xref: /freebsd/sys/vm/vm_object.c (revision cbd30a72ca196976c1c700400ecd424baa1b9c16)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory object module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include "opt_vm.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>		/* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/user.h>
83 #include <sys/vnode.h>
84 #include <sys/vmmeter.h>
85 #include <sys/sx.h>
86 
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <vm/pmap.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_pageout.h>
94 #include <vm/vm_pager.h>
95 #include <vm/swap_pager.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_extern.h>
98 #include <vm/vm_radix.h>
99 #include <vm/vm_reserv.h>
100 #include <vm/uma.h>
101 
102 static int old_msync;
103 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
104     "Use old (insecure) msync behavior");
105 
106 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
107 		    int pagerflags, int flags, boolean_t *clearobjflags,
108 		    boolean_t *eio);
109 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
110 		    boolean_t *clearobjflags);
111 static void	vm_object_qcollapse(vm_object_t object);
112 static void	vm_object_vndeallocate(vm_object_t object);
113 
114 /*
115  *	Virtual memory objects maintain the actual data
116  *	associated with allocated virtual memory.  A given
117  *	page of memory exists within exactly one object.
118  *
119  *	An object is only deallocated when all "references"
120  *	are given up.  Only one "reference" to a given
121  *	region of an object should be writeable.
122  *
123  *	Associated with each object is a list of all resident
124  *	memory pages belonging to that object; this list is
125  *	maintained by the "vm_page" module, and locked by the object's
126  *	lock.
127  *
128  *	Each object also records a "pager" routine which is
129  *	used to retrieve (and store) pages to the proper backing
130  *	storage.  In addition, objects may be backed by other
131  *	objects from which they were virtual-copied.
132  *
133  *	The only items within the object structure which are
134  *	modified after time of creation are:
135  *		reference count		locked by object's lock
136  *		pager routine		locked by object's lock
137  *
138  */
139 
140 struct object_q vm_object_list;
141 struct mtx vm_object_list_mtx;	/* lock for object list and count */
142 
143 struct vm_object kernel_object_store;
144 struct vm_object kmem_object_store;
145 
146 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
147     "VM object stats");
148 
149 static long object_collapses;
150 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
151     &object_collapses, 0, "VM object collapses");
152 
153 static long object_bypasses;
154 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
155     &object_bypasses, 0, "VM object bypasses");
156 
157 static uma_zone_t obj_zone;
158 
159 static int vm_object_zinit(void *mem, int size, int flags);
160 
161 #ifdef INVARIANTS
162 static void vm_object_zdtor(void *mem, int size, void *arg);
163 
164 static void
165 vm_object_zdtor(void *mem, int size, void *arg)
166 {
167 	vm_object_t object;
168 
169 	object = (vm_object_t)mem;
170 	KASSERT(object->ref_count == 0,
171 	    ("object %p ref_count = %d", object, object->ref_count));
172 	KASSERT(TAILQ_EMPTY(&object->memq),
173 	    ("object %p has resident pages in its memq", object));
174 	KASSERT(vm_radix_is_empty(&object->rtree),
175 	    ("object %p has resident pages in its trie", object));
176 #if VM_NRESERVLEVEL > 0
177 	KASSERT(LIST_EMPTY(&object->rvq),
178 	    ("object %p has reservations",
179 	    object));
180 #endif
181 	KASSERT(object->paging_in_progress == 0,
182 	    ("object %p paging_in_progress = %d",
183 	    object, object->paging_in_progress));
184 	KASSERT(object->resident_page_count == 0,
185 	    ("object %p resident_page_count = %d",
186 	    object, object->resident_page_count));
187 	KASSERT(object->shadow_count == 0,
188 	    ("object %p shadow_count = %d",
189 	    object, object->shadow_count));
190 	KASSERT(object->type == OBJT_DEAD,
191 	    ("object %p has non-dead type %d",
192 	    object, object->type));
193 }
194 #endif
195 
196 static int
197 vm_object_zinit(void *mem, int size, int flags)
198 {
199 	vm_object_t object;
200 
201 	object = (vm_object_t)mem;
202 	rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
203 
204 	/* These are true for any object that has been freed */
205 	object->type = OBJT_DEAD;
206 	object->ref_count = 0;
207 	object->rtree.rt_root = 0;
208 	object->paging_in_progress = 0;
209 	object->resident_page_count = 0;
210 	object->shadow_count = 0;
211 
212 	mtx_lock(&vm_object_list_mtx);
213 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
214 	mtx_unlock(&vm_object_list_mtx);
215 	return (0);
216 }
217 
218 static void
219 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
220 {
221 
222 	TAILQ_INIT(&object->memq);
223 	LIST_INIT(&object->shadow_head);
224 
225 	object->type = type;
226 	switch (type) {
227 	case OBJT_DEAD:
228 		panic("_vm_object_allocate: can't create OBJT_DEAD");
229 	case OBJT_DEFAULT:
230 	case OBJT_SWAP:
231 		object->flags = OBJ_ONEMAPPING;
232 		break;
233 	case OBJT_DEVICE:
234 	case OBJT_SG:
235 		object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
236 		break;
237 	case OBJT_MGTDEVICE:
238 		object->flags = OBJ_FICTITIOUS;
239 		break;
240 	case OBJT_PHYS:
241 		object->flags = OBJ_UNMANAGED;
242 		break;
243 	case OBJT_VNODE:
244 		object->flags = 0;
245 		break;
246 	default:
247 		panic("_vm_object_allocate: type %d is undefined", type);
248 	}
249 	object->size = size;
250 	object->generation = 1;
251 	object->ref_count = 1;
252 	object->memattr = VM_MEMATTR_DEFAULT;
253 	object->cred = NULL;
254 	object->charge = 0;
255 	object->handle = NULL;
256 	object->backing_object = NULL;
257 	object->backing_object_offset = (vm_ooffset_t) 0;
258 #if VM_NRESERVLEVEL > 0
259 	LIST_INIT(&object->rvq);
260 #endif
261 	umtx_shm_object_init(object);
262 }
263 
264 /*
265  *	vm_object_init:
266  *
267  *	Initialize the VM objects module.
268  */
269 void
270 vm_object_init(void)
271 {
272 	TAILQ_INIT(&vm_object_list);
273 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
274 
275 	rw_init(&kernel_object->lock, "kernel vm object");
276 	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
277 	    kernel_object);
278 #if VM_NRESERVLEVEL > 0
279 	kernel_object->flags |= OBJ_COLORED;
280 	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
281 #endif
282 
283 	rw_init(&kmem_object->lock, "kmem vm object");
284 	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
285 	    kmem_object);
286 #if VM_NRESERVLEVEL > 0
287 	kmem_object->flags |= OBJ_COLORED;
288 	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
289 #endif
290 
291 	/*
292 	 * The lock portion of struct vm_object must be type stable due
293 	 * to vm_pageout_fallback_object_lock locking a vm object
294 	 * without holding any references to it.
295 	 */
296 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
297 #ifdef INVARIANTS
298 	    vm_object_zdtor,
299 #else
300 	    NULL,
301 #endif
302 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
303 
304 	vm_radix_init();
305 }
306 
307 void
308 vm_object_clear_flag(vm_object_t object, u_short bits)
309 {
310 
311 	VM_OBJECT_ASSERT_WLOCKED(object);
312 	object->flags &= ~bits;
313 }
314 
315 /*
316  *	Sets the default memory attribute for the specified object.  Pages
317  *	that are allocated to this object are by default assigned this memory
318  *	attribute.
319  *
320  *	Presently, this function must be called before any pages are allocated
321  *	to the object.  In the future, this requirement may be relaxed for
322  *	"default" and "swap" objects.
323  */
324 int
325 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
326 {
327 
328 	VM_OBJECT_ASSERT_WLOCKED(object);
329 	switch (object->type) {
330 	case OBJT_DEFAULT:
331 	case OBJT_DEVICE:
332 	case OBJT_MGTDEVICE:
333 	case OBJT_PHYS:
334 	case OBJT_SG:
335 	case OBJT_SWAP:
336 	case OBJT_VNODE:
337 		if (!TAILQ_EMPTY(&object->memq))
338 			return (KERN_FAILURE);
339 		break;
340 	case OBJT_DEAD:
341 		return (KERN_INVALID_ARGUMENT);
342 	default:
343 		panic("vm_object_set_memattr: object %p is of undefined type",
344 		    object);
345 	}
346 	object->memattr = memattr;
347 	return (KERN_SUCCESS);
348 }
349 
350 void
351 vm_object_pip_add(vm_object_t object, short i)
352 {
353 
354 	VM_OBJECT_ASSERT_WLOCKED(object);
355 	object->paging_in_progress += i;
356 }
357 
358 void
359 vm_object_pip_subtract(vm_object_t object, short i)
360 {
361 
362 	VM_OBJECT_ASSERT_WLOCKED(object);
363 	object->paging_in_progress -= i;
364 }
365 
366 void
367 vm_object_pip_wakeup(vm_object_t object)
368 {
369 
370 	VM_OBJECT_ASSERT_WLOCKED(object);
371 	object->paging_in_progress--;
372 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
373 		vm_object_clear_flag(object, OBJ_PIPWNT);
374 		wakeup(object);
375 	}
376 }
377 
378 void
379 vm_object_pip_wakeupn(vm_object_t object, short i)
380 {
381 
382 	VM_OBJECT_ASSERT_WLOCKED(object);
383 	if (i)
384 		object->paging_in_progress -= i;
385 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
386 		vm_object_clear_flag(object, OBJ_PIPWNT);
387 		wakeup(object);
388 	}
389 }
390 
391 void
392 vm_object_pip_wait(vm_object_t object, char *waitid)
393 {
394 
395 	VM_OBJECT_ASSERT_WLOCKED(object);
396 	while (object->paging_in_progress) {
397 		object->flags |= OBJ_PIPWNT;
398 		VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
399 	}
400 }
401 
402 /*
403  *	vm_object_allocate:
404  *
405  *	Returns a new object with the given size.
406  */
407 vm_object_t
408 vm_object_allocate(objtype_t type, vm_pindex_t size)
409 {
410 	vm_object_t object;
411 
412 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
413 	_vm_object_allocate(type, size, object);
414 	return (object);
415 }
416 
417 
418 /*
419  *	vm_object_reference:
420  *
421  *	Gets another reference to the given object.  Note: OBJ_DEAD
422  *	objects can be referenced during final cleaning.
423  */
424 void
425 vm_object_reference(vm_object_t object)
426 {
427 	if (object == NULL)
428 		return;
429 	VM_OBJECT_WLOCK(object);
430 	vm_object_reference_locked(object);
431 	VM_OBJECT_WUNLOCK(object);
432 }
433 
434 /*
435  *	vm_object_reference_locked:
436  *
437  *	Gets another reference to the given object.
438  *
439  *	The object must be locked.
440  */
441 void
442 vm_object_reference_locked(vm_object_t object)
443 {
444 	struct vnode *vp;
445 
446 	VM_OBJECT_ASSERT_WLOCKED(object);
447 	object->ref_count++;
448 	if (object->type == OBJT_VNODE) {
449 		vp = object->handle;
450 		vref(vp);
451 	}
452 }
453 
454 /*
455  * Handle deallocating an object of type OBJT_VNODE.
456  */
457 static void
458 vm_object_vndeallocate(vm_object_t object)
459 {
460 	struct vnode *vp = (struct vnode *) object->handle;
461 
462 	VM_OBJECT_ASSERT_WLOCKED(object);
463 	KASSERT(object->type == OBJT_VNODE,
464 	    ("vm_object_vndeallocate: not a vnode object"));
465 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
466 #ifdef INVARIANTS
467 	if (object->ref_count == 0) {
468 		vn_printf(vp, "vm_object_vndeallocate ");
469 		panic("vm_object_vndeallocate: bad object reference count");
470 	}
471 #endif
472 
473 	if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
474 		umtx_shm_object_terminated(object);
475 
476 	/*
477 	 * The test for text of vp vnode does not need a bypass to
478 	 * reach right VV_TEXT there, since it is obtained from
479 	 * object->handle.
480 	 */
481 	if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
482 		object->ref_count--;
483 		VM_OBJECT_WUNLOCK(object);
484 		/* vrele may need the vnode lock. */
485 		vrele(vp);
486 	} else {
487 		vhold(vp);
488 		VM_OBJECT_WUNLOCK(object);
489 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
490 		vdrop(vp);
491 		VM_OBJECT_WLOCK(object);
492 		object->ref_count--;
493 		if (object->type == OBJT_DEAD) {
494 			VM_OBJECT_WUNLOCK(object);
495 			VOP_UNLOCK(vp, 0);
496 		} else {
497 			if (object->ref_count == 0)
498 				VOP_UNSET_TEXT(vp);
499 			VM_OBJECT_WUNLOCK(object);
500 			vput(vp);
501 		}
502 	}
503 }
504 
505 /*
506  *	vm_object_deallocate:
507  *
508  *	Release a reference to the specified object,
509  *	gained either through a vm_object_allocate
510  *	or a vm_object_reference call.  When all references
511  *	are gone, storage associated with this object
512  *	may be relinquished.
513  *
514  *	No object may be locked.
515  */
516 void
517 vm_object_deallocate(vm_object_t object)
518 {
519 	vm_object_t temp;
520 	struct vnode *vp;
521 
522 	while (object != NULL) {
523 		VM_OBJECT_WLOCK(object);
524 		if (object->type == OBJT_VNODE) {
525 			vm_object_vndeallocate(object);
526 			return;
527 		}
528 
529 		KASSERT(object->ref_count != 0,
530 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
531 
532 		/*
533 		 * If the reference count goes to 0 we start calling
534 		 * vm_object_terminate() on the object chain.
535 		 * A ref count of 1 may be a special case depending on the
536 		 * shadow count being 0 or 1.
537 		 */
538 		object->ref_count--;
539 		if (object->ref_count > 1) {
540 			VM_OBJECT_WUNLOCK(object);
541 			return;
542 		} else if (object->ref_count == 1) {
543 			if (object->type == OBJT_SWAP &&
544 			    (object->flags & OBJ_TMPFS) != 0) {
545 				vp = object->un_pager.swp.swp_tmpfs;
546 				vhold(vp);
547 				VM_OBJECT_WUNLOCK(object);
548 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
549 				VM_OBJECT_WLOCK(object);
550 				if (object->type == OBJT_DEAD ||
551 				    object->ref_count != 1) {
552 					VM_OBJECT_WUNLOCK(object);
553 					VOP_UNLOCK(vp, 0);
554 					vdrop(vp);
555 					return;
556 				}
557 				if ((object->flags & OBJ_TMPFS) != 0)
558 					VOP_UNSET_TEXT(vp);
559 				VOP_UNLOCK(vp, 0);
560 				vdrop(vp);
561 			}
562 			if (object->shadow_count == 0 &&
563 			    object->handle == NULL &&
564 			    (object->type == OBJT_DEFAULT ||
565 			    (object->type == OBJT_SWAP &&
566 			    (object->flags & OBJ_TMPFS_NODE) == 0))) {
567 				vm_object_set_flag(object, OBJ_ONEMAPPING);
568 			} else if ((object->shadow_count == 1) &&
569 			    (object->handle == NULL) &&
570 			    (object->type == OBJT_DEFAULT ||
571 			     object->type == OBJT_SWAP)) {
572 				vm_object_t robject;
573 
574 				robject = LIST_FIRST(&object->shadow_head);
575 				KASSERT(robject != NULL,
576 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
577 					 object->ref_count,
578 					 object->shadow_count));
579 				KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
580 				    ("shadowed tmpfs v_object %p", object));
581 				if (!VM_OBJECT_TRYWLOCK(robject)) {
582 					/*
583 					 * Avoid a potential deadlock.
584 					 */
585 					object->ref_count++;
586 					VM_OBJECT_WUNLOCK(object);
587 					/*
588 					 * More likely than not the thread
589 					 * holding robject's lock has lower
590 					 * priority than the current thread.
591 					 * Let the lower priority thread run.
592 					 */
593 					pause("vmo_de", 1);
594 					continue;
595 				}
596 				/*
597 				 * Collapse object into its shadow unless its
598 				 * shadow is dead.  In that case, object will
599 				 * be deallocated by the thread that is
600 				 * deallocating its shadow.
601 				 */
602 				if ((robject->flags & OBJ_DEAD) == 0 &&
603 				    (robject->handle == NULL) &&
604 				    (robject->type == OBJT_DEFAULT ||
605 				     robject->type == OBJT_SWAP)) {
606 
607 					robject->ref_count++;
608 retry:
609 					if (robject->paging_in_progress) {
610 						VM_OBJECT_WUNLOCK(object);
611 						vm_object_pip_wait(robject,
612 						    "objde1");
613 						temp = robject->backing_object;
614 						if (object == temp) {
615 							VM_OBJECT_WLOCK(object);
616 							goto retry;
617 						}
618 					} else if (object->paging_in_progress) {
619 						VM_OBJECT_WUNLOCK(robject);
620 						object->flags |= OBJ_PIPWNT;
621 						VM_OBJECT_SLEEP(object, object,
622 						    PDROP | PVM, "objde2", 0);
623 						VM_OBJECT_WLOCK(robject);
624 						temp = robject->backing_object;
625 						if (object == temp) {
626 							VM_OBJECT_WLOCK(object);
627 							goto retry;
628 						}
629 					} else
630 						VM_OBJECT_WUNLOCK(object);
631 
632 					if (robject->ref_count == 1) {
633 						robject->ref_count--;
634 						object = robject;
635 						goto doterm;
636 					}
637 					object = robject;
638 					vm_object_collapse(object);
639 					VM_OBJECT_WUNLOCK(object);
640 					continue;
641 				}
642 				VM_OBJECT_WUNLOCK(robject);
643 			}
644 			VM_OBJECT_WUNLOCK(object);
645 			return;
646 		}
647 doterm:
648 		umtx_shm_object_terminated(object);
649 		temp = object->backing_object;
650 		if (temp != NULL) {
651 			KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
652 			    ("shadowed tmpfs v_object 2 %p", object));
653 			VM_OBJECT_WLOCK(temp);
654 			LIST_REMOVE(object, shadow_list);
655 			temp->shadow_count--;
656 			VM_OBJECT_WUNLOCK(temp);
657 			object->backing_object = NULL;
658 		}
659 		/*
660 		 * Don't double-terminate, we could be in a termination
661 		 * recursion due to the terminate having to sync data
662 		 * to disk.
663 		 */
664 		if ((object->flags & OBJ_DEAD) == 0)
665 			vm_object_terminate(object);
666 		else
667 			VM_OBJECT_WUNLOCK(object);
668 		object = temp;
669 	}
670 }
671 
672 /*
673  *	vm_object_destroy removes the object from the global object list
674  *      and frees the space for the object.
675  */
676 void
677 vm_object_destroy(vm_object_t object)
678 {
679 
680 	/*
681 	 * Release the allocation charge.
682 	 */
683 	if (object->cred != NULL) {
684 		swap_release_by_cred(object->charge, object->cred);
685 		object->charge = 0;
686 		crfree(object->cred);
687 		object->cred = NULL;
688 	}
689 
690 	/*
691 	 * Free the space for the object.
692 	 */
693 	uma_zfree(obj_zone, object);
694 }
695 
696 /*
697  *	vm_object_terminate actually destroys the specified object, freeing
698  *	up all previously used resources.
699  *
700  *	The object must be locked.
701  *	This routine may block.
702  */
703 void
704 vm_object_terminate(vm_object_t object)
705 {
706 	vm_page_t p, p_next;
707 
708 	VM_OBJECT_ASSERT_WLOCKED(object);
709 
710 	/*
711 	 * Make sure no one uses us.
712 	 */
713 	vm_object_set_flag(object, OBJ_DEAD);
714 
715 	/*
716 	 * wait for the pageout daemon to be done with the object
717 	 */
718 	vm_object_pip_wait(object, "objtrm");
719 
720 	KASSERT(!object->paging_in_progress,
721 		("vm_object_terminate: pageout in progress"));
722 
723 	/*
724 	 * Clean and free the pages, as appropriate. All references to the
725 	 * object are gone, so we don't need to lock it.
726 	 */
727 	if (object->type == OBJT_VNODE) {
728 		struct vnode *vp = (struct vnode *)object->handle;
729 
730 		/*
731 		 * Clean pages and flush buffers.
732 		 */
733 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
734 		VM_OBJECT_WUNLOCK(object);
735 
736 		vinvalbuf(vp, V_SAVE, 0, 0);
737 
738 		BO_LOCK(&vp->v_bufobj);
739 		vp->v_bufobj.bo_flag |= BO_DEAD;
740 		BO_UNLOCK(&vp->v_bufobj);
741 
742 		VM_OBJECT_WLOCK(object);
743 	}
744 
745 	KASSERT(object->ref_count == 0,
746 		("vm_object_terminate: object with references, ref_count=%d",
747 		object->ref_count));
748 
749 	/*
750 	 * Free any remaining pageable pages.  This also removes them from the
751 	 * paging queues.  However, don't free wired pages, just remove them
752 	 * from the object.  Rather than incrementally removing each page from
753 	 * the object, the page and object are reset to any empty state.
754 	 */
755 	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
756 		vm_page_assert_unbusied(p);
757 		vm_page_lock(p);
758 		/*
759 		 * Optimize the page's removal from the object by resetting
760 		 * its "object" field.  Specifically, if the page is not
761 		 * wired, then the effect of this assignment is that
762 		 * vm_page_free()'s call to vm_page_remove() will return
763 		 * immediately without modifying the page or the object.
764 		 */
765 		p->object = NULL;
766 		if (p->wire_count == 0) {
767 			vm_page_free(p);
768 			PCPU_INC(cnt.v_pfree);
769 		}
770 		vm_page_unlock(p);
771 	}
772 	/*
773 	 * If the object contained any pages, then reset it to an empty state.
774 	 * None of the object's fields, including "resident_page_count", were
775 	 * modified by the preceding loop.
776 	 */
777 	if (object->resident_page_count != 0) {
778 		vm_radix_reclaim_allnodes(&object->rtree);
779 		TAILQ_INIT(&object->memq);
780 		object->resident_page_count = 0;
781 		if (object->type == OBJT_VNODE)
782 			vdrop(object->handle);
783 	}
784 
785 #if VM_NRESERVLEVEL > 0
786 	if (__predict_false(!LIST_EMPTY(&object->rvq)))
787 		vm_reserv_break_all(object);
788 #endif
789 
790 	KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
791 	    object->type == OBJT_SWAP,
792 	    ("%s: non-swap obj %p has cred", __func__, object));
793 
794 	/*
795 	 * Let the pager know object is dead.
796 	 */
797 	vm_pager_deallocate(object);
798 	VM_OBJECT_WUNLOCK(object);
799 
800 	vm_object_destroy(object);
801 }
802 
803 /*
804  * Make the page read-only so that we can clear the object flags.  However, if
805  * this is a nosync mmap then the object is likely to stay dirty so do not
806  * mess with the page and do not clear the object flags.  Returns TRUE if the
807  * page should be flushed, and FALSE otherwise.
808  */
809 static boolean_t
810 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
811 {
812 
813 	/*
814 	 * If we have been asked to skip nosync pages and this is a
815 	 * nosync page, skip it.  Note that the object flags were not
816 	 * cleared in this case so we do not have to set them.
817 	 */
818 	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
819 		*clearobjflags = FALSE;
820 		return (FALSE);
821 	} else {
822 		pmap_remove_write(p);
823 		return (p->dirty != 0);
824 	}
825 }
826 
827 /*
828  *	vm_object_page_clean
829  *
830  *	Clean all dirty pages in the specified range of object.  Leaves page
831  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
832  *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
833  *	leaving the object dirty.
834  *
835  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
836  *	synchronous clustering mode implementation.
837  *
838  *	Odd semantics: if start == end, we clean everything.
839  *
840  *	The object must be locked.
841  *
842  *	Returns FALSE if some page from the range was not written, as
843  *	reported by the pager, and TRUE otherwise.
844  */
845 boolean_t
846 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
847     int flags)
848 {
849 	vm_page_t np, p;
850 	vm_pindex_t pi, tend, tstart;
851 	int curgeneration, n, pagerflags;
852 	boolean_t clearobjflags, eio, res;
853 
854 	VM_OBJECT_ASSERT_WLOCKED(object);
855 
856 	/*
857 	 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
858 	 * objects.  The check below prevents the function from
859 	 * operating on non-vnode objects.
860 	 */
861 	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
862 	    object->resident_page_count == 0)
863 		return (TRUE);
864 
865 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
866 	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
867 	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
868 
869 	tstart = OFF_TO_IDX(start);
870 	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
871 	clearobjflags = tstart == 0 && tend >= object->size;
872 	res = TRUE;
873 
874 rescan:
875 	curgeneration = object->generation;
876 
877 	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
878 		pi = p->pindex;
879 		if (pi >= tend)
880 			break;
881 		np = TAILQ_NEXT(p, listq);
882 		if (p->valid == 0)
883 			continue;
884 		if (vm_page_sleep_if_busy(p, "vpcwai")) {
885 			if (object->generation != curgeneration) {
886 				if ((flags & OBJPC_SYNC) != 0)
887 					goto rescan;
888 				else
889 					clearobjflags = FALSE;
890 			}
891 			np = vm_page_find_least(object, pi);
892 			continue;
893 		}
894 		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
895 			continue;
896 
897 		n = vm_object_page_collect_flush(object, p, pagerflags,
898 		    flags, &clearobjflags, &eio);
899 		if (eio) {
900 			res = FALSE;
901 			clearobjflags = FALSE;
902 		}
903 		if (object->generation != curgeneration) {
904 			if ((flags & OBJPC_SYNC) != 0)
905 				goto rescan;
906 			else
907 				clearobjflags = FALSE;
908 		}
909 
910 		/*
911 		 * If the VOP_PUTPAGES() did a truncated write, so
912 		 * that even the first page of the run is not fully
913 		 * written, vm_pageout_flush() returns 0 as the run
914 		 * length.  Since the condition that caused truncated
915 		 * write may be permanent, e.g. exhausted free space,
916 		 * accepting n == 0 would cause an infinite loop.
917 		 *
918 		 * Forwarding the iterator leaves the unwritten page
919 		 * behind, but there is not much we can do there if
920 		 * filesystem refuses to write it.
921 		 */
922 		if (n == 0) {
923 			n = 1;
924 			clearobjflags = FALSE;
925 		}
926 		np = vm_page_find_least(object, pi + n);
927 	}
928 #if 0
929 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
930 #endif
931 
932 	if (clearobjflags)
933 		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
934 	return (res);
935 }
936 
937 static int
938 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
939     int flags, boolean_t *clearobjflags, boolean_t *eio)
940 {
941 	vm_page_t ma[vm_pageout_page_count], p_first, tp;
942 	int count, i, mreq, runlen;
943 
944 	vm_page_lock_assert(p, MA_NOTOWNED);
945 	VM_OBJECT_ASSERT_WLOCKED(object);
946 
947 	count = 1;
948 	mreq = 0;
949 
950 	for (tp = p; count < vm_pageout_page_count; count++) {
951 		tp = vm_page_next(tp);
952 		if (tp == NULL || vm_page_busied(tp))
953 			break;
954 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
955 			break;
956 	}
957 
958 	for (p_first = p; count < vm_pageout_page_count; count++) {
959 		tp = vm_page_prev(p_first);
960 		if (tp == NULL || vm_page_busied(tp))
961 			break;
962 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
963 			break;
964 		p_first = tp;
965 		mreq++;
966 	}
967 
968 	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
969 		ma[i] = tp;
970 
971 	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
972 	return (runlen);
973 }
974 
975 /*
976  * Note that there is absolutely no sense in writing out
977  * anonymous objects, so we track down the vnode object
978  * to write out.
979  * We invalidate (remove) all pages from the address space
980  * for semantic correctness.
981  *
982  * If the backing object is a device object with unmanaged pages, then any
983  * mappings to the specified range of pages must be removed before this
984  * function is called.
985  *
986  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
987  * may start out with a NULL object.
988  */
989 boolean_t
990 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
991     boolean_t syncio, boolean_t invalidate)
992 {
993 	vm_object_t backing_object;
994 	struct vnode *vp;
995 	struct mount *mp;
996 	int error, flags, fsync_after;
997 	boolean_t res;
998 
999 	if (object == NULL)
1000 		return (TRUE);
1001 	res = TRUE;
1002 	error = 0;
1003 	VM_OBJECT_WLOCK(object);
1004 	while ((backing_object = object->backing_object) != NULL) {
1005 		VM_OBJECT_WLOCK(backing_object);
1006 		offset += object->backing_object_offset;
1007 		VM_OBJECT_WUNLOCK(object);
1008 		object = backing_object;
1009 		if (object->size < OFF_TO_IDX(offset + size))
1010 			size = IDX_TO_OFF(object->size) - offset;
1011 	}
1012 	/*
1013 	 * Flush pages if writing is allowed, invalidate them
1014 	 * if invalidation requested.  Pages undergoing I/O
1015 	 * will be ignored by vm_object_page_remove().
1016 	 *
1017 	 * We cannot lock the vnode and then wait for paging
1018 	 * to complete without deadlocking against vm_fault.
1019 	 * Instead we simply call vm_object_page_remove() and
1020 	 * allow it to block internally on a page-by-page
1021 	 * basis when it encounters pages undergoing async
1022 	 * I/O.
1023 	 */
1024 	if (object->type == OBJT_VNODE &&
1025 	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1026 		vp = object->handle;
1027 		VM_OBJECT_WUNLOCK(object);
1028 		(void) vn_start_write(vp, &mp, V_WAIT);
1029 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1030 		if (syncio && !invalidate && offset == 0 &&
1031 		    OFF_TO_IDX(size) == object->size) {
1032 			/*
1033 			 * If syncing the whole mapping of the file,
1034 			 * it is faster to schedule all the writes in
1035 			 * async mode, also allowing the clustering,
1036 			 * and then wait for i/o to complete.
1037 			 */
1038 			flags = 0;
1039 			fsync_after = TRUE;
1040 		} else {
1041 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1042 			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1043 			fsync_after = FALSE;
1044 		}
1045 		VM_OBJECT_WLOCK(object);
1046 		res = vm_object_page_clean(object, offset, offset + size,
1047 		    flags);
1048 		VM_OBJECT_WUNLOCK(object);
1049 		if (fsync_after)
1050 			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1051 		VOP_UNLOCK(vp, 0);
1052 		vn_finished_write(mp);
1053 		if (error != 0)
1054 			res = FALSE;
1055 		VM_OBJECT_WLOCK(object);
1056 	}
1057 	if ((object->type == OBJT_VNODE ||
1058 	     object->type == OBJT_DEVICE) && invalidate) {
1059 		if (object->type == OBJT_DEVICE)
1060 			/*
1061 			 * The option OBJPR_NOTMAPPED must be passed here
1062 			 * because vm_object_page_remove() cannot remove
1063 			 * unmanaged mappings.
1064 			 */
1065 			flags = OBJPR_NOTMAPPED;
1066 		else if (old_msync)
1067 			flags = 0;
1068 		else
1069 			flags = OBJPR_CLEANONLY;
1070 		vm_object_page_remove(object, OFF_TO_IDX(offset),
1071 		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1072 	}
1073 	VM_OBJECT_WUNLOCK(object);
1074 	return (res);
1075 }
1076 
1077 /*
1078  * Determine whether the given advice can be applied to the object.  Advice is
1079  * not applied to unmanaged pages since they never belong to page queues, and
1080  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1081  * have been mapped at most once.
1082  */
1083 static bool
1084 vm_object_advice_applies(vm_object_t object, int advice)
1085 {
1086 
1087 	if ((object->flags & OBJ_UNMANAGED) != 0)
1088 		return (false);
1089 	if (advice != MADV_FREE)
1090 		return (true);
1091 	return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) &&
1092 	    (object->flags & OBJ_ONEMAPPING) != 0);
1093 }
1094 
1095 static void
1096 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1097     vm_size_t size)
1098 {
1099 
1100 	if (advice == MADV_FREE && object->type == OBJT_SWAP)
1101 		swap_pager_freespace(object, pindex, size);
1102 }
1103 
1104 /*
1105  *	vm_object_madvise:
1106  *
1107  *	Implements the madvise function at the object/page level.
1108  *
1109  *	MADV_WILLNEED	(any object)
1110  *
1111  *	    Activate the specified pages if they are resident.
1112  *
1113  *	MADV_DONTNEED	(any object)
1114  *
1115  *	    Deactivate the specified pages if they are resident.
1116  *
1117  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1118  *			 OBJ_ONEMAPPING only)
1119  *
1120  *	    Deactivate and clean the specified pages if they are
1121  *	    resident.  This permits the process to reuse the pages
1122  *	    without faulting or the kernel to reclaim the pages
1123  *	    without I/O.
1124  */
1125 void
1126 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1127     int advice)
1128 {
1129 	vm_pindex_t tpindex;
1130 	vm_object_t backing_object, tobject;
1131 	vm_page_t m, tm;
1132 
1133 	if (object == NULL)
1134 		return;
1135 
1136 relookup:
1137 	VM_OBJECT_WLOCK(object);
1138 	if (!vm_object_advice_applies(object, advice)) {
1139 		VM_OBJECT_WUNLOCK(object);
1140 		return;
1141 	}
1142 	for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1143 		tobject = object;
1144 
1145 		/*
1146 		 * If the next page isn't resident in the top-level object, we
1147 		 * need to search the shadow chain.  When applying MADV_FREE, we
1148 		 * take care to release any swap space used to store
1149 		 * non-resident pages.
1150 		 */
1151 		if (m == NULL || pindex < m->pindex) {
1152 			/*
1153 			 * Optimize a common case: if the top-level object has
1154 			 * no backing object, we can skip over the non-resident
1155 			 * range in constant time.
1156 			 */
1157 			if (object->backing_object == NULL) {
1158 				tpindex = (m != NULL && m->pindex < end) ?
1159 				    m->pindex : end;
1160 				vm_object_madvise_freespace(object, advice,
1161 				    pindex, tpindex - pindex);
1162 				if ((pindex = tpindex) == end)
1163 					break;
1164 				goto next_page;
1165 			}
1166 
1167 			tpindex = pindex;
1168 			do {
1169 				vm_object_madvise_freespace(tobject, advice,
1170 				    tpindex, 1);
1171 				/*
1172 				 * Prepare to search the next object in the
1173 				 * chain.
1174 				 */
1175 				backing_object = tobject->backing_object;
1176 				if (backing_object == NULL)
1177 					goto next_pindex;
1178 				VM_OBJECT_WLOCK(backing_object);
1179 				tpindex +=
1180 				    OFF_TO_IDX(tobject->backing_object_offset);
1181 				if (tobject != object)
1182 					VM_OBJECT_WUNLOCK(tobject);
1183 				tobject = backing_object;
1184 				if (!vm_object_advice_applies(tobject, advice))
1185 					goto next_pindex;
1186 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
1187 			    NULL);
1188 		} else {
1189 next_page:
1190 			tm = m;
1191 			m = TAILQ_NEXT(m, listq);
1192 		}
1193 
1194 		/*
1195 		 * If the page is not in a normal state, skip it.
1196 		 */
1197 		if (tm->valid != VM_PAGE_BITS_ALL)
1198 			goto next_pindex;
1199 		vm_page_lock(tm);
1200 		if (tm->hold_count != 0 || tm->wire_count != 0) {
1201 			vm_page_unlock(tm);
1202 			goto next_pindex;
1203 		}
1204 		KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1205 		    ("vm_object_madvise: page %p is fictitious", tm));
1206 		KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1207 		    ("vm_object_madvise: page %p is not managed", tm));
1208 		if (vm_page_busied(tm)) {
1209 			if (object != tobject)
1210 				VM_OBJECT_WUNLOCK(tobject);
1211 			VM_OBJECT_WUNLOCK(object);
1212 			if (advice == MADV_WILLNEED) {
1213 				/*
1214 				 * Reference the page before unlocking and
1215 				 * sleeping so that the page daemon is less
1216 				 * likely to reclaim it.
1217 				 */
1218 				vm_page_aflag_set(tm, PGA_REFERENCED);
1219 			}
1220 			vm_page_busy_sleep(tm, "madvpo", false);
1221   			goto relookup;
1222 		}
1223 		vm_page_advise(tm, advice);
1224 		vm_page_unlock(tm);
1225 		vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1226 next_pindex:
1227 		if (tobject != object)
1228 			VM_OBJECT_WUNLOCK(tobject);
1229 	}
1230 	VM_OBJECT_WUNLOCK(object);
1231 }
1232 
1233 /*
1234  *	vm_object_shadow:
1235  *
1236  *	Create a new object which is backed by the
1237  *	specified existing object range.  The source
1238  *	object reference is deallocated.
1239  *
1240  *	The new object and offset into that object
1241  *	are returned in the source parameters.
1242  */
1243 void
1244 vm_object_shadow(
1245 	vm_object_t *object,	/* IN/OUT */
1246 	vm_ooffset_t *offset,	/* IN/OUT */
1247 	vm_size_t length)
1248 {
1249 	vm_object_t source;
1250 	vm_object_t result;
1251 
1252 	source = *object;
1253 
1254 	/*
1255 	 * Don't create the new object if the old object isn't shared.
1256 	 */
1257 	if (source != NULL) {
1258 		VM_OBJECT_WLOCK(source);
1259 		if (source->ref_count == 1 &&
1260 		    source->handle == NULL &&
1261 		    (source->type == OBJT_DEFAULT ||
1262 		     source->type == OBJT_SWAP)) {
1263 			VM_OBJECT_WUNLOCK(source);
1264 			return;
1265 		}
1266 		VM_OBJECT_WUNLOCK(source);
1267 	}
1268 
1269 	/*
1270 	 * Allocate a new object with the given length.
1271 	 */
1272 	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1273 
1274 	/*
1275 	 * The new object shadows the source object, adding a reference to it.
1276 	 * Our caller changes his reference to point to the new object,
1277 	 * removing a reference to the source object.  Net result: no change
1278 	 * of reference count.
1279 	 *
1280 	 * Try to optimize the result object's page color when shadowing
1281 	 * in order to maintain page coloring consistency in the combined
1282 	 * shadowed object.
1283 	 */
1284 	result->backing_object = source;
1285 	/*
1286 	 * Store the offset into the source object, and fix up the offset into
1287 	 * the new object.
1288 	 */
1289 	result->backing_object_offset = *offset;
1290 	if (source != NULL) {
1291 		VM_OBJECT_WLOCK(source);
1292 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1293 		source->shadow_count++;
1294 #if VM_NRESERVLEVEL > 0
1295 		result->flags |= source->flags & OBJ_COLORED;
1296 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1297 		    ((1 << (VM_NFREEORDER - 1)) - 1);
1298 #endif
1299 		VM_OBJECT_WUNLOCK(source);
1300 	}
1301 
1302 
1303 	/*
1304 	 * Return the new things
1305 	 */
1306 	*offset = 0;
1307 	*object = result;
1308 }
1309 
1310 /*
1311  *	vm_object_split:
1312  *
1313  * Split the pages in a map entry into a new object.  This affords
1314  * easier removal of unused pages, and keeps object inheritance from
1315  * being a negative impact on memory usage.
1316  */
1317 void
1318 vm_object_split(vm_map_entry_t entry)
1319 {
1320 	vm_page_t m, m_next;
1321 	vm_object_t orig_object, new_object, source;
1322 	vm_pindex_t idx, offidxstart;
1323 	vm_size_t size;
1324 
1325 	orig_object = entry->object.vm_object;
1326 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1327 		return;
1328 	if (orig_object->ref_count <= 1)
1329 		return;
1330 	VM_OBJECT_WUNLOCK(orig_object);
1331 
1332 	offidxstart = OFF_TO_IDX(entry->offset);
1333 	size = atop(entry->end - entry->start);
1334 
1335 	/*
1336 	 * If swap_pager_copy() is later called, it will convert new_object
1337 	 * into a swap object.
1338 	 */
1339 	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1340 
1341 	/*
1342 	 * At this point, the new object is still private, so the order in
1343 	 * which the original and new objects are locked does not matter.
1344 	 */
1345 	VM_OBJECT_WLOCK(new_object);
1346 	VM_OBJECT_WLOCK(orig_object);
1347 	source = orig_object->backing_object;
1348 	if (source != NULL) {
1349 		VM_OBJECT_WLOCK(source);
1350 		if ((source->flags & OBJ_DEAD) != 0) {
1351 			VM_OBJECT_WUNLOCK(source);
1352 			VM_OBJECT_WUNLOCK(orig_object);
1353 			VM_OBJECT_WUNLOCK(new_object);
1354 			vm_object_deallocate(new_object);
1355 			VM_OBJECT_WLOCK(orig_object);
1356 			return;
1357 		}
1358 		LIST_INSERT_HEAD(&source->shadow_head,
1359 				  new_object, shadow_list);
1360 		source->shadow_count++;
1361 		vm_object_reference_locked(source);	/* for new_object */
1362 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1363 		VM_OBJECT_WUNLOCK(source);
1364 		new_object->backing_object_offset =
1365 			orig_object->backing_object_offset + entry->offset;
1366 		new_object->backing_object = source;
1367 	}
1368 	if (orig_object->cred != NULL) {
1369 		new_object->cred = orig_object->cred;
1370 		crhold(orig_object->cred);
1371 		new_object->charge = ptoa(size);
1372 		KASSERT(orig_object->charge >= ptoa(size),
1373 		    ("orig_object->charge < 0"));
1374 		orig_object->charge -= ptoa(size);
1375 	}
1376 retry:
1377 	m = vm_page_find_least(orig_object, offidxstart);
1378 	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1379 	    m = m_next) {
1380 		m_next = TAILQ_NEXT(m, listq);
1381 
1382 		/*
1383 		 * We must wait for pending I/O to complete before we can
1384 		 * rename the page.
1385 		 *
1386 		 * We do not have to VM_PROT_NONE the page as mappings should
1387 		 * not be changed by this operation.
1388 		 */
1389 		if (vm_page_busied(m)) {
1390 			VM_OBJECT_WUNLOCK(new_object);
1391 			vm_page_lock(m);
1392 			VM_OBJECT_WUNLOCK(orig_object);
1393 			vm_page_busy_sleep(m, "spltwt", false);
1394 			VM_OBJECT_WLOCK(orig_object);
1395 			VM_OBJECT_WLOCK(new_object);
1396 			goto retry;
1397 		}
1398 
1399 		/* vm_page_rename() will dirty the page. */
1400 		if (vm_page_rename(m, new_object, idx)) {
1401 			VM_OBJECT_WUNLOCK(new_object);
1402 			VM_OBJECT_WUNLOCK(orig_object);
1403 			VM_WAIT;
1404 			VM_OBJECT_WLOCK(orig_object);
1405 			VM_OBJECT_WLOCK(new_object);
1406 			goto retry;
1407 		}
1408 #if VM_NRESERVLEVEL > 0
1409 		/*
1410 		 * If some of the reservation's allocated pages remain with
1411 		 * the original object, then transferring the reservation to
1412 		 * the new object is neither particularly beneficial nor
1413 		 * particularly harmful as compared to leaving the reservation
1414 		 * with the original object.  If, however, all of the
1415 		 * reservation's allocated pages are transferred to the new
1416 		 * object, then transferring the reservation is typically
1417 		 * beneficial.  Determining which of these two cases applies
1418 		 * would be more costly than unconditionally renaming the
1419 		 * reservation.
1420 		 */
1421 		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1422 #endif
1423 		if (orig_object->type == OBJT_SWAP)
1424 			vm_page_xbusy(m);
1425 	}
1426 	if (orig_object->type == OBJT_SWAP) {
1427 		/*
1428 		 * swap_pager_copy() can sleep, in which case the orig_object's
1429 		 * and new_object's locks are released and reacquired.
1430 		 */
1431 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1432 		TAILQ_FOREACH(m, &new_object->memq, listq)
1433 			vm_page_xunbusy(m);
1434 	}
1435 	VM_OBJECT_WUNLOCK(orig_object);
1436 	VM_OBJECT_WUNLOCK(new_object);
1437 	entry->object.vm_object = new_object;
1438 	entry->offset = 0LL;
1439 	vm_object_deallocate(orig_object);
1440 	VM_OBJECT_WLOCK(new_object);
1441 }
1442 
1443 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1444 #define	OBSC_COLLAPSE_WAIT	0x0004
1445 
1446 static vm_page_t
1447 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1448     int op)
1449 {
1450 	vm_object_t backing_object;
1451 
1452 	VM_OBJECT_ASSERT_WLOCKED(object);
1453 	backing_object = object->backing_object;
1454 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1455 
1456 	KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1457 	KASSERT(p == NULL || p->object == object || p->object == backing_object,
1458 	    ("invalid ownership %p %p %p", p, object, backing_object));
1459 	if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1460 		return (next);
1461 	if (p != NULL)
1462 		vm_page_lock(p);
1463 	VM_OBJECT_WUNLOCK(object);
1464 	VM_OBJECT_WUNLOCK(backing_object);
1465 	if (p == NULL)
1466 		VM_WAIT;
1467 	else
1468 		vm_page_busy_sleep(p, "vmocol", false);
1469 	VM_OBJECT_WLOCK(object);
1470 	VM_OBJECT_WLOCK(backing_object);
1471 	return (TAILQ_FIRST(&backing_object->memq));
1472 }
1473 
1474 static bool
1475 vm_object_scan_all_shadowed(vm_object_t object)
1476 {
1477 	vm_object_t backing_object;
1478 	vm_page_t p, pp;
1479 	vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1480 
1481 	VM_OBJECT_ASSERT_WLOCKED(object);
1482 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1483 
1484 	backing_object = object->backing_object;
1485 
1486 	if (backing_object->type != OBJT_DEFAULT &&
1487 	    backing_object->type != OBJT_SWAP)
1488 		return (false);
1489 
1490 	pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1491 	p = vm_page_find_least(backing_object, pi);
1492 	ps = swap_pager_find_least(backing_object, pi);
1493 
1494 	/*
1495 	 * Only check pages inside the parent object's range and
1496 	 * inside the parent object's mapping of the backing object.
1497 	 */
1498 	for (;; pi++) {
1499 		if (p != NULL && p->pindex < pi)
1500 			p = TAILQ_NEXT(p, listq);
1501 		if (ps < pi)
1502 			ps = swap_pager_find_least(backing_object, pi);
1503 		if (p == NULL && ps >= backing_object->size)
1504 			break;
1505 		else if (p == NULL)
1506 			pi = ps;
1507 		else
1508 			pi = MIN(p->pindex, ps);
1509 
1510 		new_pindex = pi - backing_offset_index;
1511 		if (new_pindex >= object->size)
1512 			break;
1513 
1514 		/*
1515 		 * See if the parent has the page or if the parent's object
1516 		 * pager has the page.  If the parent has the page but the page
1517 		 * is not valid, the parent's object pager must have the page.
1518 		 *
1519 		 * If this fails, the parent does not completely shadow the
1520 		 * object and we might as well give up now.
1521 		 */
1522 		pp = vm_page_lookup(object, new_pindex);
1523 		if ((pp == NULL || pp->valid == 0) &&
1524 		    !vm_pager_has_page(object, new_pindex, NULL, NULL))
1525 			return (false);
1526 	}
1527 	return (true);
1528 }
1529 
1530 static bool
1531 vm_object_collapse_scan(vm_object_t object, int op)
1532 {
1533 	vm_object_t backing_object;
1534 	vm_page_t next, p, pp;
1535 	vm_pindex_t backing_offset_index, new_pindex;
1536 
1537 	VM_OBJECT_ASSERT_WLOCKED(object);
1538 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1539 
1540 	backing_object = object->backing_object;
1541 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1542 
1543 	/*
1544 	 * Initial conditions
1545 	 */
1546 	if ((op & OBSC_COLLAPSE_WAIT) != 0)
1547 		vm_object_set_flag(backing_object, OBJ_DEAD);
1548 
1549 	/*
1550 	 * Our scan
1551 	 */
1552 	for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1553 		next = TAILQ_NEXT(p, listq);
1554 		new_pindex = p->pindex - backing_offset_index;
1555 
1556 		/*
1557 		 * Check for busy page
1558 		 */
1559 		if (vm_page_busied(p)) {
1560 			next = vm_object_collapse_scan_wait(object, p, next, op);
1561 			continue;
1562 		}
1563 
1564 		KASSERT(p->object == backing_object,
1565 		    ("vm_object_collapse_scan: object mismatch"));
1566 
1567 		if (p->pindex < backing_offset_index ||
1568 		    new_pindex >= object->size) {
1569 			if (backing_object->type == OBJT_SWAP)
1570 				swap_pager_freespace(backing_object, p->pindex,
1571 				    1);
1572 
1573 			/*
1574 			 * Page is out of the parent object's range, we can
1575 			 * simply destroy it.
1576 			 */
1577 			vm_page_lock(p);
1578 			KASSERT(!pmap_page_is_mapped(p),
1579 			    ("freeing mapped page %p", p));
1580 			if (p->wire_count == 0)
1581 				vm_page_free(p);
1582 			else
1583 				vm_page_remove(p);
1584 			vm_page_unlock(p);
1585 			continue;
1586 		}
1587 
1588 		pp = vm_page_lookup(object, new_pindex);
1589 		if (pp != NULL && vm_page_busied(pp)) {
1590 			/*
1591 			 * The page in the parent is busy and possibly not
1592 			 * (yet) valid.  Until its state is finalized by the
1593 			 * busy bit owner, we can't tell whether it shadows the
1594 			 * original page.  Therefore, we must either skip it
1595 			 * and the original (backing_object) page or wait for
1596 			 * its state to be finalized.
1597 			 *
1598 			 * This is due to a race with vm_fault() where we must
1599 			 * unbusy the original (backing_obj) page before we can
1600 			 * (re)lock the parent.  Hence we can get here.
1601 			 */
1602 			next = vm_object_collapse_scan_wait(object, pp, next,
1603 			    op);
1604 			continue;
1605 		}
1606 
1607 		KASSERT(pp == NULL || pp->valid != 0,
1608 		    ("unbusy invalid page %p", pp));
1609 
1610 		if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1611 			NULL)) {
1612 			/*
1613 			 * The page already exists in the parent OR swap exists
1614 			 * for this location in the parent.  Leave the parent's
1615 			 * page alone.  Destroy the original page from the
1616 			 * backing object.
1617 			 */
1618 			if (backing_object->type == OBJT_SWAP)
1619 				swap_pager_freespace(backing_object, p->pindex,
1620 				    1);
1621 			vm_page_lock(p);
1622 			KASSERT(!pmap_page_is_mapped(p),
1623 			    ("freeing mapped page %p", p));
1624 			if (p->wire_count == 0)
1625 				vm_page_free(p);
1626 			else
1627 				vm_page_remove(p);
1628 			vm_page_unlock(p);
1629 			continue;
1630 		}
1631 
1632 		/*
1633 		 * Page does not exist in parent, rename the page from the
1634 		 * backing object to the main object.
1635 		 *
1636 		 * If the page was mapped to a process, it can remain mapped
1637 		 * through the rename.  vm_page_rename() will dirty the page.
1638 		 */
1639 		if (vm_page_rename(p, object, new_pindex)) {
1640 			next = vm_object_collapse_scan_wait(object, NULL, next,
1641 			    op);
1642 			continue;
1643 		}
1644 
1645 		/* Use the old pindex to free the right page. */
1646 		if (backing_object->type == OBJT_SWAP)
1647 			swap_pager_freespace(backing_object,
1648 			    new_pindex + backing_offset_index, 1);
1649 
1650 #if VM_NRESERVLEVEL > 0
1651 		/*
1652 		 * Rename the reservation.
1653 		 */
1654 		vm_reserv_rename(p, object, backing_object,
1655 		    backing_offset_index);
1656 #endif
1657 	}
1658 	return (true);
1659 }
1660 
1661 
1662 /*
1663  * this version of collapse allows the operation to occur earlier and
1664  * when paging_in_progress is true for an object...  This is not a complete
1665  * operation, but should plug 99.9% of the rest of the leaks.
1666  */
1667 static void
1668 vm_object_qcollapse(vm_object_t object)
1669 {
1670 	vm_object_t backing_object = object->backing_object;
1671 
1672 	VM_OBJECT_ASSERT_WLOCKED(object);
1673 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1674 
1675 	if (backing_object->ref_count != 1)
1676 		return;
1677 
1678 	vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1679 }
1680 
1681 /*
1682  *	vm_object_collapse:
1683  *
1684  *	Collapse an object with the object backing it.
1685  *	Pages in the backing object are moved into the
1686  *	parent, and the backing object is deallocated.
1687  */
1688 void
1689 vm_object_collapse(vm_object_t object)
1690 {
1691 	vm_object_t backing_object, new_backing_object;
1692 
1693 	VM_OBJECT_ASSERT_WLOCKED(object);
1694 
1695 	while (TRUE) {
1696 		/*
1697 		 * Verify that the conditions are right for collapse:
1698 		 *
1699 		 * The object exists and the backing object exists.
1700 		 */
1701 		if ((backing_object = object->backing_object) == NULL)
1702 			break;
1703 
1704 		/*
1705 		 * we check the backing object first, because it is most likely
1706 		 * not collapsable.
1707 		 */
1708 		VM_OBJECT_WLOCK(backing_object);
1709 		if (backing_object->handle != NULL ||
1710 		    (backing_object->type != OBJT_DEFAULT &&
1711 		     backing_object->type != OBJT_SWAP) ||
1712 		    (backing_object->flags & OBJ_DEAD) ||
1713 		    object->handle != NULL ||
1714 		    (object->type != OBJT_DEFAULT &&
1715 		     object->type != OBJT_SWAP) ||
1716 		    (object->flags & OBJ_DEAD)) {
1717 			VM_OBJECT_WUNLOCK(backing_object);
1718 			break;
1719 		}
1720 
1721 		if (object->paging_in_progress != 0 ||
1722 		    backing_object->paging_in_progress != 0) {
1723 			vm_object_qcollapse(object);
1724 			VM_OBJECT_WUNLOCK(backing_object);
1725 			break;
1726 		}
1727 
1728 		/*
1729 		 * We know that we can either collapse the backing object (if
1730 		 * the parent is the only reference to it) or (perhaps) have
1731 		 * the parent bypass the object if the parent happens to shadow
1732 		 * all the resident pages in the entire backing object.
1733 		 *
1734 		 * This is ignoring pager-backed pages such as swap pages.
1735 		 * vm_object_collapse_scan fails the shadowing test in this
1736 		 * case.
1737 		 */
1738 		if (backing_object->ref_count == 1) {
1739 			vm_object_pip_add(object, 1);
1740 			vm_object_pip_add(backing_object, 1);
1741 
1742 			/*
1743 			 * If there is exactly one reference to the backing
1744 			 * object, we can collapse it into the parent.
1745 			 */
1746 			vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1747 
1748 #if VM_NRESERVLEVEL > 0
1749 			/*
1750 			 * Break any reservations from backing_object.
1751 			 */
1752 			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1753 				vm_reserv_break_all(backing_object);
1754 #endif
1755 
1756 			/*
1757 			 * Move the pager from backing_object to object.
1758 			 */
1759 			if (backing_object->type == OBJT_SWAP) {
1760 				/*
1761 				 * swap_pager_copy() can sleep, in which case
1762 				 * the backing_object's and object's locks are
1763 				 * released and reacquired.
1764 				 * Since swap_pager_copy() is being asked to
1765 				 * destroy the source, it will change the
1766 				 * backing_object's type to OBJT_DEFAULT.
1767 				 */
1768 				swap_pager_copy(
1769 				    backing_object,
1770 				    object,
1771 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1772 			}
1773 			/*
1774 			 * Object now shadows whatever backing_object did.
1775 			 * Note that the reference to
1776 			 * backing_object->backing_object moves from within
1777 			 * backing_object to within object.
1778 			 */
1779 			LIST_REMOVE(object, shadow_list);
1780 			backing_object->shadow_count--;
1781 			if (backing_object->backing_object) {
1782 				VM_OBJECT_WLOCK(backing_object->backing_object);
1783 				LIST_REMOVE(backing_object, shadow_list);
1784 				LIST_INSERT_HEAD(
1785 				    &backing_object->backing_object->shadow_head,
1786 				    object, shadow_list);
1787 				/*
1788 				 * The shadow_count has not changed.
1789 				 */
1790 				VM_OBJECT_WUNLOCK(backing_object->backing_object);
1791 			}
1792 			object->backing_object = backing_object->backing_object;
1793 			object->backing_object_offset +=
1794 			    backing_object->backing_object_offset;
1795 
1796 			/*
1797 			 * Discard backing_object.
1798 			 *
1799 			 * Since the backing object has no pages, no pager left,
1800 			 * and no object references within it, all that is
1801 			 * necessary is to dispose of it.
1802 			 */
1803 			KASSERT(backing_object->ref_count == 1, (
1804 "backing_object %p was somehow re-referenced during collapse!",
1805 			    backing_object));
1806 			vm_object_pip_wakeup(backing_object);
1807 			backing_object->type = OBJT_DEAD;
1808 			backing_object->ref_count = 0;
1809 			VM_OBJECT_WUNLOCK(backing_object);
1810 			vm_object_destroy(backing_object);
1811 
1812 			vm_object_pip_wakeup(object);
1813 			object_collapses++;
1814 		} else {
1815 			/*
1816 			 * If we do not entirely shadow the backing object,
1817 			 * there is nothing we can do so we give up.
1818 			 */
1819 			if (object->resident_page_count != object->size &&
1820 			    !vm_object_scan_all_shadowed(object)) {
1821 				VM_OBJECT_WUNLOCK(backing_object);
1822 				break;
1823 			}
1824 
1825 			/*
1826 			 * Make the parent shadow the next object in the
1827 			 * chain.  Deallocating backing_object will not remove
1828 			 * it, since its reference count is at least 2.
1829 			 */
1830 			LIST_REMOVE(object, shadow_list);
1831 			backing_object->shadow_count--;
1832 
1833 			new_backing_object = backing_object->backing_object;
1834 			if ((object->backing_object = new_backing_object) != NULL) {
1835 				VM_OBJECT_WLOCK(new_backing_object);
1836 				LIST_INSERT_HEAD(
1837 				    &new_backing_object->shadow_head,
1838 				    object,
1839 				    shadow_list
1840 				);
1841 				new_backing_object->shadow_count++;
1842 				vm_object_reference_locked(new_backing_object);
1843 				VM_OBJECT_WUNLOCK(new_backing_object);
1844 				object->backing_object_offset +=
1845 					backing_object->backing_object_offset;
1846 			}
1847 
1848 			/*
1849 			 * Drop the reference count on backing_object. Since
1850 			 * its ref_count was at least 2, it will not vanish.
1851 			 */
1852 			backing_object->ref_count--;
1853 			VM_OBJECT_WUNLOCK(backing_object);
1854 			object_bypasses++;
1855 		}
1856 
1857 		/*
1858 		 * Try again with this object's new backing object.
1859 		 */
1860 	}
1861 }
1862 
1863 /*
1864  *	vm_object_page_remove:
1865  *
1866  *	For the given object, either frees or invalidates each of the
1867  *	specified pages.  In general, a page is freed.  However, if a page is
1868  *	wired for any reason other than the existence of a managed, wired
1869  *	mapping, then it may be invalidated but not removed from the object.
1870  *	Pages are specified by the given range ["start", "end") and the option
1871  *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1872  *	extends from "start" to the end of the object.  If the option
1873  *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1874  *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1875  *	specified, then the pages within the specified range must have no
1876  *	mappings.  Otherwise, if this option is not specified, any mappings to
1877  *	the specified pages are removed before the pages are freed or
1878  *	invalidated.
1879  *
1880  *	In general, this operation should only be performed on objects that
1881  *	contain managed pages.  There are, however, two exceptions.  First, it
1882  *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1883  *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1884  *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1885  *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1886  *
1887  *	The object must be locked.
1888  */
1889 void
1890 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1891     int options)
1892 {
1893 	vm_page_t p, next;
1894 
1895 	VM_OBJECT_ASSERT_WLOCKED(object);
1896 	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1897 	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1898 	    ("vm_object_page_remove: illegal options for object %p", object));
1899 	if (object->resident_page_count == 0)
1900 		return;
1901 	vm_object_pip_add(object, 1);
1902 again:
1903 	p = vm_page_find_least(object, start);
1904 
1905 	/*
1906 	 * Here, the variable "p" is either (1) the page with the least pindex
1907 	 * greater than or equal to the parameter "start" or (2) NULL.
1908 	 */
1909 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1910 		next = TAILQ_NEXT(p, listq);
1911 
1912 		/*
1913 		 * If the page is wired for any reason besides the existence
1914 		 * of managed, wired mappings, then it cannot be freed.  For
1915 		 * example, fictitious pages, which represent device memory,
1916 		 * are inherently wired and cannot be freed.  They can,
1917 		 * however, be invalidated if the option OBJPR_CLEANONLY is
1918 		 * not specified.
1919 		 */
1920 		vm_page_lock(p);
1921 		if (vm_page_xbusied(p)) {
1922 			VM_OBJECT_WUNLOCK(object);
1923 			vm_page_busy_sleep(p, "vmopax", true);
1924 			VM_OBJECT_WLOCK(object);
1925 			goto again;
1926 		}
1927 		if (p->wire_count != 0) {
1928 			if ((options & OBJPR_NOTMAPPED) == 0)
1929 				pmap_remove_all(p);
1930 			if ((options & OBJPR_CLEANONLY) == 0) {
1931 				p->valid = 0;
1932 				vm_page_undirty(p);
1933 			}
1934 			goto next;
1935 		}
1936 		if (vm_page_busied(p)) {
1937 			VM_OBJECT_WUNLOCK(object);
1938 			vm_page_busy_sleep(p, "vmopar", false);
1939 			VM_OBJECT_WLOCK(object);
1940 			goto again;
1941 		}
1942 		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1943 		    ("vm_object_page_remove: page %p is fictitious", p));
1944 		if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1945 			if ((options & OBJPR_NOTMAPPED) == 0)
1946 				pmap_remove_write(p);
1947 			if (p->dirty)
1948 				goto next;
1949 		}
1950 		if ((options & OBJPR_NOTMAPPED) == 0)
1951 			pmap_remove_all(p);
1952 		vm_page_free(p);
1953 next:
1954 		vm_page_unlock(p);
1955 	}
1956 	vm_object_pip_wakeup(object);
1957 }
1958 
1959 /*
1960  *	vm_object_page_noreuse:
1961  *
1962  *	For the given object, attempt to move the specified pages to
1963  *	the head of the inactive queue.  This bypasses regular LRU
1964  *	operation and allows the pages to be reused quickly under memory
1965  *	pressure.  If a page is wired for any reason, then it will not
1966  *	be queued.  Pages are specified by the range ["start", "end").
1967  *	As a special case, if "end" is zero, then the range extends from
1968  *	"start" to the end of the object.
1969  *
1970  *	This operation should only be performed on objects that
1971  *	contain non-fictitious, managed pages.
1972  *
1973  *	The object must be locked.
1974  */
1975 void
1976 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1977 {
1978 	struct mtx *mtx, *new_mtx;
1979 	vm_page_t p, next;
1980 
1981 	VM_OBJECT_ASSERT_WLOCKED(object);
1982 	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
1983 	    ("vm_object_page_noreuse: illegal object %p", object));
1984 	if (object->resident_page_count == 0)
1985 		return;
1986 	p = vm_page_find_least(object, start);
1987 
1988 	/*
1989 	 * Here, the variable "p" is either (1) the page with the least pindex
1990 	 * greater than or equal to the parameter "start" or (2) NULL.
1991 	 */
1992 	mtx = NULL;
1993 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1994 		next = TAILQ_NEXT(p, listq);
1995 
1996 		/*
1997 		 * Avoid releasing and reacquiring the same page lock.
1998 		 */
1999 		new_mtx = vm_page_lockptr(p);
2000 		if (mtx != new_mtx) {
2001 			if (mtx != NULL)
2002 				mtx_unlock(mtx);
2003 			mtx = new_mtx;
2004 			mtx_lock(mtx);
2005 		}
2006 		vm_page_deactivate_noreuse(p);
2007 	}
2008 	if (mtx != NULL)
2009 		mtx_unlock(mtx);
2010 }
2011 
2012 /*
2013  *	Populate the specified range of the object with valid pages.  Returns
2014  *	TRUE if the range is successfully populated and FALSE otherwise.
2015  *
2016  *	Note: This function should be optimized to pass a larger array of
2017  *	pages to vm_pager_get_pages() before it is applied to a non-
2018  *	OBJT_DEVICE object.
2019  *
2020  *	The object must be locked.
2021  */
2022 boolean_t
2023 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2024 {
2025 	vm_page_t m;
2026 	vm_pindex_t pindex;
2027 	int rv;
2028 
2029 	VM_OBJECT_ASSERT_WLOCKED(object);
2030 	for (pindex = start; pindex < end; pindex++) {
2031 		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2032 		if (m->valid != VM_PAGE_BITS_ALL) {
2033 			rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
2034 			if (rv != VM_PAGER_OK) {
2035 				vm_page_lock(m);
2036 				vm_page_free(m);
2037 				vm_page_unlock(m);
2038 				break;
2039 			}
2040 		}
2041 		/*
2042 		 * Keep "m" busy because a subsequent iteration may unlock
2043 		 * the object.
2044 		 */
2045 	}
2046 	if (pindex > start) {
2047 		m = vm_page_lookup(object, start);
2048 		while (m != NULL && m->pindex < pindex) {
2049 			vm_page_xunbusy(m);
2050 			m = TAILQ_NEXT(m, listq);
2051 		}
2052 	}
2053 	return (pindex == end);
2054 }
2055 
2056 /*
2057  *	Routine:	vm_object_coalesce
2058  *	Function:	Coalesces two objects backing up adjoining
2059  *			regions of memory into a single object.
2060  *
2061  *	returns TRUE if objects were combined.
2062  *
2063  *	NOTE:	Only works at the moment if the second object is NULL -
2064  *		if it's not, which object do we lock first?
2065  *
2066  *	Parameters:
2067  *		prev_object	First object to coalesce
2068  *		prev_offset	Offset into prev_object
2069  *		prev_size	Size of reference to prev_object
2070  *		next_size	Size of reference to the second object
2071  *		reserved	Indicator that extension region has
2072  *				swap accounted for
2073  *
2074  *	Conditions:
2075  *	The object must *not* be locked.
2076  */
2077 boolean_t
2078 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2079     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2080 {
2081 	vm_pindex_t next_pindex;
2082 
2083 	if (prev_object == NULL)
2084 		return (TRUE);
2085 	VM_OBJECT_WLOCK(prev_object);
2086 	if ((prev_object->type != OBJT_DEFAULT &&
2087 	    prev_object->type != OBJT_SWAP) ||
2088 	    (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2089 		VM_OBJECT_WUNLOCK(prev_object);
2090 		return (FALSE);
2091 	}
2092 
2093 	/*
2094 	 * Try to collapse the object first
2095 	 */
2096 	vm_object_collapse(prev_object);
2097 
2098 	/*
2099 	 * Can't coalesce if: . more than one reference . paged out . shadows
2100 	 * another object . has a copy elsewhere (any of which mean that the
2101 	 * pages not mapped to prev_entry may be in use anyway)
2102 	 */
2103 	if (prev_object->backing_object != NULL) {
2104 		VM_OBJECT_WUNLOCK(prev_object);
2105 		return (FALSE);
2106 	}
2107 
2108 	prev_size >>= PAGE_SHIFT;
2109 	next_size >>= PAGE_SHIFT;
2110 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2111 
2112 	if ((prev_object->ref_count > 1) &&
2113 	    (prev_object->size != next_pindex)) {
2114 		VM_OBJECT_WUNLOCK(prev_object);
2115 		return (FALSE);
2116 	}
2117 
2118 	/*
2119 	 * Account for the charge.
2120 	 */
2121 	if (prev_object->cred != NULL) {
2122 
2123 		/*
2124 		 * If prev_object was charged, then this mapping,
2125 		 * although not charged now, may become writable
2126 		 * later. Non-NULL cred in the object would prevent
2127 		 * swap reservation during enabling of the write
2128 		 * access, so reserve swap now. Failed reservation
2129 		 * cause allocation of the separate object for the map
2130 		 * entry, and swap reservation for this entry is
2131 		 * managed in appropriate time.
2132 		 */
2133 		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2134 		    prev_object->cred)) {
2135 			VM_OBJECT_WUNLOCK(prev_object);
2136 			return (FALSE);
2137 		}
2138 		prev_object->charge += ptoa(next_size);
2139 	}
2140 
2141 	/*
2142 	 * Remove any pages that may still be in the object from a previous
2143 	 * deallocation.
2144 	 */
2145 	if (next_pindex < prev_object->size) {
2146 		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2147 		    next_size, 0);
2148 		if (prev_object->type == OBJT_SWAP)
2149 			swap_pager_freespace(prev_object,
2150 					     next_pindex, next_size);
2151 #if 0
2152 		if (prev_object->cred != NULL) {
2153 			KASSERT(prev_object->charge >=
2154 			    ptoa(prev_object->size - next_pindex),
2155 			    ("object %p overcharged 1 %jx %jx", prev_object,
2156 				(uintmax_t)next_pindex, (uintmax_t)next_size));
2157 			prev_object->charge -= ptoa(prev_object->size -
2158 			    next_pindex);
2159 		}
2160 #endif
2161 	}
2162 
2163 	/*
2164 	 * Extend the object if necessary.
2165 	 */
2166 	if (next_pindex + next_size > prev_object->size)
2167 		prev_object->size = next_pindex + next_size;
2168 
2169 	VM_OBJECT_WUNLOCK(prev_object);
2170 	return (TRUE);
2171 }
2172 
2173 void
2174 vm_object_set_writeable_dirty(vm_object_t object)
2175 {
2176 
2177 	VM_OBJECT_ASSERT_WLOCKED(object);
2178 	if (object->type != OBJT_VNODE) {
2179 		if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2180 			KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2181 			vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2182 		}
2183 		return;
2184 	}
2185 	object->generation++;
2186 	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2187 		return;
2188 	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2189 }
2190 
2191 /*
2192  *	vm_object_unwire:
2193  *
2194  *	For each page offset within the specified range of the given object,
2195  *	find the highest-level page in the shadow chain and unwire it.  A page
2196  *	must exist at every page offset, and the highest-level page must be
2197  *	wired.
2198  */
2199 void
2200 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2201     uint8_t queue)
2202 {
2203 	vm_object_t tobject;
2204 	vm_page_t m, tm;
2205 	vm_pindex_t end_pindex, pindex, tpindex;
2206 	int depth, locked_depth;
2207 
2208 	KASSERT((offset & PAGE_MASK) == 0,
2209 	    ("vm_object_unwire: offset is not page aligned"));
2210 	KASSERT((length & PAGE_MASK) == 0,
2211 	    ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2212 	/* The wired count of a fictitious page never changes. */
2213 	if ((object->flags & OBJ_FICTITIOUS) != 0)
2214 		return;
2215 	pindex = OFF_TO_IDX(offset);
2216 	end_pindex = pindex + atop(length);
2217 	locked_depth = 1;
2218 	VM_OBJECT_RLOCK(object);
2219 	m = vm_page_find_least(object, pindex);
2220 	while (pindex < end_pindex) {
2221 		if (m == NULL || pindex < m->pindex) {
2222 			/*
2223 			 * The first object in the shadow chain doesn't
2224 			 * contain a page at the current index.  Therefore,
2225 			 * the page must exist in a backing object.
2226 			 */
2227 			tobject = object;
2228 			tpindex = pindex;
2229 			depth = 0;
2230 			do {
2231 				tpindex +=
2232 				    OFF_TO_IDX(tobject->backing_object_offset);
2233 				tobject = tobject->backing_object;
2234 				KASSERT(tobject != NULL,
2235 				    ("vm_object_unwire: missing page"));
2236 				if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2237 					goto next_page;
2238 				depth++;
2239 				if (depth == locked_depth) {
2240 					locked_depth++;
2241 					VM_OBJECT_RLOCK(tobject);
2242 				}
2243 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
2244 			    NULL);
2245 		} else {
2246 			tm = m;
2247 			m = TAILQ_NEXT(m, listq);
2248 		}
2249 		vm_page_lock(tm);
2250 		vm_page_unwire(tm, queue);
2251 		vm_page_unlock(tm);
2252 next_page:
2253 		pindex++;
2254 	}
2255 	/* Release the accumulated object locks. */
2256 	for (depth = 0; depth < locked_depth; depth++) {
2257 		tobject = object->backing_object;
2258 		VM_OBJECT_RUNLOCK(object);
2259 		object = tobject;
2260 	}
2261 }
2262 
2263 struct vnode *
2264 vm_object_vnode(vm_object_t object)
2265 {
2266 
2267 	VM_OBJECT_ASSERT_LOCKED(object);
2268 	if (object->type == OBJT_VNODE)
2269 		return (object->handle);
2270 	if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
2271 		return (object->un_pager.swp.swp_tmpfs);
2272 	return (NULL);
2273 }
2274 
2275 static int
2276 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2277 {
2278 	struct kinfo_vmobject kvo;
2279 	char *fullpath, *freepath;
2280 	struct vnode *vp;
2281 	struct vattr va;
2282 	vm_object_t obj;
2283 	vm_page_t m;
2284 	int count, error;
2285 
2286 	if (req->oldptr == NULL) {
2287 		/*
2288 		 * If an old buffer has not been provided, generate an
2289 		 * estimate of the space needed for a subsequent call.
2290 		 */
2291 		mtx_lock(&vm_object_list_mtx);
2292 		count = 0;
2293 		TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2294 			if (obj->type == OBJT_DEAD)
2295 				continue;
2296 			count++;
2297 		}
2298 		mtx_unlock(&vm_object_list_mtx);
2299 		return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2300 		    count * 11 / 10));
2301 	}
2302 
2303 	error = 0;
2304 
2305 	/*
2306 	 * VM objects are type stable and are never removed from the
2307 	 * list once added.  This allows us to safely read obj->object_list
2308 	 * after reacquiring the VM object lock.
2309 	 */
2310 	mtx_lock(&vm_object_list_mtx);
2311 	TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2312 		if (obj->type == OBJT_DEAD)
2313 			continue;
2314 		VM_OBJECT_RLOCK(obj);
2315 		if (obj->type == OBJT_DEAD) {
2316 			VM_OBJECT_RUNLOCK(obj);
2317 			continue;
2318 		}
2319 		mtx_unlock(&vm_object_list_mtx);
2320 		kvo.kvo_size = ptoa(obj->size);
2321 		kvo.kvo_resident = obj->resident_page_count;
2322 		kvo.kvo_ref_count = obj->ref_count;
2323 		kvo.kvo_shadow_count = obj->shadow_count;
2324 		kvo.kvo_memattr = obj->memattr;
2325 		kvo.kvo_active = 0;
2326 		kvo.kvo_inactive = 0;
2327 		TAILQ_FOREACH(m, &obj->memq, listq) {
2328 			/*
2329 			 * A page may belong to the object but be
2330 			 * dequeued and set to PQ_NONE while the
2331 			 * object lock is not held.  This makes the
2332 			 * reads of m->queue below racy, and we do not
2333 			 * count pages set to PQ_NONE.  However, this
2334 			 * sysctl is only meant to give an
2335 			 * approximation of the system anyway.
2336 			 */
2337 			if (vm_page_active(m))
2338 				kvo.kvo_active++;
2339 			else if (vm_page_inactive(m))
2340 				kvo.kvo_inactive++;
2341 		}
2342 
2343 		kvo.kvo_vn_fileid = 0;
2344 		kvo.kvo_vn_fsid = 0;
2345 		freepath = NULL;
2346 		fullpath = "";
2347 		vp = NULL;
2348 		switch (obj->type) {
2349 		case OBJT_DEFAULT:
2350 			kvo.kvo_type = KVME_TYPE_DEFAULT;
2351 			break;
2352 		case OBJT_VNODE:
2353 			kvo.kvo_type = KVME_TYPE_VNODE;
2354 			vp = obj->handle;
2355 			vref(vp);
2356 			break;
2357 		case OBJT_SWAP:
2358 			kvo.kvo_type = KVME_TYPE_SWAP;
2359 			break;
2360 		case OBJT_DEVICE:
2361 			kvo.kvo_type = KVME_TYPE_DEVICE;
2362 			break;
2363 		case OBJT_PHYS:
2364 			kvo.kvo_type = KVME_TYPE_PHYS;
2365 			break;
2366 		case OBJT_DEAD:
2367 			kvo.kvo_type = KVME_TYPE_DEAD;
2368 			break;
2369 		case OBJT_SG:
2370 			kvo.kvo_type = KVME_TYPE_SG;
2371 			break;
2372 		case OBJT_MGTDEVICE:
2373 			kvo.kvo_type = KVME_TYPE_MGTDEVICE;
2374 			break;
2375 		default:
2376 			kvo.kvo_type = KVME_TYPE_UNKNOWN;
2377 			break;
2378 		}
2379 		VM_OBJECT_RUNLOCK(obj);
2380 		if (vp != NULL) {
2381 			vn_fullpath(curthread, vp, &fullpath, &freepath);
2382 			vn_lock(vp, LK_SHARED | LK_RETRY);
2383 			if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2384 				kvo.kvo_vn_fileid = va.va_fileid;
2385 				kvo.kvo_vn_fsid = va.va_fsid;
2386 			}
2387 			vput(vp);
2388 		}
2389 
2390 		strlcpy(kvo.kvo_path, fullpath, sizeof(kvo.kvo_path));
2391 		if (freepath != NULL)
2392 			free(freepath, M_TEMP);
2393 
2394 		/* Pack record size down */
2395 		kvo.kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) +
2396 		    strlen(kvo.kvo_path) + 1;
2397 		kvo.kvo_structsize = roundup(kvo.kvo_structsize,
2398 		    sizeof(uint64_t));
2399 		error = SYSCTL_OUT(req, &kvo, kvo.kvo_structsize);
2400 		mtx_lock(&vm_object_list_mtx);
2401 		if (error)
2402 			break;
2403 	}
2404 	mtx_unlock(&vm_object_list_mtx);
2405 	return (error);
2406 }
2407 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2408     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2409     "List of VM objects");
2410 
2411 #include "opt_ddb.h"
2412 #ifdef DDB
2413 #include <sys/kernel.h>
2414 
2415 #include <sys/cons.h>
2416 
2417 #include <ddb/ddb.h>
2418 
2419 static int
2420 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2421 {
2422 	vm_map_t tmpm;
2423 	vm_map_entry_t tmpe;
2424 	vm_object_t obj;
2425 	int entcount;
2426 
2427 	if (map == 0)
2428 		return 0;
2429 
2430 	if (entry == 0) {
2431 		tmpe = map->header.next;
2432 		entcount = map->nentries;
2433 		while (entcount-- && (tmpe != &map->header)) {
2434 			if (_vm_object_in_map(map, object, tmpe)) {
2435 				return 1;
2436 			}
2437 			tmpe = tmpe->next;
2438 		}
2439 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2440 		tmpm = entry->object.sub_map;
2441 		tmpe = tmpm->header.next;
2442 		entcount = tmpm->nentries;
2443 		while (entcount-- && tmpe != &tmpm->header) {
2444 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2445 				return 1;
2446 			}
2447 			tmpe = tmpe->next;
2448 		}
2449 	} else if ((obj = entry->object.vm_object) != NULL) {
2450 		for (; obj; obj = obj->backing_object)
2451 			if (obj == object) {
2452 				return 1;
2453 			}
2454 	}
2455 	return 0;
2456 }
2457 
2458 static int
2459 vm_object_in_map(vm_object_t object)
2460 {
2461 	struct proc *p;
2462 
2463 	/* sx_slock(&allproc_lock); */
2464 	FOREACH_PROC_IN_SYSTEM(p) {
2465 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2466 			continue;
2467 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2468 			/* sx_sunlock(&allproc_lock); */
2469 			return 1;
2470 		}
2471 	}
2472 	/* sx_sunlock(&allproc_lock); */
2473 	if (_vm_object_in_map(kernel_map, object, 0))
2474 		return 1;
2475 	return 0;
2476 }
2477 
2478 DB_SHOW_COMMAND(vmochk, vm_object_check)
2479 {
2480 	vm_object_t object;
2481 
2482 	/*
2483 	 * make sure that internal objs are in a map somewhere
2484 	 * and none have zero ref counts.
2485 	 */
2486 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2487 		if (object->handle == NULL &&
2488 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2489 			if (object->ref_count == 0) {
2490 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2491 					(long)object->size);
2492 			}
2493 			if (!vm_object_in_map(object)) {
2494 				db_printf(
2495 			"vmochk: internal obj is not in a map: "
2496 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2497 				    object->ref_count, (u_long)object->size,
2498 				    (u_long)object->size,
2499 				    (void *)object->backing_object);
2500 			}
2501 		}
2502 	}
2503 }
2504 
2505 /*
2506  *	vm_object_print:	[ debug ]
2507  */
2508 DB_SHOW_COMMAND(object, vm_object_print_static)
2509 {
2510 	/* XXX convert args. */
2511 	vm_object_t object = (vm_object_t)addr;
2512 	boolean_t full = have_addr;
2513 
2514 	vm_page_t p;
2515 
2516 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2517 #define	count	was_count
2518 
2519 	int count;
2520 
2521 	if (object == NULL)
2522 		return;
2523 
2524 	db_iprintf(
2525 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2526 	    object, (int)object->type, (uintmax_t)object->size,
2527 	    object->resident_page_count, object->ref_count, object->flags,
2528 	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2529 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2530 	    object->shadow_count,
2531 	    object->backing_object ? object->backing_object->ref_count : 0,
2532 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2533 
2534 	if (!full)
2535 		return;
2536 
2537 	db_indent += 2;
2538 	count = 0;
2539 	TAILQ_FOREACH(p, &object->memq, listq) {
2540 		if (count == 0)
2541 			db_iprintf("memory:=");
2542 		else if (count == 6) {
2543 			db_printf("\n");
2544 			db_iprintf(" ...");
2545 			count = 0;
2546 		} else
2547 			db_printf(",");
2548 		count++;
2549 
2550 		db_printf("(off=0x%jx,page=0x%jx)",
2551 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2552 	}
2553 	if (count != 0)
2554 		db_printf("\n");
2555 	db_indent -= 2;
2556 }
2557 
2558 /* XXX. */
2559 #undef count
2560 
2561 /* XXX need this non-static entry for calling from vm_map_print. */
2562 void
2563 vm_object_print(
2564         /* db_expr_t */ long addr,
2565 	boolean_t have_addr,
2566 	/* db_expr_t */ long count,
2567 	char *modif)
2568 {
2569 	vm_object_print_static(addr, have_addr, count, modif);
2570 }
2571 
2572 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2573 {
2574 	vm_object_t object;
2575 	vm_pindex_t fidx;
2576 	vm_paddr_t pa;
2577 	vm_page_t m, prev_m;
2578 	int rcount, nl, c;
2579 
2580 	nl = 0;
2581 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2582 		db_printf("new object: %p\n", (void *)object);
2583 		if (nl > 18) {
2584 			c = cngetc();
2585 			if (c != ' ')
2586 				return;
2587 			nl = 0;
2588 		}
2589 		nl++;
2590 		rcount = 0;
2591 		fidx = 0;
2592 		pa = -1;
2593 		TAILQ_FOREACH(m, &object->memq, listq) {
2594 			if (m->pindex > 128)
2595 				break;
2596 			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2597 			    prev_m->pindex + 1 != m->pindex) {
2598 				if (rcount) {
2599 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2600 						(long)fidx, rcount, (long)pa);
2601 					if (nl > 18) {
2602 						c = cngetc();
2603 						if (c != ' ')
2604 							return;
2605 						nl = 0;
2606 					}
2607 					nl++;
2608 					rcount = 0;
2609 				}
2610 			}
2611 			if (rcount &&
2612 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2613 				++rcount;
2614 				continue;
2615 			}
2616 			if (rcount) {
2617 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2618 					(long)fidx, rcount, (long)pa);
2619 				if (nl > 18) {
2620 					c = cngetc();
2621 					if (c != ' ')
2622 						return;
2623 					nl = 0;
2624 				}
2625 				nl++;
2626 			}
2627 			fidx = m->pindex;
2628 			pa = VM_PAGE_TO_PHYS(m);
2629 			rcount = 1;
2630 		}
2631 		if (rcount) {
2632 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2633 				(long)fidx, rcount, (long)pa);
2634 			if (nl > 18) {
2635 				c = cngetc();
2636 				if (c != ' ')
2637 					return;
2638 				nl = 0;
2639 			}
2640 			nl++;
2641 		}
2642 	}
2643 }
2644 #endif /* DDB */
2645