1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory object module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/lock.h> 71 #include <sys/mman.h> 72 #include <sys/mount.h> 73 #include <sys/kernel.h> 74 #include <sys/sysctl.h> 75 #include <sys/mutex.h> 76 #include <sys/proc.h> /* for curproc, pageproc */ 77 #include <sys/socket.h> 78 #include <sys/vnode.h> 79 #include <sys/vmmeter.h> 80 #include <sys/sx.h> 81 82 #include <vm/vm.h> 83 #include <vm/vm_param.h> 84 #include <vm/pmap.h> 85 #include <vm/vm_map.h> 86 #include <vm/vm_object.h> 87 #include <vm/vm_page.h> 88 #include <vm/vm_pageout.h> 89 #include <vm/vm_pager.h> 90 #include <vm/swap_pager.h> 91 #include <vm/vm_kern.h> 92 #include <vm/vm_extern.h> 93 #include <vm/uma.h> 94 95 #define EASY_SCAN_FACTOR 8 96 97 #define MSYNC_FLUSH_HARDSEQ 0x01 98 #define MSYNC_FLUSH_SOFTSEQ 0x02 99 100 /* 101 * msync / VM object flushing optimizations 102 */ 103 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ; 104 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags, 105 CTLFLAG_RW, &msync_flush_flags, 0, ""); 106 107 static int old_msync; 108 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0, 109 "Use old (insecure) msync behavior"); 110 111 static void vm_object_qcollapse(vm_object_t object); 112 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags); 113 114 /* 115 * Virtual memory objects maintain the actual data 116 * associated with allocated virtual memory. A given 117 * page of memory exists within exactly one object. 118 * 119 * An object is only deallocated when all "references" 120 * are given up. Only one "reference" to a given 121 * region of an object should be writeable. 122 * 123 * Associated with each object is a list of all resident 124 * memory pages belonging to that object; this list is 125 * maintained by the "vm_page" module, and locked by the object's 126 * lock. 127 * 128 * Each object also records a "pager" routine which is 129 * used to retrieve (and store) pages to the proper backing 130 * storage. In addition, objects may be backed by other 131 * objects from which they were virtual-copied. 132 * 133 * The only items within the object structure which are 134 * modified after time of creation are: 135 * reference count locked by object's lock 136 * pager routine locked by object's lock 137 * 138 */ 139 140 struct object_q vm_object_list; 141 struct mtx vm_object_list_mtx; /* lock for object list and count */ 142 143 struct vm_object kernel_object_store; 144 struct vm_object kmem_object_store; 145 146 static long object_collapses; 147 static long object_bypasses; 148 149 /* 150 * next_index determines the page color that is assigned to the next 151 * allocated object. Accesses to next_index are not synchronized 152 * because the effects of two or more object allocations using 153 * next_index simultaneously are inconsequential. At any given time, 154 * numerous objects have the same page color. 155 */ 156 static int next_index; 157 158 static uma_zone_t obj_zone; 159 #define VM_OBJECTS_INIT 256 160 161 static int vm_object_zinit(void *mem, int size, int flags); 162 163 #ifdef INVARIANTS 164 static void vm_object_zdtor(void *mem, int size, void *arg); 165 166 static void 167 vm_object_zdtor(void *mem, int size, void *arg) 168 { 169 vm_object_t object; 170 171 object = (vm_object_t)mem; 172 KASSERT(TAILQ_EMPTY(&object->memq), 173 ("object %p has resident pages", 174 object)); 175 KASSERT(object->paging_in_progress == 0, 176 ("object %p paging_in_progress = %d", 177 object, object->paging_in_progress)); 178 KASSERT(object->resident_page_count == 0, 179 ("object %p resident_page_count = %d", 180 object, object->resident_page_count)); 181 KASSERT(object->shadow_count == 0, 182 ("object %p shadow_count = %d", 183 object, object->shadow_count)); 184 } 185 #endif 186 187 static int 188 vm_object_zinit(void *mem, int size, int flags) 189 { 190 vm_object_t object; 191 192 object = (vm_object_t)mem; 193 bzero(&object->mtx, sizeof(object->mtx)); 194 VM_OBJECT_LOCK_INIT(object, "standard object"); 195 196 /* These are true for any object that has been freed */ 197 object->paging_in_progress = 0; 198 object->resident_page_count = 0; 199 object->shadow_count = 0; 200 return (0); 201 } 202 203 void 204 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object) 205 { 206 int incr; 207 208 TAILQ_INIT(&object->memq); 209 LIST_INIT(&object->shadow_head); 210 211 object->root = NULL; 212 object->type = type; 213 object->size = size; 214 object->generation = 1; 215 object->ref_count = 1; 216 object->flags = 0; 217 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP)) 218 object->flags = OBJ_ONEMAPPING; 219 if (size > (PQ_L2_SIZE / 3 + PQ_PRIME1)) 220 incr = PQ_L2_SIZE / 3 + PQ_PRIME1; 221 else 222 incr = size; 223 object->pg_color = next_index; 224 next_index = (object->pg_color + incr) & PQ_L2_MASK; 225 object->handle = NULL; 226 object->backing_object = NULL; 227 object->backing_object_offset = (vm_ooffset_t) 0; 228 229 mtx_lock(&vm_object_list_mtx); 230 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 231 mtx_unlock(&vm_object_list_mtx); 232 } 233 234 /* 235 * vm_object_init: 236 * 237 * Initialize the VM objects module. 238 */ 239 void 240 vm_object_init(void) 241 { 242 TAILQ_INIT(&vm_object_list); 243 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF); 244 245 VM_OBJECT_LOCK_INIT(&kernel_object_store, "kernel object"); 246 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 247 kernel_object); 248 249 VM_OBJECT_LOCK_INIT(&kmem_object_store, "kmem object"); 250 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 251 kmem_object); 252 253 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL, 254 #ifdef INVARIANTS 255 vm_object_zdtor, 256 #else 257 NULL, 258 #endif 259 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE); 260 uma_prealloc(obj_zone, VM_OBJECTS_INIT); 261 } 262 263 void 264 vm_object_clear_flag(vm_object_t object, u_short bits) 265 { 266 267 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 268 object->flags &= ~bits; 269 } 270 271 void 272 vm_object_pip_add(vm_object_t object, short i) 273 { 274 275 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 276 object->paging_in_progress += i; 277 } 278 279 void 280 vm_object_pip_subtract(vm_object_t object, short i) 281 { 282 283 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 284 object->paging_in_progress -= i; 285 } 286 287 void 288 vm_object_pip_wakeup(vm_object_t object) 289 { 290 291 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 292 object->paging_in_progress--; 293 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 294 vm_object_clear_flag(object, OBJ_PIPWNT); 295 wakeup(object); 296 } 297 } 298 299 void 300 vm_object_pip_wakeupn(vm_object_t object, short i) 301 { 302 303 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 304 if (i) 305 object->paging_in_progress -= i; 306 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 307 vm_object_clear_flag(object, OBJ_PIPWNT); 308 wakeup(object); 309 } 310 } 311 312 void 313 vm_object_pip_wait(vm_object_t object, char *waitid) 314 { 315 316 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 317 while (object->paging_in_progress) { 318 object->flags |= OBJ_PIPWNT; 319 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0); 320 } 321 } 322 323 /* 324 * vm_object_allocate: 325 * 326 * Returns a new object with the given size. 327 */ 328 vm_object_t 329 vm_object_allocate(objtype_t type, vm_pindex_t size) 330 { 331 vm_object_t object; 332 333 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 334 _vm_object_allocate(type, size, object); 335 return (object); 336 } 337 338 339 /* 340 * vm_object_reference: 341 * 342 * Gets another reference to the given object. Note: OBJ_DEAD 343 * objects can be referenced during final cleaning. 344 */ 345 void 346 vm_object_reference(vm_object_t object) 347 { 348 struct vnode *vp; 349 int flags; 350 351 if (object == NULL) 352 return; 353 VM_OBJECT_LOCK(object); 354 object->ref_count++; 355 if (object->type == OBJT_VNODE) { 356 vp = object->handle; 357 VI_LOCK(vp); 358 VM_OBJECT_UNLOCK(object); 359 for (flags = LK_INTERLOCK; vget(vp, flags, curthread); 360 flags = 0) 361 printf("vm_object_reference: delay in vget\n"); 362 } else 363 VM_OBJECT_UNLOCK(object); 364 } 365 366 /* 367 * vm_object_reference_locked: 368 * 369 * Gets another reference to the given object. 370 * 371 * The object must be locked. 372 */ 373 void 374 vm_object_reference_locked(vm_object_t object) 375 { 376 struct vnode *vp; 377 378 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 379 KASSERT((object->flags & OBJ_DEAD) == 0, 380 ("vm_object_reference_locked: dead object referenced")); 381 object->ref_count++; 382 if (object->type == OBJT_VNODE) { 383 vp = object->handle; 384 vref(vp); 385 } 386 } 387 388 /* 389 * Handle deallocating an object of type OBJT_VNODE. 390 */ 391 void 392 vm_object_vndeallocate(vm_object_t object) 393 { 394 struct vnode *vp = (struct vnode *) object->handle; 395 396 VFS_ASSERT_GIANT(vp->v_mount); 397 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 398 KASSERT(object->type == OBJT_VNODE, 399 ("vm_object_vndeallocate: not a vnode object")); 400 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 401 #ifdef INVARIANTS 402 if (object->ref_count == 0) { 403 vprint("vm_object_vndeallocate", vp); 404 panic("vm_object_vndeallocate: bad object reference count"); 405 } 406 #endif 407 408 object->ref_count--; 409 if (object->ref_count == 0) { 410 mp_fixme("Unlocked vflag access."); 411 vp->v_vflag &= ~VV_TEXT; 412 } 413 VM_OBJECT_UNLOCK(object); 414 /* 415 * vrele may need a vop lock 416 */ 417 vrele(vp); 418 } 419 420 /* 421 * vm_object_deallocate: 422 * 423 * Release a reference to the specified object, 424 * gained either through a vm_object_allocate 425 * or a vm_object_reference call. When all references 426 * are gone, storage associated with this object 427 * may be relinquished. 428 * 429 * No object may be locked. 430 */ 431 void 432 vm_object_deallocate(vm_object_t object) 433 { 434 vm_object_t temp; 435 436 while (object != NULL) { 437 int vfslocked; 438 /* 439 * In general, the object should be locked when working with 440 * its type. In this case, in order to maintain proper lock 441 * ordering, an exception is possible because a vnode-backed 442 * object never changes its type. 443 */ 444 vfslocked = 0; 445 if (object->type == OBJT_VNODE) { 446 struct vnode *vp = (struct vnode *) object->handle; 447 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 448 } 449 VM_OBJECT_LOCK(object); 450 if (object->type == OBJT_VNODE) { 451 vm_object_vndeallocate(object); 452 VFS_UNLOCK_GIANT(vfslocked); 453 return; 454 } 455 456 KASSERT(object->ref_count != 0, 457 ("vm_object_deallocate: object deallocated too many times: %d", object->type)); 458 459 /* 460 * If the reference count goes to 0 we start calling 461 * vm_object_terminate() on the object chain. 462 * A ref count of 1 may be a special case depending on the 463 * shadow count being 0 or 1. 464 */ 465 object->ref_count--; 466 if (object->ref_count > 1) { 467 VM_OBJECT_UNLOCK(object); 468 return; 469 } else if (object->ref_count == 1) { 470 if (object->shadow_count == 0) { 471 vm_object_set_flag(object, OBJ_ONEMAPPING); 472 } else if ((object->shadow_count == 1) && 473 (object->handle == NULL) && 474 (object->type == OBJT_DEFAULT || 475 object->type == OBJT_SWAP)) { 476 vm_object_t robject; 477 478 robject = LIST_FIRST(&object->shadow_head); 479 KASSERT(robject != NULL, 480 ("vm_object_deallocate: ref_count: %d, shadow_count: %d", 481 object->ref_count, 482 object->shadow_count)); 483 if (!VM_OBJECT_TRYLOCK(robject)) { 484 /* 485 * Avoid a potential deadlock. 486 */ 487 object->ref_count++; 488 VM_OBJECT_UNLOCK(object); 489 /* 490 * More likely than not the thread 491 * holding robject's lock has lower 492 * priority than the current thread. 493 * Let the lower priority thread run. 494 */ 495 tsleep(&proc0, PVM, "vmo_de", 1); 496 continue; 497 } 498 /* 499 * Collapse object into its shadow unless its 500 * shadow is dead. In that case, object will 501 * be deallocated by the thread that is 502 * deallocating its shadow. 503 */ 504 if ((robject->flags & OBJ_DEAD) == 0 && 505 (robject->handle == NULL) && 506 (robject->type == OBJT_DEFAULT || 507 robject->type == OBJT_SWAP)) { 508 509 robject->ref_count++; 510 retry: 511 if (robject->paging_in_progress) { 512 VM_OBJECT_UNLOCK(object); 513 vm_object_pip_wait(robject, 514 "objde1"); 515 VM_OBJECT_LOCK(object); 516 goto retry; 517 } else if (object->paging_in_progress) { 518 VM_OBJECT_UNLOCK(robject); 519 object->flags |= OBJ_PIPWNT; 520 msleep(object, 521 VM_OBJECT_MTX(object), 522 PDROP | PVM, "objde2", 0); 523 VM_OBJECT_LOCK(robject); 524 VM_OBJECT_LOCK(object); 525 goto retry; 526 } 527 VM_OBJECT_UNLOCK(object); 528 if (robject->ref_count == 1) { 529 robject->ref_count--; 530 object = robject; 531 goto doterm; 532 } 533 object = robject; 534 vm_object_collapse(object); 535 VM_OBJECT_UNLOCK(object); 536 continue; 537 } 538 VM_OBJECT_UNLOCK(robject); 539 } 540 VM_OBJECT_UNLOCK(object); 541 return; 542 } 543 doterm: 544 temp = object->backing_object; 545 if (temp != NULL) { 546 VM_OBJECT_LOCK(temp); 547 LIST_REMOVE(object, shadow_list); 548 temp->shadow_count--; 549 temp->generation++; 550 VM_OBJECT_UNLOCK(temp); 551 object->backing_object = NULL; 552 } 553 /* 554 * Don't double-terminate, we could be in a termination 555 * recursion due to the terminate having to sync data 556 * to disk. 557 */ 558 if ((object->flags & OBJ_DEAD) == 0) 559 vm_object_terminate(object); 560 else 561 VM_OBJECT_UNLOCK(object); 562 object = temp; 563 } 564 } 565 566 /* 567 * vm_object_terminate actually destroys the specified object, freeing 568 * up all previously used resources. 569 * 570 * The object must be locked. 571 * This routine may block. 572 */ 573 void 574 vm_object_terminate(vm_object_t object) 575 { 576 vm_page_t p; 577 578 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 579 580 /* 581 * Make sure no one uses us. 582 */ 583 vm_object_set_flag(object, OBJ_DEAD); 584 585 /* 586 * wait for the pageout daemon to be done with the object 587 */ 588 vm_object_pip_wait(object, "objtrm"); 589 590 KASSERT(!object->paging_in_progress, 591 ("vm_object_terminate: pageout in progress")); 592 593 /* 594 * Clean and free the pages, as appropriate. All references to the 595 * object are gone, so we don't need to lock it. 596 */ 597 if (object->type == OBJT_VNODE) { 598 struct vnode *vp = (struct vnode *)object->handle; 599 600 /* 601 * Clean pages and flush buffers. 602 */ 603 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 604 VM_OBJECT_UNLOCK(object); 605 606 vinvalbuf(vp, V_SAVE, NULL, 0, 0); 607 608 VM_OBJECT_LOCK(object); 609 } 610 611 KASSERT(object->ref_count == 0, 612 ("vm_object_terminate: object with references, ref_count=%d", 613 object->ref_count)); 614 615 /* 616 * Now free any remaining pages. For internal objects, this also 617 * removes them from paging queues. Don't free wired pages, just 618 * remove them from the object. 619 */ 620 vm_page_lock_queues(); 621 while ((p = TAILQ_FIRST(&object->memq)) != NULL) { 622 KASSERT(!p->busy && (p->flags & PG_BUSY) == 0, 623 ("vm_object_terminate: freeing busy page %p " 624 "p->busy = %d, p->flags %x\n", p, p->busy, p->flags)); 625 if (p->wire_count == 0) { 626 vm_page_free(p); 627 cnt.v_pfree++; 628 } else { 629 vm_page_remove(p); 630 } 631 } 632 vm_page_unlock_queues(); 633 634 /* 635 * Let the pager know object is dead. 636 */ 637 vm_pager_deallocate(object); 638 VM_OBJECT_UNLOCK(object); 639 640 /* 641 * Remove the object from the global object list. 642 */ 643 mtx_lock(&vm_object_list_mtx); 644 TAILQ_REMOVE(&vm_object_list, object, object_list); 645 mtx_unlock(&vm_object_list_mtx); 646 647 /* 648 * Free the space for the object. 649 */ 650 uma_zfree(obj_zone, object); 651 } 652 653 /* 654 * vm_object_page_clean 655 * 656 * Clean all dirty pages in the specified range of object. Leaves page 657 * on whatever queue it is currently on. If NOSYNC is set then do not 658 * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC), 659 * leaving the object dirty. 660 * 661 * When stuffing pages asynchronously, allow clustering. XXX we need a 662 * synchronous clustering mode implementation. 663 * 664 * Odd semantics: if start == end, we clean everything. 665 * 666 * The object must be locked. 667 */ 668 void 669 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags) 670 { 671 vm_page_t p, np; 672 vm_pindex_t tstart, tend; 673 vm_pindex_t pi; 674 int clearobjflags; 675 int pagerflags; 676 int curgeneration; 677 678 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 679 if (object->type != OBJT_VNODE || 680 (object->flags & OBJ_MIGHTBEDIRTY) == 0) 681 return; 682 683 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 684 pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0; 685 686 vm_object_set_flag(object, OBJ_CLEANING); 687 688 tstart = start; 689 if (end == 0) { 690 tend = object->size; 691 } else { 692 tend = end; 693 } 694 695 vm_page_lock_queues(); 696 /* 697 * If the caller is smart and only msync()s a range he knows is 698 * dirty, we may be able to avoid an object scan. This results in 699 * a phenominal improvement in performance. We cannot do this 700 * as a matter of course because the object may be huge - e.g. 701 * the size might be in the gigabytes or terrabytes. 702 */ 703 if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) { 704 vm_pindex_t tscan; 705 int scanlimit; 706 int scanreset; 707 708 scanreset = object->resident_page_count / EASY_SCAN_FACTOR; 709 if (scanreset < 16) 710 scanreset = 16; 711 pagerflags |= VM_PAGER_IGNORE_CLEANCHK; 712 713 scanlimit = scanreset; 714 tscan = tstart; 715 while (tscan < tend) { 716 curgeneration = object->generation; 717 p = vm_page_lookup(object, tscan); 718 if (p == NULL || p->valid == 0 || 719 (p->queue - p->pc) == PQ_CACHE) { 720 if (--scanlimit == 0) 721 break; 722 ++tscan; 723 continue; 724 } 725 vm_page_test_dirty(p); 726 if ((p->dirty & p->valid) == 0) { 727 if (--scanlimit == 0) 728 break; 729 ++tscan; 730 continue; 731 } 732 /* 733 * If we have been asked to skip nosync pages and 734 * this is a nosync page, we can't continue. 735 */ 736 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) { 737 if (--scanlimit == 0) 738 break; 739 ++tscan; 740 continue; 741 } 742 scanlimit = scanreset; 743 744 /* 745 * This returns 0 if it was unable to busy the first 746 * page (i.e. had to sleep). 747 */ 748 tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags); 749 } 750 751 /* 752 * If everything was dirty and we flushed it successfully, 753 * and the requested range is not the entire object, we 754 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can 755 * return immediately. 756 */ 757 if (tscan >= tend && (tstart || tend < object->size)) { 758 vm_page_unlock_queues(); 759 vm_object_clear_flag(object, OBJ_CLEANING); 760 return; 761 } 762 pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK; 763 } 764 765 /* 766 * Generally set CLEANCHK interlock and make the page read-only so 767 * we can then clear the object flags. 768 * 769 * However, if this is a nosync mmap then the object is likely to 770 * stay dirty so do not mess with the page and do not clear the 771 * object flags. 772 */ 773 clearobjflags = 1; 774 TAILQ_FOREACH(p, &object->memq, listq) { 775 vm_page_flag_set(p, PG_CLEANCHK); 776 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) 777 clearobjflags = 0; 778 else 779 pmap_page_protect(p, VM_PROT_READ); 780 } 781 782 if (clearobjflags && (tstart == 0) && (tend == object->size)) { 783 struct vnode *vp; 784 785 vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY); 786 if (object->type == OBJT_VNODE && 787 (vp = (struct vnode *)object->handle) != NULL) { 788 VI_LOCK(vp); 789 if (vp->v_iflag & VI_OBJDIRTY) 790 vp->v_iflag &= ~VI_OBJDIRTY; 791 VI_UNLOCK(vp); 792 } 793 } 794 795 rescan: 796 curgeneration = object->generation; 797 798 for (p = TAILQ_FIRST(&object->memq); p; p = np) { 799 int n; 800 801 np = TAILQ_NEXT(p, listq); 802 803 again: 804 pi = p->pindex; 805 if (((p->flags & PG_CLEANCHK) == 0) || 806 (pi < tstart) || (pi >= tend) || 807 (p->valid == 0) || 808 ((p->queue - p->pc) == PQ_CACHE)) { 809 vm_page_flag_clear(p, PG_CLEANCHK); 810 continue; 811 } 812 813 vm_page_test_dirty(p); 814 if ((p->dirty & p->valid) == 0) { 815 vm_page_flag_clear(p, PG_CLEANCHK); 816 continue; 817 } 818 819 /* 820 * If we have been asked to skip nosync pages and this is a 821 * nosync page, skip it. Note that the object flags were 822 * not cleared in this case so we do not have to set them. 823 */ 824 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) { 825 vm_page_flag_clear(p, PG_CLEANCHK); 826 continue; 827 } 828 829 n = vm_object_page_collect_flush(object, p, 830 curgeneration, pagerflags); 831 if (n == 0) 832 goto rescan; 833 834 if (object->generation != curgeneration) 835 goto rescan; 836 837 /* 838 * Try to optimize the next page. If we can't we pick up 839 * our (random) scan where we left off. 840 */ 841 if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) { 842 if ((p = vm_page_lookup(object, pi + n)) != NULL) 843 goto again; 844 } 845 } 846 vm_page_unlock_queues(); 847 #if 0 848 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc); 849 #endif 850 851 vm_object_clear_flag(object, OBJ_CLEANING); 852 return; 853 } 854 855 static int 856 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags) 857 { 858 int runlen; 859 int maxf; 860 int chkb; 861 int maxb; 862 int i; 863 vm_pindex_t pi; 864 vm_page_t maf[vm_pageout_page_count]; 865 vm_page_t mab[vm_pageout_page_count]; 866 vm_page_t ma[vm_pageout_page_count]; 867 868 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 869 pi = p->pindex; 870 while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) { 871 vm_page_lock_queues(); 872 if (object->generation != curgeneration) { 873 return(0); 874 } 875 } 876 maxf = 0; 877 for(i = 1; i < vm_pageout_page_count; i++) { 878 vm_page_t tp; 879 880 if ((tp = vm_page_lookup(object, pi + i)) != NULL) { 881 if ((tp->flags & PG_BUSY) || 882 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 883 (tp->flags & PG_CLEANCHK) == 0) || 884 (tp->busy != 0)) 885 break; 886 if((tp->queue - tp->pc) == PQ_CACHE) { 887 vm_page_flag_clear(tp, PG_CLEANCHK); 888 break; 889 } 890 vm_page_test_dirty(tp); 891 if ((tp->dirty & tp->valid) == 0) { 892 vm_page_flag_clear(tp, PG_CLEANCHK); 893 break; 894 } 895 maf[ i - 1 ] = tp; 896 maxf++; 897 continue; 898 } 899 break; 900 } 901 902 maxb = 0; 903 chkb = vm_pageout_page_count - maxf; 904 if (chkb) { 905 for(i = 1; i < chkb;i++) { 906 vm_page_t tp; 907 908 if ((tp = vm_page_lookup(object, pi - i)) != NULL) { 909 if ((tp->flags & PG_BUSY) || 910 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 911 (tp->flags & PG_CLEANCHK) == 0) || 912 (tp->busy != 0)) 913 break; 914 if ((tp->queue - tp->pc) == PQ_CACHE) { 915 vm_page_flag_clear(tp, PG_CLEANCHK); 916 break; 917 } 918 vm_page_test_dirty(tp); 919 if ((tp->dirty & tp->valid) == 0) { 920 vm_page_flag_clear(tp, PG_CLEANCHK); 921 break; 922 } 923 mab[ i - 1 ] = tp; 924 maxb++; 925 continue; 926 } 927 break; 928 } 929 } 930 931 for(i = 0; i < maxb; i++) { 932 int index = (maxb - i) - 1; 933 ma[index] = mab[i]; 934 vm_page_flag_clear(ma[index], PG_CLEANCHK); 935 } 936 vm_page_flag_clear(p, PG_CLEANCHK); 937 ma[maxb] = p; 938 for(i = 0; i < maxf; i++) { 939 int index = (maxb + i) + 1; 940 ma[index] = maf[i]; 941 vm_page_flag_clear(ma[index], PG_CLEANCHK); 942 } 943 runlen = maxb + maxf + 1; 944 945 vm_pageout_flush(ma, runlen, pagerflags); 946 for (i = 0; i < runlen; i++) { 947 if (ma[i]->valid & ma[i]->dirty) { 948 pmap_page_protect(ma[i], VM_PROT_READ); 949 vm_page_flag_set(ma[i], PG_CLEANCHK); 950 951 /* 952 * maxf will end up being the actual number of pages 953 * we wrote out contiguously, non-inclusive of the 954 * first page. We do not count look-behind pages. 955 */ 956 if (i >= maxb + 1 && (maxf > i - maxb - 1)) 957 maxf = i - maxb - 1; 958 } 959 } 960 return(maxf + 1); 961 } 962 963 /* 964 * Note that there is absolutely no sense in writing out 965 * anonymous objects, so we track down the vnode object 966 * to write out. 967 * We invalidate (remove) all pages from the address space 968 * for semantic correctness. 969 * 970 * Note: certain anonymous maps, such as MAP_NOSYNC maps, 971 * may start out with a NULL object. 972 */ 973 void 974 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, 975 boolean_t syncio, boolean_t invalidate) 976 { 977 vm_object_t backing_object; 978 struct vnode *vp; 979 int flags; 980 981 if (object == NULL) 982 return; 983 VM_OBJECT_LOCK(object); 984 while ((backing_object = object->backing_object) != NULL) { 985 VM_OBJECT_LOCK(backing_object); 986 offset += object->backing_object_offset; 987 VM_OBJECT_UNLOCK(object); 988 object = backing_object; 989 if (object->size < OFF_TO_IDX(offset + size)) 990 size = IDX_TO_OFF(object->size) - offset; 991 } 992 /* 993 * Flush pages if writing is allowed, invalidate them 994 * if invalidation requested. Pages undergoing I/O 995 * will be ignored by vm_object_page_remove(). 996 * 997 * We cannot lock the vnode and then wait for paging 998 * to complete without deadlocking against vm_fault. 999 * Instead we simply call vm_object_page_remove() and 1000 * allow it to block internally on a page-by-page 1001 * basis when it encounters pages undergoing async 1002 * I/O. 1003 */ 1004 if (object->type == OBJT_VNODE && 1005 (object->flags & OBJ_MIGHTBEDIRTY) != 0) { 1006 int vfslocked; 1007 vp = object->handle; 1008 VM_OBJECT_UNLOCK(object); 1009 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1010 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, curthread); 1011 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1012 flags |= invalidate ? OBJPC_INVAL : 0; 1013 VM_OBJECT_LOCK(object); 1014 vm_object_page_clean(object, 1015 OFF_TO_IDX(offset), 1016 OFF_TO_IDX(offset + size + PAGE_MASK), 1017 flags); 1018 VM_OBJECT_UNLOCK(object); 1019 VOP_UNLOCK(vp, 0, curthread); 1020 VFS_UNLOCK_GIANT(vfslocked); 1021 VM_OBJECT_LOCK(object); 1022 } 1023 if ((object->type == OBJT_VNODE || 1024 object->type == OBJT_DEVICE) && invalidate) { 1025 boolean_t purge; 1026 purge = old_msync || (object->type == OBJT_DEVICE); 1027 vm_object_page_remove(object, 1028 OFF_TO_IDX(offset), 1029 OFF_TO_IDX(offset + size + PAGE_MASK), 1030 purge ? FALSE : TRUE); 1031 } 1032 VM_OBJECT_UNLOCK(object); 1033 } 1034 1035 /* 1036 * vm_object_madvise: 1037 * 1038 * Implements the madvise function at the object/page level. 1039 * 1040 * MADV_WILLNEED (any object) 1041 * 1042 * Activate the specified pages if they are resident. 1043 * 1044 * MADV_DONTNEED (any object) 1045 * 1046 * Deactivate the specified pages if they are resident. 1047 * 1048 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, 1049 * OBJ_ONEMAPPING only) 1050 * 1051 * Deactivate and clean the specified pages if they are 1052 * resident. This permits the process to reuse the pages 1053 * without faulting or the kernel to reclaim the pages 1054 * without I/O. 1055 */ 1056 void 1057 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise) 1058 { 1059 vm_pindex_t end, tpindex; 1060 vm_object_t backing_object, tobject; 1061 vm_page_t m; 1062 1063 if (object == NULL) 1064 return; 1065 VM_OBJECT_LOCK(object); 1066 end = pindex + count; 1067 /* 1068 * Locate and adjust resident pages 1069 */ 1070 for (; pindex < end; pindex += 1) { 1071 relookup: 1072 tobject = object; 1073 tpindex = pindex; 1074 shadowlookup: 1075 /* 1076 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages 1077 * and those pages must be OBJ_ONEMAPPING. 1078 */ 1079 if (advise == MADV_FREE) { 1080 if ((tobject->type != OBJT_DEFAULT && 1081 tobject->type != OBJT_SWAP) || 1082 (tobject->flags & OBJ_ONEMAPPING) == 0) { 1083 goto unlock_tobject; 1084 } 1085 } 1086 m = vm_page_lookup(tobject, tpindex); 1087 if (m == NULL) { 1088 /* 1089 * There may be swap even if there is no backing page 1090 */ 1091 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1092 swap_pager_freespace(tobject, tpindex, 1); 1093 /* 1094 * next object 1095 */ 1096 backing_object = tobject->backing_object; 1097 if (backing_object == NULL) 1098 goto unlock_tobject; 1099 VM_OBJECT_LOCK(backing_object); 1100 tpindex += OFF_TO_IDX(tobject->backing_object_offset); 1101 if (tobject != object) 1102 VM_OBJECT_UNLOCK(tobject); 1103 tobject = backing_object; 1104 goto shadowlookup; 1105 } 1106 /* 1107 * If the page is busy or not in a normal active state, 1108 * we skip it. If the page is not managed there are no 1109 * page queues to mess with. Things can break if we mess 1110 * with pages in any of the below states. 1111 */ 1112 vm_page_lock_queues(); 1113 if (m->hold_count || 1114 m->wire_count || 1115 (m->flags & PG_UNMANAGED) || 1116 m->valid != VM_PAGE_BITS_ALL) { 1117 vm_page_unlock_queues(); 1118 goto unlock_tobject; 1119 } 1120 if ((m->flags & PG_BUSY) || m->busy) { 1121 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 1122 if (object != tobject) 1123 VM_OBJECT_UNLOCK(object); 1124 VM_OBJECT_UNLOCK(tobject); 1125 msleep(m, &vm_page_queue_mtx, PDROP | PVM, "madvpo", 0); 1126 VM_OBJECT_LOCK(object); 1127 goto relookup; 1128 } 1129 if (advise == MADV_WILLNEED) { 1130 vm_page_activate(m); 1131 } else if (advise == MADV_DONTNEED) { 1132 vm_page_dontneed(m); 1133 } else if (advise == MADV_FREE) { 1134 /* 1135 * Mark the page clean. This will allow the page 1136 * to be freed up by the system. However, such pages 1137 * are often reused quickly by malloc()/free() 1138 * so we do not do anything that would cause 1139 * a page fault if we can help it. 1140 * 1141 * Specifically, we do not try to actually free 1142 * the page now nor do we try to put it in the 1143 * cache (which would cause a page fault on reuse). 1144 * 1145 * But we do make the page is freeable as we 1146 * can without actually taking the step of unmapping 1147 * it. 1148 */ 1149 pmap_clear_modify(m); 1150 m->dirty = 0; 1151 m->act_count = 0; 1152 vm_page_dontneed(m); 1153 } 1154 vm_page_unlock_queues(); 1155 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1156 swap_pager_freespace(tobject, tpindex, 1); 1157 unlock_tobject: 1158 if (tobject != object) 1159 VM_OBJECT_UNLOCK(tobject); 1160 } 1161 VM_OBJECT_UNLOCK(object); 1162 } 1163 1164 /* 1165 * vm_object_shadow: 1166 * 1167 * Create a new object which is backed by the 1168 * specified existing object range. The source 1169 * object reference is deallocated. 1170 * 1171 * The new object and offset into that object 1172 * are returned in the source parameters. 1173 */ 1174 void 1175 vm_object_shadow( 1176 vm_object_t *object, /* IN/OUT */ 1177 vm_ooffset_t *offset, /* IN/OUT */ 1178 vm_size_t length) 1179 { 1180 vm_object_t source; 1181 vm_object_t result; 1182 1183 source = *object; 1184 1185 /* 1186 * Don't create the new object if the old object isn't shared. 1187 */ 1188 if (source != NULL) { 1189 VM_OBJECT_LOCK(source); 1190 if (source->ref_count == 1 && 1191 source->handle == NULL && 1192 (source->type == OBJT_DEFAULT || 1193 source->type == OBJT_SWAP)) { 1194 VM_OBJECT_UNLOCK(source); 1195 return; 1196 } 1197 VM_OBJECT_UNLOCK(source); 1198 } 1199 1200 /* 1201 * Allocate a new object with the given length. 1202 */ 1203 result = vm_object_allocate(OBJT_DEFAULT, length); 1204 1205 /* 1206 * The new object shadows the source object, adding a reference to it. 1207 * Our caller changes his reference to point to the new object, 1208 * removing a reference to the source object. Net result: no change 1209 * of reference count. 1210 * 1211 * Try to optimize the result object's page color when shadowing 1212 * in order to maintain page coloring consistency in the combined 1213 * shadowed object. 1214 */ 1215 result->backing_object = source; 1216 /* 1217 * Store the offset into the source object, and fix up the offset into 1218 * the new object. 1219 */ 1220 result->backing_object_offset = *offset; 1221 if (source != NULL) { 1222 VM_OBJECT_LOCK(source); 1223 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list); 1224 source->shadow_count++; 1225 source->generation++; 1226 if (length < source->size) 1227 length = source->size; 1228 if (length > PQ_L2_SIZE / 3 + PQ_PRIME1 || 1229 source->generation > 1) 1230 length = PQ_L2_SIZE / 3 + PQ_PRIME1; 1231 result->pg_color = (source->pg_color + 1232 length * source->generation) & PQ_L2_MASK; 1233 result->flags |= source->flags & OBJ_NEEDGIANT; 1234 VM_OBJECT_UNLOCK(source); 1235 next_index = (result->pg_color + PQ_L2_SIZE / 3 + PQ_PRIME1) & 1236 PQ_L2_MASK; 1237 } 1238 1239 1240 /* 1241 * Return the new things 1242 */ 1243 *offset = 0; 1244 *object = result; 1245 } 1246 1247 /* 1248 * vm_object_split: 1249 * 1250 * Split the pages in a map entry into a new object. This affords 1251 * easier removal of unused pages, and keeps object inheritance from 1252 * being a negative impact on memory usage. 1253 */ 1254 void 1255 vm_object_split(vm_map_entry_t entry) 1256 { 1257 vm_page_t m; 1258 vm_object_t orig_object, new_object, source; 1259 vm_pindex_t offidxstart, offidxend; 1260 vm_size_t idx, size; 1261 1262 orig_object = entry->object.vm_object; 1263 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 1264 return; 1265 if (orig_object->ref_count <= 1) 1266 return; 1267 VM_OBJECT_UNLOCK(orig_object); 1268 1269 offidxstart = OFF_TO_IDX(entry->offset); 1270 offidxend = offidxstart + OFF_TO_IDX(entry->end - entry->start); 1271 size = offidxend - offidxstart; 1272 1273 /* 1274 * If swap_pager_copy() is later called, it will convert new_object 1275 * into a swap object. 1276 */ 1277 new_object = vm_object_allocate(OBJT_DEFAULT, size); 1278 1279 VM_OBJECT_LOCK(new_object); 1280 VM_OBJECT_LOCK(orig_object); 1281 source = orig_object->backing_object; 1282 if (source != NULL) { 1283 VM_OBJECT_LOCK(source); 1284 LIST_INSERT_HEAD(&source->shadow_head, 1285 new_object, shadow_list); 1286 source->shadow_count++; 1287 source->generation++; 1288 vm_object_reference_locked(source); /* for new_object */ 1289 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1290 VM_OBJECT_UNLOCK(source); 1291 new_object->backing_object_offset = 1292 orig_object->backing_object_offset + entry->offset; 1293 new_object->backing_object = source; 1294 } 1295 new_object->flags |= orig_object->flags & OBJ_NEEDGIANT; 1296 vm_page_lock_queues(); 1297 for (idx = 0; idx < size; idx++) { 1298 retry: 1299 m = vm_page_lookup(orig_object, offidxstart + idx); 1300 if (m == NULL) 1301 continue; 1302 1303 /* 1304 * We must wait for pending I/O to complete before we can 1305 * rename the page. 1306 * 1307 * We do not have to VM_PROT_NONE the page as mappings should 1308 * not be changed by this operation. 1309 */ 1310 if ((m->flags & PG_BUSY) || m->busy) { 1311 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 1312 VM_OBJECT_UNLOCK(orig_object); 1313 VM_OBJECT_UNLOCK(new_object); 1314 msleep(m, &vm_page_queue_mtx, PDROP | PVM, "spltwt", 0); 1315 VM_OBJECT_LOCK(new_object); 1316 VM_OBJECT_LOCK(orig_object); 1317 vm_page_lock_queues(); 1318 goto retry; 1319 } 1320 vm_page_rename(m, new_object, idx); 1321 /* page automatically made dirty by rename and cache handled */ 1322 vm_page_busy(m); 1323 } 1324 vm_page_unlock_queues(); 1325 if (orig_object->type == OBJT_SWAP) { 1326 /* 1327 * swap_pager_copy() can sleep, in which case the orig_object's 1328 * and new_object's locks are released and reacquired. 1329 */ 1330 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1331 } 1332 VM_OBJECT_UNLOCK(orig_object); 1333 vm_page_lock_queues(); 1334 TAILQ_FOREACH(m, &new_object->memq, listq) 1335 vm_page_wakeup(m); 1336 vm_page_unlock_queues(); 1337 VM_OBJECT_UNLOCK(new_object); 1338 entry->object.vm_object = new_object; 1339 entry->offset = 0LL; 1340 vm_object_deallocate(orig_object); 1341 VM_OBJECT_LOCK(new_object); 1342 } 1343 1344 #define OBSC_TEST_ALL_SHADOWED 0x0001 1345 #define OBSC_COLLAPSE_NOWAIT 0x0002 1346 #define OBSC_COLLAPSE_WAIT 0x0004 1347 1348 static int 1349 vm_object_backing_scan(vm_object_t object, int op) 1350 { 1351 int r = 1; 1352 vm_page_t p; 1353 vm_object_t backing_object; 1354 vm_pindex_t backing_offset_index; 1355 1356 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1357 VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED); 1358 1359 backing_object = object->backing_object; 1360 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1361 1362 /* 1363 * Initial conditions 1364 */ 1365 if (op & OBSC_TEST_ALL_SHADOWED) { 1366 /* 1367 * We do not want to have to test for the existence of 1368 * swap pages in the backing object. XXX but with the 1369 * new swapper this would be pretty easy to do. 1370 * 1371 * XXX what about anonymous MAP_SHARED memory that hasn't 1372 * been ZFOD faulted yet? If we do not test for this, the 1373 * shadow test may succeed! XXX 1374 */ 1375 if (backing_object->type != OBJT_DEFAULT) { 1376 return (0); 1377 } 1378 } 1379 if (op & OBSC_COLLAPSE_WAIT) { 1380 vm_object_set_flag(backing_object, OBJ_DEAD); 1381 } 1382 1383 /* 1384 * Our scan 1385 */ 1386 p = TAILQ_FIRST(&backing_object->memq); 1387 while (p) { 1388 vm_page_t next = TAILQ_NEXT(p, listq); 1389 vm_pindex_t new_pindex = p->pindex - backing_offset_index; 1390 1391 if (op & OBSC_TEST_ALL_SHADOWED) { 1392 vm_page_t pp; 1393 1394 /* 1395 * Ignore pages outside the parent object's range 1396 * and outside the parent object's mapping of the 1397 * backing object. 1398 * 1399 * note that we do not busy the backing object's 1400 * page. 1401 */ 1402 if ( 1403 p->pindex < backing_offset_index || 1404 new_pindex >= object->size 1405 ) { 1406 p = next; 1407 continue; 1408 } 1409 1410 /* 1411 * See if the parent has the page or if the parent's 1412 * object pager has the page. If the parent has the 1413 * page but the page is not valid, the parent's 1414 * object pager must have the page. 1415 * 1416 * If this fails, the parent does not completely shadow 1417 * the object and we might as well give up now. 1418 */ 1419 1420 pp = vm_page_lookup(object, new_pindex); 1421 if ( 1422 (pp == NULL || pp->valid == 0) && 1423 !vm_pager_has_page(object, new_pindex, NULL, NULL) 1424 ) { 1425 r = 0; 1426 break; 1427 } 1428 } 1429 1430 /* 1431 * Check for busy page 1432 */ 1433 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) { 1434 vm_page_t pp; 1435 1436 if (op & OBSC_COLLAPSE_NOWAIT) { 1437 if ((p->flags & PG_BUSY) || 1438 !p->valid || 1439 p->busy) { 1440 p = next; 1441 continue; 1442 } 1443 } else if (op & OBSC_COLLAPSE_WAIT) { 1444 if ((p->flags & PG_BUSY) || p->busy) { 1445 vm_page_lock_queues(); 1446 vm_page_flag_set(p, 1447 PG_WANTED | PG_REFERENCED); 1448 VM_OBJECT_UNLOCK(backing_object); 1449 VM_OBJECT_UNLOCK(object); 1450 msleep(p, &vm_page_queue_mtx, 1451 PDROP | PVM, "vmocol", 0); 1452 VM_OBJECT_LOCK(object); 1453 VM_OBJECT_LOCK(backing_object); 1454 /* 1455 * If we slept, anything could have 1456 * happened. Since the object is 1457 * marked dead, the backing offset 1458 * should not have changed so we 1459 * just restart our scan. 1460 */ 1461 p = TAILQ_FIRST(&backing_object->memq); 1462 continue; 1463 } 1464 } 1465 1466 KASSERT( 1467 p->object == backing_object, 1468 ("vm_object_backing_scan: object mismatch") 1469 ); 1470 1471 /* 1472 * Destroy any associated swap 1473 */ 1474 if (backing_object->type == OBJT_SWAP) { 1475 swap_pager_freespace( 1476 backing_object, 1477 p->pindex, 1478 1 1479 ); 1480 } 1481 1482 if ( 1483 p->pindex < backing_offset_index || 1484 new_pindex >= object->size 1485 ) { 1486 /* 1487 * Page is out of the parent object's range, we 1488 * can simply destroy it. 1489 */ 1490 vm_page_lock_queues(); 1491 pmap_remove_all(p); 1492 vm_page_free(p); 1493 vm_page_unlock_queues(); 1494 p = next; 1495 continue; 1496 } 1497 1498 pp = vm_page_lookup(object, new_pindex); 1499 if ( 1500 pp != NULL || 1501 vm_pager_has_page(object, new_pindex, NULL, NULL) 1502 ) { 1503 /* 1504 * page already exists in parent OR swap exists 1505 * for this location in the parent. Destroy 1506 * the original page from the backing object. 1507 * 1508 * Leave the parent's page alone 1509 */ 1510 vm_page_lock_queues(); 1511 pmap_remove_all(p); 1512 vm_page_free(p); 1513 vm_page_unlock_queues(); 1514 p = next; 1515 continue; 1516 } 1517 1518 /* 1519 * Page does not exist in parent, rename the 1520 * page from the backing object to the main object. 1521 * 1522 * If the page was mapped to a process, it can remain 1523 * mapped through the rename. 1524 */ 1525 vm_page_lock_queues(); 1526 vm_page_rename(p, object, new_pindex); 1527 vm_page_unlock_queues(); 1528 /* page automatically made dirty by rename */ 1529 } 1530 p = next; 1531 } 1532 return (r); 1533 } 1534 1535 1536 /* 1537 * this version of collapse allows the operation to occur earlier and 1538 * when paging_in_progress is true for an object... This is not a complete 1539 * operation, but should plug 99.9% of the rest of the leaks. 1540 */ 1541 static void 1542 vm_object_qcollapse(vm_object_t object) 1543 { 1544 vm_object_t backing_object = object->backing_object; 1545 1546 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1547 VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED); 1548 1549 if (backing_object->ref_count != 1) 1550 return; 1551 1552 vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT); 1553 } 1554 1555 /* 1556 * vm_object_collapse: 1557 * 1558 * Collapse an object with the object backing it. 1559 * Pages in the backing object are moved into the 1560 * parent, and the backing object is deallocated. 1561 */ 1562 void 1563 vm_object_collapse(vm_object_t object) 1564 { 1565 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1566 1567 while (TRUE) { 1568 vm_object_t backing_object; 1569 1570 /* 1571 * Verify that the conditions are right for collapse: 1572 * 1573 * The object exists and the backing object exists. 1574 */ 1575 if ((backing_object = object->backing_object) == NULL) 1576 break; 1577 1578 /* 1579 * we check the backing object first, because it is most likely 1580 * not collapsable. 1581 */ 1582 VM_OBJECT_LOCK(backing_object); 1583 if (backing_object->handle != NULL || 1584 (backing_object->type != OBJT_DEFAULT && 1585 backing_object->type != OBJT_SWAP) || 1586 (backing_object->flags & OBJ_DEAD) || 1587 object->handle != NULL || 1588 (object->type != OBJT_DEFAULT && 1589 object->type != OBJT_SWAP) || 1590 (object->flags & OBJ_DEAD)) { 1591 VM_OBJECT_UNLOCK(backing_object); 1592 break; 1593 } 1594 1595 if ( 1596 object->paging_in_progress != 0 || 1597 backing_object->paging_in_progress != 0 1598 ) { 1599 vm_object_qcollapse(object); 1600 VM_OBJECT_UNLOCK(backing_object); 1601 break; 1602 } 1603 /* 1604 * We know that we can either collapse the backing object (if 1605 * the parent is the only reference to it) or (perhaps) have 1606 * the parent bypass the object if the parent happens to shadow 1607 * all the resident pages in the entire backing object. 1608 * 1609 * This is ignoring pager-backed pages such as swap pages. 1610 * vm_object_backing_scan fails the shadowing test in this 1611 * case. 1612 */ 1613 if (backing_object->ref_count == 1) { 1614 /* 1615 * If there is exactly one reference to the backing 1616 * object, we can collapse it into the parent. 1617 */ 1618 vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT); 1619 1620 /* 1621 * Move the pager from backing_object to object. 1622 */ 1623 if (backing_object->type == OBJT_SWAP) { 1624 /* 1625 * swap_pager_copy() can sleep, in which case 1626 * the backing_object's and object's locks are 1627 * released and reacquired. 1628 */ 1629 swap_pager_copy( 1630 backing_object, 1631 object, 1632 OFF_TO_IDX(object->backing_object_offset), TRUE); 1633 } 1634 /* 1635 * Object now shadows whatever backing_object did. 1636 * Note that the reference to 1637 * backing_object->backing_object moves from within 1638 * backing_object to within object. 1639 */ 1640 LIST_REMOVE(object, shadow_list); 1641 backing_object->shadow_count--; 1642 backing_object->generation++; 1643 if (backing_object->backing_object) { 1644 VM_OBJECT_LOCK(backing_object->backing_object); 1645 LIST_REMOVE(backing_object, shadow_list); 1646 LIST_INSERT_HEAD( 1647 &backing_object->backing_object->shadow_head, 1648 object, shadow_list); 1649 /* 1650 * The shadow_count has not changed. 1651 */ 1652 backing_object->backing_object->generation++; 1653 VM_OBJECT_UNLOCK(backing_object->backing_object); 1654 } 1655 object->backing_object = backing_object->backing_object; 1656 object->backing_object_offset += 1657 backing_object->backing_object_offset; 1658 1659 /* 1660 * Discard backing_object. 1661 * 1662 * Since the backing object has no pages, no pager left, 1663 * and no object references within it, all that is 1664 * necessary is to dispose of it. 1665 */ 1666 KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object)); 1667 VM_OBJECT_UNLOCK(backing_object); 1668 1669 mtx_lock(&vm_object_list_mtx); 1670 TAILQ_REMOVE( 1671 &vm_object_list, 1672 backing_object, 1673 object_list 1674 ); 1675 mtx_unlock(&vm_object_list_mtx); 1676 1677 uma_zfree(obj_zone, backing_object); 1678 1679 object_collapses++; 1680 } else { 1681 vm_object_t new_backing_object; 1682 1683 /* 1684 * If we do not entirely shadow the backing object, 1685 * there is nothing we can do so we give up. 1686 */ 1687 if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) { 1688 VM_OBJECT_UNLOCK(backing_object); 1689 break; 1690 } 1691 1692 /* 1693 * Make the parent shadow the next object in the 1694 * chain. Deallocating backing_object will not remove 1695 * it, since its reference count is at least 2. 1696 */ 1697 LIST_REMOVE(object, shadow_list); 1698 backing_object->shadow_count--; 1699 backing_object->generation++; 1700 1701 new_backing_object = backing_object->backing_object; 1702 if ((object->backing_object = new_backing_object) != NULL) { 1703 VM_OBJECT_LOCK(new_backing_object); 1704 LIST_INSERT_HEAD( 1705 &new_backing_object->shadow_head, 1706 object, 1707 shadow_list 1708 ); 1709 new_backing_object->shadow_count++; 1710 new_backing_object->generation++; 1711 vm_object_reference_locked(new_backing_object); 1712 VM_OBJECT_UNLOCK(new_backing_object); 1713 object->backing_object_offset += 1714 backing_object->backing_object_offset; 1715 } 1716 1717 /* 1718 * Drop the reference count on backing_object. Since 1719 * its ref_count was at least 2, it will not vanish. 1720 */ 1721 backing_object->ref_count--; 1722 VM_OBJECT_UNLOCK(backing_object); 1723 object_bypasses++; 1724 } 1725 1726 /* 1727 * Try again with this object's new backing object. 1728 */ 1729 } 1730 } 1731 1732 /* 1733 * vm_object_page_remove: 1734 * 1735 * Removes all physical pages in the given range from the 1736 * object's list of pages. If the range's end is zero, all 1737 * physical pages from the range's start to the end of the object 1738 * are deleted. 1739 * 1740 * The object must be locked. 1741 */ 1742 void 1743 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 1744 boolean_t clean_only) 1745 { 1746 vm_page_t p, next; 1747 1748 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1749 if (object->resident_page_count == 0) 1750 return; 1751 1752 /* 1753 * Since physically-backed objects do not use managed pages, we can't 1754 * remove pages from the object (we must instead remove the page 1755 * references, and then destroy the object). 1756 */ 1757 KASSERT(object->type != OBJT_PHYS, 1758 ("attempt to remove pages from a physical object")); 1759 1760 vm_object_pip_add(object, 1); 1761 again: 1762 vm_page_lock_queues(); 1763 if ((p = TAILQ_FIRST(&object->memq)) != NULL) { 1764 if (p->pindex < start) { 1765 p = vm_page_splay(start, object->root); 1766 if ((object->root = p)->pindex < start) 1767 p = TAILQ_NEXT(p, listq); 1768 } 1769 } 1770 /* 1771 * Assert: the variable p is either (1) the page with the 1772 * least pindex greater than or equal to the parameter pindex 1773 * or (2) NULL. 1774 */ 1775 for (; 1776 p != NULL && (p->pindex < end || end == 0); 1777 p = next) { 1778 next = TAILQ_NEXT(p, listq); 1779 1780 if (p->wire_count != 0) { 1781 pmap_remove_all(p); 1782 if (!clean_only) 1783 p->valid = 0; 1784 continue; 1785 } 1786 if (vm_page_sleep_if_busy(p, TRUE, "vmopar")) 1787 goto again; 1788 if (clean_only && p->valid) { 1789 pmap_page_protect(p, VM_PROT_READ | VM_PROT_EXECUTE); 1790 if (p->valid & p->dirty) 1791 continue; 1792 } 1793 pmap_remove_all(p); 1794 vm_page_free(p); 1795 } 1796 vm_page_unlock_queues(); 1797 vm_object_pip_wakeup(object); 1798 } 1799 1800 /* 1801 * Routine: vm_object_coalesce 1802 * Function: Coalesces two objects backing up adjoining 1803 * regions of memory into a single object. 1804 * 1805 * returns TRUE if objects were combined. 1806 * 1807 * NOTE: Only works at the moment if the second object is NULL - 1808 * if it's not, which object do we lock first? 1809 * 1810 * Parameters: 1811 * prev_object First object to coalesce 1812 * prev_offset Offset into prev_object 1813 * prev_size Size of reference to prev_object 1814 * next_size Size of reference to the second object 1815 * 1816 * Conditions: 1817 * The object must *not* be locked. 1818 */ 1819 boolean_t 1820 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, 1821 vm_size_t prev_size, vm_size_t next_size) 1822 { 1823 vm_pindex_t next_pindex; 1824 1825 if (prev_object == NULL) 1826 return (TRUE); 1827 VM_OBJECT_LOCK(prev_object); 1828 if (prev_object->type != OBJT_DEFAULT && 1829 prev_object->type != OBJT_SWAP) { 1830 VM_OBJECT_UNLOCK(prev_object); 1831 return (FALSE); 1832 } 1833 1834 /* 1835 * Try to collapse the object first 1836 */ 1837 vm_object_collapse(prev_object); 1838 1839 /* 1840 * Can't coalesce if: . more than one reference . paged out . shadows 1841 * another object . has a copy elsewhere (any of which mean that the 1842 * pages not mapped to prev_entry may be in use anyway) 1843 */ 1844 if (prev_object->backing_object != NULL) { 1845 VM_OBJECT_UNLOCK(prev_object); 1846 return (FALSE); 1847 } 1848 1849 prev_size >>= PAGE_SHIFT; 1850 next_size >>= PAGE_SHIFT; 1851 next_pindex = OFF_TO_IDX(prev_offset) + prev_size; 1852 1853 if ((prev_object->ref_count > 1) && 1854 (prev_object->size != next_pindex)) { 1855 VM_OBJECT_UNLOCK(prev_object); 1856 return (FALSE); 1857 } 1858 1859 /* 1860 * Remove any pages that may still be in the object from a previous 1861 * deallocation. 1862 */ 1863 if (next_pindex < prev_object->size) { 1864 vm_object_page_remove(prev_object, 1865 next_pindex, 1866 next_pindex + next_size, FALSE); 1867 if (prev_object->type == OBJT_SWAP) 1868 swap_pager_freespace(prev_object, 1869 next_pindex, next_size); 1870 } 1871 1872 /* 1873 * Extend the object if necessary. 1874 */ 1875 if (next_pindex + next_size > prev_object->size) 1876 prev_object->size = next_pindex + next_size; 1877 1878 VM_OBJECT_UNLOCK(prev_object); 1879 return (TRUE); 1880 } 1881 1882 void 1883 vm_object_set_writeable_dirty(vm_object_t object) 1884 { 1885 struct vnode *vp; 1886 1887 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1888 if ((object->flags & (OBJ_MIGHTBEDIRTY|OBJ_WRITEABLE)) == 1889 (OBJ_MIGHTBEDIRTY|OBJ_WRITEABLE)) 1890 return; 1891 vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY); 1892 if (object->type == OBJT_VNODE && 1893 (vp = (struct vnode *)object->handle) != NULL) { 1894 VI_LOCK(vp); 1895 vp->v_iflag |= VI_OBJDIRTY; 1896 VI_UNLOCK(vp); 1897 } 1898 } 1899 1900 #include "opt_ddb.h" 1901 #ifdef DDB 1902 #include <sys/kernel.h> 1903 1904 #include <sys/cons.h> 1905 1906 #include <ddb/ddb.h> 1907 1908 static int 1909 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 1910 { 1911 vm_map_t tmpm; 1912 vm_map_entry_t tmpe; 1913 vm_object_t obj; 1914 int entcount; 1915 1916 if (map == 0) 1917 return 0; 1918 1919 if (entry == 0) { 1920 tmpe = map->header.next; 1921 entcount = map->nentries; 1922 while (entcount-- && (tmpe != &map->header)) { 1923 if (_vm_object_in_map(map, object, tmpe)) { 1924 return 1; 1925 } 1926 tmpe = tmpe->next; 1927 } 1928 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 1929 tmpm = entry->object.sub_map; 1930 tmpe = tmpm->header.next; 1931 entcount = tmpm->nentries; 1932 while (entcount-- && tmpe != &tmpm->header) { 1933 if (_vm_object_in_map(tmpm, object, tmpe)) { 1934 return 1; 1935 } 1936 tmpe = tmpe->next; 1937 } 1938 } else if ((obj = entry->object.vm_object) != NULL) { 1939 for (; obj; obj = obj->backing_object) 1940 if (obj == object) { 1941 return 1; 1942 } 1943 } 1944 return 0; 1945 } 1946 1947 static int 1948 vm_object_in_map(vm_object_t object) 1949 { 1950 struct proc *p; 1951 1952 /* sx_slock(&allproc_lock); */ 1953 LIST_FOREACH(p, &allproc, p_list) { 1954 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 1955 continue; 1956 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) { 1957 /* sx_sunlock(&allproc_lock); */ 1958 return 1; 1959 } 1960 } 1961 /* sx_sunlock(&allproc_lock); */ 1962 if (_vm_object_in_map(kernel_map, object, 0)) 1963 return 1; 1964 if (_vm_object_in_map(kmem_map, object, 0)) 1965 return 1; 1966 if (_vm_object_in_map(pager_map, object, 0)) 1967 return 1; 1968 if (_vm_object_in_map(buffer_map, object, 0)) 1969 return 1; 1970 return 0; 1971 } 1972 1973 DB_SHOW_COMMAND(vmochk, vm_object_check) 1974 { 1975 vm_object_t object; 1976 1977 /* 1978 * make sure that internal objs are in a map somewhere 1979 * and none have zero ref counts. 1980 */ 1981 TAILQ_FOREACH(object, &vm_object_list, object_list) { 1982 if (object->handle == NULL && 1983 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 1984 if (object->ref_count == 0) { 1985 db_printf("vmochk: internal obj has zero ref count: %ld\n", 1986 (long)object->size); 1987 } 1988 if (!vm_object_in_map(object)) { 1989 db_printf( 1990 "vmochk: internal obj is not in a map: " 1991 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 1992 object->ref_count, (u_long)object->size, 1993 (u_long)object->size, 1994 (void *)object->backing_object); 1995 } 1996 } 1997 } 1998 } 1999 2000 /* 2001 * vm_object_print: [ debug ] 2002 */ 2003 DB_SHOW_COMMAND(object, vm_object_print_static) 2004 { 2005 /* XXX convert args. */ 2006 vm_object_t object = (vm_object_t)addr; 2007 boolean_t full = have_addr; 2008 2009 vm_page_t p; 2010 2011 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2012 #define count was_count 2013 2014 int count; 2015 2016 if (object == NULL) 2017 return; 2018 2019 db_iprintf( 2020 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x\n", 2021 object, (int)object->type, (uintmax_t)object->size, 2022 object->resident_page_count, object->ref_count, object->flags); 2023 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n", 2024 object->shadow_count, 2025 object->backing_object ? object->backing_object->ref_count : 0, 2026 object->backing_object, (uintmax_t)object->backing_object_offset); 2027 2028 if (!full) 2029 return; 2030 2031 db_indent += 2; 2032 count = 0; 2033 TAILQ_FOREACH(p, &object->memq, listq) { 2034 if (count == 0) 2035 db_iprintf("memory:="); 2036 else if (count == 6) { 2037 db_printf("\n"); 2038 db_iprintf(" ..."); 2039 count = 0; 2040 } else 2041 db_printf(","); 2042 count++; 2043 2044 db_printf("(off=0x%jx,page=0x%jx)", 2045 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p)); 2046 } 2047 if (count != 0) 2048 db_printf("\n"); 2049 db_indent -= 2; 2050 } 2051 2052 /* XXX. */ 2053 #undef count 2054 2055 /* XXX need this non-static entry for calling from vm_map_print. */ 2056 void 2057 vm_object_print( 2058 /* db_expr_t */ long addr, 2059 boolean_t have_addr, 2060 /* db_expr_t */ long count, 2061 char *modif) 2062 { 2063 vm_object_print_static(addr, have_addr, count, modif); 2064 } 2065 2066 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 2067 { 2068 vm_object_t object; 2069 int nl = 0; 2070 int c; 2071 2072 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2073 vm_pindex_t idx, fidx; 2074 vm_pindex_t osize; 2075 vm_paddr_t pa = -1, padiff; 2076 int rcount; 2077 vm_page_t m; 2078 2079 db_printf("new object: %p\n", (void *)object); 2080 if (nl > 18) { 2081 c = cngetc(); 2082 if (c != ' ') 2083 return; 2084 nl = 0; 2085 } 2086 nl++; 2087 rcount = 0; 2088 fidx = 0; 2089 osize = object->size; 2090 if (osize > 128) 2091 osize = 128; 2092 for (idx = 0; idx < osize; idx++) { 2093 m = vm_page_lookup(object, idx); 2094 if (m == NULL) { 2095 if (rcount) { 2096 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2097 (long)fidx, rcount, (long)pa); 2098 if (nl > 18) { 2099 c = cngetc(); 2100 if (c != ' ') 2101 return; 2102 nl = 0; 2103 } 2104 nl++; 2105 rcount = 0; 2106 } 2107 continue; 2108 } 2109 2110 2111 if (rcount && 2112 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2113 ++rcount; 2114 continue; 2115 } 2116 if (rcount) { 2117 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m); 2118 padiff >>= PAGE_SHIFT; 2119 padiff &= PQ_L2_MASK; 2120 if (padiff == 0) { 2121 pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE; 2122 ++rcount; 2123 continue; 2124 } 2125 db_printf(" index(%ld)run(%d)pa(0x%lx)", 2126 (long)fidx, rcount, (long)pa); 2127 db_printf("pd(%ld)\n", (long)padiff); 2128 if (nl > 18) { 2129 c = cngetc(); 2130 if (c != ' ') 2131 return; 2132 nl = 0; 2133 } 2134 nl++; 2135 } 2136 fidx = idx; 2137 pa = VM_PAGE_TO_PHYS(m); 2138 rcount = 1; 2139 } 2140 if (rcount) { 2141 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2142 (long)fidx, rcount, (long)pa); 2143 if (nl > 18) { 2144 c = cngetc(); 2145 if (c != ' ') 2146 return; 2147 nl = 0; 2148 } 2149 nl++; 2150 } 2151 } 2152 } 2153 #endif /* DDB */ 2154