 result->backing_object_offset = *offset; 1316 if (source != NULL) { 1317 VM_OBJECT_WLOCK(source); 1318 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list); 1319 source->shadow_count++; 1320 #if VM_NRESERVLEVEL > 0 1321 result->flags |= source->flags & OBJ_COLORED; 1322 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & 1323 ((1 << (VM_NFREEORDER - 1)) - 1); 1324 #endif 1325 VM_OBJECT_WUNLOCK(source); 1326 } 1327 1328 1329 /* 1330 * Return the new things 1331 */ 1332 *offset = 0; 1333 *object = result; 1334 } 1335 1336 /* 1337 * vm_object_split: 1338 * 1339 * Split the pages in a map entry into a new object. This affords 1340 * easier removal of unused pages, and keeps object inheritance from 1341 * being a negative impact on memory usage. 1342 */ 1343 void 1344 vm_object_split(vm_map_entry_t entry) 1345 { 1346 vm_page_t m, m_next; 1347 vm_object_t orig_object, new_object, source; 1348 vm_pindex_t idx, offidxstart; 1349 vm_size_t size; 1350 1351 orig_object = entry->object.vm_object; 1352 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 1353 return; 1354 if (orig_object->ref_count <= 1) 1355 return; 1356 VM_OBJECT_WUNLOCK(orig_object); 1357 1358 offidxstart = OFF_TO_IDX(entry->offset); 1359 size = atop(entry->end - entry->start); 1360 1361 /* 1362 * If swap_pager_copy() is later called, it will convert new_object 1363 * into a swap object. 1364 */ 1365 new_object = vm_object_allocate(OBJT_DEFAULT, size); 1366 1367 /* 1368 * At this point, the new object is still private, so the order in 1369 * which the original and new objects are locked does not matter. 1370 */ 1371 VM_OBJECT_WLOCK(new_object); 1372 VM_OBJECT_WLOCK(orig_object); 1373 source = orig_object->backing_object; 1374 if (source != NULL) { 1375 VM_OBJECT_WLOCK(source); 1376 if ((source->flags & OBJ_DEAD) != 0) { 1377 VM_OBJECT_WUNLOCK(source); 1378 VM_OBJECT_WUNLOCK(orig_object); 1379 VM_OBJECT_WUNLOCK(new_object); 1380 vm_object_deallocate(new_object); 1381 VM_OBJECT_WLOCK(orig_object); 1382 return; 1383 } 1384 LIST_INSERT_HEAD(&source->shadow_head, 1385 new_object, shadow_list); 1386 source->shadow_count++; 1387 vm_object_reference_locked(source); /* for new_object */ 1388 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1389 VM_OBJECT_WUNLOCK(source); 1390 new_object->backing_object_offset = 1391 orig_object->backing_object_offset + entry->offset; 1392 new_object->backing_object = source; 1393 } 1394 if (orig_object->cred != NULL) { 1395 new_object->cred = orig_object->cred; 1396 crhold(orig_object->cred); 1397 new_object->charge = ptoa(size); 1398 KASSERT(orig_object->charge >= ptoa(size), 1399 ("orig_object->charge < 0")); 1400 orig_object->charge -= ptoa(size); 1401 } 1402 retry: 1403 m = vm_page_find_least(orig_object, offidxstart); 1404 for (; m != NULL && (idx = m->pindex - offidxstart) < size; 1405 m = m_next) { 1406 m_next = TAILQ_NEXT(m, listq); 1407 1408 /* 1409 * We must wait for pending I/O to complete before we can 1410 * rename the page. 1411 * 1412 * We do not have to VM_PROT_NONE the page as mappings should 1413 * not be changed by this operation. 1414 */ 1415 if (vm_page_busied(m)) { 1416 VM_OBJECT_WUNLOCK(new_object); 1417 vm_page_lock(m); 1418 VM_OBJECT_WUNLOCK(orig_object); 1419 vm_page_busy_sleep(m, "spltwt", false); 1420 VM_OBJECT_WLOCK(orig_object); 1421 VM_OBJECT_WLOCK(new_object); 1422 goto retry; 1423 } 1424 1425 /* vm_page_rename() will dirty the page. */ 1426 if (vm_page_rename(m, new_object, idx)) { 1427 VM_OBJECT_WUNLOCK(new_object); 1428 VM_OBJECT_WUNLOCK(orig_object); 1429 VM_WAIT; 1430 VM_OBJECT_WLOCK(orig_object); 1431 VM_OBJECT_WLOCK(new_object); 1432 goto retry; 1433 } 1434 #if VM_NRESERVLEVEL > 0 1435 /* 1436 * If some of the reservation's allocated pages remain with 1437 * the original object, then transferring the reservation to 1438 * the new object is neither particularly beneficial nor 1439 * particularly harmful as compared to leaving the reservation 1440 * with the original object. If, however, all of the 1441 * reservation's allocated pages are transferred to the new 1442 * object, then transferring the reservation is typically 1443 * beneficial. Determining which of these two cases applies 1444 * would be more costly than unconditionally renaming the 1445 * reservation. 1446 */ 1447 vm_reserv_rename(m, new_object, orig_object, offidxstart); 1448 #endif 1449 if (orig_object->type == OBJT_SWAP) 1450 vm_page_xbusy(m); 1451 } 1452 if (orig_object->type == OBJT_SWAP) { 1453 /* 1454 * swap_pager_copy() can sleep, in which case the orig_object's 1455 * and new_object's locks are released and reacquired. 1456 */ 1457 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1458 TAILQ_FOREACH(m, &new_object->memq, listq) 1459 vm_page_xunbusy(m); 1460 } 1461 VM_OBJECT_WUNLOCK(orig_object); 1462 VM_OBJECT_WUNLOCK(new_object); 1463 entry->object.vm_object = new_object; 1464 entry->offset = 0LL; 1465 vm_object_deallocate(orig_object); 1466 VM_OBJECT_WLOCK(new_object); 1467 } 1468 1469 #define OBSC_COLLAPSE_NOWAIT 0x0002 1470 #define OBSC_COLLAPSE_WAIT 0x0004 1471 1472 static vm_page_t 1473 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next, 1474 int op) 1475 { 1476 vm_object_t backing_object; 1477 1478 VM_OBJECT_ASSERT_WLOCKED(object); 1479 backing_object = object->backing_object; 1480 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1481 1482 KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p)); 1483 KASSERT(p == NULL || p->object == object || p->object == backing_object, 1484 ("invalid ownership %p %p %p", p, object, backing_object)); 1485 if ((op & OBSC_COLLAPSE_NOWAIT) != 0) 1486 return (next); 1487 if (p != NULL) 1488 vm_page_lock(p); 1489 VM_OBJECT_WUNLOCK(object); 1490 VM_OBJECT_WUNLOCK(backing_object); 1491 if (p == NULL) 1492 VM_WAIT; 1493 else 1494 vm_page_busy_sleep(p, "vmocol", false); 1495 VM_OBJECT_WLOCK(object); 1496 VM_OBJECT_WLOCK(backing_object); 1497 return (TAILQ_FIRST(&backing_object->memq)); 1498 } 1499 1500 static bool 1501 vm_object_scan_all_shadowed(vm_object_t object) 1502 { 1503 vm_object_t backing_object; 1504 vm_page_t p, pp; 1505 vm_pindex_t backing_offset_index, new_pindex, pi, ps; 1506 1507 VM_OBJECT_ASSERT_WLOCKED(object); 1508 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1509 1510 backing_object = object->backing_object; 1511 1512 if (backing_object->type != OBJT_DEFAULT && 1513 backing_object->type != OBJT_SWAP) 1514 return (false); 1515 1516 pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1517 p = vm_page_find_least(backing_object, pi); 1518 ps = swap_pager_find_least(backing_object, pi); 1519 1520 /* 1521 * Only check pages inside the parent object's range and 1522 * inside the parent object's mapping of the backing object. 1523 */ 1524 for (;; pi++) { 1525 if (p != NULL && p->pindex < pi) 1526 p = TAILQ_NEXT(p, listq); 1527 if (ps < pi) 1528 ps = swap_pager_find_least(backing_object, pi); 1529 if (p == NULL && ps >= backing_object->size) 1530 break; 1531 else if (p == NULL) 1532 pi = ps; 1533 else 1534 pi = MIN(p->pindex, ps); 1535 1536 new_pindex = pi - backing_offset_index; 1537 if (new_pindex >= object->size) 1538 break; 1539 1540 /* 1541 * See if the parent has the page or if the parent's object 1542 * pager has the page. If the parent has the page but the page 1543 * is not valid, the parent's object pager must have the page. 1544 * 1545 * If this fails, the parent does not completely shadow the 1546 * object and we might as well give up now. 1547 */ 1548 pp = vm_page_lookup(object, new_pindex); 1549 if ((pp == NULL || pp->valid == 0) && 1550 !vm_pager_has_page(object, new_pindex, NULL, NULL)) 1551 return (false); 1552 } 1553 return (true); 1554 } 1555 1556 static bool 1557 vm_object_collapse_scan(vm_object_t object, int op) 1558 { 1559 vm_object_t backing_object; 1560 vm_page_t next, p, pp; 1561 vm_pindex_t backing_offset_index, new_pindex; 1562 1563 VM_OBJECT_ASSERT_WLOCKED(object); 1564 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1565 1566 backing_object = object->backing_object; 1567 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1568 1569 /* 1570 * Initial conditions 1571 */ 1572 if ((op & OBSC_COLLAPSE_WAIT) != 0) 1573 vm_object_set_flag(backing_object, OBJ_DEAD); 1574 1575 /* 1576 * Our scan 1577 */ 1578 for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) { 1579 next = TAILQ_NEXT(p, listq); 1580 new_pindex = p->pindex - backing_offset_index; 1581 1582 /* 1583 * Check for busy page 1584 */ 1585 if (vm_page_busied(p)) { 1586 next = vm_object_collapse_scan_wait(object, p, next, op); 1587 continue; 1588 } 1589 1590 KASSERT(p->object == backing_object, 1591 ("vm_object_collapse_scan: object mismatch")); 1592 1593 if (p->pindex < backing_offset_index || 1594 new_pindex >= object->size) { 1595 if (backing_object->type == OBJT_SWAP) 1596 swap_pager_freespace(backing_object, p->pindex, 1597 1); 1598 1599 /* 1600 * Page is out of the parent object's range, we can 1601 * simply destroy it. 1602 */ 1603 vm_page_lock(p); 1604 KASSERT(!pmap_page_is_mapped(p), 1605 ("freeing mapped page %p", p)); 1606 if (p->wire_count == 0) 1607 vm_page_free(p); 1608 else 1609 vm_page_remove(p); 1610 vm_page_unlock(p); 1611 continue; 1612 } 1613 1614 pp = vm_page_lookup(object, new_pindex); 1615 if (pp != NULL && vm_page_busied(pp)) { 1616 /* 1617 * The page in the parent is busy and possibly not 1618 * (yet) valid. Until its state is finalized by the 1619 * busy bit owner, we can't tell whether it shadows the 1620 * original page. Therefore, we must either skip it 1621 * and the original (backing_object) page or wait for 1622 * its state to be finalized. 1623 * 1624 * This is due to a race with vm_fault() where we must 1625 * unbusy the original (backing_obj) page before we can 1626 * (re)lock the parent. Hence we can get here. 1627 */ 1628 next = vm_object_collapse_scan_wait(object, pp, next, 1629 op); 1630 continue; 1631 } 1632 1633 KASSERT(pp == NULL || pp->valid != 0, 1634 ("unbusy invalid page %p", pp)); 1635 1636 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL, 1637 NULL)) { 1638 /* 1639 * The page already exists in the parent OR swap exists 1640 * for this location in the parent. Leave the parent's 1641 * page alone. Destroy the original page from the 1642 * backing object. 1643 */ 1644 if (backing_object->type == OBJT_SWAP) 1645 swap_pager_freespace(backing_object, p->pindex, 1646 1); 1647 vm_page_lock(p); 1648 KASSERT(!pmap_page_is_mapped(p), 1649 ("freeing mapped page %p", p)); 1650 if (p->wire_count == 0) 1651 vm_page_free(p); 1652 else 1653 vm_page_remove(p); 1654 vm_page_unlock(p); 1655 continue; 1656 } 1657 1658 /* 1659 * Page does not exist in parent, rename the page from the 1660 * backing object to the main object. 1661 * 1662 * If the page was mapped to a process, it can remain mapped 1663 * through the rename. vm_page_rename() will dirty the page. 1664 */ 1665 if (vm_page_rename(p, object, new_pindex)) { 1666 next = vm_object_collapse_scan_wait(object, NULL, next, 1667 op); 1668 continue; 1669 } 1670 1671 /* Use the old pindex to free the right page. */ 1672 if (backing_object->type == OBJT_SWAP) 1673 swap_pager_freespace(backing_object, 1674 new_pindex + backing_offset_index, 1); 1675 1676 #if VM_NRESERVLEVEL > 0 1677 /* 1678 * Rename the reservation. 1679 */ 1680 vm_reserv_rename(p, object, backing_object, 1681 backing_offset_index); 1682 #endif 1683 } 1684 return (true); 1685 } 1686 1687 1688 /* 1689 * this version of collapse allows the operation to occur earlier and 1690 * when paging_in_progress is true for an object... This is not a complete 1691 * operation, but should plug 99.9% of the rest of the leaks. 1692 */ 1693 static void 1694 vm_object_qcollapse(vm_object_t object) 1695 { 1696 vm_object_t backing_object = object->backing_object; 1697 1698 VM_OBJECT_ASSERT_WLOCKED(object); 1699 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1700 1701 if (backing_object->ref_count != 1) 1702 return; 1703 1704 vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT); 1705 } 1706 1707 /* 1708 * vm_object_collapse: 1709 * 1710 * Collapse an object with the object backing it. 1711 * Pages in the backing object are moved into the 1712 * parent, and the backing object is deallocated. 1713 */ 1714 void 1715 vm_object_collapse(vm_object_t object) 1716 { 1717 vm_object_t backing_object, new_backing_object; 1718 1719 VM_OBJECT_ASSERT_WLOCKED(object); 1720 1721 while (TRUE) { 1722 /* 1723 * Verify that the conditions are right for collapse: 1724 * 1725 * The object exists and the backing object exists. 1726 */ 1727 if ((backing_object = object->backing_object) == NULL) 1728 break; 1729 1730 /* 1731 * we check the backing object first, because it is most likely 1732 * not collapsable. 1733 */ 1734 VM_OBJECT_WLOCK(backing_object); 1735 if (backing_object->handle != NULL || 1736 (backing_object->type != OBJT_DEFAULT && 1737 backing_object->type != OBJT_SWAP) || 1738 (backing_object->flags & OBJ_DEAD) || 1739 object->handle != NULL || 1740 (object->type != OBJT_DEFAULT && 1741 object->type != OBJT_SWAP) || 1742 (object->flags & OBJ_DEAD)) { 1743 VM_OBJECT_WUNLOCK(backing_object); 1744 break; 1745 } 1746 1747 if (object->paging_in_progress != 0 || 1748 backing_object->paging_in_progress != 0) { 1749 vm_object_qcollapse(object); 1750 VM_OBJECT_WUNLOCK(backing_object); 1751 break; 1752 } 1753 1754 /* 1755 * We know that we can either collapse the backing object (if 1756 * the parent is the only reference to it) or (perhaps) have 1757 * the parent bypass the object if the parent happens to shadow 1758 * all the resident pages in the entire backing object. 1759 * 1760 * This is ignoring pager-backed pages such as swap pages. 1761 * vm_object_collapse_scan fails the shadowing test in this 1762 * case. 1763 */ 1764 if (backing_object->ref_count == 1) { 1765 vm_object_pip_add(object, 1); 1766 vm_object_pip_add(backing_object, 1); 1767 1768 /* 1769 * If there is exactly one reference to the backing 1770 * object, we can collapse it into the parent. 1771 */ 1772 vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT); 1773 1774 #if VM_NRESERVLEVEL > 0 1775 /* 1776 * Break any reservations from backing_object. 1777 */ 1778 if (__predict_false(!LIST_EMPTY(&backing_object->rvq))) 1779 vm_reserv_break_all(backing_object); 1780 #endif 1781 1782 /* 1783 * Move the pager from backing_object to object. 1784 */ 1785 if (backing_object->type == OBJT_SWAP) { 1786 /* 1787 * swap_pager_copy() can sleep, in which case 1788 * the backing_object's and object's locks are 1789 * released and reacquired. 1790 * Since swap_pager_copy() is being asked to 1791 * destroy the source, it will change the 1792 * backing_object's type to OBJT_DEFAULT. 1793 */ 1794 swap_pager_copy( 1795 backing_object, 1796 object, 1797 OFF_TO_IDX(object->backing_object_offset), TRUE); 1798 } 1799 /* 1800 * Object now shadows whatever backing_object did. 1801 * Note that the reference to 1802 * backing_object->backing_object moves from within 1803 * backing_object to within object. 1804 */ 1805 LIST_REMOVE(object, shadow_list); 1806 backing_object->shadow_count--; 1807 if (backing_object->backing_object) { 1808 VM_OBJECT_WLOCK(backing_object->backing_object); 1809 LIST_REMOVE(backing_object, shadow_list); 1810 LIST_INSERT_HEAD( 1811 &backing_object->backing_object->shadow_head, 1812 object, shadow_list); 1813 /* 1814 * The shadow_count has not changed. 1815 */ 1816 VM_OBJECT_WUNLOCK(backing_object->backing_object); 1817 } 1818 object->backing_object = backing_object->backing_object; 1819 object->backing_object_offset += 1820 backing_object->backing_object_offset; 1821 1822 /* 1823 * Discard backing_object. 1824 * 1825 * Since the backing object has no pages, no pager left, 1826 * and no object references within it, all that is 1827 * necessary is to dispose of it. 1828 */ 1829 KASSERT(backing_object->ref_count == 1, ( 1830 "backing_object %p was somehow re-referenced during collapse!", 1831 backing_object)); 1832 vm_object_pip_wakeup(backing_object); 1833 backing_object->type = OBJT_DEAD; 1834 backing_object->ref_count = 0; 1835 VM_OBJECT_WUNLOCK(backing_object); 1836 vm_object_destroy(backing_object); 1837 1838 vm_object_pip_wakeup(object); 1839 object_collapses++; 1840 } else { 1841 /* 1842 * If we do not entirely shadow the backing object, 1843 * there is nothing we can do so we give up. 1844 */ 1845 if (object->resident_page_count != object->size && 1846 !vm_object_scan_all_shadowed(object)) { 1847 VM_OBJECT_WUNLOCK(backing_object); 1848 break; 1849 } 1850 1851 /* 1852 * Make the parent shadow the next object in the 1853 * chain. Deallocating backing_object will not remove 1854 * it, since its reference count is at least 2. 1855 */ 1856 LIST_REMOVE(object, shadow_list); 1857 backing_object->shadow_count--; 1858 1859 new_backing_object = backing_object->backing_object; 1860 if ((object->backing_object = new_backing_object) != NULL) { 1861 VM_OBJECT_WLOCK(new_backing_object); 1862 LIST_INSERT_HEAD( 1863 &new_backing_object->shadow_head, 1864 object, 1865 shadow_list 1866 ); 1867 new_backing_object->shadow_count++; 1868 vm_object_reference_locked(new_backing_object); 1869 VM_OBJECT_WUNLOCK(new_backing_object); 1870 object->backing_object_offset += 1871 backing_object->backing_object_offset; 1872 } 1873 1874 /* 1875 * Drop the reference count on backing_object. Since 1876 * its ref_count was at least 2, it will not vanish. 1877 */ 1878 backing_object->ref_count--; 1879 VM_OBJECT_WUNLOCK(backing_object); 1880 object_bypasses++; 1881 } 1882 1883 /* 1884 * Try again with this object's new backing object. 1885 */ 1886 } 1887 } 1888 1889 /* 1890 * vm_object_page_remove: 1891 * 1892 * For the given object, either frees or invalidates each of the 1893 * specified pages. In general, a page is freed. However, if a page is 1894 * wired for any reason other than the existence of a managed, wired 1895 * mapping, then it may be invalidated but not removed from the object. 1896 * Pages are specified by the given range ["start", "end") and the option 1897 * OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range 1898 * extends from "start" to the end of the object. If the option 1899 * OBJPR_CLEANONLY is specified, then only the non-dirty pages within the 1900 * specified range are affected. If the option OBJPR_NOTMAPPED is 1901 * specified, then the pages within the specified range must have no 1902 * mappings. Otherwise, if this option is not specified, any mappings to 1903 * the specified pages are removed before the pages are freed or 1904 * invalidated. 1905 * 1906 * In general, this operation should only be performed on objects that 1907 * contain managed pages. There are, however, two exceptions. First, it 1908 * is performed on the kernel and kmem objects by vm_map_entry_delete(). 1909 * Second, it is used by msync(..., MS_INVALIDATE) to invalidate device- 1910 * backed pages. In both of these cases, the option OBJPR_CLEANONLY must 1911 * not be specified and the option OBJPR_NOTMAPPED must be specified. 1912 * 1913 * The object must be locked. 1914 */ 1915 void 1916 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 1917 int options) 1918 { 1919 vm_page_t p, next; 1920 struct mtx *mtx; 1921 1922 VM_OBJECT_ASSERT_WLOCKED(object); 1923 KASSERT((object->flags & OBJ_UNMANAGED) == 0 || 1924 (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED, 1925 ("vm_object_page_remove: illegal options for object %p", object)); 1926 if (object->resident_page_count == 0) 1927 return; 1928 vm_object_pip_add(object, 1); 1929 again: 1930 p = vm_page_find_least(object, start); 1931 mtx = NULL; 1932 1933 /* 1934 * Here, the variable "p" is either (1) the page with the least pindex 1935 * greater than or equal to the parameter "start" or (2) NULL. 1936 */ 1937 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1938 next = TAILQ_NEXT(p, listq); 1939 1940 /* 1941 * If the page is wired for any reason besides the existence 1942 * of managed, wired mappings, then it cannot be freed. For 1943 * example, fictitious pages, which represent device memory, 1944 * are inherently wired and cannot be freed. They can, 1945 * however, be invalidated if the option OBJPR_CLEANONLY is 1946 * not specified. 1947 */ 1948 vm_page_change_lock(p, &mtx); 1949 if (vm_page_xbusied(p)) { 1950 VM_OBJECT_WUNLOCK(object); 1951 vm_page_busy_sleep(p, "vmopax", true); 1952 VM_OBJECT_WLOCK(object); 1953 goto again; 1954 } 1955 if (p->wire_count != 0) { 1956 if ((options & OBJPR_NOTMAPPED) == 0) 1957 pmap_remove_all(p); 1958 if ((options & OBJPR_CLEANONLY) == 0) { 1959 p->valid = 0; 1960 vm_page_undirty(p); 1961 } 1962 continue; 1963 } 1964 if (vm_page_busied(p)) { 1965 VM_OBJECT_WUNLOCK(object); 1966 vm_page_busy_sleep(p, "vmopar", false); 1967 VM_OBJECT_WLOCK(object); 1968 goto again; 1969 } 1970 KASSERT((p->flags & PG_FICTITIOUS) == 0, 1971 ("vm_object_page_remove: page %p is fictitious", p)); 1972 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) { 1973 if ((options & OBJPR_NOTMAPPED) == 0) 1974 pmap_remove_write(p); 1975 if (p->dirty) 1976 continue; 1977 } 1978 if ((options & OBJPR_NOTMAPPED) == 0) 1979 pmap_remove_all(p); 1980 vm_page_free(p); 1981 } 1982 if (mtx != NULL) 1983 mtx_unlock(mtx); 1984 vm_object_pip_wakeup(object); 1985 } 1986 1987 /* 1988 * vm_object_page_noreuse: 1989 * 1990 * For the given object, attempt to move the specified pages to 1991 * the head of the inactive queue. This bypasses regular LRU 1992 * operation and allows the pages to be reused quickly under memory 1993 * pressure. If a page is wired for any reason, then it will not 1994 * be queued. Pages are specified by the range ["start", "end"). 1995 * As a special case, if "end" is zero, then the range extends from 1996 * "start" to the end of the object. 1997 * 1998 * This operation should only be performed on objects that 1999 * contain non-fictitious, managed pages. 2000 * 2001 * The object must be locked. 2002 */ 2003 void 2004 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 2005 { 2006 struct mtx *mtx; 2007 vm_page_t p, next; 2008 2009 VM_OBJECT_ASSERT_LOCKED(object); 2010 KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0, 2011 ("vm_object_page_noreuse: illegal object %p", object)); 2012 if (object->resident_page_count == 0) 2013 return; 2014 p = vm_page_find_least(object, start); 2015 2016 /* 2017 * Here, the variable "p" is either (1) the page with the least pindex 2018 * greater than or equal to the parameter "start" or (2) NULL. 2019 */ 2020 mtx = NULL; 2021 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 2022 next = TAILQ_NEXT(p, listq); 2023 vm_page_change_lock(p, &mtx); 2024 vm_page_deactivate_noreuse(p); 2025 } 2026 if (mtx != NULL) 2027 mtx_unlock(mtx); 2028 } 2029 2030 /* 2031 * Populate the specified range of the object with valid pages. Returns 2032 * TRUE if the range is successfully populated and FALSE otherwise. 2033 * 2034 * Note: This function should be optimized to pass a larger array of 2035 * pages to vm_pager_get_pages() before it is applied to a non- 2036 * OBJT_DEVICE object. 2037 * 2038 * The object must be locked. 2039 */ 2040 boolean_t 2041 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 2042 { 2043 vm_page_t m; 2044 vm_pindex_t pindex; 2045 int rv; 2046 2047 VM_OBJECT_ASSERT_WLOCKED(object); 2048 for (pindex = start; pindex < end; pindex++) { 2049 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL); 2050 if (m->valid != VM_PAGE_BITS_ALL) { 2051 rv = vm_pager_get_pages(object, &m, 1, NULL, NULL); 2052 if (rv != VM_PAGER_OK) { 2053 vm_page_lock(m); 2054 vm_page_free(m); 2055 vm_page_unlock(m); 2056 break; 2057 } 2058 } 2059 /* 2060 * Keep "m" busy because a subsequent iteration may unlock 2061 * the object. 2062 */ 2063 } 2064 if (pindex > start) { 2065 m = vm_page_lookup(object, start); 2066 while (m != NULL && m->pindex < pindex) { 2067 vm_page_xunbusy(m); 2068 m = TAILQ_NEXT(m, listq); 2069 } 2070 } 2071 return (pindex == end); 2072 } 2073 2074 /* 2075 * Routine: vm_object_coalesce 2076 * Function: Coalesces two objects backing up adjoining 2077 * regions of memory into a single object. 2078 * 2079 * returns TRUE if objects were combined. 2080 * 2081 * NOTE: Only works at the moment if the second object is NULL - 2082 * if it's not, which object do we lock first? 2083 * 2084 * Parameters: 2085 * prev_object First object to coalesce 2086 * prev_offset Offset into prev_object 2087 * prev_size Size of reference to prev_object 2088 * next_size Size of reference to the second object 2089 * reserved Indicator that extension region has 2090 * swap accounted for 2091 * 2092 * Conditions: 2093 * The object must *not* be locked. 2094 */ 2095 boolean_t 2096 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, 2097 vm_size_t prev_size, vm_size_t next_size, boolean_t reserved) 2098 { 2099 vm_pindex_t next_pindex; 2100 2101 if (prev_object == NULL) 2102 return (TRUE); 2103 VM_OBJECT_WLOCK(prev_object); 2104 if ((prev_object->type != OBJT_DEFAULT && 2105 prev_object->type != OBJT_SWAP) || 2106 (prev_object->flags & OBJ_TMPFS_NODE) != 0) { 2107 VM_OBJECT_WUNLOCK(prev_object); 2108 return (FALSE); 2109 } 2110 2111 /* 2112 * Try to collapse the object first 2113 */ 2114 vm_object_collapse(prev_object); 2115 2116 /* 2117 * Can't coalesce if: . more than one reference . paged out . shadows 2118 * another object . has a copy elsewhere (any of which mean that the 2119 * pages not mapped to prev_entry may be in use anyway) 2120 */ 2121 if (prev_object->backing_object != NULL) { 2122 VM_OBJECT_WUNLOCK(prev_object); 2123 return (FALSE); 2124 } 2125 2126 prev_size >>= PAGE_SHIFT; 2127 next_size >>= PAGE_SHIFT; 2128 next_pindex = OFF_TO_IDX(prev_offset) + prev_size; 2129 2130 if ((prev_object->ref_count > 1) && 2131 (prev_object->size != next_pindex)) { 2132 VM_OBJECT_WUNLOCK(prev_object); 2133 return (FALSE); 2134 } 2135 2136 /* 2137 * Account for the charge. 2138 */ 2139 if (prev_object->cred != NULL) { 2140 2141 /* 2142 * If prev_object was charged, then this mapping, 2143 * although not charged now, may become writable 2144 * later. Non-NULL cred in the object would prevent 2145 * swap reservation during enabling of the write 2146 * access, so reserve swap now. Failed reservation 2147 * cause allocation of the separate object for the map 2148 * entry, and swap reservation for this entry is 2149 * managed in appropriate time. 2150 */ 2151 if (!reserved && !swap_reserve_by_cred(ptoa(next_size), 2152 prev_object->cred)) { 2153 VM_OBJECT_WUNLOCK(prev_object); 2154 return (FALSE); 2155 } 2156 prev_object->charge += ptoa(next_size); 2157 } 2158 2159 /* 2160 * Remove any pages that may still be in the object from a previous 2161 * deallocation. 2162 */ 2163 if (next_pindex < prev_object->size) { 2164 vm_object_page_remove(prev_object, next_pindex, next_pindex + 2165 next_size, 0); 2166 if (prev_object->type == OBJT_SWAP) 2167 swap_pager_freespace(prev_object, 2168 next_pindex, next_size); 2169 #if 0 2170 if (prev_object->cred != NULL) { 2171 KASSERT(prev_object->charge >= 2172 ptoa(prev_object->size - next_pindex), 2173 ("object %p overcharged 1 %jx %jx", prev_object, 2174 (uintmax_t)next_pindex, (uintmax_t)next_size)); 2175 prev_object->charge -= ptoa(prev_object->size - 2176 next_pindex); 2177 } 2178 #endif 2179 } 2180 2181 /* 2182 * Extend the object if necessary. 2183 */ 2184 if (next_pindex + next_size > prev_object->size) 2185 prev_object->size = next_pindex + next_size; 2186 2187 VM_OBJECT_WUNLOCK(prev_object); 2188 return (TRUE); 2189 } 2190 2191 void 2192 vm_object_set_writeable_dirty(vm_object_t object) 2193 { 2194 2195 VM_OBJECT_ASSERT_WLOCKED(object); 2196 if (object->type != OBJT_VNODE) { 2197 if ((object->flags & OBJ_TMPFS_NODE) != 0) { 2198 KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs")); 2199 vm_object_set_flag(object, OBJ_TMPFS_DIRTY); 2200 } 2201 return; 2202 } 2203 object->generation++; 2204 if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) 2205 return; 2206 vm_object_set_flag(object, OBJ_MIGHTBEDIRTY); 2207 } 2208 2209 /* 2210 * vm_object_unwire: 2211 * 2212 * For each page offset within the specified range of the given object, 2213 * find the highest-level page in the shadow chain and unwire it. A page 2214 * must exist at every page offset, and the highest-level page must be 2215 * wired. 2216 */ 2217 void 2218 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length, 2219 uint8_t queue) 2220 { 2221 vm_object_t tobject; 2222 vm_page_t m, tm; 2223 vm_pindex_t end_pindex, pindex, tpindex; 2224 int depth, locked_depth; 2225 2226 KASSERT((offset & PAGE_MASK) == 0, 2227 ("vm_object_unwire: offset is not page aligned")); 2228 KASSERT((length & PAGE_MASK) == 0, 2229 ("vm_object_unwire: length is not a multiple of PAGE_SIZE")); 2230 /* The wired count of a fictitious page never changes. */ 2231 if ((object->flags & OBJ_FICTITIOUS) != 0) 2232 return; 2233 pindex = OFF_TO_IDX(offset); 2234 end_pindex = pindex + atop(length); 2235 locked_depth = 1; 2236 VM_OBJECT_RLOCK(object); 2237 m = vm_page_find_least(object, pindex); 2238 while (pindex < end_pindex) { 2239 if (m == NULL || pindex < m->pindex) { 2240 /* 2241 * The first object in the shadow chain doesn't 2242 * contain a page at the current index. Therefore, 2243 * the page must exist in a backing object. 2244 */ 2245 tobject = object; 2246 tpindex = pindex; 2247 depth = 0; 2248 do { 2249 tpindex += 2250 OFF_TO_IDX(tobject->backing_object_offset); 2251 tobject = tobject->backing_object; 2252 KASSERT(tobject != NULL, 2253 ("vm_object_unwire: missing page")); 2254 if ((tobject->flags & OBJ_FICTITIOUS) != 0) 2255 goto next_page; 2256 depth++; 2257 if (depth == locked_depth) { 2258 locked_depth++; 2259 VM_OBJECT_RLOCK(tobject); 2260 } 2261 } while ((tm = vm_page_lookup(tobject, tpindex)) == 2262 NULL); 2263 } else { 2264 tm = m; 2265 m = TAILQ_NEXT(m, listq); 2266 } 2267 vm_page_lock(tm); 2268 vm_page_unwire(tm, queue); 2269 vm_page_unlock(tm); 2270 next_page: 2271 pindex++; 2272 } 2273 /* Release the accumulated object locks. */ 2274 for (depth = 0; depth < locked_depth; depth++) { 2275 tobject = object->backing_object; 2276 VM_OBJECT_RUNLOCK(object); 2277 object = tobject; 2278 } 2279 } 2280 2281 struct vnode * 2282 vm_object_vnode(vm_object_t object) 2283 { 2284 2285 VM_OBJECT_ASSERT_LOCKED(object); 2286 if (object->type == OBJT_VNODE) 2287 return (object->handle); 2288 if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0) 2289 return (object->un_pager.swp.swp_tmpfs); 2290 return (NULL); 2291 } 2292 2293 static int 2294 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS) 2295 { 2296 struct kinfo_vmobject *kvo; 2297 char *fullpath, *freepath; 2298 struct vnode *vp; 2299 struct vattr va; 2300 vm_object_t obj; 2301 vm_page_t m; 2302 int count, error; 2303 2304 if (req->oldptr == NULL) { 2305 /* 2306 * If an old buffer has not been provided, generate an 2307 * estimate of the space needed for a subsequent call. 2308 */ 2309 mtx_lock(&vm_object_list_mtx); 2310 count = 0; 2311 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2312 if (obj->type == OBJT_DEAD) 2313 continue; 2314 count++; 2315 } 2316 mtx_unlock(&vm_object_list_mtx); 2317 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) * 2318 count * 11 / 10)); 2319 } 2320 2321 kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK); 2322 error = 0; 2323 2324 /* 2325 * VM objects are type stable and are never removed from the 2326 * list once added. This allows us to safely read obj->object_list 2327 * after reacquiring the VM object lock. 2328 */ 2329 mtx_lock(&vm_object_list_mtx); 2330 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2331 if (obj->type == OBJT_DEAD) 2332 continue; 2333 VM_OBJECT_RLOCK(obj); 2334 if (obj->type == OBJT_DEAD) { 2335 VM_OBJECT_RUNLOCK(obj); 2336 continue; 2337 } 2338 mtx_unlock(&vm_object_list_mtx); 2339 kvo->kvo_size = ptoa(obj->size); 2340 kvo->kvo_resident = obj->resident_page_count; 2341 kvo->kvo_ref_count = obj->ref_count; 2342 kvo->kvo_shadow_count = obj->shadow_count; 2343 kvo->kvo_memattr = obj->memattr; 2344 kvo->kvo_active = 0; 2345 kvo->kvo_inactive = 0; 2346 TAILQ_FOREACH(m, &obj->memq, listq) { 2347 /* 2348 * A page may belong to the object but be 2349 * dequeued and set to PQ_NONE while the 2350 * object lock is not held. This makes the 2351 * reads of m->queue below racy, and we do not 2352 * count pages set to PQ_NONE. However, this 2353 * sysctl is only meant to give an 2354 * approximation of the system anyway. 2355 */ 2356 if (vm_page_active(m)) 2357 kvo->kvo_active++; 2358 else if (vm_page_inactive(m)) 2359 kvo->kvo_inactive++; 2360 } 2361 2362 kvo->kvo_vn_fileid = 0; 2363 kvo->kvo_vn_fsid = 0; 2364 kvo->kvo_vn_fsid_freebsd11 = 0; 2365 freepath = NULL; 2366 fullpath = ""; 2367 vp = NULL; 2368 switch (obj->type) { 2369 case OBJT_DEFAULT: 2370 kvo->kvo_type = KVME_TYPE_DEFAULT; 2371 break; 2372 case OBJT_VNODE: 2373 kvo->kvo_type = KVME_TYPE_VNODE; 2374 vp = obj->handle; 2375 vref(vp); 2376 break; 2377 case OBJT_SWAP: 2378 kvo->kvo_type = KVME_TYPE_SWAP; 2379 break; 2380 case OBJT_DEVICE: 2381 kvo->kvo_type = KVME_TYPE_DEVICE; 2382 break; 2383 case OBJT_PHYS: 2384 kvo->kvo_type = KVME_TYPE_PHYS; 2385 break; 2386 case OBJT_DEAD: 2387 kvo->kvo_type = KVME_TYPE_DEAD; 2388 break; 2389 case OBJT_SG: 2390 kvo->kvo_type = KVME_TYPE_SG; 2391 break; 2392 case OBJT_MGTDEVICE: 2393 kvo->kvo_type = KVME_TYPE_MGTDEVICE; 2394 break; 2395 default: 2396 kvo->kvo_type = KVME_TYPE_UNKNOWN; 2397 break; 2398 } 2399 VM_OBJECT_RUNLOCK(obj); 2400 if (vp != NULL) { 2401 vn_fullpath(curthread, vp, &fullpath, &freepath); 2402 vn_lock(vp, LK_SHARED | LK_RETRY); 2403 if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) { 2404 kvo->kvo_vn_fileid = va.va_fileid; 2405 kvo->kvo_vn_fsid = va.va_fsid; 2406 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid; 2407 /* truncate */ 2408 } 2409 vput(vp); 2410 } 2411 2412 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path)); 2413 if (freepath != NULL) 2414 free(freepath, M_TEMP); 2415 2416 /* Pack record size down */ 2417 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) 2418 + strlen(kvo->kvo_path) + 1; 2419 kvo->kvo_structsize = roundup(kvo->kvo_structsize, 2420 sizeof(uint64_t)); 2421 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize); 2422 mtx_lock(&vm_object_list_mtx); 2423 if (error) 2424 break; 2425 } 2426 mtx_unlock(&vm_object_list_mtx); 2427 free(kvo, M_TEMP); 2428 return (error); 2429 } 2430 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | 2431 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject", 2432 "List of VM objects"); 2433 2434 #include "opt_ddb.h" 2435 #ifdef DDB 2436 #include <sys/kernel.h> 2437 2438 #include <sys/cons.h> 2439 2440 #include <ddb/ddb.h> 2441 2442 static int 2443 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2444 { 2445 vm_map_t tmpm; 2446 vm_map_entry_t tmpe; 2447 vm_object_t obj; 2448 int entcount; 2449 2450 if (map == 0) 2451 return 0; 2452 2453 if (entry == 0) { 2454 tmpe = map->header.next; 2455 entcount = map->nentries; 2456 while (entcount-- && (tmpe != &map->header)) { 2457 if (_vm_object_in_map(map, object, tmpe)) { 2458 return 1; 2459 } 2460 tmpe = tmpe->next; 2461 } 2462 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2463 tmpm = entry->object.sub_map; 2464 tmpe = tmpm->header.next; 2465 entcount = tmpm->nentries; 2466 while (entcount-- && tmpe != &tmpm->header) { 2467 if (_vm_object_in_map(tmpm, object, tmpe)) { 2468 return 1; 2469 } 2470 tmpe = tmpe->next; 2471 } 2472 } else if ((obj = entry->object.vm_object) != NULL) { 2473 for (; obj; obj = obj->backing_object) 2474 if (obj == object) { 2475 return 1; 2476 } 2477 } 2478 return 0; 2479 } 2480 2481 static int 2482 vm_object_in_map(vm_object_t object) 2483 { 2484 struct proc *p; 2485 2486 /* sx_slock(&allproc_lock); */ 2487 FOREACH_PROC_IN_SYSTEM(p) { 2488 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 2489 continue; 2490 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) { 2491 /* sx_sunlock(&allproc_lock); */ 2492 return 1; 2493 } 2494 } 2495 /* sx_sunlock(&allproc_lock); */ 2496 if (_vm_object_in_map(kernel_map, object, 0)) 2497 return 1; 2498 return 0; 2499 } 2500 2501 DB_SHOW_COMMAND(vmochk, vm_object_check) 2502 { 2503 vm_object_t object; 2504 2505 /* 2506 * make sure that internal objs are in a map somewhere 2507 * and none have zero ref counts. 2508 */ 2509 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2510 if (object->handle == NULL && 2511 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2512 if (object->ref_count == 0) { 2513 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2514 (long)object->size); 2515 } 2516 if (!vm_object_in_map(object)) { 2517 db_printf( 2518 "vmochk: internal obj is not in a map: " 2519 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2520 object->ref_count, (u_long)object->size, 2521 (u_long)object->size, 2522 (void *)object->backing_object); 2523 } 2524 } 2525 } 2526 } 2527 2528 /* 2529 * vm_object_print: [ debug ] 2530 */ 2531 DB_SHOW_COMMAND(object, vm_object_print_static) 2532 { 2533 /* XXX convert args. */ 2534 vm_object_t object = (vm_object_t)addr; 2535 boolean_t full = have_addr; 2536 2537 vm_page_t p; 2538 2539 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2540 #define count was_count 2541 2542 int count; 2543 2544 if (object == NULL) 2545 return; 2546 2547 db_iprintf( 2548 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n", 2549 object, (int)object->type, (uintmax_t)object->size, 2550 object->resident_page_count, object->ref_count, object->flags, 2551 object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge); 2552 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n", 2553 object->shadow_count, 2554 object->backing_object ? object->backing_object->ref_count : 0, 2555 object->backing_object, (uintmax_t)object->backing_object_offset); 2556 2557 if (!full) 2558 return; 2559 2560 db_indent += 2; 2561 count = 0; 2562 TAILQ_FOREACH(p, &object->memq, listq) { 2563 if (count == 0) 2564 db_iprintf("memory:="); 2565 else if (count == 6) { 2566 db_printf("\n"); 2567 db_iprintf(" ..."); 2568 count = 0; 2569 } else 2570 db_printf(","); 2571 count++; 2572 2573 db_printf("(off=0x%jx,page=0x%jx)", 2574 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p)); 2575 } 2576 if (count != 0) 2577 db_printf("\n"); 2578 db_indent -= 2; 2579 } 2580 2581 /* XXX. */ 2582 #undef count 2583 2584 /* XXX need this non-static entry for calling from vm_map_print. */ 2585 void 2586 vm_object_print( 2587 /* db_expr_t */ long addr, 2588 boolean_t have_addr, 2589 /* db_expr_t */ long count, 2590 char *modif) 2591 { 2592 vm_object_print_static(addr, have_addr, count, modif); 2593 } 2594 2595 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 2596 { 2597 vm_object_t object; 2598 vm_pindex_t fidx; 2599 vm_paddr_t pa; 2600 vm_page_t m, prev_m; 2601 int rcount, nl, c; 2602 2603 nl = 0; 2604 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2605 db_printf("new object: %p\n", (void *)object); 2606 if (nl > 18) { 2607 c = cngetc(); 2608 if (c != ' ') 2609 return; 2610 nl = 0; 2611 } 2612 nl++; 2613 rcount = 0; 2614 fidx = 0; 2615 pa = -1; 2616 TAILQ_FOREACH(m, &object->memq, listq) { 2617 if (m->pindex > 128) 2618 break; 2619 if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL && 2620 prev_m->pindex + 1 != m->pindex) { 2621 if (rcount) { 2622 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2623 (long)fidx, rcount, (long)pa); 2624 if (nl > 18) { 2625 c = cngetc(); 2626 if (c != ' ') 2627 return; 2628 nl = 0; 2629 } 2630 nl++; 2631 rcount = 0; 2632 } 2633 } 2634 if (rcount && 2635 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2636 ++rcount; 2637 continue; 2638 } 2639 if (rcount) { 2640 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2641 (long)fidx, rcount, (long)pa); 2642 if (nl > 18) { 2643 c = cngetc(); 2644 if (c != ' ') 2645 return; 2646 nl = 0; 2647 } 2648 nl++; 2649 } 2650 fidx = m->pindex; 2651 pa = VM_PAGE_TO_PHYS(m); 2652 rcount = 1; 2653 } 2654 if (rcount) { 2655 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2656 (long)fidx, rcount, (long)pa); 2657 if (nl > 18) { 2658 c = cngetc(); 2659 if (c != ' ') 2660 return; 2661 nl = 0; 2662 } 2663 nl++; 2664 } 2665 } 2666 } 2667 #endif /* DDB */ 2668