1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Virtual memory object module. 65 */ 66 67 #include <sys/cdefs.h> 68 __FBSDID("$FreeBSD$"); 69 70 #include "opt_vm.h" 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/blockcount.h> 75 #include <sys/cpuset.h> 76 #include <sys/limits.h> 77 #include <sys/lock.h> 78 #include <sys/mman.h> 79 #include <sys/mount.h> 80 #include <sys/kernel.h> 81 #include <sys/pctrie.h> 82 #include <sys/sysctl.h> 83 #include <sys/mutex.h> 84 #include <sys/proc.h> /* for curproc, pageproc */ 85 #include <sys/refcount.h> 86 #include <sys/socket.h> 87 #include <sys/resourcevar.h> 88 #include <sys/refcount.h> 89 #include <sys/rwlock.h> 90 #include <sys/user.h> 91 #include <sys/vnode.h> 92 #include <sys/vmmeter.h> 93 #include <sys/sx.h> 94 95 #include <vm/vm.h> 96 #include <vm/vm_param.h> 97 #include <vm/pmap.h> 98 #include <vm/vm_map.h> 99 #include <vm/vm_object.h> 100 #include <vm/vm_page.h> 101 #include <vm/vm_pageout.h> 102 #include <vm/vm_pager.h> 103 #include <vm/vm_phys.h> 104 #include <vm/vm_pagequeue.h> 105 #include <vm/swap_pager.h> 106 #include <vm/vm_kern.h> 107 #include <vm/vm_extern.h> 108 #include <vm/vm_radix.h> 109 #include <vm/vm_reserv.h> 110 #include <vm/uma.h> 111 112 static int old_msync; 113 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0, 114 "Use old (insecure) msync behavior"); 115 116 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 117 int pagerflags, int flags, boolean_t *allclean, 118 boolean_t *eio); 119 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags, 120 boolean_t *allclean); 121 static void vm_object_backing_remove(vm_object_t object); 122 123 /* 124 * Virtual memory objects maintain the actual data 125 * associated with allocated virtual memory. A given 126 * page of memory exists within exactly one object. 127 * 128 * An object is only deallocated when all "references" 129 * are given up. Only one "reference" to a given 130 * region of an object should be writeable. 131 * 132 * Associated with each object is a list of all resident 133 * memory pages belonging to that object; this list is 134 * maintained by the "vm_page" module, and locked by the object's 135 * lock. 136 * 137 * Each object also records a "pager" routine which is 138 * used to retrieve (and store) pages to the proper backing 139 * storage. In addition, objects may be backed by other 140 * objects from which they were virtual-copied. 141 * 142 * The only items within the object structure which are 143 * modified after time of creation are: 144 * reference count locked by object's lock 145 * pager routine locked by object's lock 146 * 147 */ 148 149 struct object_q vm_object_list; 150 struct mtx vm_object_list_mtx; /* lock for object list and count */ 151 152 struct vm_object kernel_object_store; 153 154 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 155 "VM object stats"); 156 157 static COUNTER_U64_DEFINE_EARLY(object_collapses); 158 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD, 159 &object_collapses, 160 "VM object collapses"); 161 162 static COUNTER_U64_DEFINE_EARLY(object_bypasses); 163 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD, 164 &object_bypasses, 165 "VM object bypasses"); 166 167 static COUNTER_U64_DEFINE_EARLY(object_collapse_waits); 168 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapse_waits, CTLFLAG_RD, 169 &object_collapse_waits, 170 "Number of sleeps for collapse"); 171 172 static uma_zone_t obj_zone; 173 174 static int vm_object_zinit(void *mem, int size, int flags); 175 176 #ifdef INVARIANTS 177 static void vm_object_zdtor(void *mem, int size, void *arg); 178 179 static void 180 vm_object_zdtor(void *mem, int size, void *arg) 181 { 182 vm_object_t object; 183 184 object = (vm_object_t)mem; 185 KASSERT(object->ref_count == 0, 186 ("object %p ref_count = %d", object, object->ref_count)); 187 KASSERT(TAILQ_EMPTY(&object->memq), 188 ("object %p has resident pages in its memq", object)); 189 KASSERT(vm_radix_is_empty(&object->rtree), 190 ("object %p has resident pages in its trie", object)); 191 #if VM_NRESERVLEVEL > 0 192 KASSERT(LIST_EMPTY(&object->rvq), 193 ("object %p has reservations", 194 object)); 195 #endif 196 KASSERT(!vm_object_busied(object), 197 ("object %p busy = %d", object, blockcount_read(&object->busy))); 198 KASSERT(object->resident_page_count == 0, 199 ("object %p resident_page_count = %d", 200 object, object->resident_page_count)); 201 KASSERT(object->shadow_count == 0, 202 ("object %p shadow_count = %d", 203 object, object->shadow_count)); 204 KASSERT(object->type == OBJT_DEAD, 205 ("object %p has non-dead type %d", 206 object, object->type)); 207 } 208 #endif 209 210 static int 211 vm_object_zinit(void *mem, int size, int flags) 212 { 213 vm_object_t object; 214 215 object = (vm_object_t)mem; 216 rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW); 217 218 /* These are true for any object that has been freed */ 219 object->type = OBJT_DEAD; 220 vm_radix_init(&object->rtree); 221 refcount_init(&object->ref_count, 0); 222 blockcount_init(&object->paging_in_progress); 223 blockcount_init(&object->busy); 224 object->resident_page_count = 0; 225 object->shadow_count = 0; 226 object->flags = OBJ_DEAD; 227 228 mtx_lock(&vm_object_list_mtx); 229 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 230 mtx_unlock(&vm_object_list_mtx); 231 return (0); 232 } 233 234 static void 235 _vm_object_allocate(objtype_t type, vm_pindex_t size, u_short flags, 236 vm_object_t object, void *handle) 237 { 238 239 TAILQ_INIT(&object->memq); 240 LIST_INIT(&object->shadow_head); 241 242 object->type = type; 243 if (type == OBJT_SWAP) 244 pctrie_init(&object->un_pager.swp.swp_blks); 245 246 /* 247 * Ensure that swap_pager_swapoff() iteration over object_list 248 * sees up to date type and pctrie head if it observed 249 * non-dead object. 250 */ 251 atomic_thread_fence_rel(); 252 253 object->pg_color = 0; 254 object->flags = flags; 255 object->size = size; 256 object->domain.dr_policy = NULL; 257 object->generation = 1; 258 object->cleangeneration = 1; 259 refcount_init(&object->ref_count, 1); 260 object->memattr = VM_MEMATTR_DEFAULT; 261 object->cred = NULL; 262 object->charge = 0; 263 object->handle = handle; 264 object->backing_object = NULL; 265 object->backing_object_offset = (vm_ooffset_t) 0; 266 #if VM_NRESERVLEVEL > 0 267 LIST_INIT(&object->rvq); 268 #endif 269 umtx_shm_object_init(object); 270 } 271 272 /* 273 * vm_object_init: 274 * 275 * Initialize the VM objects module. 276 */ 277 void 278 vm_object_init(void) 279 { 280 TAILQ_INIT(&vm_object_list); 281 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF); 282 283 rw_init(&kernel_object->lock, "kernel vm object"); 284 _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS - 285 VM_MIN_KERNEL_ADDRESS), OBJ_UNMANAGED, kernel_object, NULL); 286 #if VM_NRESERVLEVEL > 0 287 kernel_object->flags |= OBJ_COLORED; 288 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 289 #endif 290 kernel_object->un_pager.phys.ops = &default_phys_pg_ops; 291 292 /* 293 * The lock portion of struct vm_object must be type stable due 294 * to vm_pageout_fallback_object_lock locking a vm object 295 * without holding any references to it. 296 * 297 * paging_in_progress is valid always. Lockless references to 298 * the objects may acquire pip and then check OBJ_DEAD. 299 */ 300 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL, 301 #ifdef INVARIANTS 302 vm_object_zdtor, 303 #else 304 NULL, 305 #endif 306 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 307 308 vm_radix_zinit(); 309 } 310 311 void 312 vm_object_clear_flag(vm_object_t object, u_short bits) 313 { 314 315 VM_OBJECT_ASSERT_WLOCKED(object); 316 object->flags &= ~bits; 317 } 318 319 /* 320 * Sets the default memory attribute for the specified object. Pages 321 * that are allocated to this object are by default assigned this memory 322 * attribute. 323 * 324 * Presently, this function must be called before any pages are allocated 325 * to the object. In the future, this requirement may be relaxed for 326 * "default" and "swap" objects. 327 */ 328 int 329 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr) 330 { 331 332 VM_OBJECT_ASSERT_WLOCKED(object); 333 switch (object->type) { 334 case OBJT_DEFAULT: 335 case OBJT_DEVICE: 336 case OBJT_MGTDEVICE: 337 case OBJT_PHYS: 338 case OBJT_SG: 339 case OBJT_SWAP: 340 case OBJT_VNODE: 341 if (!TAILQ_EMPTY(&object->memq)) 342 return (KERN_FAILURE); 343 break; 344 case OBJT_DEAD: 345 return (KERN_INVALID_ARGUMENT); 346 default: 347 panic("vm_object_set_memattr: object %p is of undefined type", 348 object); 349 } 350 object->memattr = memattr; 351 return (KERN_SUCCESS); 352 } 353 354 void 355 vm_object_pip_add(vm_object_t object, short i) 356 { 357 358 if (i > 0) 359 blockcount_acquire(&object->paging_in_progress, i); 360 } 361 362 void 363 vm_object_pip_wakeup(vm_object_t object) 364 { 365 366 vm_object_pip_wakeupn(object, 1); 367 } 368 369 void 370 vm_object_pip_wakeupn(vm_object_t object, short i) 371 { 372 373 if (i > 0) 374 blockcount_release(&object->paging_in_progress, i); 375 } 376 377 /* 378 * Atomically drop the object lock and wait for pip to drain. This protects 379 * from sleep/wakeup races due to identity changes. The lock is not re-acquired 380 * on return. 381 */ 382 static void 383 vm_object_pip_sleep(vm_object_t object, const char *waitid) 384 { 385 386 (void)blockcount_sleep(&object->paging_in_progress, &object->lock, 387 waitid, PVM | PDROP); 388 } 389 390 void 391 vm_object_pip_wait(vm_object_t object, const char *waitid) 392 { 393 394 VM_OBJECT_ASSERT_WLOCKED(object); 395 396 blockcount_wait(&object->paging_in_progress, &object->lock, waitid, 397 PVM); 398 } 399 400 void 401 vm_object_pip_wait_unlocked(vm_object_t object, const char *waitid) 402 { 403 404 VM_OBJECT_ASSERT_UNLOCKED(object); 405 406 blockcount_wait(&object->paging_in_progress, NULL, waitid, PVM); 407 } 408 409 /* 410 * vm_object_allocate: 411 * 412 * Returns a new object with the given size. 413 */ 414 vm_object_t 415 vm_object_allocate(objtype_t type, vm_pindex_t size) 416 { 417 vm_object_t object; 418 u_short flags; 419 420 switch (type) { 421 case OBJT_DEAD: 422 panic("vm_object_allocate: can't create OBJT_DEAD"); 423 case OBJT_DEFAULT: 424 case OBJT_SWAP: 425 flags = OBJ_COLORED; 426 break; 427 case OBJT_DEVICE: 428 case OBJT_SG: 429 flags = OBJ_FICTITIOUS | OBJ_UNMANAGED; 430 break; 431 case OBJT_MGTDEVICE: 432 flags = OBJ_FICTITIOUS; 433 break; 434 case OBJT_PHYS: 435 flags = OBJ_UNMANAGED; 436 break; 437 case OBJT_VNODE: 438 flags = 0; 439 break; 440 default: 441 panic("vm_object_allocate: type %d is undefined", type); 442 } 443 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 444 _vm_object_allocate(type, size, flags, object, NULL); 445 446 return (object); 447 } 448 449 /* 450 * vm_object_allocate_anon: 451 * 452 * Returns a new default object of the given size and marked as 453 * anonymous memory for special split/collapse handling. Color 454 * to be initialized by the caller. 455 */ 456 vm_object_t 457 vm_object_allocate_anon(vm_pindex_t size, vm_object_t backing_object, 458 struct ucred *cred, vm_size_t charge) 459 { 460 vm_object_t handle, object; 461 462 if (backing_object == NULL) 463 handle = NULL; 464 else if ((backing_object->flags & OBJ_ANON) != 0) 465 handle = backing_object->handle; 466 else 467 handle = backing_object; 468 object = uma_zalloc(obj_zone, M_WAITOK); 469 _vm_object_allocate(OBJT_DEFAULT, size, OBJ_ANON | OBJ_ONEMAPPING, 470 object, handle); 471 object->cred = cred; 472 object->charge = cred != NULL ? charge : 0; 473 return (object); 474 } 475 476 static void 477 vm_object_reference_vnode(vm_object_t object) 478 { 479 u_int old; 480 481 /* 482 * vnode objects need the lock for the first reference 483 * to serialize with vnode_object_deallocate(). 484 */ 485 if (!refcount_acquire_if_gt(&object->ref_count, 0)) { 486 VM_OBJECT_RLOCK(object); 487 old = refcount_acquire(&object->ref_count); 488 if (object->type == OBJT_VNODE && old == 0) 489 vref(object->handle); 490 VM_OBJECT_RUNLOCK(object); 491 } 492 } 493 494 /* 495 * vm_object_reference: 496 * 497 * Acquires a reference to the given object. 498 */ 499 void 500 vm_object_reference(vm_object_t object) 501 { 502 503 if (object == NULL) 504 return; 505 506 if (object->type == OBJT_VNODE) 507 vm_object_reference_vnode(object); 508 else 509 refcount_acquire(&object->ref_count); 510 KASSERT((object->flags & OBJ_DEAD) == 0, 511 ("vm_object_reference: Referenced dead object.")); 512 } 513 514 /* 515 * vm_object_reference_locked: 516 * 517 * Gets another reference to the given object. 518 * 519 * The object must be locked. 520 */ 521 void 522 vm_object_reference_locked(vm_object_t object) 523 { 524 u_int old; 525 526 VM_OBJECT_ASSERT_LOCKED(object); 527 old = refcount_acquire(&object->ref_count); 528 if (object->type == OBJT_VNODE && old == 0) 529 vref(object->handle); 530 KASSERT((object->flags & OBJ_DEAD) == 0, 531 ("vm_object_reference: Referenced dead object.")); 532 } 533 534 /* 535 * Handle deallocating an object of type OBJT_VNODE. 536 */ 537 static void 538 vm_object_deallocate_vnode(vm_object_t object) 539 { 540 struct vnode *vp = (struct vnode *) object->handle; 541 bool last; 542 543 KASSERT(object->type == OBJT_VNODE, 544 ("vm_object_deallocate_vnode: not a vnode object")); 545 KASSERT(vp != NULL, ("vm_object_deallocate_vnode: missing vp")); 546 547 /* Object lock to protect handle lookup. */ 548 last = refcount_release(&object->ref_count); 549 VM_OBJECT_RUNLOCK(object); 550 551 if (!last) 552 return; 553 554 if (!umtx_shm_vnobj_persistent) 555 umtx_shm_object_terminated(object); 556 557 /* vrele may need the vnode lock. */ 558 vrele(vp); 559 } 560 561 /* 562 * We dropped a reference on an object and discovered that it had a 563 * single remaining shadow. This is a sibling of the reference we 564 * dropped. Attempt to collapse the sibling and backing object. 565 */ 566 static vm_object_t 567 vm_object_deallocate_anon(vm_object_t backing_object) 568 { 569 vm_object_t object; 570 571 /* Fetch the final shadow. */ 572 object = LIST_FIRST(&backing_object->shadow_head); 573 KASSERT(object != NULL && backing_object->shadow_count == 1, 574 ("vm_object_anon_deallocate: ref_count: %d, shadow_count: %d", 575 backing_object->ref_count, backing_object->shadow_count)); 576 KASSERT((object->flags & (OBJ_TMPFS_NODE | OBJ_ANON)) == OBJ_ANON, 577 ("invalid shadow object %p", object)); 578 579 if (!VM_OBJECT_TRYWLOCK(object)) { 580 /* 581 * Prevent object from disappearing since we do not have a 582 * reference. 583 */ 584 vm_object_pip_add(object, 1); 585 VM_OBJECT_WUNLOCK(backing_object); 586 VM_OBJECT_WLOCK(object); 587 vm_object_pip_wakeup(object); 588 } else 589 VM_OBJECT_WUNLOCK(backing_object); 590 591 /* 592 * Check for a collapse/terminate race with the last reference holder. 593 */ 594 if ((object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) != 0 || 595 !refcount_acquire_if_not_zero(&object->ref_count)) { 596 VM_OBJECT_WUNLOCK(object); 597 return (NULL); 598 } 599 backing_object = object->backing_object; 600 if (backing_object != NULL && (backing_object->flags & OBJ_ANON) != 0) 601 vm_object_collapse(object); 602 VM_OBJECT_WUNLOCK(object); 603 604 return (object); 605 } 606 607 /* 608 * vm_object_deallocate: 609 * 610 * Release a reference to the specified object, 611 * gained either through a vm_object_allocate 612 * or a vm_object_reference call. When all references 613 * are gone, storage associated with this object 614 * may be relinquished. 615 * 616 * No object may be locked. 617 */ 618 void 619 vm_object_deallocate(vm_object_t object) 620 { 621 vm_object_t temp; 622 bool released; 623 624 while (object != NULL) { 625 /* 626 * If the reference count goes to 0 we start calling 627 * vm_object_terminate() on the object chain. A ref count 628 * of 1 may be a special case depending on the shadow count 629 * being 0 or 1. These cases require a write lock on the 630 * object. 631 */ 632 if ((object->flags & OBJ_ANON) == 0) 633 released = refcount_release_if_gt(&object->ref_count, 1); 634 else 635 released = refcount_release_if_gt(&object->ref_count, 2); 636 if (released) 637 return; 638 639 if (object->type == OBJT_VNODE) { 640 VM_OBJECT_RLOCK(object); 641 if (object->type == OBJT_VNODE) { 642 vm_object_deallocate_vnode(object); 643 return; 644 } 645 VM_OBJECT_RUNLOCK(object); 646 } 647 648 VM_OBJECT_WLOCK(object); 649 KASSERT(object->ref_count > 0, 650 ("vm_object_deallocate: object deallocated too many times: %d", 651 object->type)); 652 653 /* 654 * If this is not the final reference to an anonymous 655 * object we may need to collapse the shadow chain. 656 */ 657 if (!refcount_release(&object->ref_count)) { 658 if (object->ref_count > 1 || 659 object->shadow_count == 0) { 660 if ((object->flags & OBJ_ANON) != 0 && 661 object->ref_count == 1) 662 vm_object_set_flag(object, 663 OBJ_ONEMAPPING); 664 VM_OBJECT_WUNLOCK(object); 665 return; 666 } 667 668 /* Handle collapsing last ref on anonymous objects. */ 669 object = vm_object_deallocate_anon(object); 670 continue; 671 } 672 673 /* 674 * Handle the final reference to an object. We restart 675 * the loop with the backing object to avoid recursion. 676 */ 677 umtx_shm_object_terminated(object); 678 temp = object->backing_object; 679 if (temp != NULL) { 680 KASSERT((object->flags & OBJ_TMPFS_NODE) == 0, 681 ("shadowed tmpfs v_object 2 %p", object)); 682 vm_object_backing_remove(object); 683 } 684 685 KASSERT((object->flags & OBJ_DEAD) == 0, 686 ("vm_object_deallocate: Terminating dead object.")); 687 vm_object_set_flag(object, OBJ_DEAD); 688 vm_object_terminate(object); 689 object = temp; 690 } 691 } 692 693 /* 694 * vm_object_destroy removes the object from the global object list 695 * and frees the space for the object. 696 */ 697 void 698 vm_object_destroy(vm_object_t object) 699 { 700 701 /* 702 * Release the allocation charge. 703 */ 704 if (object->cred != NULL) { 705 swap_release_by_cred(object->charge, object->cred); 706 object->charge = 0; 707 crfree(object->cred); 708 object->cred = NULL; 709 } 710 711 /* 712 * Free the space for the object. 713 */ 714 uma_zfree(obj_zone, object); 715 } 716 717 static void 718 vm_object_backing_remove_locked(vm_object_t object) 719 { 720 vm_object_t backing_object; 721 722 backing_object = object->backing_object; 723 VM_OBJECT_ASSERT_WLOCKED(object); 724 VM_OBJECT_ASSERT_WLOCKED(backing_object); 725 726 KASSERT((object->flags & OBJ_COLLAPSING) == 0, 727 ("vm_object_backing_remove: Removing collapsing object.")); 728 729 if ((object->flags & OBJ_SHADOWLIST) != 0) { 730 LIST_REMOVE(object, shadow_list); 731 backing_object->shadow_count--; 732 object->flags &= ~OBJ_SHADOWLIST; 733 } 734 object->backing_object = NULL; 735 } 736 737 static void 738 vm_object_backing_remove(vm_object_t object) 739 { 740 vm_object_t backing_object; 741 742 VM_OBJECT_ASSERT_WLOCKED(object); 743 744 if ((object->flags & OBJ_SHADOWLIST) != 0) { 745 backing_object = object->backing_object; 746 VM_OBJECT_WLOCK(backing_object); 747 vm_object_backing_remove_locked(object); 748 VM_OBJECT_WUNLOCK(backing_object); 749 } else 750 object->backing_object = NULL; 751 } 752 753 static void 754 vm_object_backing_insert_locked(vm_object_t object, vm_object_t backing_object) 755 { 756 757 VM_OBJECT_ASSERT_WLOCKED(object); 758 759 if ((backing_object->flags & OBJ_ANON) != 0) { 760 VM_OBJECT_ASSERT_WLOCKED(backing_object); 761 LIST_INSERT_HEAD(&backing_object->shadow_head, object, 762 shadow_list); 763 backing_object->shadow_count++; 764 object->flags |= OBJ_SHADOWLIST; 765 } 766 object->backing_object = backing_object; 767 } 768 769 static void 770 vm_object_backing_insert(vm_object_t object, vm_object_t backing_object) 771 { 772 773 VM_OBJECT_ASSERT_WLOCKED(object); 774 775 if ((backing_object->flags & OBJ_ANON) != 0) { 776 VM_OBJECT_WLOCK(backing_object); 777 vm_object_backing_insert_locked(object, backing_object); 778 VM_OBJECT_WUNLOCK(backing_object); 779 } else 780 object->backing_object = backing_object; 781 } 782 783 /* 784 * Insert an object into a backing_object's shadow list with an additional 785 * reference to the backing_object added. 786 */ 787 static void 788 vm_object_backing_insert_ref(vm_object_t object, vm_object_t backing_object) 789 { 790 791 VM_OBJECT_ASSERT_WLOCKED(object); 792 793 if ((backing_object->flags & OBJ_ANON) != 0) { 794 VM_OBJECT_WLOCK(backing_object); 795 KASSERT((backing_object->flags & OBJ_DEAD) == 0, 796 ("shadowing dead anonymous object")); 797 vm_object_reference_locked(backing_object); 798 vm_object_backing_insert_locked(object, backing_object); 799 vm_object_clear_flag(backing_object, OBJ_ONEMAPPING); 800 VM_OBJECT_WUNLOCK(backing_object); 801 } else { 802 vm_object_reference(backing_object); 803 object->backing_object = backing_object; 804 } 805 } 806 807 /* 808 * Transfer a backing reference from backing_object to object. 809 */ 810 static void 811 vm_object_backing_transfer(vm_object_t object, vm_object_t backing_object) 812 { 813 vm_object_t new_backing_object; 814 815 /* 816 * Note that the reference to backing_object->backing_object 817 * moves from within backing_object to within object. 818 */ 819 vm_object_backing_remove_locked(object); 820 new_backing_object = backing_object->backing_object; 821 if (new_backing_object == NULL) 822 return; 823 if ((new_backing_object->flags & OBJ_ANON) != 0) { 824 VM_OBJECT_WLOCK(new_backing_object); 825 vm_object_backing_remove_locked(backing_object); 826 vm_object_backing_insert_locked(object, new_backing_object); 827 VM_OBJECT_WUNLOCK(new_backing_object); 828 } else { 829 object->backing_object = new_backing_object; 830 backing_object->backing_object = NULL; 831 } 832 } 833 834 /* 835 * Wait for a concurrent collapse to settle. 836 */ 837 static void 838 vm_object_collapse_wait(vm_object_t object) 839 { 840 841 VM_OBJECT_ASSERT_WLOCKED(object); 842 843 while ((object->flags & OBJ_COLLAPSING) != 0) { 844 vm_object_pip_wait(object, "vmcolwait"); 845 counter_u64_add(object_collapse_waits, 1); 846 } 847 } 848 849 /* 850 * Waits for a backing object to clear a pending collapse and returns 851 * it locked if it is an ANON object. 852 */ 853 static vm_object_t 854 vm_object_backing_collapse_wait(vm_object_t object) 855 { 856 vm_object_t backing_object; 857 858 VM_OBJECT_ASSERT_WLOCKED(object); 859 860 for (;;) { 861 backing_object = object->backing_object; 862 if (backing_object == NULL || 863 (backing_object->flags & OBJ_ANON) == 0) 864 return (NULL); 865 VM_OBJECT_WLOCK(backing_object); 866 if ((backing_object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) == 0) 867 break; 868 VM_OBJECT_WUNLOCK(object); 869 vm_object_pip_sleep(backing_object, "vmbckwait"); 870 counter_u64_add(object_collapse_waits, 1); 871 VM_OBJECT_WLOCK(object); 872 } 873 return (backing_object); 874 } 875 876 /* 877 * vm_object_terminate_pages removes any remaining pageable pages 878 * from the object and resets the object to an empty state. 879 */ 880 static void 881 vm_object_terminate_pages(vm_object_t object) 882 { 883 vm_page_t p, p_next; 884 885 VM_OBJECT_ASSERT_WLOCKED(object); 886 887 /* 888 * Free any remaining pageable pages. This also removes them from the 889 * paging queues. However, don't free wired pages, just remove them 890 * from the object. Rather than incrementally removing each page from 891 * the object, the page and object are reset to any empty state. 892 */ 893 TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) { 894 vm_page_assert_unbusied(p); 895 KASSERT(p->object == object && 896 (p->ref_count & VPRC_OBJREF) != 0, 897 ("vm_object_terminate_pages: page %p is inconsistent", p)); 898 899 p->object = NULL; 900 if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) { 901 VM_CNT_INC(v_pfree); 902 vm_page_free(p); 903 } 904 } 905 906 /* 907 * If the object contained any pages, then reset it to an empty state. 908 * None of the object's fields, including "resident_page_count", were 909 * modified by the preceding loop. 910 */ 911 if (object->resident_page_count != 0) { 912 vm_radix_reclaim_allnodes(&object->rtree); 913 TAILQ_INIT(&object->memq); 914 object->resident_page_count = 0; 915 if (object->type == OBJT_VNODE) 916 vdrop(object->handle); 917 } 918 } 919 920 /* 921 * vm_object_terminate actually destroys the specified object, freeing 922 * up all previously used resources. 923 * 924 * The object must be locked. 925 * This routine may block. 926 */ 927 void 928 vm_object_terminate(vm_object_t object) 929 { 930 931 VM_OBJECT_ASSERT_WLOCKED(object); 932 KASSERT((object->flags & OBJ_DEAD) != 0, 933 ("terminating non-dead obj %p", object)); 934 KASSERT((object->flags & OBJ_COLLAPSING) == 0, 935 ("terminating collapsing obj %p", object)); 936 KASSERT(object->backing_object == NULL, 937 ("terminating shadow obj %p", object)); 938 939 /* 940 * Wait for the pageout daemon and other current users to be 941 * done with the object. Note that new paging_in_progress 942 * users can come after this wait, but they must check 943 * OBJ_DEAD flag set (without unlocking the object), and avoid 944 * the object being terminated. 945 */ 946 vm_object_pip_wait(object, "objtrm"); 947 948 KASSERT(object->ref_count == 0, 949 ("vm_object_terminate: object with references, ref_count=%d", 950 object->ref_count)); 951 952 if ((object->flags & OBJ_PG_DTOR) == 0) 953 vm_object_terminate_pages(object); 954 955 #if VM_NRESERVLEVEL > 0 956 if (__predict_false(!LIST_EMPTY(&object->rvq))) 957 vm_reserv_break_all(object); 958 #endif 959 960 KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT || 961 object->type == OBJT_SWAP, 962 ("%s: non-swap obj %p has cred", __func__, object)); 963 964 /* 965 * Let the pager know object is dead. 966 */ 967 vm_pager_deallocate(object); 968 VM_OBJECT_WUNLOCK(object); 969 970 vm_object_destroy(object); 971 } 972 973 /* 974 * Make the page read-only so that we can clear the object flags. However, if 975 * this is a nosync mmap then the object is likely to stay dirty so do not 976 * mess with the page and do not clear the object flags. Returns TRUE if the 977 * page should be flushed, and FALSE otherwise. 978 */ 979 static boolean_t 980 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean) 981 { 982 983 vm_page_assert_busied(p); 984 985 /* 986 * If we have been asked to skip nosync pages and this is a 987 * nosync page, skip it. Note that the object flags were not 988 * cleared in this case so we do not have to set them. 989 */ 990 if ((flags & OBJPC_NOSYNC) != 0 && (p->a.flags & PGA_NOSYNC) != 0) { 991 *allclean = FALSE; 992 return (FALSE); 993 } else { 994 pmap_remove_write(p); 995 return (p->dirty != 0); 996 } 997 } 998 999 /* 1000 * vm_object_page_clean 1001 * 1002 * Clean all dirty pages in the specified range of object. Leaves page 1003 * on whatever queue it is currently on. If NOSYNC is set then do not 1004 * write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC), 1005 * leaving the object dirty. 1006 * 1007 * For swap objects backing tmpfs regular files, do not flush anything, 1008 * but remove write protection on the mapped pages to update mtime through 1009 * mmaped writes. 1010 * 1011 * When stuffing pages asynchronously, allow clustering. XXX we need a 1012 * synchronous clustering mode implementation. 1013 * 1014 * Odd semantics: if start == end, we clean everything. 1015 * 1016 * The object must be locked. 1017 * 1018 * Returns FALSE if some page from the range was not written, as 1019 * reported by the pager, and TRUE otherwise. 1020 */ 1021 boolean_t 1022 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end, 1023 int flags) 1024 { 1025 vm_page_t np, p; 1026 vm_pindex_t pi, tend, tstart; 1027 int curgeneration, n, pagerflags; 1028 boolean_t eio, res, allclean; 1029 1030 VM_OBJECT_ASSERT_WLOCKED(object); 1031 1032 if (!vm_object_mightbedirty(object) || object->resident_page_count == 0) 1033 return (TRUE); 1034 1035 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ? 1036 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 1037 pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0; 1038 1039 tstart = OFF_TO_IDX(start); 1040 tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK); 1041 allclean = tstart == 0 && tend >= object->size; 1042 res = TRUE; 1043 1044 rescan: 1045 curgeneration = object->generation; 1046 1047 for (p = vm_page_find_least(object, tstart); p != NULL; p = np) { 1048 pi = p->pindex; 1049 if (pi >= tend) 1050 break; 1051 np = TAILQ_NEXT(p, listq); 1052 if (vm_page_none_valid(p)) 1053 continue; 1054 if (vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL) == 0) { 1055 if (object->generation != curgeneration && 1056 (flags & OBJPC_SYNC) != 0) 1057 goto rescan; 1058 np = vm_page_find_least(object, pi); 1059 continue; 1060 } 1061 if (!vm_object_page_remove_write(p, flags, &allclean)) { 1062 vm_page_xunbusy(p); 1063 continue; 1064 } 1065 if (object->type == OBJT_VNODE) { 1066 n = vm_object_page_collect_flush(object, p, pagerflags, 1067 flags, &allclean, &eio); 1068 if (eio) { 1069 res = FALSE; 1070 allclean = FALSE; 1071 } 1072 if (object->generation != curgeneration && 1073 (flags & OBJPC_SYNC) != 0) 1074 goto rescan; 1075 1076 /* 1077 * If the VOP_PUTPAGES() did a truncated write, so 1078 * that even the first page of the run is not fully 1079 * written, vm_pageout_flush() returns 0 as the run 1080 * length. Since the condition that caused truncated 1081 * write may be permanent, e.g. exhausted free space, 1082 * accepting n == 0 would cause an infinite loop. 1083 * 1084 * Forwarding the iterator leaves the unwritten page 1085 * behind, but there is not much we can do there if 1086 * filesystem refuses to write it. 1087 */ 1088 if (n == 0) { 1089 n = 1; 1090 allclean = FALSE; 1091 } 1092 } else { 1093 n = 1; 1094 vm_page_xunbusy(p); 1095 } 1096 np = vm_page_find_least(object, pi + n); 1097 } 1098 #if 0 1099 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0); 1100 #endif 1101 1102 /* 1103 * Leave updating cleangeneration for tmpfs objects to tmpfs 1104 * scan. It needs to update mtime, which happens for other 1105 * filesystems during page writeouts. 1106 */ 1107 if (allclean && object->type == OBJT_VNODE) 1108 object->cleangeneration = curgeneration; 1109 return (res); 1110 } 1111 1112 static int 1113 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags, 1114 int flags, boolean_t *allclean, boolean_t *eio) 1115 { 1116 vm_page_t ma[vm_pageout_page_count], p_first, tp; 1117 int count, i, mreq, runlen; 1118 1119 vm_page_lock_assert(p, MA_NOTOWNED); 1120 vm_page_assert_xbusied(p); 1121 VM_OBJECT_ASSERT_WLOCKED(object); 1122 1123 count = 1; 1124 mreq = 0; 1125 1126 for (tp = p; count < vm_pageout_page_count; count++) { 1127 tp = vm_page_next(tp); 1128 if (tp == NULL || vm_page_tryxbusy(tp) == 0) 1129 break; 1130 if (!vm_object_page_remove_write(tp, flags, allclean)) { 1131 vm_page_xunbusy(tp); 1132 break; 1133 } 1134 } 1135 1136 for (p_first = p; count < vm_pageout_page_count; count++) { 1137 tp = vm_page_prev(p_first); 1138 if (tp == NULL || vm_page_tryxbusy(tp) == 0) 1139 break; 1140 if (!vm_object_page_remove_write(tp, flags, allclean)) { 1141 vm_page_xunbusy(tp); 1142 break; 1143 } 1144 p_first = tp; 1145 mreq++; 1146 } 1147 1148 for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++) 1149 ma[i] = tp; 1150 1151 vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio); 1152 return (runlen); 1153 } 1154 1155 /* 1156 * Note that there is absolutely no sense in writing out 1157 * anonymous objects, so we track down the vnode object 1158 * to write out. 1159 * We invalidate (remove) all pages from the address space 1160 * for semantic correctness. 1161 * 1162 * If the backing object is a device object with unmanaged pages, then any 1163 * mappings to the specified range of pages must be removed before this 1164 * function is called. 1165 * 1166 * Note: certain anonymous maps, such as MAP_NOSYNC maps, 1167 * may start out with a NULL object. 1168 */ 1169 boolean_t 1170 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, 1171 boolean_t syncio, boolean_t invalidate) 1172 { 1173 vm_object_t backing_object; 1174 struct vnode *vp; 1175 struct mount *mp; 1176 int error, flags, fsync_after; 1177 boolean_t res; 1178 1179 if (object == NULL) 1180 return (TRUE); 1181 res = TRUE; 1182 error = 0; 1183 VM_OBJECT_WLOCK(object); 1184 while ((backing_object = object->backing_object) != NULL) { 1185 VM_OBJECT_WLOCK(backing_object); 1186 offset += object->backing_object_offset; 1187 VM_OBJECT_WUNLOCK(object); 1188 object = backing_object; 1189 if (object->size < OFF_TO_IDX(offset + size)) 1190 size = IDX_TO_OFF(object->size) - offset; 1191 } 1192 /* 1193 * Flush pages if writing is allowed, invalidate them 1194 * if invalidation requested. Pages undergoing I/O 1195 * will be ignored by vm_object_page_remove(). 1196 * 1197 * We cannot lock the vnode and then wait for paging 1198 * to complete without deadlocking against vm_fault. 1199 * Instead we simply call vm_object_page_remove() and 1200 * allow it to block internally on a page-by-page 1201 * basis when it encounters pages undergoing async 1202 * I/O. 1203 */ 1204 if (object->type == OBJT_VNODE && 1205 vm_object_mightbedirty(object) != 0 && 1206 ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) { 1207 VM_OBJECT_WUNLOCK(object); 1208 (void) vn_start_write(vp, &mp, V_WAIT); 1209 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1210 if (syncio && !invalidate && offset == 0 && 1211 atop(size) == object->size) { 1212 /* 1213 * If syncing the whole mapping of the file, 1214 * it is faster to schedule all the writes in 1215 * async mode, also allowing the clustering, 1216 * and then wait for i/o to complete. 1217 */ 1218 flags = 0; 1219 fsync_after = TRUE; 1220 } else { 1221 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1222 flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0; 1223 fsync_after = FALSE; 1224 } 1225 VM_OBJECT_WLOCK(object); 1226 res = vm_object_page_clean(object, offset, offset + size, 1227 flags); 1228 VM_OBJECT_WUNLOCK(object); 1229 if (fsync_after) 1230 error = VOP_FSYNC(vp, MNT_WAIT, curthread); 1231 VOP_UNLOCK(vp); 1232 vn_finished_write(mp); 1233 if (error != 0) 1234 res = FALSE; 1235 VM_OBJECT_WLOCK(object); 1236 } 1237 if ((object->type == OBJT_VNODE || 1238 object->type == OBJT_DEVICE) && invalidate) { 1239 if (object->type == OBJT_DEVICE) 1240 /* 1241 * The option OBJPR_NOTMAPPED must be passed here 1242 * because vm_object_page_remove() cannot remove 1243 * unmanaged mappings. 1244 */ 1245 flags = OBJPR_NOTMAPPED; 1246 else if (old_msync) 1247 flags = 0; 1248 else 1249 flags = OBJPR_CLEANONLY; 1250 vm_object_page_remove(object, OFF_TO_IDX(offset), 1251 OFF_TO_IDX(offset + size + PAGE_MASK), flags); 1252 } 1253 VM_OBJECT_WUNLOCK(object); 1254 return (res); 1255 } 1256 1257 /* 1258 * Determine whether the given advice can be applied to the object. Advice is 1259 * not applied to unmanaged pages since they never belong to page queues, and 1260 * since MADV_FREE is destructive, it can apply only to anonymous pages that 1261 * have been mapped at most once. 1262 */ 1263 static bool 1264 vm_object_advice_applies(vm_object_t object, int advice) 1265 { 1266 1267 if ((object->flags & OBJ_UNMANAGED) != 0) 1268 return (false); 1269 if (advice != MADV_FREE) 1270 return (true); 1271 return ((object->flags & (OBJ_ONEMAPPING | OBJ_ANON)) == 1272 (OBJ_ONEMAPPING | OBJ_ANON)); 1273 } 1274 1275 static void 1276 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex, 1277 vm_size_t size) 1278 { 1279 1280 if (advice == MADV_FREE && object->type == OBJT_SWAP) 1281 swap_pager_freespace(object, pindex, size); 1282 } 1283 1284 /* 1285 * vm_object_madvise: 1286 * 1287 * Implements the madvise function at the object/page level. 1288 * 1289 * MADV_WILLNEED (any object) 1290 * 1291 * Activate the specified pages if they are resident. 1292 * 1293 * MADV_DONTNEED (any object) 1294 * 1295 * Deactivate the specified pages if they are resident. 1296 * 1297 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, 1298 * OBJ_ONEMAPPING only) 1299 * 1300 * Deactivate and clean the specified pages if they are 1301 * resident. This permits the process to reuse the pages 1302 * without faulting or the kernel to reclaim the pages 1303 * without I/O. 1304 */ 1305 void 1306 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end, 1307 int advice) 1308 { 1309 vm_pindex_t tpindex; 1310 vm_object_t backing_object, tobject; 1311 vm_page_t m, tm; 1312 1313 if (object == NULL) 1314 return; 1315 1316 relookup: 1317 VM_OBJECT_WLOCK(object); 1318 if (!vm_object_advice_applies(object, advice)) { 1319 VM_OBJECT_WUNLOCK(object); 1320 return; 1321 } 1322 for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) { 1323 tobject = object; 1324 1325 /* 1326 * If the next page isn't resident in the top-level object, we 1327 * need to search the shadow chain. When applying MADV_FREE, we 1328 * take care to release any swap space used to store 1329 * non-resident pages. 1330 */ 1331 if (m == NULL || pindex < m->pindex) { 1332 /* 1333 * Optimize a common case: if the top-level object has 1334 * no backing object, we can skip over the non-resident 1335 * range in constant time. 1336 */ 1337 if (object->backing_object == NULL) { 1338 tpindex = (m != NULL && m->pindex < end) ? 1339 m->pindex : end; 1340 vm_object_madvise_freespace(object, advice, 1341 pindex, tpindex - pindex); 1342 if ((pindex = tpindex) == end) 1343 break; 1344 goto next_page; 1345 } 1346 1347 tpindex = pindex; 1348 do { 1349 vm_object_madvise_freespace(tobject, advice, 1350 tpindex, 1); 1351 /* 1352 * Prepare to search the next object in the 1353 * chain. 1354 */ 1355 backing_object = tobject->backing_object; 1356 if (backing_object == NULL) 1357 goto next_pindex; 1358 VM_OBJECT_WLOCK(backing_object); 1359 tpindex += 1360 OFF_TO_IDX(tobject->backing_object_offset); 1361 if (tobject != object) 1362 VM_OBJECT_WUNLOCK(tobject); 1363 tobject = backing_object; 1364 if (!vm_object_advice_applies(tobject, advice)) 1365 goto next_pindex; 1366 } while ((tm = vm_page_lookup(tobject, tpindex)) == 1367 NULL); 1368 } else { 1369 next_page: 1370 tm = m; 1371 m = TAILQ_NEXT(m, listq); 1372 } 1373 1374 /* 1375 * If the page is not in a normal state, skip it. The page 1376 * can not be invalidated while the object lock is held. 1377 */ 1378 if (!vm_page_all_valid(tm) || vm_page_wired(tm)) 1379 goto next_pindex; 1380 KASSERT((tm->flags & PG_FICTITIOUS) == 0, 1381 ("vm_object_madvise: page %p is fictitious", tm)); 1382 KASSERT((tm->oflags & VPO_UNMANAGED) == 0, 1383 ("vm_object_madvise: page %p is not managed", tm)); 1384 if (vm_page_tryxbusy(tm) == 0) { 1385 if (object != tobject) 1386 VM_OBJECT_WUNLOCK(object); 1387 if (advice == MADV_WILLNEED) { 1388 /* 1389 * Reference the page before unlocking and 1390 * sleeping so that the page daemon is less 1391 * likely to reclaim it. 1392 */ 1393 vm_page_aflag_set(tm, PGA_REFERENCED); 1394 } 1395 vm_page_busy_sleep(tm, "madvpo", false); 1396 goto relookup; 1397 } 1398 vm_page_advise(tm, advice); 1399 vm_page_xunbusy(tm); 1400 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1); 1401 next_pindex: 1402 if (tobject != object) 1403 VM_OBJECT_WUNLOCK(tobject); 1404 } 1405 VM_OBJECT_WUNLOCK(object); 1406 } 1407 1408 /* 1409 * vm_object_shadow: 1410 * 1411 * Create a new object which is backed by the 1412 * specified existing object range. The source 1413 * object reference is deallocated. 1414 * 1415 * The new object and offset into that object 1416 * are returned in the source parameters. 1417 */ 1418 void 1419 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length, 1420 struct ucred *cred, bool shared) 1421 { 1422 vm_object_t source; 1423 vm_object_t result; 1424 1425 source = *object; 1426 1427 /* 1428 * Don't create the new object if the old object isn't shared. 1429 * 1430 * If we hold the only reference we can guarantee that it won't 1431 * increase while we have the map locked. Otherwise the race is 1432 * harmless and we will end up with an extra shadow object that 1433 * will be collapsed later. 1434 */ 1435 if (source != NULL && source->ref_count == 1 && 1436 (source->flags & OBJ_ANON) != 0) 1437 return; 1438 1439 /* 1440 * Allocate a new object with the given length. 1441 */ 1442 result = vm_object_allocate_anon(atop(length), source, cred, length); 1443 1444 /* 1445 * Store the offset into the source object, and fix up the offset into 1446 * the new object. 1447 */ 1448 result->backing_object_offset = *offset; 1449 1450 if (shared || source != NULL) { 1451 VM_OBJECT_WLOCK(result); 1452 1453 /* 1454 * The new object shadows the source object, adding a 1455 * reference to it. Our caller changes his reference 1456 * to point to the new object, removing a reference to 1457 * the source object. Net result: no change of 1458 * reference count, unless the caller needs to add one 1459 * more reference due to forking a shared map entry. 1460 */ 1461 if (shared) { 1462 vm_object_reference_locked(result); 1463 vm_object_clear_flag(result, OBJ_ONEMAPPING); 1464 } 1465 1466 /* 1467 * Try to optimize the result object's page color when 1468 * shadowing in order to maintain page coloring 1469 * consistency in the combined shadowed object. 1470 */ 1471 if (source != NULL) { 1472 vm_object_backing_insert(result, source); 1473 result->domain = source->domain; 1474 #if VM_NRESERVLEVEL > 0 1475 result->flags |= source->flags & OBJ_COLORED; 1476 result->pg_color = (source->pg_color + 1477 OFF_TO_IDX(*offset)) & ((1 << (VM_NFREEORDER - 1478 1)) - 1); 1479 #endif 1480 } 1481 VM_OBJECT_WUNLOCK(result); 1482 } 1483 1484 /* 1485 * Return the new things 1486 */ 1487 *offset = 0; 1488 *object = result; 1489 } 1490 1491 /* 1492 * vm_object_split: 1493 * 1494 * Split the pages in a map entry into a new object. This affords 1495 * easier removal of unused pages, and keeps object inheritance from 1496 * being a negative impact on memory usage. 1497 */ 1498 void 1499 vm_object_split(vm_map_entry_t entry) 1500 { 1501 vm_page_t m, m_busy, m_next; 1502 vm_object_t orig_object, new_object, backing_object; 1503 vm_pindex_t idx, offidxstart; 1504 vm_size_t size; 1505 1506 orig_object = entry->object.vm_object; 1507 KASSERT((orig_object->flags & OBJ_ONEMAPPING) != 0, 1508 ("vm_object_split: Splitting object with multiple mappings.")); 1509 if ((orig_object->flags & OBJ_ANON) == 0) 1510 return; 1511 if (orig_object->ref_count <= 1) 1512 return; 1513 VM_OBJECT_WUNLOCK(orig_object); 1514 1515 offidxstart = OFF_TO_IDX(entry->offset); 1516 size = atop(entry->end - entry->start); 1517 1518 /* 1519 * If swap_pager_copy() is later called, it will convert new_object 1520 * into a swap object. 1521 */ 1522 new_object = vm_object_allocate_anon(size, orig_object, 1523 orig_object->cred, ptoa(size)); 1524 1525 /* 1526 * We must wait for the orig_object to complete any in-progress 1527 * collapse so that the swap blocks are stable below. The 1528 * additional reference on backing_object by new object will 1529 * prevent further collapse operations until split completes. 1530 */ 1531 VM_OBJECT_WLOCK(orig_object); 1532 vm_object_collapse_wait(orig_object); 1533 1534 /* 1535 * At this point, the new object is still private, so the order in 1536 * which the original and new objects are locked does not matter. 1537 */ 1538 VM_OBJECT_WLOCK(new_object); 1539 new_object->domain = orig_object->domain; 1540 backing_object = orig_object->backing_object; 1541 if (backing_object != NULL) { 1542 vm_object_backing_insert_ref(new_object, backing_object); 1543 new_object->backing_object_offset = 1544 orig_object->backing_object_offset + entry->offset; 1545 } 1546 if (orig_object->cred != NULL) { 1547 crhold(orig_object->cred); 1548 KASSERT(orig_object->charge >= ptoa(size), 1549 ("orig_object->charge < 0")); 1550 orig_object->charge -= ptoa(size); 1551 } 1552 1553 /* 1554 * Mark the split operation so that swap_pager_getpages() knows 1555 * that the object is in transition. 1556 */ 1557 vm_object_set_flag(orig_object, OBJ_SPLIT); 1558 m_busy = NULL; 1559 #ifdef INVARIANTS 1560 idx = 0; 1561 #endif 1562 retry: 1563 m = vm_page_find_least(orig_object, offidxstart); 1564 KASSERT(m == NULL || idx <= m->pindex - offidxstart, 1565 ("%s: object %p was repopulated", __func__, orig_object)); 1566 for (; m != NULL && (idx = m->pindex - offidxstart) < size; 1567 m = m_next) { 1568 m_next = TAILQ_NEXT(m, listq); 1569 1570 /* 1571 * We must wait for pending I/O to complete before we can 1572 * rename the page. 1573 * 1574 * We do not have to VM_PROT_NONE the page as mappings should 1575 * not be changed by this operation. 1576 */ 1577 if (vm_page_tryxbusy(m) == 0) { 1578 VM_OBJECT_WUNLOCK(new_object); 1579 vm_page_sleep_if_busy(m, "spltwt"); 1580 VM_OBJECT_WLOCK(new_object); 1581 goto retry; 1582 } 1583 1584 /* 1585 * The page was left invalid. Likely placed there by 1586 * an incomplete fault. Just remove and ignore. 1587 */ 1588 if (vm_page_none_valid(m)) { 1589 if (vm_page_remove(m)) 1590 vm_page_free(m); 1591 continue; 1592 } 1593 1594 /* vm_page_rename() will dirty the page. */ 1595 if (vm_page_rename(m, new_object, idx)) { 1596 vm_page_xunbusy(m); 1597 VM_OBJECT_WUNLOCK(new_object); 1598 VM_OBJECT_WUNLOCK(orig_object); 1599 vm_radix_wait(); 1600 VM_OBJECT_WLOCK(orig_object); 1601 VM_OBJECT_WLOCK(new_object); 1602 goto retry; 1603 } 1604 1605 #if VM_NRESERVLEVEL > 0 1606 /* 1607 * If some of the reservation's allocated pages remain with 1608 * the original object, then transferring the reservation to 1609 * the new object is neither particularly beneficial nor 1610 * particularly harmful as compared to leaving the reservation 1611 * with the original object. If, however, all of the 1612 * reservation's allocated pages are transferred to the new 1613 * object, then transferring the reservation is typically 1614 * beneficial. Determining which of these two cases applies 1615 * would be more costly than unconditionally renaming the 1616 * reservation. 1617 */ 1618 vm_reserv_rename(m, new_object, orig_object, offidxstart); 1619 #endif 1620 1621 /* 1622 * orig_object's type may change while sleeping, so keep track 1623 * of the beginning of the busied range. 1624 */ 1625 if (orig_object->type != OBJT_SWAP) 1626 vm_page_xunbusy(m); 1627 else if (m_busy == NULL) 1628 m_busy = m; 1629 } 1630 if (orig_object->type == OBJT_SWAP) { 1631 /* 1632 * swap_pager_copy() can sleep, in which case the orig_object's 1633 * and new_object's locks are released and reacquired. 1634 */ 1635 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1636 if (m_busy != NULL) 1637 TAILQ_FOREACH_FROM(m_busy, &new_object->memq, listq) 1638 vm_page_xunbusy(m_busy); 1639 } 1640 vm_object_clear_flag(orig_object, OBJ_SPLIT); 1641 VM_OBJECT_WUNLOCK(orig_object); 1642 VM_OBJECT_WUNLOCK(new_object); 1643 entry->object.vm_object = new_object; 1644 entry->offset = 0LL; 1645 vm_object_deallocate(orig_object); 1646 VM_OBJECT_WLOCK(new_object); 1647 } 1648 1649 static vm_page_t 1650 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p) 1651 { 1652 vm_object_t backing_object; 1653 1654 VM_OBJECT_ASSERT_WLOCKED(object); 1655 backing_object = object->backing_object; 1656 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1657 1658 KASSERT(p == NULL || p->object == object || p->object == backing_object, 1659 ("invalid ownership %p %p %p", p, object, backing_object)); 1660 /* The page is only NULL when rename fails. */ 1661 if (p == NULL) { 1662 VM_OBJECT_WUNLOCK(object); 1663 VM_OBJECT_WUNLOCK(backing_object); 1664 vm_radix_wait(); 1665 } else { 1666 if (p->object == object) 1667 VM_OBJECT_WUNLOCK(backing_object); 1668 else 1669 VM_OBJECT_WUNLOCK(object); 1670 vm_page_busy_sleep(p, "vmocol", false); 1671 } 1672 VM_OBJECT_WLOCK(object); 1673 VM_OBJECT_WLOCK(backing_object); 1674 return (TAILQ_FIRST(&backing_object->memq)); 1675 } 1676 1677 static bool 1678 vm_object_scan_all_shadowed(vm_object_t object) 1679 { 1680 vm_object_t backing_object; 1681 vm_page_t p, pp; 1682 vm_pindex_t backing_offset_index, new_pindex, pi, ps; 1683 1684 VM_OBJECT_ASSERT_WLOCKED(object); 1685 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1686 1687 backing_object = object->backing_object; 1688 1689 if ((backing_object->flags & OBJ_ANON) == 0) 1690 return (false); 1691 1692 pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1693 p = vm_page_find_least(backing_object, pi); 1694 ps = swap_pager_find_least(backing_object, pi); 1695 1696 /* 1697 * Only check pages inside the parent object's range and 1698 * inside the parent object's mapping of the backing object. 1699 */ 1700 for (;; pi++) { 1701 if (p != NULL && p->pindex < pi) 1702 p = TAILQ_NEXT(p, listq); 1703 if (ps < pi) 1704 ps = swap_pager_find_least(backing_object, pi); 1705 if (p == NULL && ps >= backing_object->size) 1706 break; 1707 else if (p == NULL) 1708 pi = ps; 1709 else 1710 pi = MIN(p->pindex, ps); 1711 1712 new_pindex = pi - backing_offset_index; 1713 if (new_pindex >= object->size) 1714 break; 1715 1716 if (p != NULL) { 1717 /* 1718 * If the backing object page is busy a 1719 * grandparent or older page may still be 1720 * undergoing CoW. It is not safe to collapse 1721 * the backing object until it is quiesced. 1722 */ 1723 if (vm_page_tryxbusy(p) == 0) 1724 return (false); 1725 1726 /* 1727 * We raced with the fault handler that left 1728 * newly allocated invalid page on the object 1729 * queue and retried. 1730 */ 1731 if (!vm_page_all_valid(p)) 1732 goto unbusy_ret; 1733 } 1734 1735 /* 1736 * See if the parent has the page or if the parent's object 1737 * pager has the page. If the parent has the page but the page 1738 * is not valid, the parent's object pager must have the page. 1739 * 1740 * If this fails, the parent does not completely shadow the 1741 * object and we might as well give up now. 1742 */ 1743 pp = vm_page_lookup(object, new_pindex); 1744 1745 /* 1746 * The valid check here is stable due to object lock 1747 * being required to clear valid and initiate paging. 1748 * Busy of p disallows fault handler to validate pp. 1749 */ 1750 if ((pp == NULL || vm_page_none_valid(pp)) && 1751 !vm_pager_has_page(object, new_pindex, NULL, NULL)) 1752 goto unbusy_ret; 1753 if (p != NULL) 1754 vm_page_xunbusy(p); 1755 } 1756 return (true); 1757 1758 unbusy_ret: 1759 if (p != NULL) 1760 vm_page_xunbusy(p); 1761 return (false); 1762 } 1763 1764 static void 1765 vm_object_collapse_scan(vm_object_t object) 1766 { 1767 vm_object_t backing_object; 1768 vm_page_t next, p, pp; 1769 vm_pindex_t backing_offset_index, new_pindex; 1770 1771 VM_OBJECT_ASSERT_WLOCKED(object); 1772 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1773 1774 backing_object = object->backing_object; 1775 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1776 1777 /* 1778 * Our scan 1779 */ 1780 for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) { 1781 next = TAILQ_NEXT(p, listq); 1782 new_pindex = p->pindex - backing_offset_index; 1783 1784 /* 1785 * Check for busy page 1786 */ 1787 if (vm_page_tryxbusy(p) == 0) { 1788 next = vm_object_collapse_scan_wait(object, p); 1789 continue; 1790 } 1791 1792 KASSERT(object->backing_object == backing_object, 1793 ("vm_object_collapse_scan: backing object mismatch %p != %p", 1794 object->backing_object, backing_object)); 1795 KASSERT(p->object == backing_object, 1796 ("vm_object_collapse_scan: object mismatch %p != %p", 1797 p->object, backing_object)); 1798 1799 if (p->pindex < backing_offset_index || 1800 new_pindex >= object->size) { 1801 if (backing_object->type == OBJT_SWAP) 1802 swap_pager_freespace(backing_object, p->pindex, 1803 1); 1804 1805 KASSERT(!pmap_page_is_mapped(p), 1806 ("freeing mapped page %p", p)); 1807 if (vm_page_remove(p)) 1808 vm_page_free(p); 1809 continue; 1810 } 1811 1812 if (!vm_page_all_valid(p)) { 1813 KASSERT(!pmap_page_is_mapped(p), 1814 ("freeing mapped page %p", p)); 1815 if (vm_page_remove(p)) 1816 vm_page_free(p); 1817 continue; 1818 } 1819 1820 pp = vm_page_lookup(object, new_pindex); 1821 if (pp != NULL && vm_page_tryxbusy(pp) == 0) { 1822 vm_page_xunbusy(p); 1823 /* 1824 * The page in the parent is busy and possibly not 1825 * (yet) valid. Until its state is finalized by the 1826 * busy bit owner, we can't tell whether it shadows the 1827 * original page. 1828 */ 1829 next = vm_object_collapse_scan_wait(object, pp); 1830 continue; 1831 } 1832 1833 if (pp != NULL && vm_page_none_valid(pp)) { 1834 /* 1835 * The page was invalid in the parent. Likely placed 1836 * there by an incomplete fault. Just remove and 1837 * ignore. p can replace it. 1838 */ 1839 if (vm_page_remove(pp)) 1840 vm_page_free(pp); 1841 pp = NULL; 1842 } 1843 1844 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL, 1845 NULL)) { 1846 /* 1847 * The page already exists in the parent OR swap exists 1848 * for this location in the parent. Leave the parent's 1849 * page alone. Destroy the original page from the 1850 * backing object. 1851 */ 1852 if (backing_object->type == OBJT_SWAP) 1853 swap_pager_freespace(backing_object, p->pindex, 1854 1); 1855 KASSERT(!pmap_page_is_mapped(p), 1856 ("freeing mapped page %p", p)); 1857 if (vm_page_remove(p)) 1858 vm_page_free(p); 1859 if (pp != NULL) 1860 vm_page_xunbusy(pp); 1861 continue; 1862 } 1863 1864 /* 1865 * Page does not exist in parent, rename the page from the 1866 * backing object to the main object. 1867 * 1868 * If the page was mapped to a process, it can remain mapped 1869 * through the rename. vm_page_rename() will dirty the page. 1870 */ 1871 if (vm_page_rename(p, object, new_pindex)) { 1872 vm_page_xunbusy(p); 1873 next = vm_object_collapse_scan_wait(object, NULL); 1874 continue; 1875 } 1876 1877 /* Use the old pindex to free the right page. */ 1878 if (backing_object->type == OBJT_SWAP) 1879 swap_pager_freespace(backing_object, 1880 new_pindex + backing_offset_index, 1); 1881 1882 #if VM_NRESERVLEVEL > 0 1883 /* 1884 * Rename the reservation. 1885 */ 1886 vm_reserv_rename(p, object, backing_object, 1887 backing_offset_index); 1888 #endif 1889 vm_page_xunbusy(p); 1890 } 1891 return; 1892 } 1893 1894 /* 1895 * vm_object_collapse: 1896 * 1897 * Collapse an object with the object backing it. 1898 * Pages in the backing object are moved into the 1899 * parent, and the backing object is deallocated. 1900 */ 1901 void 1902 vm_object_collapse(vm_object_t object) 1903 { 1904 vm_object_t backing_object, new_backing_object; 1905 1906 VM_OBJECT_ASSERT_WLOCKED(object); 1907 1908 while (TRUE) { 1909 KASSERT((object->flags & (OBJ_DEAD | OBJ_ANON)) == OBJ_ANON, 1910 ("collapsing invalid object")); 1911 1912 /* 1913 * Wait for the backing_object to finish any pending 1914 * collapse so that the caller sees the shortest possible 1915 * shadow chain. 1916 */ 1917 backing_object = vm_object_backing_collapse_wait(object); 1918 if (backing_object == NULL) 1919 return; 1920 1921 KASSERT(object->ref_count > 0 && 1922 object->ref_count > object->shadow_count, 1923 ("collapse with invalid ref %d or shadow %d count.", 1924 object->ref_count, object->shadow_count)); 1925 KASSERT((backing_object->flags & 1926 (OBJ_COLLAPSING | OBJ_DEAD)) == 0, 1927 ("vm_object_collapse: Backing object already collapsing.")); 1928 KASSERT((object->flags & (OBJ_COLLAPSING | OBJ_DEAD)) == 0, 1929 ("vm_object_collapse: object is already collapsing.")); 1930 1931 /* 1932 * We know that we can either collapse the backing object if 1933 * the parent is the only reference to it, or (perhaps) have 1934 * the parent bypass the object if the parent happens to shadow 1935 * all the resident pages in the entire backing object. 1936 */ 1937 if (backing_object->ref_count == 1) { 1938 KASSERT(backing_object->shadow_count == 1, 1939 ("vm_object_collapse: shadow_count: %d", 1940 backing_object->shadow_count)); 1941 vm_object_pip_add(object, 1); 1942 vm_object_set_flag(object, OBJ_COLLAPSING); 1943 vm_object_pip_add(backing_object, 1); 1944 vm_object_set_flag(backing_object, OBJ_DEAD); 1945 1946 /* 1947 * If there is exactly one reference to the backing 1948 * object, we can collapse it into the parent. 1949 */ 1950 vm_object_collapse_scan(object); 1951 1952 #if VM_NRESERVLEVEL > 0 1953 /* 1954 * Break any reservations from backing_object. 1955 */ 1956 if (__predict_false(!LIST_EMPTY(&backing_object->rvq))) 1957 vm_reserv_break_all(backing_object); 1958 #endif 1959 1960 /* 1961 * Move the pager from backing_object to object. 1962 */ 1963 if (backing_object->type == OBJT_SWAP) { 1964 /* 1965 * swap_pager_copy() can sleep, in which case 1966 * the backing_object's and object's locks are 1967 * released and reacquired. 1968 * Since swap_pager_copy() is being asked to 1969 * destroy backing_object, it will change the 1970 * type to OBJT_DEFAULT. 1971 */ 1972 swap_pager_copy( 1973 backing_object, 1974 object, 1975 OFF_TO_IDX(object->backing_object_offset), TRUE); 1976 } 1977 1978 /* 1979 * Object now shadows whatever backing_object did. 1980 */ 1981 vm_object_clear_flag(object, OBJ_COLLAPSING); 1982 vm_object_backing_transfer(object, backing_object); 1983 object->backing_object_offset += 1984 backing_object->backing_object_offset; 1985 VM_OBJECT_WUNLOCK(object); 1986 vm_object_pip_wakeup(object); 1987 1988 /* 1989 * Discard backing_object. 1990 * 1991 * Since the backing object has no pages, no pager left, 1992 * and no object references within it, all that is 1993 * necessary is to dispose of it. 1994 */ 1995 KASSERT(backing_object->ref_count == 1, ( 1996 "backing_object %p was somehow re-referenced during collapse!", 1997 backing_object)); 1998 vm_object_pip_wakeup(backing_object); 1999 (void)refcount_release(&backing_object->ref_count); 2000 vm_object_terminate(backing_object); 2001 counter_u64_add(object_collapses, 1); 2002 VM_OBJECT_WLOCK(object); 2003 } else { 2004 /* 2005 * If we do not entirely shadow the backing object, 2006 * there is nothing we can do so we give up. 2007 * 2008 * The object lock and backing_object lock must not 2009 * be dropped during this sequence. 2010 */ 2011 if (!vm_object_scan_all_shadowed(object)) { 2012 VM_OBJECT_WUNLOCK(backing_object); 2013 break; 2014 } 2015 2016 /* 2017 * Make the parent shadow the next object in the 2018 * chain. Deallocating backing_object will not remove 2019 * it, since its reference count is at least 2. 2020 */ 2021 vm_object_backing_remove_locked(object); 2022 new_backing_object = backing_object->backing_object; 2023 if (new_backing_object != NULL) { 2024 vm_object_backing_insert_ref(object, 2025 new_backing_object); 2026 object->backing_object_offset += 2027 backing_object->backing_object_offset; 2028 } 2029 2030 /* 2031 * Drop the reference count on backing_object. Since 2032 * its ref_count was at least 2, it will not vanish. 2033 */ 2034 (void)refcount_release(&backing_object->ref_count); 2035 KASSERT(backing_object->ref_count >= 1, ( 2036 "backing_object %p was somehow dereferenced during collapse!", 2037 backing_object)); 2038 VM_OBJECT_WUNLOCK(backing_object); 2039 counter_u64_add(object_bypasses, 1); 2040 } 2041 2042 /* 2043 * Try again with this object's new backing object. 2044 */ 2045 } 2046 } 2047 2048 /* 2049 * vm_object_page_remove: 2050 * 2051 * For the given object, either frees or invalidates each of the 2052 * specified pages. In general, a page is freed. However, if a page is 2053 * wired for any reason other than the existence of a managed, wired 2054 * mapping, then it may be invalidated but not removed from the object. 2055 * Pages are specified by the given range ["start", "end") and the option 2056 * OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range 2057 * extends from "start" to the end of the object. If the option 2058 * OBJPR_CLEANONLY is specified, then only the non-dirty pages within the 2059 * specified range are affected. If the option OBJPR_NOTMAPPED is 2060 * specified, then the pages within the specified range must have no 2061 * mappings. Otherwise, if this option is not specified, any mappings to 2062 * the specified pages are removed before the pages are freed or 2063 * invalidated. 2064 * 2065 * In general, this operation should only be performed on objects that 2066 * contain managed pages. There are, however, two exceptions. First, it 2067 * is performed on the kernel and kmem objects by vm_map_entry_delete(). 2068 * Second, it is used by msync(..., MS_INVALIDATE) to invalidate device- 2069 * backed pages. In both of these cases, the option OBJPR_CLEANONLY must 2070 * not be specified and the option OBJPR_NOTMAPPED must be specified. 2071 * 2072 * The object must be locked. 2073 */ 2074 void 2075 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 2076 int options) 2077 { 2078 vm_page_t p, next; 2079 2080 VM_OBJECT_ASSERT_WLOCKED(object); 2081 KASSERT((object->flags & OBJ_UNMANAGED) == 0 || 2082 (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED, 2083 ("vm_object_page_remove: illegal options for object %p", object)); 2084 if (object->resident_page_count == 0) 2085 return; 2086 vm_object_pip_add(object, 1); 2087 again: 2088 p = vm_page_find_least(object, start); 2089 2090 /* 2091 * Here, the variable "p" is either (1) the page with the least pindex 2092 * greater than or equal to the parameter "start" or (2) NULL. 2093 */ 2094 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 2095 next = TAILQ_NEXT(p, listq); 2096 2097 /* 2098 * If the page is wired for any reason besides the existence 2099 * of managed, wired mappings, then it cannot be freed. For 2100 * example, fictitious pages, which represent device memory, 2101 * are inherently wired and cannot be freed. They can, 2102 * however, be invalidated if the option OBJPR_CLEANONLY is 2103 * not specified. 2104 */ 2105 if (vm_page_tryxbusy(p) == 0) { 2106 vm_page_sleep_if_busy(p, "vmopar"); 2107 goto again; 2108 } 2109 if (vm_page_wired(p)) { 2110 wired: 2111 if ((options & OBJPR_NOTMAPPED) == 0 && 2112 object->ref_count != 0) 2113 pmap_remove_all(p); 2114 if ((options & OBJPR_CLEANONLY) == 0) { 2115 vm_page_invalid(p); 2116 vm_page_undirty(p); 2117 } 2118 vm_page_xunbusy(p); 2119 continue; 2120 } 2121 KASSERT((p->flags & PG_FICTITIOUS) == 0, 2122 ("vm_object_page_remove: page %p is fictitious", p)); 2123 if ((options & OBJPR_CLEANONLY) != 0 && 2124 !vm_page_none_valid(p)) { 2125 if ((options & OBJPR_NOTMAPPED) == 0 && 2126 object->ref_count != 0 && 2127 !vm_page_try_remove_write(p)) 2128 goto wired; 2129 if (p->dirty != 0) { 2130 vm_page_xunbusy(p); 2131 continue; 2132 } 2133 } 2134 if ((options & OBJPR_NOTMAPPED) == 0 && 2135 object->ref_count != 0 && !vm_page_try_remove_all(p)) 2136 goto wired; 2137 vm_page_free(p); 2138 } 2139 vm_object_pip_wakeup(object); 2140 2141 if (object->type == OBJT_SWAP) { 2142 if (end == 0) 2143 end = object->size; 2144 swap_pager_freespace(object, start, end - start); 2145 } 2146 } 2147 2148 /* 2149 * vm_object_page_noreuse: 2150 * 2151 * For the given object, attempt to move the specified pages to 2152 * the head of the inactive queue. This bypasses regular LRU 2153 * operation and allows the pages to be reused quickly under memory 2154 * pressure. If a page is wired for any reason, then it will not 2155 * be queued. Pages are specified by the range ["start", "end"). 2156 * As a special case, if "end" is zero, then the range extends from 2157 * "start" to the end of the object. 2158 * 2159 * This operation should only be performed on objects that 2160 * contain non-fictitious, managed pages. 2161 * 2162 * The object must be locked. 2163 */ 2164 void 2165 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 2166 { 2167 vm_page_t p, next; 2168 2169 VM_OBJECT_ASSERT_LOCKED(object); 2170 KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0, 2171 ("vm_object_page_noreuse: illegal object %p", object)); 2172 if (object->resident_page_count == 0) 2173 return; 2174 p = vm_page_find_least(object, start); 2175 2176 /* 2177 * Here, the variable "p" is either (1) the page with the least pindex 2178 * greater than or equal to the parameter "start" or (2) NULL. 2179 */ 2180 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 2181 next = TAILQ_NEXT(p, listq); 2182 vm_page_deactivate_noreuse(p); 2183 } 2184 } 2185 2186 /* 2187 * Populate the specified range of the object with valid pages. Returns 2188 * TRUE if the range is successfully populated and FALSE otherwise. 2189 * 2190 * Note: This function should be optimized to pass a larger array of 2191 * pages to vm_pager_get_pages() before it is applied to a non- 2192 * OBJT_DEVICE object. 2193 * 2194 * The object must be locked. 2195 */ 2196 boolean_t 2197 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 2198 { 2199 vm_page_t m; 2200 vm_pindex_t pindex; 2201 int rv; 2202 2203 VM_OBJECT_ASSERT_WLOCKED(object); 2204 for (pindex = start; pindex < end; pindex++) { 2205 rv = vm_page_grab_valid(&m, object, pindex, VM_ALLOC_NORMAL); 2206 if (rv != VM_PAGER_OK) 2207 break; 2208 2209 /* 2210 * Keep "m" busy because a subsequent iteration may unlock 2211 * the object. 2212 */ 2213 } 2214 if (pindex > start) { 2215 m = vm_page_lookup(object, start); 2216 while (m != NULL && m->pindex < pindex) { 2217 vm_page_xunbusy(m); 2218 m = TAILQ_NEXT(m, listq); 2219 } 2220 } 2221 return (pindex == end); 2222 } 2223 2224 /* 2225 * Routine: vm_object_coalesce 2226 * Function: Coalesces two objects backing up adjoining 2227 * regions of memory into a single object. 2228 * 2229 * returns TRUE if objects were combined. 2230 * 2231 * NOTE: Only works at the moment if the second object is NULL - 2232 * if it's not, which object do we lock first? 2233 * 2234 * Parameters: 2235 * prev_object First object to coalesce 2236 * prev_offset Offset into prev_object 2237 * prev_size Size of reference to prev_object 2238 * next_size Size of reference to the second object 2239 * reserved Indicator that extension region has 2240 * swap accounted for 2241 * 2242 * Conditions: 2243 * The object must *not* be locked. 2244 */ 2245 boolean_t 2246 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, 2247 vm_size_t prev_size, vm_size_t next_size, boolean_t reserved) 2248 { 2249 vm_pindex_t next_pindex; 2250 2251 if (prev_object == NULL) 2252 return (TRUE); 2253 if ((prev_object->flags & OBJ_ANON) == 0) 2254 return (FALSE); 2255 2256 VM_OBJECT_WLOCK(prev_object); 2257 /* 2258 * Try to collapse the object first. 2259 */ 2260 vm_object_collapse(prev_object); 2261 2262 /* 2263 * Can't coalesce if: . more than one reference . paged out . shadows 2264 * another object . has a copy elsewhere (any of which mean that the 2265 * pages not mapped to prev_entry may be in use anyway) 2266 */ 2267 if (prev_object->backing_object != NULL) { 2268 VM_OBJECT_WUNLOCK(prev_object); 2269 return (FALSE); 2270 } 2271 2272 prev_size >>= PAGE_SHIFT; 2273 next_size >>= PAGE_SHIFT; 2274 next_pindex = OFF_TO_IDX(prev_offset) + prev_size; 2275 2276 if (prev_object->ref_count > 1 && 2277 prev_object->size != next_pindex && 2278 (prev_object->flags & OBJ_ONEMAPPING) == 0) { 2279 VM_OBJECT_WUNLOCK(prev_object); 2280 return (FALSE); 2281 } 2282 2283 /* 2284 * Account for the charge. 2285 */ 2286 if (prev_object->cred != NULL) { 2287 /* 2288 * If prev_object was charged, then this mapping, 2289 * although not charged now, may become writable 2290 * later. Non-NULL cred in the object would prevent 2291 * swap reservation during enabling of the write 2292 * access, so reserve swap now. Failed reservation 2293 * cause allocation of the separate object for the map 2294 * entry, and swap reservation for this entry is 2295 * managed in appropriate time. 2296 */ 2297 if (!reserved && !swap_reserve_by_cred(ptoa(next_size), 2298 prev_object->cred)) { 2299 VM_OBJECT_WUNLOCK(prev_object); 2300 return (FALSE); 2301 } 2302 prev_object->charge += ptoa(next_size); 2303 } 2304 2305 /* 2306 * Remove any pages that may still be in the object from a previous 2307 * deallocation. 2308 */ 2309 if (next_pindex < prev_object->size) { 2310 vm_object_page_remove(prev_object, next_pindex, next_pindex + 2311 next_size, 0); 2312 #if 0 2313 if (prev_object->cred != NULL) { 2314 KASSERT(prev_object->charge >= 2315 ptoa(prev_object->size - next_pindex), 2316 ("object %p overcharged 1 %jx %jx", prev_object, 2317 (uintmax_t)next_pindex, (uintmax_t)next_size)); 2318 prev_object->charge -= ptoa(prev_object->size - 2319 next_pindex); 2320 } 2321 #endif 2322 } 2323 2324 /* 2325 * Extend the object if necessary. 2326 */ 2327 if (next_pindex + next_size > prev_object->size) 2328 prev_object->size = next_pindex + next_size; 2329 2330 VM_OBJECT_WUNLOCK(prev_object); 2331 return (TRUE); 2332 } 2333 2334 void 2335 vm_object_set_writeable_dirty(vm_object_t object) 2336 { 2337 2338 /* Only set for vnodes & tmpfs */ 2339 if (object->type != OBJT_VNODE && 2340 (object->flags & OBJ_TMPFS_NODE) == 0) 2341 return; 2342 atomic_add_int(&object->generation, 1); 2343 } 2344 2345 /* 2346 * vm_object_unwire: 2347 * 2348 * For each page offset within the specified range of the given object, 2349 * find the highest-level page in the shadow chain and unwire it. A page 2350 * must exist at every page offset, and the highest-level page must be 2351 * wired. 2352 */ 2353 void 2354 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length, 2355 uint8_t queue) 2356 { 2357 vm_object_t tobject, t1object; 2358 vm_page_t m, tm; 2359 vm_pindex_t end_pindex, pindex, tpindex; 2360 int depth, locked_depth; 2361 2362 KASSERT((offset & PAGE_MASK) == 0, 2363 ("vm_object_unwire: offset is not page aligned")); 2364 KASSERT((length & PAGE_MASK) == 0, 2365 ("vm_object_unwire: length is not a multiple of PAGE_SIZE")); 2366 /* The wired count of a fictitious page never changes. */ 2367 if ((object->flags & OBJ_FICTITIOUS) != 0) 2368 return; 2369 pindex = OFF_TO_IDX(offset); 2370 end_pindex = pindex + atop(length); 2371 again: 2372 locked_depth = 1; 2373 VM_OBJECT_RLOCK(object); 2374 m = vm_page_find_least(object, pindex); 2375 while (pindex < end_pindex) { 2376 if (m == NULL || pindex < m->pindex) { 2377 /* 2378 * The first object in the shadow chain doesn't 2379 * contain a page at the current index. Therefore, 2380 * the page must exist in a backing object. 2381 */ 2382 tobject = object; 2383 tpindex = pindex; 2384 depth = 0; 2385 do { 2386 tpindex += 2387 OFF_TO_IDX(tobject->backing_object_offset); 2388 tobject = tobject->backing_object; 2389 KASSERT(tobject != NULL, 2390 ("vm_object_unwire: missing page")); 2391 if ((tobject->flags & OBJ_FICTITIOUS) != 0) 2392 goto next_page; 2393 depth++; 2394 if (depth == locked_depth) { 2395 locked_depth++; 2396 VM_OBJECT_RLOCK(tobject); 2397 } 2398 } while ((tm = vm_page_lookup(tobject, tpindex)) == 2399 NULL); 2400 } else { 2401 tm = m; 2402 m = TAILQ_NEXT(m, listq); 2403 } 2404 if (vm_page_trysbusy(tm) == 0) { 2405 for (tobject = object; locked_depth >= 1; 2406 locked_depth--) { 2407 t1object = tobject->backing_object; 2408 if (tm->object != tobject) 2409 VM_OBJECT_RUNLOCK(tobject); 2410 tobject = t1object; 2411 } 2412 vm_page_busy_sleep(tm, "unwbo", true); 2413 goto again; 2414 } 2415 vm_page_unwire(tm, queue); 2416 vm_page_sunbusy(tm); 2417 next_page: 2418 pindex++; 2419 } 2420 /* Release the accumulated object locks. */ 2421 for (tobject = object; locked_depth >= 1; locked_depth--) { 2422 t1object = tobject->backing_object; 2423 VM_OBJECT_RUNLOCK(tobject); 2424 tobject = t1object; 2425 } 2426 } 2427 2428 /* 2429 * Return the vnode for the given object, or NULL if none exists. 2430 * For tmpfs objects, the function may return NULL if there is 2431 * no vnode allocated at the time of the call. 2432 */ 2433 struct vnode * 2434 vm_object_vnode(vm_object_t object) 2435 { 2436 struct vnode *vp; 2437 2438 VM_OBJECT_ASSERT_LOCKED(object); 2439 if (object->type == OBJT_VNODE) { 2440 vp = object->handle; 2441 KASSERT(vp != NULL, ("%s: OBJT_VNODE has no vnode", __func__)); 2442 } else if (object->type == OBJT_SWAP && 2443 (object->flags & OBJ_TMPFS) != 0) { 2444 vp = object->un_pager.swp.swp_tmpfs; 2445 KASSERT(vp != NULL, ("%s: OBJT_TMPFS has no vnode", __func__)); 2446 } else { 2447 vp = NULL; 2448 } 2449 return (vp); 2450 } 2451 2452 /* 2453 * Busy the vm object. This prevents new pages belonging to the object from 2454 * becoming busy. Existing pages persist as busy. Callers are responsible 2455 * for checking page state before proceeding. 2456 */ 2457 void 2458 vm_object_busy(vm_object_t obj) 2459 { 2460 2461 VM_OBJECT_ASSERT_LOCKED(obj); 2462 2463 blockcount_acquire(&obj->busy, 1); 2464 /* The fence is required to order loads of page busy. */ 2465 atomic_thread_fence_acq_rel(); 2466 } 2467 2468 void 2469 vm_object_unbusy(vm_object_t obj) 2470 { 2471 2472 blockcount_release(&obj->busy, 1); 2473 } 2474 2475 void 2476 vm_object_busy_wait(vm_object_t obj, const char *wmesg) 2477 { 2478 2479 VM_OBJECT_ASSERT_UNLOCKED(obj); 2480 2481 (void)blockcount_sleep(&obj->busy, NULL, wmesg, PVM); 2482 } 2483 2484 /* 2485 * Return the kvme type of the given object. 2486 * If vpp is not NULL, set it to the object's vm_object_vnode() or NULL. 2487 */ 2488 int 2489 vm_object_kvme_type(vm_object_t object, struct vnode **vpp) 2490 { 2491 2492 VM_OBJECT_ASSERT_LOCKED(object); 2493 if (vpp != NULL) 2494 *vpp = vm_object_vnode(object); 2495 switch (object->type) { 2496 case OBJT_DEFAULT: 2497 return (KVME_TYPE_DEFAULT); 2498 case OBJT_VNODE: 2499 return (KVME_TYPE_VNODE); 2500 case OBJT_SWAP: 2501 if ((object->flags & OBJ_TMPFS_NODE) != 0) 2502 return (KVME_TYPE_VNODE); 2503 return (KVME_TYPE_SWAP); 2504 case OBJT_DEVICE: 2505 return (KVME_TYPE_DEVICE); 2506 case OBJT_PHYS: 2507 return (KVME_TYPE_PHYS); 2508 case OBJT_DEAD: 2509 return (KVME_TYPE_DEAD); 2510 case OBJT_SG: 2511 return (KVME_TYPE_SG); 2512 case OBJT_MGTDEVICE: 2513 return (KVME_TYPE_MGTDEVICE); 2514 default: 2515 return (KVME_TYPE_UNKNOWN); 2516 } 2517 } 2518 2519 static int 2520 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS) 2521 { 2522 struct kinfo_vmobject *kvo; 2523 char *fullpath, *freepath; 2524 struct vnode *vp; 2525 struct vattr va; 2526 vm_object_t obj; 2527 vm_page_t m; 2528 u_long sp; 2529 int count, error; 2530 2531 if (req->oldptr == NULL) { 2532 /* 2533 * If an old buffer has not been provided, generate an 2534 * estimate of the space needed for a subsequent call. 2535 */ 2536 mtx_lock(&vm_object_list_mtx); 2537 count = 0; 2538 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2539 if (obj->type == OBJT_DEAD) 2540 continue; 2541 count++; 2542 } 2543 mtx_unlock(&vm_object_list_mtx); 2544 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) * 2545 count * 11 / 10)); 2546 } 2547 2548 kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK); 2549 error = 0; 2550 2551 /* 2552 * VM objects are type stable and are never removed from the 2553 * list once added. This allows us to safely read obj->object_list 2554 * after reacquiring the VM object lock. 2555 */ 2556 mtx_lock(&vm_object_list_mtx); 2557 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2558 if (obj->type == OBJT_DEAD) 2559 continue; 2560 VM_OBJECT_RLOCK(obj); 2561 if (obj->type == OBJT_DEAD) { 2562 VM_OBJECT_RUNLOCK(obj); 2563 continue; 2564 } 2565 mtx_unlock(&vm_object_list_mtx); 2566 kvo->kvo_size = ptoa(obj->size); 2567 kvo->kvo_resident = obj->resident_page_count; 2568 kvo->kvo_ref_count = obj->ref_count; 2569 kvo->kvo_shadow_count = obj->shadow_count; 2570 kvo->kvo_memattr = obj->memattr; 2571 kvo->kvo_active = 0; 2572 kvo->kvo_inactive = 0; 2573 TAILQ_FOREACH(m, &obj->memq, listq) { 2574 /* 2575 * A page may belong to the object but be 2576 * dequeued and set to PQ_NONE while the 2577 * object lock is not held. This makes the 2578 * reads of m->queue below racy, and we do not 2579 * count pages set to PQ_NONE. However, this 2580 * sysctl is only meant to give an 2581 * approximation of the system anyway. 2582 */ 2583 if (m->a.queue == PQ_ACTIVE) 2584 kvo->kvo_active++; 2585 else if (m->a.queue == PQ_INACTIVE) 2586 kvo->kvo_inactive++; 2587 } 2588 2589 kvo->kvo_vn_fileid = 0; 2590 kvo->kvo_vn_fsid = 0; 2591 kvo->kvo_vn_fsid_freebsd11 = 0; 2592 freepath = NULL; 2593 fullpath = ""; 2594 kvo->kvo_type = vm_object_kvme_type(obj, &vp); 2595 if (vp != NULL) { 2596 vref(vp); 2597 } else if ((obj->flags & OBJ_ANON) != 0) { 2598 MPASS(kvo->kvo_type == KVME_TYPE_DEFAULT || 2599 kvo->kvo_type == KVME_TYPE_SWAP); 2600 kvo->kvo_me = (uintptr_t)obj; 2601 /* tmpfs objs are reported as vnodes */ 2602 kvo->kvo_backing_obj = (uintptr_t)obj->backing_object; 2603 sp = swap_pager_swapped_pages(obj); 2604 kvo->kvo_swapped = sp > UINT32_MAX ? UINT32_MAX : sp; 2605 } 2606 VM_OBJECT_RUNLOCK(obj); 2607 if (vp != NULL) { 2608 vn_fullpath(vp, &fullpath, &freepath); 2609 vn_lock(vp, LK_SHARED | LK_RETRY); 2610 if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) { 2611 kvo->kvo_vn_fileid = va.va_fileid; 2612 kvo->kvo_vn_fsid = va.va_fsid; 2613 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid; 2614 /* truncate */ 2615 } 2616 vput(vp); 2617 } 2618 2619 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path)); 2620 if (freepath != NULL) 2621 free(freepath, M_TEMP); 2622 2623 /* Pack record size down */ 2624 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) 2625 + strlen(kvo->kvo_path) + 1; 2626 kvo->kvo_structsize = roundup(kvo->kvo_structsize, 2627 sizeof(uint64_t)); 2628 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize); 2629 mtx_lock(&vm_object_list_mtx); 2630 if (error) 2631 break; 2632 } 2633 mtx_unlock(&vm_object_list_mtx); 2634 free(kvo, M_TEMP); 2635 return (error); 2636 } 2637 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | 2638 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject", 2639 "List of VM objects"); 2640 2641 #include "opt_ddb.h" 2642 #ifdef DDB 2643 #include <sys/kernel.h> 2644 2645 #include <sys/cons.h> 2646 2647 #include <ddb/ddb.h> 2648 2649 static int 2650 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2651 { 2652 vm_map_t tmpm; 2653 vm_map_entry_t tmpe; 2654 vm_object_t obj; 2655 2656 if (map == 0) 2657 return 0; 2658 2659 if (entry == 0) { 2660 VM_MAP_ENTRY_FOREACH(tmpe, map) { 2661 if (_vm_object_in_map(map, object, tmpe)) { 2662 return 1; 2663 } 2664 } 2665 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2666 tmpm = entry->object.sub_map; 2667 VM_MAP_ENTRY_FOREACH(tmpe, tmpm) { 2668 if (_vm_object_in_map(tmpm, object, tmpe)) { 2669 return 1; 2670 } 2671 } 2672 } else if ((obj = entry->object.vm_object) != NULL) { 2673 for (; obj; obj = obj->backing_object) 2674 if (obj == object) { 2675 return 1; 2676 } 2677 } 2678 return 0; 2679 } 2680 2681 static int 2682 vm_object_in_map(vm_object_t object) 2683 { 2684 struct proc *p; 2685 2686 /* sx_slock(&allproc_lock); */ 2687 FOREACH_PROC_IN_SYSTEM(p) { 2688 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 2689 continue; 2690 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) { 2691 /* sx_sunlock(&allproc_lock); */ 2692 return 1; 2693 } 2694 } 2695 /* sx_sunlock(&allproc_lock); */ 2696 if (_vm_object_in_map(kernel_map, object, 0)) 2697 return 1; 2698 return 0; 2699 } 2700 2701 DB_SHOW_COMMAND(vmochk, vm_object_check) 2702 { 2703 vm_object_t object; 2704 2705 /* 2706 * make sure that internal objs are in a map somewhere 2707 * and none have zero ref counts. 2708 */ 2709 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2710 if ((object->flags & OBJ_ANON) != 0) { 2711 if (object->ref_count == 0) { 2712 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2713 (long)object->size); 2714 } 2715 if (!vm_object_in_map(object)) { 2716 db_printf( 2717 "vmochk: internal obj is not in a map: " 2718 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2719 object->ref_count, (u_long)object->size, 2720 (u_long)object->size, 2721 (void *)object->backing_object); 2722 } 2723 } 2724 if (db_pager_quit) 2725 return; 2726 } 2727 } 2728 2729 /* 2730 * vm_object_print: [ debug ] 2731 */ 2732 DB_SHOW_COMMAND(object, vm_object_print_static) 2733 { 2734 /* XXX convert args. */ 2735 vm_object_t object = (vm_object_t)addr; 2736 boolean_t full = have_addr; 2737 2738 vm_page_t p; 2739 2740 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2741 #define count was_count 2742 2743 int count; 2744 2745 if (object == NULL) 2746 return; 2747 2748 db_iprintf( 2749 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n", 2750 object, (int)object->type, (uintmax_t)object->size, 2751 object->resident_page_count, object->ref_count, object->flags, 2752 object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge); 2753 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n", 2754 object->shadow_count, 2755 object->backing_object ? object->backing_object->ref_count : 0, 2756 object->backing_object, (uintmax_t)object->backing_object_offset); 2757 2758 if (!full) 2759 return; 2760 2761 db_indent += 2; 2762 count = 0; 2763 TAILQ_FOREACH(p, &object->memq, listq) { 2764 if (count == 0) 2765 db_iprintf("memory:="); 2766 else if (count == 6) { 2767 db_printf("\n"); 2768 db_iprintf(" ..."); 2769 count = 0; 2770 } else 2771 db_printf(","); 2772 count++; 2773 2774 db_printf("(off=0x%jx,page=0x%jx)", 2775 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p)); 2776 2777 if (db_pager_quit) 2778 break; 2779 } 2780 if (count != 0) 2781 db_printf("\n"); 2782 db_indent -= 2; 2783 } 2784 2785 /* XXX. */ 2786 #undef count 2787 2788 /* XXX need this non-static entry for calling from vm_map_print. */ 2789 void 2790 vm_object_print( 2791 /* db_expr_t */ long addr, 2792 boolean_t have_addr, 2793 /* db_expr_t */ long count, 2794 char *modif) 2795 { 2796 vm_object_print_static(addr, have_addr, count, modif); 2797 } 2798 2799 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 2800 { 2801 vm_object_t object; 2802 vm_pindex_t fidx; 2803 vm_paddr_t pa; 2804 vm_page_t m, prev_m; 2805 int rcount, nl, c; 2806 2807 nl = 0; 2808 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2809 db_printf("new object: %p\n", (void *)object); 2810 if (nl > 18) { 2811 c = cngetc(); 2812 if (c != ' ') 2813 return; 2814 nl = 0; 2815 } 2816 nl++; 2817 rcount = 0; 2818 fidx = 0; 2819 pa = -1; 2820 TAILQ_FOREACH(m, &object->memq, listq) { 2821 if (m->pindex > 128) 2822 break; 2823 if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL && 2824 prev_m->pindex + 1 != m->pindex) { 2825 if (rcount) { 2826 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2827 (long)fidx, rcount, (long)pa); 2828 if (nl > 18) { 2829 c = cngetc(); 2830 if (c != ' ') 2831 return; 2832 nl = 0; 2833 } 2834 nl++; 2835 rcount = 0; 2836 } 2837 } 2838 if (rcount && 2839 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2840 ++rcount; 2841 continue; 2842 } 2843 if (rcount) { 2844 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2845 (long)fidx, rcount, (long)pa); 2846 if (nl > 18) { 2847 c = cngetc(); 2848 if (c != ' ') 2849 return; 2850 nl = 0; 2851 } 2852 nl++; 2853 } 2854 fidx = m->pindex; 2855 pa = VM_PAGE_TO_PHYS(m); 2856 rcount = 1; 2857 } 2858 if (rcount) { 2859 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2860 (long)fidx, rcount, (long)pa); 2861 if (nl > 18) { 2862 c = cngetc(); 2863 if (c != ' ') 2864 return; 2865 nl = 0; 2866 } 2867 nl++; 2868 } 2869 } 2870 } 2871 #endif /* DDB */ 2872