1 /*-
2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3 *
4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * The Mach Operating System project at Carnegie-Mellon University.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
53 * School of Computer Science
54 * Carnegie Mellon University
55 * Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61 /*
62 * Virtual memory object module.
63 */
64
65 #include "opt_vm.h"
66
67 #include <sys/systm.h>
68 #include <sys/blockcount.h>
69 #include <sys/conf.h>
70 #include <sys/cpuset.h>
71 #include <sys/ipc.h>
72 #include <sys/jail.h>
73 #include <sys/limits.h>
74 #include <sys/lock.h>
75 #include <sys/mman.h>
76 #include <sys/mount.h>
77 #include <sys/kernel.h>
78 #include <sys/mutex.h>
79 #include <sys/pctrie.h>
80 #include <sys/proc.h>
81 #include <sys/refcount.h>
82 #include <sys/shm.h>
83 #include <sys/sx.h>
84 #include <sys/sysctl.h>
85 #include <sys/resourcevar.h>
86 #include <sys/refcount.h>
87 #include <sys/rwlock.h>
88 #include <sys/user.h>
89 #include <sys/vnode.h>
90 #include <sys/vmmeter.h>
91
92 #include <vm/vm.h>
93 #include <vm/vm_param.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_pageout.h>
99 #include <vm/vm_pager.h>
100 #include <vm/vm_phys.h>
101 #include <vm/vm_pagequeue.h>
102 #include <vm/swap_pager.h>
103 #include <vm/vm_kern.h>
104 #include <vm/vm_extern.h>
105 #include <vm/vm_radix.h>
106 #include <vm/vm_reserv.h>
107 #include <vm/uma.h>
108
109 static int old_msync;
110 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
111 "Use old (insecure) msync behavior");
112
113 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
114 boolean_t *allclean);
115 static void vm_object_backing_remove(vm_object_t object);
116
117 /*
118 * Virtual memory objects maintain the actual data
119 * associated with allocated virtual memory. A given
120 * page of memory exists within exactly one object.
121 *
122 * An object is only deallocated when all "references"
123 * are given up. Only one "reference" to a given
124 * region of an object should be writeable.
125 *
126 * Associated with each object is a list of all resident
127 * memory pages belonging to that object; this list is
128 * maintained by the "vm_page" module, and locked by the object's
129 * lock.
130 *
131 * Each object also records a "pager" routine which is
132 * used to retrieve (and store) pages to the proper backing
133 * storage. In addition, objects may be backed by other
134 * objects from which they were virtual-copied.
135 *
136 * The only items within the object structure which are
137 * modified after time of creation are:
138 * reference count locked by object's lock
139 * pager routine locked by object's lock
140 *
141 */
142
143 struct object_q vm_object_list;
144 struct mtx vm_object_list_mtx; /* lock for object list and count */
145
146 struct vm_object kernel_object_store;
147
148 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
149 "VM object stats");
150
151 static COUNTER_U64_DEFINE_EARLY(object_collapses);
152 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
153 &object_collapses,
154 "VM object collapses");
155
156 static COUNTER_U64_DEFINE_EARLY(object_bypasses);
157 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
158 &object_bypasses,
159 "VM object bypasses");
160
161 static COUNTER_U64_DEFINE_EARLY(object_collapse_waits);
162 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapse_waits, CTLFLAG_RD,
163 &object_collapse_waits,
164 "Number of sleeps for collapse");
165
166 static uma_zone_t obj_zone;
167
168 static int vm_object_zinit(void *mem, int size, int flags);
169
170 #ifdef INVARIANTS
171 static void vm_object_zdtor(void *mem, int size, void *arg);
172
173 static void
vm_object_zdtor(void * mem,int size,void * arg)174 vm_object_zdtor(void *mem, int size, void *arg)
175 {
176 vm_object_t object;
177
178 object = (vm_object_t)mem;
179 KASSERT(object->ref_count == 0,
180 ("object %p ref_count = %d", object, object->ref_count));
181 KASSERT(vm_radix_is_empty(&object->rtree),
182 ("object %p has resident pages in its trie", object));
183 #if VM_NRESERVLEVEL > 0
184 KASSERT(LIST_EMPTY(&object->rvq),
185 ("object %p has reservations",
186 object));
187 #endif
188 KASSERT(!vm_object_busied(object),
189 ("object %p busy = %d", object, blockcount_read(&object->busy)));
190 KASSERT(object->resident_page_count == 0,
191 ("object %p resident_page_count = %d",
192 object, object->resident_page_count));
193 KASSERT(atomic_load_int(&object->shadow_count) == 0,
194 ("object %p shadow_count = %d",
195 object, atomic_load_int(&object->shadow_count)));
196 KASSERT(object->type == OBJT_DEAD,
197 ("object %p has non-dead type %d",
198 object, object->type));
199 KASSERT(object->cred == NULL,
200 ("object %p has non-zero charge cred %p",
201 object, object->cred));
202 }
203 #endif
204
205 static int
vm_object_zinit(void * mem,int size,int flags)206 vm_object_zinit(void *mem, int size, int flags)
207 {
208 vm_object_t object;
209
210 object = (vm_object_t)mem;
211 rw_init_flags(&object->lock, "vmobject", RW_DUPOK | RW_NEW);
212
213 /* These are true for any object that has been freed */
214 object->type = OBJT_DEAD;
215 vm_radix_init(&object->rtree);
216 refcount_init(&object->ref_count, 0);
217 blockcount_init(&object->paging_in_progress);
218 blockcount_init(&object->busy);
219 object->resident_page_count = 0;
220 atomic_store_int(&object->shadow_count, 0);
221 object->flags = OBJ_DEAD;
222
223 mtx_lock(&vm_object_list_mtx);
224 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
225 mtx_unlock(&vm_object_list_mtx);
226 return (0);
227 }
228
229 static void
_vm_object_allocate(objtype_t type,vm_pindex_t size,u_short flags,vm_object_t object,void * handle)230 _vm_object_allocate(objtype_t type, vm_pindex_t size, u_short flags,
231 vm_object_t object, void *handle)
232 {
233 LIST_INIT(&object->shadow_head);
234
235 object->type = type;
236 object->flags = flags;
237 if ((flags & OBJ_SWAP) != 0) {
238 pctrie_init(&object->un_pager.swp.swp_blks);
239 object->un_pager.swp.writemappings = 0;
240 }
241
242 /*
243 * Ensure that swap_pager_swapoff() iteration over object_list
244 * sees up to date type and pctrie head if it observed
245 * non-dead object.
246 */
247 atomic_thread_fence_rel();
248
249 object->pg_color = 0;
250 object->size = size;
251 object->domain.dr_policy = NULL;
252 object->generation = 1;
253 object->cleangeneration = 1;
254 refcount_init(&object->ref_count, 1);
255 object->memattr = VM_MEMATTR_DEFAULT;
256 object->cred = NULL;
257 object->handle = handle;
258 object->backing_object = NULL;
259 object->backing_object_offset = (vm_ooffset_t) 0;
260 #if VM_NRESERVLEVEL > 0
261 LIST_INIT(&object->rvq);
262 #endif
263 umtx_shm_object_init(object);
264 }
265
266 /*
267 * vm_object_init:
268 *
269 * Initialize the VM objects module.
270 */
271 void
vm_object_init(void)272 vm_object_init(void)
273 {
274 TAILQ_INIT(&vm_object_list);
275 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
276
277 rw_init(&kernel_object->lock, "kernel vm object");
278 vm_radix_init(&kernel_object->rtree);
279 _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
280 VM_MIN_KERNEL_ADDRESS), OBJ_UNMANAGED, kernel_object, NULL);
281 #if VM_NRESERVLEVEL > 0
282 kernel_object->flags |= OBJ_COLORED;
283 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
284 #endif
285 kernel_object->un_pager.phys.ops = &default_phys_pg_ops;
286
287 /*
288 * The lock portion of struct vm_object must be type stable due
289 * to vm_pageout_fallback_object_lock locking a vm object
290 * without holding any references to it.
291 *
292 * paging_in_progress is valid always. Lockless references to
293 * the objects may acquire pip and then check OBJ_DEAD.
294 */
295 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
296 #ifdef INVARIANTS
297 vm_object_zdtor,
298 #else
299 NULL,
300 #endif
301 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
302
303 vm_radix_zinit();
304 }
305
306 void
vm_object_clear_flag(vm_object_t object,u_short bits)307 vm_object_clear_flag(vm_object_t object, u_short bits)
308 {
309
310 VM_OBJECT_ASSERT_WLOCKED(object);
311 object->flags &= ~bits;
312 }
313
314 /*
315 * Sets the default memory attribute for the specified object. Pages
316 * that are allocated to this object are by default assigned this memory
317 * attribute.
318 *
319 * Presently, this function must be called before any pages are allocated
320 * to the object. In the future, this requirement may be relaxed for
321 * "default" and "swap" objects.
322 */
323 int
vm_object_set_memattr(vm_object_t object,vm_memattr_t memattr)324 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
325 {
326
327 VM_OBJECT_ASSERT_WLOCKED(object);
328
329 if (object->type == OBJT_DEAD)
330 return (KERN_INVALID_ARGUMENT);
331 if (!vm_radix_is_empty(&object->rtree))
332 return (KERN_FAILURE);
333
334 object->memattr = memattr;
335 return (KERN_SUCCESS);
336 }
337
338 void
vm_object_pip_add(vm_object_t object,short i)339 vm_object_pip_add(vm_object_t object, short i)
340 {
341
342 if (i > 0)
343 blockcount_acquire(&object->paging_in_progress, i);
344 }
345
346 void
vm_object_pip_wakeup(vm_object_t object)347 vm_object_pip_wakeup(vm_object_t object)
348 {
349
350 vm_object_pip_wakeupn(object, 1);
351 }
352
353 void
vm_object_pip_wakeupn(vm_object_t object,short i)354 vm_object_pip_wakeupn(vm_object_t object, short i)
355 {
356
357 if (i > 0)
358 blockcount_release(&object->paging_in_progress, i);
359 }
360
361 /*
362 * Atomically drop the object lock and wait for pip to drain. This protects
363 * from sleep/wakeup races due to identity changes. The lock is not re-acquired
364 * on return.
365 */
366 static void
vm_object_pip_sleep(vm_object_t object,const char * waitid)367 vm_object_pip_sleep(vm_object_t object, const char *waitid)
368 {
369
370 (void)blockcount_sleep(&object->paging_in_progress, &object->lock,
371 waitid, PVM | PDROP);
372 }
373
374 void
vm_object_pip_wait(vm_object_t object,const char * waitid)375 vm_object_pip_wait(vm_object_t object, const char *waitid)
376 {
377
378 VM_OBJECT_ASSERT_WLOCKED(object);
379
380 blockcount_wait(&object->paging_in_progress, &object->lock, waitid,
381 PVM);
382 }
383
384 void
vm_object_pip_wait_unlocked(vm_object_t object,const char * waitid)385 vm_object_pip_wait_unlocked(vm_object_t object, const char *waitid)
386 {
387
388 VM_OBJECT_ASSERT_UNLOCKED(object);
389
390 blockcount_wait(&object->paging_in_progress, NULL, waitid, PVM);
391 }
392
393 /*
394 * vm_object_allocate:
395 *
396 * Returns a new object with the given size.
397 */
398 vm_object_t
vm_object_allocate(objtype_t type,vm_pindex_t size)399 vm_object_allocate(objtype_t type, vm_pindex_t size)
400 {
401 vm_object_t object;
402 u_short flags;
403
404 switch (type) {
405 case OBJT_DEAD:
406 panic("vm_object_allocate: can't create OBJT_DEAD");
407 case OBJT_SWAP:
408 flags = OBJ_COLORED | OBJ_SWAP;
409 break;
410 case OBJT_DEVICE:
411 case OBJT_SG:
412 flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
413 break;
414 case OBJT_MGTDEVICE:
415 flags = OBJ_FICTITIOUS;
416 break;
417 case OBJT_PHYS:
418 flags = OBJ_UNMANAGED;
419 break;
420 case OBJT_VNODE:
421 flags = 0;
422 break;
423 default:
424 panic("vm_object_allocate: type %d is undefined or dynamic",
425 type);
426 }
427 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
428 _vm_object_allocate(type, size, flags, object, NULL);
429
430 return (object);
431 }
432
433 vm_object_t
vm_object_allocate_dyn(objtype_t dyntype,vm_pindex_t size,u_short flags)434 vm_object_allocate_dyn(objtype_t dyntype, vm_pindex_t size, u_short flags)
435 {
436 vm_object_t object;
437
438 MPASS(dyntype >= OBJT_FIRST_DYN /* && dyntype < nitems(pagertab) */);
439 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
440 _vm_object_allocate(dyntype, size, flags, object, NULL);
441
442 return (object);
443 }
444
445 /*
446 * vm_object_allocate_anon:
447 *
448 * Returns a new default object of the given size and marked as
449 * anonymous memory for special split/collapse handling. Color
450 * to be initialized by the caller.
451 */
452 vm_object_t
vm_object_allocate_anon(vm_pindex_t size,vm_object_t backing_object,struct ucred * cred)453 vm_object_allocate_anon(vm_pindex_t size, vm_object_t backing_object,
454 struct ucred *cred)
455 {
456 vm_object_t handle, object;
457
458 if (backing_object == NULL)
459 handle = NULL;
460 else if ((backing_object->flags & OBJ_ANON) != 0)
461 handle = backing_object->handle;
462 else
463 handle = backing_object;
464 object = uma_zalloc(obj_zone, M_WAITOK);
465 _vm_object_allocate(OBJT_SWAP, size,
466 OBJ_ANON | OBJ_ONEMAPPING | OBJ_SWAP, object, handle);
467 object->cred = cred;
468 return (object);
469 }
470
471 static void
vm_object_reference_vnode(vm_object_t object)472 vm_object_reference_vnode(vm_object_t object)
473 {
474 u_int old;
475
476 /*
477 * vnode objects need the lock for the first reference
478 * to serialize with vnode_object_deallocate().
479 */
480 if (!refcount_acquire_if_gt(&object->ref_count, 0)) {
481 VM_OBJECT_RLOCK(object);
482 old = refcount_acquire(&object->ref_count);
483 if (object->type == OBJT_VNODE && old == 0)
484 vref(object->handle);
485 VM_OBJECT_RUNLOCK(object);
486 }
487 }
488
489 /*
490 * vm_object_reference:
491 *
492 * Acquires a reference to the given object.
493 */
494 void
vm_object_reference(vm_object_t object)495 vm_object_reference(vm_object_t object)
496 {
497
498 if (object == NULL)
499 return;
500
501 if (object->type == OBJT_VNODE)
502 vm_object_reference_vnode(object);
503 else
504 refcount_acquire(&object->ref_count);
505 KASSERT((object->flags & OBJ_DEAD) == 0,
506 ("vm_object_reference: Referenced dead object."));
507 }
508
509 /*
510 * vm_object_reference_locked:
511 *
512 * Gets another reference to the given object.
513 *
514 * The object must be locked.
515 */
516 void
vm_object_reference_locked(vm_object_t object)517 vm_object_reference_locked(vm_object_t object)
518 {
519 u_int old;
520
521 VM_OBJECT_ASSERT_LOCKED(object);
522 old = refcount_acquire(&object->ref_count);
523 if (object->type == OBJT_VNODE && old == 0)
524 vref(object->handle);
525 KASSERT((object->flags & OBJ_DEAD) == 0,
526 ("vm_object_reference: Referenced dead object."));
527 }
528
529 /*
530 * Handle deallocating an object of type OBJT_VNODE.
531 */
532 static void
vm_object_deallocate_vnode(vm_object_t object)533 vm_object_deallocate_vnode(vm_object_t object)
534 {
535 struct vnode *vp = (struct vnode *) object->handle;
536 bool last;
537
538 KASSERT(object->type == OBJT_VNODE,
539 ("vm_object_deallocate_vnode: not a vnode object"));
540 KASSERT(vp != NULL, ("vm_object_deallocate_vnode: missing vp"));
541
542 /* Object lock to protect handle lookup. */
543 last = refcount_release(&object->ref_count);
544 VM_OBJECT_RUNLOCK(object);
545
546 if (!last)
547 return;
548
549 if (!umtx_shm_vnobj_persistent)
550 umtx_shm_object_terminated(object);
551
552 /* vrele may need the vnode lock. */
553 vrele(vp);
554 }
555
556 /*
557 * We dropped a reference on an object and discovered that it had a
558 * single remaining shadow. This is a sibling of the reference we
559 * dropped. Attempt to collapse the sibling and backing object.
560 */
561 static vm_object_t
vm_object_deallocate_anon(vm_object_t backing_object)562 vm_object_deallocate_anon(vm_object_t backing_object)
563 {
564 vm_object_t object;
565
566 /* Fetch the final shadow. */
567 object = LIST_FIRST(&backing_object->shadow_head);
568 KASSERT(object != NULL &&
569 atomic_load_int(&backing_object->shadow_count) == 1,
570 ("vm_object_anon_deallocate: ref_count: %d, shadow_count: %d",
571 backing_object->ref_count,
572 atomic_load_int(&backing_object->shadow_count)));
573 KASSERT((object->flags & OBJ_ANON) != 0,
574 ("invalid shadow object %p", object));
575
576 if (!VM_OBJECT_TRYWLOCK(object)) {
577 /*
578 * Prevent object from disappearing since we do not have a
579 * reference.
580 */
581 vm_object_pip_add(object, 1);
582 VM_OBJECT_WUNLOCK(backing_object);
583 VM_OBJECT_WLOCK(object);
584 vm_object_pip_wakeup(object);
585 } else
586 VM_OBJECT_WUNLOCK(backing_object);
587
588 /*
589 * Check for a collapse/terminate race with the last reference holder.
590 */
591 if ((object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) != 0 ||
592 !refcount_acquire_if_not_zero(&object->ref_count)) {
593 VM_OBJECT_WUNLOCK(object);
594 return (NULL);
595 }
596 backing_object = object->backing_object;
597 if (backing_object != NULL && (backing_object->flags & OBJ_ANON) != 0)
598 vm_object_collapse(object);
599 VM_OBJECT_WUNLOCK(object);
600
601 return (object);
602 }
603
604 /*
605 * vm_object_deallocate:
606 *
607 * Release a reference to the specified object,
608 * gained either through a vm_object_allocate
609 * or a vm_object_reference call. When all references
610 * are gone, storage associated with this object
611 * may be relinquished.
612 *
613 * No object may be locked.
614 */
615 void
vm_object_deallocate(vm_object_t object)616 vm_object_deallocate(vm_object_t object)
617 {
618 vm_object_t temp;
619 bool released;
620
621 while (object != NULL) {
622 /*
623 * If the reference count goes to 0 we start calling
624 * vm_object_terminate() on the object chain. A ref count
625 * of 1 may be a special case depending on the shadow count
626 * being 0 or 1. These cases require a write lock on the
627 * object.
628 */
629 if ((object->flags & OBJ_ANON) == 0)
630 released = refcount_release_if_gt(&object->ref_count, 1);
631 else
632 released = refcount_release_if_gt(&object->ref_count, 2);
633 if (released)
634 return;
635
636 if (object->type == OBJT_VNODE) {
637 VM_OBJECT_RLOCK(object);
638 if (object->type == OBJT_VNODE) {
639 vm_object_deallocate_vnode(object);
640 return;
641 }
642 VM_OBJECT_RUNLOCK(object);
643 }
644
645 VM_OBJECT_WLOCK(object);
646 KASSERT(object->ref_count > 0,
647 ("vm_object_deallocate: object deallocated too many times: %d",
648 object->type));
649
650 /*
651 * If this is not the final reference to an anonymous
652 * object we may need to collapse the shadow chain.
653 */
654 if (!refcount_release(&object->ref_count)) {
655 if (object->ref_count > 1 ||
656 atomic_load_int(&object->shadow_count) == 0) {
657 if ((object->flags & OBJ_ANON) != 0 &&
658 object->ref_count == 1)
659 vm_object_set_flag(object,
660 OBJ_ONEMAPPING);
661 VM_OBJECT_WUNLOCK(object);
662 return;
663 }
664
665 /* Handle collapsing last ref on anonymous objects. */
666 object = vm_object_deallocate_anon(object);
667 continue;
668 }
669
670 /*
671 * Handle the final reference to an object. We restart
672 * the loop with the backing object to avoid recursion.
673 */
674 umtx_shm_object_terminated(object);
675 temp = object->backing_object;
676 if (temp != NULL) {
677 KASSERT(object->type == OBJT_SWAP,
678 ("shadowed tmpfs v_object 2 %p", object));
679 vm_object_backing_remove(object);
680 }
681
682 KASSERT((object->flags & OBJ_DEAD) == 0,
683 ("vm_object_deallocate: Terminating dead object."));
684 vm_object_set_flag(object, OBJ_DEAD);
685 vm_object_terminate(object);
686 object = temp;
687 }
688 }
689
690 void
vm_object_destroy(vm_object_t object)691 vm_object_destroy(vm_object_t object)
692 {
693 uma_zfree(obj_zone, object);
694 }
695
696 static void
vm_object_sub_shadow(vm_object_t object)697 vm_object_sub_shadow(vm_object_t object)
698 {
699 KASSERT(object->shadow_count >= 1,
700 ("object %p sub_shadow count zero", object));
701 atomic_subtract_int(&object->shadow_count, 1);
702 }
703
704 static void
vm_object_backing_remove_locked(vm_object_t object)705 vm_object_backing_remove_locked(vm_object_t object)
706 {
707 vm_object_t backing_object;
708
709 backing_object = object->backing_object;
710 VM_OBJECT_ASSERT_WLOCKED(object);
711 VM_OBJECT_ASSERT_WLOCKED(backing_object);
712
713 KASSERT((object->flags & OBJ_COLLAPSING) == 0,
714 ("vm_object_backing_remove: Removing collapsing object."));
715
716 vm_object_sub_shadow(backing_object);
717 if ((object->flags & OBJ_SHADOWLIST) != 0) {
718 LIST_REMOVE(object, shadow_list);
719 vm_object_clear_flag(object, OBJ_SHADOWLIST);
720 }
721 object->backing_object = NULL;
722 }
723
724 static void
vm_object_backing_remove(vm_object_t object)725 vm_object_backing_remove(vm_object_t object)
726 {
727 vm_object_t backing_object;
728
729 VM_OBJECT_ASSERT_WLOCKED(object);
730
731 backing_object = object->backing_object;
732 if ((object->flags & OBJ_SHADOWLIST) != 0) {
733 VM_OBJECT_WLOCK(backing_object);
734 vm_object_backing_remove_locked(object);
735 VM_OBJECT_WUNLOCK(backing_object);
736 } else {
737 object->backing_object = NULL;
738 vm_object_sub_shadow(backing_object);
739 }
740 }
741
742 static void
vm_object_backing_insert_locked(vm_object_t object,vm_object_t backing_object)743 vm_object_backing_insert_locked(vm_object_t object, vm_object_t backing_object)
744 {
745
746 VM_OBJECT_ASSERT_WLOCKED(object);
747
748 atomic_add_int(&backing_object->shadow_count, 1);
749 if ((backing_object->flags & OBJ_ANON) != 0) {
750 VM_OBJECT_ASSERT_WLOCKED(backing_object);
751 LIST_INSERT_HEAD(&backing_object->shadow_head, object,
752 shadow_list);
753 vm_object_set_flag(object, OBJ_SHADOWLIST);
754 }
755 object->backing_object = backing_object;
756 }
757
758 static void
vm_object_backing_insert(vm_object_t object,vm_object_t backing_object)759 vm_object_backing_insert(vm_object_t object, vm_object_t backing_object)
760 {
761
762 VM_OBJECT_ASSERT_WLOCKED(object);
763
764 if ((backing_object->flags & OBJ_ANON) != 0) {
765 VM_OBJECT_WLOCK(backing_object);
766 vm_object_backing_insert_locked(object, backing_object);
767 VM_OBJECT_WUNLOCK(backing_object);
768 } else {
769 object->backing_object = backing_object;
770 atomic_add_int(&backing_object->shadow_count, 1);
771 }
772 }
773
774 /*
775 * Insert an object into a backing_object's shadow list with an additional
776 * reference to the backing_object added.
777 */
778 static void
vm_object_backing_insert_ref(vm_object_t object,vm_object_t backing_object)779 vm_object_backing_insert_ref(vm_object_t object, vm_object_t backing_object)
780 {
781
782 VM_OBJECT_ASSERT_WLOCKED(object);
783
784 if ((backing_object->flags & OBJ_ANON) != 0) {
785 VM_OBJECT_WLOCK(backing_object);
786 KASSERT((backing_object->flags & OBJ_DEAD) == 0,
787 ("shadowing dead anonymous object"));
788 vm_object_reference_locked(backing_object);
789 vm_object_backing_insert_locked(object, backing_object);
790 vm_object_clear_flag(backing_object, OBJ_ONEMAPPING);
791 VM_OBJECT_WUNLOCK(backing_object);
792 } else {
793 vm_object_reference(backing_object);
794 atomic_add_int(&backing_object->shadow_count, 1);
795 object->backing_object = backing_object;
796 }
797 }
798
799 /*
800 * Transfer a backing reference from backing_object to object.
801 */
802 static void
vm_object_backing_transfer(vm_object_t object,vm_object_t backing_object)803 vm_object_backing_transfer(vm_object_t object, vm_object_t backing_object)
804 {
805 vm_object_t new_backing_object;
806
807 /*
808 * Note that the reference to backing_object->backing_object
809 * moves from within backing_object to within object.
810 */
811 vm_object_backing_remove_locked(object);
812 new_backing_object = backing_object->backing_object;
813 if (new_backing_object == NULL)
814 return;
815 if ((new_backing_object->flags & OBJ_ANON) != 0) {
816 VM_OBJECT_WLOCK(new_backing_object);
817 vm_object_backing_remove_locked(backing_object);
818 vm_object_backing_insert_locked(object, new_backing_object);
819 VM_OBJECT_WUNLOCK(new_backing_object);
820 } else {
821 /*
822 * shadow_count for new_backing_object is left
823 * unchanged, its reference provided by backing_object
824 * is replaced by object.
825 */
826 object->backing_object = new_backing_object;
827 backing_object->backing_object = NULL;
828 }
829 }
830
831 /*
832 * Wait for a concurrent collapse to settle.
833 */
834 static void
vm_object_collapse_wait(vm_object_t object)835 vm_object_collapse_wait(vm_object_t object)
836 {
837
838 VM_OBJECT_ASSERT_WLOCKED(object);
839
840 while ((object->flags & OBJ_COLLAPSING) != 0) {
841 vm_object_pip_wait(object, "vmcolwait");
842 counter_u64_add(object_collapse_waits, 1);
843 }
844 }
845
846 /*
847 * Waits for a backing object to clear a pending collapse and returns
848 * it locked if it is an ANON object.
849 */
850 static vm_object_t
vm_object_backing_collapse_wait(vm_object_t object)851 vm_object_backing_collapse_wait(vm_object_t object)
852 {
853 vm_object_t backing_object;
854
855 VM_OBJECT_ASSERT_WLOCKED(object);
856
857 for (;;) {
858 backing_object = object->backing_object;
859 if (backing_object == NULL ||
860 (backing_object->flags & OBJ_ANON) == 0)
861 return (NULL);
862 VM_OBJECT_WLOCK(backing_object);
863 if ((backing_object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) == 0)
864 break;
865 VM_OBJECT_WUNLOCK(object);
866 vm_object_pip_sleep(backing_object, "vmbckwait");
867 counter_u64_add(object_collapse_waits, 1);
868 VM_OBJECT_WLOCK(object);
869 }
870 return (backing_object);
871 }
872
873 /*
874 * vm_object_terminate_single_page removes a pageable page from the object,
875 * and removes it from the paging queues and frees it, if it is not wired.
876 * It is invoked via callback from vm_object_terminate_pages.
877 */
878 static void
vm_object_terminate_single_page(vm_page_t p,void * objectv)879 vm_object_terminate_single_page(vm_page_t p, void *objectv)
880 {
881 vm_object_t object __diagused = objectv;
882
883 vm_page_assert_unbusied(p);
884 KASSERT(p->object == object &&
885 (p->ref_count & VPRC_OBJREF) != 0,
886 ("%s: page %p is inconsistent", __func__, p));
887 p->object = NULL;
888 if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) {
889 KASSERT((object->flags & OBJ_UNMANAGED) != 0 ||
890 vm_page_astate_load(p).queue != PQ_NONE,
891 ("%s: page %p does not belong to a queue", __func__, p));
892 VM_CNT_INC(v_pfree);
893 vm_page_free(p);
894 }
895 }
896
897 /*
898 * vm_object_terminate_pages removes any remaining pageable pages
899 * from the object and resets the object to an empty state.
900 */
901 static void
vm_object_terminate_pages(vm_object_t object)902 vm_object_terminate_pages(vm_object_t object)
903 {
904 VM_OBJECT_ASSERT_WLOCKED(object);
905
906 /*
907 * If the object contained any pages, then reset it to an empty state.
908 * Rather than incrementally removing each page from the object, the
909 * page and object are reset to any empty state.
910 */
911 if (object->resident_page_count == 0)
912 return;
913
914 vm_radix_reclaim_callback(&object->rtree,
915 vm_object_terminate_single_page, object);
916 object->resident_page_count = 0;
917 if (object->type == OBJT_VNODE)
918 vdrop(object->handle);
919 }
920
921 /*
922 * vm_object_terminate actually destroys the specified object, freeing
923 * up all previously used resources.
924 *
925 * The object must be locked.
926 * This routine may block.
927 */
928 void
vm_object_terminate(vm_object_t object)929 vm_object_terminate(vm_object_t object)
930 {
931
932 VM_OBJECT_ASSERT_WLOCKED(object);
933 KASSERT((object->flags & OBJ_DEAD) != 0,
934 ("terminating non-dead obj %p", object));
935 KASSERT((object->flags & OBJ_COLLAPSING) == 0,
936 ("terminating collapsing obj %p", object));
937 KASSERT(object->backing_object == NULL,
938 ("terminating shadow obj %p", object));
939
940 /*
941 * Wait for the pageout daemon and other current users to be
942 * done with the object. Note that new paging_in_progress
943 * users can come after this wait, but they must check
944 * OBJ_DEAD flag set (without unlocking the object), and avoid
945 * the object being terminated.
946 */
947 vm_object_pip_wait(object, "objtrm");
948
949 KASSERT(object->ref_count == 0,
950 ("vm_object_terminate: object with references, ref_count=%d",
951 object->ref_count));
952
953 if ((object->flags & OBJ_PG_DTOR) == 0)
954 vm_object_terminate_pages(object);
955
956 #if VM_NRESERVLEVEL > 0
957 if (__predict_false(!LIST_EMPTY(&object->rvq)))
958 vm_reserv_break_all(object);
959 #endif
960
961 KASSERT(object->cred == NULL || (object->flags & OBJ_SWAP) != 0,
962 ("%s: non-swap obj %p has cred", __func__, object));
963
964 /*
965 * Let the pager know object is dead.
966 */
967 vm_pager_deallocate(object);
968 VM_OBJECT_WUNLOCK(object);
969
970 vm_object_destroy(object);
971 }
972
973 /*
974 * Make the page read-only so that we can clear the object flags. However, if
975 * this is a nosync mmap then the object is likely to stay dirty so do not
976 * mess with the page and do not clear the object flags. Returns TRUE if the
977 * page should be flushed, and FALSE otherwise.
978 */
979 static boolean_t
vm_object_page_remove_write(vm_page_t p,int flags,boolean_t * allclean)980 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean)
981 {
982
983 vm_page_assert_busied(p);
984
985 /*
986 * If we have been asked to skip nosync pages and this is a
987 * nosync page, skip it. Note that the object flags were not
988 * cleared in this case so we do not have to set them.
989 */
990 if ((flags & OBJPC_NOSYNC) != 0 && (p->a.flags & PGA_NOSYNC) != 0) {
991 *allclean = FALSE;
992 return (FALSE);
993 } else {
994 pmap_remove_write(p);
995 return (p->dirty != 0);
996 }
997 }
998
999 static int
vm_object_page_clean_flush(struct pctrie_iter * pages,vm_page_t p,int pagerflags,int flags,boolean_t * allclean,bool * eio)1000 vm_object_page_clean_flush(struct pctrie_iter *pages, vm_page_t p,
1001 int pagerflags, int flags, boolean_t *allclean, bool *eio)
1002 {
1003 vm_page_t ma[vm_pageout_page_count];
1004 int count, runlen;
1005
1006 vm_page_assert_xbusied(p);
1007 ma[0] = p;
1008 runlen = vm_radix_iter_lookup_range(pages, p->pindex + 1,
1009 &ma[1], vm_pageout_page_count - 1);
1010 for (count = 1; count <= runlen; count++) {
1011 p = ma[count];
1012 if (vm_page_tryxbusy(p) == 0)
1013 break;
1014 if (!vm_object_page_remove_write(p, flags, allclean)) {
1015 vm_page_xunbusy(p);
1016 break;
1017 }
1018 }
1019
1020 return (vm_pageout_flush(ma, count, pagerflags, eio));
1021 }
1022
1023 /*
1024 * vm_object_page_clean
1025 *
1026 * Clean all dirty pages in the specified range of object. Leaves page
1027 * on whatever queue it is currently on. If NOSYNC is set then do not
1028 * write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC),
1029 * leaving the object dirty.
1030 *
1031 * For swap objects backing tmpfs regular files, do not flush anything,
1032 * but remove write protection on the mapped pages to update mtime through
1033 * mmaped writes.
1034 *
1035 * When stuffing pages asynchronously, allow clustering. XXX we need a
1036 * synchronous clustering mode implementation.
1037 *
1038 * Odd semantics: if start == end, we clean everything.
1039 *
1040 * The object must be locked.
1041 *
1042 * Returns FALSE if some page from the range was not written, as
1043 * reported by the pager, and TRUE otherwise.
1044 */
1045 boolean_t
vm_object_page_clean(vm_object_t object,vm_ooffset_t start,vm_ooffset_t end,int flags)1046 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
1047 int flags)
1048 {
1049 struct pctrie_iter pages;
1050 vm_page_t np, p;
1051 vm_pindex_t pi, tend, tstart;
1052 int curgeneration, n, pagerflags;
1053 boolean_t res, allclean;
1054 bool eio;
1055
1056 VM_OBJECT_ASSERT_WLOCKED(object);
1057
1058 if (!vm_object_mightbedirty(object) || object->resident_page_count == 0)
1059 return (TRUE);
1060
1061 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
1062 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1063 pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
1064
1065 tstart = OFF_TO_IDX(start);
1066 tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
1067 allclean = tstart == 0 && tend >= object->size;
1068 res = TRUE;
1069 vm_page_iter_init(&pages, object);
1070
1071 rescan:
1072 curgeneration = object->generation;
1073
1074 for (p = vm_radix_iter_lookup_ge(&pages, tstart); p != NULL; p = np) {
1075 pi = p->pindex;
1076 if (pi >= tend)
1077 break;
1078 if (vm_page_none_valid(p)) {
1079 np = vm_radix_iter_step(&pages);
1080 continue;
1081 }
1082 if (!vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL)) {
1083 pctrie_iter_reset(&pages);
1084 if (object->generation != curgeneration &&
1085 (flags & OBJPC_SYNC) != 0)
1086 goto rescan;
1087 np = vm_radix_iter_lookup_ge(&pages, pi);
1088 continue;
1089 }
1090 if (!vm_object_page_remove_write(p, flags, &allclean)) {
1091 np = vm_radix_iter_step(&pages);
1092 vm_page_xunbusy(p);
1093 continue;
1094 }
1095 if (object->type == OBJT_VNODE) {
1096 n = vm_object_page_clean_flush(&pages, p, pagerflags,
1097 flags, &allclean, &eio);
1098 pctrie_iter_reset(&pages);
1099 if (eio) {
1100 res = FALSE;
1101 allclean = FALSE;
1102 }
1103 if (object->generation != curgeneration &&
1104 (flags & OBJPC_SYNC) != 0)
1105 goto rescan;
1106
1107 /*
1108 * If the VOP_PUTPAGES() did a truncated write, so
1109 * that even the first page of the run is not fully
1110 * written, vm_pageout_flush() returns 0 as the run
1111 * length. Since the condition that caused truncated
1112 * write may be permanent, e.g. exhausted free space,
1113 * accepting n == 0 would cause an infinite loop.
1114 *
1115 * Forwarding the iterator leaves the unwritten page
1116 * behind, but there is not much we can do there if
1117 * filesystem refuses to write it.
1118 */
1119 if (n == 0) {
1120 n = 1;
1121 allclean = FALSE;
1122 }
1123 } else {
1124 n = 1;
1125 vm_page_xunbusy(p);
1126 }
1127 np = vm_radix_iter_lookup_ge(&pages, pi + n);
1128 }
1129 #if 0
1130 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
1131 #endif
1132
1133 /*
1134 * Leave updating cleangeneration for tmpfs objects to tmpfs
1135 * scan. It needs to update mtime, which happens for other
1136 * filesystems during page writeouts.
1137 */
1138 if (allclean && object->type == OBJT_VNODE)
1139 object->cleangeneration = curgeneration;
1140 return (res);
1141 }
1142
1143 /*
1144 * Note that there is absolutely no sense in writing out
1145 * anonymous objects, so we track down the vnode object
1146 * to write out.
1147 * We invalidate (remove) all pages from the address space
1148 * for semantic correctness.
1149 *
1150 * If the backing object is a device object with unmanaged pages, then any
1151 * mappings to the specified range of pages must be removed before this
1152 * function is called.
1153 *
1154 * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1155 * may start out with a NULL object.
1156 */
1157 boolean_t
vm_object_sync(vm_object_t object,vm_ooffset_t offset,vm_size_t size,boolean_t syncio,boolean_t invalidate)1158 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1159 boolean_t syncio, boolean_t invalidate)
1160 {
1161 vm_object_t backing_object;
1162 struct vnode *vp;
1163 struct mount *mp;
1164 int error, flags, fsync_after;
1165 boolean_t res;
1166
1167 if (object == NULL)
1168 return (TRUE);
1169 res = TRUE;
1170 error = 0;
1171 VM_OBJECT_WLOCK(object);
1172 while ((backing_object = object->backing_object) != NULL) {
1173 VM_OBJECT_WLOCK(backing_object);
1174 offset += object->backing_object_offset;
1175 VM_OBJECT_WUNLOCK(object);
1176 object = backing_object;
1177 if (object->size < OFF_TO_IDX(offset + size))
1178 size = IDX_TO_OFF(object->size) - offset;
1179 }
1180 /*
1181 * Flush pages if writing is allowed, invalidate them
1182 * if invalidation requested. Pages undergoing I/O
1183 * will be ignored by vm_object_page_remove().
1184 *
1185 * We cannot lock the vnode and then wait for paging
1186 * to complete without deadlocking against vm_fault.
1187 * Instead we simply call vm_object_page_remove() and
1188 * allow it to block internally on a page-by-page
1189 * basis when it encounters pages undergoing async
1190 * I/O.
1191 */
1192 if (object->type == OBJT_VNODE &&
1193 vm_object_mightbedirty(object) != 0 &&
1194 ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1195 VM_OBJECT_WUNLOCK(object);
1196 (void)vn_start_write(vp, &mp, V_WAIT);
1197 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1198 if (syncio && !invalidate && offset == 0 &&
1199 atop(size) == object->size) {
1200 /*
1201 * If syncing the whole mapping of the file,
1202 * it is faster to schedule all the writes in
1203 * async mode, also allowing the clustering,
1204 * and then wait for i/o to complete.
1205 */
1206 flags = 0;
1207 fsync_after = TRUE;
1208 } else {
1209 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1210 flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1211 fsync_after = FALSE;
1212 }
1213 VM_OBJECT_WLOCK(object);
1214 res = vm_object_page_clean(object, offset, offset + size,
1215 flags);
1216 VM_OBJECT_WUNLOCK(object);
1217 if (fsync_after) {
1218 for (;;) {
1219 error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1220 if (error != ERELOOKUP)
1221 break;
1222
1223 /*
1224 * Allow SU/bufdaemon to handle more
1225 * dependencies in the meantime.
1226 */
1227 VOP_UNLOCK(vp);
1228 vn_finished_write(mp);
1229
1230 (void)vn_start_write(vp, &mp, V_WAIT);
1231 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1232 }
1233 }
1234 VOP_UNLOCK(vp);
1235 vn_finished_write(mp);
1236 if (error != 0)
1237 res = FALSE;
1238 VM_OBJECT_WLOCK(object);
1239 }
1240 if ((object->type == OBJT_VNODE ||
1241 object->type == OBJT_DEVICE) && invalidate) {
1242 if (object->type == OBJT_DEVICE)
1243 /*
1244 * The option OBJPR_NOTMAPPED must be passed here
1245 * because vm_object_page_remove() cannot remove
1246 * unmanaged mappings.
1247 */
1248 flags = OBJPR_NOTMAPPED;
1249 else if (old_msync)
1250 flags = 0;
1251 else
1252 flags = OBJPR_CLEANONLY;
1253 vm_object_page_remove(object, OFF_TO_IDX(offset),
1254 OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1255 }
1256 VM_OBJECT_WUNLOCK(object);
1257 return (res);
1258 }
1259
1260 /*
1261 * Determine whether the given advice can be applied to the object. Advice is
1262 * not applied to unmanaged pages since they never belong to page queues, and
1263 * since MADV_FREE is destructive, it can apply only to anonymous pages that
1264 * have been mapped at most once.
1265 */
1266 static bool
vm_object_advice_applies(vm_object_t object,int advice)1267 vm_object_advice_applies(vm_object_t object, int advice)
1268 {
1269
1270 if ((object->flags & OBJ_UNMANAGED) != 0)
1271 return (false);
1272 if (advice != MADV_FREE)
1273 return (true);
1274 return ((object->flags & (OBJ_ONEMAPPING | OBJ_ANON)) ==
1275 (OBJ_ONEMAPPING | OBJ_ANON));
1276 }
1277
1278 static void
vm_object_madvise_freespace(vm_object_t object,int advice,vm_pindex_t pindex,vm_size_t size)1279 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1280 vm_size_t size)
1281 {
1282
1283 if (advice == MADV_FREE)
1284 vm_pager_freespace(object, pindex, size);
1285 }
1286
1287 /*
1288 * vm_object_madvise:
1289 *
1290 * Implements the madvise function at the object/page level.
1291 *
1292 * MADV_WILLNEED (any object)
1293 *
1294 * Activate the specified pages if they are resident.
1295 *
1296 * MADV_DONTNEED (any object)
1297 *
1298 * Deactivate the specified pages if they are resident.
1299 *
1300 * MADV_FREE (OBJT_SWAP objects, OBJ_ONEMAPPING only)
1301 *
1302 * Deactivate and clean the specified pages if they are
1303 * resident. This permits the process to reuse the pages
1304 * without faulting or the kernel to reclaim the pages
1305 * without I/O.
1306 */
1307 void
vm_object_madvise(vm_object_t object,vm_pindex_t pindex,vm_pindex_t end,int advice)1308 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1309 int advice)
1310 {
1311 struct pctrie_iter pages;
1312 vm_pindex_t tpindex;
1313 vm_object_t backing_object, tobject;
1314 vm_page_t m, tm;
1315
1316 if (object == NULL)
1317 return;
1318
1319 vm_page_iter_init(&pages, object);
1320 relookup:
1321 VM_OBJECT_WLOCK(object);
1322 if (!vm_object_advice_applies(object, advice)) {
1323 VM_OBJECT_WUNLOCK(object);
1324 return;
1325 }
1326 for (m = vm_radix_iter_lookup_ge(&pages, pindex); pindex < end;
1327 pindex++) {
1328 tobject = object;
1329
1330 /*
1331 * If the next page isn't resident in the top-level object, we
1332 * need to search the shadow chain. When applying MADV_FREE, we
1333 * take care to release any swap space used to store
1334 * non-resident pages.
1335 */
1336 if (m == NULL || pindex < m->pindex) {
1337 /*
1338 * Optimize a common case: if the top-level object has
1339 * no backing object, we can skip over the non-resident
1340 * range in constant time.
1341 */
1342 if (object->backing_object == NULL) {
1343 tpindex = (m != NULL && m->pindex < end) ?
1344 m->pindex : end;
1345 vm_object_madvise_freespace(object, advice,
1346 pindex, tpindex - pindex);
1347 if ((pindex = tpindex) == end)
1348 break;
1349 goto next_page;
1350 }
1351
1352 tpindex = pindex;
1353 do {
1354 vm_object_madvise_freespace(tobject, advice,
1355 tpindex, 1);
1356 /*
1357 * Prepare to search the next object in the
1358 * chain.
1359 */
1360 backing_object = tobject->backing_object;
1361 if (backing_object == NULL)
1362 goto next_pindex;
1363 VM_OBJECT_WLOCK(backing_object);
1364 tpindex +=
1365 OFF_TO_IDX(tobject->backing_object_offset);
1366 if (tobject != object)
1367 VM_OBJECT_WUNLOCK(tobject);
1368 tobject = backing_object;
1369 if (!vm_object_advice_applies(tobject, advice))
1370 goto next_pindex;
1371 } while ((tm = vm_page_lookup(tobject, tpindex)) ==
1372 NULL);
1373 } else {
1374 next_page:
1375 tm = m;
1376 m = vm_radix_iter_step(&pages);
1377 }
1378
1379 /*
1380 * If the page is not in a normal state, skip it. The page
1381 * can not be invalidated while the object lock is held.
1382 */
1383 if (!vm_page_all_valid(tm) || vm_page_wired(tm))
1384 goto next_pindex;
1385 KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1386 ("vm_object_madvise: page %p is fictitious", tm));
1387 KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1388 ("vm_object_madvise: page %p is not managed", tm));
1389 if (vm_page_tryxbusy(tm) == 0) {
1390 if (object != tobject)
1391 VM_OBJECT_WUNLOCK(object);
1392 if (advice == MADV_WILLNEED) {
1393 /*
1394 * Reference the page before unlocking and
1395 * sleeping so that the page daemon is less
1396 * likely to reclaim it.
1397 */
1398 vm_page_aflag_set(tm, PGA_REFERENCED);
1399 }
1400 if (!vm_page_busy_sleep(tm, "madvpo", 0))
1401 VM_OBJECT_WUNLOCK(tobject);
1402 pctrie_iter_reset(&pages);
1403 goto relookup;
1404 }
1405 vm_page_advise(tm, advice);
1406 vm_page_xunbusy(tm);
1407 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1408 next_pindex:
1409 if (tobject != object)
1410 VM_OBJECT_WUNLOCK(tobject);
1411 }
1412 VM_OBJECT_WUNLOCK(object);
1413 }
1414
1415 /*
1416 * vm_object_shadow:
1417 *
1418 * Create a new object which is backed by the
1419 * specified existing object range. The source
1420 * object reference is deallocated.
1421 *
1422 * The new object and offset into that object
1423 * are returned in the source parameters.
1424 */
1425 void
vm_object_shadow(vm_object_t * object,vm_ooffset_t * offset,vm_size_t length,struct ucred * cred,bool shared)1426 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length,
1427 struct ucred *cred, bool shared)
1428 {
1429 vm_object_t source;
1430 vm_object_t result;
1431
1432 source = *object;
1433
1434 /*
1435 * Don't create the new object if the old object isn't shared.
1436 *
1437 * If we hold the only reference we can guarantee that it won't
1438 * increase while we have the map locked. Otherwise the race is
1439 * harmless and we will end up with an extra shadow object that
1440 * will be collapsed later.
1441 */
1442 if (source != NULL && source->ref_count == 1 &&
1443 (source->flags & OBJ_ANON) != 0)
1444 return;
1445
1446 /*
1447 * Allocate a new object with the given length.
1448 */
1449 result = vm_object_allocate_anon(atop(length), source, cred);
1450
1451 /*
1452 * Store the offset into the source object, and fix up the offset into
1453 * the new object.
1454 */
1455 result->backing_object_offset = *offset;
1456
1457 if (shared || source != NULL) {
1458 VM_OBJECT_WLOCK(result);
1459
1460 /*
1461 * The new object shadows the source object, adding a
1462 * reference to it. Our caller changes his reference
1463 * to point to the new object, removing a reference to
1464 * the source object. Net result: no change of
1465 * reference count, unless the caller needs to add one
1466 * more reference due to forking a shared map entry.
1467 */
1468 if (shared) {
1469 vm_object_reference_locked(result);
1470 vm_object_clear_flag(result, OBJ_ONEMAPPING);
1471 }
1472
1473 /*
1474 * Try to optimize the result object's page color when
1475 * shadowing in order to maintain page coloring
1476 * consistency in the combined shadowed object.
1477 */
1478 if (source != NULL) {
1479 vm_object_backing_insert(result, source);
1480 result->domain = source->domain;
1481 #if VM_NRESERVLEVEL > 0
1482 vm_object_set_flag(result,
1483 (source->flags & OBJ_COLORED));
1484 result->pg_color = (source->pg_color +
1485 OFF_TO_IDX(*offset)) & ((1 << (VM_NFREEORDER -
1486 1)) - 1);
1487 #endif
1488 }
1489 VM_OBJECT_WUNLOCK(result);
1490 }
1491
1492 /*
1493 * Return the new things
1494 */
1495 *offset = 0;
1496 *object = result;
1497 }
1498
1499 /*
1500 * vm_object_split:
1501 *
1502 * Split the pages in a map entry into a new object. This affords
1503 * easier removal of unused pages, and keeps object inheritance from
1504 * being a negative impact on memory usage.
1505 */
1506 void
vm_object_split(vm_map_entry_t entry)1507 vm_object_split(vm_map_entry_t entry)
1508 {
1509 struct pctrie_iter pages;
1510 vm_page_t m;
1511 vm_object_t orig_object, new_object, backing_object;
1512 struct ucred *cred;
1513 vm_pindex_t offidxstart;
1514 vm_size_t size;
1515
1516 orig_object = entry->object.vm_object;
1517 KASSERT((orig_object->flags & OBJ_ONEMAPPING) != 0,
1518 ("vm_object_split: Splitting object with multiple mappings."));
1519 if ((orig_object->flags & OBJ_ANON) == 0)
1520 return;
1521 if (orig_object->ref_count <= 1)
1522 return;
1523 VM_OBJECT_WUNLOCK(orig_object);
1524
1525 offidxstart = OFF_TO_IDX(entry->offset);
1526 size = atop(entry->end - entry->start);
1527 if (orig_object->cred != NULL) {
1528 /*
1529 * vm_object_split() is currently called from
1530 * vmspace_fork(), and it might be tempting to add the
1531 * charge for the split object to fork_charge. But
1532 * fork_charge is discharged on error when the copied
1533 * vmspace is destroyed. Since the split object is
1534 * inserted into the shadow hierarchy serving the
1535 * source vm_map, it is kept even after the
1536 * unsuccessful fork, meaning that we have to force
1537 * its swap usage.
1538 */
1539 cred = curthread->td_ucred;
1540 crhold(cred);
1541 swap_reserve_force_by_cred(ptoa(size), cred);
1542 } else {
1543 cred = NULL;
1544 }
1545
1546 new_object = vm_object_allocate_anon(size, orig_object, cred);
1547
1548 /*
1549 * We must wait for the orig_object to complete any in-progress
1550 * collapse so that the swap blocks are stable below. The
1551 * additional reference on backing_object by new object will
1552 * prevent further collapse operations until split completes.
1553 */
1554 VM_OBJECT_WLOCK(orig_object);
1555 vm_object_collapse_wait(orig_object);
1556
1557 /*
1558 * At this point, the new object is still private, so the order in
1559 * which the original and new objects are locked does not matter.
1560 */
1561 VM_OBJECT_WLOCK(new_object);
1562 new_object->domain = orig_object->domain;
1563 backing_object = orig_object->backing_object;
1564 if (backing_object != NULL) {
1565 vm_object_backing_insert_ref(new_object, backing_object);
1566 new_object->backing_object_offset =
1567 orig_object->backing_object_offset + entry->offset;
1568 }
1569
1570 /*
1571 * Mark the split operation so that swap_pager_getpages() knows
1572 * that the object is in transition.
1573 */
1574 vm_object_set_flag(orig_object, OBJ_SPLIT);
1575 vm_page_iter_limit_init(&pages, orig_object, offidxstart + size);
1576 retry:
1577 KASSERT(pctrie_iter_is_reset(&pages),
1578 ("%s: pctrie_iter not reset for retry", __func__));
1579 for (m = vm_radix_iter_lookup_ge(&pages, offidxstart); m != NULL;
1580 m = vm_radix_iter_step(&pages)) {
1581 /*
1582 * We must wait for pending I/O to complete before we can
1583 * rename the page.
1584 *
1585 * We do not have to VM_PROT_NONE the page as mappings should
1586 * not be changed by this operation.
1587 */
1588 if (vm_page_tryxbusy(m) == 0) {
1589 VM_OBJECT_WUNLOCK(new_object);
1590 if (vm_page_busy_sleep(m, "spltwt", 0))
1591 VM_OBJECT_WLOCK(orig_object);
1592 pctrie_iter_reset(&pages);
1593 VM_OBJECT_WLOCK(new_object);
1594 goto retry;
1595 }
1596
1597 /*
1598 * If the page was left invalid, it was likely placed there by
1599 * an incomplete fault. Just remove and ignore.
1600 *
1601 * One other possibility is that the map entry is wired, in
1602 * which case we must hang on to the page to avoid leaking it,
1603 * as the map entry owns the wiring. This case can arise if the
1604 * backing object is truncated by the pager.
1605 */
1606 if (vm_page_none_valid(m) && entry->wired_count == 0) {
1607 if (vm_page_iter_remove(&pages, m))
1608 vm_page_free(m);
1609 continue;
1610 }
1611
1612 /* vm_page_iter_rename() will dirty the page if it is valid. */
1613 if (!vm_page_iter_rename(&pages, m, new_object, m->pindex -
1614 offidxstart)) {
1615 vm_page_xunbusy(m);
1616 VM_OBJECT_WUNLOCK(new_object);
1617 VM_OBJECT_WUNLOCK(orig_object);
1618 vm_radix_wait();
1619 pctrie_iter_reset(&pages);
1620 VM_OBJECT_WLOCK(orig_object);
1621 VM_OBJECT_WLOCK(new_object);
1622 goto retry;
1623 }
1624
1625 #if VM_NRESERVLEVEL > 0
1626 /*
1627 * If some of the reservation's allocated pages remain with
1628 * the original object, then transferring the reservation to
1629 * the new object is neither particularly beneficial nor
1630 * particularly harmful as compared to leaving the reservation
1631 * with the original object. If, however, all of the
1632 * reservation's allocated pages are transferred to the new
1633 * object, then transferring the reservation is typically
1634 * beneficial. Determining which of these two cases applies
1635 * would be more costly than unconditionally renaming the
1636 * reservation.
1637 */
1638 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1639 #endif
1640 }
1641
1642 /*
1643 * swap_pager_copy() can sleep, in which case the orig_object's
1644 * and new_object's locks are released and reacquired.
1645 */
1646 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1647 vm_page_iter_init(&pages, new_object);
1648 VM_RADIX_FOREACH(m, &pages)
1649 vm_page_xunbusy(m);
1650
1651 vm_object_clear_flag(orig_object, OBJ_SPLIT);
1652 VM_OBJECT_WUNLOCK(orig_object);
1653 VM_OBJECT_WUNLOCK(new_object);
1654 entry->object.vm_object = new_object;
1655 entry->offset = 0LL;
1656 vm_object_deallocate(orig_object);
1657 VM_OBJECT_WLOCK(new_object);
1658 }
1659
1660 static vm_page_t
vm_object_collapse_scan_wait(struct pctrie_iter * pages,vm_object_t object,vm_page_t p)1661 vm_object_collapse_scan_wait(struct pctrie_iter *pages, vm_object_t object,
1662 vm_page_t p)
1663 {
1664 vm_object_t backing_object;
1665
1666 VM_OBJECT_ASSERT_WLOCKED(object);
1667 backing_object = object->backing_object;
1668 VM_OBJECT_ASSERT_WLOCKED(backing_object);
1669
1670 KASSERT(p == NULL || p->object == object || p->object == backing_object,
1671 ("invalid ownership %p %p %p", p, object, backing_object));
1672 /* The page is only NULL when rename fails. */
1673 if (p == NULL) {
1674 VM_OBJECT_WUNLOCK(object);
1675 VM_OBJECT_WUNLOCK(backing_object);
1676 vm_radix_wait();
1677 VM_OBJECT_WLOCK(object);
1678 } else if (p->object == object) {
1679 VM_OBJECT_WUNLOCK(backing_object);
1680 if (vm_page_busy_sleep(p, "vmocol", 0))
1681 VM_OBJECT_WLOCK(object);
1682 } else {
1683 VM_OBJECT_WUNLOCK(object);
1684 if (!vm_page_busy_sleep(p, "vmocol", 0))
1685 VM_OBJECT_WUNLOCK(backing_object);
1686 VM_OBJECT_WLOCK(object);
1687 }
1688 VM_OBJECT_WLOCK(backing_object);
1689 vm_page_iter_init(pages, backing_object);
1690 return (vm_radix_iter_lookup_ge(pages, 0));
1691 }
1692
1693 static void
vm_object_collapse_scan(vm_object_t object)1694 vm_object_collapse_scan(vm_object_t object)
1695 {
1696 struct pctrie_iter pages;
1697 vm_object_t backing_object;
1698 vm_page_t next, p, pp;
1699 vm_pindex_t backing_offset_index, new_pindex;
1700
1701 VM_OBJECT_ASSERT_WLOCKED(object);
1702 VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1703
1704 backing_object = object->backing_object;
1705 backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1706
1707 /*
1708 * Our scan
1709 */
1710 vm_page_iter_init(&pages, backing_object);
1711 for (p = vm_radix_iter_lookup_ge(&pages, 0); p != NULL; p = next) {
1712 /*
1713 * Check for busy page
1714 */
1715 if (vm_page_tryxbusy(p) == 0) {
1716 next = vm_object_collapse_scan_wait(&pages, object, p);
1717 continue;
1718 }
1719
1720 KASSERT(object->backing_object == backing_object,
1721 ("vm_object_collapse_scan: backing object mismatch %p != %p",
1722 object->backing_object, backing_object));
1723 KASSERT(p->object == backing_object,
1724 ("vm_object_collapse_scan: object mismatch %p != %p",
1725 p->object, backing_object));
1726
1727 if (p->pindex < backing_offset_index || object->size <=
1728 (new_pindex = p->pindex - backing_offset_index)) {
1729 vm_pager_freespace(backing_object, p->pindex, 1);
1730
1731 KASSERT(!pmap_page_is_mapped(p),
1732 ("freeing mapped page %p", p));
1733 if (vm_page_iter_remove(&pages, p))
1734 vm_page_free(p);
1735 next = vm_radix_iter_step(&pages);
1736 continue;
1737 }
1738
1739 if (!vm_page_all_valid(p)) {
1740 KASSERT(!pmap_page_is_mapped(p),
1741 ("freeing mapped page %p", p));
1742 if (vm_page_iter_remove(&pages, p))
1743 vm_page_free(p);
1744 next = vm_radix_iter_step(&pages);
1745 continue;
1746 }
1747
1748 pp = vm_page_lookup(object, new_pindex);
1749 if (pp != NULL && vm_page_tryxbusy(pp) == 0) {
1750 vm_page_xunbusy(p);
1751 /*
1752 * The page in the parent is busy and possibly not
1753 * (yet) valid. Until its state is finalized by the
1754 * busy bit owner, we can't tell whether it shadows the
1755 * original page.
1756 */
1757 next = vm_object_collapse_scan_wait(&pages, object, pp);
1758 continue;
1759 }
1760
1761 if (pp != NULL && vm_page_none_valid(pp)) {
1762 /*
1763 * The page was invalid in the parent. Likely placed
1764 * there by an incomplete fault. Just remove and
1765 * ignore. p can replace it.
1766 */
1767 if (vm_page_remove(pp))
1768 vm_page_free(pp);
1769 pp = NULL;
1770 }
1771
1772 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1773 NULL)) {
1774 /*
1775 * The page already exists in the parent OR swap exists
1776 * for this location in the parent. Leave the parent's
1777 * page alone. Destroy the original page from the
1778 * backing object.
1779 */
1780 vm_pager_freespace(backing_object, p->pindex, 1);
1781 KASSERT(!pmap_page_is_mapped(p),
1782 ("freeing mapped page %p", p));
1783 if (pp != NULL)
1784 vm_page_xunbusy(pp);
1785 if (vm_page_iter_remove(&pages, p))
1786 vm_page_free(p);
1787 next = vm_radix_iter_step(&pages);
1788 continue;
1789 }
1790
1791 /*
1792 * Page does not exist in parent, rename the page from the
1793 * backing object to the main object.
1794 *
1795 * If the page was mapped to a process, it can remain mapped
1796 * through the rename. vm_page_iter_rename() will dirty the
1797 * page.
1798 */
1799 if (!vm_page_iter_rename(&pages, p, object, new_pindex)) {
1800 vm_page_xunbusy(p);
1801 next = vm_object_collapse_scan_wait(&pages, object,
1802 NULL);
1803 continue;
1804 }
1805
1806 /* Use the old pindex to free the right page. */
1807 vm_pager_freespace(backing_object, new_pindex +
1808 backing_offset_index, 1);
1809
1810 #if VM_NRESERVLEVEL > 0
1811 /*
1812 * Rename the reservation.
1813 */
1814 vm_reserv_rename(p, object, backing_object,
1815 backing_offset_index);
1816 #endif
1817 vm_page_xunbusy(p);
1818 next = vm_radix_iter_step(&pages);
1819 }
1820 return;
1821 }
1822
1823 /*
1824 * vm_object_collapse:
1825 *
1826 * Collapse an object with the object backing it.
1827 * Pages in the backing object are moved into the
1828 * parent, and the backing object is deallocated.
1829 */
1830 void
vm_object_collapse(vm_object_t object)1831 vm_object_collapse(vm_object_t object)
1832 {
1833 vm_object_t backing_object, new_backing_object;
1834
1835 VM_OBJECT_ASSERT_WLOCKED(object);
1836
1837 while (TRUE) {
1838 KASSERT((object->flags & (OBJ_DEAD | OBJ_ANON)) == OBJ_ANON,
1839 ("collapsing invalid object"));
1840
1841 /*
1842 * Wait for the backing_object to finish any pending
1843 * collapse so that the caller sees the shortest possible
1844 * shadow chain.
1845 */
1846 backing_object = vm_object_backing_collapse_wait(object);
1847 if (backing_object == NULL)
1848 return;
1849
1850 KASSERT(object->ref_count > 0 &&
1851 object->ref_count > atomic_load_int(&object->shadow_count),
1852 ("collapse with invalid ref %d or shadow %d count.",
1853 object->ref_count, atomic_load_int(&object->shadow_count)));
1854 KASSERT((backing_object->flags &
1855 (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1856 ("vm_object_collapse: Backing object already collapsing."));
1857 KASSERT((object->flags & (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1858 ("vm_object_collapse: object is already collapsing."));
1859
1860 /*
1861 * We know that we can either collapse the backing object if
1862 * the parent is the only reference to it, or (perhaps) have
1863 * the parent bypass the object if the parent happens to shadow
1864 * all the resident pages in the entire backing object.
1865 */
1866 if (backing_object->ref_count == 1) {
1867 KASSERT(atomic_load_int(&backing_object->shadow_count)
1868 == 1,
1869 ("vm_object_collapse: shadow_count: %d",
1870 atomic_load_int(&backing_object->shadow_count)));
1871 vm_object_pip_add(object, 1);
1872 vm_object_set_flag(object, OBJ_COLLAPSING);
1873 vm_object_pip_add(backing_object, 1);
1874 vm_object_set_flag(backing_object, OBJ_DEAD);
1875
1876 /*
1877 * If there is exactly one reference to the backing
1878 * object, we can collapse it into the parent.
1879 */
1880 vm_object_collapse_scan(object);
1881
1882 /*
1883 * Move the pager from backing_object to object.
1884 *
1885 * swap_pager_copy() can sleep, in which case the
1886 * backing_object's and object's locks are released and
1887 * reacquired.
1888 */
1889 swap_pager_copy(backing_object, object,
1890 OFF_TO_IDX(object->backing_object_offset), TRUE);
1891
1892 /*
1893 * Object now shadows whatever backing_object did.
1894 */
1895 vm_object_clear_flag(object, OBJ_COLLAPSING);
1896 vm_object_backing_transfer(object, backing_object);
1897 object->backing_object_offset +=
1898 backing_object->backing_object_offset;
1899 VM_OBJECT_WUNLOCK(object);
1900 vm_object_pip_wakeup(object);
1901
1902 /*
1903 * Discard backing_object.
1904 *
1905 * Since the backing object has no pages, no pager left,
1906 * and no object references within it, all that is
1907 * necessary is to dispose of it.
1908 */
1909 KASSERT(backing_object->ref_count == 1, (
1910 "backing_object %p was somehow re-referenced during collapse!",
1911 backing_object));
1912 vm_object_pip_wakeup(backing_object);
1913 (void)refcount_release(&backing_object->ref_count);
1914 umtx_shm_object_terminated(backing_object);
1915 vm_object_terminate(backing_object);
1916 counter_u64_add(object_collapses, 1);
1917 VM_OBJECT_WLOCK(object);
1918 } else {
1919 /*
1920 * If we do not entirely shadow the backing object,
1921 * there is nothing we can do so we give up.
1922 *
1923 * The object lock and backing_object lock must not
1924 * be dropped during this sequence.
1925 */
1926 if (!swap_pager_scan_all_shadowed(object)) {
1927 VM_OBJECT_WUNLOCK(backing_object);
1928 break;
1929 }
1930
1931 /*
1932 * Make the parent shadow the next object in the
1933 * chain. Deallocating backing_object will not remove
1934 * it, since its reference count is at least 2.
1935 */
1936 vm_object_backing_remove_locked(object);
1937 new_backing_object = backing_object->backing_object;
1938 if (new_backing_object != NULL) {
1939 vm_object_backing_insert_ref(object,
1940 new_backing_object);
1941 object->backing_object_offset +=
1942 backing_object->backing_object_offset;
1943 }
1944
1945 /*
1946 * Drop the reference count on backing_object. Since
1947 * its ref_count was at least 2, it will not vanish.
1948 */
1949 (void)refcount_release(&backing_object->ref_count);
1950 KASSERT(backing_object->ref_count >= 1, (
1951 "backing_object %p was somehow dereferenced during collapse!",
1952 backing_object));
1953 VM_OBJECT_WUNLOCK(backing_object);
1954 counter_u64_add(object_bypasses, 1);
1955 }
1956
1957 /*
1958 * Try again with this object's new backing object.
1959 */
1960 }
1961 }
1962
1963 /*
1964 * vm_object_page_remove:
1965 *
1966 * For the given object, either frees or invalidates each of the
1967 * specified pages. In general, a page is freed. However, if a page is
1968 * wired for any reason other than the existence of a managed, wired
1969 * mapping, then it may be invalidated but not removed from the object.
1970 * Pages are specified by the given range ["start", "end") and the option
1971 * OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range
1972 * extends from "start" to the end of the object. If the option
1973 * OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1974 * specified range are affected. If the option OBJPR_NOTMAPPED is
1975 * specified, then the pages within the specified range must have no
1976 * mappings. Otherwise, if this option is not specified, any mappings to
1977 * the specified pages are removed before the pages are freed or
1978 * invalidated.
1979 *
1980 * In general, this operation should only be performed on objects that
1981 * contain managed pages. There are, however, two exceptions. First, it
1982 * is performed on the kernel and kmem objects by vm_map_entry_delete().
1983 * Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1984 * backed pages. In both of these cases, the option OBJPR_CLEANONLY must
1985 * not be specified and the option OBJPR_NOTMAPPED must be specified.
1986 *
1987 * The object must be locked.
1988 */
1989 void
vm_object_page_remove(vm_object_t object,vm_pindex_t start,vm_pindex_t end,int options)1990 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1991 int options)
1992 {
1993 struct pctrie_iter pages;
1994 vm_page_t p;
1995
1996 VM_OBJECT_ASSERT_WLOCKED(object);
1997 KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1998 (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1999 ("vm_object_page_remove: illegal options for object %p", object));
2000 if (object->resident_page_count == 0)
2001 goto remove_pager;
2002 vm_object_pip_add(object, 1);
2003 vm_page_iter_limit_init(&pages, object, end);
2004 again:
2005 KASSERT(pctrie_iter_is_reset(&pages),
2006 ("%s: pctrie_iter not reset for retry", __func__));
2007 for (p = vm_radix_iter_lookup_ge(&pages, start); p != NULL;
2008 p = vm_radix_iter_step(&pages)) {
2009 /*
2010 * Skip invalid pages if asked to do so. Try to avoid acquiring
2011 * the busy lock, as some consumers rely on this to avoid
2012 * deadlocks.
2013 *
2014 * A thread may concurrently transition the page from invalid to
2015 * valid using only the busy lock, so the result of this check
2016 * is immediately stale. It is up to consumers to handle this,
2017 * for instance by ensuring that all invalid->valid transitions
2018 * happen with a mutex held, as may be possible for a
2019 * filesystem.
2020 */
2021 if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p))
2022 continue;
2023
2024 /*
2025 * If the page is wired for any reason besides the existence
2026 * of managed, wired mappings, then it cannot be freed. For
2027 * example, fictitious pages, which represent device memory,
2028 * are inherently wired and cannot be freed. They can,
2029 * however, be invalidated if the option OBJPR_CLEANONLY is
2030 * not specified.
2031 */
2032 if (vm_page_tryxbusy(p) == 0) {
2033 if (vm_page_busy_sleep(p, "vmopar", 0))
2034 VM_OBJECT_WLOCK(object);
2035 pctrie_iter_reset(&pages);
2036 goto again;
2037 }
2038 if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p)) {
2039 vm_page_xunbusy(p);
2040 continue;
2041 }
2042 if (vm_page_wired(p)) {
2043 wired:
2044 if ((options & OBJPR_NOTMAPPED) == 0 &&
2045 object->ref_count != 0)
2046 pmap_remove_all(p);
2047 if ((options & OBJPR_CLEANONLY) == 0) {
2048 vm_page_invalid(p);
2049 vm_page_undirty(p);
2050 }
2051 vm_page_xunbusy(p);
2052 continue;
2053 }
2054 KASSERT((p->flags & PG_FICTITIOUS) == 0,
2055 ("vm_object_page_remove: page %p is fictitious", p));
2056 if ((options & OBJPR_CLEANONLY) != 0 &&
2057 !vm_page_none_valid(p)) {
2058 if ((options & OBJPR_NOTMAPPED) == 0 &&
2059 object->ref_count != 0 &&
2060 !vm_page_try_remove_write(p))
2061 goto wired;
2062 if (p->dirty != 0) {
2063 vm_page_xunbusy(p);
2064 continue;
2065 }
2066 }
2067 if ((options & OBJPR_NOTMAPPED) == 0 &&
2068 object->ref_count != 0 && !vm_page_try_remove_all(p))
2069 goto wired;
2070 vm_page_iter_free(&pages, p);
2071 }
2072 vm_object_pip_wakeup(object);
2073
2074 remove_pager:
2075 vm_pager_freespace(object, start, (end == 0 ? object->size : end) -
2076 start);
2077 }
2078
2079 /*
2080 * vm_object_page_noreuse:
2081 *
2082 * For the given object, attempt to move the specified pages to
2083 * the head of the inactive queue. This bypasses regular LRU
2084 * operation and allows the pages to be reused quickly under memory
2085 * pressure. If a page is wired for any reason, then it will not
2086 * be queued. Pages are specified by the range ["start", "end").
2087 * As a special case, if "end" is zero, then the range extends from
2088 * "start" to the end of the object.
2089 *
2090 * This operation should only be performed on objects that
2091 * contain non-fictitious, managed pages.
2092 *
2093 * The object must be locked.
2094 */
2095 void
vm_object_page_noreuse(vm_object_t object,vm_pindex_t start,vm_pindex_t end)2096 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2097 {
2098 struct pctrie_iter pages;
2099 vm_page_t p;
2100
2101 VM_OBJECT_ASSERT_LOCKED(object);
2102 KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2103 ("vm_object_page_noreuse: illegal object %p", object));
2104 if (object->resident_page_count == 0)
2105 return;
2106
2107 vm_page_iter_limit_init(&pages, object, end);
2108 VM_RADIX_FOREACH_FROM(p, &pages, start)
2109 vm_page_deactivate_noreuse(p);
2110 }
2111
2112 /*
2113 * Populate the specified range of the object with valid pages. Returns
2114 * TRUE if the range is successfully populated and FALSE otherwise.
2115 *
2116 * Note: This function should be optimized to pass a larger array of
2117 * pages to vm_pager_get_pages() before it is applied to a non-
2118 * OBJT_DEVICE object.
2119 *
2120 * The object must be locked.
2121 */
2122 boolean_t
vm_object_populate(vm_object_t object,vm_pindex_t start,vm_pindex_t end)2123 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2124 {
2125 struct pctrie_iter pages;
2126 vm_page_t m;
2127 vm_pindex_t pindex;
2128 int rv;
2129
2130 vm_page_iter_init(&pages, object);
2131 VM_OBJECT_ASSERT_WLOCKED(object);
2132 for (pindex = start; pindex < end; pindex++) {
2133 rv = vm_page_grab_valid_iter(&m, object, pindex,
2134 VM_ALLOC_NORMAL, &pages);
2135 if (rv != VM_PAGER_OK)
2136 break;
2137
2138 /*
2139 * Keep "m" busy because a subsequent iteration may unlock
2140 * the object.
2141 */
2142 }
2143 if (pindex > start) {
2144 pages.limit = pindex;
2145 VM_RADIX_FORALL_FROM(m, &pages, start)
2146 vm_page_xunbusy(m);
2147 }
2148 return (pindex == end);
2149 }
2150
2151 /*
2152 * Routine: vm_object_coalesce
2153 * Function: Coalesces two objects backing up adjoining
2154 * regions of memory into a single object.
2155 *
2156 * returns TRUE if objects were combined.
2157 *
2158 * NOTE: Only works at the moment if the second object is NULL -
2159 * if it's not, which object do we lock first?
2160 *
2161 * Parameters:
2162 * prev_object First object to coalesce
2163 * prev_offset Offset into prev_object
2164 * prev_size Size of reference to prev_object
2165 * next_size Size of reference to the second object
2166 * reserved Indicator that extension region has
2167 * swap accounted for
2168 *
2169 * Conditions:
2170 * The object must *not* be locked.
2171 */
2172 boolean_t
vm_object_coalesce(vm_object_t prev_object,vm_ooffset_t prev_offset,vm_size_t prev_size,vm_size_t next_size,int cflags)2173 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2174 vm_size_t prev_size, vm_size_t next_size, int cflags)
2175 {
2176 vm_pindex_t next_end, next_pindex;
2177
2178 if (prev_object == NULL)
2179 return (TRUE);
2180 if ((prev_object->flags & OBJ_ANON) == 0)
2181 return (FALSE);
2182
2183 VM_OBJECT_WLOCK(prev_object);
2184 /*
2185 * Try to collapse the object first.
2186 */
2187 vm_object_collapse(prev_object);
2188
2189 /*
2190 * Can't coalesce if: . more than one reference . paged out . shadows
2191 * another object . has a copy elsewhere (any of which mean that the
2192 * pages not mapped to prev_entry may be in use anyway)
2193 */
2194 if (prev_object->backing_object != NULL) {
2195 VM_OBJECT_WUNLOCK(prev_object);
2196 return (FALSE);
2197 }
2198
2199 prev_size >>= PAGE_SHIFT;
2200 next_size >>= PAGE_SHIFT;
2201 next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2202
2203 if (prev_object->ref_count > 1 &&
2204 prev_object->size != next_pindex &&
2205 (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2206 VM_OBJECT_WUNLOCK(prev_object);
2207 return (FALSE);
2208 }
2209
2210 next_end = next_pindex + next_size;
2211
2212 /*
2213 * Account for the charge.
2214 */
2215 if (prev_object->cred != NULL && (cflags & OBJCO_NO_CHARGE) == 0) {
2216 /*
2217 * If prev_object was charged, then this mapping,
2218 * although not charged now, may become writable
2219 * later. Non-NULL cred in the object would prevent
2220 * swap reservation during enabling of the write
2221 * access, so reserve swap now. Failed reservation
2222 * cause allocation of the separate object for the map
2223 * entry, and swap reservation for this entry is
2224 * managed in appropriate time.
2225 */
2226 if (next_end > prev_object->size) {
2227 vm_size_t charge = ptoa(next_end - prev_object->size);
2228
2229 if ((cflags & OBJCO_CHARGED) == 0) {
2230 if (!swap_reserve_by_cred(charge,
2231 prev_object->cred)) {
2232 VM_OBJECT_WUNLOCK(prev_object);
2233 return (FALSE);
2234 }
2235 } else if (prev_object->size > next_pindex) {
2236 /*
2237 * The caller charged, but:
2238 * - the object has already accounted for the
2239 * space,
2240 * - and the object end is between previous
2241 * mapping end and next_end.
2242 */
2243 swap_release_by_cred(ptoa(prev_object->size -
2244 next_pindex), prev_object->cred);
2245 }
2246 } else if ((cflags & OBJCO_CHARGED) != 0) {
2247 /*
2248 * The caller charged, but the object has
2249 * already accounted for the space. Whole new
2250 * mapping charge should be released,
2251 */
2252 swap_release_by_cred(ptoa(next_size),
2253 prev_object->cred);
2254 }
2255 }
2256
2257 /*
2258 * Remove any pages that may still be in the object from a previous
2259 * deallocation.
2260 */
2261 if (next_pindex < prev_object->size)
2262 vm_object_page_remove(prev_object, next_pindex, next_end, 0);
2263
2264 /*
2265 * Extend the object if necessary.
2266 */
2267 if (next_end > prev_object->size)
2268 prev_object->size = next_end;
2269
2270 #ifdef INVARIANTS
2271 /*
2272 * Re-check: there must be no pages in the next range backed
2273 * by prev_entry's object. Otherwise, the resulting
2274 * corruption is same as faulting in a non-zeroed page.
2275 */
2276 if (vm_check_pg_zero) {
2277 vm_pindex_t pidx;
2278
2279 pidx = swap_pager_seek_data(prev_object, next_pindex);
2280 KASSERT(pidx >= next_end,
2281 ("found obj %p pindex %#jx e %#jx %#jx %#jx",
2282 prev_object, pidx, (uintmax_t)prev_offset,
2283 (uintmax_t)prev_size, (uintmax_t)next_size));
2284 }
2285 #endif
2286
2287 VM_OBJECT_WUNLOCK(prev_object);
2288 return (TRUE);
2289 }
2290
2291 /*
2292 * Fill in the m_dst array with up to *rbehind optional pages before m_src[0]
2293 * and up to *rahead optional pages after m_src[count - 1]. In both cases, stop
2294 * the filling-in short on encountering a cached page, an object boundary limit,
2295 * or an allocation error. Update *rbehind and *rahead to indicate the number
2296 * of pages allocated. Copy elements of m_src into array elements from
2297 * m_dst[*rbehind] to m_dst[*rbehind + count -1].
2298 */
2299 void
vm_object_prepare_buf_pages(vm_object_t object,vm_page_t * ma_dst,int count,int * rbehind,int * rahead,vm_page_t * ma_src)2300 vm_object_prepare_buf_pages(vm_object_t object, vm_page_t *ma_dst, int count,
2301 int *rbehind, int *rahead, vm_page_t *ma_src)
2302 {
2303 struct pctrie_iter pages;
2304 vm_pindex_t pindex;
2305 vm_page_t m, mpred, msucc;
2306
2307 vm_page_iter_init(&pages, object);
2308 VM_OBJECT_ASSERT_LOCKED(object);
2309 if (*rbehind != 0) {
2310 m = ma_src[0];
2311 pindex = m->pindex;
2312 mpred = vm_radix_iter_lookup_lt(&pages, pindex);
2313 *rbehind = MIN(*rbehind,
2314 pindex - (mpred != NULL ? mpred->pindex + 1 : 0));
2315 for (int i = 0; i < *rbehind; i++) {
2316 m = vm_page_alloc_iter(object, pindex - i - 1,
2317 VM_ALLOC_NORMAL, &pages);
2318 if (m == NULL) {
2319 /* Shift the array. */
2320 for (int j = 0; j < i; j++)
2321 ma_dst[j] = ma_dst[j + *rbehind - i];
2322 *rbehind = i;
2323 *rahead = 0;
2324 break;
2325 }
2326 ma_dst[*rbehind - i - 1] = m;
2327 }
2328 }
2329 for (int i = 0; i < count; i++)
2330 ma_dst[*rbehind + i] = ma_src[i];
2331 if (*rahead != 0) {
2332 m = ma_src[count - 1];
2333 pindex = m->pindex + 1;
2334 msucc = vm_radix_iter_lookup_ge(&pages, pindex);
2335 *rahead = MIN(*rahead,
2336 (msucc != NULL ? msucc->pindex : object->size) - pindex);
2337 for (int i = 0; i < *rahead; i++) {
2338 m = vm_page_alloc_iter(object, pindex + i,
2339 VM_ALLOC_NORMAL, &pages);
2340 if (m == NULL) {
2341 *rahead = i;
2342 break;
2343 }
2344 ma_dst[*rbehind + count + i] = m;
2345 }
2346 }
2347 }
2348
2349 void
vm_object_set_writeable_dirty_(vm_object_t object)2350 vm_object_set_writeable_dirty_(vm_object_t object)
2351 {
2352 atomic_add_int(&object->generation, 1);
2353 }
2354
2355 bool
vm_object_mightbedirty_(vm_object_t object)2356 vm_object_mightbedirty_(vm_object_t object)
2357 {
2358 return (object->generation != object->cleangeneration);
2359 }
2360
2361 /*
2362 * vm_object_unwire:
2363 *
2364 * For each page offset within the specified range of the given object,
2365 * find the highest-level page in the shadow chain and unwire it. A page
2366 * must exist at every page offset, and the highest-level page must be
2367 * wired.
2368 */
2369 void
vm_object_unwire(vm_object_t object,vm_ooffset_t offset,vm_size_t length,uint8_t queue)2370 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2371 uint8_t queue)
2372 {
2373 struct pctrie_iter pages;
2374 vm_object_t tobject, t1object;
2375 vm_page_t m, tm;
2376 vm_pindex_t end_pindex, pindex, tpindex;
2377 int depth, locked_depth;
2378
2379 KASSERT((offset & PAGE_MASK) == 0,
2380 ("vm_object_unwire: offset is not page aligned"));
2381 KASSERT((length & PAGE_MASK) == 0,
2382 ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2383 /* The wired count of a fictitious page never changes. */
2384 if ((object->flags & OBJ_FICTITIOUS) != 0)
2385 return;
2386 pindex = OFF_TO_IDX(offset);
2387 end_pindex = pindex + atop(length);
2388 vm_page_iter_init(&pages, object);
2389 again:
2390 locked_depth = 1;
2391 VM_OBJECT_RLOCK(object);
2392 m = vm_radix_iter_lookup_ge(&pages, pindex);
2393 while (pindex < end_pindex) {
2394 if (m == NULL || pindex < m->pindex) {
2395 /*
2396 * The first object in the shadow chain doesn't
2397 * contain a page at the current index. Therefore,
2398 * the page must exist in a backing object.
2399 */
2400 tobject = object;
2401 tpindex = pindex;
2402 depth = 0;
2403 do {
2404 tpindex +=
2405 OFF_TO_IDX(tobject->backing_object_offset);
2406 tobject = tobject->backing_object;
2407 KASSERT(tobject != NULL,
2408 ("vm_object_unwire: missing page"));
2409 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2410 goto next_page;
2411 depth++;
2412 if (depth == locked_depth) {
2413 locked_depth++;
2414 VM_OBJECT_RLOCK(tobject);
2415 }
2416 } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2417 NULL);
2418 } else {
2419 tm = m;
2420 m = vm_radix_iter_step(&pages);
2421 }
2422 if (vm_page_trysbusy(tm) == 0) {
2423 for (tobject = object; locked_depth >= 1;
2424 locked_depth--) {
2425 t1object = tobject->backing_object;
2426 if (tm->object != tobject)
2427 VM_OBJECT_RUNLOCK(tobject);
2428 tobject = t1object;
2429 }
2430 tobject = tm->object;
2431 if (!vm_page_busy_sleep(tm, "unwbo",
2432 VM_ALLOC_IGN_SBUSY))
2433 VM_OBJECT_RUNLOCK(tobject);
2434 pctrie_iter_reset(&pages);
2435 goto again;
2436 }
2437 vm_page_unwire(tm, queue);
2438 vm_page_sunbusy(tm);
2439 next_page:
2440 pindex++;
2441 }
2442 /* Release the accumulated object locks. */
2443 for (tobject = object; locked_depth >= 1; locked_depth--) {
2444 t1object = tobject->backing_object;
2445 VM_OBJECT_RUNLOCK(tobject);
2446 tobject = t1object;
2447 }
2448 }
2449
2450 /*
2451 * Return the vnode for the given object, or NULL if none exists.
2452 * For tmpfs objects, the function may return NULL if there is
2453 * no vnode allocated at the time of the call.
2454 */
2455 struct vnode *
vm_object_vnode(vm_object_t object)2456 vm_object_vnode(vm_object_t object)
2457 {
2458 struct vnode *vp;
2459
2460 VM_OBJECT_ASSERT_LOCKED(object);
2461 vm_pager_getvp(object, &vp, NULL);
2462 return (vp);
2463 }
2464
2465 /*
2466 * Busy the vm object. This prevents new pages belonging to the object from
2467 * becoming busy. Existing pages persist as busy. Callers are responsible
2468 * for checking page state before proceeding.
2469 */
2470 void
vm_object_busy(vm_object_t obj)2471 vm_object_busy(vm_object_t obj)
2472 {
2473
2474 VM_OBJECT_ASSERT_LOCKED(obj);
2475
2476 blockcount_acquire(&obj->busy, 1);
2477 /* The fence is required to order loads of page busy. */
2478 atomic_thread_fence_acq_rel();
2479 }
2480
2481 void
vm_object_unbusy(vm_object_t obj)2482 vm_object_unbusy(vm_object_t obj)
2483 {
2484
2485 blockcount_release(&obj->busy, 1);
2486 }
2487
2488 void
vm_object_busy_wait(vm_object_t obj,const char * wmesg)2489 vm_object_busy_wait(vm_object_t obj, const char *wmesg)
2490 {
2491
2492 VM_OBJECT_ASSERT_UNLOCKED(obj);
2493
2494 (void)blockcount_sleep(&obj->busy, NULL, wmesg, PVM);
2495 }
2496
2497 /*
2498 * This function aims to determine if the object is mapped,
2499 * specifically, if it is referenced by a vm_map_entry. Because
2500 * objects occasionally acquire transient references that do not
2501 * represent a mapping, the method used here is inexact. However, it
2502 * has very low overhead and is good enough for the advisory
2503 * vm.vmtotal sysctl.
2504 */
2505 bool
vm_object_is_active(vm_object_t obj)2506 vm_object_is_active(vm_object_t obj)
2507 {
2508
2509 return (obj->ref_count > atomic_load_int(&obj->shadow_count));
2510 }
2511
2512 static int
vm_object_list_handler(struct sysctl_req * req,bool swap_only)2513 vm_object_list_handler(struct sysctl_req *req, bool swap_only)
2514 {
2515 struct pctrie_iter pages;
2516 struct kinfo_vmobject *kvo;
2517 char *fullpath, *freepath;
2518 struct vnode *vp;
2519 struct vattr va;
2520 vm_object_t obj;
2521 vm_page_t m;
2522 u_long sp;
2523 int count, error;
2524 key_t key;
2525 unsigned short seq;
2526 bool want_path;
2527
2528 if (req->oldptr == NULL) {
2529 /*
2530 * If an old buffer has not been provided, generate an
2531 * estimate of the space needed for a subsequent call.
2532 */
2533 mtx_lock(&vm_object_list_mtx);
2534 count = 0;
2535 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2536 if (obj->type == OBJT_DEAD)
2537 continue;
2538 count++;
2539 }
2540 mtx_unlock(&vm_object_list_mtx);
2541 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2542 count * 11 / 10));
2543 }
2544
2545 want_path = !(swap_only || jailed(curthread->td_ucred));
2546 kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK | M_ZERO);
2547 error = 0;
2548
2549 /*
2550 * VM objects are type stable and are never removed from the
2551 * list once added. This allows us to safely read obj->object_list
2552 * after reacquiring the VM object lock.
2553 */
2554 mtx_lock(&vm_object_list_mtx);
2555 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2556 if (obj->type == OBJT_DEAD ||
2557 (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0))
2558 continue;
2559 VM_OBJECT_RLOCK(obj);
2560 if (obj->type == OBJT_DEAD ||
2561 (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0)) {
2562 VM_OBJECT_RUNLOCK(obj);
2563 continue;
2564 }
2565 mtx_unlock(&vm_object_list_mtx);
2566
2567 memset(kvo, 0, sizeof(*kvo));
2568 kvo->kvo_size = ptoa(obj->size);
2569 kvo->kvo_resident = obj->resident_page_count;
2570 kvo->kvo_ref_count = obj->ref_count;
2571 kvo->kvo_shadow_count = atomic_load_int(&obj->shadow_count);
2572 kvo->kvo_memattr = obj->memattr;
2573 if (!swap_only) {
2574 vm_page_iter_init(&pages, obj);
2575 VM_RADIX_FOREACH(m, &pages) {
2576 /*
2577 * A page may belong to the object but be
2578 * dequeued and set to PQ_NONE while the
2579 * object lock is not held. This makes the
2580 * reads of m->queue below racy, and we do not
2581 * count pages set to PQ_NONE. However, this
2582 * sysctl is only meant to give an
2583 * approximation of the system anyway.
2584 */
2585 if (vm_page_active(m))
2586 kvo->kvo_active++;
2587 else if (vm_page_inactive(m))
2588 kvo->kvo_inactive++;
2589 else if (vm_page_in_laundry(m))
2590 kvo->kvo_laundry++;
2591
2592 if (vm_page_wired(m))
2593 kvo->kvo_wired++;
2594 }
2595 }
2596
2597 freepath = NULL;
2598 fullpath = "";
2599 vp = NULL;
2600 kvo->kvo_type = vm_object_kvme_type(obj, want_path ? &vp :
2601 NULL);
2602 if (vp != NULL) {
2603 vref(vp);
2604 } else if ((obj->flags & OBJ_ANON) != 0) {
2605 MPASS(kvo->kvo_type == KVME_TYPE_SWAP);
2606 kvo->kvo_me = (uintptr_t)obj;
2607 /* tmpfs objs are reported as vnodes */
2608 kvo->kvo_backing_obj = (uintptr_t)obj->backing_object;
2609 sp = swap_pager_swapped_pages(obj);
2610 kvo->kvo_swapped = sp > UINT32_MAX ? UINT32_MAX : sp;
2611 }
2612 if (obj->type == OBJT_DEVICE || obj->type == OBJT_MGTDEVICE) {
2613 cdev_pager_get_path(obj, kvo->kvo_path,
2614 sizeof(kvo->kvo_path));
2615 }
2616 VM_OBJECT_RUNLOCK(obj);
2617 if ((obj->flags & OBJ_SYSVSHM) != 0) {
2618 kvo->kvo_flags |= KVMO_FLAG_SYSVSHM;
2619 shmobjinfo(obj, &key, &seq);
2620 kvo->kvo_vn_fileid = key;
2621 kvo->kvo_vn_fsid_freebsd11 = seq;
2622 }
2623 if ((obj->flags & OBJ_POSIXSHM) != 0) {
2624 kvo->kvo_flags |= KVMO_FLAG_POSIXSHM;
2625 shm_get_path(obj, kvo->kvo_path,
2626 sizeof(kvo->kvo_path));
2627 }
2628 if (vp != NULL) {
2629 vn_fullpath(vp, &fullpath, &freepath);
2630 vn_lock(vp, LK_SHARED | LK_RETRY);
2631 if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2632 kvo->kvo_vn_fileid = va.va_fileid;
2633 kvo->kvo_vn_fsid = va.va_fsid;
2634 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2635 /* truncate */
2636 }
2637 vput(vp);
2638 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2639 free(freepath, M_TEMP);
2640 }
2641
2642 /* Pack record size down */
2643 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2644 + strlen(kvo->kvo_path) + 1;
2645 kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2646 sizeof(uint64_t));
2647 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2648 maybe_yield();
2649 mtx_lock(&vm_object_list_mtx);
2650 if (error)
2651 break;
2652 }
2653 mtx_unlock(&vm_object_list_mtx);
2654 free(kvo, M_TEMP);
2655 return (error);
2656 }
2657
2658 static int
sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)2659 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2660 {
2661 return (vm_object_list_handler(req, false));
2662 }
2663
2664 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2665 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2666 "List of VM objects");
2667
2668 static int
sysctl_vm_object_list_swap(SYSCTL_HANDLER_ARGS)2669 sysctl_vm_object_list_swap(SYSCTL_HANDLER_ARGS)
2670 {
2671 return (vm_object_list_handler(req, true));
2672 }
2673
2674 /*
2675 * This sysctl returns list of the anonymous or swap objects. Intent
2676 * is to provide stripped optimized list useful to analyze swap use.
2677 * Since technically non-swap (default) objects participate in the
2678 * shadow chains, and are converted to swap type as needed by swap
2679 * pager, we must report them.
2680 */
2681 SYSCTL_PROC(_vm, OID_AUTO, swap_objects,
2682 CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 0,
2683 sysctl_vm_object_list_swap, "S,kinfo_vmobject",
2684 "List of swap VM objects");
2685
2686 #include "opt_ddb.h"
2687 #ifdef DDB
2688 #include <sys/kernel.h>
2689
2690 #include <sys/cons.h>
2691
2692 #include <ddb/ddb.h>
2693
2694 static int
_vm_object_in_map(vm_map_t map,vm_object_t object,vm_map_entry_t entry)2695 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2696 {
2697 vm_map_t tmpm;
2698 vm_map_entry_t tmpe;
2699 vm_object_t obj;
2700
2701 if (map == 0)
2702 return 0;
2703
2704 if (entry == 0) {
2705 VM_MAP_ENTRY_FOREACH(tmpe, map) {
2706 if (_vm_object_in_map(map, object, tmpe)) {
2707 return 1;
2708 }
2709 }
2710 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2711 tmpm = entry->object.sub_map;
2712 VM_MAP_ENTRY_FOREACH(tmpe, tmpm) {
2713 if (_vm_object_in_map(tmpm, object, tmpe)) {
2714 return 1;
2715 }
2716 }
2717 } else if ((obj = entry->object.vm_object) != NULL) {
2718 for (; obj; obj = obj->backing_object)
2719 if (obj == object) {
2720 return 1;
2721 }
2722 }
2723 return 0;
2724 }
2725
2726 static int
vm_object_in_map(vm_object_t object)2727 vm_object_in_map(vm_object_t object)
2728 {
2729 struct proc *p;
2730
2731 /* sx_slock(&allproc_lock); */
2732 FOREACH_PROC_IN_SYSTEM(p) {
2733 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2734 continue;
2735 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2736 /* sx_sunlock(&allproc_lock); */
2737 return 1;
2738 }
2739 }
2740 /* sx_sunlock(&allproc_lock); */
2741 if (_vm_object_in_map(kernel_map, object, 0))
2742 return 1;
2743 return 0;
2744 }
2745
DB_SHOW_COMMAND_FLAGS(vmochk,vm_object_check,DB_CMD_MEMSAFE)2746 DB_SHOW_COMMAND_FLAGS(vmochk, vm_object_check, DB_CMD_MEMSAFE)
2747 {
2748 vm_object_t object;
2749
2750 /*
2751 * make sure that internal objs are in a map somewhere
2752 * and none have zero ref counts.
2753 */
2754 TAILQ_FOREACH(object, &vm_object_list, object_list) {
2755 if ((object->flags & OBJ_ANON) != 0) {
2756 if (object->ref_count == 0) {
2757 db_printf(
2758 "vmochk: internal obj has zero ref count: %lu\n",
2759 (u_long)object->size);
2760 }
2761 if (!vm_object_in_map(object)) {
2762 db_printf(
2763 "vmochk: internal obj is not in a map: "
2764 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2765 object->ref_count, (u_long)object->size,
2766 (u_long)object->size,
2767 (void *)object->backing_object);
2768 }
2769 }
2770 if (db_pager_quit)
2771 return;
2772 }
2773 }
2774
2775 /*
2776 * vm_object_print: [ debug ]
2777 */
DB_SHOW_COMMAND(object,vm_object_print_static)2778 DB_SHOW_COMMAND(object, vm_object_print_static)
2779 {
2780 struct pctrie_iter pages;
2781 /* XXX convert args. */
2782 vm_object_t object = (vm_object_t)addr;
2783 boolean_t full = have_addr;
2784
2785 vm_page_t p;
2786
2787 /* XXX count is an (unused) arg. Avoid shadowing it. */
2788 #define count was_count
2789
2790 int count;
2791
2792 if (object == NULL)
2793 return;
2794
2795 db_iprintf("Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x",
2796 object, (int)object->type, (uintmax_t)object->size,
2797 object->resident_page_count, object->ref_count, object->flags);
2798 db_iprintf(" ruid %d\n",
2799 object->cred ? object->cred->cr_ruid : -1);
2800 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2801 atomic_load_int(&object->shadow_count),
2802 object->backing_object ? object->backing_object->ref_count : 0,
2803 object->backing_object, (uintmax_t)object->backing_object_offset);
2804
2805 if (!full)
2806 return;
2807
2808 db_indent += 2;
2809 count = 0;
2810 vm_page_iter_init(&pages, object);
2811 VM_RADIX_FOREACH(p, &pages) {
2812 if (count == 0)
2813 db_iprintf("memory:=");
2814 else if (count == 6) {
2815 db_printf("\n");
2816 db_iprintf(" ...");
2817 count = 0;
2818 } else
2819 db_printf(",");
2820 count++;
2821
2822 db_printf("(off=0x%jx,page=0x%jx)",
2823 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2824
2825 if (db_pager_quit)
2826 break;
2827 }
2828 if (count != 0)
2829 db_printf("\n");
2830 db_indent -= 2;
2831 }
2832
2833 /* XXX. */
2834 #undef count
2835
2836 /* XXX need this non-static entry for calling from vm_map_print. */
2837 void
vm_object_print(long addr,boolean_t have_addr,long count,char * modif)2838 vm_object_print(
2839 /* db_expr_t */ long addr,
2840 boolean_t have_addr,
2841 /* db_expr_t */ long count,
2842 char *modif)
2843 {
2844 vm_object_print_static(addr, have_addr, count, modif);
2845 }
2846
DB_SHOW_COMMAND_FLAGS(vmopag,vm_object_print_pages,DB_CMD_MEMSAFE)2847 DB_SHOW_COMMAND_FLAGS(vmopag, vm_object_print_pages, DB_CMD_MEMSAFE)
2848 {
2849 struct pctrie_iter pages;
2850 vm_object_t object;
2851 vm_page_t m, start_m;
2852 int rcount;
2853
2854 TAILQ_FOREACH(object, &vm_object_list, object_list) {
2855 db_printf("new object: %p\n", (void *)object);
2856 if (db_pager_quit)
2857 return;
2858 start_m = NULL;
2859 vm_page_iter_init(&pages, object);
2860 VM_RADIX_FOREACH(m, &pages) {
2861 if (start_m == NULL) {
2862 start_m = m;
2863 rcount = 0;
2864 } else if (start_m->pindex + rcount != m->pindex ||
2865 VM_PAGE_TO_PHYS(start_m) + ptoa(rcount) !=
2866 VM_PAGE_TO_PHYS(m)) {
2867 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2868 (long)start_m->pindex, rcount,
2869 (long)VM_PAGE_TO_PHYS(start_m));
2870 if (db_pager_quit)
2871 return;
2872 start_m = m;
2873 rcount = 0;
2874 }
2875 rcount++;
2876 }
2877 if (start_m != NULL) {
2878 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2879 (long)start_m->pindex, rcount,
2880 (long)VM_PAGE_TO_PHYS(start_m));
2881 if (db_pager_quit)
2882 return;
2883 }
2884 }
2885 }
2886 #endif /* DDB */
2887