1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Virtual memory object module. 65 */ 66 67 #include <sys/cdefs.h> 68 __FBSDID("$FreeBSD$"); 69 70 #include "opt_vm.h" 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/lock.h> 75 #include <sys/mman.h> 76 #include <sys/mount.h> 77 #include <sys/kernel.h> 78 #include <sys/pctrie.h> 79 #include <sys/sysctl.h> 80 #include <sys/mutex.h> 81 #include <sys/proc.h> /* for curproc, pageproc */ 82 #include <sys/socket.h> 83 #include <sys/resourcevar.h> 84 #include <sys/rwlock.h> 85 #include <sys/user.h> 86 #include <sys/vnode.h> 87 #include <sys/vmmeter.h> 88 #include <sys/sx.h> 89 90 #include <vm/vm.h> 91 #include <vm/vm_param.h> 92 #include <vm/pmap.h> 93 #include <vm/vm_map.h> 94 #include <vm/vm_object.h> 95 #include <vm/vm_page.h> 96 #include <vm/vm_pageout.h> 97 #include <vm/vm_pager.h> 98 #include <vm/swap_pager.h> 99 #include <vm/vm_kern.h> 100 #include <vm/vm_extern.h> 101 #include <vm/vm_radix.h> 102 #include <vm/vm_reserv.h> 103 #include <vm/uma.h> 104 105 static int old_msync; 106 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0, 107 "Use old (insecure) msync behavior"); 108 109 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 110 int pagerflags, int flags, boolean_t *clearobjflags, 111 boolean_t *eio); 112 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags, 113 boolean_t *clearobjflags); 114 static void vm_object_qcollapse(vm_object_t object); 115 static void vm_object_vndeallocate(vm_object_t object); 116 117 /* 118 * Virtual memory objects maintain the actual data 119 * associated with allocated virtual memory. A given 120 * page of memory exists within exactly one object. 121 * 122 * An object is only deallocated when all "references" 123 * are given up. Only one "reference" to a given 124 * region of an object should be writeable. 125 * 126 * Associated with each object is a list of all resident 127 * memory pages belonging to that object; this list is 128 * maintained by the "vm_page" module, and locked by the object's 129 * lock. 130 * 131 * Each object also records a "pager" routine which is 132 * used to retrieve (and store) pages to the proper backing 133 * storage. In addition, objects may be backed by other 134 * objects from which they were virtual-copied. 135 * 136 * The only items within the object structure which are 137 * modified after time of creation are: 138 * reference count locked by object's lock 139 * pager routine locked by object's lock 140 * 141 */ 142 143 struct object_q vm_object_list; 144 struct mtx vm_object_list_mtx; /* lock for object list and count */ 145 146 struct vm_object kernel_object_store; 147 148 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, 149 "VM object stats"); 150 151 static counter_u64_t object_collapses = EARLY_COUNTER; 152 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD, 153 &object_collapses, 154 "VM object collapses"); 155 156 static counter_u64_t object_bypasses = EARLY_COUNTER; 157 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD, 158 &object_bypasses, 159 "VM object bypasses"); 160 161 static void 162 counter_startup(void) 163 { 164 165 object_collapses = counter_u64_alloc(M_WAITOK); 166 object_bypasses = counter_u64_alloc(M_WAITOK); 167 } 168 SYSINIT(object_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL); 169 170 static uma_zone_t obj_zone; 171 172 static int vm_object_zinit(void *mem, int size, int flags); 173 174 #ifdef INVARIANTS 175 static void vm_object_zdtor(void *mem, int size, void *arg); 176 177 static void 178 vm_object_zdtor(void *mem, int size, void *arg) 179 { 180 vm_object_t object; 181 182 object = (vm_object_t)mem; 183 KASSERT(object->ref_count == 0, 184 ("object %p ref_count = %d", object, object->ref_count)); 185 KASSERT(TAILQ_EMPTY(&object->memq), 186 ("object %p has resident pages in its memq", object)); 187 KASSERT(vm_radix_is_empty(&object->rtree), 188 ("object %p has resident pages in its trie", object)); 189 #if VM_NRESERVLEVEL > 0 190 KASSERT(LIST_EMPTY(&object->rvq), 191 ("object %p has reservations", 192 object)); 193 #endif 194 KASSERT(object->paging_in_progress == 0, 195 ("object %p paging_in_progress = %d", 196 object, object->paging_in_progress)); 197 KASSERT(object->resident_page_count == 0, 198 ("object %p resident_page_count = %d", 199 object, object->resident_page_count)); 200 KASSERT(object->shadow_count == 0, 201 ("object %p shadow_count = %d", 202 object, object->shadow_count)); 203 KASSERT(object->type == OBJT_DEAD, 204 ("object %p has non-dead type %d", 205 object, object->type)); 206 } 207 #endif 208 209 static int 210 vm_object_zinit(void *mem, int size, int flags) 211 { 212 vm_object_t object; 213 214 object = (vm_object_t)mem; 215 rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW); 216 217 /* These are true for any object that has been freed */ 218 object->type = OBJT_DEAD; 219 object->ref_count = 0; 220 vm_radix_init(&object->rtree); 221 object->paging_in_progress = 0; 222 object->resident_page_count = 0; 223 object->shadow_count = 0; 224 object->flags = OBJ_DEAD; 225 226 mtx_lock(&vm_object_list_mtx); 227 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 228 mtx_unlock(&vm_object_list_mtx); 229 return (0); 230 } 231 232 static void 233 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object) 234 { 235 236 TAILQ_INIT(&object->memq); 237 LIST_INIT(&object->shadow_head); 238 239 object->type = type; 240 if (type == OBJT_SWAP) 241 pctrie_init(&object->un_pager.swp.swp_blks); 242 243 /* 244 * Ensure that swap_pager_swapoff() iteration over object_list 245 * sees up to date type and pctrie head if it observed 246 * non-dead object. 247 */ 248 atomic_thread_fence_rel(); 249 250 switch (type) { 251 case OBJT_DEAD: 252 panic("_vm_object_allocate: can't create OBJT_DEAD"); 253 case OBJT_DEFAULT: 254 case OBJT_SWAP: 255 object->flags = OBJ_ONEMAPPING; 256 break; 257 case OBJT_DEVICE: 258 case OBJT_SG: 259 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED; 260 break; 261 case OBJT_MGTDEVICE: 262 object->flags = OBJ_FICTITIOUS; 263 break; 264 case OBJT_PHYS: 265 object->flags = OBJ_UNMANAGED; 266 break; 267 case OBJT_VNODE: 268 object->flags = 0; 269 break; 270 default: 271 panic("_vm_object_allocate: type %d is undefined", type); 272 } 273 object->size = size; 274 object->generation = 1; 275 object->ref_count = 1; 276 object->memattr = VM_MEMATTR_DEFAULT; 277 object->cred = NULL; 278 object->charge = 0; 279 object->handle = NULL; 280 object->backing_object = NULL; 281 object->backing_object_offset = (vm_ooffset_t) 0; 282 #if VM_NRESERVLEVEL > 0 283 LIST_INIT(&object->rvq); 284 #endif 285 umtx_shm_object_init(object); 286 } 287 288 /* 289 * vm_object_init: 290 * 291 * Initialize the VM objects module. 292 */ 293 void 294 vm_object_init(void) 295 { 296 TAILQ_INIT(&vm_object_list); 297 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF); 298 299 rw_init(&kernel_object->lock, "kernel vm object"); 300 _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS - 301 VM_MIN_KERNEL_ADDRESS), kernel_object); 302 #if VM_NRESERVLEVEL > 0 303 kernel_object->flags |= OBJ_COLORED; 304 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 305 #endif 306 307 /* 308 * The lock portion of struct vm_object must be type stable due 309 * to vm_pageout_fallback_object_lock locking a vm object 310 * without holding any references to it. 311 */ 312 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL, 313 #ifdef INVARIANTS 314 vm_object_zdtor, 315 #else 316 NULL, 317 #endif 318 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 319 320 vm_radix_zinit(); 321 } 322 323 void 324 vm_object_clear_flag(vm_object_t object, u_short bits) 325 { 326 327 VM_OBJECT_ASSERT_WLOCKED(object); 328 object->flags &= ~bits; 329 } 330 331 /* 332 * Sets the default memory attribute for the specified object. Pages 333 * that are allocated to this object are by default assigned this memory 334 * attribute. 335 * 336 * Presently, this function must be called before any pages are allocated 337 * to the object. In the future, this requirement may be relaxed for 338 * "default" and "swap" objects. 339 */ 340 int 341 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr) 342 { 343 344 VM_OBJECT_ASSERT_WLOCKED(object); 345 switch (object->type) { 346 case OBJT_DEFAULT: 347 case OBJT_DEVICE: 348 case OBJT_MGTDEVICE: 349 case OBJT_PHYS: 350 case OBJT_SG: 351 case OBJT_SWAP: 352 case OBJT_VNODE: 353 if (!TAILQ_EMPTY(&object->memq)) 354 return (KERN_FAILURE); 355 break; 356 case OBJT_DEAD: 357 return (KERN_INVALID_ARGUMENT); 358 default: 359 panic("vm_object_set_memattr: object %p is of undefined type", 360 object); 361 } 362 object->memattr = memattr; 363 return (KERN_SUCCESS); 364 } 365 366 void 367 vm_object_pip_add(vm_object_t object, short i) 368 { 369 370 VM_OBJECT_ASSERT_WLOCKED(object); 371 object->paging_in_progress += i; 372 } 373 374 void 375 vm_object_pip_subtract(vm_object_t object, short i) 376 { 377 378 VM_OBJECT_ASSERT_WLOCKED(object); 379 object->paging_in_progress -= i; 380 } 381 382 void 383 vm_object_pip_wakeup(vm_object_t object) 384 { 385 386 VM_OBJECT_ASSERT_WLOCKED(object); 387 object->paging_in_progress--; 388 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 389 vm_object_clear_flag(object, OBJ_PIPWNT); 390 wakeup(object); 391 } 392 } 393 394 void 395 vm_object_pip_wakeupn(vm_object_t object, short i) 396 { 397 398 VM_OBJECT_ASSERT_WLOCKED(object); 399 if (i) 400 object->paging_in_progress -= i; 401 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 402 vm_object_clear_flag(object, OBJ_PIPWNT); 403 wakeup(object); 404 } 405 } 406 407 void 408 vm_object_pip_wait(vm_object_t object, char *waitid) 409 { 410 411 VM_OBJECT_ASSERT_WLOCKED(object); 412 while (object->paging_in_progress) { 413 object->flags |= OBJ_PIPWNT; 414 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0); 415 } 416 } 417 418 /* 419 * vm_object_allocate: 420 * 421 * Returns a new object with the given size. 422 */ 423 vm_object_t 424 vm_object_allocate(objtype_t type, vm_pindex_t size) 425 { 426 vm_object_t object; 427 428 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 429 _vm_object_allocate(type, size, object); 430 return (object); 431 } 432 433 434 /* 435 * vm_object_reference: 436 * 437 * Gets another reference to the given object. Note: OBJ_DEAD 438 * objects can be referenced during final cleaning. 439 */ 440 void 441 vm_object_reference(vm_object_t object) 442 { 443 if (object == NULL) 444 return; 445 VM_OBJECT_WLOCK(object); 446 vm_object_reference_locked(object); 447 VM_OBJECT_WUNLOCK(object); 448 } 449 450 /* 451 * vm_object_reference_locked: 452 * 453 * Gets another reference to the given object. 454 * 455 * The object must be locked. 456 */ 457 void 458 vm_object_reference_locked(vm_object_t object) 459 { 460 struct vnode *vp; 461 462 VM_OBJECT_ASSERT_WLOCKED(object); 463 object->ref_count++; 464 if (object->type == OBJT_VNODE) { 465 vp = object->handle; 466 vref(vp); 467 } 468 } 469 470 /* 471 * Handle deallocating an object of type OBJT_VNODE. 472 */ 473 static void 474 vm_object_vndeallocate(vm_object_t object) 475 { 476 struct vnode *vp = (struct vnode *) object->handle; 477 478 VM_OBJECT_ASSERT_WLOCKED(object); 479 KASSERT(object->type == OBJT_VNODE, 480 ("vm_object_vndeallocate: not a vnode object")); 481 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 482 #ifdef INVARIANTS 483 if (object->ref_count == 0) { 484 vn_printf(vp, "vm_object_vndeallocate "); 485 panic("vm_object_vndeallocate: bad object reference count"); 486 } 487 #endif 488 489 if (!umtx_shm_vnobj_persistent && object->ref_count == 1) 490 umtx_shm_object_terminated(object); 491 492 /* 493 * The test for text of vp vnode does not need a bypass to 494 * reach right VV_TEXT there, since it is obtained from 495 * object->handle. 496 */ 497 if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) { 498 object->ref_count--; 499 VM_OBJECT_WUNLOCK(object); 500 /* vrele may need the vnode lock. */ 501 vrele(vp); 502 } else { 503 vhold(vp); 504 VM_OBJECT_WUNLOCK(object); 505 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 506 vdrop(vp); 507 VM_OBJECT_WLOCK(object); 508 object->ref_count--; 509 if (object->type == OBJT_DEAD) { 510 VM_OBJECT_WUNLOCK(object); 511 VOP_UNLOCK(vp, 0); 512 } else { 513 if (object->ref_count == 0) 514 VOP_UNSET_TEXT(vp); 515 VM_OBJECT_WUNLOCK(object); 516 vput(vp); 517 } 518 } 519 } 520 521 /* 522 * vm_object_deallocate: 523 * 524 * Release a reference to the specified object, 525 * gained either through a vm_object_allocate 526 * or a vm_object_reference call. When all references 527 * are gone, storage associated with this object 528 * may be relinquished. 529 * 530 * No object may be locked. 531 */ 532 void 533 vm_object_deallocate(vm_object_t object) 534 { 535 vm_object_t temp; 536 struct vnode *vp; 537 538 while (object != NULL) { 539 VM_OBJECT_WLOCK(object); 540 if (object->type == OBJT_VNODE) { 541 vm_object_vndeallocate(object); 542 return; 543 } 544 545 KASSERT(object->ref_count != 0, 546 ("vm_object_deallocate: object deallocated too many times: %d", object->type)); 547 548 /* 549 * If the reference count goes to 0 we start calling 550 * vm_object_terminate() on the object chain. 551 * A ref count of 1 may be a special case depending on the 552 * shadow count being 0 or 1. 553 */ 554 object->ref_count--; 555 if (object->ref_count > 1) { 556 VM_OBJECT_WUNLOCK(object); 557 return; 558 } else if (object->ref_count == 1) { 559 if (object->type == OBJT_SWAP && 560 (object->flags & OBJ_TMPFS) != 0) { 561 vp = object->un_pager.swp.swp_tmpfs; 562 vhold(vp); 563 VM_OBJECT_WUNLOCK(object); 564 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 565 VM_OBJECT_WLOCK(object); 566 if (object->type == OBJT_DEAD || 567 object->ref_count != 1) { 568 VM_OBJECT_WUNLOCK(object); 569 VOP_UNLOCK(vp, 0); 570 vdrop(vp); 571 return; 572 } 573 if ((object->flags & OBJ_TMPFS) != 0) 574 VOP_UNSET_TEXT(vp); 575 VOP_UNLOCK(vp, 0); 576 vdrop(vp); 577 } 578 if (object->shadow_count == 0 && 579 object->handle == NULL && 580 (object->type == OBJT_DEFAULT || 581 (object->type == OBJT_SWAP && 582 (object->flags & OBJ_TMPFS_NODE) == 0))) { 583 vm_object_set_flag(object, OBJ_ONEMAPPING); 584 } else if ((object->shadow_count == 1) && 585 (object->handle == NULL) && 586 (object->type == OBJT_DEFAULT || 587 object->type == OBJT_SWAP)) { 588 vm_object_t robject; 589 590 robject = LIST_FIRST(&object->shadow_head); 591 KASSERT(robject != NULL, 592 ("vm_object_deallocate: ref_count: %d, shadow_count: %d", 593 object->ref_count, 594 object->shadow_count)); 595 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0, 596 ("shadowed tmpfs v_object %p", object)); 597 if (!VM_OBJECT_TRYWLOCK(robject)) { 598 /* 599 * Avoid a potential deadlock. 600 */ 601 object->ref_count++; 602 VM_OBJECT_WUNLOCK(object); 603 /* 604 * More likely than not the thread 605 * holding robject's lock has lower 606 * priority than the current thread. 607 * Let the lower priority thread run. 608 */ 609 pause("vmo_de", 1); 610 continue; 611 } 612 /* 613 * Collapse object into its shadow unless its 614 * shadow is dead. In that case, object will 615 * be deallocated by the thread that is 616 * deallocating its shadow. 617 */ 618 if ((robject->flags & OBJ_DEAD) == 0 && 619 (robject->handle == NULL) && 620 (robject->type == OBJT_DEFAULT || 621 robject->type == OBJT_SWAP)) { 622 623 robject->ref_count++; 624 retry: 625 if (robject->paging_in_progress) { 626 VM_OBJECT_WUNLOCK(object); 627 vm_object_pip_wait(robject, 628 "objde1"); 629 temp = robject->backing_object; 630 if (object == temp) { 631 VM_OBJECT_WLOCK(object); 632 goto retry; 633 } 634 } else if (object->paging_in_progress) { 635 VM_OBJECT_WUNLOCK(robject); 636 object->flags |= OBJ_PIPWNT; 637 VM_OBJECT_SLEEP(object, object, 638 PDROP | PVM, "objde2", 0); 639 VM_OBJECT_WLOCK(robject); 640 temp = robject->backing_object; 641 if (object == temp) { 642 VM_OBJECT_WLOCK(object); 643 goto retry; 644 } 645 } else 646 VM_OBJECT_WUNLOCK(object); 647 648 if (robject->ref_count == 1) { 649 robject->ref_count--; 650 object = robject; 651 goto doterm; 652 } 653 object = robject; 654 vm_object_collapse(object); 655 VM_OBJECT_WUNLOCK(object); 656 continue; 657 } 658 VM_OBJECT_WUNLOCK(robject); 659 } 660 VM_OBJECT_WUNLOCK(object); 661 return; 662 } 663 doterm: 664 umtx_shm_object_terminated(object); 665 temp = object->backing_object; 666 if (temp != NULL) { 667 KASSERT((object->flags & OBJ_TMPFS_NODE) == 0, 668 ("shadowed tmpfs v_object 2 %p", object)); 669 VM_OBJECT_WLOCK(temp); 670 LIST_REMOVE(object, shadow_list); 671 temp->shadow_count--; 672 VM_OBJECT_WUNLOCK(temp); 673 object->backing_object = NULL; 674 } 675 /* 676 * Don't double-terminate, we could be in a termination 677 * recursion due to the terminate having to sync data 678 * to disk. 679 */ 680 if ((object->flags & OBJ_DEAD) == 0) 681 vm_object_terminate(object); 682 else 683 VM_OBJECT_WUNLOCK(object); 684 object = temp; 685 } 686 } 687 688 /* 689 * vm_object_destroy removes the object from the global object list 690 * and frees the space for the object. 691 */ 692 void 693 vm_object_destroy(vm_object_t object) 694 { 695 696 /* 697 * Release the allocation charge. 698 */ 699 if (object->cred != NULL) { 700 swap_release_by_cred(object->charge, object->cred); 701 object->charge = 0; 702 crfree(object->cred); 703 object->cred = NULL; 704 } 705 706 /* 707 * Free the space for the object. 708 */ 709 uma_zfree(obj_zone, object); 710 } 711 712 /* 713 * vm_object_terminate_pages removes any remaining pageable pages 714 * from the object and resets the object to an empty state. 715 */ 716 static void 717 vm_object_terminate_pages(vm_object_t object) 718 { 719 vm_page_t p, p_next; 720 struct mtx *mtx, *mtx1; 721 struct vm_pagequeue *pq, *pq1; 722 int dequeued; 723 724 VM_OBJECT_ASSERT_WLOCKED(object); 725 726 mtx = NULL; 727 pq = NULL; 728 729 /* 730 * Free any remaining pageable pages. This also removes them from the 731 * paging queues. However, don't free wired pages, just remove them 732 * from the object. Rather than incrementally removing each page from 733 * the object, the page and object are reset to any empty state. 734 */ 735 TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) { 736 vm_page_assert_unbusied(p); 737 if ((object->flags & OBJ_UNMANAGED) == 0) { 738 /* 739 * vm_page_free_prep() only needs the page 740 * lock for managed pages. 741 */ 742 mtx1 = vm_page_lockptr(p); 743 if (mtx1 != mtx) { 744 if (mtx != NULL) 745 mtx_unlock(mtx); 746 if (pq != NULL) { 747 vm_pagequeue_cnt_add(pq, dequeued); 748 vm_pagequeue_unlock(pq); 749 pq = NULL; 750 } 751 mtx = mtx1; 752 mtx_lock(mtx); 753 } 754 } 755 p->object = NULL; 756 if (p->wire_count != 0) 757 goto unlist; 758 VM_CNT_INC(v_pfree); 759 p->flags &= ~PG_ZERO; 760 if (p->queue != PQ_NONE) { 761 KASSERT(p->queue < PQ_COUNT, ("vm_object_terminate: " 762 "page %p is not queued", p)); 763 pq1 = vm_page_pagequeue(p); 764 if (pq != pq1) { 765 if (pq != NULL) { 766 vm_pagequeue_cnt_add(pq, dequeued); 767 vm_pagequeue_unlock(pq); 768 } 769 pq = pq1; 770 vm_pagequeue_lock(pq); 771 dequeued = 0; 772 } 773 p->queue = PQ_NONE; 774 TAILQ_REMOVE(&pq->pq_pl, p, plinks.q); 775 dequeued--; 776 } 777 if (vm_page_free_prep(p, true)) 778 continue; 779 unlist: 780 TAILQ_REMOVE(&object->memq, p, listq); 781 } 782 if (pq != NULL) { 783 vm_pagequeue_cnt_add(pq, dequeued); 784 vm_pagequeue_unlock(pq); 785 } 786 if (mtx != NULL) 787 mtx_unlock(mtx); 788 789 vm_page_free_phys_pglist(&object->memq); 790 791 /* 792 * If the object contained any pages, then reset it to an empty state. 793 * None of the object's fields, including "resident_page_count", were 794 * modified by the preceding loop. 795 */ 796 if (object->resident_page_count != 0) { 797 vm_radix_reclaim_allnodes(&object->rtree); 798 TAILQ_INIT(&object->memq); 799 object->resident_page_count = 0; 800 if (object->type == OBJT_VNODE) 801 vdrop(object->handle); 802 } 803 } 804 805 /* 806 * vm_object_terminate actually destroys the specified object, freeing 807 * up all previously used resources. 808 * 809 * The object must be locked. 810 * This routine may block. 811 */ 812 void 813 vm_object_terminate(vm_object_t object) 814 { 815 816 VM_OBJECT_ASSERT_WLOCKED(object); 817 818 /* 819 * Make sure no one uses us. 820 */ 821 vm_object_set_flag(object, OBJ_DEAD); 822 823 /* 824 * wait for the pageout daemon to be done with the object 825 */ 826 vm_object_pip_wait(object, "objtrm"); 827 828 KASSERT(!object->paging_in_progress, 829 ("vm_object_terminate: pageout in progress")); 830 831 /* 832 * Clean and free the pages, as appropriate. All references to the 833 * object are gone, so we don't need to lock it. 834 */ 835 if (object->type == OBJT_VNODE) { 836 struct vnode *vp = (struct vnode *)object->handle; 837 838 /* 839 * Clean pages and flush buffers. 840 */ 841 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 842 VM_OBJECT_WUNLOCK(object); 843 844 vinvalbuf(vp, V_SAVE, 0, 0); 845 846 BO_LOCK(&vp->v_bufobj); 847 vp->v_bufobj.bo_flag |= BO_DEAD; 848 BO_UNLOCK(&vp->v_bufobj); 849 850 VM_OBJECT_WLOCK(object); 851 } 852 853 KASSERT(object->ref_count == 0, 854 ("vm_object_terminate: object with references, ref_count=%d", 855 object->ref_count)); 856 857 if ((object->flags & OBJ_PG_DTOR) == 0) 858 vm_object_terminate_pages(object); 859 860 #if VM_NRESERVLEVEL > 0 861 if (__predict_false(!LIST_EMPTY(&object->rvq))) 862 vm_reserv_break_all(object); 863 #endif 864 865 KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT || 866 object->type == OBJT_SWAP, 867 ("%s: non-swap obj %p has cred", __func__, object)); 868 869 /* 870 * Let the pager know object is dead. 871 */ 872 vm_pager_deallocate(object); 873 VM_OBJECT_WUNLOCK(object); 874 875 vm_object_destroy(object); 876 } 877 878 /* 879 * Make the page read-only so that we can clear the object flags. However, if 880 * this is a nosync mmap then the object is likely to stay dirty so do not 881 * mess with the page and do not clear the object flags. Returns TRUE if the 882 * page should be flushed, and FALSE otherwise. 883 */ 884 static boolean_t 885 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags) 886 { 887 888 /* 889 * If we have been asked to skip nosync pages and this is a 890 * nosync page, skip it. Note that the object flags were not 891 * cleared in this case so we do not have to set them. 892 */ 893 if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) { 894 *clearobjflags = FALSE; 895 return (FALSE); 896 } else { 897 pmap_remove_write(p); 898 return (p->dirty != 0); 899 } 900 } 901 902 /* 903 * vm_object_page_clean 904 * 905 * Clean all dirty pages in the specified range of object. Leaves page 906 * on whatever queue it is currently on. If NOSYNC is set then do not 907 * write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC), 908 * leaving the object dirty. 909 * 910 * When stuffing pages asynchronously, allow clustering. XXX we need a 911 * synchronous clustering mode implementation. 912 * 913 * Odd semantics: if start == end, we clean everything. 914 * 915 * The object must be locked. 916 * 917 * Returns FALSE if some page from the range was not written, as 918 * reported by the pager, and TRUE otherwise. 919 */ 920 boolean_t 921 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end, 922 int flags) 923 { 924 vm_page_t np, p; 925 vm_pindex_t pi, tend, tstart; 926 int curgeneration, n, pagerflags; 927 boolean_t clearobjflags, eio, res; 928 929 VM_OBJECT_ASSERT_WLOCKED(object); 930 931 /* 932 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE 933 * objects. The check below prevents the function from 934 * operating on non-vnode objects. 935 */ 936 if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 || 937 object->resident_page_count == 0) 938 return (TRUE); 939 940 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ? 941 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 942 pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0; 943 944 tstart = OFF_TO_IDX(start); 945 tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK); 946 clearobjflags = tstart == 0 && tend >= object->size; 947 res = TRUE; 948 949 rescan: 950 curgeneration = object->generation; 951 952 for (p = vm_page_find_least(object, tstart); p != NULL; p = np) { 953 pi = p->pindex; 954 if (pi >= tend) 955 break; 956 np = TAILQ_NEXT(p, listq); 957 if (p->valid == 0) 958 continue; 959 if (vm_page_sleep_if_busy(p, "vpcwai")) { 960 if (object->generation != curgeneration) { 961 if ((flags & OBJPC_SYNC) != 0) 962 goto rescan; 963 else 964 clearobjflags = FALSE; 965 } 966 np = vm_page_find_least(object, pi); 967 continue; 968 } 969 if (!vm_object_page_remove_write(p, flags, &clearobjflags)) 970 continue; 971 972 n = vm_object_page_collect_flush(object, p, pagerflags, 973 flags, &clearobjflags, &eio); 974 if (eio) { 975 res = FALSE; 976 clearobjflags = FALSE; 977 } 978 if (object->generation != curgeneration) { 979 if ((flags & OBJPC_SYNC) != 0) 980 goto rescan; 981 else 982 clearobjflags = FALSE; 983 } 984 985 /* 986 * If the VOP_PUTPAGES() did a truncated write, so 987 * that even the first page of the run is not fully 988 * written, vm_pageout_flush() returns 0 as the run 989 * length. Since the condition that caused truncated 990 * write may be permanent, e.g. exhausted free space, 991 * accepting n == 0 would cause an infinite loop. 992 * 993 * Forwarding the iterator leaves the unwritten page 994 * behind, but there is not much we can do there if 995 * filesystem refuses to write it. 996 */ 997 if (n == 0) { 998 n = 1; 999 clearobjflags = FALSE; 1000 } 1001 np = vm_page_find_least(object, pi + n); 1002 } 1003 #if 0 1004 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0); 1005 #endif 1006 1007 if (clearobjflags) 1008 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY); 1009 return (res); 1010 } 1011 1012 static int 1013 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags, 1014 int flags, boolean_t *clearobjflags, boolean_t *eio) 1015 { 1016 vm_page_t ma[vm_pageout_page_count], p_first, tp; 1017 int count, i, mreq, runlen; 1018 1019 vm_page_lock_assert(p, MA_NOTOWNED); 1020 VM_OBJECT_ASSERT_WLOCKED(object); 1021 1022 count = 1; 1023 mreq = 0; 1024 1025 for (tp = p; count < vm_pageout_page_count; count++) { 1026 tp = vm_page_next(tp); 1027 if (tp == NULL || vm_page_busied(tp)) 1028 break; 1029 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 1030 break; 1031 } 1032 1033 for (p_first = p; count < vm_pageout_page_count; count++) { 1034 tp = vm_page_prev(p_first); 1035 if (tp == NULL || vm_page_busied(tp)) 1036 break; 1037 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 1038 break; 1039 p_first = tp; 1040 mreq++; 1041 } 1042 1043 for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++) 1044 ma[i] = tp; 1045 1046 vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio); 1047 return (runlen); 1048 } 1049 1050 /* 1051 * Note that there is absolutely no sense in writing out 1052 * anonymous objects, so we track down the vnode object 1053 * to write out. 1054 * We invalidate (remove) all pages from the address space 1055 * for semantic correctness. 1056 * 1057 * If the backing object is a device object with unmanaged pages, then any 1058 * mappings to the specified range of pages must be removed before this 1059 * function is called. 1060 * 1061 * Note: certain anonymous maps, such as MAP_NOSYNC maps, 1062 * may start out with a NULL object. 1063 */ 1064 boolean_t 1065 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, 1066 boolean_t syncio, boolean_t invalidate) 1067 { 1068 vm_object_t backing_object; 1069 struct vnode *vp; 1070 struct mount *mp; 1071 int error, flags, fsync_after; 1072 boolean_t res; 1073 1074 if (object == NULL) 1075 return (TRUE); 1076 res = TRUE; 1077 error = 0; 1078 VM_OBJECT_WLOCK(object); 1079 while ((backing_object = object->backing_object) != NULL) { 1080 VM_OBJECT_WLOCK(backing_object); 1081 offset += object->backing_object_offset; 1082 VM_OBJECT_WUNLOCK(object); 1083 object = backing_object; 1084 if (object->size < OFF_TO_IDX(offset + size)) 1085 size = IDX_TO_OFF(object->size) - offset; 1086 } 1087 /* 1088 * Flush pages if writing is allowed, invalidate them 1089 * if invalidation requested. Pages undergoing I/O 1090 * will be ignored by vm_object_page_remove(). 1091 * 1092 * We cannot lock the vnode and then wait for paging 1093 * to complete without deadlocking against vm_fault. 1094 * Instead we simply call vm_object_page_remove() and 1095 * allow it to block internally on a page-by-page 1096 * basis when it encounters pages undergoing async 1097 * I/O. 1098 */ 1099 if (object->type == OBJT_VNODE && 1100 (object->flags & OBJ_MIGHTBEDIRTY) != 0 && 1101 ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) { 1102 VM_OBJECT_WUNLOCK(object); 1103 (void) vn_start_write(vp, &mp, V_WAIT); 1104 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1105 if (syncio && !invalidate && offset == 0 && 1106 atop(size) == object->size) { 1107 /* 1108 * If syncing the whole mapping of the file, 1109 * it is faster to schedule all the writes in 1110 * async mode, also allowing the clustering, 1111 * and then wait for i/o to complete. 1112 */ 1113 flags = 0; 1114 fsync_after = TRUE; 1115 } else { 1116 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1117 flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0; 1118 fsync_after = FALSE; 1119 } 1120 VM_OBJECT_WLOCK(object); 1121 res = vm_object_page_clean(object, offset, offset + size, 1122 flags); 1123 VM_OBJECT_WUNLOCK(object); 1124 if (fsync_after) 1125 error = VOP_FSYNC(vp, MNT_WAIT, curthread); 1126 VOP_UNLOCK(vp, 0); 1127 vn_finished_write(mp); 1128 if (error != 0) 1129 res = FALSE; 1130 VM_OBJECT_WLOCK(object); 1131 } 1132 if ((object->type == OBJT_VNODE || 1133 object->type == OBJT_DEVICE) && invalidate) { 1134 if (object->type == OBJT_DEVICE) 1135 /* 1136 * The option OBJPR_NOTMAPPED must be passed here 1137 * because vm_object_page_remove() cannot remove 1138 * unmanaged mappings. 1139 */ 1140 flags = OBJPR_NOTMAPPED; 1141 else if (old_msync) 1142 flags = 0; 1143 else 1144 flags = OBJPR_CLEANONLY; 1145 vm_object_page_remove(object, OFF_TO_IDX(offset), 1146 OFF_TO_IDX(offset + size + PAGE_MASK), flags); 1147 } 1148 VM_OBJECT_WUNLOCK(object); 1149 return (res); 1150 } 1151 1152 /* 1153 * Determine whether the given advice can be applied to the object. Advice is 1154 * not applied to unmanaged pages since they never belong to page queues, and 1155 * since MADV_FREE is destructive, it can apply only to anonymous pages that 1156 * have been mapped at most once. 1157 */ 1158 static bool 1159 vm_object_advice_applies(vm_object_t object, int advice) 1160 { 1161 1162 if ((object->flags & OBJ_UNMANAGED) != 0) 1163 return (false); 1164 if (advice != MADV_FREE) 1165 return (true); 1166 return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) && 1167 (object->flags & OBJ_ONEMAPPING) != 0); 1168 } 1169 1170 static void 1171 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex, 1172 vm_size_t size) 1173 { 1174 1175 if (advice == MADV_FREE && object->type == OBJT_SWAP) 1176 swap_pager_freespace(object, pindex, size); 1177 } 1178 1179 /* 1180 * vm_object_madvise: 1181 * 1182 * Implements the madvise function at the object/page level. 1183 * 1184 * MADV_WILLNEED (any object) 1185 * 1186 * Activate the specified pages if they are resident. 1187 * 1188 * MADV_DONTNEED (any object) 1189 * 1190 * Deactivate the specified pages if they are resident. 1191 * 1192 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, 1193 * OBJ_ONEMAPPING only) 1194 * 1195 * Deactivate and clean the specified pages if they are 1196 * resident. This permits the process to reuse the pages 1197 * without faulting or the kernel to reclaim the pages 1198 * without I/O. 1199 */ 1200 void 1201 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end, 1202 int advice) 1203 { 1204 vm_pindex_t tpindex; 1205 vm_object_t backing_object, tobject; 1206 vm_page_t m, tm; 1207 1208 if (object == NULL) 1209 return; 1210 1211 relookup: 1212 VM_OBJECT_WLOCK(object); 1213 if (!vm_object_advice_applies(object, advice)) { 1214 VM_OBJECT_WUNLOCK(object); 1215 return; 1216 } 1217 for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) { 1218 tobject = object; 1219 1220 /* 1221 * If the next page isn't resident in the top-level object, we 1222 * need to search the shadow chain. When applying MADV_FREE, we 1223 * take care to release any swap space used to store 1224 * non-resident pages. 1225 */ 1226 if (m == NULL || pindex < m->pindex) { 1227 /* 1228 * Optimize a common case: if the top-level object has 1229 * no backing object, we can skip over the non-resident 1230 * range in constant time. 1231 */ 1232 if (object->backing_object == NULL) { 1233 tpindex = (m != NULL && m->pindex < end) ? 1234 m->pindex : end; 1235 vm_object_madvise_freespace(object, advice, 1236 pindex, tpindex - pindex); 1237 if ((pindex = tpindex) == end) 1238 break; 1239 goto next_page; 1240 } 1241 1242 tpindex = pindex; 1243 do { 1244 vm_object_madvise_freespace(tobject, advice, 1245 tpindex, 1); 1246 /* 1247 * Prepare to search the next object in the 1248 * chain. 1249 */ 1250 backing_object = tobject->backing_object; 1251 if (backing_object == NULL) 1252 goto next_pindex; 1253 VM_OBJECT_WLOCK(backing_object); 1254 tpindex += 1255 OFF_TO_IDX(tobject->backing_object_offset); 1256 if (tobject != object) 1257 VM_OBJECT_WUNLOCK(tobject); 1258 tobject = backing_object; 1259 if (!vm_object_advice_applies(tobject, advice)) 1260 goto next_pindex; 1261 } while ((tm = vm_page_lookup(tobject, tpindex)) == 1262 NULL); 1263 } else { 1264 next_page: 1265 tm = m; 1266 m = TAILQ_NEXT(m, listq); 1267 } 1268 1269 /* 1270 * If the page is not in a normal state, skip it. 1271 */ 1272 if (tm->valid != VM_PAGE_BITS_ALL) 1273 goto next_pindex; 1274 vm_page_lock(tm); 1275 if (tm->hold_count != 0 || tm->wire_count != 0) { 1276 vm_page_unlock(tm); 1277 goto next_pindex; 1278 } 1279 KASSERT((tm->flags & PG_FICTITIOUS) == 0, 1280 ("vm_object_madvise: page %p is fictitious", tm)); 1281 KASSERT((tm->oflags & VPO_UNMANAGED) == 0, 1282 ("vm_object_madvise: page %p is not managed", tm)); 1283 if (vm_page_busied(tm)) { 1284 if (object != tobject) 1285 VM_OBJECT_WUNLOCK(tobject); 1286 VM_OBJECT_WUNLOCK(object); 1287 if (advice == MADV_WILLNEED) { 1288 /* 1289 * Reference the page before unlocking and 1290 * sleeping so that the page daemon is less 1291 * likely to reclaim it. 1292 */ 1293 vm_page_aflag_set(tm, PGA_REFERENCED); 1294 } 1295 vm_page_busy_sleep(tm, "madvpo", false); 1296 goto relookup; 1297 } 1298 vm_page_advise(tm, advice); 1299 vm_page_unlock(tm); 1300 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1); 1301 next_pindex: 1302 if (tobject != object) 1303 VM_OBJECT_WUNLOCK(tobject); 1304 } 1305 VM_OBJECT_WUNLOCK(object); 1306 } 1307 1308 /* 1309 * vm_object_shadow: 1310 * 1311 * Create a new object which is backed by the 1312 * specified existing object range. The source 1313 * object reference is deallocated. 1314 * 1315 * The new object and offset into that object 1316 * are returned in the source parameters. 1317 */ 1318 void 1319 vm_object_shadow( 1320 vm_object_t *object, /* IN/OUT */ 1321 vm_ooffset_t *offset, /* IN/OUT */ 1322 vm_size_t length) 1323 { 1324 vm_object_t source; 1325 vm_object_t result; 1326 1327 source = *object; 1328 1329 /* 1330 * Don't create the new object if the old object isn't shared. 1331 */ 1332 if (source != NULL) { 1333 VM_OBJECT_WLOCK(source); 1334 if (source->ref_count == 1 && 1335 source->handle == NULL && 1336 (source->type == OBJT_DEFAULT || 1337 source->type == OBJT_SWAP)) { 1338 VM_OBJECT_WUNLOCK(source); 1339 return; 1340 } 1341 VM_OBJECT_WUNLOCK(source); 1342 } 1343 1344 /* 1345 * Allocate a new object with the given length. 1346 */ 1347 result = vm_object_allocate(OBJT_DEFAULT, atop(length)); 1348 1349 /* 1350 * The new object shadows the source object, adding a reference to it. 1351 * Our caller changes his reference to point to the new object, 1352 * removing a reference to the source object. Net result: no change 1353 * of reference count. 1354 * 1355 * Try to optimize the result object's page color when shadowing 1356 * in order to maintain page coloring consistency in the combined 1357 * shadowed object. 1358 */ 1359 result->backing_object = source; 1360 /* 1361 * Store the offset into the source object, and fix up the offset into 1362 * the new object. 1363 */ 1364 result->backing_object_offset = *offset; 1365 if (source != NULL) { 1366 VM_OBJECT_WLOCK(source); 1367 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list); 1368 source->shadow_count++; 1369 #if VM_NRESERVLEVEL > 0 1370 result->flags |= source->flags & OBJ_COLORED; 1371 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & 1372 ((1 << (VM_NFREEORDER - 1)) - 1); 1373 #endif 1374 VM_OBJECT_WUNLOCK(source); 1375 } 1376 1377 1378 /* 1379 * Return the new things 1380 */ 1381 *offset = 0; 1382 *object = result; 1383 } 1384 1385 /* 1386 * vm_object_split: 1387 * 1388 * Split the pages in a map entry into a new object. This affords 1389 * easier removal of unused pages, and keeps object inheritance from 1390 * being a negative impact on memory usage. 1391 */ 1392 void 1393 vm_object_split(vm_map_entry_t entry) 1394 { 1395 vm_page_t m, m_next; 1396 vm_object_t orig_object, new_object, source; 1397 vm_pindex_t idx, offidxstart; 1398 vm_size_t size; 1399 1400 orig_object = entry->object.vm_object; 1401 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 1402 return; 1403 if (orig_object->ref_count <= 1) 1404 return; 1405 VM_OBJECT_WUNLOCK(orig_object); 1406 1407 offidxstart = OFF_TO_IDX(entry->offset); 1408 size = atop(entry->end - entry->start); 1409 1410 /* 1411 * If swap_pager_copy() is later called, it will convert new_object 1412 * into a swap object. 1413 */ 1414 new_object = vm_object_allocate(OBJT_DEFAULT, size); 1415 1416 /* 1417 * At this point, the new object is still private, so the order in 1418 * which the original and new objects are locked does not matter. 1419 */ 1420 VM_OBJECT_WLOCK(new_object); 1421 VM_OBJECT_WLOCK(orig_object); 1422 source = orig_object->backing_object; 1423 if (source != NULL) { 1424 VM_OBJECT_WLOCK(source); 1425 if ((source->flags & OBJ_DEAD) != 0) { 1426 VM_OBJECT_WUNLOCK(source); 1427 VM_OBJECT_WUNLOCK(orig_object); 1428 VM_OBJECT_WUNLOCK(new_object); 1429 vm_object_deallocate(new_object); 1430 VM_OBJECT_WLOCK(orig_object); 1431 return; 1432 } 1433 LIST_INSERT_HEAD(&source->shadow_head, 1434 new_object, shadow_list); 1435 source->shadow_count++; 1436 vm_object_reference_locked(source); /* for new_object */ 1437 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1438 VM_OBJECT_WUNLOCK(source); 1439 new_object->backing_object_offset = 1440 orig_object->backing_object_offset + entry->offset; 1441 new_object->backing_object = source; 1442 } 1443 if (orig_object->cred != NULL) { 1444 new_object->cred = orig_object->cred; 1445 crhold(orig_object->cred); 1446 new_object->charge = ptoa(size); 1447 KASSERT(orig_object->charge >= ptoa(size), 1448 ("orig_object->charge < 0")); 1449 orig_object->charge -= ptoa(size); 1450 } 1451 retry: 1452 m = vm_page_find_least(orig_object, offidxstart); 1453 for (; m != NULL && (idx = m->pindex - offidxstart) < size; 1454 m = m_next) { 1455 m_next = TAILQ_NEXT(m, listq); 1456 1457 /* 1458 * We must wait for pending I/O to complete before we can 1459 * rename the page. 1460 * 1461 * We do not have to VM_PROT_NONE the page as mappings should 1462 * not be changed by this operation. 1463 */ 1464 if (vm_page_busied(m)) { 1465 VM_OBJECT_WUNLOCK(new_object); 1466 vm_page_lock(m); 1467 VM_OBJECT_WUNLOCK(orig_object); 1468 vm_page_busy_sleep(m, "spltwt", false); 1469 VM_OBJECT_WLOCK(orig_object); 1470 VM_OBJECT_WLOCK(new_object); 1471 goto retry; 1472 } 1473 1474 /* vm_page_rename() will dirty the page. */ 1475 if (vm_page_rename(m, new_object, idx)) { 1476 VM_OBJECT_WUNLOCK(new_object); 1477 VM_OBJECT_WUNLOCK(orig_object); 1478 vm_radix_wait(); 1479 VM_OBJECT_WLOCK(orig_object); 1480 VM_OBJECT_WLOCK(new_object); 1481 goto retry; 1482 } 1483 #if VM_NRESERVLEVEL > 0 1484 /* 1485 * If some of the reservation's allocated pages remain with 1486 * the original object, then transferring the reservation to 1487 * the new object is neither particularly beneficial nor 1488 * particularly harmful as compared to leaving the reservation 1489 * with the original object. If, however, all of the 1490 * reservation's allocated pages are transferred to the new 1491 * object, then transferring the reservation is typically 1492 * beneficial. Determining which of these two cases applies 1493 * would be more costly than unconditionally renaming the 1494 * reservation. 1495 */ 1496 vm_reserv_rename(m, new_object, orig_object, offidxstart); 1497 #endif 1498 if (orig_object->type == OBJT_SWAP) 1499 vm_page_xbusy(m); 1500 } 1501 if (orig_object->type == OBJT_SWAP) { 1502 /* 1503 * swap_pager_copy() can sleep, in which case the orig_object's 1504 * and new_object's locks are released and reacquired. 1505 */ 1506 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1507 TAILQ_FOREACH(m, &new_object->memq, listq) 1508 vm_page_xunbusy(m); 1509 } 1510 VM_OBJECT_WUNLOCK(orig_object); 1511 VM_OBJECT_WUNLOCK(new_object); 1512 entry->object.vm_object = new_object; 1513 entry->offset = 0LL; 1514 vm_object_deallocate(orig_object); 1515 VM_OBJECT_WLOCK(new_object); 1516 } 1517 1518 #define OBSC_COLLAPSE_NOWAIT 0x0002 1519 #define OBSC_COLLAPSE_WAIT 0x0004 1520 1521 static vm_page_t 1522 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next, 1523 int op) 1524 { 1525 vm_object_t backing_object; 1526 1527 VM_OBJECT_ASSERT_WLOCKED(object); 1528 backing_object = object->backing_object; 1529 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1530 1531 KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p)); 1532 KASSERT(p == NULL || p->object == object || p->object == backing_object, 1533 ("invalid ownership %p %p %p", p, object, backing_object)); 1534 if ((op & OBSC_COLLAPSE_NOWAIT) != 0) 1535 return (next); 1536 if (p != NULL) 1537 vm_page_lock(p); 1538 VM_OBJECT_WUNLOCK(object); 1539 VM_OBJECT_WUNLOCK(backing_object); 1540 /* The page is only NULL when rename fails. */ 1541 if (p == NULL) 1542 vm_radix_wait(); 1543 else 1544 vm_page_busy_sleep(p, "vmocol", false); 1545 VM_OBJECT_WLOCK(object); 1546 VM_OBJECT_WLOCK(backing_object); 1547 return (TAILQ_FIRST(&backing_object->memq)); 1548 } 1549 1550 static bool 1551 vm_object_scan_all_shadowed(vm_object_t object) 1552 { 1553 vm_object_t backing_object; 1554 vm_page_t p, pp; 1555 vm_pindex_t backing_offset_index, new_pindex, pi, ps; 1556 1557 VM_OBJECT_ASSERT_WLOCKED(object); 1558 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1559 1560 backing_object = object->backing_object; 1561 1562 if (backing_object->type != OBJT_DEFAULT && 1563 backing_object->type != OBJT_SWAP) 1564 return (false); 1565 1566 pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1567 p = vm_page_find_least(backing_object, pi); 1568 ps = swap_pager_find_least(backing_object, pi); 1569 1570 /* 1571 * Only check pages inside the parent object's range and 1572 * inside the parent object's mapping of the backing object. 1573 */ 1574 for (;; pi++) { 1575 if (p != NULL && p->pindex < pi) 1576 p = TAILQ_NEXT(p, listq); 1577 if (ps < pi) 1578 ps = swap_pager_find_least(backing_object, pi); 1579 if (p == NULL && ps >= backing_object->size) 1580 break; 1581 else if (p == NULL) 1582 pi = ps; 1583 else 1584 pi = MIN(p->pindex, ps); 1585 1586 new_pindex = pi - backing_offset_index; 1587 if (new_pindex >= object->size) 1588 break; 1589 1590 /* 1591 * See if the parent has the page or if the parent's object 1592 * pager has the page. If the parent has the page but the page 1593 * is not valid, the parent's object pager must have the page. 1594 * 1595 * If this fails, the parent does not completely shadow the 1596 * object and we might as well give up now. 1597 */ 1598 pp = vm_page_lookup(object, new_pindex); 1599 if ((pp == NULL || pp->valid == 0) && 1600 !vm_pager_has_page(object, new_pindex, NULL, NULL)) 1601 return (false); 1602 } 1603 return (true); 1604 } 1605 1606 static bool 1607 vm_object_collapse_scan(vm_object_t object, int op) 1608 { 1609 vm_object_t backing_object; 1610 vm_page_t next, p, pp; 1611 vm_pindex_t backing_offset_index, new_pindex; 1612 1613 VM_OBJECT_ASSERT_WLOCKED(object); 1614 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1615 1616 backing_object = object->backing_object; 1617 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1618 1619 /* 1620 * Initial conditions 1621 */ 1622 if ((op & OBSC_COLLAPSE_WAIT) != 0) 1623 vm_object_set_flag(backing_object, OBJ_DEAD); 1624 1625 /* 1626 * Our scan 1627 */ 1628 for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) { 1629 next = TAILQ_NEXT(p, listq); 1630 new_pindex = p->pindex - backing_offset_index; 1631 1632 /* 1633 * Check for busy page 1634 */ 1635 if (vm_page_busied(p)) { 1636 next = vm_object_collapse_scan_wait(object, p, next, op); 1637 continue; 1638 } 1639 1640 KASSERT(p->object == backing_object, 1641 ("vm_object_collapse_scan: object mismatch")); 1642 1643 if (p->pindex < backing_offset_index || 1644 new_pindex >= object->size) { 1645 if (backing_object->type == OBJT_SWAP) 1646 swap_pager_freespace(backing_object, p->pindex, 1647 1); 1648 1649 /* 1650 * Page is out of the parent object's range, we can 1651 * simply destroy it. 1652 */ 1653 vm_page_lock(p); 1654 KASSERT(!pmap_page_is_mapped(p), 1655 ("freeing mapped page %p", p)); 1656 if (p->wire_count == 0) 1657 vm_page_free(p); 1658 else 1659 vm_page_remove(p); 1660 vm_page_unlock(p); 1661 continue; 1662 } 1663 1664 pp = vm_page_lookup(object, new_pindex); 1665 if (pp != NULL && vm_page_busied(pp)) { 1666 /* 1667 * The page in the parent is busy and possibly not 1668 * (yet) valid. Until its state is finalized by the 1669 * busy bit owner, we can't tell whether it shadows the 1670 * original page. Therefore, we must either skip it 1671 * and the original (backing_object) page or wait for 1672 * its state to be finalized. 1673 * 1674 * This is due to a race with vm_fault() where we must 1675 * unbusy the original (backing_obj) page before we can 1676 * (re)lock the parent. Hence we can get here. 1677 */ 1678 next = vm_object_collapse_scan_wait(object, pp, next, 1679 op); 1680 continue; 1681 } 1682 1683 KASSERT(pp == NULL || pp->valid != 0, 1684 ("unbusy invalid page %p", pp)); 1685 1686 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL, 1687 NULL)) { 1688 /* 1689 * The page already exists in the parent OR swap exists 1690 * for this location in the parent. Leave the parent's 1691 * page alone. Destroy the original page from the 1692 * backing object. 1693 */ 1694 if (backing_object->type == OBJT_SWAP) 1695 swap_pager_freespace(backing_object, p->pindex, 1696 1); 1697 vm_page_lock(p); 1698 KASSERT(!pmap_page_is_mapped(p), 1699 ("freeing mapped page %p", p)); 1700 if (p->wire_count == 0) 1701 vm_page_free(p); 1702 else 1703 vm_page_remove(p); 1704 vm_page_unlock(p); 1705 continue; 1706 } 1707 1708 /* 1709 * Page does not exist in parent, rename the page from the 1710 * backing object to the main object. 1711 * 1712 * If the page was mapped to a process, it can remain mapped 1713 * through the rename. vm_page_rename() will dirty the page. 1714 */ 1715 if (vm_page_rename(p, object, new_pindex)) { 1716 next = vm_object_collapse_scan_wait(object, NULL, next, 1717 op); 1718 continue; 1719 } 1720 1721 /* Use the old pindex to free the right page. */ 1722 if (backing_object->type == OBJT_SWAP) 1723 swap_pager_freespace(backing_object, 1724 new_pindex + backing_offset_index, 1); 1725 1726 #if VM_NRESERVLEVEL > 0 1727 /* 1728 * Rename the reservation. 1729 */ 1730 vm_reserv_rename(p, object, backing_object, 1731 backing_offset_index); 1732 #endif 1733 } 1734 return (true); 1735 } 1736 1737 1738 /* 1739 * this version of collapse allows the operation to occur earlier and 1740 * when paging_in_progress is true for an object... This is not a complete 1741 * operation, but should plug 99.9% of the rest of the leaks. 1742 */ 1743 static void 1744 vm_object_qcollapse(vm_object_t object) 1745 { 1746 vm_object_t backing_object = object->backing_object; 1747 1748 VM_OBJECT_ASSERT_WLOCKED(object); 1749 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1750 1751 if (backing_object->ref_count != 1) 1752 return; 1753 1754 vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT); 1755 } 1756 1757 /* 1758 * vm_object_collapse: 1759 * 1760 * Collapse an object with the object backing it. 1761 * Pages in the backing object are moved into the 1762 * parent, and the backing object is deallocated. 1763 */ 1764 void 1765 vm_object_collapse(vm_object_t object) 1766 { 1767 vm_object_t backing_object, new_backing_object; 1768 1769 VM_OBJECT_ASSERT_WLOCKED(object); 1770 1771 while (TRUE) { 1772 /* 1773 * Verify that the conditions are right for collapse: 1774 * 1775 * The object exists and the backing object exists. 1776 */ 1777 if ((backing_object = object->backing_object) == NULL) 1778 break; 1779 1780 /* 1781 * we check the backing object first, because it is most likely 1782 * not collapsable. 1783 */ 1784 VM_OBJECT_WLOCK(backing_object); 1785 if (backing_object->handle != NULL || 1786 (backing_object->type != OBJT_DEFAULT && 1787 backing_object->type != OBJT_SWAP) || 1788 (backing_object->flags & OBJ_DEAD) || 1789 object->handle != NULL || 1790 (object->type != OBJT_DEFAULT && 1791 object->type != OBJT_SWAP) || 1792 (object->flags & OBJ_DEAD)) { 1793 VM_OBJECT_WUNLOCK(backing_object); 1794 break; 1795 } 1796 1797 if (object->paging_in_progress != 0 || 1798 backing_object->paging_in_progress != 0) { 1799 vm_object_qcollapse(object); 1800 VM_OBJECT_WUNLOCK(backing_object); 1801 break; 1802 } 1803 1804 /* 1805 * We know that we can either collapse the backing object (if 1806 * the parent is the only reference to it) or (perhaps) have 1807 * the parent bypass the object if the parent happens to shadow 1808 * all the resident pages in the entire backing object. 1809 * 1810 * This is ignoring pager-backed pages such as swap pages. 1811 * vm_object_collapse_scan fails the shadowing test in this 1812 * case. 1813 */ 1814 if (backing_object->ref_count == 1) { 1815 vm_object_pip_add(object, 1); 1816 vm_object_pip_add(backing_object, 1); 1817 1818 /* 1819 * If there is exactly one reference to the backing 1820 * object, we can collapse it into the parent. 1821 */ 1822 vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT); 1823 1824 #if VM_NRESERVLEVEL > 0 1825 /* 1826 * Break any reservations from backing_object. 1827 */ 1828 if (__predict_false(!LIST_EMPTY(&backing_object->rvq))) 1829 vm_reserv_break_all(backing_object); 1830 #endif 1831 1832 /* 1833 * Move the pager from backing_object to object. 1834 */ 1835 if (backing_object->type == OBJT_SWAP) { 1836 /* 1837 * swap_pager_copy() can sleep, in which case 1838 * the backing_object's and object's locks are 1839 * released and reacquired. 1840 * Since swap_pager_copy() is being asked to 1841 * destroy the source, it will change the 1842 * backing_object's type to OBJT_DEFAULT. 1843 */ 1844 swap_pager_copy( 1845 backing_object, 1846 object, 1847 OFF_TO_IDX(object->backing_object_offset), TRUE); 1848 } 1849 /* 1850 * Object now shadows whatever backing_object did. 1851 * Note that the reference to 1852 * backing_object->backing_object moves from within 1853 * backing_object to within object. 1854 */ 1855 LIST_REMOVE(object, shadow_list); 1856 backing_object->shadow_count--; 1857 if (backing_object->backing_object) { 1858 VM_OBJECT_WLOCK(backing_object->backing_object); 1859 LIST_REMOVE(backing_object, shadow_list); 1860 LIST_INSERT_HEAD( 1861 &backing_object->backing_object->shadow_head, 1862 object, shadow_list); 1863 /* 1864 * The shadow_count has not changed. 1865 */ 1866 VM_OBJECT_WUNLOCK(backing_object->backing_object); 1867 } 1868 object->backing_object = backing_object->backing_object; 1869 object->backing_object_offset += 1870 backing_object->backing_object_offset; 1871 1872 /* 1873 * Discard backing_object. 1874 * 1875 * Since the backing object has no pages, no pager left, 1876 * and no object references within it, all that is 1877 * necessary is to dispose of it. 1878 */ 1879 KASSERT(backing_object->ref_count == 1, ( 1880 "backing_object %p was somehow re-referenced during collapse!", 1881 backing_object)); 1882 vm_object_pip_wakeup(backing_object); 1883 backing_object->type = OBJT_DEAD; 1884 backing_object->ref_count = 0; 1885 VM_OBJECT_WUNLOCK(backing_object); 1886 vm_object_destroy(backing_object); 1887 1888 vm_object_pip_wakeup(object); 1889 counter_u64_add(object_collapses, 1); 1890 } else { 1891 /* 1892 * If we do not entirely shadow the backing object, 1893 * there is nothing we can do so we give up. 1894 */ 1895 if (object->resident_page_count != object->size && 1896 !vm_object_scan_all_shadowed(object)) { 1897 VM_OBJECT_WUNLOCK(backing_object); 1898 break; 1899 } 1900 1901 /* 1902 * Make the parent shadow the next object in the 1903 * chain. Deallocating backing_object will not remove 1904 * it, since its reference count is at least 2. 1905 */ 1906 LIST_REMOVE(object, shadow_list); 1907 backing_object->shadow_count--; 1908 1909 new_backing_object = backing_object->backing_object; 1910 if ((object->backing_object = new_backing_object) != NULL) { 1911 VM_OBJECT_WLOCK(new_backing_object); 1912 LIST_INSERT_HEAD( 1913 &new_backing_object->shadow_head, 1914 object, 1915 shadow_list 1916 ); 1917 new_backing_object->shadow_count++; 1918 vm_object_reference_locked(new_backing_object); 1919 VM_OBJECT_WUNLOCK(new_backing_object); 1920 object->backing_object_offset += 1921 backing_object->backing_object_offset; 1922 } 1923 1924 /* 1925 * Drop the reference count on backing_object. Since 1926 * its ref_count was at least 2, it will not vanish. 1927 */ 1928 backing_object->ref_count--; 1929 VM_OBJECT_WUNLOCK(backing_object); 1930 counter_u64_add(object_bypasses, 1); 1931 } 1932 1933 /* 1934 * Try again with this object's new backing object. 1935 */ 1936 } 1937 } 1938 1939 /* 1940 * vm_object_page_remove: 1941 * 1942 * For the given object, either frees or invalidates each of the 1943 * specified pages. In general, a page is freed. However, if a page is 1944 * wired for any reason other than the existence of a managed, wired 1945 * mapping, then it may be invalidated but not removed from the object. 1946 * Pages are specified by the given range ["start", "end") and the option 1947 * OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range 1948 * extends from "start" to the end of the object. If the option 1949 * OBJPR_CLEANONLY is specified, then only the non-dirty pages within the 1950 * specified range are affected. If the option OBJPR_NOTMAPPED is 1951 * specified, then the pages within the specified range must have no 1952 * mappings. Otherwise, if this option is not specified, any mappings to 1953 * the specified pages are removed before the pages are freed or 1954 * invalidated. 1955 * 1956 * In general, this operation should only be performed on objects that 1957 * contain managed pages. There are, however, two exceptions. First, it 1958 * is performed on the kernel and kmem objects by vm_map_entry_delete(). 1959 * Second, it is used by msync(..., MS_INVALIDATE) to invalidate device- 1960 * backed pages. In both of these cases, the option OBJPR_CLEANONLY must 1961 * not be specified and the option OBJPR_NOTMAPPED must be specified. 1962 * 1963 * The object must be locked. 1964 */ 1965 void 1966 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 1967 int options) 1968 { 1969 vm_page_t p, next; 1970 struct mtx *mtx; 1971 struct pglist pgl; 1972 1973 VM_OBJECT_ASSERT_WLOCKED(object); 1974 KASSERT((object->flags & OBJ_UNMANAGED) == 0 || 1975 (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED, 1976 ("vm_object_page_remove: illegal options for object %p", object)); 1977 if (object->resident_page_count == 0) 1978 return; 1979 vm_object_pip_add(object, 1); 1980 TAILQ_INIT(&pgl); 1981 again: 1982 p = vm_page_find_least(object, start); 1983 mtx = NULL; 1984 1985 /* 1986 * Here, the variable "p" is either (1) the page with the least pindex 1987 * greater than or equal to the parameter "start" or (2) NULL. 1988 */ 1989 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1990 next = TAILQ_NEXT(p, listq); 1991 1992 /* 1993 * If the page is wired for any reason besides the existence 1994 * of managed, wired mappings, then it cannot be freed. For 1995 * example, fictitious pages, which represent device memory, 1996 * are inherently wired and cannot be freed. They can, 1997 * however, be invalidated if the option OBJPR_CLEANONLY is 1998 * not specified. 1999 */ 2000 vm_page_change_lock(p, &mtx); 2001 if (vm_page_xbusied(p)) { 2002 VM_OBJECT_WUNLOCK(object); 2003 vm_page_busy_sleep(p, "vmopax", true); 2004 VM_OBJECT_WLOCK(object); 2005 goto again; 2006 } 2007 if (p->wire_count != 0) { 2008 if ((options & OBJPR_NOTMAPPED) == 0 && 2009 object->ref_count != 0) 2010 pmap_remove_all(p); 2011 if ((options & OBJPR_CLEANONLY) == 0) { 2012 p->valid = 0; 2013 vm_page_undirty(p); 2014 } 2015 continue; 2016 } 2017 if (vm_page_busied(p)) { 2018 VM_OBJECT_WUNLOCK(object); 2019 vm_page_busy_sleep(p, "vmopar", false); 2020 VM_OBJECT_WLOCK(object); 2021 goto again; 2022 } 2023 KASSERT((p->flags & PG_FICTITIOUS) == 0, 2024 ("vm_object_page_remove: page %p is fictitious", p)); 2025 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) { 2026 if ((options & OBJPR_NOTMAPPED) == 0 && 2027 object->ref_count != 0) 2028 pmap_remove_write(p); 2029 if (p->dirty != 0) 2030 continue; 2031 } 2032 if ((options & OBJPR_NOTMAPPED) == 0 && object->ref_count != 0) 2033 pmap_remove_all(p); 2034 p->flags &= ~PG_ZERO; 2035 if (vm_page_free_prep(p, false)) 2036 TAILQ_INSERT_TAIL(&pgl, p, listq); 2037 } 2038 if (mtx != NULL) 2039 mtx_unlock(mtx); 2040 vm_page_free_phys_pglist(&pgl); 2041 vm_object_pip_wakeup(object); 2042 } 2043 2044 /* 2045 * vm_object_page_noreuse: 2046 * 2047 * For the given object, attempt to move the specified pages to 2048 * the head of the inactive queue. This bypasses regular LRU 2049 * operation and allows the pages to be reused quickly under memory 2050 * pressure. If a page is wired for any reason, then it will not 2051 * be queued. Pages are specified by the range ["start", "end"). 2052 * As a special case, if "end" is zero, then the range extends from 2053 * "start" to the end of the object. 2054 * 2055 * This operation should only be performed on objects that 2056 * contain non-fictitious, managed pages. 2057 * 2058 * The object must be locked. 2059 */ 2060 void 2061 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 2062 { 2063 struct mtx *mtx; 2064 vm_page_t p, next; 2065 2066 VM_OBJECT_ASSERT_LOCKED(object); 2067 KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0, 2068 ("vm_object_page_noreuse: illegal object %p", object)); 2069 if (object->resident_page_count == 0) 2070 return; 2071 p = vm_page_find_least(object, start); 2072 2073 /* 2074 * Here, the variable "p" is either (1) the page with the least pindex 2075 * greater than or equal to the parameter "start" or (2) NULL. 2076 */ 2077 mtx = NULL; 2078 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 2079 next = TAILQ_NEXT(p, listq); 2080 vm_page_change_lock(p, &mtx); 2081 vm_page_deactivate_noreuse(p); 2082 } 2083 if (mtx != NULL) 2084 mtx_unlock(mtx); 2085 } 2086 2087 /* 2088 * Populate the specified range of the object with valid pages. Returns 2089 * TRUE if the range is successfully populated and FALSE otherwise. 2090 * 2091 * Note: This function should be optimized to pass a larger array of 2092 * pages to vm_pager_get_pages() before it is applied to a non- 2093 * OBJT_DEVICE object. 2094 * 2095 * The object must be locked. 2096 */ 2097 boolean_t 2098 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 2099 { 2100 vm_page_t m; 2101 vm_pindex_t pindex; 2102 int rv; 2103 2104 VM_OBJECT_ASSERT_WLOCKED(object); 2105 for (pindex = start; pindex < end; pindex++) { 2106 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL); 2107 if (m->valid != VM_PAGE_BITS_ALL) { 2108 rv = vm_pager_get_pages(object, &m, 1, NULL, NULL); 2109 if (rv != VM_PAGER_OK) { 2110 vm_page_lock(m); 2111 vm_page_free(m); 2112 vm_page_unlock(m); 2113 break; 2114 } 2115 } 2116 /* 2117 * Keep "m" busy because a subsequent iteration may unlock 2118 * the object. 2119 */ 2120 } 2121 if (pindex > start) { 2122 m = vm_page_lookup(object, start); 2123 while (m != NULL && m->pindex < pindex) { 2124 vm_page_xunbusy(m); 2125 m = TAILQ_NEXT(m, listq); 2126 } 2127 } 2128 return (pindex == end); 2129 } 2130 2131 /* 2132 * Routine: vm_object_coalesce 2133 * Function: Coalesces two objects backing up adjoining 2134 * regions of memory into a single object. 2135 * 2136 * returns TRUE if objects were combined. 2137 * 2138 * NOTE: Only works at the moment if the second object is NULL - 2139 * if it's not, which object do we lock first? 2140 * 2141 * Parameters: 2142 * prev_object First object to coalesce 2143 * prev_offset Offset into prev_object 2144 * prev_size Size of reference to prev_object 2145 * next_size Size of reference to the second object 2146 * reserved Indicator that extension region has 2147 * swap accounted for 2148 * 2149 * Conditions: 2150 * The object must *not* be locked. 2151 */ 2152 boolean_t 2153 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, 2154 vm_size_t prev_size, vm_size_t next_size, boolean_t reserved) 2155 { 2156 vm_pindex_t next_pindex; 2157 2158 if (prev_object == NULL) 2159 return (TRUE); 2160 VM_OBJECT_WLOCK(prev_object); 2161 if ((prev_object->type != OBJT_DEFAULT && 2162 prev_object->type != OBJT_SWAP) || 2163 (prev_object->flags & OBJ_TMPFS_NODE) != 0) { 2164 VM_OBJECT_WUNLOCK(prev_object); 2165 return (FALSE); 2166 } 2167 2168 /* 2169 * Try to collapse the object first 2170 */ 2171 vm_object_collapse(prev_object); 2172 2173 /* 2174 * Can't coalesce if: . more than one reference . paged out . shadows 2175 * another object . has a copy elsewhere (any of which mean that the 2176 * pages not mapped to prev_entry may be in use anyway) 2177 */ 2178 if (prev_object->backing_object != NULL) { 2179 VM_OBJECT_WUNLOCK(prev_object); 2180 return (FALSE); 2181 } 2182 2183 prev_size >>= PAGE_SHIFT; 2184 next_size >>= PAGE_SHIFT; 2185 next_pindex = OFF_TO_IDX(prev_offset) + prev_size; 2186 2187 if ((prev_object->ref_count > 1) && 2188 (prev_object->size != next_pindex)) { 2189 VM_OBJECT_WUNLOCK(prev_object); 2190 return (FALSE); 2191 } 2192 2193 /* 2194 * Account for the charge. 2195 */ 2196 if (prev_object->cred != NULL) { 2197 2198 /* 2199 * If prev_object was charged, then this mapping, 2200 * although not charged now, may become writable 2201 * later. Non-NULL cred in the object would prevent 2202 * swap reservation during enabling of the write 2203 * access, so reserve swap now. Failed reservation 2204 * cause allocation of the separate object for the map 2205 * entry, and swap reservation for this entry is 2206 * managed in appropriate time. 2207 */ 2208 if (!reserved && !swap_reserve_by_cred(ptoa(next_size), 2209 prev_object->cred)) { 2210 VM_OBJECT_WUNLOCK(prev_object); 2211 return (FALSE); 2212 } 2213 prev_object->charge += ptoa(next_size); 2214 } 2215 2216 /* 2217 * Remove any pages that may still be in the object from a previous 2218 * deallocation. 2219 */ 2220 if (next_pindex < prev_object->size) { 2221 vm_object_page_remove(prev_object, next_pindex, next_pindex + 2222 next_size, 0); 2223 if (prev_object->type == OBJT_SWAP) 2224 swap_pager_freespace(prev_object, 2225 next_pindex, next_size); 2226 #if 0 2227 if (prev_object->cred != NULL) { 2228 KASSERT(prev_object->charge >= 2229 ptoa(prev_object->size - next_pindex), 2230 ("object %p overcharged 1 %jx %jx", prev_object, 2231 (uintmax_t)next_pindex, (uintmax_t)next_size)); 2232 prev_object->charge -= ptoa(prev_object->size - 2233 next_pindex); 2234 } 2235 #endif 2236 } 2237 2238 /* 2239 * Extend the object if necessary. 2240 */ 2241 if (next_pindex + next_size > prev_object->size) 2242 prev_object->size = next_pindex + next_size; 2243 2244 VM_OBJECT_WUNLOCK(prev_object); 2245 return (TRUE); 2246 } 2247 2248 void 2249 vm_object_set_writeable_dirty(vm_object_t object) 2250 { 2251 2252 VM_OBJECT_ASSERT_WLOCKED(object); 2253 if (object->type != OBJT_VNODE) { 2254 if ((object->flags & OBJ_TMPFS_NODE) != 0) { 2255 KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs")); 2256 vm_object_set_flag(object, OBJ_TMPFS_DIRTY); 2257 } 2258 return; 2259 } 2260 object->generation++; 2261 if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) 2262 return; 2263 vm_object_set_flag(object, OBJ_MIGHTBEDIRTY); 2264 } 2265 2266 /* 2267 * vm_object_unwire: 2268 * 2269 * For each page offset within the specified range of the given object, 2270 * find the highest-level page in the shadow chain and unwire it. A page 2271 * must exist at every page offset, and the highest-level page must be 2272 * wired. 2273 */ 2274 void 2275 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length, 2276 uint8_t queue) 2277 { 2278 vm_object_t tobject; 2279 vm_page_t m, tm; 2280 vm_pindex_t end_pindex, pindex, tpindex; 2281 int depth, locked_depth; 2282 2283 KASSERT((offset & PAGE_MASK) == 0, 2284 ("vm_object_unwire: offset is not page aligned")); 2285 KASSERT((length & PAGE_MASK) == 0, 2286 ("vm_object_unwire: length is not a multiple of PAGE_SIZE")); 2287 /* The wired count of a fictitious page never changes. */ 2288 if ((object->flags & OBJ_FICTITIOUS) != 0) 2289 return; 2290 pindex = OFF_TO_IDX(offset); 2291 end_pindex = pindex + atop(length); 2292 locked_depth = 1; 2293 VM_OBJECT_RLOCK(object); 2294 m = vm_page_find_least(object, pindex); 2295 while (pindex < end_pindex) { 2296 if (m == NULL || pindex < m->pindex) { 2297 /* 2298 * The first object in the shadow chain doesn't 2299 * contain a page at the current index. Therefore, 2300 * the page must exist in a backing object. 2301 */ 2302 tobject = object; 2303 tpindex = pindex; 2304 depth = 0; 2305 do { 2306 tpindex += 2307 OFF_TO_IDX(tobject->backing_object_offset); 2308 tobject = tobject->backing_object; 2309 KASSERT(tobject != NULL, 2310 ("vm_object_unwire: missing page")); 2311 if ((tobject->flags & OBJ_FICTITIOUS) != 0) 2312 goto next_page; 2313 depth++; 2314 if (depth == locked_depth) { 2315 locked_depth++; 2316 VM_OBJECT_RLOCK(tobject); 2317 } 2318 } while ((tm = vm_page_lookup(tobject, tpindex)) == 2319 NULL); 2320 } else { 2321 tm = m; 2322 m = TAILQ_NEXT(m, listq); 2323 } 2324 vm_page_lock(tm); 2325 vm_page_unwire(tm, queue); 2326 vm_page_unlock(tm); 2327 next_page: 2328 pindex++; 2329 } 2330 /* Release the accumulated object locks. */ 2331 for (depth = 0; depth < locked_depth; depth++) { 2332 tobject = object->backing_object; 2333 VM_OBJECT_RUNLOCK(object); 2334 object = tobject; 2335 } 2336 } 2337 2338 struct vnode * 2339 vm_object_vnode(vm_object_t object) 2340 { 2341 2342 VM_OBJECT_ASSERT_LOCKED(object); 2343 if (object->type == OBJT_VNODE) 2344 return (object->handle); 2345 if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0) 2346 return (object->un_pager.swp.swp_tmpfs); 2347 return (NULL); 2348 } 2349 2350 static int 2351 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS) 2352 { 2353 struct kinfo_vmobject *kvo; 2354 char *fullpath, *freepath; 2355 struct vnode *vp; 2356 struct vattr va; 2357 vm_object_t obj; 2358 vm_page_t m; 2359 int count, error; 2360 2361 if (req->oldptr == NULL) { 2362 /* 2363 * If an old buffer has not been provided, generate an 2364 * estimate of the space needed for a subsequent call. 2365 */ 2366 mtx_lock(&vm_object_list_mtx); 2367 count = 0; 2368 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2369 if (obj->type == OBJT_DEAD) 2370 continue; 2371 count++; 2372 } 2373 mtx_unlock(&vm_object_list_mtx); 2374 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) * 2375 count * 11 / 10)); 2376 } 2377 2378 kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK); 2379 error = 0; 2380 2381 /* 2382 * VM objects are type stable and are never removed from the 2383 * list once added. This allows us to safely read obj->object_list 2384 * after reacquiring the VM object lock. 2385 */ 2386 mtx_lock(&vm_object_list_mtx); 2387 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2388 if (obj->type == OBJT_DEAD) 2389 continue; 2390 VM_OBJECT_RLOCK(obj); 2391 if (obj->type == OBJT_DEAD) { 2392 VM_OBJECT_RUNLOCK(obj); 2393 continue; 2394 } 2395 mtx_unlock(&vm_object_list_mtx); 2396 kvo->kvo_size = ptoa(obj->size); 2397 kvo->kvo_resident = obj->resident_page_count; 2398 kvo->kvo_ref_count = obj->ref_count; 2399 kvo->kvo_shadow_count = obj->shadow_count; 2400 kvo->kvo_memattr = obj->memattr; 2401 kvo->kvo_active = 0; 2402 kvo->kvo_inactive = 0; 2403 TAILQ_FOREACH(m, &obj->memq, listq) { 2404 /* 2405 * A page may belong to the object but be 2406 * dequeued and set to PQ_NONE while the 2407 * object lock is not held. This makes the 2408 * reads of m->queue below racy, and we do not 2409 * count pages set to PQ_NONE. However, this 2410 * sysctl is only meant to give an 2411 * approximation of the system anyway. 2412 */ 2413 if (vm_page_active(m)) 2414 kvo->kvo_active++; 2415 else if (vm_page_inactive(m)) 2416 kvo->kvo_inactive++; 2417 } 2418 2419 kvo->kvo_vn_fileid = 0; 2420 kvo->kvo_vn_fsid = 0; 2421 kvo->kvo_vn_fsid_freebsd11 = 0; 2422 freepath = NULL; 2423 fullpath = ""; 2424 vp = NULL; 2425 switch (obj->type) { 2426 case OBJT_DEFAULT: 2427 kvo->kvo_type = KVME_TYPE_DEFAULT; 2428 break; 2429 case OBJT_VNODE: 2430 kvo->kvo_type = KVME_TYPE_VNODE; 2431 vp = obj->handle; 2432 vref(vp); 2433 break; 2434 case OBJT_SWAP: 2435 kvo->kvo_type = KVME_TYPE_SWAP; 2436 break; 2437 case OBJT_DEVICE: 2438 kvo->kvo_type = KVME_TYPE_DEVICE; 2439 break; 2440 case OBJT_PHYS: 2441 kvo->kvo_type = KVME_TYPE_PHYS; 2442 break; 2443 case OBJT_DEAD: 2444 kvo->kvo_type = KVME_TYPE_DEAD; 2445 break; 2446 case OBJT_SG: 2447 kvo->kvo_type = KVME_TYPE_SG; 2448 break; 2449 case OBJT_MGTDEVICE: 2450 kvo->kvo_type = KVME_TYPE_MGTDEVICE; 2451 break; 2452 default: 2453 kvo->kvo_type = KVME_TYPE_UNKNOWN; 2454 break; 2455 } 2456 VM_OBJECT_RUNLOCK(obj); 2457 if (vp != NULL) { 2458 vn_fullpath(curthread, vp, &fullpath, &freepath); 2459 vn_lock(vp, LK_SHARED | LK_RETRY); 2460 if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) { 2461 kvo->kvo_vn_fileid = va.va_fileid; 2462 kvo->kvo_vn_fsid = va.va_fsid; 2463 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid; 2464 /* truncate */ 2465 } 2466 vput(vp); 2467 } 2468 2469 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path)); 2470 if (freepath != NULL) 2471 free(freepath, M_TEMP); 2472 2473 /* Pack record size down */ 2474 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) 2475 + strlen(kvo->kvo_path) + 1; 2476 kvo->kvo_structsize = roundup(kvo->kvo_structsize, 2477 sizeof(uint64_t)); 2478 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize); 2479 mtx_lock(&vm_object_list_mtx); 2480 if (error) 2481 break; 2482 } 2483 mtx_unlock(&vm_object_list_mtx); 2484 free(kvo, M_TEMP); 2485 return (error); 2486 } 2487 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | 2488 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject", 2489 "List of VM objects"); 2490 2491 #include "opt_ddb.h" 2492 #ifdef DDB 2493 #include <sys/kernel.h> 2494 2495 #include <sys/cons.h> 2496 2497 #include <ddb/ddb.h> 2498 2499 static int 2500 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2501 { 2502 vm_map_t tmpm; 2503 vm_map_entry_t tmpe; 2504 vm_object_t obj; 2505 int entcount; 2506 2507 if (map == 0) 2508 return 0; 2509 2510 if (entry == 0) { 2511 tmpe = map->header.next; 2512 entcount = map->nentries; 2513 while (entcount-- && (tmpe != &map->header)) { 2514 if (_vm_object_in_map(map, object, tmpe)) { 2515 return 1; 2516 } 2517 tmpe = tmpe->next; 2518 } 2519 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2520 tmpm = entry->object.sub_map; 2521 tmpe = tmpm->header.next; 2522 entcount = tmpm->nentries; 2523 while (entcount-- && tmpe != &tmpm->header) { 2524 if (_vm_object_in_map(tmpm, object, tmpe)) { 2525 return 1; 2526 } 2527 tmpe = tmpe->next; 2528 } 2529 } else if ((obj = entry->object.vm_object) != NULL) { 2530 for (; obj; obj = obj->backing_object) 2531 if (obj == object) { 2532 return 1; 2533 } 2534 } 2535 return 0; 2536 } 2537 2538 static int 2539 vm_object_in_map(vm_object_t object) 2540 { 2541 struct proc *p; 2542 2543 /* sx_slock(&allproc_lock); */ 2544 FOREACH_PROC_IN_SYSTEM(p) { 2545 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 2546 continue; 2547 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) { 2548 /* sx_sunlock(&allproc_lock); */ 2549 return 1; 2550 } 2551 } 2552 /* sx_sunlock(&allproc_lock); */ 2553 if (_vm_object_in_map(kernel_map, object, 0)) 2554 return 1; 2555 return 0; 2556 } 2557 2558 DB_SHOW_COMMAND(vmochk, vm_object_check) 2559 { 2560 vm_object_t object; 2561 2562 /* 2563 * make sure that internal objs are in a map somewhere 2564 * and none have zero ref counts. 2565 */ 2566 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2567 if (object->handle == NULL && 2568 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2569 if (object->ref_count == 0) { 2570 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2571 (long)object->size); 2572 } 2573 if (!vm_object_in_map(object)) { 2574 db_printf( 2575 "vmochk: internal obj is not in a map: " 2576 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2577 object->ref_count, (u_long)object->size, 2578 (u_long)object->size, 2579 (void *)object->backing_object); 2580 } 2581 } 2582 } 2583 } 2584 2585 /* 2586 * vm_object_print: [ debug ] 2587 */ 2588 DB_SHOW_COMMAND(object, vm_object_print_static) 2589 { 2590 /* XXX convert args. */ 2591 vm_object_t object = (vm_object_t)addr; 2592 boolean_t full = have_addr; 2593 2594 vm_page_t p; 2595 2596 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2597 #define count was_count 2598 2599 int count; 2600 2601 if (object == NULL) 2602 return; 2603 2604 db_iprintf( 2605 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n", 2606 object, (int)object->type, (uintmax_t)object->size, 2607 object->resident_page_count, object->ref_count, object->flags, 2608 object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge); 2609 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n", 2610 object->shadow_count, 2611 object->backing_object ? object->backing_object->ref_count : 0, 2612 object->backing_object, (uintmax_t)object->backing_object_offset); 2613 2614 if (!full) 2615 return; 2616 2617 db_indent += 2; 2618 count = 0; 2619 TAILQ_FOREACH(p, &object->memq, listq) { 2620 if (count == 0) 2621 db_iprintf("memory:="); 2622 else if (count == 6) { 2623 db_printf("\n"); 2624 db_iprintf(" ..."); 2625 count = 0; 2626 } else 2627 db_printf(","); 2628 count++; 2629 2630 db_printf("(off=0x%jx,page=0x%jx)", 2631 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p)); 2632 } 2633 if (count != 0) 2634 db_printf("\n"); 2635 db_indent -= 2; 2636 } 2637 2638 /* XXX. */ 2639 #undef count 2640 2641 /* XXX need this non-static entry for calling from vm_map_print. */ 2642 void 2643 vm_object_print( 2644 /* db_expr_t */ long addr, 2645 boolean_t have_addr, 2646 /* db_expr_t */ long count, 2647 char *modif) 2648 { 2649 vm_object_print_static(addr, have_addr, count, modif); 2650 } 2651 2652 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 2653 { 2654 vm_object_t object; 2655 vm_pindex_t fidx; 2656 vm_paddr_t pa; 2657 vm_page_t m, prev_m; 2658 int rcount, nl, c; 2659 2660 nl = 0; 2661 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2662 db_printf("new object: %p\n", (void *)object); 2663 if (nl > 18) { 2664 c = cngetc(); 2665 if (c != ' ') 2666 return; 2667 nl = 0; 2668 } 2669 nl++; 2670 rcount = 0; 2671 fidx = 0; 2672 pa = -1; 2673 TAILQ_FOREACH(m, &object->memq, listq) { 2674 if (m->pindex > 128) 2675 break; 2676 if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL && 2677 prev_m->pindex + 1 != m->pindex) { 2678 if (rcount) { 2679 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2680 (long)fidx, rcount, (long)pa); 2681 if (nl > 18) { 2682 c = cngetc(); 2683 if (c != ' ') 2684 return; 2685 nl = 0; 2686 } 2687 nl++; 2688 rcount = 0; 2689 } 2690 } 2691 if (rcount && 2692 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2693 ++rcount; 2694 continue; 2695 } 2696 if (rcount) { 2697 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2698 (long)fidx, rcount, (long)pa); 2699 if (nl > 18) { 2700 c = cngetc(); 2701 if (c != ' ') 2702 return; 2703 nl = 0; 2704 } 2705 nl++; 2706 } 2707 fidx = m->pindex; 2708 pa = VM_PAGE_TO_PHYS(m); 2709 rcount = 1; 2710 } 2711 if (rcount) { 2712 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2713 (long)fidx, rcount, (long)pa); 2714 if (nl > 18) { 2715 c = cngetc(); 2716 if (c != ' ') 2717 return; 2718 nl = 0; 2719 } 2720 nl++; 2721 } 2722 } 2723 } 2724 #endif /* DDB */ 2725